2000-12-14 Kazu Hirata <kazu@hxi.com>
[deliverable/binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 91, 92, 93, 94, 95, 96, 97, 1998, 2000
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah.
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
24
25 #include "alloca-conf.h"
26 #include "bfd.h"
27 #include "sysdep.h"
28
29 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF) || defined(HOST_HPPAMPEIX)
30
31 #include "libbfd.h"
32 #include "som.h"
33
34 #include <sys/param.h>
35 #include <signal.h>
36 #include <machine/reg.h>
37 #include <sys/file.h>
38 #include <ctype.h>
39
40 /* Magic not defined in standard HP-UX header files until 8.0 */
41
42 #ifndef CPU_PA_RISC1_0
43 #define CPU_PA_RISC1_0 0x20B
44 #endif /* CPU_PA_RISC1_0 */
45
46 #ifndef CPU_PA_RISC1_1
47 #define CPU_PA_RISC1_1 0x210
48 #endif /* CPU_PA_RISC1_1 */
49
50 #ifndef CPU_PA_RISC2_0
51 #define CPU_PA_RISC2_0 0x214
52 #endif /* CPU_PA_RISC2_0 */
53
54 #ifndef _PA_RISC1_0_ID
55 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
56 #endif /* _PA_RISC1_0_ID */
57
58 #ifndef _PA_RISC1_1_ID
59 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
60 #endif /* _PA_RISC1_1_ID */
61
62 #ifndef _PA_RISC2_0_ID
63 #define _PA_RISC2_0_ID CPU_PA_RISC2_0
64 #endif /* _PA_RISC2_0_ID */
65
66 #ifndef _PA_RISC_MAXID
67 #define _PA_RISC_MAXID 0x2FF
68 #endif /* _PA_RISC_MAXID */
69
70 #ifndef _PA_RISC_ID
71 #define _PA_RISC_ID(__m_num) \
72 (((__m_num) == _PA_RISC1_0_ID) || \
73 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
74 #endif /* _PA_RISC_ID */
75
76 /* HIUX in it's infinite stupidity changed the names for several "well
77 known" constants. Work around such braindamage. Try the HPUX version
78 first, then the HIUX version, and finally provide a default. */
79 #ifdef HPUX_AUX_ID
80 #define EXEC_AUX_ID HPUX_AUX_ID
81 #endif
82
83 #if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID)
84 #define EXEC_AUX_ID HIUX_AUX_ID
85 #endif
86
87 #ifndef EXEC_AUX_ID
88 #define EXEC_AUX_ID 0
89 #endif
90
91 /* Size (in chars) of the temporary buffers used during fixup and string
92 table writes. */
93
94 #define SOM_TMP_BUFSIZE 8192
95
96 /* Size of the hash table in archives. */
97 #define SOM_LST_HASH_SIZE 31
98
99 /* Max number of SOMs to be found in an archive. */
100 #define SOM_LST_MODULE_LIMIT 1024
101
102 /* Generic alignment macro. */
103 #define SOM_ALIGN(val, alignment) \
104 (((val) + (alignment) - 1) & ~((alignment) - 1))
105
106 /* SOM allows any one of the four previous relocations to be reused
107 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
108 relocations are always a single byte, using a R_PREV_FIXUP instead
109 of some multi-byte relocation makes object files smaller.
110
111 Note one side effect of using a R_PREV_FIXUP is the relocation that
112 is being repeated moves to the front of the queue. */
113 struct reloc_queue
114 {
115 unsigned char *reloc;
116 unsigned int size;
117 } reloc_queue[4];
118
119 /* This fully describes the symbol types which may be attached to
120 an EXPORT or IMPORT directive. Only SOM uses this formation
121 (ELF has no need for it). */
122 typedef enum
123 {
124 SYMBOL_TYPE_UNKNOWN,
125 SYMBOL_TYPE_ABSOLUTE,
126 SYMBOL_TYPE_CODE,
127 SYMBOL_TYPE_DATA,
128 SYMBOL_TYPE_ENTRY,
129 SYMBOL_TYPE_MILLICODE,
130 SYMBOL_TYPE_PLABEL,
131 SYMBOL_TYPE_PRI_PROG,
132 SYMBOL_TYPE_SEC_PROG,
133 } pa_symbol_type;
134
135 struct section_to_type
136 {
137 char *section;
138 char type;
139 };
140
141 /* Assorted symbol information that needs to be derived from the BFD symbol
142 and/or the BFD backend private symbol data. */
143 struct som_misc_symbol_info
144 {
145 unsigned int symbol_type;
146 unsigned int symbol_scope;
147 unsigned int arg_reloc;
148 unsigned int symbol_info;
149 unsigned int symbol_value;
150 unsigned int priv_level;
151 unsigned int secondary_def;
152 };
153
154 /* Forward declarations */
155
156 static boolean som_mkobject PARAMS ((bfd *));
157 static const bfd_target * som_object_setup PARAMS ((bfd *,
158 struct header *,
159 struct som_exec_auxhdr *,
160 unsigned long));
161 static boolean setup_sections PARAMS ((bfd *, struct header *, unsigned long));
162 static const bfd_target * som_object_p PARAMS ((bfd *));
163 static boolean som_write_object_contents PARAMS ((bfd *));
164 static boolean som_slurp_string_table PARAMS ((bfd *));
165 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
166 static long som_get_symtab_upper_bound PARAMS ((bfd *));
167 static long som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
168 arelent **, asymbol **));
169 static long som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
170 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
171 arelent *, asection *,
172 asymbol **, boolean));
173 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
174 asymbol **, boolean));
175 static long som_get_symtab PARAMS ((bfd *, asymbol **));
176 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
177 static void som_print_symbol PARAMS ((bfd *, PTR,
178 asymbol *, bfd_print_symbol_type));
179 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
180 static boolean som_bfd_copy_private_symbol_data PARAMS ((bfd *, asymbol *,
181 bfd *, asymbol *));
182 static boolean som_bfd_copy_private_section_data PARAMS ((bfd *, asection *,
183 bfd *, asection *));
184 static boolean som_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *));
185 #define som_bfd_merge_private_bfd_data _bfd_generic_bfd_merge_private_bfd_data
186 #define som_bfd_set_private_flags _bfd_generic_bfd_set_private_flags
187 static boolean som_bfd_is_local_label_name PARAMS ((bfd *, const char *));
188 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
189 file_ptr, bfd_size_type));
190 static boolean som_get_section_contents PARAMS ((bfd *, sec_ptr, PTR,
191 file_ptr, bfd_size_type));
192 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
193 unsigned long));
194 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
195 asymbol **, bfd_vma,
196 CONST char **,
197 CONST char **,
198 unsigned int *));
199 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
200 static asection * bfd_section_from_som_symbol PARAMS ((bfd *,
201 struct symbol_dictionary_record *));
202 static int log2 PARAMS ((unsigned int));
203 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
204 asymbol *, PTR,
205 asection *, bfd *,
206 char **));
207 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
208 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
209 struct reloc_queue *));
210 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
211 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
212 struct reloc_queue *));
213 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
214 unsigned int,
215 struct reloc_queue *));
216
217 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
218 unsigned char *, unsigned int *,
219 struct reloc_queue *));
220 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
221 unsigned int *,
222 struct reloc_queue *));
223 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
224 unsigned int *,
225 arelent *, int,
226 struct reloc_queue *));
227 static unsigned long som_count_spaces PARAMS ((bfd *));
228 static unsigned long som_count_subspaces PARAMS ((bfd *));
229 static int compare_syms PARAMS ((const void *, const void *));
230 static int compare_subspaces PARAMS ((const void *, const void *));
231 static unsigned long som_compute_checksum PARAMS ((bfd *));
232 static boolean som_prep_headers PARAMS ((bfd *));
233 static int som_sizeof_headers PARAMS ((bfd *, boolean));
234 static boolean som_finish_writing PARAMS ((bfd *));
235 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
236 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
237 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
238 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
239 unsigned int *));
240 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
241 asymbol **, unsigned int,
242 unsigned *,
243 COMPUNIT *));
244 static boolean som_begin_writing PARAMS ((bfd *));
245 static reloc_howto_type * som_bfd_reloc_type_lookup
246 PARAMS ((bfd *, bfd_reloc_code_real_type));
247 static char som_section_type PARAMS ((const char *));
248 static int som_decode_symclass PARAMS ((asymbol *));
249 static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
250 symindex *));
251
252 static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
253 carsym **syms));
254 static boolean som_slurp_armap PARAMS ((bfd *));
255 static boolean som_write_armap PARAMS ((bfd *, unsigned int, struct orl *,
256 unsigned int, int));
257 static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
258 struct som_misc_symbol_info *));
259 static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
260 unsigned int *));
261 static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
262 static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
263 unsigned int,
264 struct lst_header,
265 unsigned int));
266 static boolean som_is_space PARAMS ((asection *));
267 static boolean som_is_subspace PARAMS ((asection *));
268 static boolean som_is_container PARAMS ((asection *, asection *));
269 static boolean som_bfd_free_cached_info PARAMS ((bfd *));
270 static boolean som_bfd_link_split_section PARAMS ((bfd *, asection *));
271
272 /* Map SOM section names to POSIX/BSD single-character symbol types.
273
274 This table includes all the standard subspaces as defined in the
275 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
276 some reason was left out, and sections specific to embedded stabs. */
277
278 static const struct section_to_type stt[] = {
279 {"$TEXT$", 't'},
280 {"$SHLIB_INFO$", 't'},
281 {"$MILLICODE$", 't'},
282 {"$LIT$", 't'},
283 {"$CODE$", 't'},
284 {"$UNWIND_START$", 't'},
285 {"$UNWIND$", 't'},
286 {"$PRIVATE$", 'd'},
287 {"$PLT$", 'd'},
288 {"$SHLIB_DATA$", 'd'},
289 {"$DATA$", 'd'},
290 {"$SHORTDATA$", 'g'},
291 {"$DLT$", 'd'},
292 {"$GLOBAL$", 'g'},
293 {"$SHORTBSS$", 's'},
294 {"$BSS$", 'b'},
295 {"$GDB_STRINGS$", 'N'},
296 {"$GDB_SYMBOLS$", 'N'},
297 {0, 0}
298 };
299
300 /* About the relocation formatting table...
301
302 There are 256 entries in the table, one for each possible
303 relocation opcode available in SOM. We index the table by
304 the relocation opcode. The names and operations are those
305 defined by a.out_800 (4).
306
307 Right now this table is only used to count and perform minimal
308 processing on relocation streams so that they can be internalized
309 into BFD and symbolically printed by utilities. To make actual use
310 of them would be much more difficult, BFD's concept of relocations
311 is far too simple to handle SOM relocations. The basic assumption
312 that a relocation can be completely processed independent of other
313 relocations before an object file is written is invalid for SOM.
314
315 The SOM relocations are meant to be processed as a stream, they
316 specify copying of data from the input section to the output section
317 while possibly modifying the data in some manner. They also can
318 specify that a variable number of zeros or uninitialized data be
319 inserted on in the output segment at the current offset. Some
320 relocations specify that some previous relocation be re-applied at
321 the current location in the input/output sections. And finally a number
322 of relocations have effects on other sections (R_ENTRY, R_EXIT,
323 R_UNWIND_AUX and a variety of others). There isn't even enough room
324 in the BFD relocation data structure to store enough information to
325 perform all the relocations.
326
327 Each entry in the table has three fields.
328
329 The first entry is an index into this "class" of relocations. This
330 index can then be used as a variable within the relocation itself.
331
332 The second field is a format string which actually controls processing
333 of the relocation. It uses a simple postfix machine to do calculations
334 based on variables/constants found in the string and the relocation
335 stream.
336
337 The third field specifys whether or not this relocation may use
338 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
339 stored in the instruction.
340
341 Variables:
342
343 L = input space byte count
344 D = index into class of relocations
345 M = output space byte count
346 N = statement number (unused?)
347 O = stack operation
348 R = parameter relocation bits
349 S = symbol index
350 T = first 32 bits of stack unwind information
351 U = second 32 bits of stack unwind information
352 V = a literal constant (usually used in the next relocation)
353 P = a previous relocation
354
355 Lower case letters (starting with 'b') refer to following
356 bytes in the relocation stream. 'b' is the next 1 byte,
357 c is the next 2 bytes, d is the next 3 bytes, etc...
358 This is the variable part of the relocation entries that
359 makes our life a living hell.
360
361 numerical constants are also used in the format string. Note
362 the constants are represented in decimal.
363
364 '+', "*" and "=" represents the obvious postfix operators.
365 '<' represents a left shift.
366
367 Stack Operations:
368
369 Parameter Relocation Bits:
370
371 Unwind Entries:
372
373 Previous Relocations: The index field represents which in the queue
374 of 4 previous fixups should be re-applied.
375
376 Literal Constants: These are generally used to represent addend
377 parts of relocations when these constants are not stored in the
378 fields of the instructions themselves. For example the instruction
379 addil foo-$global$-0x1234 would use an override for "0x1234" rather
380 than storing it into the addil itself. */
381
382 struct fixup_format
383 {
384 int D;
385 const char *format;
386 };
387
388 static const struct fixup_format som_fixup_formats[256] =
389 {
390 /* R_NO_RELOCATION */
391 0, "LD1+4*=", /* 0x00 */
392 1, "LD1+4*=", /* 0x01 */
393 2, "LD1+4*=", /* 0x02 */
394 3, "LD1+4*=", /* 0x03 */
395 4, "LD1+4*=", /* 0x04 */
396 5, "LD1+4*=", /* 0x05 */
397 6, "LD1+4*=", /* 0x06 */
398 7, "LD1+4*=", /* 0x07 */
399 8, "LD1+4*=", /* 0x08 */
400 9, "LD1+4*=", /* 0x09 */
401 10, "LD1+4*=", /* 0x0a */
402 11, "LD1+4*=", /* 0x0b */
403 12, "LD1+4*=", /* 0x0c */
404 13, "LD1+4*=", /* 0x0d */
405 14, "LD1+4*=", /* 0x0e */
406 15, "LD1+4*=", /* 0x0f */
407 16, "LD1+4*=", /* 0x10 */
408 17, "LD1+4*=", /* 0x11 */
409 18, "LD1+4*=", /* 0x12 */
410 19, "LD1+4*=", /* 0x13 */
411 20, "LD1+4*=", /* 0x14 */
412 21, "LD1+4*=", /* 0x15 */
413 22, "LD1+4*=", /* 0x16 */
414 23, "LD1+4*=", /* 0x17 */
415 0, "LD8<b+1+4*=", /* 0x18 */
416 1, "LD8<b+1+4*=", /* 0x19 */
417 2, "LD8<b+1+4*=", /* 0x1a */
418 3, "LD8<b+1+4*=", /* 0x1b */
419 0, "LD16<c+1+4*=", /* 0x1c */
420 1, "LD16<c+1+4*=", /* 0x1d */
421 2, "LD16<c+1+4*=", /* 0x1e */
422 0, "Ld1+=", /* 0x1f */
423 /* R_ZEROES */
424 0, "Lb1+4*=", /* 0x20 */
425 1, "Ld1+=", /* 0x21 */
426 /* R_UNINIT */
427 0, "Lb1+4*=", /* 0x22 */
428 1, "Ld1+=", /* 0x23 */
429 /* R_RELOCATION */
430 0, "L4=", /* 0x24 */
431 /* R_DATA_ONE_SYMBOL */
432 0, "L4=Sb=", /* 0x25 */
433 1, "L4=Sd=", /* 0x26 */
434 /* R_DATA_PLEBEL */
435 0, "L4=Sb=", /* 0x27 */
436 1, "L4=Sd=", /* 0x28 */
437 /* R_SPACE_REF */
438 0, "L4=", /* 0x29 */
439 /* R_REPEATED_INIT */
440 0, "L4=Mb1+4*=", /* 0x2a */
441 1, "Lb4*=Mb1+L*=", /* 0x2b */
442 2, "Lb4*=Md1+4*=", /* 0x2c */
443 3, "Ld1+=Me1+=", /* 0x2d */
444 0, "", /* 0x2e */
445 0, "", /* 0x2f */
446 /* R_PCREL_CALL */
447 0, "L4=RD=Sb=", /* 0x30 */
448 1, "L4=RD=Sb=", /* 0x31 */
449 2, "L4=RD=Sb=", /* 0x32 */
450 3, "L4=RD=Sb=", /* 0x33 */
451 4, "L4=RD=Sb=", /* 0x34 */
452 5, "L4=RD=Sb=", /* 0x35 */
453 6, "L4=RD=Sb=", /* 0x36 */
454 7, "L4=RD=Sb=", /* 0x37 */
455 8, "L4=RD=Sb=", /* 0x38 */
456 9, "L4=RD=Sb=", /* 0x39 */
457 0, "L4=RD8<b+=Sb=",/* 0x3a */
458 1, "L4=RD8<b+=Sb=",/* 0x3b */
459 0, "L4=RD8<b+=Sd=",/* 0x3c */
460 1, "L4=RD8<b+=Sd=",/* 0x3d */
461 /* R_SHORT_PCREL_MODE */
462 0, "", /* 0x3e */
463 /* R_LONG_PCREL_MODE */
464 0, "", /* 0x3f */
465 /* R_ABS_CALL */
466 0, "L4=RD=Sb=", /* 0x40 */
467 1, "L4=RD=Sb=", /* 0x41 */
468 2, "L4=RD=Sb=", /* 0x42 */
469 3, "L4=RD=Sb=", /* 0x43 */
470 4, "L4=RD=Sb=", /* 0x44 */
471 5, "L4=RD=Sb=", /* 0x45 */
472 6, "L4=RD=Sb=", /* 0x46 */
473 7, "L4=RD=Sb=", /* 0x47 */
474 8, "L4=RD=Sb=", /* 0x48 */
475 9, "L4=RD=Sb=", /* 0x49 */
476 0, "L4=RD8<b+=Sb=",/* 0x4a */
477 1, "L4=RD8<b+=Sb=",/* 0x4b */
478 0, "L4=RD8<b+=Sd=",/* 0x4c */
479 1, "L4=RD8<b+=Sd=",/* 0x4d */
480 /* R_RESERVED */
481 0, "", /* 0x4e */
482 0, "", /* 0x4f */
483 /* R_DP_RELATIVE */
484 0, "L4=SD=", /* 0x50 */
485 1, "L4=SD=", /* 0x51 */
486 2, "L4=SD=", /* 0x52 */
487 3, "L4=SD=", /* 0x53 */
488 4, "L4=SD=", /* 0x54 */
489 5, "L4=SD=", /* 0x55 */
490 6, "L4=SD=", /* 0x56 */
491 7, "L4=SD=", /* 0x57 */
492 8, "L4=SD=", /* 0x58 */
493 9, "L4=SD=", /* 0x59 */
494 10, "L4=SD=", /* 0x5a */
495 11, "L4=SD=", /* 0x5b */
496 12, "L4=SD=", /* 0x5c */
497 13, "L4=SD=", /* 0x5d */
498 14, "L4=SD=", /* 0x5e */
499 15, "L4=SD=", /* 0x5f */
500 16, "L4=SD=", /* 0x60 */
501 17, "L4=SD=", /* 0x61 */
502 18, "L4=SD=", /* 0x62 */
503 19, "L4=SD=", /* 0x63 */
504 20, "L4=SD=", /* 0x64 */
505 21, "L4=SD=", /* 0x65 */
506 22, "L4=SD=", /* 0x66 */
507 23, "L4=SD=", /* 0x67 */
508 24, "L4=SD=", /* 0x68 */
509 25, "L4=SD=", /* 0x69 */
510 26, "L4=SD=", /* 0x6a */
511 27, "L4=SD=", /* 0x6b */
512 28, "L4=SD=", /* 0x6c */
513 29, "L4=SD=", /* 0x6d */
514 30, "L4=SD=", /* 0x6e */
515 31, "L4=SD=", /* 0x6f */
516 32, "L4=Sb=", /* 0x70 */
517 33, "L4=Sd=", /* 0x71 */
518 /* R_RESERVED */
519 0, "", /* 0x72 */
520 0, "", /* 0x73 */
521 0, "", /* 0x74 */
522 0, "", /* 0x75 */
523 0, "", /* 0x76 */
524 0, "", /* 0x77 */
525 /* R_DLT_REL */
526 0, "L4=Sb=", /* 0x78 */
527 1, "L4=Sd=", /* 0x79 */
528 /* R_RESERVED */
529 0, "", /* 0x7a */
530 0, "", /* 0x7b */
531 0, "", /* 0x7c */
532 0, "", /* 0x7d */
533 0, "", /* 0x7e */
534 0, "", /* 0x7f */
535 /* R_CODE_ONE_SYMBOL */
536 0, "L4=SD=", /* 0x80 */
537 1, "L4=SD=", /* 0x81 */
538 2, "L4=SD=", /* 0x82 */
539 3, "L4=SD=", /* 0x83 */
540 4, "L4=SD=", /* 0x84 */
541 5, "L4=SD=", /* 0x85 */
542 6, "L4=SD=", /* 0x86 */
543 7, "L4=SD=", /* 0x87 */
544 8, "L4=SD=", /* 0x88 */
545 9, "L4=SD=", /* 0x89 */
546 10, "L4=SD=", /* 0x8q */
547 11, "L4=SD=", /* 0x8b */
548 12, "L4=SD=", /* 0x8c */
549 13, "L4=SD=", /* 0x8d */
550 14, "L4=SD=", /* 0x8e */
551 15, "L4=SD=", /* 0x8f */
552 16, "L4=SD=", /* 0x90 */
553 17, "L4=SD=", /* 0x91 */
554 18, "L4=SD=", /* 0x92 */
555 19, "L4=SD=", /* 0x93 */
556 20, "L4=SD=", /* 0x94 */
557 21, "L4=SD=", /* 0x95 */
558 22, "L4=SD=", /* 0x96 */
559 23, "L4=SD=", /* 0x97 */
560 24, "L4=SD=", /* 0x98 */
561 25, "L4=SD=", /* 0x99 */
562 26, "L4=SD=", /* 0x9a */
563 27, "L4=SD=", /* 0x9b */
564 28, "L4=SD=", /* 0x9c */
565 29, "L4=SD=", /* 0x9d */
566 30, "L4=SD=", /* 0x9e */
567 31, "L4=SD=", /* 0x9f */
568 32, "L4=Sb=", /* 0xa0 */
569 33, "L4=Sd=", /* 0xa1 */
570 /* R_RESERVED */
571 0, "", /* 0xa2 */
572 0, "", /* 0xa3 */
573 0, "", /* 0xa4 */
574 0, "", /* 0xa5 */
575 0, "", /* 0xa6 */
576 0, "", /* 0xa7 */
577 0, "", /* 0xa8 */
578 0, "", /* 0xa9 */
579 0, "", /* 0xaa */
580 0, "", /* 0xab */
581 0, "", /* 0xac */
582 0, "", /* 0xad */
583 /* R_MILLI_REL */
584 0, "L4=Sb=", /* 0xae */
585 1, "L4=Sd=", /* 0xaf */
586 /* R_CODE_PLABEL */
587 0, "L4=Sb=", /* 0xb0 */
588 1, "L4=Sd=", /* 0xb1 */
589 /* R_BREAKPOINT */
590 0, "L4=", /* 0xb2 */
591 /* R_ENTRY */
592 0, "Te=Ue=", /* 0xb3 */
593 1, "Uf=", /* 0xb4 */
594 /* R_ALT_ENTRY */
595 0, "", /* 0xb5 */
596 /* R_EXIT */
597 0, "", /* 0xb6 */
598 /* R_BEGIN_TRY */
599 0, "", /* 0xb7 */
600 /* R_END_TRY */
601 0, "R0=", /* 0xb8 */
602 1, "Rb4*=", /* 0xb9 */
603 2, "Rd4*=", /* 0xba */
604 /* R_BEGIN_BRTAB */
605 0, "", /* 0xbb */
606 /* R_END_BRTAB */
607 0, "", /* 0xbc */
608 /* R_STATEMENT */
609 0, "Nb=", /* 0xbd */
610 1, "Nc=", /* 0xbe */
611 2, "Nd=", /* 0xbf */
612 /* R_DATA_EXPR */
613 0, "L4=", /* 0xc0 */
614 /* R_CODE_EXPR */
615 0, "L4=", /* 0xc1 */
616 /* R_FSEL */
617 0, "", /* 0xc2 */
618 /* R_LSEL */
619 0, "", /* 0xc3 */
620 /* R_RSEL */
621 0, "", /* 0xc4 */
622 /* R_N_MODE */
623 0, "", /* 0xc5 */
624 /* R_S_MODE */
625 0, "", /* 0xc6 */
626 /* R_D_MODE */
627 0, "", /* 0xc7 */
628 /* R_R_MODE */
629 0, "", /* 0xc8 */
630 /* R_DATA_OVERRIDE */
631 0, "V0=", /* 0xc9 */
632 1, "Vb=", /* 0xca */
633 2, "Vc=", /* 0xcb */
634 3, "Vd=", /* 0xcc */
635 4, "Ve=", /* 0xcd */
636 /* R_TRANSLATED */
637 0, "", /* 0xce */
638 /* R_AUX_UNWIND */
639 0, "Sd=Vf=Ef=", /* 0xcf */
640 /* R_COMP1 */
641 0, "Ob=", /* 0xd0 */
642 /* R_COMP2 */
643 0, "Ob=Sd=", /* 0xd1 */
644 /* R_COMP3 */
645 0, "Ob=Ve=", /* 0xd2 */
646 /* R_PREV_FIXUP */
647 0, "P", /* 0xd3 */
648 1, "P", /* 0xd4 */
649 2, "P", /* 0xd5 */
650 3, "P", /* 0xd6 */
651 /* R_SEC_STMT */
652 0, "", /* 0xd7 */
653 /* R_N0SEL */
654 0, "", /* 0xd8 */
655 /* R_N1SEL */
656 0, "", /* 0xd9 */
657 /* R_LINETAB */
658 0, "Eb=Sd=Ve=", /* 0xda */
659 /* R_LINETAB_ESC */
660 0, "Eb=Mb=", /* 0xdb */
661 /* R_LTP_OVERRIDE */
662 0, "", /* 0xdc */
663 /* R_COMMENT */
664 0, "Ob=Ve=", /* 0xdd */
665 /* R_RESERVED */
666 0, "", /* 0xde */
667 0, "", /* 0xdf */
668 0, "", /* 0xe0 */
669 0, "", /* 0xe1 */
670 0, "", /* 0xe2 */
671 0, "", /* 0xe3 */
672 0, "", /* 0xe4 */
673 0, "", /* 0xe5 */
674 0, "", /* 0xe6 */
675 0, "", /* 0xe7 */
676 0, "", /* 0xe8 */
677 0, "", /* 0xe9 */
678 0, "", /* 0xea */
679 0, "", /* 0xeb */
680 0, "", /* 0xec */
681 0, "", /* 0xed */
682 0, "", /* 0xee */
683 0, "", /* 0xef */
684 0, "", /* 0xf0 */
685 0, "", /* 0xf1 */
686 0, "", /* 0xf2 */
687 0, "", /* 0xf3 */
688 0, "", /* 0xf4 */
689 0, "", /* 0xf5 */
690 0, "", /* 0xf6 */
691 0, "", /* 0xf7 */
692 0, "", /* 0xf8 */
693 0, "", /* 0xf9 */
694 0, "", /* 0xfa */
695 0, "", /* 0xfb */
696 0, "", /* 0xfc */
697 0, "", /* 0xfd */
698 0, "", /* 0xfe */
699 0, "", /* 0xff */
700 };
701
702 static const int comp1_opcodes[] =
703 {
704 0x00,
705 0x40,
706 0x41,
707 0x42,
708 0x43,
709 0x44,
710 0x45,
711 0x46,
712 0x47,
713 0x48,
714 0x49,
715 0x4a,
716 0x4b,
717 0x60,
718 0x80,
719 0xa0,
720 0xc0,
721 -1
722 };
723
724 static const int comp2_opcodes[] =
725 {
726 0x00,
727 0x80,
728 0x82,
729 0xc0,
730 -1
731 };
732
733 static const int comp3_opcodes[] =
734 {
735 0x00,
736 0x02,
737 -1
738 };
739
740 /* These apparently are not in older versions of hpux reloc.h (hpux7). */
741 #ifndef R_DLT_REL
742 #define R_DLT_REL 0x78
743 #endif
744
745 #ifndef R_AUX_UNWIND
746 #define R_AUX_UNWIND 0xcf
747 #endif
748
749 #ifndef R_SEC_STMT
750 #define R_SEC_STMT 0xd7
751 #endif
752
753 /* And these first appeared in hpux10. */
754 #ifndef R_SHORT_PCREL_MODE
755 #define NO_PCREL_MODES
756 #define R_SHORT_PCREL_MODE 0x3e
757 #endif
758
759 #ifndef R_LONG_PCREL_MODE
760 #define R_LONG_PCREL_MODE 0x3f
761 #endif
762
763 #ifndef R_N0SEL
764 #define R_N0SEL 0xd8
765 #endif
766
767 #ifndef R_N1SEL
768 #define R_N1SEL 0xd9
769 #endif
770
771 #ifndef R_LINETAB
772 #define R_LINETAB 0xda
773 #endif
774
775 #ifndef R_LINETAB_ESC
776 #define R_LINETAB_ESC 0xdb
777 #endif
778
779 #ifndef R_LTP_OVERRIDE
780 #define R_LTP_OVERRIDE 0xdc
781 #endif
782
783 #ifndef R_COMMENT
784 #define R_COMMENT 0xdd
785 #endif
786
787 #define SOM_HOWTO(TYPE, NAME) \
788 HOWTO(TYPE, 0, 0, 32, false, 0, 0, hppa_som_reloc, NAME, false, 0, 0, false)
789
790 static reloc_howto_type som_hppa_howto_table[] =
791 {
792 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
793 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
794 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
795 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
796 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
797 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
798 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
799 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
800 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
801 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
802 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
803 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
804 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
805 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
806 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
807 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
808 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
809 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
810 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
811 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
812 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
813 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
814 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
815 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
816 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
817 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
818 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
819 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
820 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
821 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
822 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
823 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
824 SOM_HOWTO (R_ZEROES, "R_ZEROES"),
825 SOM_HOWTO (R_ZEROES, "R_ZEROES"),
826 SOM_HOWTO (R_UNINIT, "R_UNINIT"),
827 SOM_HOWTO (R_UNINIT, "R_UNINIT"),
828 SOM_HOWTO (R_RELOCATION, "R_RELOCATION"),
829 SOM_HOWTO (R_DATA_ONE_SYMBOL, "R_DATA_ONE_SYMBOL"),
830 SOM_HOWTO (R_DATA_ONE_SYMBOL, "R_DATA_ONE_SYMBOL"),
831 SOM_HOWTO (R_DATA_PLABEL, "R_DATA_PLABEL"),
832 SOM_HOWTO (R_DATA_PLABEL, "R_DATA_PLABEL"),
833 SOM_HOWTO (R_SPACE_REF, "R_SPACE_REF"),
834 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
835 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
836 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
837 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
838 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
839 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
840 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
841 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
842 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
843 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
844 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
845 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
846 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
847 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
848 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
849 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
850 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
851 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
852 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
853 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
854 SOM_HOWTO (R_SHORT_PCREL_MODE, "R_SHORT_PCREL_MODE"),
855 SOM_HOWTO (R_LONG_PCREL_MODE, "R_LONG_PCREL_MODE"),
856 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
857 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
858 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
859 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
860 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
861 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
862 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
863 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
864 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
865 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
866 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
867 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
868 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
869 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
870 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
871 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
872 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
873 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
874 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
875 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
876 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
877 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
878 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
879 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
880 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
881 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
882 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
883 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
884 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
885 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
886 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
887 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
888 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
889 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
890 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
891 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
892 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
893 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
894 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
895 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
896 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
897 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
898 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
899 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
900 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
901 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
902 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
903 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
904 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
905 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
906 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
907 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
908 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
909 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
910 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
911 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
912 SOM_HOWTO (R_DLT_REL, "R_DLT_REL"),
913 SOM_HOWTO (R_DLT_REL, "R_DLT_REL"),
914 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
915 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
916 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
917 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
918 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
919 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
920 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
921 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
922 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
923 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
924 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
925 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
926 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
927 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
928 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
929 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
930 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
931 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
932 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
933 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
934 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
935 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
936 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
937 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
938 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
939 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
940 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
941 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
942 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
943 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
944 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
945 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
946 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
947 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
948 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
949 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
950 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
951 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
952 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
953 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
954 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
955 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
956 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
957 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
958 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
959 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
960 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
961 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
962 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
963 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
964 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
965 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
966 SOM_HOWTO (R_MILLI_REL, "R_MILLI_REL"),
967 SOM_HOWTO (R_MILLI_REL, "R_MILLI_REL"),
968 SOM_HOWTO (R_CODE_PLABEL, "R_CODE_PLABEL"),
969 SOM_HOWTO (R_CODE_PLABEL, "R_CODE_PLABEL"),
970 SOM_HOWTO (R_BREAKPOINT, "R_BREAKPOINT"),
971 SOM_HOWTO (R_ENTRY, "R_ENTRY"),
972 SOM_HOWTO (R_ENTRY, "R_ENTRY"),
973 SOM_HOWTO (R_ALT_ENTRY, "R_ALT_ENTRY"),
974 SOM_HOWTO (R_EXIT, "R_EXIT"),
975 SOM_HOWTO (R_BEGIN_TRY, "R_BEGIN_TRY"),
976 SOM_HOWTO (R_END_TRY, "R_END_TRY"),
977 SOM_HOWTO (R_END_TRY, "R_END_TRY"),
978 SOM_HOWTO (R_END_TRY, "R_END_TRY"),
979 SOM_HOWTO (R_BEGIN_BRTAB, "R_BEGIN_BRTAB"),
980 SOM_HOWTO (R_END_BRTAB, "R_END_BRTAB"),
981 SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
982 SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
983 SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
984 SOM_HOWTO (R_DATA_EXPR, "R_DATA_EXPR"),
985 SOM_HOWTO (R_CODE_EXPR, "R_CODE_EXPR"),
986 SOM_HOWTO (R_FSEL, "R_FSEL"),
987 SOM_HOWTO (R_LSEL, "R_LSEL"),
988 SOM_HOWTO (R_RSEL, "R_RSEL"),
989 SOM_HOWTO (R_N_MODE, "R_N_MODE"),
990 SOM_HOWTO (R_S_MODE, "R_S_MODE"),
991 SOM_HOWTO (R_D_MODE, "R_D_MODE"),
992 SOM_HOWTO (R_R_MODE, "R_R_MODE"),
993 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
994 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
995 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
996 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
997 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
998 SOM_HOWTO (R_TRANSLATED, "R_TRANSLATED"),
999 SOM_HOWTO (R_AUX_UNWIND, "R_AUX_UNWIND"),
1000 SOM_HOWTO (R_COMP1, "R_COMP1"),
1001 SOM_HOWTO (R_COMP2, "R_COMP2"),
1002 SOM_HOWTO (R_COMP3, "R_COMP3"),
1003 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
1004 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
1005 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
1006 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
1007 SOM_HOWTO (R_SEC_STMT, "R_SEC_STMT"),
1008 SOM_HOWTO (R_N0SEL, "R_N0SEL"),
1009 SOM_HOWTO (R_N1SEL, "R_N1SEL"),
1010 SOM_HOWTO (R_LINETAB, "R_LINETAB"),
1011 SOM_HOWTO (R_LINETAB_ESC, "R_LINETAB_ESC"),
1012 SOM_HOWTO (R_LTP_OVERRIDE, "R_LTP_OVERRIDE"),
1013 SOM_HOWTO (R_COMMENT, "R_COMMENT"),
1014 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1015 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1016 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1017 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1018 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1019 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1020 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1021 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1022 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1023 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1024 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1025 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1026 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1027 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1028 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1029 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1030 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1031 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1032 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1033 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1034 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1035 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1036 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1037 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1038 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1039 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1040 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1041 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1042 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1043 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1044 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1045 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1046 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1047 SOM_HOWTO (R_RESERVED, "R_RESERVED")};
1048
1049 /* Initialize the SOM relocation queue. By definition the queue holds
1050 the last four multibyte fixups. */
1051
1052 static void
1053 som_initialize_reloc_queue (queue)
1054 struct reloc_queue *queue;
1055 {
1056 queue[0].reloc = NULL;
1057 queue[0].size = 0;
1058 queue[1].reloc = NULL;
1059 queue[1].size = 0;
1060 queue[2].reloc = NULL;
1061 queue[2].size = 0;
1062 queue[3].reloc = NULL;
1063 queue[3].size = 0;
1064 }
1065
1066 /* Insert a new relocation into the relocation queue. */
1067
1068 static void
1069 som_reloc_queue_insert (p, size, queue)
1070 unsigned char *p;
1071 unsigned int size;
1072 struct reloc_queue *queue;
1073 {
1074 queue[3].reloc = queue[2].reloc;
1075 queue[3].size = queue[2].size;
1076 queue[2].reloc = queue[1].reloc;
1077 queue[2].size = queue[1].size;
1078 queue[1].reloc = queue[0].reloc;
1079 queue[1].size = queue[0].size;
1080 queue[0].reloc = p;
1081 queue[0].size = size;
1082 }
1083
1084 /* When an entry in the relocation queue is reused, the entry moves
1085 to the front of the queue. */
1086
1087 static void
1088 som_reloc_queue_fix (queue, index)
1089 struct reloc_queue *queue;
1090 unsigned int index;
1091 {
1092 if (index == 0)
1093 return;
1094
1095 if (index == 1)
1096 {
1097 unsigned char *tmp1 = queue[0].reloc;
1098 unsigned int tmp2 = queue[0].size;
1099 queue[0].reloc = queue[1].reloc;
1100 queue[0].size = queue[1].size;
1101 queue[1].reloc = tmp1;
1102 queue[1].size = tmp2;
1103 return;
1104 }
1105
1106 if (index == 2)
1107 {
1108 unsigned char *tmp1 = queue[0].reloc;
1109 unsigned int tmp2 = queue[0].size;
1110 queue[0].reloc = queue[2].reloc;
1111 queue[0].size = queue[2].size;
1112 queue[2].reloc = queue[1].reloc;
1113 queue[2].size = queue[1].size;
1114 queue[1].reloc = tmp1;
1115 queue[1].size = tmp2;
1116 return;
1117 }
1118
1119 if (index == 3)
1120 {
1121 unsigned char *tmp1 = queue[0].reloc;
1122 unsigned int tmp2 = queue[0].size;
1123 queue[0].reloc = queue[3].reloc;
1124 queue[0].size = queue[3].size;
1125 queue[3].reloc = queue[2].reloc;
1126 queue[3].size = queue[2].size;
1127 queue[2].reloc = queue[1].reloc;
1128 queue[2].size = queue[1].size;
1129 queue[1].reloc = tmp1;
1130 queue[1].size = tmp2;
1131 return;
1132 }
1133 abort ();
1134 }
1135
1136 /* Search for a particular relocation in the relocation queue. */
1137
1138 static int
1139 som_reloc_queue_find (p, size, queue)
1140 unsigned char *p;
1141 unsigned int size;
1142 struct reloc_queue *queue;
1143 {
1144 if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
1145 && size == queue[0].size)
1146 return 0;
1147 if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
1148 && size == queue[1].size)
1149 return 1;
1150 if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
1151 && size == queue[2].size)
1152 return 2;
1153 if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
1154 && size == queue[3].size)
1155 return 3;
1156 return -1;
1157 }
1158
1159 static unsigned char *
1160 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1161 bfd *abfd ATTRIBUTE_UNUSED;
1162 int *subspace_reloc_sizep;
1163 unsigned char *p;
1164 unsigned int size;
1165 struct reloc_queue *queue;
1166 {
1167 int queue_index = som_reloc_queue_find (p, size, queue);
1168
1169 if (queue_index != -1)
1170 {
1171 /* Found this in a previous fixup. Undo the fixup we
1172 just built and use R_PREV_FIXUP instead. We saved
1173 a total of size - 1 bytes in the fixup stream. */
1174 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1175 p += 1;
1176 *subspace_reloc_sizep += 1;
1177 som_reloc_queue_fix (queue, queue_index);
1178 }
1179 else
1180 {
1181 som_reloc_queue_insert (p, size, queue);
1182 *subspace_reloc_sizep += size;
1183 p += size;
1184 }
1185 return p;
1186 }
1187
1188 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1189 bytes without any relocation. Update the size of the subspace
1190 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1191 current pointer into the relocation stream. */
1192
1193 static unsigned char *
1194 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1195 bfd *abfd;
1196 unsigned int skip;
1197 unsigned char *p;
1198 unsigned int *subspace_reloc_sizep;
1199 struct reloc_queue *queue;
1200 {
1201 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1202 then R_PREV_FIXUPs to get the difference down to a
1203 reasonable size. */
1204 if (skip >= 0x1000000)
1205 {
1206 skip -= 0x1000000;
1207 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1208 bfd_put_8 (abfd, 0xff, p + 1);
1209 bfd_put_16 (abfd, 0xffff, p + 2);
1210 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1211 while (skip >= 0x1000000)
1212 {
1213 skip -= 0x1000000;
1214 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1215 p++;
1216 *subspace_reloc_sizep += 1;
1217 /* No need to adjust queue here since we are repeating the
1218 most recent fixup. */
1219 }
1220 }
1221
1222 /* The difference must be less than 0x1000000. Use one
1223 more R_NO_RELOCATION entry to get to the right difference. */
1224 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1225 {
1226 /* Difference can be handled in a simple single-byte
1227 R_NO_RELOCATION entry. */
1228 if (skip <= 0x60)
1229 {
1230 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1231 *subspace_reloc_sizep += 1;
1232 p++;
1233 }
1234 /* Handle it with a two byte R_NO_RELOCATION entry. */
1235 else if (skip <= 0x1000)
1236 {
1237 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1238 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1239 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1240 }
1241 /* Handle it with a three byte R_NO_RELOCATION entry. */
1242 else
1243 {
1244 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1245 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1246 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1247 }
1248 }
1249 /* Ugh. Punt and use a 4 byte entry. */
1250 else if (skip > 0)
1251 {
1252 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1253 bfd_put_8 (abfd, (skip - 1) >> 16, p + 1);
1254 bfd_put_16 (abfd, skip - 1, p + 2);
1255 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1256 }
1257 return p;
1258 }
1259
1260 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1261 from a BFD relocation. Update the size of the subspace relocation
1262 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1263 into the relocation stream. */
1264
1265 static unsigned char *
1266 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1267 bfd *abfd;
1268 int addend;
1269 unsigned char *p;
1270 unsigned int *subspace_reloc_sizep;
1271 struct reloc_queue *queue;
1272 {
1273 if ((unsigned) (addend) + 0x80 < 0x100)
1274 {
1275 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1276 bfd_put_8 (abfd, addend, p + 1);
1277 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1278 }
1279 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1280 {
1281 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1282 bfd_put_16 (abfd, addend, p + 1);
1283 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1284 }
1285 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1286 {
1287 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1288 bfd_put_8 (abfd, addend >> 16, p + 1);
1289 bfd_put_16 (abfd, addend, p + 2);
1290 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1291 }
1292 else
1293 {
1294 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1295 bfd_put_32 (abfd, addend, p + 1);
1296 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1297 }
1298 return p;
1299 }
1300
1301 /* Handle a single function call relocation. */
1302
1303 static unsigned char *
1304 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1305 bfd *abfd;
1306 unsigned char *p;
1307 unsigned int *subspace_reloc_sizep;
1308 arelent *bfd_reloc;
1309 int sym_num;
1310 struct reloc_queue *queue;
1311 {
1312 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1313 int rtn_bits = arg_bits & 0x3;
1314 int type, done = 0;
1315
1316 /* You'll never believe all this is necessary to handle relocations
1317 for function calls. Having to compute and pack the argument
1318 relocation bits is the real nightmare.
1319
1320 If you're interested in how this works, just forget it. You really
1321 do not want to know about this braindamage. */
1322
1323 /* First see if this can be done with a "simple" relocation. Simple
1324 relocations have a symbol number < 0x100 and have simple encodings
1325 of argument relocations. */
1326
1327 if (sym_num < 0x100)
1328 {
1329 switch (arg_bits)
1330 {
1331 case 0:
1332 case 1:
1333 type = 0;
1334 break;
1335 case 1 << 8:
1336 case 1 << 8 | 1:
1337 type = 1;
1338 break;
1339 case 1 << 8 | 1 << 6:
1340 case 1 << 8 | 1 << 6 | 1:
1341 type = 2;
1342 break;
1343 case 1 << 8 | 1 << 6 | 1 << 4:
1344 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1345 type = 3;
1346 break;
1347 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1348 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1349 type = 4;
1350 break;
1351 default:
1352 /* Not one of the easy encodings. This will have to be
1353 handled by the more complex code below. */
1354 type = -1;
1355 break;
1356 }
1357 if (type != -1)
1358 {
1359 /* Account for the return value too. */
1360 if (rtn_bits)
1361 type += 5;
1362
1363 /* Emit a 2 byte relocation. Then see if it can be handled
1364 with a relocation which is already in the relocation queue. */
1365 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1366 bfd_put_8 (abfd, sym_num, p + 1);
1367 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1368 done = 1;
1369 }
1370 }
1371
1372 /* If this could not be handled with a simple relocation, then do a hard
1373 one. Hard relocations occur if the symbol number was too high or if
1374 the encoding of argument relocation bits is too complex. */
1375 if (! done)
1376 {
1377 /* Don't ask about these magic sequences. I took them straight
1378 from gas-1.36 which took them from the a.out man page. */
1379 type = rtn_bits;
1380 if ((arg_bits >> 6 & 0xf) == 0xe)
1381 type += 9 * 40;
1382 else
1383 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1384 if ((arg_bits >> 2 & 0xf) == 0xe)
1385 type += 9 * 4;
1386 else
1387 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1388
1389 /* Output the first two bytes of the relocation. These describe
1390 the length of the relocation and encoding style. */
1391 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1392 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1393 p);
1394 bfd_put_8 (abfd, type, p + 1);
1395
1396 /* Now output the symbol index and see if this bizarre relocation
1397 just happened to be in the relocation queue. */
1398 if (sym_num < 0x100)
1399 {
1400 bfd_put_8 (abfd, sym_num, p + 2);
1401 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1402 }
1403 else
1404 {
1405 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1406 bfd_put_16 (abfd, sym_num, p + 3);
1407 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1408 }
1409 }
1410 return p;
1411 }
1412
1413 /* Return the logarithm of X, base 2, considering X unsigned.
1414 Abort -1 if X is not a power or two or is zero. */
1415
1416 static int
1417 log2 (x)
1418 unsigned int x;
1419 {
1420 int log = 0;
1421
1422 /* Test for 0 or a power of 2. */
1423 if (x == 0 || x != (x & -x))
1424 return -1;
1425
1426 while ((x >>= 1) != 0)
1427 log++;
1428 return log;
1429 }
1430
1431 static bfd_reloc_status_type
1432 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1433 input_section, output_bfd, error_message)
1434 bfd *abfd ATTRIBUTE_UNUSED;
1435 arelent *reloc_entry;
1436 asymbol *symbol_in ATTRIBUTE_UNUSED;
1437 PTR data ATTRIBUTE_UNUSED;
1438 asection *input_section;
1439 bfd *output_bfd;
1440 char **error_message ATTRIBUTE_UNUSED;
1441 {
1442 if (output_bfd)
1443 {
1444 reloc_entry->address += input_section->output_offset;
1445 return bfd_reloc_ok;
1446 }
1447 return bfd_reloc_ok;
1448 }
1449
1450 /* Given a generic HPPA relocation type, the instruction format,
1451 and a field selector, return one or more appropriate SOM relocations. */
1452
1453 int **
1454 hppa_som_gen_reloc_type (abfd, base_type, format, field, sym_diff, sym)
1455 bfd *abfd;
1456 int base_type;
1457 int format;
1458 enum hppa_reloc_field_selector_type_alt field;
1459 int sym_diff;
1460 asymbol *sym;
1461 {
1462 int *final_type, **final_types;
1463
1464 final_types = (int **) bfd_alloc (abfd, sizeof (int *) * 6);
1465 final_type = (int *) bfd_alloc (abfd, sizeof (int));
1466 if (!final_types || !final_type)
1467 return NULL;
1468
1469 /* The field selector may require additional relocations to be
1470 generated. It's impossible to know at this moment if additional
1471 relocations will be needed, so we make them. The code to actually
1472 write the relocation/fixup stream is responsible for removing
1473 any redundant relocations. */
1474 switch (field)
1475 {
1476 case e_fsel:
1477 case e_psel:
1478 case e_lpsel:
1479 case e_rpsel:
1480 final_types[0] = final_type;
1481 final_types[1] = NULL;
1482 final_types[2] = NULL;
1483 *final_type = base_type;
1484 break;
1485
1486 case e_tsel:
1487 case e_ltsel:
1488 case e_rtsel:
1489 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int));
1490 if (!final_types[0])
1491 return NULL;
1492 if (field == e_tsel)
1493 *final_types[0] = R_FSEL;
1494 else if (field == e_ltsel)
1495 *final_types[0] = R_LSEL;
1496 else
1497 *final_types[0] = R_RSEL;
1498 final_types[1] = final_type;
1499 final_types[2] = NULL;
1500 *final_type = base_type;
1501 break;
1502
1503 case e_lssel:
1504 case e_rssel:
1505 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int));
1506 if (!final_types[0])
1507 return NULL;
1508 *final_types[0] = R_S_MODE;
1509 final_types[1] = final_type;
1510 final_types[2] = NULL;
1511 *final_type = base_type;
1512 break;
1513
1514 case e_lsel:
1515 case e_rsel:
1516 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int));
1517 if (!final_types[0])
1518 return NULL;
1519 *final_types[0] = R_N_MODE;
1520 final_types[1] = final_type;
1521 final_types[2] = NULL;
1522 *final_type = base_type;
1523 break;
1524
1525 case e_ldsel:
1526 case e_rdsel:
1527 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int));
1528 if (!final_types[0])
1529 return NULL;
1530 *final_types[0] = R_D_MODE;
1531 final_types[1] = final_type;
1532 final_types[2] = NULL;
1533 *final_type = base_type;
1534 break;
1535
1536 case e_lrsel:
1537 case e_rrsel:
1538 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int));
1539 if (!final_types[0])
1540 return NULL;
1541 *final_types[0] = R_R_MODE;
1542 final_types[1] = final_type;
1543 final_types[2] = NULL;
1544 *final_type = base_type;
1545 break;
1546
1547 case e_nsel:
1548 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int));
1549 if (!final_types[0])
1550 return NULL;
1551 *final_types[0] = R_N1SEL;
1552 final_types[1] = final_type;
1553 final_types[2] = NULL;
1554 *final_type = base_type;
1555 break;
1556
1557 case e_nlsel:
1558 case e_nlrsel:
1559 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int));
1560 if (!final_types[0])
1561 return NULL;
1562 *final_types[0] = R_N0SEL;
1563 final_types[1] = (int *) bfd_alloc (abfd, sizeof (int));
1564 if (!final_types[1])
1565 return NULL;
1566 if (field == e_nlsel)
1567 *final_types[1] = R_N_MODE;
1568 else
1569 *final_types[1] = R_R_MODE;
1570 final_types[2] = final_type;
1571 final_types[3] = NULL;
1572 *final_type = base_type;
1573 break;
1574 }
1575
1576 switch (base_type)
1577 {
1578 case R_HPPA:
1579 /* The difference of two symbols needs *very* special handling. */
1580 if (sym_diff)
1581 {
1582 final_types[0] = (int *)bfd_alloc (abfd, sizeof (int));
1583 final_types[1] = (int *)bfd_alloc (abfd, sizeof (int));
1584 final_types[2] = (int *)bfd_alloc (abfd, sizeof (int));
1585 final_types[3] = (int *)bfd_alloc (abfd, sizeof (int));
1586 if (!final_types[0] || !final_types[1] || !final_types[2])
1587 return NULL;
1588 if (field == e_fsel)
1589 *final_types[0] = R_FSEL;
1590 else if (field == e_rsel)
1591 *final_types[0] = R_RSEL;
1592 else if (field == e_lsel)
1593 *final_types[0] = R_LSEL;
1594 *final_types[1] = R_COMP2;
1595 *final_types[2] = R_COMP2;
1596 *final_types[3] = R_COMP1;
1597 final_types[4] = final_type;
1598 if (format == 32)
1599 *final_types[4] = R_DATA_EXPR;
1600 else
1601 *final_types[4] = R_CODE_EXPR;
1602 final_types[5] = NULL;
1603 break;
1604 }
1605 /* PLABELs get their own relocation type. */
1606 else if (field == e_psel
1607 || field == e_lpsel
1608 || field == e_rpsel)
1609 {
1610 /* A PLABEL relocation that has a size of 32 bits must
1611 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1612 if (format == 32)
1613 *final_type = R_DATA_PLABEL;
1614 else
1615 *final_type = R_CODE_PLABEL;
1616 }
1617 /* PIC stuff. */
1618 else if (field == e_tsel
1619 || field == e_ltsel
1620 || field == e_rtsel)
1621 *final_type = R_DLT_REL;
1622 /* A relocation in the data space is always a full 32bits. */
1623 else if (format == 32)
1624 {
1625 *final_type = R_DATA_ONE_SYMBOL;
1626
1627 /* If there's no SOM symbol type associated with this BFD
1628 symbol, then set the symbol type to ST_DATA.
1629
1630 Only do this if the type is going to default later when
1631 we write the object file.
1632
1633 This is done so that the linker never encounters an
1634 R_DATA_ONE_SYMBOL reloc involving an ST_CODE symbol.
1635
1636 This allows the compiler to generate exception handling
1637 tables.
1638
1639 Note that one day we may need to also emit BEGIN_BRTAB and
1640 END_BRTAB to prevent the linker from optimizing away insns
1641 in exception handling regions. */
1642 if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
1643 && (sym->flags & BSF_SECTION_SYM) == 0
1644 && (sym->flags & BSF_FUNCTION) == 0
1645 && ! bfd_is_com_section (sym->section))
1646 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
1647 }
1648 break;
1649
1650 case R_HPPA_GOTOFF:
1651 /* More PLABEL special cases. */
1652 if (field == e_psel
1653 || field == e_lpsel
1654 || field == e_rpsel)
1655 *final_type = R_DATA_PLABEL;
1656 break;
1657
1658 case R_HPPA_COMPLEX:
1659 /* The difference of two symbols needs *very* special handling. */
1660 if (sym_diff)
1661 {
1662 final_types[0] = (int *)bfd_alloc (abfd, sizeof (int));
1663 final_types[1] = (int *)bfd_alloc (abfd, sizeof (int));
1664 final_types[2] = (int *)bfd_alloc (abfd, sizeof (int));
1665 final_types[3] = (int *)bfd_alloc (abfd, sizeof (int));
1666 if (!final_types[0] || !final_types[1] || !final_types[2])
1667 return NULL;
1668 if (field == e_fsel)
1669 *final_types[0] = R_FSEL;
1670 else if (field == e_rsel)
1671 *final_types[0] = R_RSEL;
1672 else if (field == e_lsel)
1673 *final_types[0] = R_LSEL;
1674 *final_types[1] = R_COMP2;
1675 *final_types[2] = R_COMP2;
1676 *final_types[3] = R_COMP1;
1677 final_types[4] = final_type;
1678 if (format == 32)
1679 *final_types[4] = R_DATA_EXPR;
1680 else
1681 *final_types[4] = R_CODE_EXPR;
1682 final_types[5] = NULL;
1683 break;
1684 }
1685 else
1686 break;
1687
1688 case R_HPPA_NONE:
1689 case R_HPPA_ABS_CALL:
1690 /* Right now we can default all these. */
1691 break;
1692
1693 case R_HPPA_PCREL_CALL:
1694 {
1695 #ifndef NO_PCREL_MODES
1696 /* If we have short and long pcrel modes, then generate the proper
1697 mode selector, then the pcrel relocation. Redundant selectors
1698 will be eliminted as the relocs are sized and emitted. */
1699 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int));
1700 if (!final_types[0])
1701 return NULL;
1702 if (format == 17)
1703 *final_types[0] = R_SHORT_PCREL_MODE;
1704 else
1705 *final_types[0] = R_LONG_PCREL_MODE;
1706 final_types[1] = final_type;
1707 final_types[2] = NULL;
1708 *final_type = base_type;
1709 #endif
1710 break;
1711 }
1712 }
1713 return final_types;
1714 }
1715
1716 /* Return the address of the correct entry in the PA SOM relocation
1717 howto table. */
1718
1719 /*ARGSUSED*/
1720 static reloc_howto_type *
1721 som_bfd_reloc_type_lookup (abfd, code)
1722 bfd *abfd ATTRIBUTE_UNUSED;
1723 bfd_reloc_code_real_type code;
1724 {
1725 if ((int) code < (int) R_NO_RELOCATION + 255)
1726 {
1727 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1728 return &som_hppa_howto_table[(int) code];
1729 }
1730
1731 return (reloc_howto_type *) 0;
1732 }
1733
1734 /* Perform some initialization for an object. Save results of this
1735 initialization in the BFD. */
1736
1737 static const bfd_target *
1738 som_object_setup (abfd, file_hdrp, aux_hdrp, current_offset)
1739 bfd *abfd;
1740 struct header *file_hdrp;
1741 struct som_exec_auxhdr *aux_hdrp;
1742 unsigned long current_offset;
1743 {
1744 asection *section;
1745 int found;
1746
1747 /* som_mkobject will set bfd_error if som_mkobject fails. */
1748 if (som_mkobject (abfd) != true)
1749 return 0;
1750
1751 /* Set BFD flags based on what information is available in the SOM. */
1752 abfd->flags = BFD_NO_FLAGS;
1753 if (file_hdrp->symbol_total)
1754 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1755
1756 switch (file_hdrp->a_magic)
1757 {
1758 case DEMAND_MAGIC:
1759 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1760 break;
1761 case SHARE_MAGIC:
1762 abfd->flags |= (WP_TEXT | EXEC_P);
1763 break;
1764 case EXEC_MAGIC:
1765 abfd->flags |= (EXEC_P);
1766 break;
1767 case RELOC_MAGIC:
1768 abfd->flags |= HAS_RELOC;
1769 break;
1770 #ifdef SHL_MAGIC
1771 case SHL_MAGIC:
1772 #endif
1773 #ifdef DL_MAGIC
1774 case DL_MAGIC:
1775 #endif
1776 abfd->flags |= DYNAMIC;
1777 break;
1778
1779 default:
1780 break;
1781 }
1782
1783 /* Allocate space to hold the saved exec header information. */
1784 obj_som_exec_data (abfd) = (struct som_exec_data *)
1785 bfd_zalloc (abfd, sizeof (struct som_exec_data ));
1786 if (obj_som_exec_data (abfd) == NULL)
1787 return NULL;
1788
1789 /* The braindamaged OSF1 linker switched exec_flags and exec_entry!
1790
1791 We used to identify OSF1 binaries based on NEW_VERSION_ID, but
1792 apparently the latest HPUX linker is using NEW_VERSION_ID now.
1793
1794 It's about time, OSF has used the new id since at least 1992;
1795 HPUX didn't start till nearly 1995!.
1796
1797 The new approach examines the entry field. If it's zero or not 4
1798 byte aligned then it's not a proper code address and we guess it's
1799 really the executable flags. */
1800 found = 0;
1801 for (section = abfd->sections; section; section = section->next)
1802 {
1803 if ((section->flags & SEC_CODE) == 0)
1804 continue;
1805 if (aux_hdrp->exec_entry >= section->vma
1806 && aux_hdrp->exec_entry < section->vma + section->_cooked_size)
1807 found = 1;
1808 }
1809 if (aux_hdrp->exec_entry == 0
1810 || (aux_hdrp->exec_entry & 0x3) != 0
1811 || ! found)
1812 {
1813 bfd_get_start_address (abfd) = aux_hdrp->exec_flags;
1814 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_entry;
1815 }
1816 else
1817 {
1818 bfd_get_start_address (abfd) = aux_hdrp->exec_entry + current_offset;
1819 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1820 }
1821
1822 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, pa10);
1823 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1824
1825 /* Initialize the saved symbol table and string table to NULL.
1826 Save important offsets and sizes from the SOM header into
1827 the BFD. */
1828 obj_som_stringtab (abfd) = (char *) NULL;
1829 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1830 obj_som_sorted_syms (abfd) = NULL;
1831 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1832 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location + current_offset;
1833 obj_som_str_filepos (abfd) = (file_hdrp->symbol_strings_location
1834 + current_offset);
1835 obj_som_reloc_filepos (abfd) = (file_hdrp->fixup_request_location
1836 + current_offset);
1837 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1838
1839 return abfd->xvec;
1840 }
1841
1842 /* Convert all of the space and subspace info into BFD sections. Each space
1843 contains a number of subspaces, which in turn describe the mapping between
1844 regions of the exec file, and the address space that the program runs in.
1845 BFD sections which correspond to spaces will overlap the sections for the
1846 associated subspaces. */
1847
1848 static boolean
1849 setup_sections (abfd, file_hdr, current_offset)
1850 bfd *abfd;
1851 struct header *file_hdr;
1852 unsigned long current_offset;
1853 {
1854 char *space_strings;
1855 unsigned int space_index, i;
1856 unsigned int total_subspaces = 0;
1857 asection **subspace_sections, *section;
1858
1859 /* First, read in space names */
1860
1861 space_strings = bfd_malloc (file_hdr->space_strings_size);
1862 if (!space_strings && file_hdr->space_strings_size != 0)
1863 goto error_return;
1864
1865 if (bfd_seek (abfd, current_offset + file_hdr->space_strings_location,
1866 SEEK_SET) < 0)
1867 goto error_return;
1868 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1869 != file_hdr->space_strings_size)
1870 goto error_return;
1871
1872 /* Loop over all of the space dictionaries, building up sections */
1873 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1874 {
1875 struct space_dictionary_record space;
1876 struct subspace_dictionary_record subspace, save_subspace;
1877 int subspace_index;
1878 asection *space_asect;
1879 char *newname;
1880
1881 /* Read the space dictionary element */
1882 if (bfd_seek (abfd,
1883 (current_offset + file_hdr->space_location
1884 + space_index * sizeof space),
1885 SEEK_SET) < 0)
1886 goto error_return;
1887 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1888 goto error_return;
1889
1890 /* Setup the space name string */
1891 space.name.n_name = space.name.n_strx + space_strings;
1892
1893 /* Make a section out of it */
1894 newname = bfd_alloc (abfd, strlen (space.name.n_name) + 1);
1895 if (!newname)
1896 goto error_return;
1897 strcpy (newname, space.name.n_name);
1898
1899 space_asect = bfd_make_section_anyway (abfd, newname);
1900 if (!space_asect)
1901 goto error_return;
1902
1903 if (space.is_loadable == 0)
1904 space_asect->flags |= SEC_DEBUGGING;
1905
1906 /* Set up all the attributes for the space. */
1907 if (bfd_som_set_section_attributes (space_asect, space.is_defined,
1908 space.is_private, space.sort_key,
1909 space.space_number) == false)
1910 goto error_return;
1911
1912 /* If the space has no subspaces, then we're done. */
1913 if (space.subspace_quantity == 0)
1914 continue;
1915
1916 /* Now, read in the first subspace for this space */
1917 if (bfd_seek (abfd,
1918 (current_offset + file_hdr->subspace_location
1919 + space.subspace_index * sizeof subspace),
1920 SEEK_SET) < 0)
1921 goto error_return;
1922 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1923 goto error_return;
1924 /* Seek back to the start of the subspaces for loop below */
1925 if (bfd_seek (abfd,
1926 (current_offset + file_hdr->subspace_location
1927 + space.subspace_index * sizeof subspace),
1928 SEEK_SET) < 0)
1929 goto error_return;
1930
1931 /* Setup the start address and file loc from the first subspace record */
1932 space_asect->vma = subspace.subspace_start;
1933 space_asect->filepos = subspace.file_loc_init_value + current_offset;
1934 space_asect->alignment_power = log2 (subspace.alignment);
1935 if (space_asect->alignment_power == -1)
1936 goto error_return;
1937
1938 /* Initialize save_subspace so we can reliably determine if this
1939 loop placed any useful values into it. */
1940 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1941
1942 /* Loop over the rest of the subspaces, building up more sections */
1943 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1944 subspace_index++)
1945 {
1946 asection *subspace_asect;
1947
1948 /* Read in the next subspace */
1949 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1950 != sizeof subspace)
1951 goto error_return;
1952
1953 /* Setup the subspace name string */
1954 subspace.name.n_name = subspace.name.n_strx + space_strings;
1955
1956 newname = bfd_alloc (abfd, strlen (subspace.name.n_name) + 1);
1957 if (!newname)
1958 goto error_return;
1959 strcpy (newname, subspace.name.n_name);
1960
1961 /* Make a section out of this subspace */
1962 subspace_asect = bfd_make_section_anyway (abfd, newname);
1963 if (!subspace_asect)
1964 goto error_return;
1965
1966 /* Store private information about the section. */
1967 if (bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1968 subspace.access_control_bits,
1969 subspace.sort_key,
1970 subspace.quadrant) == false)
1971 goto error_return;
1972
1973 /* Keep an easy mapping between subspaces and sections.
1974 Note we do not necessarily read the subspaces in the
1975 same order in which they appear in the object file.
1976
1977 So to make the target index come out correctly, we
1978 store the location of the subspace header in target
1979 index, then sort using the location of the subspace
1980 header as the key. Then we can assign correct
1981 subspace indices. */
1982 total_subspaces++;
1983 subspace_asect->target_index = bfd_tell (abfd) - sizeof (subspace);
1984
1985 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1986 by the access_control_bits in the subspace header. */
1987 switch (subspace.access_control_bits >> 4)
1988 {
1989 /* Readonly data. */
1990 case 0x0:
1991 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1992 break;
1993
1994 /* Normal data. */
1995 case 0x1:
1996 subspace_asect->flags |= SEC_DATA;
1997 break;
1998
1999 /* Readonly code and the gateways.
2000 Gateways have other attributes which do not map
2001 into anything BFD knows about. */
2002 case 0x2:
2003 case 0x4:
2004 case 0x5:
2005 case 0x6:
2006 case 0x7:
2007 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
2008 break;
2009
2010 /* dynamic (writable) code. */
2011 case 0x3:
2012 subspace_asect->flags |= SEC_CODE;
2013 break;
2014 }
2015
2016 if (subspace.dup_common || subspace.is_common)
2017 subspace_asect->flags |= SEC_IS_COMMON;
2018 else if (subspace.subspace_length > 0)
2019 subspace_asect->flags |= SEC_HAS_CONTENTS;
2020
2021 if (subspace.is_loadable)
2022 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
2023 else
2024 subspace_asect->flags |= SEC_DEBUGGING;
2025
2026 if (subspace.code_only)
2027 subspace_asect->flags |= SEC_CODE;
2028
2029 /* Both file_loc_init_value and initialization_length will
2030 be zero for a BSS like subspace. */
2031 if (subspace.file_loc_init_value == 0
2032 && subspace.initialization_length == 0)
2033 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD | SEC_HAS_CONTENTS);
2034
2035 /* This subspace has relocations.
2036 The fixup_request_quantity is a byte count for the number of
2037 entries in the relocation stream; it is not the actual number
2038 of relocations in the subspace. */
2039 if (subspace.fixup_request_quantity != 0)
2040 {
2041 subspace_asect->flags |= SEC_RELOC;
2042 subspace_asect->rel_filepos = subspace.fixup_request_index;
2043 som_section_data (subspace_asect)->reloc_size
2044 = subspace.fixup_request_quantity;
2045 /* We can not determine this yet. When we read in the
2046 relocation table the correct value will be filled in. */
2047 subspace_asect->reloc_count = -1;
2048 }
2049
2050 /* Update save_subspace if appropriate. */
2051 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
2052 save_subspace = subspace;
2053
2054 subspace_asect->vma = subspace.subspace_start;
2055 subspace_asect->_cooked_size = subspace.subspace_length;
2056 subspace_asect->_raw_size = subspace.subspace_length;
2057 subspace_asect->filepos = (subspace.file_loc_init_value
2058 + current_offset);
2059 subspace_asect->alignment_power = log2 (subspace.alignment);
2060 if (subspace_asect->alignment_power == -1)
2061 goto error_return;
2062 }
2063
2064 /* This can happen for a .o which defines symbols in otherwise
2065 empty subspaces. */
2066 if (!save_subspace.file_loc_init_value)
2067 {
2068 space_asect->_cooked_size = 0;
2069 space_asect->_raw_size = 0;
2070 }
2071 else
2072 {
2073 /* Setup the sizes for the space section based upon the info in the
2074 last subspace of the space. */
2075 space_asect->_cooked_size = (save_subspace.subspace_start
2076 - space_asect->vma
2077 + save_subspace.subspace_length);
2078 space_asect->_raw_size = (save_subspace.file_loc_init_value
2079 - space_asect->filepos
2080 + save_subspace.initialization_length);
2081 }
2082 }
2083 /* Now that we've read in all the subspace records, we need to assign
2084 a target index to each subspace. */
2085 subspace_sections = (asection **) bfd_malloc (total_subspaces
2086 * sizeof (asection *));
2087 if (subspace_sections == NULL)
2088 goto error_return;
2089
2090 for (i = 0, section = abfd->sections; section; section = section->next)
2091 {
2092 if (!som_is_subspace (section))
2093 continue;
2094
2095 subspace_sections[i] = section;
2096 i++;
2097 }
2098 qsort (subspace_sections, total_subspaces,
2099 sizeof (asection *), compare_subspaces);
2100
2101 /* subspace_sections is now sorted in the order in which the subspaces
2102 appear in the object file. Assign an index to each one now. */
2103 for (i = 0; i < total_subspaces; i++)
2104 subspace_sections[i]->target_index = i;
2105
2106 if (space_strings != NULL)
2107 free (space_strings);
2108
2109 if (subspace_sections != NULL)
2110 free (subspace_sections);
2111
2112 return true;
2113
2114 error_return:
2115 if (space_strings != NULL)
2116 free (space_strings);
2117
2118 if (subspace_sections != NULL)
2119 free (subspace_sections);
2120 return false;
2121 }
2122
2123 /* Read in a SOM object and make it into a BFD. */
2124
2125 static const bfd_target *
2126 som_object_p (abfd)
2127 bfd *abfd;
2128 {
2129 struct header file_hdr;
2130 struct som_exec_auxhdr aux_hdr;
2131 unsigned long current_offset = 0;
2132 struct lst_header lst_header;
2133 struct som_entry som_entry;
2134 #define ENTRY_SIZE sizeof (struct som_entry)
2135
2136 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
2137 {
2138 if (bfd_get_error () != bfd_error_system_call)
2139 bfd_set_error (bfd_error_wrong_format);
2140 return 0;
2141 }
2142
2143 if (!_PA_RISC_ID (file_hdr.system_id))
2144 {
2145 bfd_set_error (bfd_error_wrong_format);
2146 return 0;
2147 }
2148
2149 switch (file_hdr.a_magic)
2150 {
2151 case RELOC_MAGIC:
2152 case EXEC_MAGIC:
2153 case SHARE_MAGIC:
2154 case DEMAND_MAGIC:
2155 #ifdef DL_MAGIC
2156 case DL_MAGIC:
2157 #endif
2158 #ifdef SHL_MAGIC
2159 case SHL_MAGIC:
2160 #endif
2161 #ifdef SHARED_MAGIC_CNX
2162 case SHARED_MAGIC_CNX:
2163 #endif
2164 break;
2165
2166 #ifdef EXECLIBMAGIC
2167 case EXECLIBMAGIC:
2168 /* Read the lst header and determine where the SOM directory begins */
2169
2170 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) < 0)
2171 {
2172 if (bfd_get_error () != bfd_error_system_call)
2173 bfd_set_error (bfd_error_wrong_format);
2174 return 0;
2175 }
2176
2177 if (bfd_read ((PTR) & lst_header, 1, SLSTHDR, abfd) != SLSTHDR)
2178 {
2179 if (bfd_get_error () != bfd_error_system_call)
2180 bfd_set_error (bfd_error_wrong_format);
2181 return 0;
2182 }
2183
2184 /* Position to and read the first directory entry */
2185
2186 if (bfd_seek (abfd, lst_header.dir_loc, SEEK_SET) < 0)
2187 {
2188 if (bfd_get_error () != bfd_error_system_call)
2189 bfd_set_error (bfd_error_wrong_format);
2190 return 0;
2191 }
2192
2193 if (bfd_read ((PTR) & som_entry, 1, ENTRY_SIZE, abfd) != ENTRY_SIZE)
2194 {
2195 if (bfd_get_error () != bfd_error_system_call)
2196 bfd_set_error (bfd_error_wrong_format);
2197 return 0;
2198 }
2199
2200 /* Now position to the first SOM */
2201
2202 if (bfd_seek (abfd, som_entry.location, SEEK_SET) < 0)
2203 {
2204 if (bfd_get_error () != bfd_error_system_call)
2205 bfd_set_error (bfd_error_wrong_format);
2206 return 0;
2207 }
2208
2209 current_offset = som_entry.location;
2210
2211 /* And finally, re-read the som header */
2212
2213 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
2214 {
2215 if (bfd_get_error () != bfd_error_system_call)
2216 bfd_set_error (bfd_error_wrong_format);
2217 return 0;
2218 }
2219
2220 break;
2221 #endif
2222
2223 default:
2224 bfd_set_error (bfd_error_wrong_format);
2225 return 0;
2226 }
2227
2228 if (file_hdr.version_id != VERSION_ID
2229 && file_hdr.version_id != NEW_VERSION_ID)
2230 {
2231 bfd_set_error (bfd_error_wrong_format);
2232 return 0;
2233 }
2234
2235 /* If the aux_header_size field in the file header is zero, then this
2236 object is an incomplete executable (a .o file). Do not try to read
2237 a non-existant auxiliary header. */
2238 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
2239 if (file_hdr.aux_header_size != 0)
2240 {
2241 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
2242 {
2243 if (bfd_get_error () != bfd_error_system_call)
2244 bfd_set_error (bfd_error_wrong_format);
2245 return 0;
2246 }
2247 }
2248
2249 if (!setup_sections (abfd, &file_hdr, current_offset))
2250 {
2251 /* setup_sections does not bubble up a bfd error code. */
2252 bfd_set_error (bfd_error_bad_value);
2253 return 0;
2254 }
2255
2256 /* This appears to be a valid SOM object. Do some initialization. */
2257 return som_object_setup (abfd, &file_hdr, &aux_hdr, current_offset);
2258 }
2259
2260 /* Create a SOM object. */
2261
2262 static boolean
2263 som_mkobject (abfd)
2264 bfd *abfd;
2265 {
2266 /* Allocate memory to hold backend information. */
2267 abfd->tdata.som_data = (struct som_data_struct *)
2268 bfd_zalloc (abfd, sizeof (struct som_data_struct));
2269 if (abfd->tdata.som_data == NULL)
2270 return false;
2271 return true;
2272 }
2273
2274 /* Initialize some information in the file header. This routine makes
2275 not attempt at doing the right thing for a full executable; it
2276 is only meant to handle relocatable objects. */
2277
2278 static boolean
2279 som_prep_headers (abfd)
2280 bfd *abfd;
2281 {
2282 struct header *file_hdr;
2283 asection *section;
2284
2285 /* Make and attach a file header to the BFD. */
2286 file_hdr = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
2287 if (file_hdr == NULL)
2288 return false;
2289 obj_som_file_hdr (abfd) = file_hdr;
2290
2291 if (abfd->flags & (EXEC_P | DYNAMIC))
2292 {
2293
2294 /* Make and attach an exec header to the BFD. */
2295 obj_som_exec_hdr (abfd) = (struct som_exec_auxhdr *)
2296 bfd_zalloc (abfd, sizeof (struct som_exec_auxhdr));
2297 if (obj_som_exec_hdr (abfd) == NULL)
2298 return false;
2299
2300 if (abfd->flags & D_PAGED)
2301 file_hdr->a_magic = DEMAND_MAGIC;
2302 else if (abfd->flags & WP_TEXT)
2303 file_hdr->a_magic = SHARE_MAGIC;
2304 #ifdef SHL_MAGIC
2305 else if (abfd->flags & DYNAMIC)
2306 file_hdr->a_magic = SHL_MAGIC;
2307 #endif
2308 else
2309 file_hdr->a_magic = EXEC_MAGIC;
2310 }
2311 else
2312 file_hdr->a_magic = RELOC_MAGIC;
2313
2314 /* Only new format SOM is supported. */
2315 file_hdr->version_id = NEW_VERSION_ID;
2316
2317 /* These fields are optional, and embedding timestamps is not always
2318 a wise thing to do, it makes comparing objects during a multi-stage
2319 bootstrap difficult. */
2320 file_hdr->file_time.secs = 0;
2321 file_hdr->file_time.nanosecs = 0;
2322
2323 file_hdr->entry_space = 0;
2324 file_hdr->entry_subspace = 0;
2325 file_hdr->entry_offset = 0;
2326 file_hdr->presumed_dp = 0;
2327
2328 /* Now iterate over the sections translating information from
2329 BFD sections to SOM spaces/subspaces. */
2330
2331 for (section = abfd->sections; section != NULL; section = section->next)
2332 {
2333 /* Ignore anything which has not been marked as a space or
2334 subspace. */
2335 if (!som_is_space (section) && !som_is_subspace (section))
2336 continue;
2337
2338 if (som_is_space (section))
2339 {
2340 /* Allocate space for the space dictionary. */
2341 som_section_data (section)->space_dict
2342 = (struct space_dictionary_record *)
2343 bfd_zalloc (abfd, sizeof (struct space_dictionary_record));
2344 if (som_section_data (section)->space_dict == NULL)
2345 return false;
2346 /* Set space attributes. Note most attributes of SOM spaces
2347 are set based on the subspaces it contains. */
2348 som_section_data (section)->space_dict->loader_fix_index = -1;
2349 som_section_data (section)->space_dict->init_pointer_index = -1;
2350
2351 /* Set more attributes that were stuffed away in private data. */
2352 som_section_data (section)->space_dict->sort_key =
2353 som_section_data (section)->copy_data->sort_key;
2354 som_section_data (section)->space_dict->is_defined =
2355 som_section_data (section)->copy_data->is_defined;
2356 som_section_data (section)->space_dict->is_private =
2357 som_section_data (section)->copy_data->is_private;
2358 som_section_data (section)->space_dict->space_number =
2359 som_section_data (section)->copy_data->space_number;
2360 }
2361 else
2362 {
2363 /* Allocate space for the subspace dictionary. */
2364 som_section_data (section)->subspace_dict
2365 = (struct subspace_dictionary_record *)
2366 bfd_zalloc (abfd, sizeof (struct subspace_dictionary_record));
2367 if (som_section_data (section)->subspace_dict == NULL)
2368 return false;
2369
2370 /* Set subspace attributes. Basic stuff is done here, additional
2371 attributes are filled in later as more information becomes
2372 available. */
2373 if (section->flags & SEC_IS_COMMON)
2374 {
2375 som_section_data (section)->subspace_dict->dup_common = 1;
2376 som_section_data (section)->subspace_dict->is_common = 1;
2377 }
2378
2379 if (section->flags & SEC_ALLOC)
2380 som_section_data (section)->subspace_dict->is_loadable = 1;
2381
2382 if (section->flags & SEC_CODE)
2383 som_section_data (section)->subspace_dict->code_only = 1;
2384
2385 som_section_data (section)->subspace_dict->subspace_start =
2386 section->vma;
2387 som_section_data (section)->subspace_dict->subspace_length =
2388 bfd_section_size (abfd, section);
2389 som_section_data (section)->subspace_dict->initialization_length =
2390 bfd_section_size (abfd, section);
2391 som_section_data (section)->subspace_dict->alignment =
2392 1 << section->alignment_power;
2393
2394 /* Set more attributes that were stuffed away in private data. */
2395 som_section_data (section)->subspace_dict->sort_key =
2396 som_section_data (section)->copy_data->sort_key;
2397 som_section_data (section)->subspace_dict->access_control_bits =
2398 som_section_data (section)->copy_data->access_control_bits;
2399 som_section_data (section)->subspace_dict->quadrant =
2400 som_section_data (section)->copy_data->quadrant;
2401 }
2402 }
2403 return true;
2404 }
2405
2406 /* Return true if the given section is a SOM space, false otherwise. */
2407
2408 static boolean
2409 som_is_space (section)
2410 asection *section;
2411 {
2412 /* If no copy data is available, then it's neither a space nor a
2413 subspace. */
2414 if (som_section_data (section)->copy_data == NULL)
2415 return false;
2416
2417 /* If the containing space isn't the same as the given section,
2418 then this isn't a space. */
2419 if (som_section_data (section)->copy_data->container != section
2420 && (som_section_data (section)->copy_data->container->output_section
2421 != section))
2422 return false;
2423
2424 /* OK. Must be a space. */
2425 return true;
2426 }
2427
2428 /* Return true if the given section is a SOM subspace, false otherwise. */
2429
2430 static boolean
2431 som_is_subspace (section)
2432 asection *section;
2433 {
2434 /* If no copy data is available, then it's neither a space nor a
2435 subspace. */
2436 if (som_section_data (section)->copy_data == NULL)
2437 return false;
2438
2439 /* If the containing space is the same as the given section,
2440 then this isn't a subspace. */
2441 if (som_section_data (section)->copy_data->container == section
2442 || (som_section_data (section)->copy_data->container->output_section
2443 == section))
2444 return false;
2445
2446 /* OK. Must be a subspace. */
2447 return true;
2448 }
2449
2450 /* Return true if the given space containins the given subspace. It
2451 is safe to assume space really is a space, and subspace really
2452 is a subspace. */
2453
2454 static boolean
2455 som_is_container (space, subspace)
2456 asection *space, *subspace;
2457 {
2458 return (som_section_data (subspace)->copy_data->container == space
2459 || (som_section_data (subspace)->copy_data->container->output_section
2460 == space));
2461 }
2462
2463 /* Count and return the number of spaces attached to the given BFD. */
2464
2465 static unsigned long
2466 som_count_spaces (abfd)
2467 bfd *abfd;
2468 {
2469 int count = 0;
2470 asection *section;
2471
2472 for (section = abfd->sections; section != NULL; section = section->next)
2473 count += som_is_space (section);
2474
2475 return count;
2476 }
2477
2478 /* Count the number of subspaces attached to the given BFD. */
2479
2480 static unsigned long
2481 som_count_subspaces (abfd)
2482 bfd *abfd;
2483 {
2484 int count = 0;
2485 asection *section;
2486
2487 for (section = abfd->sections; section != NULL; section = section->next)
2488 count += som_is_subspace (section);
2489
2490 return count;
2491 }
2492
2493 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2494
2495 We desire symbols to be ordered starting with the symbol with the
2496 highest relocation count down to the symbol with the lowest relocation
2497 count. Doing so compacts the relocation stream. */
2498
2499 static int
2500 compare_syms (arg1, arg2)
2501 const PTR arg1;
2502 const PTR arg2;
2503
2504 {
2505 asymbol **sym1 = (asymbol **) arg1;
2506 asymbol **sym2 = (asymbol **) arg2;
2507 unsigned int count1, count2;
2508
2509 /* Get relocation count for each symbol. Note that the count
2510 is stored in the udata pointer for section symbols! */
2511 if ((*sym1)->flags & BSF_SECTION_SYM)
2512 count1 = (*sym1)->udata.i;
2513 else
2514 count1 = som_symbol_data (*sym1)->reloc_count;
2515
2516 if ((*sym2)->flags & BSF_SECTION_SYM)
2517 count2 = (*sym2)->udata.i;
2518 else
2519 count2 = som_symbol_data (*sym2)->reloc_count;
2520
2521 /* Return the appropriate value. */
2522 if (count1 < count2)
2523 return 1;
2524 else if (count1 > count2)
2525 return -1;
2526 return 0;
2527 }
2528
2529 /* Return -1, 0, 1 indicating the relative ordering of subspace1
2530 and subspace. */
2531
2532 static int
2533 compare_subspaces (arg1, arg2)
2534 const PTR arg1;
2535 const PTR arg2;
2536
2537 {
2538 asection **subspace1 = (asection **) arg1;
2539 asection **subspace2 = (asection **) arg2;
2540
2541 if ((*subspace1)->target_index < (*subspace2)->target_index)
2542 return -1;
2543 else if ((*subspace2)->target_index < (*subspace1)->target_index)
2544 return 1;
2545 else
2546 return 0;
2547 }
2548
2549 /* Perform various work in preparation for emitting the fixup stream. */
2550
2551 static void
2552 som_prep_for_fixups (abfd, syms, num_syms)
2553 bfd *abfd;
2554 asymbol **syms;
2555 unsigned long num_syms;
2556 {
2557 int i;
2558 asection *section;
2559 asymbol **sorted_syms;
2560
2561 /* Most SOM relocations involving a symbol have a length which is
2562 dependent on the index of the symbol. So symbols which are
2563 used often in relocations should have a small index. */
2564
2565 /* First initialize the counters for each symbol. */
2566 for (i = 0; i < num_syms; i++)
2567 {
2568 /* Handle a section symbol; these have no pointers back to the
2569 SOM symbol info. So we just use the udata field to hold the
2570 relocation count. */
2571 if (som_symbol_data (syms[i]) == NULL
2572 || syms[i]->flags & BSF_SECTION_SYM)
2573 {
2574 syms[i]->flags |= BSF_SECTION_SYM;
2575 syms[i]->udata.i = 0;
2576 }
2577 else
2578 som_symbol_data (syms[i])->reloc_count = 0;
2579 }
2580
2581 /* Now that the counters are initialized, make a weighted count
2582 of how often a given symbol is used in a relocation. */
2583 for (section = abfd->sections; section != NULL; section = section->next)
2584 {
2585 int i;
2586
2587 /* Does this section have any relocations? */
2588 if (section->reloc_count <= 0)
2589 continue;
2590
2591 /* Walk through each relocation for this section. */
2592 for (i = 1; i < section->reloc_count; i++)
2593 {
2594 arelent *reloc = section->orelocation[i];
2595 int scale;
2596
2597 /* A relocation against a symbol in the *ABS* section really
2598 does not have a symbol. Likewise if the symbol isn't associated
2599 with any section. */
2600 if (reloc->sym_ptr_ptr == NULL
2601 || bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section))
2602 continue;
2603
2604 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2605 and R_CODE_ONE_SYMBOL relocations to come first. These
2606 two relocations have single byte versions if the symbol
2607 index is very small. */
2608 if (reloc->howto->type == R_DP_RELATIVE
2609 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2610 scale = 2;
2611 else
2612 scale = 1;
2613
2614 /* Handle section symbols by storing the count in the udata
2615 field. It will not be used and the count is very important
2616 for these symbols. */
2617 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2618 {
2619 (*reloc->sym_ptr_ptr)->udata.i =
2620 (*reloc->sym_ptr_ptr)->udata.i + scale;
2621 continue;
2622 }
2623
2624 /* A normal symbol. Increment the count. */
2625 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2626 }
2627 }
2628
2629 /* Sort a copy of the symbol table, rather than the canonical
2630 output symbol table. */
2631 sorted_syms = (asymbol **) bfd_zalloc (abfd, num_syms * sizeof (asymbol *));
2632 memcpy (sorted_syms, syms, num_syms * sizeof (asymbol *));
2633 qsort (sorted_syms, num_syms, sizeof (asymbol *), compare_syms);
2634 obj_som_sorted_syms (abfd) = sorted_syms;
2635
2636 /* Compute the symbol indexes, they will be needed by the relocation
2637 code. */
2638 for (i = 0; i < num_syms; i++)
2639 {
2640 /* A section symbol. Again, there is no pointer to backend symbol
2641 information, so we reuse the udata field again. */
2642 if (sorted_syms[i]->flags & BSF_SECTION_SYM)
2643 sorted_syms[i]->udata.i = i;
2644 else
2645 som_symbol_data (sorted_syms[i])->index = i;
2646 }
2647 }
2648
2649 static boolean
2650 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2651 bfd *abfd;
2652 unsigned long current_offset;
2653 unsigned int *total_reloc_sizep;
2654 {
2655 unsigned int i, j;
2656 /* Chunk of memory that we can use as buffer space, then throw
2657 away. */
2658 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2659 unsigned char *p;
2660 unsigned int total_reloc_size = 0;
2661 unsigned int subspace_reloc_size = 0;
2662 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2663 asection *section = abfd->sections;
2664
2665 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2666 p = tmp_space;
2667
2668 /* All the fixups for a particular subspace are emitted in a single
2669 stream. All the subspaces for a particular space are emitted
2670 as a single stream.
2671
2672 So, to get all the locations correct one must iterate through all the
2673 spaces, for each space iterate through its subspaces and output a
2674 fixups stream. */
2675 for (i = 0; i < num_spaces; i++)
2676 {
2677 asection *subsection;
2678
2679 /* Find a space. */
2680 while (!som_is_space (section))
2681 section = section->next;
2682
2683 /* Now iterate through each of its subspaces. */
2684 for (subsection = abfd->sections;
2685 subsection != NULL;
2686 subsection = subsection->next)
2687 {
2688 int reloc_offset, current_rounding_mode;
2689 #ifndef NO_PCREL_MODES
2690 int current_call_mode;
2691 #endif
2692
2693 /* Find a subspace of this space. */
2694 if (!som_is_subspace (subsection)
2695 || !som_is_container (section, subsection))
2696 continue;
2697
2698 /* If this subspace does not have real data, then we are
2699 finised with it. */
2700 if ((subsection->flags & SEC_HAS_CONTENTS) == 0)
2701 {
2702 som_section_data (subsection)->subspace_dict->fixup_request_index
2703 = -1;
2704 continue;
2705 }
2706
2707 /* This subspace has some relocations. Put the relocation stream
2708 index into the subspace record. */
2709 som_section_data (subsection)->subspace_dict->fixup_request_index
2710 = total_reloc_size;
2711
2712 /* To make life easier start over with a clean slate for
2713 each subspace. Seek to the start of the relocation stream
2714 for this subspace in preparation for writing out its fixup
2715 stream. */
2716 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) < 0)
2717 return false;
2718
2719 /* Buffer space has already been allocated. Just perform some
2720 initialization here. */
2721 p = tmp_space;
2722 subspace_reloc_size = 0;
2723 reloc_offset = 0;
2724 som_initialize_reloc_queue (reloc_queue);
2725 current_rounding_mode = R_N_MODE;
2726 #ifndef NO_PCREL_MODES
2727 current_call_mode = R_SHORT_PCREL_MODE;
2728 #endif
2729
2730 /* Translate each BFD relocation into one or more SOM
2731 relocations. */
2732 for (j = 0; j < subsection->reloc_count; j++)
2733 {
2734 arelent *bfd_reloc = subsection->orelocation[j];
2735 unsigned int skip;
2736 int sym_num;
2737
2738 /* Get the symbol number. Remember it's stored in a
2739 special place for section symbols. */
2740 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2741 sym_num = (*bfd_reloc->sym_ptr_ptr)->udata.i;
2742 else
2743 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2744
2745 /* If there is not enough room for the next couple relocations,
2746 then dump the current buffer contents now. Also reinitialize
2747 the relocation queue.
2748
2749 No single BFD relocation could ever translate into more
2750 than 100 bytes of SOM relocations (20bytes is probably the
2751 upper limit, but leave lots of space for growth). */
2752 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2753 {
2754 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2755 != p - tmp_space)
2756 return false;
2757
2758 p = tmp_space;
2759 som_initialize_reloc_queue (reloc_queue);
2760 }
2761
2762 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2763 skipped. */
2764 skip = bfd_reloc->address - reloc_offset;
2765 p = som_reloc_skip (abfd, skip, p,
2766 &subspace_reloc_size, reloc_queue);
2767
2768 /* Update reloc_offset for the next iteration.
2769
2770 Many relocations do not consume input bytes. They
2771 are markers, or set state necessary to perform some
2772 later relocation. */
2773 switch (bfd_reloc->howto->type)
2774 {
2775 case R_ENTRY:
2776 case R_ALT_ENTRY:
2777 case R_EXIT:
2778 case R_N_MODE:
2779 case R_S_MODE:
2780 case R_D_MODE:
2781 case R_R_MODE:
2782 case R_FSEL:
2783 case R_LSEL:
2784 case R_RSEL:
2785 case R_COMP1:
2786 case R_COMP2:
2787 case R_BEGIN_BRTAB:
2788 case R_END_BRTAB:
2789 case R_BEGIN_TRY:
2790 case R_END_TRY:
2791 case R_N0SEL:
2792 case R_N1SEL:
2793 #ifndef NO_PCREL_MODES
2794 case R_SHORT_PCREL_MODE:
2795 case R_LONG_PCREL_MODE:
2796 #endif
2797 reloc_offset = bfd_reloc->address;
2798 break;
2799
2800 default:
2801 reloc_offset = bfd_reloc->address + 4;
2802 break;
2803 }
2804
2805 /* Now the actual relocation we care about. */
2806 switch (bfd_reloc->howto->type)
2807 {
2808 case R_PCREL_CALL:
2809 case R_ABS_CALL:
2810 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2811 bfd_reloc, sym_num, reloc_queue);
2812 break;
2813
2814 case R_CODE_ONE_SYMBOL:
2815 case R_DP_RELATIVE:
2816 /* Account for any addend. */
2817 if (bfd_reloc->addend)
2818 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2819 &subspace_reloc_size, reloc_queue);
2820
2821 if (sym_num < 0x20)
2822 {
2823 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2824 subspace_reloc_size += 1;
2825 p += 1;
2826 }
2827 else if (sym_num < 0x100)
2828 {
2829 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2830 bfd_put_8 (abfd, sym_num, p + 1);
2831 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2832 2, reloc_queue);
2833 }
2834 else if (sym_num < 0x10000000)
2835 {
2836 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2837 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2838 bfd_put_16 (abfd, sym_num, p + 2);
2839 p = try_prev_fixup (abfd, &subspace_reloc_size,
2840 p, 4, reloc_queue);
2841 }
2842 else
2843 abort ();
2844 break;
2845
2846 case R_DATA_ONE_SYMBOL:
2847 case R_DATA_PLABEL:
2848 case R_CODE_PLABEL:
2849 case R_DLT_REL:
2850 /* Account for any addend using R_DATA_OVERRIDE. */
2851 if (bfd_reloc->howto->type != R_DATA_ONE_SYMBOL
2852 && bfd_reloc->addend)
2853 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2854 &subspace_reloc_size, reloc_queue);
2855
2856 if (sym_num < 0x100)
2857 {
2858 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2859 bfd_put_8 (abfd, sym_num, p + 1);
2860 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2861 2, reloc_queue);
2862 }
2863 else if (sym_num < 0x10000000)
2864 {
2865 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2866 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2867 bfd_put_16 (abfd, sym_num, p + 2);
2868 p = try_prev_fixup (abfd, &subspace_reloc_size,
2869 p, 4, reloc_queue);
2870 }
2871 else
2872 abort ();
2873 break;
2874
2875 case R_ENTRY:
2876 {
2877 int tmp;
2878 arelent *tmp_reloc = NULL;
2879 bfd_put_8 (abfd, R_ENTRY, p);
2880
2881 /* R_ENTRY relocations have 64 bits of associated
2882 data. Unfortunately the addend field of a bfd
2883 relocation is only 32 bits. So, we split up
2884 the 64bit unwind information and store part in
2885 the R_ENTRY relocation, and the rest in the R_EXIT
2886 relocation. */
2887 bfd_put_32 (abfd, bfd_reloc->addend, p + 1);
2888
2889 /* Find the next R_EXIT relocation. */
2890 for (tmp = j; tmp < subsection->reloc_count; tmp++)
2891 {
2892 tmp_reloc = subsection->orelocation[tmp];
2893 if (tmp_reloc->howto->type == R_EXIT)
2894 break;
2895 }
2896
2897 if (tmp == subsection->reloc_count)
2898 abort ();
2899
2900 bfd_put_32 (abfd, tmp_reloc->addend, p + 5);
2901 p = try_prev_fixup (abfd, &subspace_reloc_size,
2902 p, 9, reloc_queue);
2903 break;
2904 }
2905
2906 case R_N_MODE:
2907 case R_S_MODE:
2908 case R_D_MODE:
2909 case R_R_MODE:
2910 /* If this relocation requests the current rounding
2911 mode, then it is redundant. */
2912 if (bfd_reloc->howto->type != current_rounding_mode)
2913 {
2914 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2915 subspace_reloc_size += 1;
2916 p += 1;
2917 current_rounding_mode = bfd_reloc->howto->type;
2918 }
2919 break;
2920
2921 #ifndef NO_PCREL_MODES
2922 case R_LONG_PCREL_MODE:
2923 case R_SHORT_PCREL_MODE:
2924 if (bfd_reloc->howto->type != current_call_mode)
2925 {
2926 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2927 subspace_reloc_size += 1;
2928 p += 1;
2929 current_call_mode = bfd_reloc->howto->type;
2930 }
2931 break;
2932 #endif
2933
2934 case R_EXIT:
2935 case R_ALT_ENTRY:
2936 case R_FSEL:
2937 case R_LSEL:
2938 case R_RSEL:
2939 case R_BEGIN_BRTAB:
2940 case R_END_BRTAB:
2941 case R_BEGIN_TRY:
2942 case R_N0SEL:
2943 case R_N1SEL:
2944 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2945 subspace_reloc_size += 1;
2946 p += 1;
2947 break;
2948
2949 case R_END_TRY:
2950 /* The end of a exception handling region. The reloc's
2951 addend contains the offset of the exception handling
2952 code. */
2953 if (bfd_reloc->addend == 0)
2954 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2955 else if (bfd_reloc->addend < 1024)
2956 {
2957 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2958 bfd_put_8 (abfd, bfd_reloc->addend / 4, p + 1);
2959 p = try_prev_fixup (abfd, &subspace_reloc_size,
2960 p, 2, reloc_queue);
2961 }
2962 else
2963 {
2964 bfd_put_8 (abfd, bfd_reloc->howto->type + 2, p);
2965 bfd_put_8 (abfd, (bfd_reloc->addend / 4) >> 16, p + 1);
2966 bfd_put_16 (abfd, bfd_reloc->addend / 4, p + 2);
2967 p = try_prev_fixup (abfd, &subspace_reloc_size,
2968 p, 4, reloc_queue);
2969 }
2970 break;
2971
2972 case R_COMP1:
2973 /* The only time we generate R_COMP1, R_COMP2 and
2974 R_CODE_EXPR relocs is for the difference of two
2975 symbols. Hence we can cheat here. */
2976 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2977 bfd_put_8 (abfd, 0x44, p + 1);
2978 p = try_prev_fixup (abfd, &subspace_reloc_size,
2979 p, 2, reloc_queue);
2980 break;
2981
2982 case R_COMP2:
2983 /* The only time we generate R_COMP1, R_COMP2 and
2984 R_CODE_EXPR relocs is for the difference of two
2985 symbols. Hence we can cheat here. */
2986 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2987 bfd_put_8 (abfd, 0x80, p + 1);
2988 bfd_put_8 (abfd, sym_num >> 16, p + 2);
2989 bfd_put_16 (abfd, sym_num, p + 3);
2990 p = try_prev_fixup (abfd, &subspace_reloc_size,
2991 p, 5, reloc_queue);
2992 break;
2993
2994 case R_CODE_EXPR:
2995 case R_DATA_EXPR:
2996 /* The only time we generate R_COMP1, R_COMP2 and
2997 R_CODE_EXPR relocs is for the difference of two
2998 symbols. Hence we can cheat here. */
2999 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
3000 subspace_reloc_size += 1;
3001 p += 1;
3002 break;
3003
3004 /* Put a "R_RESERVED" relocation in the stream if
3005 we hit something we do not understand. The linker
3006 will complain loudly if this ever happens. */
3007 default:
3008 bfd_put_8 (abfd, 0xff, p);
3009 subspace_reloc_size += 1;
3010 p += 1;
3011 break;
3012 }
3013 }
3014
3015 /* Last BFD relocation for a subspace has been processed.
3016 Map the rest of the subspace with R_NO_RELOCATION fixups. */
3017 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
3018 - reloc_offset,
3019 p, &subspace_reloc_size, reloc_queue);
3020
3021 /* Scribble out the relocations. */
3022 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
3023 != p - tmp_space)
3024 return false;
3025 p = tmp_space;
3026
3027 total_reloc_size += subspace_reloc_size;
3028 som_section_data (subsection)->subspace_dict->fixup_request_quantity
3029 = subspace_reloc_size;
3030 }
3031 section = section->next;
3032 }
3033 *total_reloc_sizep = total_reloc_size;
3034 return true;
3035 }
3036
3037 /* Write out the space/subspace string table. */
3038
3039 static boolean
3040 som_write_space_strings (abfd, current_offset, string_sizep)
3041 bfd *abfd;
3042 unsigned long current_offset;
3043 unsigned int *string_sizep;
3044 {
3045 /* Chunk of memory that we can use as buffer space, then throw
3046 away. */
3047 size_t tmp_space_size = SOM_TMP_BUFSIZE;
3048 unsigned char *tmp_space = alloca (tmp_space_size);
3049 unsigned char *p = tmp_space;
3050 unsigned int strings_size = 0;
3051 asection *section;
3052
3053 /* Seek to the start of the space strings in preparation for writing
3054 them out. */
3055 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
3056 return false;
3057
3058 /* Walk through all the spaces and subspaces (order is not important)
3059 building up and writing string table entries for their names. */
3060 for (section = abfd->sections; section != NULL; section = section->next)
3061 {
3062 size_t length;
3063
3064 /* Only work with space/subspaces; avoid any other sections
3065 which might have been made (.text for example). */
3066 if (!som_is_space (section) && !som_is_subspace (section))
3067 continue;
3068
3069 /* Get the length of the space/subspace name. */
3070 length = strlen (section->name);
3071
3072 /* If there is not enough room for the next entry, then dump the
3073 current buffer contents now and maybe allocate a larger
3074 buffer. Each entry will take 4 bytes to hold the string
3075 length + the string itself + null terminator. */
3076 if (p - tmp_space + 5 + length > tmp_space_size)
3077 {
3078 /* Flush buffer before refilling or reallocating. */
3079 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
3080 != p - tmp_space)
3081 return false;
3082
3083 /* Reallocate if now empty buffer still too small. */
3084 if (5 + length > tmp_space_size)
3085 {
3086 /* Ensure a minimum growth factor to avoid O(n**2) space
3087 consumption for n strings. The optimal minimum
3088 factor seems to be 2, as no other value can guarantee
3089 wasting less then 50% space. (Note that we cannot
3090 deallocate space allocated by `alloca' without
3091 returning from this function.) The same technique is
3092 used a few more times below when a buffer is
3093 reallocated. */
3094 tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
3095 tmp_space = alloca (tmp_space_size);
3096 }
3097
3098 /* Reset to beginning of the (possibly new) buffer space. */
3099 p = tmp_space;
3100 }
3101
3102 /* First element in a string table entry is the length of the
3103 string. Alignment issues are already handled. */
3104 bfd_put_32 (abfd, length, p);
3105 p += 4;
3106 strings_size += 4;
3107
3108 /* Record the index in the space/subspace records. */
3109 if (som_is_space (section))
3110 som_section_data (section)->space_dict->name.n_strx = strings_size;
3111 else
3112 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
3113
3114 /* Next comes the string itself + a null terminator. */
3115 strcpy (p, section->name);
3116 p += length + 1;
3117 strings_size += length + 1;
3118
3119 /* Always align up to the next word boundary. */
3120 while (strings_size % 4)
3121 {
3122 bfd_put_8 (abfd, 0, p);
3123 p++;
3124 strings_size++;
3125 }
3126 }
3127
3128 /* Done with the space/subspace strings. Write out any information
3129 contained in a partial block. */
3130 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
3131 return false;
3132 *string_sizep = strings_size;
3133 return true;
3134 }
3135
3136 /* Write out the symbol string table. */
3137
3138 static boolean
3139 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep,
3140 compilation_unit)
3141 bfd *abfd;
3142 unsigned long current_offset;
3143 asymbol **syms;
3144 unsigned int num_syms;
3145 unsigned int *string_sizep;
3146 COMPUNIT *compilation_unit;
3147 {
3148 unsigned int i;
3149
3150 /* Chunk of memory that we can use as buffer space, then throw
3151 away. */
3152 size_t tmp_space_size = SOM_TMP_BUFSIZE;
3153 unsigned char *tmp_space = alloca (tmp_space_size);
3154 unsigned char *p = tmp_space;
3155
3156 unsigned int strings_size = 0;
3157 unsigned char *comp[4];
3158
3159 /* This gets a bit gruesome because of the compilation unit. The
3160 strings within the compilation unit are part of the symbol
3161 strings, but don't have symbol_dictionary entries. So, manually
3162 write them and update the compliation unit header. On input, the
3163 compilation unit header contains local copies of the strings.
3164 Move them aside. */
3165 if (compilation_unit)
3166 {
3167 comp[0] = compilation_unit->name.n_name;
3168 comp[1] = compilation_unit->language_name.n_name;
3169 comp[2] = compilation_unit->product_id.n_name;
3170 comp[3] = compilation_unit->version_id.n_name;
3171 }
3172
3173 /* Seek to the start of the space strings in preparation for writing
3174 them out. */
3175 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
3176 return false;
3177
3178 if (compilation_unit)
3179 {
3180 for (i = 0; i < 4; i++)
3181 {
3182 size_t length = strlen (comp[i]);
3183
3184 /* If there is not enough room for the next entry, then dump
3185 the current buffer contents now and maybe allocate a
3186 larger buffer. */
3187 if (p - tmp_space + 5 + length > tmp_space_size)
3188 {
3189 /* Flush buffer before refilling or reallocating. */
3190 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
3191 != p - tmp_space)
3192 return false;
3193
3194 /* Reallocate if now empty buffer still too small. */
3195 if (5 + length > tmp_space_size)
3196 {
3197 /* See alloca above for discussion of new size. */
3198 tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
3199 tmp_space = alloca (tmp_space_size);
3200 }
3201
3202 /* Reset to beginning of the (possibly new) buffer
3203 space. */
3204 p = tmp_space;
3205 }
3206
3207 /* First element in a string table entry is the length of
3208 the string. This must always be 4 byte aligned. This is
3209 also an appropriate time to fill in the string index
3210 field in the symbol table entry. */
3211 bfd_put_32 (abfd, length, p);
3212 strings_size += 4;
3213 p += 4;
3214
3215 /* Next comes the string itself + a null terminator. */
3216 strcpy (p, comp[i]);
3217
3218 switch (i)
3219 {
3220 case 0:
3221 obj_som_compilation_unit (abfd)->name.n_strx = strings_size;
3222 break;
3223 case 1:
3224 obj_som_compilation_unit (abfd)->language_name.n_strx =
3225 strings_size;
3226 break;
3227 case 2:
3228 obj_som_compilation_unit (abfd)->product_id.n_strx =
3229 strings_size;
3230 break;
3231 case 3:
3232 obj_som_compilation_unit (abfd)->version_id.n_strx =
3233 strings_size;
3234 break;
3235 }
3236
3237 p += length + 1;
3238 strings_size += length + 1;
3239
3240 /* Always align up to the next word boundary. */
3241 while (strings_size % 4)
3242 {
3243 bfd_put_8 (abfd, 0, p);
3244 strings_size++;
3245 p++;
3246 }
3247 }
3248 }
3249
3250 for (i = 0; i < num_syms; i++)
3251 {
3252 size_t length = strlen (syms[i]->name);
3253
3254 /* If there is not enough room for the next entry, then dump the
3255 current buffer contents now and maybe allocate a larger buffer. */
3256 if (p - tmp_space + 5 + length > tmp_space_size)
3257 {
3258 /* Flush buffer before refilling or reallocating. */
3259 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
3260 != p - tmp_space)
3261 return false;
3262
3263 /* Reallocate if now empty buffer still too small. */
3264 if (5 + length > tmp_space_size)
3265 {
3266 /* See alloca above for discussion of new size. */
3267 tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
3268 tmp_space = alloca (tmp_space_size);
3269 }
3270
3271 /* Reset to beginning of the (possibly new) buffer space. */
3272 p = tmp_space;
3273 }
3274
3275 /* First element in a string table entry is the length of the
3276 string. This must always be 4 byte aligned. This is also
3277 an appropriate time to fill in the string index field in the
3278 symbol table entry. */
3279 bfd_put_32 (abfd, length, p);
3280 strings_size += 4;
3281 p += 4;
3282
3283 /* Next comes the string itself + a null terminator. */
3284 strcpy (p, syms[i]->name);
3285
3286 som_symbol_data(syms[i])->stringtab_offset = strings_size;
3287 p += length + 1;
3288 strings_size += length + 1;
3289
3290 /* Always align up to the next word boundary. */
3291 while (strings_size % 4)
3292 {
3293 bfd_put_8 (abfd, 0, p);
3294 strings_size++;
3295 p++;
3296 }
3297 }
3298
3299 /* Scribble out any partial block. */
3300 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
3301 return false;
3302
3303 *string_sizep = strings_size;
3304 return true;
3305 }
3306
3307 /* Compute variable information to be placed in the SOM headers,
3308 space/subspace dictionaries, relocation streams, etc. Begin
3309 writing parts of the object file. */
3310
3311 static boolean
3312 som_begin_writing (abfd)
3313 bfd *abfd;
3314 {
3315 unsigned long current_offset = 0;
3316 int strings_size = 0;
3317 unsigned long num_spaces, num_subspaces, i;
3318 asection *section;
3319 unsigned int total_subspaces = 0;
3320 struct som_exec_auxhdr *exec_header = NULL;
3321
3322 /* The file header will always be first in an object file,
3323 everything else can be in random locations. To keep things
3324 "simple" BFD will lay out the object file in the manner suggested
3325 by the PRO ABI for PA-RISC Systems. */
3326
3327 /* Before any output can really begin offsets for all the major
3328 portions of the object file must be computed. So, starting
3329 with the initial file header compute (and sometimes write)
3330 each portion of the object file. */
3331
3332 /* Make room for the file header, it's contents are not complete
3333 yet, so it can not be written at this time. */
3334 current_offset += sizeof (struct header);
3335
3336 /* Any auxiliary headers will follow the file header. Right now
3337 we support only the copyright and version headers. */
3338 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
3339 obj_som_file_hdr (abfd)->aux_header_size = 0;
3340 if (abfd->flags & (EXEC_P | DYNAMIC))
3341 {
3342 /* Parts of the exec header will be filled in later, so
3343 delay writing the header itself. Fill in the defaults,
3344 and write it later. */
3345 current_offset += sizeof (struct som_exec_auxhdr);
3346 obj_som_file_hdr (abfd)->aux_header_size
3347 += sizeof (struct som_exec_auxhdr);
3348 exec_header = obj_som_exec_hdr (abfd);
3349 exec_header->som_auxhdr.type = EXEC_AUX_ID;
3350 exec_header->som_auxhdr.length = 40;
3351 }
3352 if (obj_som_version_hdr (abfd) != NULL)
3353 {
3354 unsigned int len;
3355
3356 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
3357 return false;
3358
3359 /* Write the aux_id structure and the string length. */
3360 len = sizeof (struct aux_id) + sizeof (unsigned int);
3361 obj_som_file_hdr (abfd)->aux_header_size += len;
3362 current_offset += len;
3363 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
3364 return false;
3365
3366 /* Write the version string. */
3367 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
3368 obj_som_file_hdr (abfd)->aux_header_size += len;
3369 current_offset += len;
3370 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
3371 len, 1, abfd) != len)
3372 return false;
3373 }
3374
3375 if (obj_som_copyright_hdr (abfd) != NULL)
3376 {
3377 unsigned int len;
3378
3379 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
3380 return false;
3381
3382 /* Write the aux_id structure and the string length. */
3383 len = sizeof (struct aux_id) + sizeof (unsigned int);
3384 obj_som_file_hdr (abfd)->aux_header_size += len;
3385 current_offset += len;
3386 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
3387 return false;
3388
3389 /* Write the copyright string. */
3390 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
3391 obj_som_file_hdr (abfd)->aux_header_size += len;
3392 current_offset += len;
3393 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
3394 len, 1, abfd) != len)
3395 return false;
3396 }
3397
3398 /* Next comes the initialization pointers; we have no initialization
3399 pointers, so current offset does not change. */
3400 obj_som_file_hdr (abfd)->init_array_location = current_offset;
3401 obj_som_file_hdr (abfd)->init_array_total = 0;
3402
3403 /* Next are the space records. These are fixed length records.
3404
3405 Count the number of spaces to determine how much room is needed
3406 in the object file for the space records.
3407
3408 The names of the spaces are stored in a separate string table,
3409 and the index for each space into the string table is computed
3410 below. Therefore, it is not possible to write the space headers
3411 at this time. */
3412 num_spaces = som_count_spaces (abfd);
3413 obj_som_file_hdr (abfd)->space_location = current_offset;
3414 obj_som_file_hdr (abfd)->space_total = num_spaces;
3415 current_offset += num_spaces * sizeof (struct space_dictionary_record);
3416
3417 /* Next are the subspace records. These are fixed length records.
3418
3419 Count the number of subspaes to determine how much room is needed
3420 in the object file for the subspace records.
3421
3422 A variety if fields in the subspace record are still unknown at
3423 this time (index into string table, fixup stream location/size, etc). */
3424 num_subspaces = som_count_subspaces (abfd);
3425 obj_som_file_hdr (abfd)->subspace_location = current_offset;
3426 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
3427 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
3428
3429 /* Next is the string table for the space/subspace names. We will
3430 build and write the string table on the fly. At the same time
3431 we will fill in the space/subspace name index fields. */
3432
3433 /* The string table needs to be aligned on a word boundary. */
3434 if (current_offset % 4)
3435 current_offset += (4 - (current_offset % 4));
3436
3437 /* Mark the offset of the space/subspace string table in the
3438 file header. */
3439 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
3440
3441 /* Scribble out the space strings. */
3442 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
3443 return false;
3444
3445 /* Record total string table size in the header and update the
3446 current offset. */
3447 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
3448 current_offset += strings_size;
3449
3450 /* Next is the compilation unit. */
3451 obj_som_file_hdr (abfd)->compiler_location = current_offset;
3452 obj_som_file_hdr (abfd)->compiler_total = 0;
3453 if (obj_som_compilation_unit (abfd))
3454 {
3455 obj_som_file_hdr (abfd)->compiler_total = 1;
3456 current_offset += COMPUNITSZ;
3457 }
3458
3459 /* Now compute the file positions for the loadable subspaces, taking
3460 care to make sure everything stays properly aligned. */
3461
3462 section = abfd->sections;
3463 for (i = 0; i < num_spaces; i++)
3464 {
3465 asection *subsection;
3466 int first_subspace;
3467 unsigned int subspace_offset = 0;
3468
3469 /* Find a space. */
3470 while (!som_is_space (section))
3471 section = section->next;
3472
3473 first_subspace = 1;
3474 /* Now look for all its subspaces. */
3475 for (subsection = abfd->sections;
3476 subsection != NULL;
3477 subsection = subsection->next)
3478 {
3479
3480 if (!som_is_subspace (subsection)
3481 || !som_is_container (section, subsection)
3482 || (subsection->flags & SEC_ALLOC) == 0)
3483 continue;
3484
3485 /* If this is the first subspace in the space, and we are
3486 building an executable, then take care to make sure all
3487 the alignments are correct and update the exec header. */
3488 if (first_subspace
3489 && (abfd->flags & (EXEC_P | DYNAMIC)))
3490 {
3491 /* Demand paged executables have each space aligned to a
3492 page boundary. Sharable executables (write-protected
3493 text) have just the private (aka data & bss) space aligned
3494 to a page boundary. Ugh. Not true for HPUX.
3495
3496 The HPUX kernel requires the text to always be page aligned
3497 within the file regardless of the executable's type. */
3498 if (abfd->flags & (D_PAGED | DYNAMIC)
3499 || (subsection->flags & SEC_CODE)
3500 || ((abfd->flags & WP_TEXT)
3501 && (subsection->flags & SEC_DATA)))
3502 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3503
3504 /* Update the exec header. */
3505 if (subsection->flags & SEC_CODE && exec_header->exec_tfile == 0)
3506 {
3507 exec_header->exec_tmem = section->vma;
3508 exec_header->exec_tfile = current_offset;
3509 }
3510 if (subsection->flags & SEC_DATA && exec_header->exec_dfile == 0)
3511 {
3512 exec_header->exec_dmem = section->vma;
3513 exec_header->exec_dfile = current_offset;
3514 }
3515
3516 /* Keep track of exactly where we are within a particular
3517 space. This is necessary as the braindamaged HPUX
3518 loader will create holes between subspaces *and*
3519 subspace alignments are *NOT* preserved. What a crock. */
3520 subspace_offset = subsection->vma;
3521
3522 /* Only do this for the first subspace within each space. */
3523 first_subspace = 0;
3524 }
3525 else if (abfd->flags & (EXEC_P | DYNAMIC))
3526 {
3527 /* The braindamaged HPUX loader may have created a hole
3528 between two subspaces. It is *not* sufficient to use
3529 the alignment specifications within the subspaces to
3530 account for these holes -- I've run into at least one
3531 case where the loader left one code subspace unaligned
3532 in a final executable.
3533
3534 To combat this we keep a current offset within each space,
3535 and use the subspace vma fields to detect and preserve
3536 holes. What a crock!
3537
3538 ps. This is not necessary for unloadable space/subspaces. */
3539 current_offset += subsection->vma - subspace_offset;
3540 if (subsection->flags & SEC_CODE)
3541 exec_header->exec_tsize += subsection->vma - subspace_offset;
3542 else
3543 exec_header->exec_dsize += subsection->vma - subspace_offset;
3544 subspace_offset += subsection->vma - subspace_offset;
3545 }
3546
3547 subsection->target_index = total_subspaces++;
3548 /* This is real data to be loaded from the file. */
3549 if (subsection->flags & SEC_LOAD)
3550 {
3551 /* Update the size of the code & data. */
3552 if (abfd->flags & (EXEC_P | DYNAMIC)
3553 && subsection->flags & SEC_CODE)
3554 exec_header->exec_tsize += subsection->_cooked_size;
3555 else if (abfd->flags & (EXEC_P | DYNAMIC)
3556 && subsection->flags & SEC_DATA)
3557 exec_header->exec_dsize += subsection->_cooked_size;
3558 som_section_data (subsection)->subspace_dict->file_loc_init_value
3559 = current_offset;
3560 subsection->filepos = current_offset;
3561 current_offset += bfd_section_size (abfd, subsection);
3562 subspace_offset += bfd_section_size (abfd, subsection);
3563 }
3564 /* Looks like uninitialized data. */
3565 else
3566 {
3567 /* Update the size of the bss section. */
3568 if (abfd->flags & (EXEC_P | DYNAMIC))
3569 exec_header->exec_bsize += subsection->_cooked_size;
3570
3571 som_section_data (subsection)->subspace_dict->file_loc_init_value
3572 = 0;
3573 som_section_data (subsection)->subspace_dict->
3574 initialization_length = 0;
3575 }
3576 }
3577 /* Goto the next section. */
3578 section = section->next;
3579 }
3580
3581 /* Finally compute the file positions for unloadable subspaces.
3582 If building an executable, start the unloadable stuff on its
3583 own page. */
3584
3585 if (abfd->flags & (EXEC_P | DYNAMIC))
3586 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3587
3588 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3589 section = abfd->sections;
3590 for (i = 0; i < num_spaces; i++)
3591 {
3592 asection *subsection;
3593
3594 /* Find a space. */
3595 while (!som_is_space (section))
3596 section = section->next;
3597
3598 if (abfd->flags & (EXEC_P | DYNAMIC))
3599 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3600
3601 /* Now look for all its subspaces. */
3602 for (subsection = abfd->sections;
3603 subsection != NULL;
3604 subsection = subsection->next)
3605 {
3606
3607 if (!som_is_subspace (subsection)
3608 || !som_is_container (section, subsection)
3609 || (subsection->flags & SEC_ALLOC) != 0)
3610 continue;
3611
3612 subsection->target_index = total_subspaces++;
3613 /* This is real data to be loaded from the file. */
3614 if ((subsection->flags & SEC_LOAD) == 0)
3615 {
3616 som_section_data (subsection)->subspace_dict->file_loc_init_value
3617 = current_offset;
3618 subsection->filepos = current_offset;
3619 current_offset += bfd_section_size (abfd, subsection);
3620 }
3621 /* Looks like uninitialized data. */
3622 else
3623 {
3624 som_section_data (subsection)->subspace_dict->file_loc_init_value
3625 = 0;
3626 som_section_data (subsection)->subspace_dict->
3627 initialization_length = bfd_section_size (abfd, subsection);
3628 }
3629 }
3630 /* Goto the next section. */
3631 section = section->next;
3632 }
3633
3634 /* If building an executable, then make sure to seek to and write
3635 one byte at the end of the file to make sure any necessary
3636 zeros are filled in. Ugh. */
3637 if (abfd->flags & (EXEC_P | DYNAMIC))
3638 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3639 if (bfd_seek (abfd, current_offset - 1, SEEK_SET) < 0)
3640 return false;
3641 if (bfd_write ((PTR) "", 1, 1, abfd) != 1)
3642 return false;
3643
3644 obj_som_file_hdr (abfd)->unloadable_sp_size
3645 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3646
3647 /* Loader fixups are not supported in any way shape or form. */
3648 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3649 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3650
3651 /* Done. Store the total size of the SOM so far. */
3652 obj_som_file_hdr (abfd)->som_length = current_offset;
3653
3654 return true;
3655 }
3656
3657 /* Finally, scribble out the various headers to the disk. */
3658
3659 static boolean
3660 som_finish_writing (abfd)
3661 bfd *abfd;
3662 {
3663 int num_spaces = som_count_spaces (abfd);
3664 asymbol **syms = bfd_get_outsymbols (abfd);
3665 int i, num_syms, strings_size;
3666 int subspace_index = 0;
3667 file_ptr location;
3668 asection *section;
3669 unsigned long current_offset;
3670 unsigned int total_reloc_size;
3671
3672 /* Next is the symbol table. These are fixed length records.
3673
3674 Count the number of symbols to determine how much room is needed
3675 in the object file for the symbol table.
3676
3677 The names of the symbols are stored in a separate string table,
3678 and the index for each symbol name into the string table is computed
3679 below. Therefore, it is not possible to write the symbol table
3680 at this time.
3681
3682 These used to be output before the subspace contents, but they
3683 were moved here to work around a stupid bug in the hpux linker
3684 (fixed in hpux10). */
3685 current_offset = obj_som_file_hdr (abfd)->som_length;
3686
3687 /* Make sure we're on a word boundary. */
3688 if (current_offset % 4)
3689 current_offset += (4 - (current_offset % 4));
3690
3691 num_syms = bfd_get_symcount (abfd);
3692 obj_som_file_hdr (abfd)->symbol_location = current_offset;
3693 obj_som_file_hdr (abfd)->symbol_total = num_syms;
3694 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
3695
3696 /* Next are the symbol strings.
3697 Align them to a word boundary. */
3698 if (current_offset % 4)
3699 current_offset += (4 - (current_offset % 4));
3700 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
3701
3702 /* Scribble out the symbol strings. */
3703 if (som_write_symbol_strings (abfd, current_offset, syms,
3704 num_syms, &strings_size,
3705 obj_som_compilation_unit (abfd))
3706 == false)
3707 return false;
3708
3709 /* Record total string table size in header and update the
3710 current offset. */
3711 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
3712 current_offset += strings_size;
3713
3714 /* Do prep work before handling fixups. */
3715 som_prep_for_fixups (abfd,
3716 bfd_get_outsymbols (abfd),
3717 bfd_get_symcount (abfd));
3718
3719 /* At the end of the file is the fixup stream which starts on a
3720 word boundary. */
3721 if (current_offset % 4)
3722 current_offset += (4 - (current_offset % 4));
3723 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
3724
3725 /* Write the fixups and update fields in subspace headers which
3726 relate to the fixup stream. */
3727 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
3728 return false;
3729
3730 /* Record the total size of the fixup stream in the file header. */
3731 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
3732
3733 /* Done. Store the total size of the SOM. */
3734 obj_som_file_hdr (abfd)->som_length = current_offset + total_reloc_size;
3735
3736 /* Now that the symbol table information is complete, build and
3737 write the symbol table. */
3738 if (som_build_and_write_symbol_table (abfd) == false)
3739 return false;
3740
3741 /* Subspaces are written first so that we can set up information
3742 about them in their containing spaces as the subspace is written. */
3743
3744 /* Seek to the start of the subspace dictionary records. */
3745 location = obj_som_file_hdr (abfd)->subspace_location;
3746 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3747 return false;
3748
3749 section = abfd->sections;
3750 /* Now for each loadable space write out records for its subspaces. */
3751 for (i = 0; i < num_spaces; i++)
3752 {
3753 asection *subsection;
3754
3755 /* Find a space. */
3756 while (!som_is_space (section))
3757 section = section->next;
3758
3759 /* Now look for all its subspaces. */
3760 for (subsection = abfd->sections;
3761 subsection != NULL;
3762 subsection = subsection->next)
3763 {
3764
3765 /* Skip any section which does not correspond to a space
3766 or subspace. Or does not have SEC_ALLOC set (and therefore
3767 has no real bits on the disk). */
3768 if (!som_is_subspace (subsection)
3769 || !som_is_container (section, subsection)
3770 || (subsection->flags & SEC_ALLOC) == 0)
3771 continue;
3772
3773 /* If this is the first subspace for this space, then save
3774 the index of the subspace in its containing space. Also
3775 set "is_loadable" in the containing space. */
3776
3777 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3778 {
3779 som_section_data (section)->space_dict->is_loadable = 1;
3780 som_section_data (section)->space_dict->subspace_index
3781 = subspace_index;
3782 }
3783
3784 /* Increment the number of subspaces seen and the number of
3785 subspaces contained within the current space. */
3786 subspace_index++;
3787 som_section_data (section)->space_dict->subspace_quantity++;
3788
3789 /* Mark the index of the current space within the subspace's
3790 dictionary record. */
3791 som_section_data (subsection)->subspace_dict->space_index = i;
3792
3793 /* Dump the current subspace header. */
3794 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3795 sizeof (struct subspace_dictionary_record), 1, abfd)
3796 != sizeof (struct subspace_dictionary_record))
3797 return false;
3798 }
3799 /* Goto the next section. */
3800 section = section->next;
3801 }
3802
3803 /* Now repeat the process for unloadable subspaces. */
3804 section = abfd->sections;
3805 /* Now for each space write out records for its subspaces. */
3806 for (i = 0; i < num_spaces; i++)
3807 {
3808 asection *subsection;
3809
3810 /* Find a space. */
3811 while (!som_is_space (section))
3812 section = section->next;
3813
3814 /* Now look for all its subspaces. */
3815 for (subsection = abfd->sections;
3816 subsection != NULL;
3817 subsection = subsection->next)
3818 {
3819
3820 /* Skip any section which does not correspond to a space or
3821 subspace, or which SEC_ALLOC set (and therefore handled
3822 in the loadable spaces/subspaces code above). */
3823
3824 if (!som_is_subspace (subsection)
3825 || !som_is_container (section, subsection)
3826 || (subsection->flags & SEC_ALLOC) != 0)
3827 continue;
3828
3829 /* If this is the first subspace for this space, then save
3830 the index of the subspace in its containing space. Clear
3831 "is_loadable". */
3832
3833 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3834 {
3835 som_section_data (section)->space_dict->is_loadable = 0;
3836 som_section_data (section)->space_dict->subspace_index
3837 = subspace_index;
3838 }
3839
3840 /* Increment the number of subspaces seen and the number of
3841 subspaces contained within the current space. */
3842 som_section_data (section)->space_dict->subspace_quantity++;
3843 subspace_index++;
3844
3845 /* Mark the index of the current space within the subspace's
3846 dictionary record. */
3847 som_section_data (subsection)->subspace_dict->space_index = i;
3848
3849 /* Dump this subspace header. */
3850 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3851 sizeof (struct subspace_dictionary_record), 1, abfd)
3852 != sizeof (struct subspace_dictionary_record))
3853 return false;
3854 }
3855 /* Goto the next section. */
3856 section = section->next;
3857 }
3858
3859 /* All the subspace dictiondary records are written, and all the
3860 fields are set up in the space dictionary records.
3861
3862 Seek to the right location and start writing the space
3863 dictionary records. */
3864 location = obj_som_file_hdr (abfd)->space_location;
3865 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3866 return false;
3867
3868 section = abfd->sections;
3869 for (i = 0; i < num_spaces; i++)
3870 {
3871
3872 /* Find a space. */
3873 while (!som_is_space (section))
3874 section = section->next;
3875
3876 /* Dump its header */
3877 if (bfd_write ((PTR) som_section_data (section)->space_dict,
3878 sizeof (struct space_dictionary_record), 1, abfd)
3879 != sizeof (struct space_dictionary_record))
3880 return false;
3881
3882 /* Goto the next section. */
3883 section = section->next;
3884 }
3885
3886 /* Write the compilation unit record if there is one. */
3887 if (obj_som_compilation_unit (abfd))
3888 {
3889 location = obj_som_file_hdr (abfd)->compiler_location;
3890 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3891 return false;
3892
3893 if (bfd_write ((PTR) obj_som_compilation_unit (abfd),
3894 COMPUNITSZ, 1, abfd) != COMPUNITSZ)
3895 return false;
3896 }
3897
3898 /* Setting of the system_id has to happen very late now that copying of
3899 BFD private data happens *after* section contents are set. */
3900 if (abfd->flags & (EXEC_P | DYNAMIC))
3901 obj_som_file_hdr(abfd)->system_id = obj_som_exec_data (abfd)->system_id;
3902 else if (bfd_get_mach (abfd) == pa20)
3903 obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC2_0;
3904 else if (bfd_get_mach (abfd) == pa11)
3905 obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC1_1;
3906 else
3907 obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC1_0;
3908
3909 /* Compute the checksum for the file header just before writing
3910 the header to disk. */
3911 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3912
3913 /* Only thing left to do is write out the file header. It is always
3914 at location zero. Seek there and write it. */
3915 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) < 0)
3916 return false;
3917 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3918 sizeof (struct header), 1, abfd)
3919 != sizeof (struct header))
3920 return false;
3921
3922 /* Now write the exec header. */
3923 if (abfd->flags & (EXEC_P | DYNAMIC))
3924 {
3925 long tmp, som_length;
3926 struct som_exec_auxhdr *exec_header;
3927
3928 exec_header = obj_som_exec_hdr (abfd);
3929 exec_header->exec_entry = bfd_get_start_address (abfd);
3930 exec_header->exec_flags = obj_som_exec_data (abfd)->exec_flags;
3931
3932 /* Oh joys. Ram some of the BSS data into the DATA section
3933 to be compatable with how the hp linker makes objects
3934 (saves memory space). */
3935 tmp = exec_header->exec_dsize;
3936 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3937 exec_header->exec_bsize -= (tmp - exec_header->exec_dsize);
3938 if (exec_header->exec_bsize < 0)
3939 exec_header->exec_bsize = 0;
3940 exec_header->exec_dsize = tmp;
3941
3942 /* Now perform some sanity checks. The idea is to catch bogons now and
3943 inform the user, instead of silently generating a bogus file. */
3944 som_length = obj_som_file_hdr (abfd)->som_length;
3945 if (exec_header->exec_tfile + exec_header->exec_tsize > som_length
3946 || exec_header->exec_dfile + exec_header->exec_dsize > som_length)
3947 {
3948 bfd_set_error (bfd_error_bad_value);
3949 return false;
3950 }
3951
3952 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
3953 SEEK_SET) < 0)
3954 return false;
3955
3956 if (bfd_write ((PTR) exec_header, AUX_HDR_SIZE, 1, abfd)
3957 != AUX_HDR_SIZE)
3958 return false;
3959 }
3960 return true;
3961 }
3962
3963 /* Compute and return the checksum for a SOM file header. */
3964
3965 static unsigned long
3966 som_compute_checksum (abfd)
3967 bfd *abfd;
3968 {
3969 unsigned long checksum, count, i;
3970 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3971
3972 checksum = 0;
3973 count = sizeof (struct header) / sizeof (unsigned long);
3974 for (i = 0; i < count; i++)
3975 checksum ^= *(buffer + i);
3976
3977 return checksum;
3978 }
3979
3980 static void
3981 som_bfd_derive_misc_symbol_info (abfd, sym, info)
3982 bfd *abfd ATTRIBUTE_UNUSED;
3983 asymbol *sym;
3984 struct som_misc_symbol_info *info;
3985 {
3986 /* Initialize. */
3987 memset (info, 0, sizeof (struct som_misc_symbol_info));
3988
3989 /* The HP SOM linker requires detailed type information about
3990 all symbols (including undefined symbols!). Unfortunately,
3991 the type specified in an import/export statement does not
3992 always match what the linker wants. Severe braindamage. */
3993
3994 /* Section symbols will not have a SOM symbol type assigned to
3995 them yet. Assign all section symbols type ST_DATA. */
3996 if (sym->flags & BSF_SECTION_SYM)
3997 info->symbol_type = ST_DATA;
3998 else
3999 {
4000 /* Common symbols must have scope SS_UNSAT and type
4001 ST_STORAGE or the linker will choke. */
4002 if (bfd_is_com_section (sym->section))
4003 {
4004 info->symbol_scope = SS_UNSAT;
4005 info->symbol_type = ST_STORAGE;
4006 }
4007
4008 /* It is possible to have a symbol without an associated
4009 type. This happens if the user imported the symbol
4010 without a type and the symbol was never defined
4011 locally. If BSF_FUNCTION is set for this symbol, then
4012 assign it type ST_CODE (the HP linker requires undefined
4013 external functions to have type ST_CODE rather than ST_ENTRY). */
4014 else if ((som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
4015 || som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
4016 && bfd_is_und_section (sym->section)
4017 && sym->flags & BSF_FUNCTION)
4018 info->symbol_type = ST_CODE;
4019
4020 /* Handle function symbols which were defined in this file.
4021 They should have type ST_ENTRY. Also retrieve the argument
4022 relocation bits from the SOM backend information. */
4023 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
4024 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
4025 && (sym->flags & BSF_FUNCTION))
4026 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
4027 && (sym->flags & BSF_FUNCTION)))
4028 {
4029 info->symbol_type = ST_ENTRY;
4030 info->arg_reloc = som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc;
4031 info->priv_level= som_symbol_data (sym)->tc_data.ap.hppa_priv_level;
4032 }
4033
4034 /* For unknown symbols set the symbol's type based on the symbol's
4035 section (ST_DATA for DATA sections, ST_CODE for CODE sections). */
4036 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
4037 {
4038 if (sym->section->flags & SEC_CODE)
4039 info->symbol_type = ST_CODE;
4040 else
4041 info->symbol_type = ST_DATA;
4042 }
4043
4044 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
4045 info->symbol_type = ST_DATA;
4046
4047 /* From now on it's a very simple mapping. */
4048 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
4049 info->symbol_type = ST_ABSOLUTE;
4050 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
4051 info->symbol_type = ST_CODE;
4052 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
4053 info->symbol_type = ST_DATA;
4054 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
4055 info->symbol_type = ST_MILLICODE;
4056 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
4057 info->symbol_type = ST_PLABEL;
4058 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
4059 info->symbol_type = ST_PRI_PROG;
4060 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
4061 info->symbol_type = ST_SEC_PROG;
4062 }
4063
4064 /* Now handle the symbol's scope. Exported data which is not
4065 in the common section has scope SS_UNIVERSAL. Note scope
4066 of common symbols was handled earlier! */
4067 if (bfd_is_und_section (sym->section))
4068 info->symbol_scope = SS_UNSAT;
4069 else if (sym->flags & (BSF_EXPORT | BSF_WEAK)
4070 && ! bfd_is_com_section (sym->section))
4071 info->symbol_scope = SS_UNIVERSAL;
4072 /* Anything else which is not in the common section has scope
4073 SS_LOCAL. */
4074 else if (! bfd_is_com_section (sym->section))
4075 info->symbol_scope = SS_LOCAL;
4076
4077 /* Now set the symbol_info field. It has no real meaning
4078 for undefined or common symbols, but the HP linker will
4079 choke if it's not set to some "reasonable" value. We
4080 use zero as a reasonable value. */
4081 if (bfd_is_com_section (sym->section)
4082 || bfd_is_und_section (sym->section)
4083 || bfd_is_abs_section (sym->section))
4084 info->symbol_info = 0;
4085 /* For all other symbols, the symbol_info field contains the
4086 subspace index of the space this symbol is contained in. */
4087 else
4088 info->symbol_info = sym->section->target_index;
4089
4090 /* Set the symbol's value. */
4091 info->symbol_value = sym->value + sym->section->vma;
4092
4093 /* The secondary_def field is for weak symbols. */
4094 if (sym->flags & BSF_WEAK)
4095 info->secondary_def = true;
4096 else
4097 info->secondary_def = false;
4098
4099 }
4100
4101 /* Build and write, in one big chunk, the entire symbol table for
4102 this BFD. */
4103
4104 static boolean
4105 som_build_and_write_symbol_table (abfd)
4106 bfd *abfd;
4107 {
4108 unsigned int num_syms = bfd_get_symcount (abfd);
4109 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
4110 asymbol **bfd_syms = obj_som_sorted_syms (abfd);
4111 struct symbol_dictionary_record *som_symtab = NULL;
4112 int i, symtab_size;
4113
4114 /* Compute total symbol table size and allocate a chunk of memory
4115 to hold the symbol table as we build it. */
4116 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
4117 som_symtab = (struct symbol_dictionary_record *) bfd_malloc (symtab_size);
4118 if (som_symtab == NULL && symtab_size != 0)
4119 goto error_return;
4120 memset (som_symtab, 0, symtab_size);
4121
4122 /* Walk over each symbol. */
4123 for (i = 0; i < num_syms; i++)
4124 {
4125 struct som_misc_symbol_info info;
4126
4127 /* This is really an index into the symbol strings table.
4128 By the time we get here, the index has already been
4129 computed and stored into the name field in the BFD symbol. */
4130 som_symtab[i].name.n_strx = som_symbol_data(bfd_syms[i])->stringtab_offset;
4131
4132 /* Derive SOM information from the BFD symbol. */
4133 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
4134
4135 /* Now use it. */
4136 som_symtab[i].symbol_type = info.symbol_type;
4137 som_symtab[i].symbol_scope = info.symbol_scope;
4138 som_symtab[i].arg_reloc = info.arg_reloc;
4139 som_symtab[i].symbol_info = info.symbol_info;
4140 som_symtab[i].xleast = 3;
4141 som_symtab[i].symbol_value = info.symbol_value | info.priv_level;
4142 som_symtab[i].secondary_def = info.secondary_def;
4143 }
4144
4145 /* Everything is ready, seek to the right location and
4146 scribble out the symbol table. */
4147 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
4148 return false;
4149
4150 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
4151 goto error_return;
4152
4153 if (som_symtab != NULL)
4154 free (som_symtab);
4155 return true;
4156 error_return:
4157 if (som_symtab != NULL)
4158 free (som_symtab);
4159 return false;
4160 }
4161
4162 /* Write an object in SOM format. */
4163
4164 static boolean
4165 som_write_object_contents (abfd)
4166 bfd *abfd;
4167 {
4168 if (abfd->output_has_begun == false)
4169 {
4170 /* Set up fixed parts of the file, space, and subspace headers.
4171 Notify the world that output has begun. */
4172 som_prep_headers (abfd);
4173 abfd->output_has_begun = true;
4174 /* Start writing the object file. This include all the string
4175 tables, fixup streams, and other portions of the object file. */
4176 som_begin_writing (abfd);
4177 }
4178
4179 return (som_finish_writing (abfd));
4180 }
4181
4182 \f
4183 /* Read and save the string table associated with the given BFD. */
4184
4185 static boolean
4186 som_slurp_string_table (abfd)
4187 bfd *abfd;
4188 {
4189 char *stringtab;
4190
4191 /* Use the saved version if its available. */
4192 if (obj_som_stringtab (abfd) != NULL)
4193 return true;
4194
4195 /* I don't think this can currently happen, and I'm not sure it should
4196 really be an error, but it's better than getting unpredictable results
4197 from the host's malloc when passed a size of zero. */
4198 if (obj_som_stringtab_size (abfd) == 0)
4199 {
4200 bfd_set_error (bfd_error_no_symbols);
4201 return false;
4202 }
4203
4204 /* Allocate and read in the string table. */
4205 stringtab = bfd_malloc (obj_som_stringtab_size (abfd));
4206 if (stringtab == NULL)
4207 return false;
4208 memset (stringtab, 0, obj_som_stringtab_size (abfd));
4209
4210 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
4211 return false;
4212
4213 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
4214 != obj_som_stringtab_size (abfd))
4215 return false;
4216
4217 /* Save our results and return success. */
4218 obj_som_stringtab (abfd) = stringtab;
4219 return true;
4220 }
4221
4222 /* Return the amount of data (in bytes) required to hold the symbol
4223 table for this object. */
4224
4225 static long
4226 som_get_symtab_upper_bound (abfd)
4227 bfd *abfd;
4228 {
4229 if (!som_slurp_symbol_table (abfd))
4230 return -1;
4231
4232 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
4233 }
4234
4235 /* Convert from a SOM subspace index to a BFD section. */
4236
4237 static asection *
4238 bfd_section_from_som_symbol (abfd, symbol)
4239 bfd *abfd;
4240 struct symbol_dictionary_record *symbol;
4241 {
4242 asection *section;
4243
4244 /* The meaning of the symbol_info field changes for functions
4245 within executables. So only use the quick symbol_info mapping for
4246 incomplete objects and non-function symbols in executables. */
4247 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4248 || (symbol->symbol_type != ST_ENTRY
4249 && symbol->symbol_type != ST_PRI_PROG
4250 && symbol->symbol_type != ST_SEC_PROG
4251 && symbol->symbol_type != ST_MILLICODE))
4252 {
4253 unsigned int index = symbol->symbol_info;
4254 for (section = abfd->sections; section != NULL; section = section->next)
4255 if (section->target_index == index && som_is_subspace (section))
4256 return section;
4257
4258 /* Could be a symbol from an external library (such as an OMOS
4259 shared library). Don't abort. */
4260 return bfd_abs_section_ptr;
4261
4262 }
4263 else
4264 {
4265 unsigned int value = symbol->symbol_value;
4266
4267 /* For executables we will have to use the symbol's address and
4268 find out what section would contain that address. Yuk. */
4269 for (section = abfd->sections; section; section = section->next)
4270 {
4271 if (value >= section->vma
4272 && value <= section->vma + section->_cooked_size
4273 && som_is_subspace (section))
4274 return section;
4275 }
4276
4277 /* Could be a symbol from an external library (such as an OMOS
4278 shared library). Don't abort. */
4279 return bfd_abs_section_ptr;
4280
4281 }
4282 }
4283
4284 /* Read and save the symbol table associated with the given BFD. */
4285
4286 static unsigned int
4287 som_slurp_symbol_table (abfd)
4288 bfd *abfd;
4289 {
4290 int symbol_count = bfd_get_symcount (abfd);
4291 int symsize = sizeof (struct symbol_dictionary_record);
4292 char *stringtab;
4293 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
4294 som_symbol_type *sym, *symbase;
4295
4296 /* Return saved value if it exists. */
4297 if (obj_som_symtab (abfd) != NULL)
4298 goto successful_return;
4299
4300 /* Special case. This is *not* an error. */
4301 if (symbol_count == 0)
4302 goto successful_return;
4303
4304 if (!som_slurp_string_table (abfd))
4305 goto error_return;
4306
4307 stringtab = obj_som_stringtab (abfd);
4308
4309 symbase = ((som_symbol_type *)
4310 bfd_malloc (symbol_count * sizeof (som_symbol_type)));
4311 if (symbase == NULL)
4312 goto error_return;
4313 memset (symbase, 0, symbol_count * sizeof (som_symbol_type));
4314
4315 /* Read in the external SOM representation. */
4316 buf = bfd_malloc (symbol_count * symsize);
4317 if (buf == NULL && symbol_count * symsize != 0)
4318 goto error_return;
4319 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
4320 goto error_return;
4321 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
4322 != symbol_count * symsize)
4323 goto error_return;
4324
4325 /* Iterate over all the symbols and internalize them. */
4326 endbufp = buf + symbol_count;
4327 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
4328 {
4329
4330 /* I don't think we care about these. */
4331 if (bufp->symbol_type == ST_SYM_EXT
4332 || bufp->symbol_type == ST_ARG_EXT)
4333 continue;
4334
4335 /* Set some private data we care about. */
4336 if (bufp->symbol_type == ST_NULL)
4337 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
4338 else if (bufp->symbol_type == ST_ABSOLUTE)
4339 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
4340 else if (bufp->symbol_type == ST_DATA)
4341 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
4342 else if (bufp->symbol_type == ST_CODE)
4343 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
4344 else if (bufp->symbol_type == ST_PRI_PROG)
4345 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
4346 else if (bufp->symbol_type == ST_SEC_PROG)
4347 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
4348 else if (bufp->symbol_type == ST_ENTRY)
4349 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
4350 else if (bufp->symbol_type == ST_MILLICODE)
4351 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
4352 else if (bufp->symbol_type == ST_PLABEL)
4353 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
4354 else
4355 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
4356 som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc = bufp->arg_reloc;
4357
4358 /* Some reasonable defaults. */
4359 sym->symbol.the_bfd = abfd;
4360 sym->symbol.name = bufp->name.n_strx + stringtab;
4361 sym->symbol.value = bufp->symbol_value;
4362 sym->symbol.section = 0;
4363 sym->symbol.flags = 0;
4364
4365 switch (bufp->symbol_type)
4366 {
4367 case ST_ENTRY:
4368 case ST_MILLICODE:
4369 sym->symbol.flags |= BSF_FUNCTION;
4370 som_symbol_data (sym)->tc_data.ap.hppa_priv_level =
4371 sym->symbol.value & 0x3;
4372 sym->symbol.value &= ~0x3;
4373 break;
4374
4375 case ST_STUB:
4376 case ST_CODE:
4377 case ST_PRI_PROG:
4378 case ST_SEC_PROG:
4379 som_symbol_data (sym)->tc_data.ap.hppa_priv_level =
4380 sym->symbol.value & 0x3;
4381 sym->symbol.value &= ~0x3;
4382 /* If the symbol's scope is SS_UNSAT, then these are
4383 undefined function symbols. */
4384 if (bufp->symbol_scope == SS_UNSAT)
4385 sym->symbol.flags |= BSF_FUNCTION;
4386
4387 default:
4388 break;
4389 }
4390
4391 /* Handle scoping and section information. */
4392 switch (bufp->symbol_scope)
4393 {
4394 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
4395 so the section associated with this symbol can't be known. */
4396 case SS_EXTERNAL:
4397 if (bufp->symbol_type != ST_STORAGE)
4398 sym->symbol.section = bfd_und_section_ptr;
4399 else
4400 sym->symbol.section = bfd_com_section_ptr;
4401 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
4402 break;
4403
4404 case SS_UNSAT:
4405 if (bufp->symbol_type != ST_STORAGE)
4406 sym->symbol.section = bfd_und_section_ptr;
4407 else
4408 sym->symbol.section = bfd_com_section_ptr;
4409 break;
4410
4411 case SS_UNIVERSAL:
4412 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
4413 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
4414 sym->symbol.value -= sym->symbol.section->vma;
4415 break;
4416
4417 #if 0
4418 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
4419 Sound dumb? It is. */
4420 case SS_GLOBAL:
4421 #endif
4422 case SS_LOCAL:
4423 sym->symbol.flags |= BSF_LOCAL;
4424 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
4425 sym->symbol.value -= sym->symbol.section->vma;
4426 break;
4427 }
4428
4429 /* Check for a weak symbol. */
4430 if (bufp->secondary_def)
4431 sym->symbol.flags |= BSF_WEAK;
4432
4433 /* Mark section symbols and symbols used by the debugger.
4434 Note $START$ is a magic code symbol, NOT a section symbol. */
4435 if (sym->symbol.name[0] == '$'
4436 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$'
4437 && !strcmp (sym->symbol.name, sym->symbol.section->name))
4438 sym->symbol.flags |= BSF_SECTION_SYM;
4439 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
4440 {
4441 sym->symbol.flags |= BSF_SECTION_SYM;
4442 sym->symbol.name = sym->symbol.section->name;
4443 }
4444 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
4445 sym->symbol.flags |= BSF_DEBUGGING;
4446
4447 /* Note increment at bottom of loop, since we skip some symbols
4448 we can not include it as part of the for statement. */
4449 sym++;
4450 }
4451
4452 /* We modify the symbol count to record the number of BFD symbols we
4453 created. */
4454 bfd_get_symcount (abfd) = sym - symbase;
4455
4456 /* Save our results and return success. */
4457 obj_som_symtab (abfd) = symbase;
4458 successful_return:
4459 if (buf != NULL)
4460 free (buf);
4461 return (true);
4462
4463 error_return:
4464 if (buf != NULL)
4465 free (buf);
4466 return false;
4467 }
4468
4469 /* Canonicalize a SOM symbol table. Return the number of entries
4470 in the symbol table. */
4471
4472 static long
4473 som_get_symtab (abfd, location)
4474 bfd *abfd;
4475 asymbol **location;
4476 {
4477 int i;
4478 som_symbol_type *symbase;
4479
4480 if (!som_slurp_symbol_table (abfd))
4481 return -1;
4482
4483 i = bfd_get_symcount (abfd);
4484 symbase = obj_som_symtab (abfd);
4485
4486 for (; i > 0; i--, location++, symbase++)
4487 *location = &symbase->symbol;
4488
4489 /* Final null pointer. */
4490 *location = 0;
4491 return (bfd_get_symcount (abfd));
4492 }
4493
4494 /* Make a SOM symbol. There is nothing special to do here. */
4495
4496 static asymbol *
4497 som_make_empty_symbol (abfd)
4498 bfd *abfd;
4499 {
4500 som_symbol_type *new =
4501 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
4502 if (new == NULL)
4503 return 0;
4504 new->symbol.the_bfd = abfd;
4505
4506 return &new->symbol;
4507 }
4508
4509 /* Print symbol information. */
4510
4511 static void
4512 som_print_symbol (ignore_abfd, afile, symbol, how)
4513 bfd *ignore_abfd ATTRIBUTE_UNUSED;
4514 PTR afile;
4515 asymbol *symbol;
4516 bfd_print_symbol_type how;
4517 {
4518 FILE *file = (FILE *) afile;
4519 switch (how)
4520 {
4521 case bfd_print_symbol_name:
4522 fprintf (file, "%s", symbol->name);
4523 break;
4524 case bfd_print_symbol_more:
4525 fprintf (file, "som ");
4526 fprintf_vma (file, symbol->value);
4527 fprintf (file, " %lx", (long) symbol->flags);
4528 break;
4529 case bfd_print_symbol_all:
4530 {
4531 CONST char *section_name;
4532 section_name = symbol->section ? symbol->section->name : "(*none*)";
4533 bfd_print_symbol_vandf ((PTR) file, symbol);
4534 fprintf (file, " %s\t%s", section_name, symbol->name);
4535 break;
4536 }
4537 }
4538 }
4539
4540 static boolean
4541 som_bfd_is_local_label_name (abfd, name)
4542 bfd *abfd ATTRIBUTE_UNUSED;
4543 const char *name;
4544 {
4545 return (name[0] == 'L' && name[1] == '$');
4546 }
4547
4548 /* Count or process variable-length SOM fixup records.
4549
4550 To avoid code duplication we use this code both to compute the number
4551 of relocations requested by a stream, and to internalize the stream.
4552
4553 When computing the number of relocations requested by a stream the
4554 variables rptr, section, and symbols have no meaning.
4555
4556 Return the number of relocations requested by the fixup stream. When
4557 not just counting
4558
4559 This needs at least two or three more passes to get it cleaned up. */
4560
4561 static unsigned int
4562 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
4563 unsigned char *fixup;
4564 unsigned int end;
4565 arelent *internal_relocs;
4566 asection *section;
4567 asymbol **symbols;
4568 boolean just_count;
4569 {
4570 unsigned int op, varname, deallocate_contents = 0;
4571 unsigned char *end_fixups = &fixup[end];
4572 const struct fixup_format *fp;
4573 const char *cp;
4574 unsigned char *save_fixup;
4575 int variables[26], stack[20], c, v, count, prev_fixup, *sp, saved_unwind_bits;
4576 const int *subop;
4577 arelent *rptr= internal_relocs;
4578 unsigned int offset = 0;
4579
4580 #define var(c) variables[(c) - 'A']
4581 #define push(v) (*sp++ = (v))
4582 #define pop() (*--sp)
4583 #define emptystack() (sp == stack)
4584
4585 som_initialize_reloc_queue (reloc_queue);
4586 memset (variables, 0, sizeof (variables));
4587 memset (stack, 0, sizeof (stack));
4588 count = 0;
4589 prev_fixup = 0;
4590 saved_unwind_bits = 0;
4591 sp = stack;
4592
4593 while (fixup < end_fixups)
4594 {
4595
4596 /* Save pointer to the start of this fixup. We'll use
4597 it later to determine if it is necessary to put this fixup
4598 on the queue. */
4599 save_fixup = fixup;
4600
4601 /* Get the fixup code and its associated format. */
4602 op = *fixup++;
4603 fp = &som_fixup_formats[op];
4604
4605 /* Handle a request for a previous fixup. */
4606 if (*fp->format == 'P')
4607 {
4608 /* Get pointer to the beginning of the prev fixup, move
4609 the repeated fixup to the head of the queue. */
4610 fixup = reloc_queue[fp->D].reloc;
4611 som_reloc_queue_fix (reloc_queue, fp->D);
4612 prev_fixup = 1;
4613
4614 /* Get the fixup code and its associated format. */
4615 op = *fixup++;
4616 fp = &som_fixup_formats[op];
4617 }
4618
4619 /* If this fixup will be passed to BFD, set some reasonable defaults. */
4620 if (! just_count
4621 && som_hppa_howto_table[op].type != R_NO_RELOCATION
4622 && som_hppa_howto_table[op].type != R_DATA_OVERRIDE)
4623 {
4624 rptr->address = offset;
4625 rptr->howto = &som_hppa_howto_table[op];
4626 rptr->addend = 0;
4627 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
4628 }
4629
4630 /* Set default input length to 0. Get the opcode class index
4631 into D. */
4632 var ('L') = 0;
4633 var ('D') = fp->D;
4634 var ('U') = saved_unwind_bits;
4635
4636 /* Get the opcode format. */
4637 cp = fp->format;
4638
4639 /* Process the format string. Parsing happens in two phases,
4640 parse RHS, then assign to LHS. Repeat until no more
4641 characters in the format string. */
4642 while (*cp)
4643 {
4644 /* The variable this pass is going to compute a value for. */
4645 varname = *cp++;
4646
4647 /* Start processing RHS. Continue until a NULL or '=' is found. */
4648 do
4649 {
4650 c = *cp++;
4651
4652 /* If this is a variable, push it on the stack. */
4653 if (isupper (c))
4654 push (var (c));
4655
4656 /* If this is a lower case letter, then it represents
4657 additional data from the fixup stream to be pushed onto
4658 the stack. */
4659 else if (islower (c))
4660 {
4661 int bits = (c - 'a') * 8;
4662 for (v = 0; c > 'a'; --c)
4663 v = (v << 8) | *fixup++;
4664 if (varname == 'V')
4665 v = sign_extend (v, bits);
4666 push (v);
4667 }
4668
4669 /* A decimal constant. Push it on the stack. */
4670 else if (isdigit (c))
4671 {
4672 v = c - '0';
4673 while (isdigit (*cp))
4674 v = (v * 10) + (*cp++ - '0');
4675 push (v);
4676 }
4677 else
4678
4679 /* An operator. Pop two two values from the stack and
4680 use them as operands to the given operation. Push
4681 the result of the operation back on the stack. */
4682 switch (c)
4683 {
4684 case '+':
4685 v = pop ();
4686 v += pop ();
4687 push (v);
4688 break;
4689 case '*':
4690 v = pop ();
4691 v *= pop ();
4692 push (v);
4693 break;
4694 case '<':
4695 v = pop ();
4696 v = pop () << v;
4697 push (v);
4698 break;
4699 default:
4700 abort ();
4701 }
4702 }
4703 while (*cp && *cp != '=');
4704
4705 /* Move over the equal operator. */
4706 cp++;
4707
4708 /* Pop the RHS off the stack. */
4709 c = pop ();
4710
4711 /* Perform the assignment. */
4712 var (varname) = c;
4713
4714 /* Handle side effects. and special 'O' stack cases. */
4715 switch (varname)
4716 {
4717 /* Consume some bytes from the input space. */
4718 case 'L':
4719 offset += c;
4720 break;
4721 /* A symbol to use in the relocation. Make a note
4722 of this if we are not just counting. */
4723 case 'S':
4724 if (! just_count)
4725 rptr->sym_ptr_ptr = &symbols[c];
4726 break;
4727 /* Argument relocation bits for a function call. */
4728 case 'R':
4729 if (! just_count)
4730 {
4731 unsigned int tmp = var ('R');
4732 rptr->addend = 0;
4733
4734 if ((som_hppa_howto_table[op].type == R_PCREL_CALL
4735 && R_PCREL_CALL + 10 > op)
4736 || (som_hppa_howto_table[op].type == R_ABS_CALL
4737 && R_ABS_CALL + 10 > op))
4738 {
4739 /* Simple encoding. */
4740 if (tmp > 4)
4741 {
4742 tmp -= 5;
4743 rptr->addend |= 1;
4744 }
4745 if (tmp == 4)
4746 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2;
4747 else if (tmp == 3)
4748 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4;
4749 else if (tmp == 2)
4750 rptr->addend |= 1 << 8 | 1 << 6;
4751 else if (tmp == 1)
4752 rptr->addend |= 1 << 8;
4753 }
4754 else
4755 {
4756 unsigned int tmp1, tmp2;
4757
4758 /* First part is easy -- low order two bits are
4759 directly copied, then shifted away. */
4760 rptr->addend = tmp & 0x3;
4761 tmp >>= 2;
4762
4763 /* Diving the result by 10 gives us the second
4764 part. If it is 9, then the first two words
4765 are a double precision paramater, else it is
4766 3 * the first arg bits + the 2nd arg bits. */
4767 tmp1 = tmp / 10;
4768 tmp -= tmp1 * 10;
4769 if (tmp1 == 9)
4770 rptr->addend += (0xe << 6);
4771 else
4772 {
4773 /* Get the two pieces. */
4774 tmp2 = tmp1 / 3;
4775 tmp1 -= tmp2 * 3;
4776 /* Put them in the addend. */
4777 rptr->addend += (tmp2 << 8) + (tmp1 << 6);
4778 }
4779
4780 /* What's left is the third part. It's unpacked
4781 just like the second. */
4782 if (tmp == 9)
4783 rptr->addend += (0xe << 2);
4784 else
4785 {
4786 tmp2 = tmp / 3;
4787 tmp -= tmp2 * 3;
4788 rptr->addend += (tmp2 << 4) + (tmp << 2);
4789 }
4790 }
4791 rptr->addend = HPPA_R_ADDEND (rptr->addend, 0);
4792 }
4793 break;
4794 /* Handle the linker expression stack. */
4795 case 'O':
4796 switch (op)
4797 {
4798 case R_COMP1:
4799 subop = comp1_opcodes;
4800 break;
4801 case R_COMP2:
4802 subop = comp2_opcodes;
4803 break;
4804 case R_COMP3:
4805 subop = comp3_opcodes;
4806 break;
4807 default:
4808 abort ();
4809 }
4810 while (*subop <= (unsigned char) c)
4811 ++subop;
4812 --subop;
4813 break;
4814 /* The lower 32unwind bits must be persistent. */
4815 case 'U':
4816 saved_unwind_bits = var ('U');
4817 break;
4818
4819 default:
4820 break;
4821 }
4822 }
4823
4824 /* If we used a previous fixup, clean up after it. */
4825 if (prev_fixup)
4826 {
4827 fixup = save_fixup + 1;
4828 prev_fixup = 0;
4829 }
4830 /* Queue it. */
4831 else if (fixup > save_fixup + 1)
4832 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4833
4834 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4835 fixups to BFD. */
4836 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4837 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4838 {
4839 /* Done with a single reloction. Loop back to the top. */
4840 if (! just_count)
4841 {
4842 if (som_hppa_howto_table[op].type == R_ENTRY)
4843 rptr->addend = var ('T');
4844 else if (som_hppa_howto_table[op].type == R_EXIT)
4845 rptr->addend = var ('U');
4846 else if (som_hppa_howto_table[op].type == R_PCREL_CALL
4847 || som_hppa_howto_table[op].type == R_ABS_CALL)
4848 ;
4849 else if (som_hppa_howto_table[op].type == R_DATA_ONE_SYMBOL)
4850 {
4851 /* Try what was specified in R_DATA_OVERRIDE first
4852 (if anything). Then the hard way using the
4853 section contents. */
4854 rptr->addend = var ('V');
4855
4856 if (rptr->addend == 0 && !section->contents)
4857 {
4858 /* Got to read the damn contents first. We don't
4859 bother saving the contents (yet). Add it one
4860 day if the need arises. */
4861 section->contents = bfd_malloc (section->_raw_size);
4862 if (section->contents == NULL)
4863 return -1;
4864
4865 deallocate_contents = 1;
4866 bfd_get_section_contents (section->owner,
4867 section,
4868 section->contents,
4869 0,
4870 section->_raw_size);
4871 }
4872 else if (rptr->addend == 0)
4873 rptr->addend = bfd_get_32 (section->owner,
4874 (section->contents
4875 + offset - var ('L')));
4876
4877 }
4878 else
4879 rptr->addend = var ('V');
4880 rptr++;
4881 }
4882 count++;
4883 /* Now that we've handled a "full" relocation, reset
4884 some state. */
4885 memset (variables, 0, sizeof (variables));
4886 memset (stack, 0, sizeof (stack));
4887 }
4888 }
4889 if (deallocate_contents)
4890 free (section->contents);
4891
4892 return count;
4893
4894 #undef var
4895 #undef push
4896 #undef pop
4897 #undef emptystack
4898 }
4899
4900 /* Read in the relocs (aka fixups in SOM terms) for a section.
4901
4902 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4903 set to true to indicate it only needs a count of the number
4904 of actual relocations. */
4905
4906 static boolean
4907 som_slurp_reloc_table (abfd, section, symbols, just_count)
4908 bfd *abfd;
4909 asection *section;
4910 asymbol **symbols;
4911 boolean just_count;
4912 {
4913 char *external_relocs;
4914 unsigned int fixup_stream_size;
4915 arelent *internal_relocs;
4916 unsigned int num_relocs;
4917
4918 fixup_stream_size = som_section_data (section)->reloc_size;
4919 /* If there were no relocations, then there is nothing to do. */
4920 if (section->reloc_count == 0)
4921 return true;
4922
4923 /* If reloc_count is -1, then the relocation stream has not been
4924 parsed. We must do so now to know how many relocations exist. */
4925 if (section->reloc_count == -1)
4926 {
4927 external_relocs = (char *) bfd_malloc (fixup_stream_size);
4928 if (external_relocs == (char *) NULL)
4929 return false;
4930 /* Read in the external forms. */
4931 if (bfd_seek (abfd,
4932 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4933 SEEK_SET)
4934 != 0)
4935 return false;
4936 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
4937 != fixup_stream_size)
4938 return false;
4939
4940 /* Let callers know how many relocations found.
4941 also save the relocation stream as we will
4942 need it again. */
4943 section->reloc_count = som_set_reloc_info (external_relocs,
4944 fixup_stream_size,
4945 NULL, NULL, NULL, true);
4946
4947 som_section_data (section)->reloc_stream = external_relocs;
4948 }
4949
4950 /* If the caller only wanted a count, then return now. */
4951 if (just_count)
4952 return true;
4953
4954 num_relocs = section->reloc_count;
4955 external_relocs = som_section_data (section)->reloc_stream;
4956 /* Return saved information about the relocations if it is available. */
4957 if (section->relocation != (arelent *) NULL)
4958 return true;
4959
4960 internal_relocs = (arelent *)
4961 bfd_zalloc (abfd, (num_relocs * sizeof (arelent)));
4962 if (internal_relocs == (arelent *) NULL)
4963 return false;
4964
4965 /* Process and internalize the relocations. */
4966 som_set_reloc_info (external_relocs, fixup_stream_size,
4967 internal_relocs, section, symbols, false);
4968
4969 /* We're done with the external relocations. Free them. */
4970 free (external_relocs);
4971 som_section_data (section)->reloc_stream = NULL;
4972
4973 /* Save our results and return success. */
4974 section->relocation = internal_relocs;
4975 return (true);
4976 }
4977
4978 /* Return the number of bytes required to store the relocation
4979 information associated with the given section. */
4980
4981 static long
4982 som_get_reloc_upper_bound (abfd, asect)
4983 bfd *abfd;
4984 sec_ptr asect;
4985 {
4986 /* If section has relocations, then read in the relocation stream
4987 and parse it to determine how many relocations exist. */
4988 if (asect->flags & SEC_RELOC)
4989 {
4990 if (! som_slurp_reloc_table (abfd, asect, NULL, true))
4991 return -1;
4992 return (asect->reloc_count + 1) * sizeof (arelent *);
4993 }
4994 /* There are no relocations. */
4995 return 0;
4996 }
4997
4998 /* Convert relocations from SOM (external) form into BFD internal
4999 form. Return the number of relocations. */
5000
5001 static long
5002 som_canonicalize_reloc (abfd, section, relptr, symbols)
5003 bfd *abfd;
5004 sec_ptr section;
5005 arelent **relptr;
5006 asymbol **symbols;
5007 {
5008 arelent *tblptr;
5009 int count;
5010
5011 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
5012 return -1;
5013
5014 count = section->reloc_count;
5015 tblptr = section->relocation;
5016
5017 while (count--)
5018 *relptr++ = tblptr++;
5019
5020 *relptr = (arelent *) NULL;
5021 return section->reloc_count;
5022 }
5023
5024 extern const bfd_target som_vec;
5025
5026 /* A hook to set up object file dependent section information. */
5027
5028 static boolean
5029 som_new_section_hook (abfd, newsect)
5030 bfd *abfd;
5031 asection *newsect;
5032 {
5033 newsect->used_by_bfd =
5034 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
5035 if (!newsect->used_by_bfd)
5036 return false;
5037 newsect->alignment_power = 3;
5038
5039 /* We allow more than three sections internally */
5040 return true;
5041 }
5042
5043 /* Copy any private info we understand from the input symbol
5044 to the output symbol. */
5045
5046 static boolean
5047 som_bfd_copy_private_symbol_data (ibfd, isymbol, obfd, osymbol)
5048 bfd *ibfd;
5049 asymbol *isymbol;
5050 bfd *obfd;
5051 asymbol *osymbol;
5052 {
5053 struct som_symbol *input_symbol = (struct som_symbol *) isymbol;
5054 struct som_symbol *output_symbol = (struct som_symbol *) osymbol;
5055
5056 /* One day we may try to grok other private data. */
5057 if (ibfd->xvec->flavour != bfd_target_som_flavour
5058 || obfd->xvec->flavour != bfd_target_som_flavour)
5059 return false;
5060
5061 /* The only private information we need to copy is the argument relocation
5062 bits. */
5063 output_symbol->tc_data.ap.hppa_arg_reloc =
5064 input_symbol->tc_data.ap.hppa_arg_reloc;
5065
5066 return true;
5067 }
5068
5069 /* Copy any private info we understand from the input section
5070 to the output section. */
5071 static boolean
5072 som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
5073 bfd *ibfd;
5074 asection *isection;
5075 bfd *obfd;
5076 asection *osection;
5077 {
5078 /* One day we may try to grok other private data. */
5079 if (ibfd->xvec->flavour != bfd_target_som_flavour
5080 || obfd->xvec->flavour != bfd_target_som_flavour
5081 || (!som_is_space (isection) && !som_is_subspace (isection)))
5082 return true;
5083
5084 som_section_data (osection)->copy_data
5085 = (struct som_copyable_section_data_struct *)
5086 bfd_zalloc (obfd, sizeof (struct som_copyable_section_data_struct));
5087 if (som_section_data (osection)->copy_data == NULL)
5088 return false;
5089
5090 memcpy (som_section_data (osection)->copy_data,
5091 som_section_data (isection)->copy_data,
5092 sizeof (struct som_copyable_section_data_struct));
5093
5094 /* Reparent if necessary. */
5095 if (som_section_data (osection)->copy_data->container)
5096 som_section_data (osection)->copy_data->container =
5097 som_section_data (osection)->copy_data->container->output_section;
5098
5099 return true;
5100 }
5101
5102 /* Copy any private info we understand from the input bfd
5103 to the output bfd. */
5104
5105 static boolean
5106 som_bfd_copy_private_bfd_data (ibfd, obfd)
5107 bfd *ibfd, *obfd;
5108 {
5109 /* One day we may try to grok other private data. */
5110 if (ibfd->xvec->flavour != bfd_target_som_flavour
5111 || obfd->xvec->flavour != bfd_target_som_flavour)
5112 return true;
5113
5114 /* Allocate some memory to hold the data we need. */
5115 obj_som_exec_data (obfd) = (struct som_exec_data *)
5116 bfd_zalloc (obfd, sizeof (struct som_exec_data));
5117 if (obj_som_exec_data (obfd) == NULL)
5118 return false;
5119
5120 /* Now copy the data. */
5121 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
5122 sizeof (struct som_exec_data));
5123
5124 return true;
5125 }
5126
5127 /* Set backend info for sections which can not be described
5128 in the BFD data structures. */
5129
5130 boolean
5131 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
5132 asection *section;
5133 int defined;
5134 int private;
5135 unsigned int sort_key;
5136 int spnum;
5137 {
5138 /* Allocate memory to hold the magic information. */
5139 if (som_section_data (section)->copy_data == NULL)
5140 {
5141 som_section_data (section)->copy_data
5142 = (struct som_copyable_section_data_struct *)
5143 bfd_zalloc (section->owner,
5144 sizeof (struct som_copyable_section_data_struct));
5145 if (som_section_data (section)->copy_data == NULL)
5146 return false;
5147 }
5148 som_section_data (section)->copy_data->sort_key = sort_key;
5149 som_section_data (section)->copy_data->is_defined = defined;
5150 som_section_data (section)->copy_data->is_private = private;
5151 som_section_data (section)->copy_data->container = section;
5152 som_section_data (section)->copy_data->space_number = spnum;
5153 return true;
5154 }
5155
5156 /* Set backend info for subsections which can not be described
5157 in the BFD data structures. */
5158
5159 boolean
5160 bfd_som_set_subsection_attributes (section, container, access,
5161 sort_key, quadrant)
5162 asection *section;
5163 asection *container;
5164 int access;
5165 unsigned int sort_key;
5166 int quadrant;
5167 {
5168 /* Allocate memory to hold the magic information. */
5169 if (som_section_data (section)->copy_data == NULL)
5170 {
5171 som_section_data (section)->copy_data
5172 = (struct som_copyable_section_data_struct *)
5173 bfd_zalloc (section->owner,
5174 sizeof (struct som_copyable_section_data_struct));
5175 if (som_section_data (section)->copy_data == NULL)
5176 return false;
5177 }
5178 som_section_data (section)->copy_data->sort_key = sort_key;
5179 som_section_data (section)->copy_data->access_control_bits = access;
5180 som_section_data (section)->copy_data->quadrant = quadrant;
5181 som_section_data (section)->copy_data->container = container;
5182 return true;
5183 }
5184
5185 /* Set the full SOM symbol type. SOM needs far more symbol information
5186 than any other object file format I'm aware of. It is mandatory
5187 to be able to know if a symbol is an entry point, millicode, data,
5188 code, absolute, storage request, or procedure label. If you get
5189 the symbol type wrong your program will not link. */
5190
5191 void
5192 bfd_som_set_symbol_type (symbol, type)
5193 asymbol *symbol;
5194 unsigned int type;
5195 {
5196 som_symbol_data (symbol)->som_type = type;
5197 }
5198
5199 /* Attach an auxiliary header to the BFD backend so that it may be
5200 written into the object file. */
5201 boolean
5202 bfd_som_attach_aux_hdr (abfd, type, string)
5203 bfd *abfd;
5204 int type;
5205 char *string;
5206 {
5207 if (type == VERSION_AUX_ID)
5208 {
5209 int len = strlen (string);
5210 int pad = 0;
5211
5212 if (len % 4)
5213 pad = (4 - (len % 4));
5214 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
5215 bfd_zalloc (abfd, sizeof (struct aux_id)
5216 + sizeof (unsigned int) + len + pad);
5217 if (!obj_som_version_hdr (abfd))
5218 return false;
5219 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
5220 obj_som_version_hdr (abfd)->header_id.length = len + pad;
5221 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
5222 obj_som_version_hdr (abfd)->string_length = len;
5223 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
5224 }
5225 else if (type == COPYRIGHT_AUX_ID)
5226 {
5227 int len = strlen (string);
5228 int pad = 0;
5229
5230 if (len % 4)
5231 pad = (4 - (len % 4));
5232 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
5233 bfd_zalloc (abfd, sizeof (struct aux_id)
5234 + sizeof (unsigned int) + len + pad);
5235 if (!obj_som_copyright_hdr (abfd))
5236 return false;
5237 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
5238 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
5239 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
5240 obj_som_copyright_hdr (abfd)->string_length = len;
5241 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
5242 }
5243 return true;
5244 }
5245
5246 /* Attach an compilation unit header to the BFD backend so that it may be
5247 written into the object file. */
5248
5249 boolean
5250 bfd_som_attach_compilation_unit (abfd, name, language_name, product_id,
5251 version_id)
5252 bfd *abfd;
5253 const char *name;
5254 const char *language_name;
5255 const char *product_id;
5256 const char *version_id;
5257 {
5258 COMPUNIT *n = (COMPUNIT *) bfd_zalloc (abfd, COMPUNITSZ);
5259 if (n == NULL)
5260 return false;
5261
5262 #define STRDUP(f) \
5263 if (f != NULL) \
5264 { \
5265 n->f.n_name = bfd_alloc (abfd, strlen (f) + 1); \
5266 if (n->f.n_name == NULL) \
5267 return false; \
5268 strcpy (n->f.n_name, f); \
5269 }
5270
5271 STRDUP (name);
5272 STRDUP (language_name);
5273 STRDUP (product_id);
5274 STRDUP (version_id);
5275
5276 #undef STRDUP
5277
5278 obj_som_compilation_unit (abfd) = n;
5279
5280 return true;
5281 }
5282
5283 static boolean
5284 som_get_section_contents (abfd, section, location, offset, count)
5285 bfd *abfd;
5286 sec_ptr section;
5287 PTR location;
5288 file_ptr offset;
5289 bfd_size_type count;
5290 {
5291 if (count == 0 || ((section->flags & SEC_HAS_CONTENTS) == 0))
5292 return true;
5293 if ((bfd_size_type) (offset+count) > section->_raw_size
5294 || bfd_seek (abfd, (file_ptr) (section->filepos + offset), SEEK_SET) == -1
5295 || bfd_read (location, (bfd_size_type)1, count, abfd) != count)
5296 return (false); /* on error */
5297 return (true);
5298 }
5299
5300 static boolean
5301 som_set_section_contents (abfd, section, location, offset, count)
5302 bfd *abfd;
5303 sec_ptr section;
5304 PTR location;
5305 file_ptr offset;
5306 bfd_size_type count;
5307 {
5308 if (abfd->output_has_begun == false)
5309 {
5310 /* Set up fixed parts of the file, space, and subspace headers.
5311 Notify the world that output has begun. */
5312 som_prep_headers (abfd);
5313 abfd->output_has_begun = true;
5314 /* Start writing the object file. This include all the string
5315 tables, fixup streams, and other portions of the object file. */
5316 som_begin_writing (abfd);
5317 }
5318
5319 /* Only write subspaces which have "real" contents (eg. the contents
5320 are not generated at run time by the OS). */
5321 if (!som_is_subspace (section)
5322 || ((section->flags & SEC_HAS_CONTENTS) == 0))
5323 return true;
5324
5325 /* Seek to the proper offset within the object file and write the
5326 data. */
5327 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
5328 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
5329 return false;
5330
5331 if (bfd_write ((PTR) location, 1, count, abfd) != count)
5332 return false;
5333 return true;
5334 }
5335
5336 static boolean
5337 som_set_arch_mach (abfd, arch, machine)
5338 bfd *abfd;
5339 enum bfd_architecture arch;
5340 unsigned long machine;
5341 {
5342 /* Allow any architecture to be supported by the SOM backend */
5343 return bfd_default_set_arch_mach (abfd, arch, machine);
5344 }
5345
5346 static boolean
5347 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
5348 functionname_ptr, line_ptr)
5349 bfd *abfd ATTRIBUTE_UNUSED;
5350 asection *section ATTRIBUTE_UNUSED;
5351 asymbol **symbols ATTRIBUTE_UNUSED;
5352 bfd_vma offset ATTRIBUTE_UNUSED;
5353 CONST char **filename_ptr ATTRIBUTE_UNUSED;
5354 CONST char **functionname_ptr ATTRIBUTE_UNUSED;
5355 unsigned int *line_ptr ATTRIBUTE_UNUSED;
5356 {
5357 return (false);
5358 }
5359
5360 static int
5361 som_sizeof_headers (abfd, reloc)
5362 bfd *abfd ATTRIBUTE_UNUSED;
5363 boolean reloc ATTRIBUTE_UNUSED;
5364 {
5365 (*_bfd_error_handler) (_("som_sizeof_headers unimplemented"));
5366 fflush (stderr);
5367 abort ();
5368 return (0);
5369 }
5370
5371 /* Return the single-character symbol type corresponding to
5372 SOM section S, or '?' for an unknown SOM section. */
5373
5374 static char
5375 som_section_type (s)
5376 const char *s;
5377 {
5378 const struct section_to_type *t;
5379
5380 for (t = &stt[0]; t->section; t++)
5381 if (!strcmp (s, t->section))
5382 return t->type;
5383 return '?';
5384 }
5385
5386 static int
5387 som_decode_symclass (symbol)
5388 asymbol *symbol;
5389 {
5390 char c;
5391
5392 if (bfd_is_com_section (symbol->section))
5393 return 'C';
5394 if (bfd_is_und_section (symbol->section))
5395 return 'U';
5396 if (bfd_is_ind_section (symbol->section))
5397 return 'I';
5398 if (symbol->flags & BSF_WEAK)
5399 return 'W';
5400 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
5401 return '?';
5402
5403 if (bfd_is_abs_section (symbol->section)
5404 || (som_symbol_data (symbol) != NULL
5405 && som_symbol_data (symbol)->som_type == SYMBOL_TYPE_ABSOLUTE))
5406 c = 'a';
5407 else if (symbol->section)
5408 c = som_section_type (symbol->section->name);
5409 else
5410 return '?';
5411 if (symbol->flags & BSF_GLOBAL)
5412 c = toupper (c);
5413 return c;
5414 }
5415
5416 /* Return information about SOM symbol SYMBOL in RET. */
5417
5418 static void
5419 som_get_symbol_info (ignore_abfd, symbol, ret)
5420 bfd *ignore_abfd ATTRIBUTE_UNUSED;
5421 asymbol *symbol;
5422 symbol_info *ret;
5423 {
5424 ret->type = som_decode_symclass (symbol);
5425 if (ret->type != 'U')
5426 ret->value = symbol->value+symbol->section->vma;
5427 else
5428 ret->value = 0;
5429 ret->name = symbol->name;
5430 }
5431
5432 /* Count the number of symbols in the archive symbol table. Necessary
5433 so that we can allocate space for all the carsyms at once. */
5434
5435 static boolean
5436 som_bfd_count_ar_symbols (abfd, lst_header, count)
5437 bfd *abfd;
5438 struct lst_header *lst_header;
5439 symindex *count;
5440 {
5441 unsigned int i;
5442 unsigned int *hash_table = NULL;
5443 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5444
5445 hash_table =
5446 (unsigned int *) bfd_malloc (lst_header->hash_size
5447 * sizeof (unsigned int));
5448 if (hash_table == NULL && lst_header->hash_size != 0)
5449 goto error_return;
5450
5451 /* Don't forget to initialize the counter! */
5452 *count = 0;
5453
5454 /* Read in the hash table. The has table is an array of 32bit file offsets
5455 which point to the hash chains. */
5456 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
5457 != lst_header->hash_size * 4)
5458 goto error_return;
5459
5460 /* Walk each chain counting the number of symbols found on that particular
5461 chain. */
5462 for (i = 0; i < lst_header->hash_size; i++)
5463 {
5464 struct lst_symbol_record lst_symbol;
5465
5466 /* An empty chain has zero as it's file offset. */
5467 if (hash_table[i] == 0)
5468 continue;
5469
5470 /* Seek to the first symbol in this hash chain. */
5471 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
5472 goto error_return;
5473
5474 /* Read in this symbol and update the counter. */
5475 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5476 != sizeof (lst_symbol))
5477 goto error_return;
5478
5479 (*count)++;
5480
5481 /* Now iterate through the rest of the symbols on this chain. */
5482 while (lst_symbol.next_entry)
5483 {
5484
5485 /* Seek to the next symbol. */
5486 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
5487 < 0)
5488 goto error_return;
5489
5490 /* Read the symbol in and update the counter. */
5491 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5492 != sizeof (lst_symbol))
5493 goto error_return;
5494
5495 (*count)++;
5496 }
5497 }
5498 if (hash_table != NULL)
5499 free (hash_table);
5500 return true;
5501
5502 error_return:
5503 if (hash_table != NULL)
5504 free (hash_table);
5505 return false;
5506 }
5507
5508 /* Fill in the canonical archive symbols (SYMS) from the archive described
5509 by ABFD and LST_HEADER. */
5510
5511 static boolean
5512 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
5513 bfd *abfd;
5514 struct lst_header *lst_header;
5515 carsym **syms;
5516 {
5517 unsigned int i, len;
5518 carsym *set = syms[0];
5519 unsigned int *hash_table = NULL;
5520 struct som_entry *som_dict = NULL;
5521 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5522
5523 hash_table =
5524 (unsigned int *) bfd_malloc (lst_header->hash_size
5525 * sizeof (unsigned int));
5526 if (hash_table == NULL && lst_header->hash_size != 0)
5527 goto error_return;
5528
5529 som_dict =
5530 (struct som_entry *) bfd_malloc (lst_header->module_count
5531 * sizeof (struct som_entry));
5532 if (som_dict == NULL && lst_header->module_count != 0)
5533 goto error_return;
5534
5535 /* Read in the hash table. The has table is an array of 32bit file offsets
5536 which point to the hash chains. */
5537 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
5538 != lst_header->hash_size * 4)
5539 goto error_return;
5540
5541 /* Seek to and read in the SOM dictionary. We will need this to fill
5542 in the carsym's filepos field. */
5543 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
5544 goto error_return;
5545
5546 if (bfd_read ((PTR) som_dict, lst_header->module_count,
5547 sizeof (struct som_entry), abfd)
5548 != lst_header->module_count * sizeof (struct som_entry))
5549 goto error_return;
5550
5551 /* Walk each chain filling in the carsyms as we go along. */
5552 for (i = 0; i < lst_header->hash_size; i++)
5553 {
5554 struct lst_symbol_record lst_symbol;
5555
5556 /* An empty chain has zero as it's file offset. */
5557 if (hash_table[i] == 0)
5558 continue;
5559
5560 /* Seek to and read the first symbol on the chain. */
5561 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
5562 goto error_return;
5563
5564 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5565 != sizeof (lst_symbol))
5566 goto error_return;
5567
5568 /* Get the name of the symbol, first get the length which is stored
5569 as a 32bit integer just before the symbol.
5570
5571 One might ask why we don't just read in the entire string table
5572 and index into it. Well, according to the SOM ABI the string
5573 index can point *anywhere* in the archive to save space, so just
5574 using the string table would not be safe. */
5575 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5576 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
5577 goto error_return;
5578
5579 if (bfd_read (&len, 1, 4, abfd) != 4)
5580 goto error_return;
5581
5582 /* Allocate space for the name and null terminate it too. */
5583 set->name = bfd_zalloc (abfd, len + 1);
5584 if (!set->name)
5585 goto error_return;
5586 if (bfd_read (set->name, 1, len, abfd) != len)
5587 goto error_return;
5588
5589 set->name[len] = 0;
5590
5591 /* Fill in the file offset. Note that the "location" field points
5592 to the SOM itself, not the ar_hdr in front of it. */
5593 set->file_offset = som_dict[lst_symbol.som_index].location
5594 - sizeof (struct ar_hdr);
5595
5596 /* Go to the next symbol. */
5597 set++;
5598
5599 /* Iterate through the rest of the chain. */
5600 while (lst_symbol.next_entry)
5601 {
5602 /* Seek to the next symbol and read it in. */
5603 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET) <0)
5604 goto error_return;
5605
5606 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5607 != sizeof (lst_symbol))
5608 goto error_return;
5609
5610 /* Seek to the name length & string and read them in. */
5611 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5612 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
5613 goto error_return;
5614
5615 if (bfd_read (&len, 1, 4, abfd) != 4)
5616 goto error_return;
5617
5618 /* Allocate space for the name and null terminate it too. */
5619 set->name = bfd_zalloc (abfd, len + 1);
5620 if (!set->name)
5621 goto error_return;
5622
5623 if (bfd_read (set->name, 1, len, abfd) != len)
5624 goto error_return;
5625 set->name[len] = 0;
5626
5627 /* Fill in the file offset. Note that the "location" field points
5628 to the SOM itself, not the ar_hdr in front of it. */
5629 set->file_offset = som_dict[lst_symbol.som_index].location
5630 - sizeof (struct ar_hdr);
5631
5632 /* Go on to the next symbol. */
5633 set++;
5634 }
5635 }
5636 /* If we haven't died by now, then we successfully read the entire
5637 archive symbol table. */
5638 if (hash_table != NULL)
5639 free (hash_table);
5640 if (som_dict != NULL)
5641 free (som_dict);
5642 return true;
5643
5644 error_return:
5645 if (hash_table != NULL)
5646 free (hash_table);
5647 if (som_dict != NULL)
5648 free (som_dict);
5649 return false;
5650 }
5651
5652 /* Read in the LST from the archive. */
5653 static boolean
5654 som_slurp_armap (abfd)
5655 bfd *abfd;
5656 {
5657 struct lst_header lst_header;
5658 struct ar_hdr ar_header;
5659 unsigned int parsed_size;
5660 struct artdata *ardata = bfd_ardata (abfd);
5661 char nextname[17];
5662 int i = bfd_read ((PTR) nextname, 1, 16, abfd);
5663
5664 /* Special cases. */
5665 if (i == 0)
5666 return true;
5667 if (i != 16)
5668 return false;
5669
5670 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
5671 return false;
5672
5673 /* For archives without .o files there is no symbol table. */
5674 if (strncmp (nextname, "/ ", 16))
5675 {
5676 bfd_has_map (abfd) = false;
5677 return true;
5678 }
5679
5680 /* Read in and sanity check the archive header. */
5681 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
5682 != sizeof (struct ar_hdr))
5683 return false;
5684
5685 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
5686 {
5687 bfd_set_error (bfd_error_malformed_archive);
5688 return false;
5689 }
5690
5691 /* How big is the archive symbol table entry? */
5692 errno = 0;
5693 parsed_size = strtol (ar_header.ar_size, NULL, 10);
5694 if (errno != 0)
5695 {
5696 bfd_set_error (bfd_error_malformed_archive);
5697 return false;
5698 }
5699
5700 /* Save off the file offset of the first real user data. */
5701 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
5702
5703 /* Read in the library symbol table. We'll make heavy use of this
5704 in just a minute. */
5705 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
5706 != sizeof (struct lst_header))
5707 return false;
5708
5709 /* Sanity check. */
5710 if (lst_header.a_magic != LIBMAGIC)
5711 {
5712 bfd_set_error (bfd_error_malformed_archive);
5713 return false;
5714 }
5715
5716 /* Count the number of symbols in the library symbol table. */
5717 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
5718 == false)
5719 return false;
5720
5721 /* Get back to the start of the library symbol table. */
5722 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size
5723 + sizeof (struct lst_header), SEEK_SET) < 0)
5724 return false;
5725
5726 /* Initializae the cache and allocate space for the library symbols. */
5727 ardata->cache = 0;
5728 ardata->symdefs = (carsym *) bfd_alloc (abfd,
5729 (ardata->symdef_count
5730 * sizeof (carsym)));
5731 if (!ardata->symdefs)
5732 return false;
5733
5734 /* Now fill in the canonical archive symbols. */
5735 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
5736 == false)
5737 return false;
5738
5739 /* Seek back to the "first" file in the archive. Note the "first"
5740 file may be the extended name table. */
5741 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) < 0)
5742 return false;
5743
5744 /* Notify the generic archive code that we have a symbol map. */
5745 bfd_has_map (abfd) = true;
5746 return true;
5747 }
5748
5749 /* Begin preparing to write a SOM library symbol table.
5750
5751 As part of the prep work we need to determine the number of symbols
5752 and the size of the associated string section. */
5753
5754 static boolean
5755 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
5756 bfd *abfd;
5757 unsigned int *num_syms, *stringsize;
5758 {
5759 bfd *curr_bfd = abfd->archive_head;
5760
5761 /* Some initialization. */
5762 *num_syms = 0;
5763 *stringsize = 0;
5764
5765 /* Iterate over each BFD within this archive. */
5766 while (curr_bfd != NULL)
5767 {
5768 unsigned int curr_count, i;
5769 som_symbol_type *sym;
5770
5771 /* Don't bother for non-SOM objects. */
5772 if (curr_bfd->format != bfd_object
5773 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5774 {
5775 curr_bfd = curr_bfd->next;
5776 continue;
5777 }
5778
5779 /* Make sure the symbol table has been read, then snag a pointer
5780 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5781 but doing so avoids allocating lots of extra memory. */
5782 if (som_slurp_symbol_table (curr_bfd) == false)
5783 return false;
5784
5785 sym = obj_som_symtab (curr_bfd);
5786 curr_count = bfd_get_symcount (curr_bfd);
5787
5788 /* Examine each symbol to determine if it belongs in the
5789 library symbol table. */
5790 for (i = 0; i < curr_count; i++, sym++)
5791 {
5792 struct som_misc_symbol_info info;
5793
5794 /* Derive SOM information from the BFD symbol. */
5795 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5796
5797 /* Should we include this symbol? */
5798 if (info.symbol_type == ST_NULL
5799 || info.symbol_type == ST_SYM_EXT
5800 || info.symbol_type == ST_ARG_EXT)
5801 continue;
5802
5803 /* Only global symbols and unsatisfied commons. */
5804 if (info.symbol_scope != SS_UNIVERSAL
5805 && info.symbol_type != ST_STORAGE)
5806 continue;
5807
5808 /* Do no include undefined symbols. */
5809 if (bfd_is_und_section (sym->symbol.section))
5810 continue;
5811
5812 /* Bump the various counters, being careful to honor
5813 alignment considerations in the string table. */
5814 (*num_syms)++;
5815 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5816 while (*stringsize % 4)
5817 (*stringsize)++;
5818 }
5819
5820 curr_bfd = curr_bfd->next;
5821 }
5822 return true;
5823 }
5824
5825 /* Hash a symbol name based on the hashing algorithm presented in the
5826 SOM ABI. */
5827 static unsigned int
5828 som_bfd_ar_symbol_hash (symbol)
5829 asymbol *symbol;
5830 {
5831 unsigned int len = strlen (symbol->name);
5832
5833 /* Names with length 1 are special. */
5834 if (len == 1)
5835 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5836
5837 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5838 | (symbol->name[len-2] << 8) | symbol->name[len-1];
5839 }
5840
5841 /* Do the bulk of the work required to write the SOM library
5842 symbol table. */
5843
5844 static boolean
5845 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst, elength)
5846 bfd *abfd;
5847 unsigned int nsyms, string_size;
5848 struct lst_header lst;
5849 unsigned elength;
5850 {
5851 file_ptr lst_filepos;
5852 char *strings = NULL, *p;
5853 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5854 bfd *curr_bfd;
5855 unsigned int *hash_table = NULL;
5856 struct som_entry *som_dict = NULL;
5857 struct lst_symbol_record **last_hash_entry = NULL;
5858 unsigned int curr_som_offset, som_index = 0;
5859
5860 hash_table =
5861 (unsigned int *) bfd_malloc (lst.hash_size * sizeof (unsigned int));
5862 if (hash_table == NULL && lst.hash_size != 0)
5863 goto error_return;
5864 som_dict =
5865 (struct som_entry *) bfd_malloc (lst.module_count
5866 * sizeof (struct som_entry));
5867 if (som_dict == NULL && lst.module_count != 0)
5868 goto error_return;
5869
5870 last_hash_entry =
5871 ((struct lst_symbol_record **)
5872 bfd_malloc (lst.hash_size * sizeof (struct lst_symbol_record *)));
5873 if (last_hash_entry == NULL && lst.hash_size != 0)
5874 goto error_return;
5875
5876 /* Lots of fields are file positions relative to the start
5877 of the lst record. So save its location. */
5878 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5879
5880 /* Some initialization. */
5881 memset (hash_table, 0, 4 * lst.hash_size);
5882 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
5883 memset (last_hash_entry, 0,
5884 lst.hash_size * sizeof (struct lst_symbol_record *));
5885
5886 /* Symbols have som_index fields, so we have to keep track of the
5887 index of each SOM in the archive.
5888
5889 The SOM dictionary has (among other things) the absolute file
5890 position for the SOM which a particular dictionary entry
5891 describes. We have to compute that information as we iterate
5892 through the SOMs/symbols. */
5893 som_index = 0;
5894
5895 /* We add in the size of the archive header twice as the location
5896 in the SOM dictionary is the actual offset of the SOM, not the
5897 archive header before the SOM. */
5898 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5899
5900 /* Make room for the archive header and the contents of the
5901 extended string table. Note that elength includes the size
5902 of the archive header for the extended name table! */
5903 if (elength)
5904 curr_som_offset += elength;
5905
5906 /* Make sure we're properly aligned. */
5907 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5908
5909 /* FIXME should be done with buffers just like everything else... */
5910 lst_syms = bfd_malloc (nsyms * sizeof (struct lst_symbol_record));
5911 if (lst_syms == NULL && nsyms != 0)
5912 goto error_return;
5913 strings = bfd_malloc (string_size);
5914 if (strings == NULL && string_size != 0)
5915 goto error_return;
5916
5917 p = strings;
5918 curr_lst_sym = lst_syms;
5919
5920 curr_bfd = abfd->archive_head;
5921 while (curr_bfd != NULL)
5922 {
5923 unsigned int curr_count, i;
5924 som_symbol_type *sym;
5925
5926 /* Don't bother for non-SOM objects. */
5927 if (curr_bfd->format != bfd_object
5928 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5929 {
5930 curr_bfd = curr_bfd->next;
5931 continue;
5932 }
5933
5934 /* Make sure the symbol table has been read, then snag a pointer
5935 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5936 but doing so avoids allocating lots of extra memory. */
5937 if (som_slurp_symbol_table (curr_bfd) == false)
5938 goto error_return;
5939
5940 sym = obj_som_symtab (curr_bfd);
5941 curr_count = bfd_get_symcount (curr_bfd);
5942
5943 for (i = 0; i < curr_count; i++, sym++)
5944 {
5945 struct som_misc_symbol_info info;
5946
5947 /* Derive SOM information from the BFD symbol. */
5948 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5949
5950 /* Should we include this symbol? */
5951 if (info.symbol_type == ST_NULL
5952 || info.symbol_type == ST_SYM_EXT
5953 || info.symbol_type == ST_ARG_EXT)
5954 continue;
5955
5956 /* Only global symbols and unsatisfied commons. */
5957 if (info.symbol_scope != SS_UNIVERSAL
5958 && info.symbol_type != ST_STORAGE)
5959 continue;
5960
5961 /* Do no include undefined symbols. */
5962 if (bfd_is_und_section (sym->symbol.section))
5963 continue;
5964
5965 /* If this is the first symbol from this SOM, then update
5966 the SOM dictionary too. */
5967 if (som_dict[som_index].location == 0)
5968 {
5969 som_dict[som_index].location = curr_som_offset;
5970 som_dict[som_index].length = arelt_size (curr_bfd);
5971 }
5972
5973 /* Fill in the lst symbol record. */
5974 curr_lst_sym->hidden = 0;
5975 curr_lst_sym->secondary_def = info.secondary_def;
5976 curr_lst_sym->symbol_type = info.symbol_type;
5977 curr_lst_sym->symbol_scope = info.symbol_scope;
5978 curr_lst_sym->check_level = 0;
5979 curr_lst_sym->must_qualify = 0;
5980 curr_lst_sym->initially_frozen = 0;
5981 curr_lst_sym->memory_resident = 0;
5982 curr_lst_sym->is_common = bfd_is_com_section (sym->symbol.section);
5983 curr_lst_sym->dup_common = 0;
5984 curr_lst_sym->xleast = 3;
5985 curr_lst_sym->arg_reloc = info.arg_reloc;
5986 curr_lst_sym->name.n_strx = p - strings + 4;
5987 curr_lst_sym->qualifier_name.n_strx = 0;
5988 curr_lst_sym->symbol_info = info.symbol_info;
5989 curr_lst_sym->symbol_value = info.symbol_value | info.priv_level;
5990 curr_lst_sym->symbol_descriptor = 0;
5991 curr_lst_sym->reserved = 0;
5992 curr_lst_sym->som_index = som_index;
5993 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
5994 curr_lst_sym->next_entry = 0;
5995
5996 /* Insert into the hash table. */
5997 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
5998 {
5999 struct lst_symbol_record *tmp;
6000
6001 /* There is already something at the head of this hash chain,
6002 so tack this symbol onto the end of the chain. */
6003 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
6004 tmp->next_entry
6005 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
6006 + lst.hash_size * 4
6007 + lst.module_count * sizeof (struct som_entry)
6008 + sizeof (struct lst_header);
6009 }
6010 else
6011 {
6012 /* First entry in this hash chain. */
6013 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
6014 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
6015 + lst.hash_size * 4
6016 + lst.module_count * sizeof (struct som_entry)
6017 + sizeof (struct lst_header);
6018 }
6019
6020 /* Keep track of the last symbol we added to this chain so we can
6021 easily update its next_entry pointer. */
6022 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
6023 = curr_lst_sym;
6024
6025 /* Update the string table. */
6026 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
6027 p += 4;
6028 strcpy (p, sym->symbol.name);
6029 p += strlen (sym->symbol.name) + 1;
6030 while ((int)p % 4)
6031 {
6032 bfd_put_8 (abfd, 0, p);
6033 p++;
6034 }
6035
6036 /* Head to the next symbol. */
6037 curr_lst_sym++;
6038 }
6039
6040 /* Keep track of where each SOM will finally reside; then look
6041 at the next BFD. */
6042 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
6043
6044 /* A particular object in the archive may have an odd length; the
6045 linker requires objects begin on an even boundary. So round
6046 up the current offset as necessary. */
6047 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
6048 curr_bfd = curr_bfd->next;
6049 som_index++;
6050 }
6051
6052 /* Now scribble out the hash table. */
6053 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
6054 != lst.hash_size * 4)
6055 goto error_return;
6056
6057 /* Then the SOM dictionary. */
6058 if (bfd_write ((PTR) som_dict, lst.module_count,
6059 sizeof (struct som_entry), abfd)
6060 != lst.module_count * sizeof (struct som_entry))
6061 goto error_return;
6062
6063 /* The library symbols. */
6064 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
6065 != nsyms * sizeof (struct lst_symbol_record))
6066 goto error_return;
6067
6068 /* And finally the strings. */
6069 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
6070 goto error_return;
6071
6072 if (hash_table != NULL)
6073 free (hash_table);
6074 if (som_dict != NULL)
6075 free (som_dict);
6076 if (last_hash_entry != NULL)
6077 free (last_hash_entry);
6078 if (lst_syms != NULL)
6079 free (lst_syms);
6080 if (strings != NULL)
6081 free (strings);
6082 return true;
6083
6084 error_return:
6085 if (hash_table != NULL)
6086 free (hash_table);
6087 if (som_dict != NULL)
6088 free (som_dict);
6089 if (last_hash_entry != NULL)
6090 free (last_hash_entry);
6091 if (lst_syms != NULL)
6092 free (lst_syms);
6093 if (strings != NULL)
6094 free (strings);
6095
6096 return false;
6097 }
6098
6099 /* Write out the LST for the archive.
6100
6101 You'll never believe this is really how armaps are handled in SOM... */
6102
6103 /*ARGSUSED*/
6104 static boolean
6105 som_write_armap (abfd, elength, map, orl_count, stridx)
6106 bfd *abfd;
6107 unsigned int elength;
6108 struct orl *map ATTRIBUTE_UNUSED;
6109 unsigned int orl_count ATTRIBUTE_UNUSED;
6110 int stridx ATTRIBUTE_UNUSED;
6111 {
6112 bfd *curr_bfd;
6113 struct stat statbuf;
6114 unsigned int i, lst_size, nsyms, stringsize;
6115 struct ar_hdr hdr;
6116 struct lst_header lst;
6117 int *p;
6118
6119 /* We'll use this for the archive's date and mode later. */
6120 if (stat (abfd->filename, &statbuf) != 0)
6121 {
6122 bfd_set_error (bfd_error_system_call);
6123 return false;
6124 }
6125 /* Fudge factor. */
6126 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
6127
6128 /* Account for the lst header first. */
6129 lst_size = sizeof (struct lst_header);
6130
6131 /* Start building the LST header. */
6132 /* FIXME: Do we need to examine each element to determine the
6133 largest id number? */
6134 lst.system_id = CPU_PA_RISC1_0;
6135 lst.a_magic = LIBMAGIC;
6136 lst.version_id = VERSION_ID;
6137 lst.file_time.secs = 0;
6138 lst.file_time.nanosecs = 0;
6139
6140 lst.hash_loc = lst_size;
6141 lst.hash_size = SOM_LST_HASH_SIZE;
6142
6143 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
6144 lst_size += 4 * SOM_LST_HASH_SIZE;
6145
6146 /* We need to count the number of SOMs in this archive. */
6147 curr_bfd = abfd->archive_head;
6148 lst.module_count = 0;
6149 while (curr_bfd != NULL)
6150 {
6151 /* Only true SOM objects count. */
6152 if (curr_bfd->format == bfd_object
6153 && curr_bfd->xvec->flavour == bfd_target_som_flavour)
6154 lst.module_count++;
6155 curr_bfd = curr_bfd->next;
6156 }
6157 lst.module_limit = lst.module_count;
6158 lst.dir_loc = lst_size;
6159 lst_size += sizeof (struct som_entry) * lst.module_count;
6160
6161 /* We don't support import/export tables, auxiliary headers,
6162 or free lists yet. Make the linker work a little harder
6163 to make our life easier. */
6164
6165 lst.export_loc = 0;
6166 lst.export_count = 0;
6167 lst.import_loc = 0;
6168 lst.aux_loc = 0;
6169 lst.aux_size = 0;
6170
6171 /* Count how many symbols we will have on the hash chains and the
6172 size of the associated string table. */
6173 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
6174 return false;
6175
6176 lst_size += sizeof (struct lst_symbol_record) * nsyms;
6177
6178 /* For the string table. One day we might actually use this info
6179 to avoid small seeks/reads when reading archives. */
6180 lst.string_loc = lst_size;
6181 lst.string_size = stringsize;
6182 lst_size += stringsize;
6183
6184 /* SOM ABI says this must be zero. */
6185 lst.free_list = 0;
6186 lst.file_end = lst_size;
6187
6188 /* Compute the checksum. Must happen after the entire lst header
6189 has filled in. */
6190 p = (int *)&lst;
6191 lst.checksum = 0;
6192 for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
6193 lst.checksum ^= *p++;
6194
6195 sprintf (hdr.ar_name, "/ ");
6196 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
6197 sprintf (hdr.ar_uid, "%ld", (long) getuid ());
6198 sprintf (hdr.ar_gid, "%ld", (long) getgid ());
6199 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
6200 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
6201 hdr.ar_fmag[0] = '`';
6202 hdr.ar_fmag[1] = '\012';
6203
6204 /* Turn any nulls into spaces. */
6205 for (i = 0; i < sizeof (struct ar_hdr); i++)
6206 if (((char *) (&hdr))[i] == '\0')
6207 (((char *) (&hdr))[i]) = ' ';
6208
6209 /* Scribble out the ar header. */
6210 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
6211 != sizeof (struct ar_hdr))
6212 return false;
6213
6214 /* Now scribble out the lst header. */
6215 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
6216 != sizeof (struct lst_header))
6217 return false;
6218
6219 /* Build and write the armap. */
6220 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst, elength)
6221 == false)
6222 return false;
6223
6224 /* Done. */
6225 return true;
6226 }
6227
6228 /* Free all information we have cached for this BFD. We can always
6229 read it again later if we need it. */
6230
6231 static boolean
6232 som_bfd_free_cached_info (abfd)
6233 bfd *abfd;
6234 {
6235 asection *o;
6236
6237 if (bfd_get_format (abfd) != bfd_object)
6238 return true;
6239
6240 #define FREE(x) if (x != NULL) { free (x); x = NULL; }
6241 /* Free the native string and symbol tables. */
6242 FREE (obj_som_symtab (abfd));
6243 FREE (obj_som_stringtab (abfd));
6244 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
6245 {
6246 /* Free the native relocations. */
6247 o->reloc_count = -1;
6248 FREE (som_section_data (o)->reloc_stream);
6249 /* Free the generic relocations. */
6250 FREE (o->relocation);
6251 }
6252 #undef FREE
6253
6254 return true;
6255 }
6256
6257 /* End of miscellaneous support functions. */
6258
6259 /* Linker support functions. */
6260 static boolean
6261 som_bfd_link_split_section (abfd, sec)
6262 bfd *abfd ATTRIBUTE_UNUSED;
6263 asection *sec;
6264 {
6265 return (som_is_subspace (sec) && sec->_raw_size > 240000);
6266 }
6267
6268 #define som_close_and_cleanup som_bfd_free_cached_info
6269
6270 #define som_read_ar_hdr _bfd_generic_read_ar_hdr
6271 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
6272 #define som_get_elt_at_index _bfd_generic_get_elt_at_index
6273 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
6274 #define som_truncate_arname bfd_bsd_truncate_arname
6275 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
6276 #define som_construct_extended_name_table \
6277 _bfd_archive_coff_construct_extended_name_table
6278 #define som_update_armap_timestamp bfd_true
6279 #define som_bfd_print_private_bfd_data _bfd_generic_bfd_print_private_bfd_data
6280
6281 #define som_get_lineno _bfd_nosymbols_get_lineno
6282 #define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol
6283 #define som_read_minisymbols _bfd_generic_read_minisymbols
6284 #define som_minisymbol_to_symbol _bfd_generic_minisymbol_to_symbol
6285 #define som_get_section_contents_in_window \
6286 _bfd_generic_get_section_contents_in_window
6287
6288 #define som_bfd_get_relocated_section_contents \
6289 bfd_generic_get_relocated_section_contents
6290 #define som_bfd_relax_section bfd_generic_relax_section
6291 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
6292 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
6293 #define som_bfd_final_link _bfd_generic_final_link
6294
6295 #define som_bfd_gc_sections bfd_generic_gc_sections
6296
6297 const bfd_target som_vec =
6298 {
6299 "som", /* name */
6300 bfd_target_som_flavour,
6301 BFD_ENDIAN_BIG, /* target byte order */
6302 BFD_ENDIAN_BIG, /* target headers byte order */
6303 (HAS_RELOC | EXEC_P | /* object flags */
6304 HAS_LINENO | HAS_DEBUG |
6305 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
6306 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
6307 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
6308
6309 /* leading_symbol_char: is the first char of a user symbol
6310 predictable, and if so what is it */
6311 0,
6312 '/', /* ar_pad_char */
6313 14, /* ar_max_namelen */
6314 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
6315 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
6316 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
6317 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
6318 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
6319 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
6320 {_bfd_dummy_target,
6321 som_object_p, /* bfd_check_format */
6322 bfd_generic_archive_p,
6323 _bfd_dummy_target
6324 },
6325 {
6326 bfd_false,
6327 som_mkobject,
6328 _bfd_generic_mkarchive,
6329 bfd_false
6330 },
6331 {
6332 bfd_false,
6333 som_write_object_contents,
6334 _bfd_write_archive_contents,
6335 bfd_false,
6336 },
6337 #undef som
6338
6339 BFD_JUMP_TABLE_GENERIC (som),
6340 BFD_JUMP_TABLE_COPY (som),
6341 BFD_JUMP_TABLE_CORE (_bfd_nocore),
6342 BFD_JUMP_TABLE_ARCHIVE (som),
6343 BFD_JUMP_TABLE_SYMBOLS (som),
6344 BFD_JUMP_TABLE_RELOCS (som),
6345 BFD_JUMP_TABLE_WRITE (som),
6346 BFD_JUMP_TABLE_LINK (som),
6347 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
6348
6349 NULL,
6350
6351 (PTR) 0
6352 };
6353
6354 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */
This page took 0.211096 seconds and 5 git commands to generate.