* hpux-core.c (hpux_core_core_file_p): Add cast in call to
[deliverable/binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003
4 Free Software Foundation, Inc.
5
6 Contributed by the Center for Software Science at the
7 University of Utah.
8
9 This file is part of BFD, the Binary File Descriptor library.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
24 02111-1307, USA. */
25
26 #include "alloca-conf.h"
27 #include "bfd.h"
28 #include "sysdep.h"
29
30 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF) || defined(HOST_HPPAMPEIX)
31
32 #include "libbfd.h"
33 #include "som.h"
34 #include "safe-ctype.h"
35
36 #include <sys/param.h>
37 #include <signal.h>
38 #include <machine/reg.h>
39 #include <sys/file.h>
40
41 /* Magic not defined in standard HP-UX header files until 8.0. */
42
43 #ifndef CPU_PA_RISC1_0
44 #define CPU_PA_RISC1_0 0x20B
45 #endif /* CPU_PA_RISC1_0 */
46
47 #ifndef CPU_PA_RISC1_1
48 #define CPU_PA_RISC1_1 0x210
49 #endif /* CPU_PA_RISC1_1 */
50
51 #ifndef CPU_PA_RISC2_0
52 #define CPU_PA_RISC2_0 0x214
53 #endif /* CPU_PA_RISC2_0 */
54
55 #ifndef _PA_RISC1_0_ID
56 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
57 #endif /* _PA_RISC1_0_ID */
58
59 #ifndef _PA_RISC1_1_ID
60 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
61 #endif /* _PA_RISC1_1_ID */
62
63 #ifndef _PA_RISC2_0_ID
64 #define _PA_RISC2_0_ID CPU_PA_RISC2_0
65 #endif /* _PA_RISC2_0_ID */
66
67 #ifndef _PA_RISC_MAXID
68 #define _PA_RISC_MAXID 0x2FF
69 #endif /* _PA_RISC_MAXID */
70
71 #ifndef _PA_RISC_ID
72 #define _PA_RISC_ID(__m_num) \
73 (((__m_num) == _PA_RISC1_0_ID) || \
74 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
75 #endif /* _PA_RISC_ID */
76
77 /* HIUX in it's infinite stupidity changed the names for several "well
78 known" constants. Work around such braindamage. Try the HPUX version
79 first, then the HIUX version, and finally provide a default. */
80 #ifdef HPUX_AUX_ID
81 #define EXEC_AUX_ID HPUX_AUX_ID
82 #endif
83
84 #if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID)
85 #define EXEC_AUX_ID HIUX_AUX_ID
86 #endif
87
88 #ifndef EXEC_AUX_ID
89 #define EXEC_AUX_ID 0
90 #endif
91
92 /* Size (in chars) of the temporary buffers used during fixup and string
93 table writes. */
94
95 #define SOM_TMP_BUFSIZE 8192
96
97 /* Size of the hash table in archives. */
98 #define SOM_LST_HASH_SIZE 31
99
100 /* Max number of SOMs to be found in an archive. */
101 #define SOM_LST_MODULE_LIMIT 1024
102
103 /* Generic alignment macro. */
104 #define SOM_ALIGN(val, alignment) \
105 (((val) + (alignment) - 1) &~ ((unsigned long) (alignment) - 1))
106
107 /* SOM allows any one of the four previous relocations to be reused
108 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
109 relocations are always a single byte, using a R_PREV_FIXUP instead
110 of some multi-byte relocation makes object files smaller.
111
112 Note one side effect of using a R_PREV_FIXUP is the relocation that
113 is being repeated moves to the front of the queue. */
114 struct reloc_queue {
115 unsigned char *reloc;
116 unsigned int size;
117 } reloc_queue[4];
118
119 /* This fully describes the symbol types which may be attached to
120 an EXPORT or IMPORT directive. Only SOM uses this formation
121 (ELF has no need for it). */
122 typedef enum {
123 SYMBOL_TYPE_UNKNOWN,
124 SYMBOL_TYPE_ABSOLUTE,
125 SYMBOL_TYPE_CODE,
126 SYMBOL_TYPE_DATA,
127 SYMBOL_TYPE_ENTRY,
128 SYMBOL_TYPE_MILLICODE,
129 SYMBOL_TYPE_PLABEL,
130 SYMBOL_TYPE_PRI_PROG,
131 SYMBOL_TYPE_SEC_PROG,
132 } pa_symbol_type;
133
134 struct section_to_type {
135 char *section;
136 char type;
137 };
138
139 /* Assorted symbol information that needs to be derived from the BFD symbol
140 and/or the BFD backend private symbol data. */
141 struct som_misc_symbol_info {
142 unsigned int symbol_type;
143 unsigned int symbol_scope;
144 unsigned int arg_reloc;
145 unsigned int symbol_info;
146 unsigned int symbol_value;
147 unsigned int priv_level;
148 unsigned int secondary_def;
149 };
150
151 /* Forward declarations. */
152
153 static bfd_boolean som_mkobject
154 PARAMS ((bfd *));
155 static const bfd_target * som_object_setup
156 PARAMS ((bfd *, struct header *, struct som_exec_auxhdr *, unsigned long));
157 static bfd_boolean setup_sections
158 PARAMS ((bfd *, struct header *, unsigned long));
159 static const bfd_target * som_object_p
160 PARAMS ((bfd *));
161 static bfd_boolean som_write_object_contents
162 PARAMS ((bfd *));
163 static bfd_boolean som_slurp_string_table
164 PARAMS ((bfd *));
165 static unsigned int som_slurp_symbol_table
166 PARAMS ((bfd *));
167 static long som_get_symtab_upper_bound
168 PARAMS ((bfd *));
169 static long som_canonicalize_reloc
170 PARAMS ((bfd *, sec_ptr, arelent **, asymbol **));
171 static long som_get_reloc_upper_bound
172 PARAMS ((bfd *, sec_ptr));
173 static unsigned int som_set_reloc_info
174 PARAMS ((unsigned char *, unsigned int, arelent *, asection *,
175 asymbol **, bfd_boolean));
176 static bfd_boolean som_slurp_reloc_table
177 PARAMS ((bfd *, asection *, asymbol **, bfd_boolean));
178 static long som_canonicalize_symtab
179 PARAMS ((bfd *, asymbol **));
180 static asymbol * som_make_empty_symbol
181 PARAMS ((bfd *));
182 static void som_print_symbol
183 PARAMS ((bfd *, PTR, asymbol *, bfd_print_symbol_type));
184 static bfd_boolean som_new_section_hook
185 PARAMS ((bfd *, asection *));
186 static bfd_boolean som_bfd_copy_private_symbol_data
187 PARAMS ((bfd *, asymbol *, bfd *, asymbol *));
188 static bfd_boolean som_bfd_copy_private_section_data
189 PARAMS ((bfd *, asection *, bfd *, asection *));
190 static bfd_boolean som_bfd_copy_private_bfd_data
191 PARAMS ((bfd *, bfd *));
192 #define som_bfd_merge_private_bfd_data _bfd_generic_bfd_merge_private_bfd_data
193 #define som_bfd_set_private_flags _bfd_generic_bfd_set_private_flags
194 static bfd_boolean som_bfd_is_local_label_name
195 PARAMS ((bfd *, const char *));
196 static bfd_boolean som_set_section_contents
197 PARAMS ((bfd *, sec_ptr, const PTR, file_ptr, bfd_size_type));
198 static bfd_boolean som_get_section_contents
199 PARAMS ((bfd *, sec_ptr, PTR, file_ptr, bfd_size_type));
200 static bfd_boolean som_set_arch_mach
201 PARAMS ((bfd *, enum bfd_architecture, unsigned long));
202 static bfd_boolean som_find_nearest_line
203 PARAMS ((bfd *, asection *, asymbol **, bfd_vma, const char **,
204 const char **, unsigned int *));
205 static void som_get_symbol_info
206 PARAMS ((bfd *, asymbol *, symbol_info *));
207 static asection * bfd_section_from_som_symbol
208 PARAMS ((bfd *, struct symbol_dictionary_record *));
209 static int log2
210 PARAMS ((unsigned int));
211 static bfd_reloc_status_type hppa_som_reloc
212 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
213 static void som_initialize_reloc_queue
214 PARAMS ((struct reloc_queue *));
215 static void som_reloc_queue_insert
216 PARAMS ((unsigned char *, unsigned int, struct reloc_queue *));
217 static void som_reloc_queue_fix
218 PARAMS ((struct reloc_queue *, unsigned int));
219 static int som_reloc_queue_find
220 PARAMS ((unsigned char *, unsigned int, struct reloc_queue *));
221 static unsigned char * try_prev_fixup
222 PARAMS ((bfd *, int *, unsigned char *, unsigned int, struct reloc_queue *));
223 static unsigned char * som_reloc_skip
224 PARAMS ((bfd *, unsigned int, unsigned char *, unsigned int *,
225 struct reloc_queue *));
226 static unsigned char * som_reloc_addend
227 PARAMS ((bfd *, bfd_vma, unsigned char *, unsigned int *,
228 struct reloc_queue *));
229 static unsigned char * som_reloc_call
230 PARAMS ((bfd *, unsigned char *, unsigned int *, arelent *, int,
231 struct reloc_queue *));
232 static unsigned long som_count_spaces
233 PARAMS ((bfd *));
234 static unsigned long som_count_subspaces
235 PARAMS ((bfd *));
236 static int compare_syms
237 PARAMS ((const void *, const void *));
238 static int compare_subspaces
239 PARAMS ((const void *, const void *));
240 static unsigned long som_compute_checksum
241 PARAMS ((bfd *));
242 static bfd_boolean som_prep_headers
243 PARAMS ((bfd *));
244 static int som_sizeof_headers
245 PARAMS ((bfd *, bfd_boolean));
246 static bfd_boolean som_finish_writing
247 PARAMS ((bfd *));
248 static bfd_boolean som_build_and_write_symbol_table
249 PARAMS ((bfd *));
250 static void som_prep_for_fixups
251 PARAMS ((bfd *, asymbol **, unsigned long));
252 static bfd_boolean som_write_fixups
253 PARAMS ((bfd *, unsigned long, unsigned int *));
254 static bfd_boolean som_write_space_strings
255 PARAMS ((bfd *, unsigned long, unsigned int *));
256 static bfd_boolean som_write_symbol_strings
257 PARAMS ((bfd *, unsigned long, asymbol **, unsigned int, unsigned *,
258 COMPUNIT *));
259 static bfd_boolean som_begin_writing
260 PARAMS ((bfd *));
261 static reloc_howto_type * som_bfd_reloc_type_lookup
262 PARAMS ((bfd *, bfd_reloc_code_real_type));
263 static char som_section_type
264 PARAMS ((const char *));
265 static int som_decode_symclass
266 PARAMS ((asymbol *));
267 static bfd_boolean som_bfd_count_ar_symbols
268 PARAMS ((bfd *, struct lst_header *, symindex *));
269 static bfd_boolean som_bfd_fill_in_ar_symbols
270 PARAMS ((bfd *, struct lst_header *, carsym **));
271 static bfd_boolean som_slurp_armap
272 PARAMS ((bfd *));
273 static bfd_boolean som_write_armap
274 PARAMS ((bfd *, unsigned int, struct orl *, unsigned int, int));
275 static void som_bfd_derive_misc_symbol_info
276 PARAMS ((bfd *, asymbol *, struct som_misc_symbol_info *));
277 static bfd_boolean som_bfd_prep_for_ar_write
278 PARAMS ((bfd *, unsigned int *, unsigned int *));
279 static unsigned int som_bfd_ar_symbol_hash
280 PARAMS ((asymbol *));
281 static bfd_boolean som_bfd_ar_write_symbol_stuff
282 PARAMS ((bfd *, unsigned int, unsigned int, struct lst_header,
283 unsigned int));
284 static bfd_boolean som_is_space
285 PARAMS ((asection *));
286 static bfd_boolean som_is_subspace
287 PARAMS ((asection *));
288 static bfd_boolean som_is_container
289 PARAMS ((asection *, asection *));
290 static bfd_boolean som_bfd_free_cached_info
291 PARAMS ((bfd *));
292 static bfd_boolean som_bfd_link_split_section
293 PARAMS ((bfd *, asection *));
294
295 /* Map SOM section names to POSIX/BSD single-character symbol types.
296
297 This table includes all the standard subspaces as defined in the
298 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
299 some reason was left out, and sections specific to embedded stabs. */
300
301 static const struct section_to_type stt[] = {
302 {"$TEXT$", 't'},
303 {"$SHLIB_INFO$", 't'},
304 {"$MILLICODE$", 't'},
305 {"$LIT$", 't'},
306 {"$CODE$", 't'},
307 {"$UNWIND_START$", 't'},
308 {"$UNWIND$", 't'},
309 {"$PRIVATE$", 'd'},
310 {"$PLT$", 'd'},
311 {"$SHLIB_DATA$", 'd'},
312 {"$DATA$", 'd'},
313 {"$SHORTDATA$", 'g'},
314 {"$DLT$", 'd'},
315 {"$GLOBAL$", 'g'},
316 {"$SHORTBSS$", 's'},
317 {"$BSS$", 'b'},
318 {"$GDB_STRINGS$", 'N'},
319 {"$GDB_SYMBOLS$", 'N'},
320 {0, 0}
321 };
322
323 /* About the relocation formatting table...
324
325 There are 256 entries in the table, one for each possible
326 relocation opcode available in SOM. We index the table by
327 the relocation opcode. The names and operations are those
328 defined by a.out_800 (4).
329
330 Right now this table is only used to count and perform minimal
331 processing on relocation streams so that they can be internalized
332 into BFD and symbolically printed by utilities. To make actual use
333 of them would be much more difficult, BFD's concept of relocations
334 is far too simple to handle SOM relocations. The basic assumption
335 that a relocation can be completely processed independent of other
336 relocations before an object file is written is invalid for SOM.
337
338 The SOM relocations are meant to be processed as a stream, they
339 specify copying of data from the input section to the output section
340 while possibly modifying the data in some manner. They also can
341 specify that a variable number of zeros or uninitialized data be
342 inserted on in the output segment at the current offset. Some
343 relocations specify that some previous relocation be re-applied at
344 the current location in the input/output sections. And finally a number
345 of relocations have effects on other sections (R_ENTRY, R_EXIT,
346 R_UNWIND_AUX and a variety of others). There isn't even enough room
347 in the BFD relocation data structure to store enough information to
348 perform all the relocations.
349
350 Each entry in the table has three fields.
351
352 The first entry is an index into this "class" of relocations. This
353 index can then be used as a variable within the relocation itself.
354
355 The second field is a format string which actually controls processing
356 of the relocation. It uses a simple postfix machine to do calculations
357 based on variables/constants found in the string and the relocation
358 stream.
359
360 The third field specifys whether or not this relocation may use
361 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
362 stored in the instruction.
363
364 Variables:
365
366 L = input space byte count
367 D = index into class of relocations
368 M = output space byte count
369 N = statement number (unused?)
370 O = stack operation
371 R = parameter relocation bits
372 S = symbol index
373 T = first 32 bits of stack unwind information
374 U = second 32 bits of stack unwind information
375 V = a literal constant (usually used in the next relocation)
376 P = a previous relocation
377
378 Lower case letters (starting with 'b') refer to following
379 bytes in the relocation stream. 'b' is the next 1 byte,
380 c is the next 2 bytes, d is the next 3 bytes, etc...
381 This is the variable part of the relocation entries that
382 makes our life a living hell.
383
384 numerical constants are also used in the format string. Note
385 the constants are represented in decimal.
386
387 '+', "*" and "=" represents the obvious postfix operators.
388 '<' represents a left shift.
389
390 Stack Operations:
391
392 Parameter Relocation Bits:
393
394 Unwind Entries:
395
396 Previous Relocations: The index field represents which in the queue
397 of 4 previous fixups should be re-applied.
398
399 Literal Constants: These are generally used to represent addend
400 parts of relocations when these constants are not stored in the
401 fields of the instructions themselves. For example the instruction
402 addil foo-$global$-0x1234 would use an override for "0x1234" rather
403 than storing it into the addil itself. */
404
405 struct fixup_format {
406 int D;
407 const char *format;
408 };
409
410 static const struct fixup_format som_fixup_formats[256] = {
411 /* R_NO_RELOCATION */
412 { 0, "LD1+4*=" }, /* 0x00 */
413 { 1, "LD1+4*=" }, /* 0x01 */
414 { 2, "LD1+4*=" }, /* 0x02 */
415 { 3, "LD1+4*=" }, /* 0x03 */
416 { 4, "LD1+4*=" }, /* 0x04 */
417 { 5, "LD1+4*=" }, /* 0x05 */
418 { 6, "LD1+4*=" }, /* 0x06 */
419 { 7, "LD1+4*=" }, /* 0x07 */
420 { 8, "LD1+4*=" }, /* 0x08 */
421 { 9, "LD1+4*=" }, /* 0x09 */
422 { 10, "LD1+4*=" }, /* 0x0a */
423 { 11, "LD1+4*=" }, /* 0x0b */
424 { 12, "LD1+4*=" }, /* 0x0c */
425 { 13, "LD1+4*=" }, /* 0x0d */
426 { 14, "LD1+4*=" }, /* 0x0e */
427 { 15, "LD1+4*=" }, /* 0x0f */
428 { 16, "LD1+4*=" }, /* 0x10 */
429 { 17, "LD1+4*=" }, /* 0x11 */
430 { 18, "LD1+4*=" }, /* 0x12 */
431 { 19, "LD1+4*=" }, /* 0x13 */
432 { 20, "LD1+4*=" }, /* 0x14 */
433 { 21, "LD1+4*=" }, /* 0x15 */
434 { 22, "LD1+4*=" }, /* 0x16 */
435 { 23, "LD1+4*=" }, /* 0x17 */
436 { 0, "LD8<b+1+4*=" }, /* 0x18 */
437 { 1, "LD8<b+1+4*=" }, /* 0x19 */
438 { 2, "LD8<b+1+4*=" }, /* 0x1a */
439 { 3, "LD8<b+1+4*=" }, /* 0x1b */
440 { 0, "LD16<c+1+4*=" }, /* 0x1c */
441 { 1, "LD16<c+1+4*=" }, /* 0x1d */
442 { 2, "LD16<c+1+4*=" }, /* 0x1e */
443 { 0, "Ld1+=" }, /* 0x1f */
444 /* R_ZEROES */
445 { 0, "Lb1+4*=" }, /* 0x20 */
446 { 1, "Ld1+=" }, /* 0x21 */
447 /* R_UNINIT */
448 { 0, "Lb1+4*=" }, /* 0x22 */
449 { 1, "Ld1+=" }, /* 0x23 */
450 /* R_RELOCATION */
451 { 0, "L4=" }, /* 0x24 */
452 /* R_DATA_ONE_SYMBOL */
453 { 0, "L4=Sb=" }, /* 0x25 */
454 { 1, "L4=Sd=" }, /* 0x26 */
455 /* R_DATA_PLEBEL */
456 { 0, "L4=Sb=" }, /* 0x27 */
457 { 1, "L4=Sd=" }, /* 0x28 */
458 /* R_SPACE_REF */
459 { 0, "L4=" }, /* 0x29 */
460 /* R_REPEATED_INIT */
461 { 0, "L4=Mb1+4*=" }, /* 0x2a */
462 { 1, "Lb4*=Mb1+L*=" }, /* 0x2b */
463 { 2, "Lb4*=Md1+4*=" }, /* 0x2c */
464 { 3, "Ld1+=Me1+=" }, /* 0x2d */
465 { 0, "" }, /* 0x2e */
466 { 0, "" }, /* 0x2f */
467 /* R_PCREL_CALL */
468 { 0, "L4=RD=Sb=" }, /* 0x30 */
469 { 1, "L4=RD=Sb=" }, /* 0x31 */
470 { 2, "L4=RD=Sb=" }, /* 0x32 */
471 { 3, "L4=RD=Sb=" }, /* 0x33 */
472 { 4, "L4=RD=Sb=" }, /* 0x34 */
473 { 5, "L4=RD=Sb=" }, /* 0x35 */
474 { 6, "L4=RD=Sb=" }, /* 0x36 */
475 { 7, "L4=RD=Sb=" }, /* 0x37 */
476 { 8, "L4=RD=Sb=" }, /* 0x38 */
477 { 9, "L4=RD=Sb=" }, /* 0x39 */
478 { 0, "L4=RD8<b+=Sb=" }, /* 0x3a */
479 { 1, "L4=RD8<b+=Sb=" }, /* 0x3b */
480 { 0, "L4=RD8<b+=Sd=" }, /* 0x3c */
481 { 1, "L4=RD8<b+=Sd=" }, /* 0x3d */
482 /* R_SHORT_PCREL_MODE */
483 { 0, "" }, /* 0x3e */
484 /* R_LONG_PCREL_MODE */
485 { 0, "" }, /* 0x3f */
486 /* R_ABS_CALL */
487 { 0, "L4=RD=Sb=" }, /* 0x40 */
488 { 1, "L4=RD=Sb=" }, /* 0x41 */
489 { 2, "L4=RD=Sb=" }, /* 0x42 */
490 { 3, "L4=RD=Sb=" }, /* 0x43 */
491 { 4, "L4=RD=Sb=" }, /* 0x44 */
492 { 5, "L4=RD=Sb=" }, /* 0x45 */
493 { 6, "L4=RD=Sb=" }, /* 0x46 */
494 { 7, "L4=RD=Sb=" }, /* 0x47 */
495 { 8, "L4=RD=Sb=" }, /* 0x48 */
496 { 9, "L4=RD=Sb=" }, /* 0x49 */
497 { 0, "L4=RD8<b+=Sb=" }, /* 0x4a */
498 { 1, "L4=RD8<b+=Sb=" }, /* 0x4b */
499 { 0, "L4=RD8<b+=Sd=" }, /* 0x4c */
500 { 1, "L4=RD8<b+=Sd=" }, /* 0x4d */
501 /* R_RESERVED */
502 { 0, "" }, /* 0x4e */
503 { 0, "" }, /* 0x4f */
504 /* R_DP_RELATIVE */
505 { 0, "L4=SD=" }, /* 0x50 */
506 { 1, "L4=SD=" }, /* 0x51 */
507 { 2, "L4=SD=" }, /* 0x52 */
508 { 3, "L4=SD=" }, /* 0x53 */
509 { 4, "L4=SD=" }, /* 0x54 */
510 { 5, "L4=SD=" }, /* 0x55 */
511 { 6, "L4=SD=" }, /* 0x56 */
512 { 7, "L4=SD=" }, /* 0x57 */
513 { 8, "L4=SD=" }, /* 0x58 */
514 { 9, "L4=SD=" }, /* 0x59 */
515 { 10, "L4=SD=" }, /* 0x5a */
516 { 11, "L4=SD=" }, /* 0x5b */
517 { 12, "L4=SD=" }, /* 0x5c */
518 { 13, "L4=SD=" }, /* 0x5d */
519 { 14, "L4=SD=" }, /* 0x5e */
520 { 15, "L4=SD=" }, /* 0x5f */
521 { 16, "L4=SD=" }, /* 0x60 */
522 { 17, "L4=SD=" }, /* 0x61 */
523 { 18, "L4=SD=" }, /* 0x62 */
524 { 19, "L4=SD=" }, /* 0x63 */
525 { 20, "L4=SD=" }, /* 0x64 */
526 { 21, "L4=SD=" }, /* 0x65 */
527 { 22, "L4=SD=" }, /* 0x66 */
528 { 23, "L4=SD=" }, /* 0x67 */
529 { 24, "L4=SD=" }, /* 0x68 */
530 { 25, "L4=SD=" }, /* 0x69 */
531 { 26, "L4=SD=" }, /* 0x6a */
532 { 27, "L4=SD=" }, /* 0x6b */
533 { 28, "L4=SD=" }, /* 0x6c */
534 { 29, "L4=SD=" }, /* 0x6d */
535 { 30, "L4=SD=" }, /* 0x6e */
536 { 31, "L4=SD=" }, /* 0x6f */
537 { 32, "L4=Sb=" }, /* 0x70 */
538 { 33, "L4=Sd=" }, /* 0x71 */
539 /* R_RESERVED */
540 { 0, "" }, /* 0x72 */
541 { 0, "" }, /* 0x73 */
542 { 0, "" }, /* 0x74 */
543 { 0, "" }, /* 0x75 */
544 { 0, "" }, /* 0x76 */
545 { 0, "" }, /* 0x77 */
546 /* R_DLT_REL */
547 { 0, "L4=Sb=" }, /* 0x78 */
548 { 1, "L4=Sd=" }, /* 0x79 */
549 /* R_RESERVED */
550 { 0, "" }, /* 0x7a */
551 { 0, "" }, /* 0x7b */
552 { 0, "" }, /* 0x7c */
553 { 0, "" }, /* 0x7d */
554 { 0, "" }, /* 0x7e */
555 { 0, "" }, /* 0x7f */
556 /* R_CODE_ONE_SYMBOL */
557 { 0, "L4=SD=" }, /* 0x80 */
558 { 1, "L4=SD=" }, /* 0x81 */
559 { 2, "L4=SD=" }, /* 0x82 */
560 { 3, "L4=SD=" }, /* 0x83 */
561 { 4, "L4=SD=" }, /* 0x84 */
562 { 5, "L4=SD=" }, /* 0x85 */
563 { 6, "L4=SD=" }, /* 0x86 */
564 { 7, "L4=SD=" }, /* 0x87 */
565 { 8, "L4=SD=" }, /* 0x88 */
566 { 9, "L4=SD=" }, /* 0x89 */
567 { 10, "L4=SD=" }, /* 0x8q */
568 { 11, "L4=SD=" }, /* 0x8b */
569 { 12, "L4=SD=" }, /* 0x8c */
570 { 13, "L4=SD=" }, /* 0x8d */
571 { 14, "L4=SD=" }, /* 0x8e */
572 { 15, "L4=SD=" }, /* 0x8f */
573 { 16, "L4=SD=" }, /* 0x90 */
574 { 17, "L4=SD=" }, /* 0x91 */
575 { 18, "L4=SD=" }, /* 0x92 */
576 { 19, "L4=SD=" }, /* 0x93 */
577 { 20, "L4=SD=" }, /* 0x94 */
578 { 21, "L4=SD=" }, /* 0x95 */
579 { 22, "L4=SD=" }, /* 0x96 */
580 { 23, "L4=SD=" }, /* 0x97 */
581 { 24, "L4=SD=" }, /* 0x98 */
582 { 25, "L4=SD=" }, /* 0x99 */
583 { 26, "L4=SD=" }, /* 0x9a */
584 { 27, "L4=SD=" }, /* 0x9b */
585 { 28, "L4=SD=" }, /* 0x9c */
586 { 29, "L4=SD=" }, /* 0x9d */
587 { 30, "L4=SD=" }, /* 0x9e */
588 { 31, "L4=SD=" }, /* 0x9f */
589 { 32, "L4=Sb=" }, /* 0xa0 */
590 { 33, "L4=Sd=" }, /* 0xa1 */
591 /* R_RESERVED */
592 { 0, "" }, /* 0xa2 */
593 { 0, "" }, /* 0xa3 */
594 { 0, "" }, /* 0xa4 */
595 { 0, "" }, /* 0xa5 */
596 { 0, "" }, /* 0xa6 */
597 { 0, "" }, /* 0xa7 */
598 { 0, "" }, /* 0xa8 */
599 { 0, "" }, /* 0xa9 */
600 { 0, "" }, /* 0xaa */
601 { 0, "" }, /* 0xab */
602 { 0, "" }, /* 0xac */
603 { 0, "" }, /* 0xad */
604 /* R_MILLI_REL */
605 { 0, "L4=Sb=" }, /* 0xae */
606 { 1, "L4=Sd=" }, /* 0xaf */
607 /* R_CODE_PLABEL */
608 { 0, "L4=Sb=" }, /* 0xb0 */
609 { 1, "L4=Sd=" }, /* 0xb1 */
610 /* R_BREAKPOINT */
611 { 0, "L4=" }, /* 0xb2 */
612 /* R_ENTRY */
613 { 0, "Te=Ue=" }, /* 0xb3 */
614 { 1, "Uf=" }, /* 0xb4 */
615 /* R_ALT_ENTRY */
616 { 0, "" }, /* 0xb5 */
617 /* R_EXIT */
618 { 0, "" }, /* 0xb6 */
619 /* R_BEGIN_TRY */
620 { 0, "" }, /* 0xb7 */
621 /* R_END_TRY */
622 { 0, "R0=" }, /* 0xb8 */
623 { 1, "Rb4*=" }, /* 0xb9 */
624 { 2, "Rd4*=" }, /* 0xba */
625 /* R_BEGIN_BRTAB */
626 { 0, "" }, /* 0xbb */
627 /* R_END_BRTAB */
628 { 0, "" }, /* 0xbc */
629 /* R_STATEMENT */
630 { 0, "Nb=" }, /* 0xbd */
631 { 1, "Nc=" }, /* 0xbe */
632 { 2, "Nd=" }, /* 0xbf */
633 /* R_DATA_EXPR */
634 { 0, "L4=" }, /* 0xc0 */
635 /* R_CODE_EXPR */
636 { 0, "L4=" }, /* 0xc1 */
637 /* R_FSEL */
638 { 0, "" }, /* 0xc2 */
639 /* R_LSEL */
640 { 0, "" }, /* 0xc3 */
641 /* R_RSEL */
642 { 0, "" }, /* 0xc4 */
643 /* R_N_MODE */
644 { 0, "" }, /* 0xc5 */
645 /* R_S_MODE */
646 { 0, "" }, /* 0xc6 */
647 /* R_D_MODE */
648 { 0, "" }, /* 0xc7 */
649 /* R_R_MODE */
650 { 0, "" }, /* 0xc8 */
651 /* R_DATA_OVERRIDE */
652 { 0, "V0=" }, /* 0xc9 */
653 { 1, "Vb=" }, /* 0xca */
654 { 2, "Vc=" }, /* 0xcb */
655 { 3, "Vd=" }, /* 0xcc */
656 { 4, "Ve=" }, /* 0xcd */
657 /* R_TRANSLATED */
658 { 0, "" }, /* 0xce */
659 /* R_AUX_UNWIND */
660 { 0,"Sd=Ve=Ee=" }, /* 0xcf */
661 /* R_COMP1 */
662 { 0, "Ob=" }, /* 0xd0 */
663 /* R_COMP2 */
664 { 0, "Ob=Sd=" }, /* 0xd1 */
665 /* R_COMP3 */
666 { 0, "Ob=Ve=" }, /* 0xd2 */
667 /* R_PREV_FIXUP */
668 { 0, "P" }, /* 0xd3 */
669 { 1, "P" }, /* 0xd4 */
670 { 2, "P" }, /* 0xd5 */
671 { 3, "P" }, /* 0xd6 */
672 /* R_SEC_STMT */
673 { 0, "" }, /* 0xd7 */
674 /* R_N0SEL */
675 { 0, "" }, /* 0xd8 */
676 /* R_N1SEL */
677 { 0, "" }, /* 0xd9 */
678 /* R_LINETAB */
679 { 0, "Eb=Sd=Ve=" }, /* 0xda */
680 /* R_LINETAB_ESC */
681 { 0, "Eb=Mb=" }, /* 0xdb */
682 /* R_LTP_OVERRIDE */
683 { 0, "" }, /* 0xdc */
684 /* R_COMMENT */
685 { 0, "Ob=Vf=" }, /* 0xdd */
686 /* R_RESERVED */
687 { 0, "" }, /* 0xde */
688 { 0, "" }, /* 0xdf */
689 { 0, "" }, /* 0xe0 */
690 { 0, "" }, /* 0xe1 */
691 { 0, "" }, /* 0xe2 */
692 { 0, "" }, /* 0xe3 */
693 { 0, "" }, /* 0xe4 */
694 { 0, "" }, /* 0xe5 */
695 { 0, "" }, /* 0xe6 */
696 { 0, "" }, /* 0xe7 */
697 { 0, "" }, /* 0xe8 */
698 { 0, "" }, /* 0xe9 */
699 { 0, "" }, /* 0xea */
700 { 0, "" }, /* 0xeb */
701 { 0, "" }, /* 0xec */
702 { 0, "" }, /* 0xed */
703 { 0, "" }, /* 0xee */
704 { 0, "" }, /* 0xef */
705 { 0, "" }, /* 0xf0 */
706 { 0, "" }, /* 0xf1 */
707 { 0, "" }, /* 0xf2 */
708 { 0, "" }, /* 0xf3 */
709 { 0, "" }, /* 0xf4 */
710 { 0, "" }, /* 0xf5 */
711 { 0, "" }, /* 0xf6 */
712 { 0, "" }, /* 0xf7 */
713 { 0, "" }, /* 0xf8 */
714 { 0, "" }, /* 0xf9 */
715 { 0, "" }, /* 0xfa */
716 { 0, "" }, /* 0xfb */
717 { 0, "" }, /* 0xfc */
718 { 0, "" }, /* 0xfd */
719 { 0, "" }, /* 0xfe */
720 { 0, "" }, /* 0xff */
721 };
722
723 static const int comp1_opcodes[] = {
724 0x00,
725 0x40,
726 0x41,
727 0x42,
728 0x43,
729 0x44,
730 0x45,
731 0x46,
732 0x47,
733 0x48,
734 0x49,
735 0x4a,
736 0x4b,
737 0x60,
738 0x80,
739 0xa0,
740 0xc0,
741 -1
742 };
743
744 static const int comp2_opcodes[] = {
745 0x00,
746 0x80,
747 0x82,
748 0xc0,
749 -1
750 };
751
752 static const int comp3_opcodes[] = {
753 0x00,
754 0x02,
755 -1
756 };
757
758 /* These apparently are not in older versions of hpux reloc.h (hpux7). */
759 #ifndef R_DLT_REL
760 #define R_DLT_REL 0x78
761 #endif
762
763 #ifndef R_AUX_UNWIND
764 #define R_AUX_UNWIND 0xcf
765 #endif
766
767 #ifndef R_SEC_STMT
768 #define R_SEC_STMT 0xd7
769 #endif
770
771 /* And these first appeared in hpux10. */
772 #ifndef R_SHORT_PCREL_MODE
773 #define NO_PCREL_MODES
774 #define R_SHORT_PCREL_MODE 0x3e
775 #endif
776
777 #ifndef R_LONG_PCREL_MODE
778 #define R_LONG_PCREL_MODE 0x3f
779 #endif
780
781 #ifndef R_N0SEL
782 #define R_N0SEL 0xd8
783 #endif
784
785 #ifndef R_N1SEL
786 #define R_N1SEL 0xd9
787 #endif
788
789 #ifndef R_LINETAB
790 #define R_LINETAB 0xda
791 #endif
792
793 #ifndef R_LINETAB_ESC
794 #define R_LINETAB_ESC 0xdb
795 #endif
796
797 #ifndef R_LTP_OVERRIDE
798 #define R_LTP_OVERRIDE 0xdc
799 #endif
800
801 #ifndef R_COMMENT
802 #define R_COMMENT 0xdd
803 #endif
804
805 #define SOM_HOWTO(TYPE, NAME) \
806 HOWTO(TYPE, 0, 0, 32, FALSE, 0, 0, hppa_som_reloc, NAME, FALSE, 0, 0, FALSE)
807
808 static reloc_howto_type som_hppa_howto_table[] = {
809 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
810 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
811 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
812 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
813 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
814 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
815 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
816 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
817 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
818 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
819 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
820 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
821 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
822 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
823 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
824 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
825 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
826 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
827 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
828 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
829 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
830 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
831 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
832 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
833 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
834 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
835 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
836 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
837 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
838 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
839 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
840 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
841 SOM_HOWTO (R_ZEROES, "R_ZEROES"),
842 SOM_HOWTO (R_ZEROES, "R_ZEROES"),
843 SOM_HOWTO (R_UNINIT, "R_UNINIT"),
844 SOM_HOWTO (R_UNINIT, "R_UNINIT"),
845 SOM_HOWTO (R_RELOCATION, "R_RELOCATION"),
846 SOM_HOWTO (R_DATA_ONE_SYMBOL, "R_DATA_ONE_SYMBOL"),
847 SOM_HOWTO (R_DATA_ONE_SYMBOL, "R_DATA_ONE_SYMBOL"),
848 SOM_HOWTO (R_DATA_PLABEL, "R_DATA_PLABEL"),
849 SOM_HOWTO (R_DATA_PLABEL, "R_DATA_PLABEL"),
850 SOM_HOWTO (R_SPACE_REF, "R_SPACE_REF"),
851 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
852 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
853 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
854 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
855 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
856 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
857 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
858 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
859 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
860 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
861 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
862 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
863 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
864 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
865 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
866 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
867 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
868 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
869 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
870 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
871 SOM_HOWTO (R_SHORT_PCREL_MODE, "R_SHORT_PCREL_MODE"),
872 SOM_HOWTO (R_LONG_PCREL_MODE, "R_LONG_PCREL_MODE"),
873 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
874 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
875 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
876 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
877 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
878 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
879 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
880 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
881 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
882 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
883 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
884 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
885 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
886 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
887 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
888 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
889 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
890 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
891 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
892 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
893 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
894 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
895 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
896 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
897 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
898 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
899 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
900 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
901 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
902 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
903 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
904 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
905 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
906 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
907 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
908 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
909 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
910 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
911 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
912 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
913 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
914 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
915 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
916 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
917 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
918 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
919 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
920 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
921 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
922 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
923 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
924 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
925 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
926 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
927 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
928 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
929 SOM_HOWTO (R_DLT_REL, "R_DLT_REL"),
930 SOM_HOWTO (R_DLT_REL, "R_DLT_REL"),
931 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
932 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
933 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
934 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
935 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
936 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
937 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
938 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
939 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
940 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
941 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
942 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
943 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
944 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
945 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
946 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
947 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
948 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
949 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
950 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
951 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
952 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
953 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
954 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
955 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
956 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
957 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
958 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
959 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
960 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
961 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
962 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
963 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
964 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
965 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
966 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
967 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
968 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
969 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
970 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
971 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
972 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
973 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
974 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
975 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
976 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
977 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
978 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
979 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
980 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
981 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
982 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
983 SOM_HOWTO (R_MILLI_REL, "R_MILLI_REL"),
984 SOM_HOWTO (R_MILLI_REL, "R_MILLI_REL"),
985 SOM_HOWTO (R_CODE_PLABEL, "R_CODE_PLABEL"),
986 SOM_HOWTO (R_CODE_PLABEL, "R_CODE_PLABEL"),
987 SOM_HOWTO (R_BREAKPOINT, "R_BREAKPOINT"),
988 SOM_HOWTO (R_ENTRY, "R_ENTRY"),
989 SOM_HOWTO (R_ENTRY, "R_ENTRY"),
990 SOM_HOWTO (R_ALT_ENTRY, "R_ALT_ENTRY"),
991 SOM_HOWTO (R_EXIT, "R_EXIT"),
992 SOM_HOWTO (R_BEGIN_TRY, "R_BEGIN_TRY"),
993 SOM_HOWTO (R_END_TRY, "R_END_TRY"),
994 SOM_HOWTO (R_END_TRY, "R_END_TRY"),
995 SOM_HOWTO (R_END_TRY, "R_END_TRY"),
996 SOM_HOWTO (R_BEGIN_BRTAB, "R_BEGIN_BRTAB"),
997 SOM_HOWTO (R_END_BRTAB, "R_END_BRTAB"),
998 SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
999 SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
1000 SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
1001 SOM_HOWTO (R_DATA_EXPR, "R_DATA_EXPR"),
1002 SOM_HOWTO (R_CODE_EXPR, "R_CODE_EXPR"),
1003 SOM_HOWTO (R_FSEL, "R_FSEL"),
1004 SOM_HOWTO (R_LSEL, "R_LSEL"),
1005 SOM_HOWTO (R_RSEL, "R_RSEL"),
1006 SOM_HOWTO (R_N_MODE, "R_N_MODE"),
1007 SOM_HOWTO (R_S_MODE, "R_S_MODE"),
1008 SOM_HOWTO (R_D_MODE, "R_D_MODE"),
1009 SOM_HOWTO (R_R_MODE, "R_R_MODE"),
1010 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
1011 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
1012 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
1013 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
1014 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
1015 SOM_HOWTO (R_TRANSLATED, "R_TRANSLATED"),
1016 SOM_HOWTO (R_AUX_UNWIND, "R_AUX_UNWIND"),
1017 SOM_HOWTO (R_COMP1, "R_COMP1"),
1018 SOM_HOWTO (R_COMP2, "R_COMP2"),
1019 SOM_HOWTO (R_COMP3, "R_COMP3"),
1020 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
1021 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
1022 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
1023 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
1024 SOM_HOWTO (R_SEC_STMT, "R_SEC_STMT"),
1025 SOM_HOWTO (R_N0SEL, "R_N0SEL"),
1026 SOM_HOWTO (R_N1SEL, "R_N1SEL"),
1027 SOM_HOWTO (R_LINETAB, "R_LINETAB"),
1028 SOM_HOWTO (R_LINETAB_ESC, "R_LINETAB_ESC"),
1029 SOM_HOWTO (R_LTP_OVERRIDE, "R_LTP_OVERRIDE"),
1030 SOM_HOWTO (R_COMMENT, "R_COMMENT"),
1031 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1032 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1033 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1034 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1035 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1036 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1037 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1038 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1039 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1040 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1041 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1042 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1043 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1044 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1045 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1046 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1047 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1048 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1049 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1050 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1051 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1052 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1053 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1054 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1055 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1056 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1057 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1058 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1059 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1060 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1061 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1062 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1063 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1064 SOM_HOWTO (R_RESERVED, "R_RESERVED")
1065 };
1066
1067 /* Initialize the SOM relocation queue. By definition the queue holds
1068 the last four multibyte fixups. */
1069
1070 static void
1071 som_initialize_reloc_queue (queue)
1072 struct reloc_queue *queue;
1073 {
1074 queue[0].reloc = NULL;
1075 queue[0].size = 0;
1076 queue[1].reloc = NULL;
1077 queue[1].size = 0;
1078 queue[2].reloc = NULL;
1079 queue[2].size = 0;
1080 queue[3].reloc = NULL;
1081 queue[3].size = 0;
1082 }
1083
1084 /* Insert a new relocation into the relocation queue. */
1085
1086 static void
1087 som_reloc_queue_insert (p, size, queue)
1088 unsigned char *p;
1089 unsigned int size;
1090 struct reloc_queue *queue;
1091 {
1092 queue[3].reloc = queue[2].reloc;
1093 queue[3].size = queue[2].size;
1094 queue[2].reloc = queue[1].reloc;
1095 queue[2].size = queue[1].size;
1096 queue[1].reloc = queue[0].reloc;
1097 queue[1].size = queue[0].size;
1098 queue[0].reloc = p;
1099 queue[0].size = size;
1100 }
1101
1102 /* When an entry in the relocation queue is reused, the entry moves
1103 to the front of the queue. */
1104
1105 static void
1106 som_reloc_queue_fix (queue, index)
1107 struct reloc_queue *queue;
1108 unsigned int index;
1109 {
1110 if (index == 0)
1111 return;
1112
1113 if (index == 1)
1114 {
1115 unsigned char *tmp1 = queue[0].reloc;
1116 unsigned int tmp2 = queue[0].size;
1117 queue[0].reloc = queue[1].reloc;
1118 queue[0].size = queue[1].size;
1119 queue[1].reloc = tmp1;
1120 queue[1].size = tmp2;
1121 return;
1122 }
1123
1124 if (index == 2)
1125 {
1126 unsigned char *tmp1 = queue[0].reloc;
1127 unsigned int tmp2 = queue[0].size;
1128 queue[0].reloc = queue[2].reloc;
1129 queue[0].size = queue[2].size;
1130 queue[2].reloc = queue[1].reloc;
1131 queue[2].size = queue[1].size;
1132 queue[1].reloc = tmp1;
1133 queue[1].size = tmp2;
1134 return;
1135 }
1136
1137 if (index == 3)
1138 {
1139 unsigned char *tmp1 = queue[0].reloc;
1140 unsigned int tmp2 = queue[0].size;
1141 queue[0].reloc = queue[3].reloc;
1142 queue[0].size = queue[3].size;
1143 queue[3].reloc = queue[2].reloc;
1144 queue[3].size = queue[2].size;
1145 queue[2].reloc = queue[1].reloc;
1146 queue[2].size = queue[1].size;
1147 queue[1].reloc = tmp1;
1148 queue[1].size = tmp2;
1149 return;
1150 }
1151 abort ();
1152 }
1153
1154 /* Search for a particular relocation in the relocation queue. */
1155
1156 static int
1157 som_reloc_queue_find (p, size, queue)
1158 unsigned char *p;
1159 unsigned int size;
1160 struct reloc_queue *queue;
1161 {
1162 if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
1163 && size == queue[0].size)
1164 return 0;
1165 if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
1166 && size == queue[1].size)
1167 return 1;
1168 if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
1169 && size == queue[2].size)
1170 return 2;
1171 if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
1172 && size == queue[3].size)
1173 return 3;
1174 return -1;
1175 }
1176
1177 static unsigned char *
1178 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1179 bfd *abfd ATTRIBUTE_UNUSED;
1180 int *subspace_reloc_sizep;
1181 unsigned char *p;
1182 unsigned int size;
1183 struct reloc_queue *queue;
1184 {
1185 int queue_index = som_reloc_queue_find (p, size, queue);
1186
1187 if (queue_index != -1)
1188 {
1189 /* Found this in a previous fixup. Undo the fixup we
1190 just built and use R_PREV_FIXUP instead. We saved
1191 a total of size - 1 bytes in the fixup stream. */
1192 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1193 p += 1;
1194 *subspace_reloc_sizep += 1;
1195 som_reloc_queue_fix (queue, queue_index);
1196 }
1197 else
1198 {
1199 som_reloc_queue_insert (p, size, queue);
1200 *subspace_reloc_sizep += size;
1201 p += size;
1202 }
1203 return p;
1204 }
1205
1206 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1207 bytes without any relocation. Update the size of the subspace
1208 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1209 current pointer into the relocation stream. */
1210
1211 static unsigned char *
1212 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1213 bfd *abfd;
1214 unsigned int skip;
1215 unsigned char *p;
1216 unsigned int *subspace_reloc_sizep;
1217 struct reloc_queue *queue;
1218 {
1219 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1220 then R_PREV_FIXUPs to get the difference down to a
1221 reasonable size. */
1222 if (skip >= 0x1000000)
1223 {
1224 skip -= 0x1000000;
1225 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1226 bfd_put_8 (abfd, 0xff, p + 1);
1227 bfd_put_16 (abfd, (bfd_vma) 0xffff, p + 2);
1228 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1229 while (skip >= 0x1000000)
1230 {
1231 skip -= 0x1000000;
1232 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1233 p++;
1234 *subspace_reloc_sizep += 1;
1235 /* No need to adjust queue here since we are repeating the
1236 most recent fixup. */
1237 }
1238 }
1239
1240 /* The difference must be less than 0x1000000. Use one
1241 more R_NO_RELOCATION entry to get to the right difference. */
1242 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1243 {
1244 /* Difference can be handled in a simple single-byte
1245 R_NO_RELOCATION entry. */
1246 if (skip <= 0x60)
1247 {
1248 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1249 *subspace_reloc_sizep += 1;
1250 p++;
1251 }
1252 /* Handle it with a two byte R_NO_RELOCATION entry. */
1253 else if (skip <= 0x1000)
1254 {
1255 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1256 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1257 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1258 }
1259 /* Handle it with a three byte R_NO_RELOCATION entry. */
1260 else
1261 {
1262 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1263 bfd_put_16 (abfd, (bfd_vma) (skip >> 2) - 1, p + 1);
1264 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1265 }
1266 }
1267 /* Ugh. Punt and use a 4 byte entry. */
1268 else if (skip > 0)
1269 {
1270 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1271 bfd_put_8 (abfd, (skip - 1) >> 16, p + 1);
1272 bfd_put_16 (abfd, (bfd_vma) skip - 1, p + 2);
1273 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1274 }
1275 return p;
1276 }
1277
1278 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1279 from a BFD relocation. Update the size of the subspace relocation
1280 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1281 into the relocation stream. */
1282
1283 static unsigned char *
1284 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1285 bfd *abfd;
1286 bfd_vma addend;
1287 unsigned char *p;
1288 unsigned int *subspace_reloc_sizep;
1289 struct reloc_queue *queue;
1290 {
1291 if (addend + 0x80 < 0x100)
1292 {
1293 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1294 bfd_put_8 (abfd, addend, p + 1);
1295 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1296 }
1297 else if (addend + 0x8000 < 0x10000)
1298 {
1299 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1300 bfd_put_16 (abfd, addend, p + 1);
1301 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1302 }
1303 else if (addend + 0x800000 < 0x1000000)
1304 {
1305 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1306 bfd_put_8 (abfd, addend >> 16, p + 1);
1307 bfd_put_16 (abfd, addend, p + 2);
1308 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1309 }
1310 else
1311 {
1312 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1313 bfd_put_32 (abfd, addend, p + 1);
1314 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1315 }
1316 return p;
1317 }
1318
1319 /* Handle a single function call relocation. */
1320
1321 static unsigned char *
1322 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1323 bfd *abfd;
1324 unsigned char *p;
1325 unsigned int *subspace_reloc_sizep;
1326 arelent *bfd_reloc;
1327 int sym_num;
1328 struct reloc_queue *queue;
1329 {
1330 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1331 int rtn_bits = arg_bits & 0x3;
1332 int type, done = 0;
1333
1334 /* You'll never believe all this is necessary to handle relocations
1335 for function calls. Having to compute and pack the argument
1336 relocation bits is the real nightmare.
1337
1338 If you're interested in how this works, just forget it. You really
1339 do not want to know about this braindamage. */
1340
1341 /* First see if this can be done with a "simple" relocation. Simple
1342 relocations have a symbol number < 0x100 and have simple encodings
1343 of argument relocations. */
1344
1345 if (sym_num < 0x100)
1346 {
1347 switch (arg_bits)
1348 {
1349 case 0:
1350 case 1:
1351 type = 0;
1352 break;
1353 case 1 << 8:
1354 case 1 << 8 | 1:
1355 type = 1;
1356 break;
1357 case 1 << 8 | 1 << 6:
1358 case 1 << 8 | 1 << 6 | 1:
1359 type = 2;
1360 break;
1361 case 1 << 8 | 1 << 6 | 1 << 4:
1362 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1363 type = 3;
1364 break;
1365 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1366 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1367 type = 4;
1368 break;
1369 default:
1370 /* Not one of the easy encodings. This will have to be
1371 handled by the more complex code below. */
1372 type = -1;
1373 break;
1374 }
1375 if (type != -1)
1376 {
1377 /* Account for the return value too. */
1378 if (rtn_bits)
1379 type += 5;
1380
1381 /* Emit a 2 byte relocation. Then see if it can be handled
1382 with a relocation which is already in the relocation queue. */
1383 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1384 bfd_put_8 (abfd, sym_num, p + 1);
1385 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1386 done = 1;
1387 }
1388 }
1389
1390 /* If this could not be handled with a simple relocation, then do a hard
1391 one. Hard relocations occur if the symbol number was too high or if
1392 the encoding of argument relocation bits is too complex. */
1393 if (! done)
1394 {
1395 /* Don't ask about these magic sequences. I took them straight
1396 from gas-1.36 which took them from the a.out man page. */
1397 type = rtn_bits;
1398 if ((arg_bits >> 6 & 0xf) == 0xe)
1399 type += 9 * 40;
1400 else
1401 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1402 if ((arg_bits >> 2 & 0xf) == 0xe)
1403 type += 9 * 4;
1404 else
1405 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1406
1407 /* Output the first two bytes of the relocation. These describe
1408 the length of the relocation and encoding style. */
1409 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1410 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1411 p);
1412 bfd_put_8 (abfd, type, p + 1);
1413
1414 /* Now output the symbol index and see if this bizarre relocation
1415 just happened to be in the relocation queue. */
1416 if (sym_num < 0x100)
1417 {
1418 bfd_put_8 (abfd, sym_num, p + 2);
1419 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1420 }
1421 else
1422 {
1423 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1424 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 3);
1425 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1426 }
1427 }
1428 return p;
1429 }
1430
1431 /* Return the logarithm of X, base 2, considering X unsigned.
1432 Abort -1 if X is not a power or two or is zero. */
1433
1434 static int
1435 log2 (x)
1436 unsigned int x;
1437 {
1438 int log = 0;
1439
1440 /* Test for 0 or a power of 2. */
1441 if (x == 0 || x != (x & -x))
1442 return -1;
1443
1444 while ((x >>= 1) != 0)
1445 log++;
1446 return log;
1447 }
1448
1449 static bfd_reloc_status_type
1450 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1451 input_section, output_bfd, error_message)
1452 bfd *abfd ATTRIBUTE_UNUSED;
1453 arelent *reloc_entry;
1454 asymbol *symbol_in ATTRIBUTE_UNUSED;
1455 PTR data ATTRIBUTE_UNUSED;
1456 asection *input_section;
1457 bfd *output_bfd;
1458 char **error_message ATTRIBUTE_UNUSED;
1459 {
1460 if (output_bfd)
1461 {
1462 reloc_entry->address += input_section->output_offset;
1463 return bfd_reloc_ok;
1464 }
1465 return bfd_reloc_ok;
1466 }
1467
1468 /* Given a generic HPPA relocation type, the instruction format,
1469 and a field selector, return one or more appropriate SOM relocations. */
1470
1471 int **
1472 hppa_som_gen_reloc_type (abfd, base_type, format, field, sym_diff, sym)
1473 bfd *abfd;
1474 int base_type;
1475 int format;
1476 enum hppa_reloc_field_selector_type_alt field;
1477 int sym_diff;
1478 asymbol *sym;
1479 {
1480 int *final_type, **final_types;
1481
1482 final_types = (int **) bfd_alloc (abfd, (bfd_size_type) sizeof (int *) * 6);
1483 final_type = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1484 if (!final_types || !final_type)
1485 return NULL;
1486
1487 /* The field selector may require additional relocations to be
1488 generated. It's impossible to know at this moment if additional
1489 relocations will be needed, so we make them. The code to actually
1490 write the relocation/fixup stream is responsible for removing
1491 any redundant relocations. */
1492 switch (field)
1493 {
1494 case e_fsel:
1495 case e_psel:
1496 case e_lpsel:
1497 case e_rpsel:
1498 final_types[0] = final_type;
1499 final_types[1] = NULL;
1500 final_types[2] = NULL;
1501 *final_type = base_type;
1502 break;
1503
1504 case e_tsel:
1505 case e_ltsel:
1506 case e_rtsel:
1507 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1508 if (!final_types[0])
1509 return NULL;
1510 if (field == e_tsel)
1511 *final_types[0] = R_FSEL;
1512 else if (field == e_ltsel)
1513 *final_types[0] = R_LSEL;
1514 else
1515 *final_types[0] = R_RSEL;
1516 final_types[1] = final_type;
1517 final_types[2] = NULL;
1518 *final_type = base_type;
1519 break;
1520
1521 case e_lssel:
1522 case e_rssel:
1523 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1524 if (!final_types[0])
1525 return NULL;
1526 *final_types[0] = R_S_MODE;
1527 final_types[1] = final_type;
1528 final_types[2] = NULL;
1529 *final_type = base_type;
1530 break;
1531
1532 case e_lsel:
1533 case e_rsel:
1534 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1535 if (!final_types[0])
1536 return NULL;
1537 *final_types[0] = R_N_MODE;
1538 final_types[1] = final_type;
1539 final_types[2] = NULL;
1540 *final_type = base_type;
1541 break;
1542
1543 case e_ldsel:
1544 case e_rdsel:
1545 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1546 if (!final_types[0])
1547 return NULL;
1548 *final_types[0] = R_D_MODE;
1549 final_types[1] = final_type;
1550 final_types[2] = NULL;
1551 *final_type = base_type;
1552 break;
1553
1554 case e_lrsel:
1555 case e_rrsel:
1556 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1557 if (!final_types[0])
1558 return NULL;
1559 *final_types[0] = R_R_MODE;
1560 final_types[1] = final_type;
1561 final_types[2] = NULL;
1562 *final_type = base_type;
1563 break;
1564
1565 case e_nsel:
1566 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1567 if (!final_types[0])
1568 return NULL;
1569 *final_types[0] = R_N1SEL;
1570 final_types[1] = final_type;
1571 final_types[2] = NULL;
1572 *final_type = base_type;
1573 break;
1574
1575 case e_nlsel:
1576 case e_nlrsel:
1577 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1578 if (!final_types[0])
1579 return NULL;
1580 *final_types[0] = R_N0SEL;
1581 final_types[1] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1582 if (!final_types[1])
1583 return NULL;
1584 if (field == e_nlsel)
1585 *final_types[1] = R_N_MODE;
1586 else
1587 *final_types[1] = R_R_MODE;
1588 final_types[2] = final_type;
1589 final_types[3] = NULL;
1590 *final_type = base_type;
1591 break;
1592
1593 /* FIXME: These two field selectors are not currently supported. */
1594 case e_ltpsel:
1595 case e_rtpsel:
1596 abort ();
1597 }
1598
1599 switch (base_type)
1600 {
1601 case R_HPPA:
1602 /* The difference of two symbols needs *very* special handling. */
1603 if (sym_diff)
1604 {
1605 bfd_size_type amt = sizeof (int);
1606 final_types[0] = (int *) bfd_alloc (abfd, amt);
1607 final_types[1] = (int *) bfd_alloc (abfd, amt);
1608 final_types[2] = (int *) bfd_alloc (abfd, amt);
1609 final_types[3] = (int *) bfd_alloc (abfd, amt);
1610 if (!final_types[0] || !final_types[1] || !final_types[2])
1611 return NULL;
1612 if (field == e_fsel)
1613 *final_types[0] = R_FSEL;
1614 else if (field == e_rsel)
1615 *final_types[0] = R_RSEL;
1616 else if (field == e_lsel)
1617 *final_types[0] = R_LSEL;
1618 *final_types[1] = R_COMP2;
1619 *final_types[2] = R_COMP2;
1620 *final_types[3] = R_COMP1;
1621 final_types[4] = final_type;
1622 if (format == 32)
1623 *final_types[4] = R_DATA_EXPR;
1624 else
1625 *final_types[4] = R_CODE_EXPR;
1626 final_types[5] = NULL;
1627 break;
1628 }
1629 /* PLABELs get their own relocation type. */
1630 else if (field == e_psel
1631 || field == e_lpsel
1632 || field == e_rpsel)
1633 {
1634 /* A PLABEL relocation that has a size of 32 bits must
1635 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1636 if (format == 32)
1637 *final_type = R_DATA_PLABEL;
1638 else
1639 *final_type = R_CODE_PLABEL;
1640 }
1641 /* PIC stuff. */
1642 else if (field == e_tsel
1643 || field == e_ltsel
1644 || field == e_rtsel)
1645 *final_type = R_DLT_REL;
1646 /* A relocation in the data space is always a full 32bits. */
1647 else if (format == 32)
1648 {
1649 *final_type = R_DATA_ONE_SYMBOL;
1650
1651 /* If there's no SOM symbol type associated with this BFD
1652 symbol, then set the symbol type to ST_DATA.
1653
1654 Only do this if the type is going to default later when
1655 we write the object file.
1656
1657 This is done so that the linker never encounters an
1658 R_DATA_ONE_SYMBOL reloc involving an ST_CODE symbol.
1659
1660 This allows the compiler to generate exception handling
1661 tables.
1662
1663 Note that one day we may need to also emit BEGIN_BRTAB and
1664 END_BRTAB to prevent the linker from optimizing away insns
1665 in exception handling regions. */
1666 if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
1667 && (sym->flags & BSF_SECTION_SYM) == 0
1668 && (sym->flags & BSF_FUNCTION) == 0
1669 && ! bfd_is_com_section (sym->section))
1670 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
1671 }
1672 break;
1673
1674 case R_HPPA_GOTOFF:
1675 /* More PLABEL special cases. */
1676 if (field == e_psel
1677 || field == e_lpsel
1678 || field == e_rpsel)
1679 *final_type = R_DATA_PLABEL;
1680 break;
1681
1682 case R_HPPA_COMPLEX:
1683 /* The difference of two symbols needs *very* special handling. */
1684 if (sym_diff)
1685 {
1686 bfd_size_type amt = sizeof (int);
1687 final_types[0] = (int *) bfd_alloc (abfd, amt);
1688 final_types[1] = (int *) bfd_alloc (abfd, amt);
1689 final_types[2] = (int *) bfd_alloc (abfd, amt);
1690 final_types[3] = (int *) bfd_alloc (abfd, amt);
1691 if (!final_types[0] || !final_types[1] || !final_types[2])
1692 return NULL;
1693 if (field == e_fsel)
1694 *final_types[0] = R_FSEL;
1695 else if (field == e_rsel)
1696 *final_types[0] = R_RSEL;
1697 else if (field == e_lsel)
1698 *final_types[0] = R_LSEL;
1699 *final_types[1] = R_COMP2;
1700 *final_types[2] = R_COMP2;
1701 *final_types[3] = R_COMP1;
1702 final_types[4] = final_type;
1703 if (format == 32)
1704 *final_types[4] = R_DATA_EXPR;
1705 else
1706 *final_types[4] = R_CODE_EXPR;
1707 final_types[5] = NULL;
1708 break;
1709 }
1710 else
1711 break;
1712
1713 case R_HPPA_NONE:
1714 case R_HPPA_ABS_CALL:
1715 /* Right now we can default all these. */
1716 break;
1717
1718 case R_HPPA_PCREL_CALL:
1719 {
1720 #ifndef NO_PCREL_MODES
1721 /* If we have short and long pcrel modes, then generate the proper
1722 mode selector, then the pcrel relocation. Redundant selectors
1723 will be eliminated as the relocs are sized and emitted. */
1724 bfd_size_type amt = sizeof (int);
1725 final_types[0] = (int *) bfd_alloc (abfd, amt);
1726 if (!final_types[0])
1727 return NULL;
1728 if (format == 17)
1729 *final_types[0] = R_SHORT_PCREL_MODE;
1730 else
1731 *final_types[0] = R_LONG_PCREL_MODE;
1732 final_types[1] = final_type;
1733 final_types[2] = NULL;
1734 *final_type = base_type;
1735 #endif
1736 break;
1737 }
1738 }
1739 return final_types;
1740 }
1741
1742 /* Return the address of the correct entry in the PA SOM relocation
1743 howto table. */
1744
1745 static reloc_howto_type *
1746 som_bfd_reloc_type_lookup (abfd, code)
1747 bfd *abfd ATTRIBUTE_UNUSED;
1748 bfd_reloc_code_real_type code;
1749 {
1750 if ((int) code < (int) R_NO_RELOCATION + 255)
1751 {
1752 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1753 return &som_hppa_howto_table[(int) code];
1754 }
1755
1756 return (reloc_howto_type *) 0;
1757 }
1758
1759 /* Perform some initialization for an object. Save results of this
1760 initialization in the BFD. */
1761
1762 static const bfd_target *
1763 som_object_setup (abfd, file_hdrp, aux_hdrp, current_offset)
1764 bfd *abfd;
1765 struct header *file_hdrp;
1766 struct som_exec_auxhdr *aux_hdrp;
1767 unsigned long current_offset;
1768 {
1769 asection *section;
1770 int found;
1771
1772 /* som_mkobject will set bfd_error if som_mkobject fails. */
1773 if (! som_mkobject (abfd))
1774 return 0;
1775
1776 /* Set BFD flags based on what information is available in the SOM. */
1777 abfd->flags = BFD_NO_FLAGS;
1778 if (file_hdrp->symbol_total)
1779 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1780
1781 switch (file_hdrp->a_magic)
1782 {
1783 case DEMAND_MAGIC:
1784 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1785 break;
1786 case SHARE_MAGIC:
1787 abfd->flags |= (WP_TEXT | EXEC_P);
1788 break;
1789 case EXEC_MAGIC:
1790 abfd->flags |= (EXEC_P);
1791 break;
1792 case RELOC_MAGIC:
1793 abfd->flags |= HAS_RELOC;
1794 break;
1795 #ifdef SHL_MAGIC
1796 case SHL_MAGIC:
1797 #endif
1798 #ifdef DL_MAGIC
1799 case DL_MAGIC:
1800 #endif
1801 abfd->flags |= DYNAMIC;
1802 break;
1803
1804 default:
1805 break;
1806 }
1807
1808 /* Allocate space to hold the saved exec header information. */
1809 obj_som_exec_data (abfd) = (struct som_exec_data *)
1810 bfd_zalloc (abfd, (bfd_size_type) sizeof (struct som_exec_data));
1811 if (obj_som_exec_data (abfd) == NULL)
1812 return NULL;
1813
1814 /* The braindamaged OSF1 linker switched exec_flags and exec_entry!
1815
1816 We used to identify OSF1 binaries based on NEW_VERSION_ID, but
1817 apparently the latest HPUX linker is using NEW_VERSION_ID now.
1818
1819 It's about time, OSF has used the new id since at least 1992;
1820 HPUX didn't start till nearly 1995!.
1821
1822 The new approach examines the entry field. If it's zero or not 4
1823 byte aligned then it's not a proper code address and we guess it's
1824 really the executable flags. */
1825 found = 0;
1826 for (section = abfd->sections; section; section = section->next)
1827 {
1828 bfd_vma entry;
1829
1830 if ((section->flags & SEC_CODE) == 0)
1831 continue;
1832 entry = aux_hdrp->exec_entry;
1833 if (entry >= section->vma
1834 && entry < section->vma + section->_cooked_size)
1835 found = 1;
1836 }
1837 if (aux_hdrp->exec_entry == 0
1838 || (aux_hdrp->exec_entry & 0x3) != 0
1839 || ! found)
1840 {
1841 bfd_get_start_address (abfd) = aux_hdrp->exec_flags;
1842 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_entry;
1843 }
1844 else
1845 {
1846 bfd_get_start_address (abfd) = aux_hdrp->exec_entry + current_offset;
1847 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1848 }
1849
1850 obj_som_exec_data (abfd)->version_id = file_hdrp->version_id;
1851
1852 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, pa10);
1853 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1854
1855 /* Initialize the saved symbol table and string table to NULL.
1856 Save important offsets and sizes from the SOM header into
1857 the BFD. */
1858 obj_som_stringtab (abfd) = (char *) NULL;
1859 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1860 obj_som_sorted_syms (abfd) = NULL;
1861 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1862 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location + current_offset;
1863 obj_som_str_filepos (abfd) = (file_hdrp->symbol_strings_location
1864 + current_offset);
1865 obj_som_reloc_filepos (abfd) = (file_hdrp->fixup_request_location
1866 + current_offset);
1867 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1868
1869 return abfd->xvec;
1870 }
1871
1872 /* Convert all of the space and subspace info into BFD sections. Each space
1873 contains a number of subspaces, which in turn describe the mapping between
1874 regions of the exec file, and the address space that the program runs in.
1875 BFD sections which correspond to spaces will overlap the sections for the
1876 associated subspaces. */
1877
1878 static bfd_boolean
1879 setup_sections (abfd, file_hdr, current_offset)
1880 bfd *abfd;
1881 struct header *file_hdr;
1882 unsigned long current_offset;
1883 {
1884 char *space_strings;
1885 unsigned int space_index, i;
1886 unsigned int total_subspaces = 0;
1887 asection **subspace_sections = NULL;
1888 asection *section;
1889 bfd_size_type amt;
1890
1891 /* First, read in space names. */
1892
1893 amt = file_hdr->space_strings_size;
1894 space_strings = bfd_malloc (amt);
1895 if (!space_strings && amt != 0)
1896 goto error_return;
1897
1898 if (bfd_seek (abfd, current_offset + file_hdr->space_strings_location,
1899 SEEK_SET) != 0)
1900 goto error_return;
1901 if (bfd_bread (space_strings, amt, abfd) != amt)
1902 goto error_return;
1903
1904 /* Loop over all of the space dictionaries, building up sections. */
1905 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1906 {
1907 struct space_dictionary_record space;
1908 struct subspace_dictionary_record subspace, save_subspace;
1909 unsigned int subspace_index;
1910 asection *space_asect;
1911 char *newname;
1912
1913 /* Read the space dictionary element. */
1914 if (bfd_seek (abfd,
1915 (current_offset + file_hdr->space_location
1916 + space_index * sizeof space),
1917 SEEK_SET) != 0)
1918 goto error_return;
1919 amt = sizeof space;
1920 if (bfd_bread (&space, amt, abfd) != amt)
1921 goto error_return;
1922
1923 /* Setup the space name string. */
1924 space.name.n_name = space.name.n_strx + space_strings;
1925
1926 /* Make a section out of it. */
1927 amt = strlen (space.name.n_name) + 1;
1928 newname = bfd_alloc (abfd, amt);
1929 if (!newname)
1930 goto error_return;
1931 strcpy (newname, space.name.n_name);
1932
1933 space_asect = bfd_make_section_anyway (abfd, newname);
1934 if (!space_asect)
1935 goto error_return;
1936
1937 if (space.is_loadable == 0)
1938 space_asect->flags |= SEC_DEBUGGING;
1939
1940 /* Set up all the attributes for the space. */
1941 if (! bfd_som_set_section_attributes (space_asect, space.is_defined,
1942 space.is_private, space.sort_key,
1943 space.space_number))
1944 goto error_return;
1945
1946 /* If the space has no subspaces, then we're done. */
1947 if (space.subspace_quantity == 0)
1948 continue;
1949
1950 /* Now, read in the first subspace for this space. */
1951 if (bfd_seek (abfd,
1952 (current_offset + file_hdr->subspace_location
1953 + space.subspace_index * sizeof subspace),
1954 SEEK_SET) != 0)
1955 goto error_return;
1956 amt = sizeof subspace;
1957 if (bfd_bread (&subspace, amt, abfd) != amt)
1958 goto error_return;
1959 /* Seek back to the start of the subspaces for loop below. */
1960 if (bfd_seek (abfd,
1961 (current_offset + file_hdr->subspace_location
1962 + space.subspace_index * sizeof subspace),
1963 SEEK_SET) != 0)
1964 goto error_return;
1965
1966 /* Setup the start address and file loc from the first subspace
1967 record. */
1968 space_asect->vma = subspace.subspace_start;
1969 space_asect->filepos = subspace.file_loc_init_value + current_offset;
1970 space_asect->alignment_power = log2 (subspace.alignment);
1971 if (space_asect->alignment_power == (unsigned) -1)
1972 goto error_return;
1973
1974 /* Initialize save_subspace so we can reliably determine if this
1975 loop placed any useful values into it. */
1976 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1977
1978 /* Loop over the rest of the subspaces, building up more sections. */
1979 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1980 subspace_index++)
1981 {
1982 asection *subspace_asect;
1983
1984 /* Read in the next subspace. */
1985 amt = sizeof subspace;
1986 if (bfd_bread (&subspace, amt, abfd) != amt)
1987 goto error_return;
1988
1989 /* Setup the subspace name string. */
1990 subspace.name.n_name = subspace.name.n_strx + space_strings;
1991
1992 amt = strlen (subspace.name.n_name) + 1;
1993 newname = bfd_alloc (abfd, amt);
1994 if (!newname)
1995 goto error_return;
1996 strcpy (newname, subspace.name.n_name);
1997
1998 /* Make a section out of this subspace. */
1999 subspace_asect = bfd_make_section_anyway (abfd, newname);
2000 if (!subspace_asect)
2001 goto error_return;
2002
2003 /* Store private information about the section. */
2004 if (! bfd_som_set_subsection_attributes (subspace_asect, space_asect,
2005 subspace.access_control_bits,
2006 subspace.sort_key,
2007 subspace.quadrant))
2008 goto error_return;
2009
2010 /* Keep an easy mapping between subspaces and sections.
2011 Note we do not necessarily read the subspaces in the
2012 same order in which they appear in the object file.
2013
2014 So to make the target index come out correctly, we
2015 store the location of the subspace header in target
2016 index, then sort using the location of the subspace
2017 header as the key. Then we can assign correct
2018 subspace indices. */
2019 total_subspaces++;
2020 subspace_asect->target_index = bfd_tell (abfd) - sizeof (subspace);
2021
2022 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
2023 by the access_control_bits in the subspace header. */
2024 switch (subspace.access_control_bits >> 4)
2025 {
2026 /* Readonly data. */
2027 case 0x0:
2028 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
2029 break;
2030
2031 /* Normal data. */
2032 case 0x1:
2033 subspace_asect->flags |= SEC_DATA;
2034 break;
2035
2036 /* Readonly code and the gateways.
2037 Gateways have other attributes which do not map
2038 into anything BFD knows about. */
2039 case 0x2:
2040 case 0x4:
2041 case 0x5:
2042 case 0x6:
2043 case 0x7:
2044 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
2045 break;
2046
2047 /* dynamic (writable) code. */
2048 case 0x3:
2049 subspace_asect->flags |= SEC_CODE;
2050 break;
2051 }
2052
2053 if (subspace.dup_common || subspace.is_common)
2054 subspace_asect->flags |= SEC_IS_COMMON;
2055 else if (subspace.subspace_length > 0)
2056 subspace_asect->flags |= SEC_HAS_CONTENTS;
2057
2058 if (subspace.is_loadable)
2059 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
2060 else
2061 subspace_asect->flags |= SEC_DEBUGGING;
2062
2063 if (subspace.code_only)
2064 subspace_asect->flags |= SEC_CODE;
2065
2066 /* Both file_loc_init_value and initialization_length will
2067 be zero for a BSS like subspace. */
2068 if (subspace.file_loc_init_value == 0
2069 && subspace.initialization_length == 0)
2070 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD | SEC_HAS_CONTENTS);
2071
2072 /* This subspace has relocations.
2073 The fixup_request_quantity is a byte count for the number of
2074 entries in the relocation stream; it is not the actual number
2075 of relocations in the subspace. */
2076 if (subspace.fixup_request_quantity != 0)
2077 {
2078 subspace_asect->flags |= SEC_RELOC;
2079 subspace_asect->rel_filepos = subspace.fixup_request_index;
2080 som_section_data (subspace_asect)->reloc_size
2081 = subspace.fixup_request_quantity;
2082 /* We can not determine this yet. When we read in the
2083 relocation table the correct value will be filled in. */
2084 subspace_asect->reloc_count = (unsigned) -1;
2085 }
2086
2087 /* Update save_subspace if appropriate. */
2088 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
2089 save_subspace = subspace;
2090
2091 subspace_asect->vma = subspace.subspace_start;
2092 subspace_asect->_cooked_size = subspace.subspace_length;
2093 subspace_asect->_raw_size = subspace.subspace_length;
2094 subspace_asect->filepos = (subspace.file_loc_init_value
2095 + current_offset);
2096 subspace_asect->alignment_power = log2 (subspace.alignment);
2097 if (subspace_asect->alignment_power == (unsigned) -1)
2098 goto error_return;
2099 }
2100
2101 /* This can happen for a .o which defines symbols in otherwise
2102 empty subspaces. */
2103 if (!save_subspace.file_loc_init_value)
2104 {
2105 space_asect->_cooked_size = 0;
2106 space_asect->_raw_size = 0;
2107 }
2108 else
2109 {
2110 /* Setup the sizes for the space section based upon the info in the
2111 last subspace of the space. */
2112 space_asect->_cooked_size = (save_subspace.subspace_start
2113 - space_asect->vma
2114 + save_subspace.subspace_length);
2115 space_asect->_raw_size = (save_subspace.file_loc_init_value
2116 - space_asect->filepos
2117 + save_subspace.initialization_length);
2118 }
2119 }
2120 /* Now that we've read in all the subspace records, we need to assign
2121 a target index to each subspace. */
2122 amt = total_subspaces;
2123 amt *= sizeof (asection *);
2124 subspace_sections = (asection **) bfd_malloc (amt);
2125 if (subspace_sections == NULL)
2126 goto error_return;
2127
2128 for (i = 0, section = abfd->sections; section; section = section->next)
2129 {
2130 if (!som_is_subspace (section))
2131 continue;
2132
2133 subspace_sections[i] = section;
2134 i++;
2135 }
2136 qsort (subspace_sections, total_subspaces,
2137 sizeof (asection *), compare_subspaces);
2138
2139 /* subspace_sections is now sorted in the order in which the subspaces
2140 appear in the object file. Assign an index to each one now. */
2141 for (i = 0; i < total_subspaces; i++)
2142 subspace_sections[i]->target_index = i;
2143
2144 if (space_strings != NULL)
2145 free (space_strings);
2146
2147 if (subspace_sections != NULL)
2148 free (subspace_sections);
2149
2150 return TRUE;
2151
2152 error_return:
2153 if (space_strings != NULL)
2154 free (space_strings);
2155
2156 if (subspace_sections != NULL)
2157 free (subspace_sections);
2158 return FALSE;
2159 }
2160
2161 /* Read in a SOM object and make it into a BFD. */
2162
2163 static const bfd_target *
2164 som_object_p (abfd)
2165 bfd *abfd;
2166 {
2167 struct header file_hdr;
2168 struct som_exec_auxhdr aux_hdr;
2169 unsigned long current_offset = 0;
2170 struct lst_header lst_header;
2171 struct som_entry som_entry;
2172 bfd_size_type amt;
2173 #define ENTRY_SIZE sizeof (struct som_entry)
2174
2175 amt = FILE_HDR_SIZE;
2176 if (bfd_bread ((PTR) &file_hdr, amt, abfd) != amt)
2177 {
2178 if (bfd_get_error () != bfd_error_system_call)
2179 bfd_set_error (bfd_error_wrong_format);
2180 return 0;
2181 }
2182
2183 if (!_PA_RISC_ID (file_hdr.system_id))
2184 {
2185 bfd_set_error (bfd_error_wrong_format);
2186 return 0;
2187 }
2188
2189 switch (file_hdr.a_magic)
2190 {
2191 case RELOC_MAGIC:
2192 case EXEC_MAGIC:
2193 case SHARE_MAGIC:
2194 case DEMAND_MAGIC:
2195 #ifdef DL_MAGIC
2196 case DL_MAGIC:
2197 #endif
2198 #ifdef SHL_MAGIC
2199 case SHL_MAGIC:
2200 #endif
2201 #ifdef SHARED_MAGIC_CNX
2202 case SHARED_MAGIC_CNX:
2203 #endif
2204 break;
2205
2206 #ifdef EXECLIBMAGIC
2207 case EXECLIBMAGIC:
2208 /* Read the lst header and determine where the SOM directory begins. */
2209
2210 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0)
2211 {
2212 if (bfd_get_error () != bfd_error_system_call)
2213 bfd_set_error (bfd_error_wrong_format);
2214 return 0;
2215 }
2216
2217 amt = SLSTHDR;
2218 if (bfd_bread ((PTR) &lst_header, amt, abfd) != amt)
2219 {
2220 if (bfd_get_error () != bfd_error_system_call)
2221 bfd_set_error (bfd_error_wrong_format);
2222 return 0;
2223 }
2224
2225 /* Position to and read the first directory entry. */
2226
2227 if (bfd_seek (abfd, lst_header.dir_loc, SEEK_SET) != 0)
2228 {
2229 if (bfd_get_error () != bfd_error_system_call)
2230 bfd_set_error (bfd_error_wrong_format);
2231 return 0;
2232 }
2233
2234 amt = ENTRY_SIZE;
2235 if (bfd_bread ((PTR) &som_entry, amt, abfd) != amt)
2236 {
2237 if (bfd_get_error () != bfd_error_system_call)
2238 bfd_set_error (bfd_error_wrong_format);
2239 return 0;
2240 }
2241
2242 /* Now position to the first SOM. */
2243
2244 if (bfd_seek (abfd, som_entry.location, SEEK_SET) != 0)
2245 {
2246 if (bfd_get_error () != bfd_error_system_call)
2247 bfd_set_error (bfd_error_wrong_format);
2248 return 0;
2249 }
2250
2251 current_offset = som_entry.location;
2252
2253 /* And finally, re-read the som header. */
2254 amt = FILE_HDR_SIZE;
2255 if (bfd_bread ((PTR) &file_hdr, amt, abfd) != amt)
2256 {
2257 if (bfd_get_error () != bfd_error_system_call)
2258 bfd_set_error (bfd_error_wrong_format);
2259 return 0;
2260 }
2261
2262 break;
2263 #endif
2264
2265 default:
2266 bfd_set_error (bfd_error_wrong_format);
2267 return 0;
2268 }
2269
2270 if (file_hdr.version_id != VERSION_ID
2271 && file_hdr.version_id != NEW_VERSION_ID)
2272 {
2273 bfd_set_error (bfd_error_wrong_format);
2274 return 0;
2275 }
2276
2277 /* If the aux_header_size field in the file header is zero, then this
2278 object is an incomplete executable (a .o file). Do not try to read
2279 a non-existant auxiliary header. */
2280 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
2281 if (file_hdr.aux_header_size != 0)
2282 {
2283 amt = AUX_HDR_SIZE;
2284 if (bfd_bread ((PTR) &aux_hdr, amt, abfd) != amt)
2285 {
2286 if (bfd_get_error () != bfd_error_system_call)
2287 bfd_set_error (bfd_error_wrong_format);
2288 return 0;
2289 }
2290 }
2291
2292 if (!setup_sections (abfd, &file_hdr, current_offset))
2293 {
2294 /* setup_sections does not bubble up a bfd error code. */
2295 bfd_set_error (bfd_error_bad_value);
2296 return 0;
2297 }
2298
2299 /* This appears to be a valid SOM object. Do some initialization. */
2300 return som_object_setup (abfd, &file_hdr, &aux_hdr, current_offset);
2301 }
2302
2303 /* Create a SOM object. */
2304
2305 static bfd_boolean
2306 som_mkobject (abfd)
2307 bfd *abfd;
2308 {
2309 /* Allocate memory to hold backend information. */
2310 abfd->tdata.som_data = (struct som_data_struct *)
2311 bfd_zalloc (abfd, (bfd_size_type) sizeof (struct som_data_struct));
2312 if (abfd->tdata.som_data == NULL)
2313 return FALSE;
2314 return TRUE;
2315 }
2316
2317 /* Initialize some information in the file header. This routine makes
2318 not attempt at doing the right thing for a full executable; it
2319 is only meant to handle relocatable objects. */
2320
2321 static bfd_boolean
2322 som_prep_headers (abfd)
2323 bfd *abfd;
2324 {
2325 struct header *file_hdr;
2326 asection *section;
2327 bfd_size_type amt = sizeof (struct header);
2328
2329 /* Make and attach a file header to the BFD. */
2330 file_hdr = (struct header *) bfd_zalloc (abfd, amt);
2331 if (file_hdr == NULL)
2332 return FALSE;
2333 obj_som_file_hdr (abfd) = file_hdr;
2334
2335 if (abfd->flags & (EXEC_P | DYNAMIC))
2336 {
2337 /* Make and attach an exec header to the BFD. */
2338 amt = sizeof (struct som_exec_auxhdr);
2339 obj_som_exec_hdr (abfd) =
2340 (struct som_exec_auxhdr *) bfd_zalloc (abfd, amt);
2341 if (obj_som_exec_hdr (abfd) == NULL)
2342 return FALSE;
2343
2344 if (abfd->flags & D_PAGED)
2345 file_hdr->a_magic = DEMAND_MAGIC;
2346 else if (abfd->flags & WP_TEXT)
2347 file_hdr->a_magic = SHARE_MAGIC;
2348 #ifdef SHL_MAGIC
2349 else if (abfd->flags & DYNAMIC)
2350 file_hdr->a_magic = SHL_MAGIC;
2351 #endif
2352 else
2353 file_hdr->a_magic = EXEC_MAGIC;
2354 }
2355 else
2356 file_hdr->a_magic = RELOC_MAGIC;
2357
2358 /* These fields are optional, and embedding timestamps is not always
2359 a wise thing to do, it makes comparing objects during a multi-stage
2360 bootstrap difficult. */
2361 file_hdr->file_time.secs = 0;
2362 file_hdr->file_time.nanosecs = 0;
2363
2364 file_hdr->entry_space = 0;
2365 file_hdr->entry_subspace = 0;
2366 file_hdr->entry_offset = 0;
2367 file_hdr->presumed_dp = 0;
2368
2369 /* Now iterate over the sections translating information from
2370 BFD sections to SOM spaces/subspaces. */
2371
2372 for (section = abfd->sections; section != NULL; section = section->next)
2373 {
2374 /* Ignore anything which has not been marked as a space or
2375 subspace. */
2376 if (!som_is_space (section) && !som_is_subspace (section))
2377 continue;
2378
2379 if (som_is_space (section))
2380 {
2381 /* Allocate space for the space dictionary. */
2382 amt = sizeof (struct space_dictionary_record);
2383 som_section_data (section)->space_dict =
2384 (struct space_dictionary_record *) bfd_zalloc (abfd, amt);
2385 if (som_section_data (section)->space_dict == NULL)
2386 return FALSE;
2387 /* Set space attributes. Note most attributes of SOM spaces
2388 are set based on the subspaces it contains. */
2389 som_section_data (section)->space_dict->loader_fix_index = -1;
2390 som_section_data (section)->space_dict->init_pointer_index = -1;
2391
2392 /* Set more attributes that were stuffed away in private data. */
2393 som_section_data (section)->space_dict->sort_key =
2394 som_section_data (section)->copy_data->sort_key;
2395 som_section_data (section)->space_dict->is_defined =
2396 som_section_data (section)->copy_data->is_defined;
2397 som_section_data (section)->space_dict->is_private =
2398 som_section_data (section)->copy_data->is_private;
2399 som_section_data (section)->space_dict->space_number =
2400 som_section_data (section)->copy_data->space_number;
2401 }
2402 else
2403 {
2404 /* Allocate space for the subspace dictionary. */
2405 amt = sizeof (struct subspace_dictionary_record);
2406 som_section_data (section)->subspace_dict =
2407 (struct subspace_dictionary_record *) bfd_zalloc (abfd, amt);
2408 if (som_section_data (section)->subspace_dict == NULL)
2409 return FALSE;
2410
2411 /* Set subspace attributes. Basic stuff is done here, additional
2412 attributes are filled in later as more information becomes
2413 available. */
2414 if (section->flags & SEC_IS_COMMON)
2415 {
2416 som_section_data (section)->subspace_dict->dup_common = 1;
2417 som_section_data (section)->subspace_dict->is_common = 1;
2418 }
2419
2420 if (section->flags & SEC_ALLOC)
2421 som_section_data (section)->subspace_dict->is_loadable = 1;
2422
2423 if (section->flags & SEC_CODE)
2424 som_section_data (section)->subspace_dict->code_only = 1;
2425
2426 som_section_data (section)->subspace_dict->subspace_start =
2427 section->vma;
2428 som_section_data (section)->subspace_dict->subspace_length =
2429 bfd_section_size (abfd, section);
2430 som_section_data (section)->subspace_dict->initialization_length =
2431 bfd_section_size (abfd, section);
2432 som_section_data (section)->subspace_dict->alignment =
2433 1 << section->alignment_power;
2434
2435 /* Set more attributes that were stuffed away in private data. */
2436 som_section_data (section)->subspace_dict->sort_key =
2437 som_section_data (section)->copy_data->sort_key;
2438 som_section_data (section)->subspace_dict->access_control_bits =
2439 som_section_data (section)->copy_data->access_control_bits;
2440 som_section_data (section)->subspace_dict->quadrant =
2441 som_section_data (section)->copy_data->quadrant;
2442 }
2443 }
2444 return TRUE;
2445 }
2446
2447 /* Return TRUE if the given section is a SOM space, FALSE otherwise. */
2448
2449 static bfd_boolean
2450 som_is_space (section)
2451 asection *section;
2452 {
2453 /* If no copy data is available, then it's neither a space nor a
2454 subspace. */
2455 if (som_section_data (section)->copy_data == NULL)
2456 return FALSE;
2457
2458 /* If the containing space isn't the same as the given section,
2459 then this isn't a space. */
2460 if (som_section_data (section)->copy_data->container != section
2461 && (som_section_data (section)->copy_data->container->output_section
2462 != section))
2463 return FALSE;
2464
2465 /* OK. Must be a space. */
2466 return TRUE;
2467 }
2468
2469 /* Return TRUE if the given section is a SOM subspace, FALSE otherwise. */
2470
2471 static bfd_boolean
2472 som_is_subspace (section)
2473 asection *section;
2474 {
2475 /* If no copy data is available, then it's neither a space nor a
2476 subspace. */
2477 if (som_section_data (section)->copy_data == NULL)
2478 return FALSE;
2479
2480 /* If the containing space is the same as the given section,
2481 then this isn't a subspace. */
2482 if (som_section_data (section)->copy_data->container == section
2483 || (som_section_data (section)->copy_data->container->output_section
2484 == section))
2485 return FALSE;
2486
2487 /* OK. Must be a subspace. */
2488 return TRUE;
2489 }
2490
2491 /* Return TRUE if the given space contains the given subspace. It
2492 is safe to assume space really is a space, and subspace really
2493 is a subspace. */
2494
2495 static bfd_boolean
2496 som_is_container (space, subspace)
2497 asection *space, *subspace;
2498 {
2499 return (som_section_data (subspace)->copy_data->container == space
2500 || (som_section_data (subspace)->copy_data->container->output_section
2501 == space));
2502 }
2503
2504 /* Count and return the number of spaces attached to the given BFD. */
2505
2506 static unsigned long
2507 som_count_spaces (abfd)
2508 bfd *abfd;
2509 {
2510 int count = 0;
2511 asection *section;
2512
2513 for (section = abfd->sections; section != NULL; section = section->next)
2514 count += som_is_space (section);
2515
2516 return count;
2517 }
2518
2519 /* Count the number of subspaces attached to the given BFD. */
2520
2521 static unsigned long
2522 som_count_subspaces (abfd)
2523 bfd *abfd;
2524 {
2525 int count = 0;
2526 asection *section;
2527
2528 for (section = abfd->sections; section != NULL; section = section->next)
2529 count += som_is_subspace (section);
2530
2531 return count;
2532 }
2533
2534 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2535
2536 We desire symbols to be ordered starting with the symbol with the
2537 highest relocation count down to the symbol with the lowest relocation
2538 count. Doing so compacts the relocation stream. */
2539
2540 static int
2541 compare_syms (arg1, arg2)
2542 const PTR arg1;
2543 const PTR arg2;
2544
2545 {
2546 asymbol **sym1 = (asymbol **) arg1;
2547 asymbol **sym2 = (asymbol **) arg2;
2548 unsigned int count1, count2;
2549
2550 /* Get relocation count for each symbol. Note that the count
2551 is stored in the udata pointer for section symbols! */
2552 if ((*sym1)->flags & BSF_SECTION_SYM)
2553 count1 = (*sym1)->udata.i;
2554 else
2555 count1 = som_symbol_data (*sym1)->reloc_count;
2556
2557 if ((*sym2)->flags & BSF_SECTION_SYM)
2558 count2 = (*sym2)->udata.i;
2559 else
2560 count2 = som_symbol_data (*sym2)->reloc_count;
2561
2562 /* Return the appropriate value. */
2563 if (count1 < count2)
2564 return 1;
2565 else if (count1 > count2)
2566 return -1;
2567 return 0;
2568 }
2569
2570 /* Return -1, 0, 1 indicating the relative ordering of subspace1
2571 and subspace. */
2572
2573 static int
2574 compare_subspaces (arg1, arg2)
2575 const PTR arg1;
2576 const PTR arg2;
2577
2578 {
2579 asection **subspace1 = (asection **) arg1;
2580 asection **subspace2 = (asection **) arg2;
2581
2582 if ((*subspace1)->target_index < (*subspace2)->target_index)
2583 return -1;
2584 else if ((*subspace2)->target_index < (*subspace1)->target_index)
2585 return 1;
2586 else
2587 return 0;
2588 }
2589
2590 /* Perform various work in preparation for emitting the fixup stream. */
2591
2592 static void
2593 som_prep_for_fixups (abfd, syms, num_syms)
2594 bfd *abfd;
2595 asymbol **syms;
2596 unsigned long num_syms;
2597 {
2598 unsigned long i;
2599 asection *section;
2600 asymbol **sorted_syms;
2601 bfd_size_type amt;
2602
2603 /* Most SOM relocations involving a symbol have a length which is
2604 dependent on the index of the symbol. So symbols which are
2605 used often in relocations should have a small index. */
2606
2607 /* First initialize the counters for each symbol. */
2608 for (i = 0; i < num_syms; i++)
2609 {
2610 /* Handle a section symbol; these have no pointers back to the
2611 SOM symbol info. So we just use the udata field to hold the
2612 relocation count. */
2613 if (som_symbol_data (syms[i]) == NULL
2614 || syms[i]->flags & BSF_SECTION_SYM)
2615 {
2616 syms[i]->flags |= BSF_SECTION_SYM;
2617 syms[i]->udata.i = 0;
2618 }
2619 else
2620 som_symbol_data (syms[i])->reloc_count = 0;
2621 }
2622
2623 /* Now that the counters are initialized, make a weighted count
2624 of how often a given symbol is used in a relocation. */
2625 for (section = abfd->sections; section != NULL; section = section->next)
2626 {
2627 int j;
2628
2629 /* Does this section have any relocations? */
2630 if ((int) section->reloc_count <= 0)
2631 continue;
2632
2633 /* Walk through each relocation for this section. */
2634 for (j = 1; j < (int) section->reloc_count; j++)
2635 {
2636 arelent *reloc = section->orelocation[j];
2637 int scale;
2638
2639 /* A relocation against a symbol in the *ABS* section really
2640 does not have a symbol. Likewise if the symbol isn't associated
2641 with any section. */
2642 if (reloc->sym_ptr_ptr == NULL
2643 || bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section))
2644 continue;
2645
2646 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2647 and R_CODE_ONE_SYMBOL relocations to come first. These
2648 two relocations have single byte versions if the symbol
2649 index is very small. */
2650 if (reloc->howto->type == R_DP_RELATIVE
2651 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2652 scale = 2;
2653 else
2654 scale = 1;
2655
2656 /* Handle section symbols by storing the count in the udata
2657 field. It will not be used and the count is very important
2658 for these symbols. */
2659 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2660 {
2661 (*reloc->sym_ptr_ptr)->udata.i =
2662 (*reloc->sym_ptr_ptr)->udata.i + scale;
2663 continue;
2664 }
2665
2666 /* A normal symbol. Increment the count. */
2667 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2668 }
2669 }
2670
2671 /* Sort a copy of the symbol table, rather than the canonical
2672 output symbol table. */
2673 amt = num_syms;
2674 amt *= sizeof (asymbol *);
2675 sorted_syms = (asymbol **) bfd_zalloc (abfd, amt);
2676 memcpy (sorted_syms, syms, num_syms * sizeof (asymbol *));
2677 qsort (sorted_syms, num_syms, sizeof (asymbol *), compare_syms);
2678 obj_som_sorted_syms (abfd) = sorted_syms;
2679
2680 /* Compute the symbol indexes, they will be needed by the relocation
2681 code. */
2682 for (i = 0; i < num_syms; i++)
2683 {
2684 /* A section symbol. Again, there is no pointer to backend symbol
2685 information, so we reuse the udata field again. */
2686 if (sorted_syms[i]->flags & BSF_SECTION_SYM)
2687 sorted_syms[i]->udata.i = i;
2688 else
2689 som_symbol_data (sorted_syms[i])->index = i;
2690 }
2691 }
2692
2693 static bfd_boolean
2694 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2695 bfd *abfd;
2696 unsigned long current_offset;
2697 unsigned int *total_reloc_sizep;
2698 {
2699 unsigned int i, j;
2700 /* Chunk of memory that we can use as buffer space, then throw
2701 away. */
2702 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2703 unsigned char *p;
2704 unsigned int total_reloc_size = 0;
2705 unsigned int subspace_reloc_size = 0;
2706 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2707 asection *section = abfd->sections;
2708 bfd_size_type amt;
2709
2710 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2711 p = tmp_space;
2712
2713 /* All the fixups for a particular subspace are emitted in a single
2714 stream. All the subspaces for a particular space are emitted
2715 as a single stream.
2716
2717 So, to get all the locations correct one must iterate through all the
2718 spaces, for each space iterate through its subspaces and output a
2719 fixups stream. */
2720 for (i = 0; i < num_spaces; i++)
2721 {
2722 asection *subsection;
2723
2724 /* Find a space. */
2725 while (!som_is_space (section))
2726 section = section->next;
2727
2728 /* Now iterate through each of its subspaces. */
2729 for (subsection = abfd->sections;
2730 subsection != NULL;
2731 subsection = subsection->next)
2732 {
2733 int reloc_offset;
2734 unsigned int current_rounding_mode;
2735 #ifndef NO_PCREL_MODES
2736 unsigned int current_call_mode;
2737 #endif
2738
2739 /* Find a subspace of this space. */
2740 if (!som_is_subspace (subsection)
2741 || !som_is_container (section, subsection))
2742 continue;
2743
2744 /* If this subspace does not have real data, then we are
2745 finished with it. */
2746 if ((subsection->flags & SEC_HAS_CONTENTS) == 0)
2747 {
2748 som_section_data (subsection)->subspace_dict->fixup_request_index
2749 = -1;
2750 continue;
2751 }
2752
2753 /* This subspace has some relocations. Put the relocation stream
2754 index into the subspace record. */
2755 som_section_data (subsection)->subspace_dict->fixup_request_index
2756 = total_reloc_size;
2757
2758 /* To make life easier start over with a clean slate for
2759 each subspace. Seek to the start of the relocation stream
2760 for this subspace in preparation for writing out its fixup
2761 stream. */
2762 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) != 0)
2763 return FALSE;
2764
2765 /* Buffer space has already been allocated. Just perform some
2766 initialization here. */
2767 p = tmp_space;
2768 subspace_reloc_size = 0;
2769 reloc_offset = 0;
2770 som_initialize_reloc_queue (reloc_queue);
2771 current_rounding_mode = R_N_MODE;
2772 #ifndef NO_PCREL_MODES
2773 current_call_mode = R_SHORT_PCREL_MODE;
2774 #endif
2775
2776 /* Translate each BFD relocation into one or more SOM
2777 relocations. */
2778 for (j = 0; j < subsection->reloc_count; j++)
2779 {
2780 arelent *bfd_reloc = subsection->orelocation[j];
2781 unsigned int skip;
2782 int sym_num;
2783
2784 /* Get the symbol number. Remember it's stored in a
2785 special place for section symbols. */
2786 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2787 sym_num = (*bfd_reloc->sym_ptr_ptr)->udata.i;
2788 else
2789 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2790
2791 /* If there is not enough room for the next couple relocations,
2792 then dump the current buffer contents now. Also reinitialize
2793 the relocation queue.
2794
2795 No single BFD relocation could ever translate into more
2796 than 100 bytes of SOM relocations (20bytes is probably the
2797 upper limit, but leave lots of space for growth). */
2798 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2799 {
2800 amt = p - tmp_space;
2801 if (bfd_bwrite ((PTR) tmp_space, amt, abfd) != amt)
2802 return FALSE;
2803
2804 p = tmp_space;
2805 som_initialize_reloc_queue (reloc_queue);
2806 }
2807
2808 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2809 skipped. */
2810 skip = bfd_reloc->address - reloc_offset;
2811 p = som_reloc_skip (abfd, skip, p,
2812 &subspace_reloc_size, reloc_queue);
2813
2814 /* Update reloc_offset for the next iteration.
2815
2816 Many relocations do not consume input bytes. They
2817 are markers, or set state necessary to perform some
2818 later relocation. */
2819 switch (bfd_reloc->howto->type)
2820 {
2821 case R_ENTRY:
2822 case R_ALT_ENTRY:
2823 case R_EXIT:
2824 case R_N_MODE:
2825 case R_S_MODE:
2826 case R_D_MODE:
2827 case R_R_MODE:
2828 case R_FSEL:
2829 case R_LSEL:
2830 case R_RSEL:
2831 case R_COMP1:
2832 case R_COMP2:
2833 case R_BEGIN_BRTAB:
2834 case R_END_BRTAB:
2835 case R_BEGIN_TRY:
2836 case R_END_TRY:
2837 case R_N0SEL:
2838 case R_N1SEL:
2839 #ifndef NO_PCREL_MODES
2840 case R_SHORT_PCREL_MODE:
2841 case R_LONG_PCREL_MODE:
2842 #endif
2843 reloc_offset = bfd_reloc->address;
2844 break;
2845
2846 default:
2847 reloc_offset = bfd_reloc->address + 4;
2848 break;
2849 }
2850
2851 /* Now the actual relocation we care about. */
2852 switch (bfd_reloc->howto->type)
2853 {
2854 case R_PCREL_CALL:
2855 case R_ABS_CALL:
2856 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2857 bfd_reloc, sym_num, reloc_queue);
2858 break;
2859
2860 case R_CODE_ONE_SYMBOL:
2861 case R_DP_RELATIVE:
2862 /* Account for any addend. */
2863 if (bfd_reloc->addend)
2864 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2865 &subspace_reloc_size, reloc_queue);
2866
2867 if (sym_num < 0x20)
2868 {
2869 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2870 subspace_reloc_size += 1;
2871 p += 1;
2872 }
2873 else if (sym_num < 0x100)
2874 {
2875 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2876 bfd_put_8 (abfd, sym_num, p + 1);
2877 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2878 2, reloc_queue);
2879 }
2880 else if (sym_num < 0x10000000)
2881 {
2882 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2883 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2884 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 2);
2885 p = try_prev_fixup (abfd, &subspace_reloc_size,
2886 p, 4, reloc_queue);
2887 }
2888 else
2889 abort ();
2890 break;
2891
2892 case R_DATA_ONE_SYMBOL:
2893 case R_DATA_PLABEL:
2894 case R_CODE_PLABEL:
2895 case R_DLT_REL:
2896 /* Account for any addend using R_DATA_OVERRIDE. */
2897 if (bfd_reloc->howto->type != R_DATA_ONE_SYMBOL
2898 && bfd_reloc->addend)
2899 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2900 &subspace_reloc_size, reloc_queue);
2901
2902 if (sym_num < 0x100)
2903 {
2904 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2905 bfd_put_8 (abfd, sym_num, p + 1);
2906 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2907 2, reloc_queue);
2908 }
2909 else if (sym_num < 0x10000000)
2910 {
2911 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2912 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2913 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 2);
2914 p = try_prev_fixup (abfd, &subspace_reloc_size,
2915 p, 4, reloc_queue);
2916 }
2917 else
2918 abort ();
2919 break;
2920
2921 case R_ENTRY:
2922 {
2923 unsigned int tmp;
2924 arelent *tmp_reloc = NULL;
2925 bfd_put_8 (abfd, R_ENTRY, p);
2926
2927 /* R_ENTRY relocations have 64 bits of associated
2928 data. Unfortunately the addend field of a bfd
2929 relocation is only 32 bits. So, we split up
2930 the 64bit unwind information and store part in
2931 the R_ENTRY relocation, and the rest in the R_EXIT
2932 relocation. */
2933 bfd_put_32 (abfd, bfd_reloc->addend, p + 1);
2934
2935 /* Find the next R_EXIT relocation. */
2936 for (tmp = j; tmp < subsection->reloc_count; tmp++)
2937 {
2938 tmp_reloc = subsection->orelocation[tmp];
2939 if (tmp_reloc->howto->type == R_EXIT)
2940 break;
2941 }
2942
2943 if (tmp == subsection->reloc_count)
2944 abort ();
2945
2946 bfd_put_32 (abfd, tmp_reloc->addend, p + 5);
2947 p = try_prev_fixup (abfd, &subspace_reloc_size,
2948 p, 9, reloc_queue);
2949 break;
2950 }
2951
2952 case R_N_MODE:
2953 case R_S_MODE:
2954 case R_D_MODE:
2955 case R_R_MODE:
2956 /* If this relocation requests the current rounding
2957 mode, then it is redundant. */
2958 if (bfd_reloc->howto->type != current_rounding_mode)
2959 {
2960 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2961 subspace_reloc_size += 1;
2962 p += 1;
2963 current_rounding_mode = bfd_reloc->howto->type;
2964 }
2965 break;
2966
2967 #ifndef NO_PCREL_MODES
2968 case R_LONG_PCREL_MODE:
2969 case R_SHORT_PCREL_MODE:
2970 if (bfd_reloc->howto->type != current_call_mode)
2971 {
2972 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2973 subspace_reloc_size += 1;
2974 p += 1;
2975 current_call_mode = bfd_reloc->howto->type;
2976 }
2977 break;
2978 #endif
2979
2980 case R_EXIT:
2981 case R_ALT_ENTRY:
2982 case R_FSEL:
2983 case R_LSEL:
2984 case R_RSEL:
2985 case R_BEGIN_BRTAB:
2986 case R_END_BRTAB:
2987 case R_BEGIN_TRY:
2988 case R_N0SEL:
2989 case R_N1SEL:
2990 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2991 subspace_reloc_size += 1;
2992 p += 1;
2993 break;
2994
2995 case R_END_TRY:
2996 /* The end of an exception handling region. The reloc's
2997 addend contains the offset of the exception handling
2998 code. */
2999 if (bfd_reloc->addend == 0)
3000 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
3001 else if (bfd_reloc->addend < 1024)
3002 {
3003 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
3004 bfd_put_8 (abfd, bfd_reloc->addend / 4, p + 1);
3005 p = try_prev_fixup (abfd, &subspace_reloc_size,
3006 p, 2, reloc_queue);
3007 }
3008 else
3009 {
3010 bfd_put_8 (abfd, bfd_reloc->howto->type + 2, p);
3011 bfd_put_8 (abfd, (bfd_reloc->addend / 4) >> 16, p + 1);
3012 bfd_put_16 (abfd, bfd_reloc->addend / 4, p + 2);
3013 p = try_prev_fixup (abfd, &subspace_reloc_size,
3014 p, 4, reloc_queue);
3015 }
3016 break;
3017
3018 case R_COMP1:
3019 /* The only time we generate R_COMP1, R_COMP2 and
3020 R_CODE_EXPR relocs is for the difference of two
3021 symbols. Hence we can cheat here. */
3022 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
3023 bfd_put_8 (abfd, 0x44, p + 1);
3024 p = try_prev_fixup (abfd, &subspace_reloc_size,
3025 p, 2, reloc_queue);
3026 break;
3027
3028 case R_COMP2:
3029 /* The only time we generate R_COMP1, R_COMP2 and
3030 R_CODE_EXPR relocs is for the difference of two
3031 symbols. Hence we can cheat here. */
3032 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
3033 bfd_put_8 (abfd, 0x80, p + 1);
3034 bfd_put_8 (abfd, sym_num >> 16, p + 2);
3035 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 3);
3036 p = try_prev_fixup (abfd, &subspace_reloc_size,
3037 p, 5, reloc_queue);
3038 break;
3039
3040 case R_CODE_EXPR:
3041 case R_DATA_EXPR:
3042 /* The only time we generate R_COMP1, R_COMP2 and
3043 R_CODE_EXPR relocs is for the difference of two
3044 symbols. Hence we can cheat here. */
3045 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
3046 subspace_reloc_size += 1;
3047 p += 1;
3048 break;
3049
3050 /* Put a "R_RESERVED" relocation in the stream if
3051 we hit something we do not understand. The linker
3052 will complain loudly if this ever happens. */
3053 default:
3054 bfd_put_8 (abfd, 0xff, p);
3055 subspace_reloc_size += 1;
3056 p += 1;
3057 break;
3058 }
3059 }
3060
3061 /* Last BFD relocation for a subspace has been processed.
3062 Map the rest of the subspace with R_NO_RELOCATION fixups. */
3063 p = som_reloc_skip (abfd, (bfd_section_size (abfd, subsection)
3064 - reloc_offset),
3065 p, &subspace_reloc_size, reloc_queue);
3066
3067 /* Scribble out the relocations. */
3068 amt = p - tmp_space;
3069 if (bfd_bwrite ((PTR) tmp_space, amt, abfd) != amt)
3070 return FALSE;
3071 p = tmp_space;
3072
3073 total_reloc_size += subspace_reloc_size;
3074 som_section_data (subsection)->subspace_dict->fixup_request_quantity
3075 = subspace_reloc_size;
3076 }
3077 section = section->next;
3078 }
3079 *total_reloc_sizep = total_reloc_size;
3080 return TRUE;
3081 }
3082
3083 /* Write out the space/subspace string table. */
3084
3085 static bfd_boolean
3086 som_write_space_strings (abfd, current_offset, string_sizep)
3087 bfd *abfd;
3088 unsigned long current_offset;
3089 unsigned int *string_sizep;
3090 {
3091 /* Chunk of memory that we can use as buffer space, then throw
3092 away. */
3093 size_t tmp_space_size = SOM_TMP_BUFSIZE;
3094 unsigned char *tmp_space = alloca (tmp_space_size);
3095 unsigned char *p = tmp_space;
3096 unsigned int strings_size = 0;
3097 asection *section;
3098 bfd_size_type amt;
3099
3100 /* Seek to the start of the space strings in preparation for writing
3101 them out. */
3102 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
3103 return FALSE;
3104
3105 /* Walk through all the spaces and subspaces (order is not important)
3106 building up and writing string table entries for their names. */
3107 for (section = abfd->sections; section != NULL; section = section->next)
3108 {
3109 size_t length;
3110
3111 /* Only work with space/subspaces; avoid any other sections
3112 which might have been made (.text for example). */
3113 if (!som_is_space (section) && !som_is_subspace (section))
3114 continue;
3115
3116 /* Get the length of the space/subspace name. */
3117 length = strlen (section->name);
3118
3119 /* If there is not enough room for the next entry, then dump the
3120 current buffer contents now and maybe allocate a larger
3121 buffer. Each entry will take 4 bytes to hold the string
3122 length + the string itself + null terminator. */
3123 if (p - tmp_space + 5 + length > tmp_space_size)
3124 {
3125 /* Flush buffer before refilling or reallocating. */
3126 amt = p - tmp_space;
3127 if (bfd_bwrite ((PTR) &tmp_space[0], amt, abfd) != amt)
3128 return FALSE;
3129
3130 /* Reallocate if now empty buffer still too small. */
3131 if (5 + length > tmp_space_size)
3132 {
3133 /* Ensure a minimum growth factor to avoid O(n**2) space
3134 consumption for n strings. The optimal minimum
3135 factor seems to be 2, as no other value can guarantee
3136 wasting less than 50% space. (Note that we cannot
3137 deallocate space allocated by `alloca' without
3138 returning from this function.) The same technique is
3139 used a few more times below when a buffer is
3140 reallocated. */
3141 tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
3142 tmp_space = alloca (tmp_space_size);
3143 }
3144
3145 /* Reset to beginning of the (possibly new) buffer space. */
3146 p = tmp_space;
3147 }
3148
3149 /* First element in a string table entry is the length of the
3150 string. Alignment issues are already handled. */
3151 bfd_put_32 (abfd, (bfd_vma) length, p);
3152 p += 4;
3153 strings_size += 4;
3154
3155 /* Record the index in the space/subspace records. */
3156 if (som_is_space (section))
3157 som_section_data (section)->space_dict->name.n_strx = strings_size;
3158 else
3159 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
3160
3161 /* Next comes the string itself + a null terminator. */
3162 strcpy (p, section->name);
3163 p += length + 1;
3164 strings_size += length + 1;
3165
3166 /* Always align up to the next word boundary. */
3167 while (strings_size % 4)
3168 {
3169 bfd_put_8 (abfd, 0, p);
3170 p++;
3171 strings_size++;
3172 }
3173 }
3174
3175 /* Done with the space/subspace strings. Write out any information
3176 contained in a partial block. */
3177 amt = p - tmp_space;
3178 if (bfd_bwrite ((PTR) &tmp_space[0], amt, abfd) != amt)
3179 return FALSE;
3180 *string_sizep = strings_size;
3181 return TRUE;
3182 }
3183
3184 /* Write out the symbol string table. */
3185
3186 static bfd_boolean
3187 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep,
3188 compilation_unit)
3189 bfd *abfd;
3190 unsigned long current_offset;
3191 asymbol **syms;
3192 unsigned int num_syms;
3193 unsigned int *string_sizep;
3194 COMPUNIT *compilation_unit;
3195 {
3196 unsigned int i;
3197
3198 /* Chunk of memory that we can use as buffer space, then throw
3199 away. */
3200 size_t tmp_space_size = SOM_TMP_BUFSIZE;
3201 unsigned char *tmp_space = alloca (tmp_space_size);
3202 unsigned char *p = tmp_space;
3203
3204 unsigned int strings_size = 0;
3205 unsigned char *comp[4];
3206 bfd_size_type amt;
3207
3208 /* This gets a bit gruesome because of the compilation unit. The
3209 strings within the compilation unit are part of the symbol
3210 strings, but don't have symbol_dictionary entries. So, manually
3211 write them and update the compilation unit header. On input, the
3212 compilation unit header contains local copies of the strings.
3213 Move them aside. */
3214 if (compilation_unit)
3215 {
3216 comp[0] = compilation_unit->name.n_name;
3217 comp[1] = compilation_unit->language_name.n_name;
3218 comp[2] = compilation_unit->product_id.n_name;
3219 comp[3] = compilation_unit->version_id.n_name;
3220 }
3221
3222 /* Seek to the start of the space strings in preparation for writing
3223 them out. */
3224 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
3225 return FALSE;
3226
3227 if (compilation_unit)
3228 {
3229 for (i = 0; i < 4; i++)
3230 {
3231 size_t length = strlen (comp[i]);
3232
3233 /* If there is not enough room for the next entry, then dump
3234 the current buffer contents now and maybe allocate a
3235 larger buffer. */
3236 if (p - tmp_space + 5 + length > tmp_space_size)
3237 {
3238 /* Flush buffer before refilling or reallocating. */
3239 amt = p - tmp_space;
3240 if (bfd_bwrite ((PTR) &tmp_space[0], amt, abfd) != amt)
3241 return FALSE;
3242
3243 /* Reallocate if now empty buffer still too small. */
3244 if (5 + length > tmp_space_size)
3245 {
3246 /* See alloca above for discussion of new size. */
3247 tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
3248 tmp_space = alloca (tmp_space_size);
3249 }
3250
3251 /* Reset to beginning of the (possibly new) buffer
3252 space. */
3253 p = tmp_space;
3254 }
3255
3256 /* First element in a string table entry is the length of
3257 the string. This must always be 4 byte aligned. This is
3258 also an appropriate time to fill in the string index
3259 field in the symbol table entry. */
3260 bfd_put_32 (abfd, (bfd_vma) length, p);
3261 strings_size += 4;
3262 p += 4;
3263
3264 /* Next comes the string itself + a null terminator. */
3265 strcpy (p, comp[i]);
3266
3267 switch (i)
3268 {
3269 case 0:
3270 obj_som_compilation_unit (abfd)->name.n_strx = strings_size;
3271 break;
3272 case 1:
3273 obj_som_compilation_unit (abfd)->language_name.n_strx =
3274 strings_size;
3275 break;
3276 case 2:
3277 obj_som_compilation_unit (abfd)->product_id.n_strx =
3278 strings_size;
3279 break;
3280 case 3:
3281 obj_som_compilation_unit (abfd)->version_id.n_strx =
3282 strings_size;
3283 break;
3284 }
3285
3286 p += length + 1;
3287 strings_size += length + 1;
3288
3289 /* Always align up to the next word boundary. */
3290 while (strings_size % 4)
3291 {
3292 bfd_put_8 (abfd, 0, p);
3293 strings_size++;
3294 p++;
3295 }
3296 }
3297 }
3298
3299 for (i = 0; i < num_syms; i++)
3300 {
3301 size_t length = strlen (syms[i]->name);
3302
3303 /* If there is not enough room for the next entry, then dump the
3304 current buffer contents now and maybe allocate a larger buffer. */
3305 if (p - tmp_space + 5 + length > tmp_space_size)
3306 {
3307 /* Flush buffer before refilling or reallocating. */
3308 amt = p - tmp_space;
3309 if (bfd_bwrite ((PTR) &tmp_space[0], amt, abfd) != amt)
3310 return FALSE;
3311
3312 /* Reallocate if now empty buffer still too small. */
3313 if (5 + length > tmp_space_size)
3314 {
3315 /* See alloca above for discussion of new size. */
3316 tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
3317 tmp_space = alloca (tmp_space_size);
3318 }
3319
3320 /* Reset to beginning of the (possibly new) buffer space. */
3321 p = tmp_space;
3322 }
3323
3324 /* First element in a string table entry is the length of the
3325 string. This must always be 4 byte aligned. This is also
3326 an appropriate time to fill in the string index field in the
3327 symbol table entry. */
3328 bfd_put_32 (abfd, (bfd_vma) length, p);
3329 strings_size += 4;
3330 p += 4;
3331
3332 /* Next comes the string itself + a null terminator. */
3333 strcpy (p, syms[i]->name);
3334
3335 som_symbol_data (syms[i])->stringtab_offset = strings_size;
3336 p += length + 1;
3337 strings_size += length + 1;
3338
3339 /* Always align up to the next word boundary. */
3340 while (strings_size % 4)
3341 {
3342 bfd_put_8 (abfd, 0, p);
3343 strings_size++;
3344 p++;
3345 }
3346 }
3347
3348 /* Scribble out any partial block. */
3349 amt = p - tmp_space;
3350 if (bfd_bwrite ((PTR) &tmp_space[0], amt, abfd) != amt)
3351 return FALSE;
3352
3353 *string_sizep = strings_size;
3354 return TRUE;
3355 }
3356
3357 /* Compute variable information to be placed in the SOM headers,
3358 space/subspace dictionaries, relocation streams, etc. Begin
3359 writing parts of the object file. */
3360
3361 static bfd_boolean
3362 som_begin_writing (abfd)
3363 bfd *abfd;
3364 {
3365 unsigned long current_offset = 0;
3366 int strings_size = 0;
3367 unsigned long num_spaces, num_subspaces, i;
3368 asection *section;
3369 unsigned int total_subspaces = 0;
3370 struct som_exec_auxhdr *exec_header = NULL;
3371
3372 /* The file header will always be first in an object file,
3373 everything else can be in random locations. To keep things
3374 "simple" BFD will lay out the object file in the manner suggested
3375 by the PRO ABI for PA-RISC Systems. */
3376
3377 /* Before any output can really begin offsets for all the major
3378 portions of the object file must be computed. So, starting
3379 with the initial file header compute (and sometimes write)
3380 each portion of the object file. */
3381
3382 /* Make room for the file header, it's contents are not complete
3383 yet, so it can not be written at this time. */
3384 current_offset += sizeof (struct header);
3385
3386 /* Any auxiliary headers will follow the file header. Right now
3387 we support only the copyright and version headers. */
3388 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
3389 obj_som_file_hdr (abfd)->aux_header_size = 0;
3390 if (abfd->flags & (EXEC_P | DYNAMIC))
3391 {
3392 /* Parts of the exec header will be filled in later, so
3393 delay writing the header itself. Fill in the defaults,
3394 and write it later. */
3395 current_offset += sizeof (struct som_exec_auxhdr);
3396 obj_som_file_hdr (abfd)->aux_header_size
3397 += sizeof (struct som_exec_auxhdr);
3398 exec_header = obj_som_exec_hdr (abfd);
3399 exec_header->som_auxhdr.type = EXEC_AUX_ID;
3400 exec_header->som_auxhdr.length = 40;
3401 }
3402 if (obj_som_version_hdr (abfd) != NULL)
3403 {
3404 bfd_size_type len;
3405
3406 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
3407 return FALSE;
3408
3409 /* Write the aux_id structure and the string length. */
3410 len = sizeof (struct aux_id) + sizeof (unsigned int);
3411 obj_som_file_hdr (abfd)->aux_header_size += len;
3412 current_offset += len;
3413 if (bfd_bwrite ((PTR) obj_som_version_hdr (abfd), len, abfd) != len)
3414 return FALSE;
3415
3416 /* Write the version string. */
3417 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
3418 obj_som_file_hdr (abfd)->aux_header_size += len;
3419 current_offset += len;
3420 if (bfd_bwrite ((PTR) obj_som_version_hdr (abfd)->user_string, len, abfd)
3421 != len)
3422 return FALSE;
3423 }
3424
3425 if (obj_som_copyright_hdr (abfd) != NULL)
3426 {
3427 bfd_size_type len;
3428
3429 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
3430 return FALSE;
3431
3432 /* Write the aux_id structure and the string length. */
3433 len = sizeof (struct aux_id) + sizeof (unsigned int);
3434 obj_som_file_hdr (abfd)->aux_header_size += len;
3435 current_offset += len;
3436 if (bfd_bwrite ((PTR) obj_som_copyright_hdr (abfd), len, abfd) != len)
3437 return FALSE;
3438
3439 /* Write the copyright string. */
3440 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
3441 obj_som_file_hdr (abfd)->aux_header_size += len;
3442 current_offset += len;
3443 if (bfd_bwrite ((PTR) obj_som_copyright_hdr (abfd)->copyright, len, abfd)
3444 != len)
3445 return FALSE;
3446 }
3447
3448 /* Next comes the initialization pointers; we have no initialization
3449 pointers, so current offset does not change. */
3450 obj_som_file_hdr (abfd)->init_array_location = current_offset;
3451 obj_som_file_hdr (abfd)->init_array_total = 0;
3452
3453 /* Next are the space records. These are fixed length records.
3454
3455 Count the number of spaces to determine how much room is needed
3456 in the object file for the space records.
3457
3458 The names of the spaces are stored in a separate string table,
3459 and the index for each space into the string table is computed
3460 below. Therefore, it is not possible to write the space headers
3461 at this time. */
3462 num_spaces = som_count_spaces (abfd);
3463 obj_som_file_hdr (abfd)->space_location = current_offset;
3464 obj_som_file_hdr (abfd)->space_total = num_spaces;
3465 current_offset += num_spaces * sizeof (struct space_dictionary_record);
3466
3467 /* Next are the subspace records. These are fixed length records.
3468
3469 Count the number of subspaes to determine how much room is needed
3470 in the object file for the subspace records.
3471
3472 A variety if fields in the subspace record are still unknown at
3473 this time (index into string table, fixup stream location/size, etc). */
3474 num_subspaces = som_count_subspaces (abfd);
3475 obj_som_file_hdr (abfd)->subspace_location = current_offset;
3476 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
3477 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
3478
3479 /* Next is the string table for the space/subspace names. We will
3480 build and write the string table on the fly. At the same time
3481 we will fill in the space/subspace name index fields. */
3482
3483 /* The string table needs to be aligned on a word boundary. */
3484 if (current_offset % 4)
3485 current_offset += (4 - (current_offset % 4));
3486
3487 /* Mark the offset of the space/subspace string table in the
3488 file header. */
3489 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
3490
3491 /* Scribble out the space strings. */
3492 if (! som_write_space_strings (abfd, current_offset, &strings_size))
3493 return FALSE;
3494
3495 /* Record total string table size in the header and update the
3496 current offset. */
3497 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
3498 current_offset += strings_size;
3499
3500 /* Next is the compilation unit. */
3501 obj_som_file_hdr (abfd)->compiler_location = current_offset;
3502 obj_som_file_hdr (abfd)->compiler_total = 0;
3503 if (obj_som_compilation_unit (abfd))
3504 {
3505 obj_som_file_hdr (abfd)->compiler_total = 1;
3506 current_offset += COMPUNITSZ;
3507 }
3508
3509 /* Now compute the file positions for the loadable subspaces, taking
3510 care to make sure everything stays properly aligned. */
3511
3512 section = abfd->sections;
3513 for (i = 0; i < num_spaces; i++)
3514 {
3515 asection *subsection;
3516 int first_subspace;
3517 unsigned int subspace_offset = 0;
3518
3519 /* Find a space. */
3520 while (!som_is_space (section))
3521 section = section->next;
3522
3523 first_subspace = 1;
3524 /* Now look for all its subspaces. */
3525 for (subsection = abfd->sections;
3526 subsection != NULL;
3527 subsection = subsection->next)
3528 {
3529
3530 if (!som_is_subspace (subsection)
3531 || !som_is_container (section, subsection)
3532 || (subsection->flags & SEC_ALLOC) == 0)
3533 continue;
3534
3535 /* If this is the first subspace in the space, and we are
3536 building an executable, then take care to make sure all
3537 the alignments are correct and update the exec header. */
3538 if (first_subspace
3539 && (abfd->flags & (EXEC_P | DYNAMIC)))
3540 {
3541 /* Demand paged executables have each space aligned to a
3542 page boundary. Sharable executables (write-protected
3543 text) have just the private (aka data & bss) space aligned
3544 to a page boundary. Ugh. Not true for HPUX.
3545
3546 The HPUX kernel requires the text to always be page aligned
3547 within the file regardless of the executable's type. */
3548 if (abfd->flags & (D_PAGED | DYNAMIC)
3549 || (subsection->flags & SEC_CODE)
3550 || ((abfd->flags & WP_TEXT)
3551 && (subsection->flags & SEC_DATA)))
3552 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3553
3554 /* Update the exec header. */
3555 if (subsection->flags & SEC_CODE && exec_header->exec_tfile == 0)
3556 {
3557 exec_header->exec_tmem = section->vma;
3558 exec_header->exec_tfile = current_offset;
3559 }
3560 if (subsection->flags & SEC_DATA && exec_header->exec_dfile == 0)
3561 {
3562 exec_header->exec_dmem = section->vma;
3563 exec_header->exec_dfile = current_offset;
3564 }
3565
3566 /* Keep track of exactly where we are within a particular
3567 space. This is necessary as the braindamaged HPUX
3568 loader will create holes between subspaces *and*
3569 subspace alignments are *NOT* preserved. What a crock. */
3570 subspace_offset = subsection->vma;
3571
3572 /* Only do this for the first subspace within each space. */
3573 first_subspace = 0;
3574 }
3575 else if (abfd->flags & (EXEC_P | DYNAMIC))
3576 {
3577 /* The braindamaged HPUX loader may have created a hole
3578 between two subspaces. It is *not* sufficient to use
3579 the alignment specifications within the subspaces to
3580 account for these holes -- I've run into at least one
3581 case where the loader left one code subspace unaligned
3582 in a final executable.
3583
3584 To combat this we keep a current offset within each space,
3585 and use the subspace vma fields to detect and preserve
3586 holes. What a crock!
3587
3588 ps. This is not necessary for unloadable space/subspaces. */
3589 current_offset += subsection->vma - subspace_offset;
3590 if (subsection->flags & SEC_CODE)
3591 exec_header->exec_tsize += subsection->vma - subspace_offset;
3592 else
3593 exec_header->exec_dsize += subsection->vma - subspace_offset;
3594 subspace_offset += subsection->vma - subspace_offset;
3595 }
3596
3597 subsection->target_index = total_subspaces++;
3598 /* This is real data to be loaded from the file. */
3599 if (subsection->flags & SEC_LOAD)
3600 {
3601 /* Update the size of the code & data. */
3602 if (abfd->flags & (EXEC_P | DYNAMIC)
3603 && subsection->flags & SEC_CODE)
3604 exec_header->exec_tsize += subsection->_cooked_size;
3605 else if (abfd->flags & (EXEC_P | DYNAMIC)
3606 && subsection->flags & SEC_DATA)
3607 exec_header->exec_dsize += subsection->_cooked_size;
3608 som_section_data (subsection)->subspace_dict->file_loc_init_value
3609 = current_offset;
3610 subsection->filepos = current_offset;
3611 current_offset += bfd_section_size (abfd, subsection);
3612 subspace_offset += bfd_section_size (abfd, subsection);
3613 }
3614 /* Looks like uninitialized data. */
3615 else
3616 {
3617 /* Update the size of the bss section. */
3618 if (abfd->flags & (EXEC_P | DYNAMIC))
3619 exec_header->exec_bsize += subsection->_cooked_size;
3620
3621 som_section_data (subsection)->subspace_dict->file_loc_init_value
3622 = 0;
3623 som_section_data (subsection)->subspace_dict->
3624 initialization_length = 0;
3625 }
3626 }
3627 /* Goto the next section. */
3628 section = section->next;
3629 }
3630
3631 /* Finally compute the file positions for unloadable subspaces.
3632 If building an executable, start the unloadable stuff on its
3633 own page. */
3634
3635 if (abfd->flags & (EXEC_P | DYNAMIC))
3636 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3637
3638 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3639 section = abfd->sections;
3640 for (i = 0; i < num_spaces; i++)
3641 {
3642 asection *subsection;
3643
3644 /* Find a space. */
3645 while (!som_is_space (section))
3646 section = section->next;
3647
3648 if (abfd->flags & (EXEC_P | DYNAMIC))
3649 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3650
3651 /* Now look for all its subspaces. */
3652 for (subsection = abfd->sections;
3653 subsection != NULL;
3654 subsection = subsection->next)
3655 {
3656
3657 if (!som_is_subspace (subsection)
3658 || !som_is_container (section, subsection)
3659 || (subsection->flags & SEC_ALLOC) != 0)
3660 continue;
3661
3662 subsection->target_index = total_subspaces++;
3663 /* This is real data to be loaded from the file. */
3664 if ((subsection->flags & SEC_LOAD) == 0)
3665 {
3666 som_section_data (subsection)->subspace_dict->file_loc_init_value
3667 = current_offset;
3668 subsection->filepos = current_offset;
3669 current_offset += bfd_section_size (abfd, subsection);
3670 }
3671 /* Looks like uninitialized data. */
3672 else
3673 {
3674 som_section_data (subsection)->subspace_dict->file_loc_init_value
3675 = 0;
3676 som_section_data (subsection)->subspace_dict->
3677 initialization_length = bfd_section_size (abfd, subsection);
3678 }
3679 }
3680 /* Goto the next section. */
3681 section = section->next;
3682 }
3683
3684 /* If building an executable, then make sure to seek to and write
3685 one byte at the end of the file to make sure any necessary
3686 zeros are filled in. Ugh. */
3687 if (abfd->flags & (EXEC_P | DYNAMIC))
3688 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3689 if (bfd_seek (abfd, (file_ptr) current_offset - 1, SEEK_SET) != 0)
3690 return FALSE;
3691 if (bfd_bwrite ((PTR) "", (bfd_size_type) 1, abfd) != 1)
3692 return FALSE;
3693
3694 obj_som_file_hdr (abfd)->unloadable_sp_size
3695 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3696
3697 /* Loader fixups are not supported in any way shape or form. */
3698 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3699 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3700
3701 /* Done. Store the total size of the SOM so far. */
3702 obj_som_file_hdr (abfd)->som_length = current_offset;
3703
3704 return TRUE;
3705 }
3706
3707 /* Finally, scribble out the various headers to the disk. */
3708
3709 static bfd_boolean
3710 som_finish_writing (abfd)
3711 bfd *abfd;
3712 {
3713 int num_spaces = som_count_spaces (abfd);
3714 asymbol **syms = bfd_get_outsymbols (abfd);
3715 int i, num_syms, strings_size;
3716 int subspace_index = 0;
3717 file_ptr location;
3718 asection *section;
3719 unsigned long current_offset;
3720 unsigned int total_reloc_size;
3721 bfd_size_type amt;
3722
3723 /* We must set up the version identifier here as objcopy/strip copy
3724 private BFD data too late for us to handle this in som_begin_writing. */
3725 if (obj_som_exec_data (abfd)
3726 && obj_som_exec_data (abfd)->version_id)
3727 obj_som_file_hdr (abfd)->version_id = obj_som_exec_data (abfd)->version_id;
3728 else
3729 obj_som_file_hdr (abfd)->version_id = NEW_VERSION_ID;
3730
3731 /* Next is the symbol table. These are fixed length records.
3732
3733 Count the number of symbols to determine how much room is needed
3734 in the object file for the symbol table.
3735
3736 The names of the symbols are stored in a separate string table,
3737 and the index for each symbol name into the string table is computed
3738 below. Therefore, it is not possible to write the symbol table
3739 at this time.
3740
3741 These used to be output before the subspace contents, but they
3742 were moved here to work around a stupid bug in the hpux linker
3743 (fixed in hpux10). */
3744 current_offset = obj_som_file_hdr (abfd)->som_length;
3745
3746 /* Make sure we're on a word boundary. */
3747 if (current_offset % 4)
3748 current_offset += (4 - (current_offset % 4));
3749
3750 num_syms = bfd_get_symcount (abfd);
3751 obj_som_file_hdr (abfd)->symbol_location = current_offset;
3752 obj_som_file_hdr (abfd)->symbol_total = num_syms;
3753 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
3754
3755 /* Next are the symbol strings.
3756 Align them to a word boundary. */
3757 if (current_offset % 4)
3758 current_offset += (4 - (current_offset % 4));
3759 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
3760
3761 /* Scribble out the symbol strings. */
3762 if (! som_write_symbol_strings (abfd, current_offset, syms,
3763 num_syms, &strings_size,
3764 obj_som_compilation_unit (abfd)))
3765 return FALSE;
3766
3767 /* Record total string table size in header and update the
3768 current offset. */
3769 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
3770 current_offset += strings_size;
3771
3772 /* Do prep work before handling fixups. */
3773 som_prep_for_fixups (abfd,
3774 bfd_get_outsymbols (abfd),
3775 bfd_get_symcount (abfd));
3776
3777 /* At the end of the file is the fixup stream which starts on a
3778 word boundary. */
3779 if (current_offset % 4)
3780 current_offset += (4 - (current_offset % 4));
3781 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
3782
3783 /* Write the fixups and update fields in subspace headers which
3784 relate to the fixup stream. */
3785 if (! som_write_fixups (abfd, current_offset, &total_reloc_size))
3786 return FALSE;
3787
3788 /* Record the total size of the fixup stream in the file header. */
3789 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
3790
3791 /* Done. Store the total size of the SOM. */
3792 obj_som_file_hdr (abfd)->som_length = current_offset + total_reloc_size;
3793
3794 /* Now that the symbol table information is complete, build and
3795 write the symbol table. */
3796 if (! som_build_and_write_symbol_table (abfd))
3797 return FALSE;
3798
3799 /* Subspaces are written first so that we can set up information
3800 about them in their containing spaces as the subspace is written. */
3801
3802 /* Seek to the start of the subspace dictionary records. */
3803 location = obj_som_file_hdr (abfd)->subspace_location;
3804 if (bfd_seek (abfd, location, SEEK_SET) != 0)
3805 return FALSE;
3806
3807 section = abfd->sections;
3808 /* Now for each loadable space write out records for its subspaces. */
3809 for (i = 0; i < num_spaces; i++)
3810 {
3811 asection *subsection;
3812
3813 /* Find a space. */
3814 while (!som_is_space (section))
3815 section = section->next;
3816
3817 /* Now look for all its subspaces. */
3818 for (subsection = abfd->sections;
3819 subsection != NULL;
3820 subsection = subsection->next)
3821 {
3822
3823 /* Skip any section which does not correspond to a space
3824 or subspace. Or does not have SEC_ALLOC set (and therefore
3825 has no real bits on the disk). */
3826 if (!som_is_subspace (subsection)
3827 || !som_is_container (section, subsection)
3828 || (subsection->flags & SEC_ALLOC) == 0)
3829 continue;
3830
3831 /* If this is the first subspace for this space, then save
3832 the index of the subspace in its containing space. Also
3833 set "is_loadable" in the containing space. */
3834
3835 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3836 {
3837 som_section_data (section)->space_dict->is_loadable = 1;
3838 som_section_data (section)->space_dict->subspace_index
3839 = subspace_index;
3840 }
3841
3842 /* Increment the number of subspaces seen and the number of
3843 subspaces contained within the current space. */
3844 subspace_index++;
3845 som_section_data (section)->space_dict->subspace_quantity++;
3846
3847 /* Mark the index of the current space within the subspace's
3848 dictionary record. */
3849 som_section_data (subsection)->subspace_dict->space_index = i;
3850
3851 /* Dump the current subspace header. */
3852 amt = sizeof (struct subspace_dictionary_record);
3853 if (bfd_bwrite ((PTR) som_section_data (subsection)->subspace_dict,
3854 amt, abfd) != amt)
3855 return FALSE;
3856 }
3857 /* Goto the next section. */
3858 section = section->next;
3859 }
3860
3861 /* Now repeat the process for unloadable subspaces. */
3862 section = abfd->sections;
3863 /* Now for each space write out records for its subspaces. */
3864 for (i = 0; i < num_spaces; i++)
3865 {
3866 asection *subsection;
3867
3868 /* Find a space. */
3869 while (!som_is_space (section))
3870 section = section->next;
3871
3872 /* Now look for all its subspaces. */
3873 for (subsection = abfd->sections;
3874 subsection != NULL;
3875 subsection = subsection->next)
3876 {
3877
3878 /* Skip any section which does not correspond to a space or
3879 subspace, or which SEC_ALLOC set (and therefore handled
3880 in the loadable spaces/subspaces code above). */
3881
3882 if (!som_is_subspace (subsection)
3883 || !som_is_container (section, subsection)
3884 || (subsection->flags & SEC_ALLOC) != 0)
3885 continue;
3886
3887 /* If this is the first subspace for this space, then save
3888 the index of the subspace in its containing space. Clear
3889 "is_loadable". */
3890
3891 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3892 {
3893 som_section_data (section)->space_dict->is_loadable = 0;
3894 som_section_data (section)->space_dict->subspace_index
3895 = subspace_index;
3896 }
3897
3898 /* Increment the number of subspaces seen and the number of
3899 subspaces contained within the current space. */
3900 som_section_data (section)->space_dict->subspace_quantity++;
3901 subspace_index++;
3902
3903 /* Mark the index of the current space within the subspace's
3904 dictionary record. */
3905 som_section_data (subsection)->subspace_dict->space_index = i;
3906
3907 /* Dump this subspace header. */
3908 amt = sizeof (struct subspace_dictionary_record);
3909 if (bfd_bwrite ((PTR) som_section_data (subsection)->subspace_dict,
3910 amt, abfd) != amt)
3911 return FALSE;
3912 }
3913 /* Goto the next section. */
3914 section = section->next;
3915 }
3916
3917 /* All the subspace dictionary records are written, and all the
3918 fields are set up in the space dictionary records.
3919
3920 Seek to the right location and start writing the space
3921 dictionary records. */
3922 location = obj_som_file_hdr (abfd)->space_location;
3923 if (bfd_seek (abfd, location, SEEK_SET) != 0)
3924 return FALSE;
3925
3926 section = abfd->sections;
3927 for (i = 0; i < num_spaces; i++)
3928 {
3929 /* Find a space. */
3930 while (!som_is_space (section))
3931 section = section->next;
3932
3933 /* Dump its header. */
3934 amt = sizeof (struct space_dictionary_record);
3935 if (bfd_bwrite ((PTR) som_section_data (section)->space_dict,
3936 amt, abfd) != amt)
3937 return FALSE;
3938
3939 /* Goto the next section. */
3940 section = section->next;
3941 }
3942
3943 /* Write the compilation unit record if there is one. */
3944 if (obj_som_compilation_unit (abfd))
3945 {
3946 location = obj_som_file_hdr (abfd)->compiler_location;
3947 if (bfd_seek (abfd, location, SEEK_SET) != 0)
3948 return FALSE;
3949
3950 amt = COMPUNITSZ;
3951 if (bfd_bwrite ((PTR) obj_som_compilation_unit (abfd), amt, abfd) != amt)
3952 return FALSE;
3953 }
3954
3955 /* Setting of the system_id has to happen very late now that copying of
3956 BFD private data happens *after* section contents are set. */
3957 if (abfd->flags & (EXEC_P | DYNAMIC))
3958 obj_som_file_hdr (abfd)->system_id = obj_som_exec_data (abfd)->system_id;
3959 else if (bfd_get_mach (abfd) == pa20)
3960 obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC2_0;
3961 else if (bfd_get_mach (abfd) == pa11)
3962 obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC1_1;
3963 else
3964 obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC1_0;
3965
3966 /* Compute the checksum for the file header just before writing
3967 the header to disk. */
3968 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3969
3970 /* Only thing left to do is write out the file header. It is always
3971 at location zero. Seek there and write it. */
3972 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0)
3973 return FALSE;
3974 amt = sizeof (struct header);
3975 if (bfd_bwrite ((PTR) obj_som_file_hdr (abfd), amt, abfd) != amt)
3976 return FALSE;
3977
3978 /* Now write the exec header. */
3979 if (abfd->flags & (EXEC_P | DYNAMIC))
3980 {
3981 long tmp, som_length;
3982 struct som_exec_auxhdr *exec_header;
3983
3984 exec_header = obj_som_exec_hdr (abfd);
3985 exec_header->exec_entry = bfd_get_start_address (abfd);
3986 exec_header->exec_flags = obj_som_exec_data (abfd)->exec_flags;
3987
3988 /* Oh joys. Ram some of the BSS data into the DATA section
3989 to be compatible with how the hp linker makes objects
3990 (saves memory space). */
3991 tmp = exec_header->exec_dsize;
3992 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3993 exec_header->exec_bsize -= (tmp - exec_header->exec_dsize);
3994 if (exec_header->exec_bsize < 0)
3995 exec_header->exec_bsize = 0;
3996 exec_header->exec_dsize = tmp;
3997
3998 /* Now perform some sanity checks. The idea is to catch bogons now and
3999 inform the user, instead of silently generating a bogus file. */
4000 som_length = obj_som_file_hdr (abfd)->som_length;
4001 if (exec_header->exec_tfile + exec_header->exec_tsize > som_length
4002 || exec_header->exec_dfile + exec_header->exec_dsize > som_length)
4003 {
4004 bfd_set_error (bfd_error_bad_value);
4005 return FALSE;
4006 }
4007
4008 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
4009 SEEK_SET) != 0)
4010 return FALSE;
4011
4012 amt = AUX_HDR_SIZE;
4013 if (bfd_bwrite ((PTR) exec_header, amt, abfd) != amt)
4014 return FALSE;
4015 }
4016 return TRUE;
4017 }
4018
4019 /* Compute and return the checksum for a SOM file header. */
4020
4021 static unsigned long
4022 som_compute_checksum (abfd)
4023 bfd *abfd;
4024 {
4025 unsigned long checksum, count, i;
4026 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
4027
4028 checksum = 0;
4029 count = sizeof (struct header) / sizeof (unsigned long);
4030 for (i = 0; i < count; i++)
4031 checksum ^= *(buffer + i);
4032
4033 return checksum;
4034 }
4035
4036 static void
4037 som_bfd_derive_misc_symbol_info (abfd, sym, info)
4038 bfd *abfd ATTRIBUTE_UNUSED;
4039 asymbol *sym;
4040 struct som_misc_symbol_info *info;
4041 {
4042 /* Initialize. */
4043 memset (info, 0, sizeof (struct som_misc_symbol_info));
4044
4045 /* The HP SOM linker requires detailed type information about
4046 all symbols (including undefined symbols!). Unfortunately,
4047 the type specified in an import/export statement does not
4048 always match what the linker wants. Severe braindamage. */
4049
4050 /* Section symbols will not have a SOM symbol type assigned to
4051 them yet. Assign all section symbols type ST_DATA. */
4052 if (sym->flags & BSF_SECTION_SYM)
4053 info->symbol_type = ST_DATA;
4054 else
4055 {
4056 /* Common symbols must have scope SS_UNSAT and type
4057 ST_STORAGE or the linker will choke. */
4058 if (bfd_is_com_section (sym->section))
4059 {
4060 info->symbol_scope = SS_UNSAT;
4061 info->symbol_type = ST_STORAGE;
4062 }
4063
4064 /* It is possible to have a symbol without an associated
4065 type. This happens if the user imported the symbol
4066 without a type and the symbol was never defined
4067 locally. If BSF_FUNCTION is set for this symbol, then
4068 assign it type ST_CODE (the HP linker requires undefined
4069 external functions to have type ST_CODE rather than ST_ENTRY). */
4070 else if ((som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
4071 || som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
4072 && bfd_is_und_section (sym->section)
4073 && sym->flags & BSF_FUNCTION)
4074 info->symbol_type = ST_CODE;
4075
4076 /* Handle function symbols which were defined in this file.
4077 They should have type ST_ENTRY. Also retrieve the argument
4078 relocation bits from the SOM backend information. */
4079 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
4080 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
4081 && (sym->flags & BSF_FUNCTION))
4082 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
4083 && (sym->flags & BSF_FUNCTION)))
4084 {
4085 info->symbol_type = ST_ENTRY;
4086 info->arg_reloc = som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc;
4087 info->priv_level= som_symbol_data (sym)->tc_data.ap.hppa_priv_level;
4088 }
4089
4090 /* For unknown symbols set the symbol's type based on the symbol's
4091 section (ST_DATA for DATA sections, ST_CODE for CODE sections). */
4092 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
4093 {
4094 if (sym->section->flags & SEC_CODE)
4095 info->symbol_type = ST_CODE;
4096 else
4097 info->symbol_type = ST_DATA;
4098 }
4099
4100 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
4101 info->symbol_type = ST_DATA;
4102
4103 /* From now on it's a very simple mapping. */
4104 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
4105 info->symbol_type = ST_ABSOLUTE;
4106 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
4107 info->symbol_type = ST_CODE;
4108 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
4109 info->symbol_type = ST_DATA;
4110 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
4111 info->symbol_type = ST_MILLICODE;
4112 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
4113 info->symbol_type = ST_PLABEL;
4114 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
4115 info->symbol_type = ST_PRI_PROG;
4116 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
4117 info->symbol_type = ST_SEC_PROG;
4118 }
4119
4120 /* Now handle the symbol's scope. Exported data which is not
4121 in the common section has scope SS_UNIVERSAL. Note scope
4122 of common symbols was handled earlier! */
4123 if (bfd_is_und_section (sym->section))
4124 info->symbol_scope = SS_UNSAT;
4125 else if (sym->flags & (BSF_EXPORT | BSF_WEAK)
4126 && ! bfd_is_com_section (sym->section))
4127 info->symbol_scope = SS_UNIVERSAL;
4128 /* Anything else which is not in the common section has scope
4129 SS_LOCAL. */
4130 else if (! bfd_is_com_section (sym->section))
4131 info->symbol_scope = SS_LOCAL;
4132
4133 /* Now set the symbol_info field. It has no real meaning
4134 for undefined or common symbols, but the HP linker will
4135 choke if it's not set to some "reasonable" value. We
4136 use zero as a reasonable value. */
4137 if (bfd_is_com_section (sym->section)
4138 || bfd_is_und_section (sym->section)
4139 || bfd_is_abs_section (sym->section))
4140 info->symbol_info = 0;
4141 /* For all other symbols, the symbol_info field contains the
4142 subspace index of the space this symbol is contained in. */
4143 else
4144 info->symbol_info = sym->section->target_index;
4145
4146 /* Set the symbol's value. */
4147 info->symbol_value = sym->value + sym->section->vma;
4148
4149 /* The secondary_def field is for weak symbols. */
4150 if (sym->flags & BSF_WEAK)
4151 info->secondary_def = TRUE;
4152 else
4153 info->secondary_def = FALSE;
4154
4155 }
4156
4157 /* Build and write, in one big chunk, the entire symbol table for
4158 this BFD. */
4159
4160 static bfd_boolean
4161 som_build_and_write_symbol_table (abfd)
4162 bfd *abfd;
4163 {
4164 unsigned int num_syms = bfd_get_symcount (abfd);
4165 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
4166 asymbol **bfd_syms = obj_som_sorted_syms (abfd);
4167 struct symbol_dictionary_record *som_symtab = NULL;
4168 unsigned int i;
4169 bfd_size_type symtab_size;
4170
4171 /* Compute total symbol table size and allocate a chunk of memory
4172 to hold the symbol table as we build it. */
4173 symtab_size = num_syms;
4174 symtab_size *= sizeof (struct symbol_dictionary_record);
4175 som_symtab = (struct symbol_dictionary_record *) bfd_zmalloc (symtab_size);
4176 if (som_symtab == NULL && symtab_size != 0)
4177 goto error_return;
4178
4179 /* Walk over each symbol. */
4180 for (i = 0; i < num_syms; i++)
4181 {
4182 struct som_misc_symbol_info info;
4183
4184 /* This is really an index into the symbol strings table.
4185 By the time we get here, the index has already been
4186 computed and stored into the name field in the BFD symbol. */
4187 som_symtab[i].name.n_strx = som_symbol_data(bfd_syms[i])->stringtab_offset;
4188
4189 /* Derive SOM information from the BFD symbol. */
4190 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
4191
4192 /* Now use it. */
4193 som_symtab[i].symbol_type = info.symbol_type;
4194 som_symtab[i].symbol_scope = info.symbol_scope;
4195 som_symtab[i].arg_reloc = info.arg_reloc;
4196 som_symtab[i].symbol_info = info.symbol_info;
4197 som_symtab[i].xleast = 3;
4198 som_symtab[i].symbol_value = info.symbol_value | info.priv_level;
4199 som_symtab[i].secondary_def = info.secondary_def;
4200 }
4201
4202 /* Everything is ready, seek to the right location and
4203 scribble out the symbol table. */
4204 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
4205 return FALSE;
4206
4207 if (bfd_bwrite ((PTR) som_symtab, symtab_size, abfd) != symtab_size)
4208 goto error_return;
4209
4210 if (som_symtab != NULL)
4211 free (som_symtab);
4212 return TRUE;
4213 error_return:
4214 if (som_symtab != NULL)
4215 free (som_symtab);
4216 return FALSE;
4217 }
4218
4219 /* Write an object in SOM format. */
4220
4221 static bfd_boolean
4222 som_write_object_contents (abfd)
4223 bfd *abfd;
4224 {
4225 if (! abfd->output_has_begun)
4226 {
4227 /* Set up fixed parts of the file, space, and subspace headers.
4228 Notify the world that output has begun. */
4229 som_prep_headers (abfd);
4230 abfd->output_has_begun = TRUE;
4231 /* Start writing the object file. This include all the string
4232 tables, fixup streams, and other portions of the object file. */
4233 som_begin_writing (abfd);
4234 }
4235
4236 return (som_finish_writing (abfd));
4237 }
4238 \f
4239 /* Read and save the string table associated with the given BFD. */
4240
4241 static bfd_boolean
4242 som_slurp_string_table (abfd)
4243 bfd *abfd;
4244 {
4245 char *stringtab;
4246 bfd_size_type amt;
4247
4248 /* Use the saved version if its available. */
4249 if (obj_som_stringtab (abfd) != NULL)
4250 return TRUE;
4251
4252 /* I don't think this can currently happen, and I'm not sure it should
4253 really be an error, but it's better than getting unpredictable results
4254 from the host's malloc when passed a size of zero. */
4255 if (obj_som_stringtab_size (abfd) == 0)
4256 {
4257 bfd_set_error (bfd_error_no_symbols);
4258 return FALSE;
4259 }
4260
4261 /* Allocate and read in the string table. */
4262 amt = obj_som_stringtab_size (abfd);
4263 stringtab = bfd_zmalloc (amt);
4264 if (stringtab == NULL)
4265 return FALSE;
4266
4267 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) != 0)
4268 return FALSE;
4269
4270 if (bfd_bread (stringtab, amt, abfd) != amt)
4271 return FALSE;
4272
4273 /* Save our results and return success. */
4274 obj_som_stringtab (abfd) = stringtab;
4275 return TRUE;
4276 }
4277
4278 /* Return the amount of data (in bytes) required to hold the symbol
4279 table for this object. */
4280
4281 static long
4282 som_get_symtab_upper_bound (abfd)
4283 bfd *abfd;
4284 {
4285 if (!som_slurp_symbol_table (abfd))
4286 return -1;
4287
4288 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
4289 }
4290
4291 /* Convert from a SOM subspace index to a BFD section. */
4292
4293 static asection *
4294 bfd_section_from_som_symbol (abfd, symbol)
4295 bfd *abfd;
4296 struct symbol_dictionary_record *symbol;
4297 {
4298 asection *section;
4299
4300 /* The meaning of the symbol_info field changes for functions
4301 within executables. So only use the quick symbol_info mapping for
4302 incomplete objects and non-function symbols in executables. */
4303 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4304 || (symbol->symbol_type != ST_ENTRY
4305 && symbol->symbol_type != ST_PRI_PROG
4306 && symbol->symbol_type != ST_SEC_PROG
4307 && symbol->symbol_type != ST_MILLICODE))
4308 {
4309 int index = symbol->symbol_info;
4310 for (section = abfd->sections; section != NULL; section = section->next)
4311 if (section->target_index == index && som_is_subspace (section))
4312 return section;
4313
4314 /* Could be a symbol from an external library (such as an OMOS
4315 shared library). Don't abort. */
4316 return bfd_abs_section_ptr;
4317
4318 }
4319 else
4320 {
4321 unsigned int value = symbol->symbol_value;
4322
4323 /* For executables we will have to use the symbol's address and
4324 find out what section would contain that address. Yuk. */
4325 for (section = abfd->sections; section; section = section->next)
4326 {
4327 if (value >= section->vma
4328 && value <= section->vma + section->_cooked_size
4329 && som_is_subspace (section))
4330 return section;
4331 }
4332
4333 /* Could be a symbol from an external library (such as an OMOS
4334 shared library). Don't abort. */
4335 return bfd_abs_section_ptr;
4336
4337 }
4338 }
4339
4340 /* Read and save the symbol table associated with the given BFD. */
4341
4342 static unsigned int
4343 som_slurp_symbol_table (abfd)
4344 bfd *abfd;
4345 {
4346 int symbol_count = bfd_get_symcount (abfd);
4347 int symsize = sizeof (struct symbol_dictionary_record);
4348 char *stringtab;
4349 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
4350 som_symbol_type *sym, *symbase;
4351 bfd_size_type amt;
4352
4353 /* Return saved value if it exists. */
4354 if (obj_som_symtab (abfd) != NULL)
4355 goto successful_return;
4356
4357 /* Special case. This is *not* an error. */
4358 if (symbol_count == 0)
4359 goto successful_return;
4360
4361 if (!som_slurp_string_table (abfd))
4362 goto error_return;
4363
4364 stringtab = obj_som_stringtab (abfd);
4365
4366 amt = symbol_count;
4367 amt *= sizeof (som_symbol_type);
4368 symbase = (som_symbol_type *) bfd_zmalloc (amt);
4369 if (symbase == NULL)
4370 goto error_return;
4371
4372 /* Read in the external SOM representation. */
4373 amt = symbol_count;
4374 amt *= symsize;
4375 buf = bfd_malloc (amt);
4376 if (buf == NULL && amt != 0)
4377 goto error_return;
4378 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) != 0)
4379 goto error_return;
4380 if (bfd_bread (buf, amt, abfd) != amt)
4381 goto error_return;
4382
4383 /* Iterate over all the symbols and internalize them. */
4384 endbufp = buf + symbol_count;
4385 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
4386 {
4387
4388 /* I don't think we care about these. */
4389 if (bufp->symbol_type == ST_SYM_EXT
4390 || bufp->symbol_type == ST_ARG_EXT)
4391 continue;
4392
4393 /* Set some private data we care about. */
4394 if (bufp->symbol_type == ST_NULL)
4395 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
4396 else if (bufp->symbol_type == ST_ABSOLUTE)
4397 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
4398 else if (bufp->symbol_type == ST_DATA)
4399 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
4400 else if (bufp->symbol_type == ST_CODE)
4401 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
4402 else if (bufp->symbol_type == ST_PRI_PROG)
4403 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
4404 else if (bufp->symbol_type == ST_SEC_PROG)
4405 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
4406 else if (bufp->symbol_type == ST_ENTRY)
4407 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
4408 else if (bufp->symbol_type == ST_MILLICODE)
4409 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
4410 else if (bufp->symbol_type == ST_PLABEL)
4411 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
4412 else
4413 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
4414 som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc = bufp->arg_reloc;
4415
4416 /* Some reasonable defaults. */
4417 sym->symbol.the_bfd = abfd;
4418 sym->symbol.name = bufp->name.n_strx + stringtab;
4419 sym->symbol.value = bufp->symbol_value;
4420 sym->symbol.section = 0;
4421 sym->symbol.flags = 0;
4422
4423 switch (bufp->symbol_type)
4424 {
4425 case ST_ENTRY:
4426 case ST_MILLICODE:
4427 sym->symbol.flags |= BSF_FUNCTION;
4428 som_symbol_data (sym)->tc_data.ap.hppa_priv_level =
4429 sym->symbol.value & 0x3;
4430 sym->symbol.value &= ~0x3;
4431 break;
4432
4433 case ST_STUB:
4434 case ST_CODE:
4435 case ST_PRI_PROG:
4436 case ST_SEC_PROG:
4437 som_symbol_data (sym)->tc_data.ap.hppa_priv_level =
4438 sym->symbol.value & 0x3;
4439 sym->symbol.value &= ~0x3;
4440 /* If the symbol's scope is SS_UNSAT, then these are
4441 undefined function symbols. */
4442 if (bufp->symbol_scope == SS_UNSAT)
4443 sym->symbol.flags |= BSF_FUNCTION;
4444
4445 default:
4446 break;
4447 }
4448
4449 /* Handle scoping and section information. */
4450 switch (bufp->symbol_scope)
4451 {
4452 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
4453 so the section associated with this symbol can't be known. */
4454 case SS_EXTERNAL:
4455 if (bufp->symbol_type != ST_STORAGE)
4456 sym->symbol.section = bfd_und_section_ptr;
4457 else
4458 sym->symbol.section = bfd_com_section_ptr;
4459 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
4460 break;
4461
4462 case SS_UNSAT:
4463 if (bufp->symbol_type != ST_STORAGE)
4464 sym->symbol.section = bfd_und_section_ptr;
4465 else
4466 sym->symbol.section = bfd_com_section_ptr;
4467 break;
4468
4469 case SS_UNIVERSAL:
4470 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
4471 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
4472 sym->symbol.value -= sym->symbol.section->vma;
4473 break;
4474
4475 #if 0
4476 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
4477 Sound dumb? It is. */
4478 case SS_GLOBAL:
4479 #endif
4480 case SS_LOCAL:
4481 sym->symbol.flags |= BSF_LOCAL;
4482 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
4483 sym->symbol.value -= sym->symbol.section->vma;
4484 break;
4485 }
4486
4487 /* Check for a weak symbol. */
4488 if (bufp->secondary_def)
4489 sym->symbol.flags |= BSF_WEAK;
4490
4491 /* Mark section symbols and symbols used by the debugger.
4492 Note $START$ is a magic code symbol, NOT a section symbol. */
4493 if (sym->symbol.name[0] == '$'
4494 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$'
4495 && !strcmp (sym->symbol.name, sym->symbol.section->name))
4496 sym->symbol.flags |= BSF_SECTION_SYM;
4497 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
4498 {
4499 sym->symbol.flags |= BSF_SECTION_SYM;
4500 sym->symbol.name = sym->symbol.section->name;
4501 }
4502 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
4503 sym->symbol.flags |= BSF_DEBUGGING;
4504
4505 /* Note increment at bottom of loop, since we skip some symbols
4506 we can not include it as part of the for statement. */
4507 sym++;
4508 }
4509
4510 /* We modify the symbol count to record the number of BFD symbols we
4511 created. */
4512 bfd_get_symcount (abfd) = sym - symbase;
4513
4514 /* Save our results and return success. */
4515 obj_som_symtab (abfd) = symbase;
4516 successful_return:
4517 if (buf != NULL)
4518 free (buf);
4519 return (TRUE);
4520
4521 error_return:
4522 if (buf != NULL)
4523 free (buf);
4524 return FALSE;
4525 }
4526
4527 /* Canonicalize a SOM symbol table. Return the number of entries
4528 in the symbol table. */
4529
4530 static long
4531 som_canonicalize_symtab (abfd, location)
4532 bfd *abfd;
4533 asymbol **location;
4534 {
4535 int i;
4536 som_symbol_type *symbase;
4537
4538 if (!som_slurp_symbol_table (abfd))
4539 return -1;
4540
4541 i = bfd_get_symcount (abfd);
4542 symbase = obj_som_symtab (abfd);
4543
4544 for (; i > 0; i--, location++, symbase++)
4545 *location = &symbase->symbol;
4546
4547 /* Final null pointer. */
4548 *location = 0;
4549 return (bfd_get_symcount (abfd));
4550 }
4551
4552 /* Make a SOM symbol. There is nothing special to do here. */
4553
4554 static asymbol *
4555 som_make_empty_symbol (abfd)
4556 bfd *abfd;
4557 {
4558 bfd_size_type amt = sizeof (som_symbol_type);
4559 som_symbol_type *new = (som_symbol_type *) bfd_zalloc (abfd, amt);
4560 if (new == NULL)
4561 return 0;
4562 new->symbol.the_bfd = abfd;
4563
4564 return &new->symbol;
4565 }
4566
4567 /* Print symbol information. */
4568
4569 static void
4570 som_print_symbol (abfd, afile, symbol, how)
4571 bfd *abfd;
4572 PTR afile;
4573 asymbol *symbol;
4574 bfd_print_symbol_type how;
4575 {
4576 FILE *file = (FILE *) afile;
4577 switch (how)
4578 {
4579 case bfd_print_symbol_name:
4580 fprintf (file, "%s", symbol->name);
4581 break;
4582 case bfd_print_symbol_more:
4583 fprintf (file, "som ");
4584 fprintf_vma (file, symbol->value);
4585 fprintf (file, " %lx", (long) symbol->flags);
4586 break;
4587 case bfd_print_symbol_all:
4588 {
4589 const char *section_name;
4590 section_name = symbol->section ? symbol->section->name : "(*none*)";
4591 bfd_print_symbol_vandf (abfd, (PTR) file, symbol);
4592 fprintf (file, " %s\t%s", section_name, symbol->name);
4593 break;
4594 }
4595 }
4596 }
4597
4598 static bfd_boolean
4599 som_bfd_is_local_label_name (abfd, name)
4600 bfd *abfd ATTRIBUTE_UNUSED;
4601 const char *name;
4602 {
4603 return (name[0] == 'L' && name[1] == '$');
4604 }
4605
4606 /* Count or process variable-length SOM fixup records.
4607
4608 To avoid code duplication we use this code both to compute the number
4609 of relocations requested by a stream, and to internalize the stream.
4610
4611 When computing the number of relocations requested by a stream the
4612 variables rptr, section, and symbols have no meaning.
4613
4614 Return the number of relocations requested by the fixup stream. When
4615 not just counting
4616
4617 This needs at least two or three more passes to get it cleaned up. */
4618
4619 static unsigned int
4620 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
4621 unsigned char *fixup;
4622 unsigned int end;
4623 arelent *internal_relocs;
4624 asection *section;
4625 asymbol **symbols;
4626 bfd_boolean just_count;
4627 {
4628 unsigned int op, varname, deallocate_contents = 0;
4629 unsigned char *end_fixups = &fixup[end];
4630 const struct fixup_format *fp;
4631 const char *cp;
4632 unsigned char *save_fixup;
4633 int variables[26], stack[20], c, v, count, prev_fixup, *sp, saved_unwind_bits;
4634 const int *subop;
4635 arelent *rptr = internal_relocs;
4636 unsigned int offset = 0;
4637
4638 #define var(c) variables[(c) - 'A']
4639 #define push(v) (*sp++ = (v))
4640 #define pop() (*--sp)
4641 #define emptystack() (sp == stack)
4642
4643 som_initialize_reloc_queue (reloc_queue);
4644 memset (variables, 0, sizeof (variables));
4645 memset (stack, 0, sizeof (stack));
4646 count = 0;
4647 prev_fixup = 0;
4648 saved_unwind_bits = 0;
4649 sp = stack;
4650
4651 while (fixup < end_fixups)
4652 {
4653
4654 /* Save pointer to the start of this fixup. We'll use
4655 it later to determine if it is necessary to put this fixup
4656 on the queue. */
4657 save_fixup = fixup;
4658
4659 /* Get the fixup code and its associated format. */
4660 op = *fixup++;
4661 fp = &som_fixup_formats[op];
4662
4663 /* Handle a request for a previous fixup. */
4664 if (*fp->format == 'P')
4665 {
4666 /* Get pointer to the beginning of the prev fixup, move
4667 the repeated fixup to the head of the queue. */
4668 fixup = reloc_queue[fp->D].reloc;
4669 som_reloc_queue_fix (reloc_queue, fp->D);
4670 prev_fixup = 1;
4671
4672 /* Get the fixup code and its associated format. */
4673 op = *fixup++;
4674 fp = &som_fixup_formats[op];
4675 }
4676
4677 /* If this fixup will be passed to BFD, set some reasonable defaults. */
4678 if (! just_count
4679 && som_hppa_howto_table[op].type != R_NO_RELOCATION
4680 && som_hppa_howto_table[op].type != R_DATA_OVERRIDE)
4681 {
4682 rptr->address = offset;
4683 rptr->howto = &som_hppa_howto_table[op];
4684 rptr->addend = 0;
4685 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
4686 }
4687
4688 /* Set default input length to 0. Get the opcode class index
4689 into D. */
4690 var ('L') = 0;
4691 var ('D') = fp->D;
4692 var ('U') = saved_unwind_bits;
4693
4694 /* Get the opcode format. */
4695 cp = fp->format;
4696
4697 /* Process the format string. Parsing happens in two phases,
4698 parse RHS, then assign to LHS. Repeat until no more
4699 characters in the format string. */
4700 while (*cp)
4701 {
4702 /* The variable this pass is going to compute a value for. */
4703 varname = *cp++;
4704
4705 /* Start processing RHS. Continue until a NULL or '=' is found. */
4706 do
4707 {
4708 c = *cp++;
4709
4710 /* If this is a variable, push it on the stack. */
4711 if (ISUPPER (c))
4712 push (var (c));
4713
4714 /* If this is a lower case letter, then it represents
4715 additional data from the fixup stream to be pushed onto
4716 the stack. */
4717 else if (ISLOWER (c))
4718 {
4719 int bits = (c - 'a') * 8;
4720 for (v = 0; c > 'a'; --c)
4721 v = (v << 8) | *fixup++;
4722 if (varname == 'V')
4723 v = sign_extend (v, bits);
4724 push (v);
4725 }
4726
4727 /* A decimal constant. Push it on the stack. */
4728 else if (ISDIGIT (c))
4729 {
4730 v = c - '0';
4731 while (ISDIGIT (*cp))
4732 v = (v * 10) + (*cp++ - '0');
4733 push (v);
4734 }
4735 else
4736 /* An operator. Pop two two values from the stack and
4737 use them as operands to the given operation. Push
4738 the result of the operation back on the stack. */
4739 switch (c)
4740 {
4741 case '+':
4742 v = pop ();
4743 v += pop ();
4744 push (v);
4745 break;
4746 case '*':
4747 v = pop ();
4748 v *= pop ();
4749 push (v);
4750 break;
4751 case '<':
4752 v = pop ();
4753 v = pop () << v;
4754 push (v);
4755 break;
4756 default:
4757 abort ();
4758 }
4759 }
4760 while (*cp && *cp != '=');
4761
4762 /* Move over the equal operator. */
4763 cp++;
4764
4765 /* Pop the RHS off the stack. */
4766 c = pop ();
4767
4768 /* Perform the assignment. */
4769 var (varname) = c;
4770
4771 /* Handle side effects. and special 'O' stack cases. */
4772 switch (varname)
4773 {
4774 /* Consume some bytes from the input space. */
4775 case 'L':
4776 offset += c;
4777 break;
4778 /* A symbol to use in the relocation. Make a note
4779 of this if we are not just counting. */
4780 case 'S':
4781 if (! just_count)
4782 rptr->sym_ptr_ptr = &symbols[c];
4783 break;
4784 /* Argument relocation bits for a function call. */
4785 case 'R':
4786 if (! just_count)
4787 {
4788 unsigned int tmp = var ('R');
4789 rptr->addend = 0;
4790
4791 if ((som_hppa_howto_table[op].type == R_PCREL_CALL
4792 && R_PCREL_CALL + 10 > op)
4793 || (som_hppa_howto_table[op].type == R_ABS_CALL
4794 && R_ABS_CALL + 10 > op))
4795 {
4796 /* Simple encoding. */
4797 if (tmp > 4)
4798 {
4799 tmp -= 5;
4800 rptr->addend |= 1;
4801 }
4802 if (tmp == 4)
4803 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2;
4804 else if (tmp == 3)
4805 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4;
4806 else if (tmp == 2)
4807 rptr->addend |= 1 << 8 | 1 << 6;
4808 else if (tmp == 1)
4809 rptr->addend |= 1 << 8;
4810 }
4811 else
4812 {
4813 unsigned int tmp1, tmp2;
4814
4815 /* First part is easy -- low order two bits are
4816 directly copied, then shifted away. */
4817 rptr->addend = tmp & 0x3;
4818 tmp >>= 2;
4819
4820 /* Diving the result by 10 gives us the second
4821 part. If it is 9, then the first two words
4822 are a double precision paramater, else it is
4823 3 * the first arg bits + the 2nd arg bits. */
4824 tmp1 = tmp / 10;
4825 tmp -= tmp1 * 10;
4826 if (tmp1 == 9)
4827 rptr->addend += (0xe << 6);
4828 else
4829 {
4830 /* Get the two pieces. */
4831 tmp2 = tmp1 / 3;
4832 tmp1 -= tmp2 * 3;
4833 /* Put them in the addend. */
4834 rptr->addend += (tmp2 << 8) + (tmp1 << 6);
4835 }
4836
4837 /* What's left is the third part. It's unpacked
4838 just like the second. */
4839 if (tmp == 9)
4840 rptr->addend += (0xe << 2);
4841 else
4842 {
4843 tmp2 = tmp / 3;
4844 tmp -= tmp2 * 3;
4845 rptr->addend += (tmp2 << 4) + (tmp << 2);
4846 }
4847 }
4848 rptr->addend = HPPA_R_ADDEND (rptr->addend, 0);
4849 }
4850 break;
4851 /* Handle the linker expression stack. */
4852 case 'O':
4853 switch (op)
4854 {
4855 case R_COMP1:
4856 subop = comp1_opcodes;
4857 break;
4858 case R_COMP2:
4859 subop = comp2_opcodes;
4860 break;
4861 case R_COMP3:
4862 subop = comp3_opcodes;
4863 break;
4864 default:
4865 abort ();
4866 }
4867 while (*subop <= (unsigned char) c)
4868 ++subop;
4869 --subop;
4870 break;
4871 /* The lower 32unwind bits must be persistent. */
4872 case 'U':
4873 saved_unwind_bits = var ('U');
4874 break;
4875
4876 default:
4877 break;
4878 }
4879 }
4880
4881 /* If we used a previous fixup, clean up after it. */
4882 if (prev_fixup)
4883 {
4884 fixup = save_fixup + 1;
4885 prev_fixup = 0;
4886 }
4887 /* Queue it. */
4888 else if (fixup > save_fixup + 1)
4889 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4890
4891 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4892 fixups to BFD. */
4893 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4894 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4895 {
4896 /* Done with a single reloction. Loop back to the top. */
4897 if (! just_count)
4898 {
4899 if (som_hppa_howto_table[op].type == R_ENTRY)
4900 rptr->addend = var ('T');
4901 else if (som_hppa_howto_table[op].type == R_EXIT)
4902 rptr->addend = var ('U');
4903 else if (som_hppa_howto_table[op].type == R_PCREL_CALL
4904 || som_hppa_howto_table[op].type == R_ABS_CALL)
4905 ;
4906 else if (som_hppa_howto_table[op].type == R_DATA_ONE_SYMBOL)
4907 {
4908 /* Try what was specified in R_DATA_OVERRIDE first
4909 (if anything). Then the hard way using the
4910 section contents. */
4911 rptr->addend = var ('V');
4912
4913 if (rptr->addend == 0 && !section->contents)
4914 {
4915 /* Got to read the damn contents first. We don't
4916 bother saving the contents (yet). Add it one
4917 day if the need arises. */
4918 section->contents = bfd_malloc (section->_raw_size);
4919 if (section->contents == NULL)
4920 return (unsigned) -1;
4921
4922 deallocate_contents = 1;
4923 bfd_get_section_contents (section->owner,
4924 section,
4925 section->contents,
4926 (bfd_vma) 0,
4927 section->_raw_size);
4928 }
4929 else if (rptr->addend == 0)
4930 rptr->addend = bfd_get_32 (section->owner,
4931 (section->contents
4932 + offset - var ('L')));
4933
4934 }
4935 else
4936 rptr->addend = var ('V');
4937 rptr++;
4938 }
4939 count++;
4940 /* Now that we've handled a "full" relocation, reset
4941 some state. */
4942 memset (variables, 0, sizeof (variables));
4943 memset (stack, 0, sizeof (stack));
4944 }
4945 }
4946 if (deallocate_contents)
4947 free (section->contents);
4948
4949 return count;
4950
4951 #undef var
4952 #undef push
4953 #undef pop
4954 #undef emptystack
4955 }
4956
4957 /* Read in the relocs (aka fixups in SOM terms) for a section.
4958
4959 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4960 set to TRUE to indicate it only needs a count of the number
4961 of actual relocations. */
4962
4963 static bfd_boolean
4964 som_slurp_reloc_table (abfd, section, symbols, just_count)
4965 bfd *abfd;
4966 asection *section;
4967 asymbol **symbols;
4968 bfd_boolean just_count;
4969 {
4970 char *external_relocs;
4971 unsigned int fixup_stream_size;
4972 arelent *internal_relocs;
4973 unsigned int num_relocs;
4974 bfd_size_type amt;
4975
4976 fixup_stream_size = som_section_data (section)->reloc_size;
4977 /* If there were no relocations, then there is nothing to do. */
4978 if (section->reloc_count == 0)
4979 return TRUE;
4980
4981 /* If reloc_count is -1, then the relocation stream has not been
4982 parsed. We must do so now to know how many relocations exist. */
4983 if (section->reloc_count == (unsigned) -1)
4984 {
4985 amt = fixup_stream_size;
4986 external_relocs = (char *) bfd_malloc (amt);
4987 if (external_relocs == (char *) NULL)
4988 return FALSE;
4989 /* Read in the external forms. */
4990 if (bfd_seek (abfd,
4991 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4992 SEEK_SET)
4993 != 0)
4994 return FALSE;
4995 if (bfd_bread (external_relocs, amt, abfd) != amt)
4996 return FALSE;
4997
4998 /* Let callers know how many relocations found.
4999 also save the relocation stream as we will
5000 need it again. */
5001 section->reloc_count = som_set_reloc_info (external_relocs,
5002 fixup_stream_size,
5003 NULL, NULL, NULL, TRUE);
5004
5005 som_section_data (section)->reloc_stream = external_relocs;
5006 }
5007
5008 /* If the caller only wanted a count, then return now. */
5009 if (just_count)
5010 return TRUE;
5011
5012 num_relocs = section->reloc_count;
5013 external_relocs = som_section_data (section)->reloc_stream;
5014 /* Return saved information about the relocations if it is available. */
5015 if (section->relocation != (arelent *) NULL)
5016 return TRUE;
5017
5018 amt = num_relocs;
5019 amt *= sizeof (arelent);
5020 internal_relocs = (arelent *) bfd_zalloc (abfd, (amt));
5021 if (internal_relocs == (arelent *) NULL)
5022 return FALSE;
5023
5024 /* Process and internalize the relocations. */
5025 som_set_reloc_info (external_relocs, fixup_stream_size,
5026 internal_relocs, section, symbols, FALSE);
5027
5028 /* We're done with the external relocations. Free them. */
5029 free (external_relocs);
5030 som_section_data (section)->reloc_stream = NULL;
5031
5032 /* Save our results and return success. */
5033 section->relocation = internal_relocs;
5034 return TRUE;
5035 }
5036
5037 /* Return the number of bytes required to store the relocation
5038 information associated with the given section. */
5039
5040 static long
5041 som_get_reloc_upper_bound (abfd, asect)
5042 bfd *abfd;
5043 sec_ptr asect;
5044 {
5045 /* If section has relocations, then read in the relocation stream
5046 and parse it to determine how many relocations exist. */
5047 if (asect->flags & SEC_RELOC)
5048 {
5049 if (! som_slurp_reloc_table (abfd, asect, NULL, TRUE))
5050 return -1;
5051 return (asect->reloc_count + 1) * sizeof (arelent *);
5052 }
5053 /* There are no relocations. */
5054 return 0;
5055 }
5056
5057 /* Convert relocations from SOM (external) form into BFD internal
5058 form. Return the number of relocations. */
5059
5060 static long
5061 som_canonicalize_reloc (abfd, section, relptr, symbols)
5062 bfd *abfd;
5063 sec_ptr section;
5064 arelent **relptr;
5065 asymbol **symbols;
5066 {
5067 arelent *tblptr;
5068 int count;
5069
5070 if (! som_slurp_reloc_table (abfd, section, symbols, FALSE))
5071 return -1;
5072
5073 count = section->reloc_count;
5074 tblptr = section->relocation;
5075
5076 while (count--)
5077 *relptr++ = tblptr++;
5078
5079 *relptr = (arelent *) NULL;
5080 return section->reloc_count;
5081 }
5082
5083 extern const bfd_target som_vec;
5084
5085 /* A hook to set up object file dependent section information. */
5086
5087 static bfd_boolean
5088 som_new_section_hook (abfd, newsect)
5089 bfd *abfd;
5090 asection *newsect;
5091 {
5092 bfd_size_type amt = sizeof (struct som_section_data_struct);
5093 newsect->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
5094 if (!newsect->used_by_bfd)
5095 return FALSE;
5096 newsect->alignment_power = 3;
5097
5098 /* We allow more than three sections internally. */
5099 return TRUE;
5100 }
5101
5102 /* Copy any private info we understand from the input symbol
5103 to the output symbol. */
5104
5105 static bfd_boolean
5106 som_bfd_copy_private_symbol_data (ibfd, isymbol, obfd, osymbol)
5107 bfd *ibfd;
5108 asymbol *isymbol;
5109 bfd *obfd;
5110 asymbol *osymbol;
5111 {
5112 struct som_symbol *input_symbol = (struct som_symbol *) isymbol;
5113 struct som_symbol *output_symbol = (struct som_symbol *) osymbol;
5114
5115 /* One day we may try to grok other private data. */
5116 if (ibfd->xvec->flavour != bfd_target_som_flavour
5117 || obfd->xvec->flavour != bfd_target_som_flavour)
5118 return FALSE;
5119
5120 /* The only private information we need to copy is the argument relocation
5121 bits. */
5122 output_symbol->tc_data.ap.hppa_arg_reloc =
5123 input_symbol->tc_data.ap.hppa_arg_reloc;
5124
5125 return TRUE;
5126 }
5127
5128 /* Copy any private info we understand from the input section
5129 to the output section. */
5130
5131 static bfd_boolean
5132 som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
5133 bfd *ibfd;
5134 asection *isection;
5135 bfd *obfd;
5136 asection *osection;
5137 {
5138 bfd_size_type amt;
5139
5140 /* One day we may try to grok other private data. */
5141 if (ibfd->xvec->flavour != bfd_target_som_flavour
5142 || obfd->xvec->flavour != bfd_target_som_flavour
5143 || (!som_is_space (isection) && !som_is_subspace (isection)))
5144 return TRUE;
5145
5146 amt = sizeof (struct som_copyable_section_data_struct);
5147 som_section_data (osection)->copy_data =
5148 (struct som_copyable_section_data_struct *) bfd_zalloc (obfd, amt);
5149 if (som_section_data (osection)->copy_data == NULL)
5150 return FALSE;
5151
5152 memcpy (som_section_data (osection)->copy_data,
5153 som_section_data (isection)->copy_data,
5154 sizeof (struct som_copyable_section_data_struct));
5155
5156 /* Reparent if necessary. */
5157 if (som_section_data (osection)->copy_data->container)
5158 som_section_data (osection)->copy_data->container =
5159 som_section_data (osection)->copy_data->container->output_section;
5160
5161 return TRUE;
5162 }
5163
5164 /* Copy any private info we understand from the input bfd
5165 to the output bfd. */
5166
5167 static bfd_boolean
5168 som_bfd_copy_private_bfd_data (ibfd, obfd)
5169 bfd *ibfd, *obfd;
5170 {
5171 /* One day we may try to grok other private data. */
5172 if (ibfd->xvec->flavour != bfd_target_som_flavour
5173 || obfd->xvec->flavour != bfd_target_som_flavour)
5174 return TRUE;
5175
5176 /* Allocate some memory to hold the data we need. */
5177 obj_som_exec_data (obfd) = (struct som_exec_data *)
5178 bfd_zalloc (obfd, (bfd_size_type) sizeof (struct som_exec_data));
5179 if (obj_som_exec_data (obfd) == NULL)
5180 return FALSE;
5181
5182 /* Now copy the data. */
5183 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
5184 sizeof (struct som_exec_data));
5185
5186 return TRUE;
5187 }
5188
5189 /* Set backend info for sections which can not be described
5190 in the BFD data structures. */
5191
5192 bfd_boolean
5193 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
5194 asection *section;
5195 int defined;
5196 int private;
5197 unsigned int sort_key;
5198 int spnum;
5199 {
5200 /* Allocate memory to hold the magic information. */
5201 if (som_section_data (section)->copy_data == NULL)
5202 {
5203 bfd_size_type amt = sizeof (struct som_copyable_section_data_struct);
5204 som_section_data (section)->copy_data =
5205 (struct som_copyable_section_data_struct *) bfd_zalloc (section->owner,
5206 amt);
5207 if (som_section_data (section)->copy_data == NULL)
5208 return FALSE;
5209 }
5210 som_section_data (section)->copy_data->sort_key = sort_key;
5211 som_section_data (section)->copy_data->is_defined = defined;
5212 som_section_data (section)->copy_data->is_private = private;
5213 som_section_data (section)->copy_data->container = section;
5214 som_section_data (section)->copy_data->space_number = spnum;
5215 return TRUE;
5216 }
5217
5218 /* Set backend info for subsections which can not be described
5219 in the BFD data structures. */
5220
5221 bfd_boolean
5222 bfd_som_set_subsection_attributes (section, container, access,
5223 sort_key, quadrant)
5224 asection *section;
5225 asection *container;
5226 int access;
5227 unsigned int sort_key;
5228 int quadrant;
5229 {
5230 /* Allocate memory to hold the magic information. */
5231 if (som_section_data (section)->copy_data == NULL)
5232 {
5233 bfd_size_type amt = sizeof (struct som_copyable_section_data_struct);
5234 som_section_data (section)->copy_data =
5235 (struct som_copyable_section_data_struct *) bfd_zalloc (section->owner,
5236 amt);
5237 if (som_section_data (section)->copy_data == NULL)
5238 return FALSE;
5239 }
5240 som_section_data (section)->copy_data->sort_key = sort_key;
5241 som_section_data (section)->copy_data->access_control_bits = access;
5242 som_section_data (section)->copy_data->quadrant = quadrant;
5243 som_section_data (section)->copy_data->container = container;
5244 return TRUE;
5245 }
5246
5247 /* Set the full SOM symbol type. SOM needs far more symbol information
5248 than any other object file format I'm aware of. It is mandatory
5249 to be able to know if a symbol is an entry point, millicode, data,
5250 code, absolute, storage request, or procedure label. If you get
5251 the symbol type wrong your program will not link. */
5252
5253 void
5254 bfd_som_set_symbol_type (symbol, type)
5255 asymbol *symbol;
5256 unsigned int type;
5257 {
5258 som_symbol_data (symbol)->som_type = type;
5259 }
5260
5261 /* Attach an auxiliary header to the BFD backend so that it may be
5262 written into the object file. */
5263
5264 bfd_boolean
5265 bfd_som_attach_aux_hdr (abfd, type, string)
5266 bfd *abfd;
5267 int type;
5268 char *string;
5269 {
5270 bfd_size_type amt;
5271
5272 if (type == VERSION_AUX_ID)
5273 {
5274 size_t len = strlen (string);
5275 int pad = 0;
5276
5277 if (len % 4)
5278 pad = (4 - (len % 4));
5279 amt = sizeof (struct aux_id) + sizeof (unsigned int) + len + pad;
5280 obj_som_version_hdr (abfd) =
5281 (struct user_string_aux_hdr *) bfd_zalloc (abfd, amt);
5282 if (!obj_som_version_hdr (abfd))
5283 return FALSE;
5284 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
5285 obj_som_version_hdr (abfd)->header_id.length = len + pad;
5286 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
5287 obj_som_version_hdr (abfd)->string_length = len;
5288 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
5289 }
5290 else if (type == COPYRIGHT_AUX_ID)
5291 {
5292 int len = strlen (string);
5293 int pad = 0;
5294
5295 if (len % 4)
5296 pad = (4 - (len % 4));
5297 amt = sizeof (struct aux_id) + sizeof (unsigned int) + len + pad;
5298 obj_som_copyright_hdr (abfd) =
5299 (struct copyright_aux_hdr *) bfd_zalloc (abfd, amt);
5300 if (!obj_som_copyright_hdr (abfd))
5301 return FALSE;
5302 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
5303 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
5304 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
5305 obj_som_copyright_hdr (abfd)->string_length = len;
5306 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
5307 }
5308 return TRUE;
5309 }
5310
5311 /* Attach a compilation unit header to the BFD backend so that it may be
5312 written into the object file. */
5313
5314 bfd_boolean
5315 bfd_som_attach_compilation_unit (abfd, name, language_name, product_id,
5316 version_id)
5317 bfd *abfd;
5318 const char *name;
5319 const char *language_name;
5320 const char *product_id;
5321 const char *version_id;
5322 {
5323 COMPUNIT *n = (COMPUNIT *) bfd_zalloc (abfd, (bfd_size_type) COMPUNITSZ);
5324 if (n == NULL)
5325 return FALSE;
5326
5327 #define STRDUP(f) \
5328 if (f != NULL) \
5329 { \
5330 n->f.n_name = bfd_alloc (abfd, (bfd_size_type) strlen (f) + 1); \
5331 if (n->f.n_name == NULL) \
5332 return FALSE; \
5333 strcpy (n->f.n_name, f); \
5334 }
5335
5336 STRDUP (name);
5337 STRDUP (language_name);
5338 STRDUP (product_id);
5339 STRDUP (version_id);
5340
5341 #undef STRDUP
5342
5343 obj_som_compilation_unit (abfd) = n;
5344
5345 return TRUE;
5346 }
5347
5348 static bfd_boolean
5349 som_get_section_contents (abfd, section, location, offset, count)
5350 bfd *abfd;
5351 sec_ptr section;
5352 PTR location;
5353 file_ptr offset;
5354 bfd_size_type count;
5355 {
5356 if (count == 0 || ((section->flags & SEC_HAS_CONTENTS) == 0))
5357 return TRUE;
5358 if ((bfd_size_type) (offset+count) > section->_raw_size
5359 || bfd_seek (abfd, (file_ptr) (section->filepos + offset), SEEK_SET) != 0
5360 || bfd_bread (location, count, abfd) != count)
5361 return FALSE; /* On error. */
5362 return TRUE;
5363 }
5364
5365 static bfd_boolean
5366 som_set_section_contents (abfd, section, location, offset, count)
5367 bfd *abfd;
5368 sec_ptr section;
5369 const PTR location;
5370 file_ptr offset;
5371 bfd_size_type count;
5372 {
5373 if (! abfd->output_has_begun)
5374 {
5375 /* Set up fixed parts of the file, space, and subspace headers.
5376 Notify the world that output has begun. */
5377 som_prep_headers (abfd);
5378 abfd->output_has_begun = TRUE;
5379 /* Start writing the object file. This include all the string
5380 tables, fixup streams, and other portions of the object file. */
5381 som_begin_writing (abfd);
5382 }
5383
5384 /* Only write subspaces which have "real" contents (eg. the contents
5385 are not generated at run time by the OS). */
5386 if (!som_is_subspace (section)
5387 || ((section->flags & SEC_HAS_CONTENTS) == 0))
5388 return TRUE;
5389
5390 /* Seek to the proper offset within the object file and write the
5391 data. */
5392 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
5393 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
5394 return FALSE;
5395
5396 if (bfd_bwrite (location, count, abfd) != count)
5397 return FALSE;
5398 return TRUE;
5399 }
5400
5401 static bfd_boolean
5402 som_set_arch_mach (abfd, arch, machine)
5403 bfd *abfd;
5404 enum bfd_architecture arch;
5405 unsigned long machine;
5406 {
5407 /* Allow any architecture to be supported by the SOM backend. */
5408 return bfd_default_set_arch_mach (abfd, arch, machine);
5409 }
5410
5411 static bfd_boolean
5412 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
5413 functionname_ptr, line_ptr)
5414 bfd *abfd ATTRIBUTE_UNUSED;
5415 asection *section ATTRIBUTE_UNUSED;
5416 asymbol **symbols ATTRIBUTE_UNUSED;
5417 bfd_vma offset ATTRIBUTE_UNUSED;
5418 const char **filename_ptr ATTRIBUTE_UNUSED;
5419 const char **functionname_ptr ATTRIBUTE_UNUSED;
5420 unsigned int *line_ptr ATTRIBUTE_UNUSED;
5421 {
5422 return FALSE;
5423 }
5424
5425 static int
5426 som_sizeof_headers (abfd, reloc)
5427 bfd *abfd ATTRIBUTE_UNUSED;
5428 bfd_boolean reloc ATTRIBUTE_UNUSED;
5429 {
5430 (*_bfd_error_handler) (_("som_sizeof_headers unimplemented"));
5431 fflush (stderr);
5432 abort ();
5433 return 0;
5434 }
5435
5436 /* Return the single-character symbol type corresponding to
5437 SOM section S, or '?' for an unknown SOM section. */
5438
5439 static char
5440 som_section_type (s)
5441 const char *s;
5442 {
5443 const struct section_to_type *t;
5444
5445 for (t = &stt[0]; t->section; t++)
5446 if (!strcmp (s, t->section))
5447 return t->type;
5448 return '?';
5449 }
5450
5451 static int
5452 som_decode_symclass (symbol)
5453 asymbol *symbol;
5454 {
5455 char c;
5456
5457 if (bfd_is_com_section (symbol->section))
5458 return 'C';
5459 if (bfd_is_und_section (symbol->section))
5460 return 'U';
5461 if (bfd_is_ind_section (symbol->section))
5462 return 'I';
5463 if (symbol->flags & BSF_WEAK)
5464 return 'W';
5465 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
5466 return '?';
5467
5468 if (bfd_is_abs_section (symbol->section)
5469 || (som_symbol_data (symbol) != NULL
5470 && som_symbol_data (symbol)->som_type == SYMBOL_TYPE_ABSOLUTE))
5471 c = 'a';
5472 else if (symbol->section)
5473 c = som_section_type (symbol->section->name);
5474 else
5475 return '?';
5476 if (symbol->flags & BSF_GLOBAL)
5477 c = TOUPPER (c);
5478 return c;
5479 }
5480
5481 /* Return information about SOM symbol SYMBOL in RET. */
5482
5483 static void
5484 som_get_symbol_info (ignore_abfd, symbol, ret)
5485 bfd *ignore_abfd ATTRIBUTE_UNUSED;
5486 asymbol *symbol;
5487 symbol_info *ret;
5488 {
5489 ret->type = som_decode_symclass (symbol);
5490 if (ret->type != 'U')
5491 ret->value = symbol->value + symbol->section->vma;
5492 else
5493 ret->value = 0;
5494 ret->name = symbol->name;
5495 }
5496
5497 /* Count the number of symbols in the archive symbol table. Necessary
5498 so that we can allocate space for all the carsyms at once. */
5499
5500 static bfd_boolean
5501 som_bfd_count_ar_symbols (abfd, lst_header, count)
5502 bfd *abfd;
5503 struct lst_header *lst_header;
5504 symindex *count;
5505 {
5506 unsigned int i;
5507 unsigned int *hash_table = NULL;
5508 bfd_size_type amt;
5509 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5510
5511 amt = lst_header->hash_size;
5512 amt *= sizeof (unsigned int);
5513 hash_table = (unsigned int *) bfd_malloc (amt);
5514 if (hash_table == NULL && lst_header->hash_size != 0)
5515 goto error_return;
5516
5517 /* Don't forget to initialize the counter! */
5518 *count = 0;
5519
5520 /* Read in the hash table. The has table is an array of 32bit file offsets
5521 which point to the hash chains. */
5522 if (bfd_bread ((PTR) hash_table, amt, abfd) != amt)
5523 goto error_return;
5524
5525 /* Walk each chain counting the number of symbols found on that particular
5526 chain. */
5527 for (i = 0; i < lst_header->hash_size; i++)
5528 {
5529 struct lst_symbol_record lst_symbol;
5530
5531 /* An empty chain has zero as it's file offset. */
5532 if (hash_table[i] == 0)
5533 continue;
5534
5535 /* Seek to the first symbol in this hash chain. */
5536 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) != 0)
5537 goto error_return;
5538
5539 /* Read in this symbol and update the counter. */
5540 amt = sizeof (lst_symbol);
5541 if (bfd_bread ((PTR) &lst_symbol, amt, abfd) != amt)
5542 goto error_return;
5543
5544 (*count)++;
5545
5546 /* Now iterate through the rest of the symbols on this chain. */
5547 while (lst_symbol.next_entry)
5548 {
5549
5550 /* Seek to the next symbol. */
5551 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
5552 != 0)
5553 goto error_return;
5554
5555 /* Read the symbol in and update the counter. */
5556 amt = sizeof (lst_symbol);
5557 if (bfd_bread ((PTR) &lst_symbol, amt, abfd) != amt)
5558 goto error_return;
5559
5560 (*count)++;
5561 }
5562 }
5563 if (hash_table != NULL)
5564 free (hash_table);
5565 return TRUE;
5566
5567 error_return:
5568 if (hash_table != NULL)
5569 free (hash_table);
5570 return FALSE;
5571 }
5572
5573 /* Fill in the canonical archive symbols (SYMS) from the archive described
5574 by ABFD and LST_HEADER. */
5575
5576 static bfd_boolean
5577 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
5578 bfd *abfd;
5579 struct lst_header *lst_header;
5580 carsym **syms;
5581 {
5582 unsigned int i, len;
5583 carsym *set = syms[0];
5584 unsigned int *hash_table = NULL;
5585 struct som_entry *som_dict = NULL;
5586 bfd_size_type amt;
5587 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5588
5589 amt = lst_header->hash_size;
5590 amt *= sizeof (unsigned int);
5591 hash_table = (unsigned int *) bfd_malloc (amt);
5592 if (hash_table == NULL && lst_header->hash_size != 0)
5593 goto error_return;
5594
5595 /* Read in the hash table. The has table is an array of 32bit file offsets
5596 which point to the hash chains. */
5597 if (bfd_bread ((PTR) hash_table, amt, abfd) != amt)
5598 goto error_return;
5599
5600 /* Seek to and read in the SOM dictionary. We will need this to fill
5601 in the carsym's filepos field. */
5602 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) != 0)
5603 goto error_return;
5604
5605 amt = lst_header->module_count;
5606 amt *= sizeof (struct som_entry);
5607 som_dict = (struct som_entry *) bfd_malloc (amt);
5608 if (som_dict == NULL && lst_header->module_count != 0)
5609 goto error_return;
5610
5611 if (bfd_bread ((PTR) som_dict, amt, abfd) != amt)
5612 goto error_return;
5613
5614 /* Walk each chain filling in the carsyms as we go along. */
5615 for (i = 0; i < lst_header->hash_size; i++)
5616 {
5617 struct lst_symbol_record lst_symbol;
5618
5619 /* An empty chain has zero as it's file offset. */
5620 if (hash_table[i] == 0)
5621 continue;
5622
5623 /* Seek to and read the first symbol on the chain. */
5624 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) != 0)
5625 goto error_return;
5626
5627 amt = sizeof (lst_symbol);
5628 if (bfd_bread ((PTR) &lst_symbol, amt, abfd) != amt)
5629 goto error_return;
5630
5631 /* Get the name of the symbol, first get the length which is stored
5632 as a 32bit integer just before the symbol.
5633
5634 One might ask why we don't just read in the entire string table
5635 and index into it. Well, according to the SOM ABI the string
5636 index can point *anywhere* in the archive to save space, so just
5637 using the string table would not be safe. */
5638 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5639 + lst_symbol.name.n_strx - 4, SEEK_SET) != 0)
5640 goto error_return;
5641
5642 if (bfd_bread (&len, (bfd_size_type) 4, abfd) != 4)
5643 goto error_return;
5644
5645 /* Allocate space for the name and null terminate it too. */
5646 set->name = bfd_zalloc (abfd, (bfd_size_type) len + 1);
5647 if (!set->name)
5648 goto error_return;
5649 if (bfd_bread (set->name, (bfd_size_type) len, abfd) != len)
5650 goto error_return;
5651
5652 set->name[len] = 0;
5653
5654 /* Fill in the file offset. Note that the "location" field points
5655 to the SOM itself, not the ar_hdr in front of it. */
5656 set->file_offset = som_dict[lst_symbol.som_index].location
5657 - sizeof (struct ar_hdr);
5658
5659 /* Go to the next symbol. */
5660 set++;
5661
5662 /* Iterate through the rest of the chain. */
5663 while (lst_symbol.next_entry)
5664 {
5665 /* Seek to the next symbol and read it in. */
5666 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
5667 != 0)
5668 goto error_return;
5669
5670 amt = sizeof (lst_symbol);
5671 if (bfd_bread ((PTR) &lst_symbol, amt, abfd) != amt)
5672 goto error_return;
5673
5674 /* Seek to the name length & string and read them in. */
5675 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5676 + lst_symbol.name.n_strx - 4, SEEK_SET) != 0)
5677 goto error_return;
5678
5679 if (bfd_bread (&len, (bfd_size_type) 4, abfd) != 4)
5680 goto error_return;
5681
5682 /* Allocate space for the name and null terminate it too. */
5683 set->name = bfd_zalloc (abfd, (bfd_size_type) len + 1);
5684 if (!set->name)
5685 goto error_return;
5686
5687 if (bfd_bread (set->name, (bfd_size_type) len, abfd) != len)
5688 goto error_return;
5689 set->name[len] = 0;
5690
5691 /* Fill in the file offset. Note that the "location" field points
5692 to the SOM itself, not the ar_hdr in front of it. */
5693 set->file_offset = som_dict[lst_symbol.som_index].location
5694 - sizeof (struct ar_hdr);
5695
5696 /* Go on to the next symbol. */
5697 set++;
5698 }
5699 }
5700 /* If we haven't died by now, then we successfully read the entire
5701 archive symbol table. */
5702 if (hash_table != NULL)
5703 free (hash_table);
5704 if (som_dict != NULL)
5705 free (som_dict);
5706 return TRUE;
5707
5708 error_return:
5709 if (hash_table != NULL)
5710 free (hash_table);
5711 if (som_dict != NULL)
5712 free (som_dict);
5713 return FALSE;
5714 }
5715
5716 /* Read in the LST from the archive. */
5717
5718 static bfd_boolean
5719 som_slurp_armap (abfd)
5720 bfd *abfd;
5721 {
5722 struct lst_header lst_header;
5723 struct ar_hdr ar_header;
5724 unsigned int parsed_size;
5725 struct artdata *ardata = bfd_ardata (abfd);
5726 char nextname[17];
5727 bfd_size_type amt = 16;
5728 int i = bfd_bread ((PTR) nextname, amt, abfd);
5729
5730 /* Special cases. */
5731 if (i == 0)
5732 return TRUE;
5733 if (i != 16)
5734 return FALSE;
5735
5736 if (bfd_seek (abfd, (file_ptr) -16, SEEK_CUR) != 0)
5737 return FALSE;
5738
5739 /* For archives without .o files there is no symbol table. */
5740 if (strncmp (nextname, "/ ", 16))
5741 {
5742 bfd_has_map (abfd) = FALSE;
5743 return TRUE;
5744 }
5745
5746 /* Read in and sanity check the archive header. */
5747 amt = sizeof (struct ar_hdr);
5748 if (bfd_bread ((PTR) &ar_header, amt, abfd) != amt)
5749 return FALSE;
5750
5751 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
5752 {
5753 bfd_set_error (bfd_error_malformed_archive);
5754 return FALSE;
5755 }
5756
5757 /* How big is the archive symbol table entry? */
5758 errno = 0;
5759 parsed_size = strtol (ar_header.ar_size, NULL, 10);
5760 if (errno != 0)
5761 {
5762 bfd_set_error (bfd_error_malformed_archive);
5763 return FALSE;
5764 }
5765
5766 /* Save off the file offset of the first real user data. */
5767 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
5768
5769 /* Read in the library symbol table. We'll make heavy use of this
5770 in just a minute. */
5771 amt = sizeof (struct lst_header);
5772 if (bfd_bread ((PTR) &lst_header, amt, abfd) != amt)
5773 return FALSE;
5774
5775 /* Sanity check. */
5776 if (lst_header.a_magic != LIBMAGIC)
5777 {
5778 bfd_set_error (bfd_error_malformed_archive);
5779 return FALSE;
5780 }
5781
5782 /* Count the number of symbols in the library symbol table. */
5783 if (! som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count))
5784 return FALSE;
5785
5786 /* Get back to the start of the library symbol table. */
5787 if (bfd_seek (abfd, (ardata->first_file_filepos - parsed_size
5788 + sizeof (struct lst_header)), SEEK_SET) != 0)
5789 return FALSE;
5790
5791 /* Initialize the cache and allocate space for the library symbols. */
5792 ardata->cache = 0;
5793 amt = ardata->symdef_count;
5794 amt *= sizeof (carsym);
5795 ardata->symdefs = (carsym *) bfd_alloc (abfd, amt);
5796 if (!ardata->symdefs)
5797 return FALSE;
5798
5799 /* Now fill in the canonical archive symbols. */
5800 if (! som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs))
5801 return FALSE;
5802
5803 /* Seek back to the "first" file in the archive. Note the "first"
5804 file may be the extended name table. */
5805 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) != 0)
5806 return FALSE;
5807
5808 /* Notify the generic archive code that we have a symbol map. */
5809 bfd_has_map (abfd) = TRUE;
5810 return TRUE;
5811 }
5812
5813 /* Begin preparing to write a SOM library symbol table.
5814
5815 As part of the prep work we need to determine the number of symbols
5816 and the size of the associated string section. */
5817
5818 static bfd_boolean
5819 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
5820 bfd *abfd;
5821 unsigned int *num_syms, *stringsize;
5822 {
5823 bfd *curr_bfd = abfd->archive_head;
5824
5825 /* Some initialization. */
5826 *num_syms = 0;
5827 *stringsize = 0;
5828
5829 /* Iterate over each BFD within this archive. */
5830 while (curr_bfd != NULL)
5831 {
5832 unsigned int curr_count, i;
5833 som_symbol_type *sym;
5834
5835 /* Don't bother for non-SOM objects. */
5836 if (curr_bfd->format != bfd_object
5837 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5838 {
5839 curr_bfd = curr_bfd->next;
5840 continue;
5841 }
5842
5843 /* Make sure the symbol table has been read, then snag a pointer
5844 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5845 but doing so avoids allocating lots of extra memory. */
5846 if (! som_slurp_symbol_table (curr_bfd))
5847 return FALSE;
5848
5849 sym = obj_som_symtab (curr_bfd);
5850 curr_count = bfd_get_symcount (curr_bfd);
5851
5852 /* Examine each symbol to determine if it belongs in the
5853 library symbol table. */
5854 for (i = 0; i < curr_count; i++, sym++)
5855 {
5856 struct som_misc_symbol_info info;
5857
5858 /* Derive SOM information from the BFD symbol. */
5859 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5860
5861 /* Should we include this symbol? */
5862 if (info.symbol_type == ST_NULL
5863 || info.symbol_type == ST_SYM_EXT
5864 || info.symbol_type == ST_ARG_EXT)
5865 continue;
5866
5867 /* Only global symbols and unsatisfied commons. */
5868 if (info.symbol_scope != SS_UNIVERSAL
5869 && info.symbol_type != ST_STORAGE)
5870 continue;
5871
5872 /* Do no include undefined symbols. */
5873 if (bfd_is_und_section (sym->symbol.section))
5874 continue;
5875
5876 /* Bump the various counters, being careful to honor
5877 alignment considerations in the string table. */
5878 (*num_syms)++;
5879 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5880 while (*stringsize % 4)
5881 (*stringsize)++;
5882 }
5883
5884 curr_bfd = curr_bfd->next;
5885 }
5886 return TRUE;
5887 }
5888
5889 /* Hash a symbol name based on the hashing algorithm presented in the
5890 SOM ABI. */
5891
5892 static unsigned int
5893 som_bfd_ar_symbol_hash (symbol)
5894 asymbol *symbol;
5895 {
5896 unsigned int len = strlen (symbol->name);
5897
5898 /* Names with length 1 are special. */
5899 if (len == 1)
5900 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5901
5902 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5903 | (symbol->name[len - 2] << 8) | symbol->name[len - 1];
5904 }
5905
5906 /* Do the bulk of the work required to write the SOM library
5907 symbol table. */
5908
5909 static bfd_boolean
5910 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst, elength)
5911 bfd *abfd;
5912 unsigned int nsyms, string_size;
5913 struct lst_header lst;
5914 unsigned elength;
5915 {
5916 file_ptr lst_filepos;
5917 char *strings = NULL, *p;
5918 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5919 bfd *curr_bfd;
5920 unsigned int *hash_table = NULL;
5921 struct som_entry *som_dict = NULL;
5922 struct lst_symbol_record **last_hash_entry = NULL;
5923 unsigned int curr_som_offset, som_index = 0;
5924 bfd_size_type amt;
5925
5926 amt = lst.hash_size;
5927 amt *= sizeof (unsigned int);
5928 hash_table = (unsigned int *) bfd_zmalloc (amt);
5929 if (hash_table == NULL && lst.hash_size != 0)
5930 goto error_return;
5931
5932 amt = lst.module_count;
5933 amt *= sizeof (struct som_entry);
5934 som_dict = (struct som_entry *) bfd_zmalloc (amt);
5935 if (som_dict == NULL && lst.module_count != 0)
5936 goto error_return;
5937
5938 amt = lst.hash_size;
5939 amt *= sizeof (struct lst_symbol_record *);
5940 last_hash_entry = ((struct lst_symbol_record **) bfd_zmalloc (amt));
5941 if (last_hash_entry == NULL && lst.hash_size != 0)
5942 goto error_return;
5943
5944 /* Lots of fields are file positions relative to the start
5945 of the lst record. So save its location. */
5946 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5947
5948 /* Symbols have som_index fields, so we have to keep track of the
5949 index of each SOM in the archive.
5950
5951 The SOM dictionary has (among other things) the absolute file
5952 position for the SOM which a particular dictionary entry
5953 describes. We have to compute that information as we iterate
5954 through the SOMs/symbols. */
5955 som_index = 0;
5956
5957 /* We add in the size of the archive header twice as the location
5958 in the SOM dictionary is the actual offset of the SOM, not the
5959 archive header before the SOM. */
5960 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5961
5962 /* Make room for the archive header and the contents of the
5963 extended string table. Note that elength includes the size
5964 of the archive header for the extended name table! */
5965 if (elength)
5966 curr_som_offset += elength;
5967
5968 /* Make sure we're properly aligned. */
5969 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5970
5971 /* FIXME should be done with buffers just like everything else... */
5972 amt = nsyms;
5973 amt *= sizeof (struct lst_symbol_record);
5974 lst_syms = bfd_malloc (amt);
5975 if (lst_syms == NULL && nsyms != 0)
5976 goto error_return;
5977 strings = bfd_malloc ((bfd_size_type) string_size);
5978 if (strings == NULL && string_size != 0)
5979 goto error_return;
5980
5981 p = strings;
5982 curr_lst_sym = lst_syms;
5983
5984 curr_bfd = abfd->archive_head;
5985 while (curr_bfd != NULL)
5986 {
5987 unsigned int curr_count, i;
5988 som_symbol_type *sym;
5989
5990 /* Don't bother for non-SOM objects. */
5991 if (curr_bfd->format != bfd_object
5992 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5993 {
5994 curr_bfd = curr_bfd->next;
5995 continue;
5996 }
5997
5998 /* Make sure the symbol table has been read, then snag a pointer
5999 to it. It's a little slimey to grab the symbols via obj_som_symtab,
6000 but doing so avoids allocating lots of extra memory. */
6001 if (! som_slurp_symbol_table (curr_bfd))
6002 goto error_return;
6003
6004 sym = obj_som_symtab (curr_bfd);
6005 curr_count = bfd_get_symcount (curr_bfd);
6006
6007 for (i = 0; i < curr_count; i++, sym++)
6008 {
6009 struct som_misc_symbol_info info;
6010
6011 /* Derive SOM information from the BFD symbol. */
6012 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
6013
6014 /* Should we include this symbol? */
6015 if (info.symbol_type == ST_NULL
6016 || info.symbol_type == ST_SYM_EXT
6017 || info.symbol_type == ST_ARG_EXT)
6018 continue;
6019
6020 /* Only global symbols and unsatisfied commons. */
6021 if (info.symbol_scope != SS_UNIVERSAL
6022 && info.symbol_type != ST_STORAGE)
6023 continue;
6024
6025 /* Do no include undefined symbols. */
6026 if (bfd_is_und_section (sym->symbol.section))
6027 continue;
6028
6029 /* If this is the first symbol from this SOM, then update
6030 the SOM dictionary too. */
6031 if (som_dict[som_index].location == 0)
6032 {
6033 som_dict[som_index].location = curr_som_offset;
6034 som_dict[som_index].length = arelt_size (curr_bfd);
6035 }
6036
6037 /* Fill in the lst symbol record. */
6038 curr_lst_sym->hidden = 0;
6039 curr_lst_sym->secondary_def = info.secondary_def;
6040 curr_lst_sym->symbol_type = info.symbol_type;
6041 curr_lst_sym->symbol_scope = info.symbol_scope;
6042 curr_lst_sym->check_level = 0;
6043 curr_lst_sym->must_qualify = 0;
6044 curr_lst_sym->initially_frozen = 0;
6045 curr_lst_sym->memory_resident = 0;
6046 curr_lst_sym->is_common = bfd_is_com_section (sym->symbol.section);
6047 curr_lst_sym->dup_common = 0;
6048 curr_lst_sym->xleast = 3;
6049 curr_lst_sym->arg_reloc = info.arg_reloc;
6050 curr_lst_sym->name.n_strx = p - strings + 4;
6051 curr_lst_sym->qualifier_name.n_strx = 0;
6052 curr_lst_sym->symbol_info = info.symbol_info;
6053 curr_lst_sym->symbol_value = info.symbol_value | info.priv_level;
6054 curr_lst_sym->symbol_descriptor = 0;
6055 curr_lst_sym->reserved = 0;
6056 curr_lst_sym->som_index = som_index;
6057 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
6058 curr_lst_sym->next_entry = 0;
6059
6060 /* Insert into the hash table. */
6061 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
6062 {
6063 struct lst_symbol_record *tmp;
6064
6065 /* There is already something at the head of this hash chain,
6066 so tack this symbol onto the end of the chain. */
6067 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
6068 tmp->next_entry
6069 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
6070 + lst.hash_size * 4
6071 + lst.module_count * sizeof (struct som_entry)
6072 + sizeof (struct lst_header);
6073 }
6074 else
6075 {
6076 /* First entry in this hash chain. */
6077 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
6078 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
6079 + lst.hash_size * 4
6080 + lst.module_count * sizeof (struct som_entry)
6081 + sizeof (struct lst_header);
6082 }
6083
6084 /* Keep track of the last symbol we added to this chain so we can
6085 easily update its next_entry pointer. */
6086 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
6087 = curr_lst_sym;
6088
6089 /* Update the string table. */
6090 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
6091 p += 4;
6092 strcpy (p, sym->symbol.name);
6093 p += strlen (sym->symbol.name) + 1;
6094 while ((int) p % 4)
6095 {
6096 bfd_put_8 (abfd, 0, p);
6097 p++;
6098 }
6099
6100 /* Head to the next symbol. */
6101 curr_lst_sym++;
6102 }
6103
6104 /* Keep track of where each SOM will finally reside; then look
6105 at the next BFD. */
6106 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
6107
6108 /* A particular object in the archive may have an odd length; the
6109 linker requires objects begin on an even boundary. So round
6110 up the current offset as necessary. */
6111 curr_som_offset = (curr_som_offset + 0x1) &~ (unsigned) 1;
6112 curr_bfd = curr_bfd->next;
6113 som_index++;
6114 }
6115
6116 /* Now scribble out the hash table. */
6117 amt = lst.hash_size * 4;
6118 if (bfd_bwrite ((PTR) hash_table, amt, abfd) != amt)
6119 goto error_return;
6120
6121 /* Then the SOM dictionary. */
6122 amt = lst.module_count * sizeof (struct som_entry);
6123 if (bfd_bwrite ((PTR) som_dict, amt, abfd) != amt)
6124 goto error_return;
6125
6126 /* The library symbols. */
6127 amt = nsyms * sizeof (struct lst_symbol_record);
6128 if (bfd_bwrite ((PTR) lst_syms, amt, abfd) != amt)
6129 goto error_return;
6130
6131 /* And finally the strings. */
6132 amt = string_size;
6133 if (bfd_bwrite ((PTR) strings, amt, abfd) != amt)
6134 goto error_return;
6135
6136 if (hash_table != NULL)
6137 free (hash_table);
6138 if (som_dict != NULL)
6139 free (som_dict);
6140 if (last_hash_entry != NULL)
6141 free (last_hash_entry);
6142 if (lst_syms != NULL)
6143 free (lst_syms);
6144 if (strings != NULL)
6145 free (strings);
6146 return TRUE;
6147
6148 error_return:
6149 if (hash_table != NULL)
6150 free (hash_table);
6151 if (som_dict != NULL)
6152 free (som_dict);
6153 if (last_hash_entry != NULL)
6154 free (last_hash_entry);
6155 if (lst_syms != NULL)
6156 free (lst_syms);
6157 if (strings != NULL)
6158 free (strings);
6159
6160 return FALSE;
6161 }
6162
6163 /* Write out the LST for the archive.
6164
6165 You'll never believe this is really how armaps are handled in SOM... */
6166
6167 static bfd_boolean
6168 som_write_armap (abfd, elength, map, orl_count, stridx)
6169 bfd *abfd;
6170 unsigned int elength;
6171 struct orl *map ATTRIBUTE_UNUSED;
6172 unsigned int orl_count ATTRIBUTE_UNUSED;
6173 int stridx ATTRIBUTE_UNUSED;
6174 {
6175 bfd *curr_bfd;
6176 struct stat statbuf;
6177 unsigned int i, lst_size, nsyms, stringsize;
6178 struct ar_hdr hdr;
6179 struct lst_header lst;
6180 int *p;
6181 bfd_size_type amt;
6182
6183 /* We'll use this for the archive's date and mode later. */
6184 if (stat (abfd->filename, &statbuf) != 0)
6185 {
6186 bfd_set_error (bfd_error_system_call);
6187 return FALSE;
6188 }
6189 /* Fudge factor. */
6190 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
6191
6192 /* Account for the lst header first. */
6193 lst_size = sizeof (struct lst_header);
6194
6195 /* Start building the LST header. */
6196 /* FIXME: Do we need to examine each element to determine the
6197 largest id number? */
6198 lst.system_id = CPU_PA_RISC1_0;
6199 lst.a_magic = LIBMAGIC;
6200 lst.version_id = VERSION_ID;
6201 lst.file_time.secs = 0;
6202 lst.file_time.nanosecs = 0;
6203
6204 lst.hash_loc = lst_size;
6205 lst.hash_size = SOM_LST_HASH_SIZE;
6206
6207 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
6208 lst_size += 4 * SOM_LST_HASH_SIZE;
6209
6210 /* We need to count the number of SOMs in this archive. */
6211 curr_bfd = abfd->archive_head;
6212 lst.module_count = 0;
6213 while (curr_bfd != NULL)
6214 {
6215 /* Only true SOM objects count. */
6216 if (curr_bfd->format == bfd_object
6217 && curr_bfd->xvec->flavour == bfd_target_som_flavour)
6218 lst.module_count++;
6219 curr_bfd = curr_bfd->next;
6220 }
6221 lst.module_limit = lst.module_count;
6222 lst.dir_loc = lst_size;
6223 lst_size += sizeof (struct som_entry) * lst.module_count;
6224
6225 /* We don't support import/export tables, auxiliary headers,
6226 or free lists yet. Make the linker work a little harder
6227 to make our life easier. */
6228
6229 lst.export_loc = 0;
6230 lst.export_count = 0;
6231 lst.import_loc = 0;
6232 lst.aux_loc = 0;
6233 lst.aux_size = 0;
6234
6235 /* Count how many symbols we will have on the hash chains and the
6236 size of the associated string table. */
6237 if (! som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize))
6238 return FALSE;
6239
6240 lst_size += sizeof (struct lst_symbol_record) * nsyms;
6241
6242 /* For the string table. One day we might actually use this info
6243 to avoid small seeks/reads when reading archives. */
6244 lst.string_loc = lst_size;
6245 lst.string_size = stringsize;
6246 lst_size += stringsize;
6247
6248 /* SOM ABI says this must be zero. */
6249 lst.free_list = 0;
6250 lst.file_end = lst_size;
6251
6252 /* Compute the checksum. Must happen after the entire lst header
6253 has filled in. */
6254 p = (int *) &lst;
6255 lst.checksum = 0;
6256 for (i = 0; i < sizeof (struct lst_header) / sizeof (int) - 1; i++)
6257 lst.checksum ^= *p++;
6258
6259 sprintf (hdr.ar_name, "/ ");
6260 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
6261 sprintf (hdr.ar_uid, "%ld", (long) getuid ());
6262 sprintf (hdr.ar_gid, "%ld", (long) getgid ());
6263 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
6264 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
6265 hdr.ar_fmag[0] = '`';
6266 hdr.ar_fmag[1] = '\012';
6267
6268 /* Turn any nulls into spaces. */
6269 for (i = 0; i < sizeof (struct ar_hdr); i++)
6270 if (((char *) (&hdr))[i] == '\0')
6271 (((char *) (&hdr))[i]) = ' ';
6272
6273 /* Scribble out the ar header. */
6274 amt = sizeof (struct ar_hdr);
6275 if (bfd_bwrite ((PTR) &hdr, amt, abfd) != amt)
6276 return FALSE;
6277
6278 /* Now scribble out the lst header. */
6279 amt = sizeof (struct lst_header);
6280 if (bfd_bwrite ((PTR) &lst, amt, abfd) != amt)
6281 return FALSE;
6282
6283 /* Build and write the armap. */
6284 if (!som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst, elength))
6285 return FALSE;
6286
6287 /* Done. */
6288 return TRUE;
6289 }
6290
6291 /* Free all information we have cached for this BFD. We can always
6292 read it again later if we need it. */
6293
6294 static bfd_boolean
6295 som_bfd_free_cached_info (abfd)
6296 bfd *abfd;
6297 {
6298 asection *o;
6299
6300 if (bfd_get_format (abfd) != bfd_object)
6301 return TRUE;
6302
6303 #define FREE(x) if (x != NULL) { free (x); x = NULL; }
6304 /* Free the native string and symbol tables. */
6305 FREE (obj_som_symtab (abfd));
6306 FREE (obj_som_stringtab (abfd));
6307 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
6308 {
6309 /* Free the native relocations. */
6310 o->reloc_count = (unsigned) -1;
6311 FREE (som_section_data (o)->reloc_stream);
6312 /* Free the generic relocations. */
6313 FREE (o->relocation);
6314 }
6315 #undef FREE
6316
6317 return TRUE;
6318 }
6319
6320 /* End of miscellaneous support functions. */
6321
6322 /* Linker support functions. */
6323
6324 static bfd_boolean
6325 som_bfd_link_split_section (abfd, sec)
6326 bfd *abfd ATTRIBUTE_UNUSED;
6327 asection *sec;
6328 {
6329 return (som_is_subspace (sec) && sec->_raw_size > 240000);
6330 }
6331
6332 #define som_close_and_cleanup som_bfd_free_cached_info
6333
6334 #define som_read_ar_hdr _bfd_generic_read_ar_hdr
6335 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
6336 #define som_get_elt_at_index _bfd_generic_get_elt_at_index
6337 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
6338 #define som_truncate_arname bfd_bsd_truncate_arname
6339 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
6340 #define som_construct_extended_name_table \
6341 _bfd_archive_coff_construct_extended_name_table
6342 #define som_update_armap_timestamp bfd_true
6343 #define som_bfd_print_private_bfd_data _bfd_generic_bfd_print_private_bfd_data
6344
6345 #define som_get_lineno _bfd_nosymbols_get_lineno
6346 #define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol
6347 #define som_read_minisymbols _bfd_generic_read_minisymbols
6348 #define som_minisymbol_to_symbol _bfd_generic_minisymbol_to_symbol
6349 #define som_get_section_contents_in_window \
6350 _bfd_generic_get_section_contents_in_window
6351
6352 #define som_bfd_get_relocated_section_contents \
6353 bfd_generic_get_relocated_section_contents
6354 #define som_bfd_relax_section bfd_generic_relax_section
6355 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
6356 #define som_bfd_link_hash_table_free _bfd_generic_link_hash_table_free
6357 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
6358 #define som_bfd_link_just_syms _bfd_generic_link_just_syms
6359 #define som_bfd_final_link _bfd_generic_final_link
6360
6361 #define som_bfd_gc_sections bfd_generic_gc_sections
6362 #define som_bfd_merge_sections bfd_generic_merge_sections
6363 #define som_bfd_discard_group bfd_generic_discard_group
6364
6365 const bfd_target som_vec = {
6366 "som", /* name */
6367 bfd_target_som_flavour,
6368 BFD_ENDIAN_BIG, /* target byte order */
6369 BFD_ENDIAN_BIG, /* target headers byte order */
6370 (HAS_RELOC | EXEC_P | /* object flags */
6371 HAS_LINENO | HAS_DEBUG |
6372 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
6373 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
6374 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
6375
6376 /* leading_symbol_char: is the first char of a user symbol
6377 predictable, and if so what is it. */
6378 0,
6379 '/', /* ar_pad_char */
6380 14, /* ar_max_namelen */
6381 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
6382 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
6383 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
6384 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
6385 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
6386 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
6387 {_bfd_dummy_target,
6388 som_object_p, /* bfd_check_format */
6389 bfd_generic_archive_p,
6390 _bfd_dummy_target
6391 },
6392 {
6393 bfd_false,
6394 som_mkobject,
6395 _bfd_generic_mkarchive,
6396 bfd_false
6397 },
6398 {
6399 bfd_false,
6400 som_write_object_contents,
6401 _bfd_write_archive_contents,
6402 bfd_false,
6403 },
6404 #undef som
6405
6406 BFD_JUMP_TABLE_GENERIC (som),
6407 BFD_JUMP_TABLE_COPY (som),
6408 BFD_JUMP_TABLE_CORE (_bfd_nocore),
6409 BFD_JUMP_TABLE_ARCHIVE (som),
6410 BFD_JUMP_TABLE_SYMBOLS (som),
6411 BFD_JUMP_TABLE_RELOCS (som),
6412 BFD_JUMP_TABLE_WRITE (som),
6413 BFD_JUMP_TABLE_LINK (som),
6414 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
6415
6416 NULL,
6417
6418 (PTR) 0
6419 };
6420
6421 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */
This page took 0.274073 seconds and 5 git commands to generate.