* som.c (som_slurp_symbol_table): Set the symbol count to the
[deliverable/binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24 #include "bfd.h"
25 #include "sysdep.h"
26
27 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF)
28
29 #include "libbfd.h"
30 #include "som.h"
31
32 #include <stdio.h>
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <signal.h>
36 #include <machine/reg.h>
37 #include <sys/file.h>
38 #include <errno.h>
39
40 /* Magic not defined in standard HP-UX header files until 8.0 */
41
42 #ifndef CPU_PA_RISC1_0
43 #define CPU_PA_RISC1_0 0x20B
44 #endif /* CPU_PA_RISC1_0 */
45
46 #ifndef CPU_PA_RISC1_1
47 #define CPU_PA_RISC1_1 0x210
48 #endif /* CPU_PA_RISC1_1 */
49
50 #ifndef _PA_RISC1_0_ID
51 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
52 #endif /* _PA_RISC1_0_ID */
53
54 #ifndef _PA_RISC1_1_ID
55 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
56 #endif /* _PA_RISC1_1_ID */
57
58 #ifndef _PA_RISC_MAXID
59 #define _PA_RISC_MAXID 0x2FF
60 #endif /* _PA_RISC_MAXID */
61
62 #ifndef _PA_RISC_ID
63 #define _PA_RISC_ID(__m_num) \
64 (((__m_num) == _PA_RISC1_0_ID) || \
65 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
66 #endif /* _PA_RISC_ID */
67
68
69 /* HIUX in it's infinite stupidity changed the names for several "well
70 known" constants. Work around such braindamage. Try the HPUX version
71 first, then the HIUX version, and finally provide a default. */
72 #ifdef HPUX_AUX_ID
73 #define EXEC_AUX_ID HPUX_AUX_ID
74 #endif
75
76 #if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID)
77 #define EXEC_AUX_ID HIUX_AUX_ID
78 #endif
79
80 #ifndef EXEC_AUX_ID
81 #define EXEC_AUX_ID 0
82 #endif
83
84 /* Size (in chars) of the temporary buffers used during fixup and string
85 table writes. */
86
87 #define SOM_TMP_BUFSIZE 8192
88
89 /* Size of the hash table in archives. */
90 #define SOM_LST_HASH_SIZE 31
91
92 /* Max number of SOMs to be found in an archive. */
93 #define SOM_LST_MODULE_LIMIT 1024
94
95 /* Generic alignment macro. */
96 #define SOM_ALIGN(val, alignment) \
97 (((val) + (alignment) - 1) & ~((alignment) - 1))
98
99 /* SOM allows any one of the four previous relocations to be reused
100 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
101 relocations are always a single byte, using a R_PREV_FIXUP instead
102 of some multi-byte relocation makes object files smaller.
103
104 Note one side effect of using a R_PREV_FIXUP is the relocation that
105 is being repeated moves to the front of the queue. */
106 struct reloc_queue
107 {
108 unsigned char *reloc;
109 unsigned int size;
110 } reloc_queue[4];
111
112 /* This fully describes the symbol types which may be attached to
113 an EXPORT or IMPORT directive. Only SOM uses this formation
114 (ELF has no need for it). */
115 typedef enum
116 {
117 SYMBOL_TYPE_UNKNOWN,
118 SYMBOL_TYPE_ABSOLUTE,
119 SYMBOL_TYPE_CODE,
120 SYMBOL_TYPE_DATA,
121 SYMBOL_TYPE_ENTRY,
122 SYMBOL_TYPE_MILLICODE,
123 SYMBOL_TYPE_PLABEL,
124 SYMBOL_TYPE_PRI_PROG,
125 SYMBOL_TYPE_SEC_PROG,
126 } pa_symbol_type;
127
128 struct section_to_type
129 {
130 char *section;
131 char type;
132 };
133
134 /* Assorted symbol information that needs to be derived from the BFD symbol
135 and/or the BFD backend private symbol data. */
136 struct som_misc_symbol_info
137 {
138 unsigned int symbol_type;
139 unsigned int symbol_scope;
140 unsigned int arg_reloc;
141 unsigned int symbol_info;
142 unsigned int symbol_value;
143 };
144
145 /* Forward declarations */
146
147 static boolean som_mkobject PARAMS ((bfd *));
148 static const bfd_target * som_object_setup PARAMS ((bfd *,
149 struct header *,
150 struct som_exec_auxhdr *));
151 static boolean setup_sections PARAMS ((bfd *, struct header *));
152 static const bfd_target * som_object_p PARAMS ((bfd *));
153 static boolean som_write_object_contents PARAMS ((bfd *));
154 static boolean som_slurp_string_table PARAMS ((bfd *));
155 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
156 static long som_get_symtab_upper_bound PARAMS ((bfd *));
157 static long som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
158 arelent **, asymbol **));
159 static long som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
160 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
161 arelent *, asection *,
162 asymbol **, boolean));
163 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
164 asymbol **, boolean));
165 static long som_get_symtab PARAMS ((bfd *, asymbol **));
166 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
167 static void som_print_symbol PARAMS ((bfd *, PTR,
168 asymbol *, bfd_print_symbol_type));
169 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
170 static boolean som_bfd_copy_private_symbol_data PARAMS ((bfd *, asymbol *,
171 bfd *, asymbol *));
172 static boolean som_bfd_copy_private_section_data PARAMS ((bfd *, asection *,
173 bfd *, asection *));
174 static boolean som_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *));
175 #define som_bfd_merge_private_bfd_data _bfd_generic_bfd_merge_private_bfd_data
176 #define som_bfd_set_private_flags _bfd_generic_bfd_set_private_flags
177 static boolean som_bfd_is_local_label PARAMS ((bfd *, asymbol *));
178 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
179 file_ptr, bfd_size_type));
180 static boolean som_get_section_contents PARAMS ((bfd *, sec_ptr, PTR,
181 file_ptr, bfd_size_type));
182 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
183 unsigned long));
184 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
185 asymbol **, bfd_vma,
186 CONST char **,
187 CONST char **,
188 unsigned int *));
189 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
190 static asection * bfd_section_from_som_symbol PARAMS ((bfd *,
191 struct symbol_dictionary_record *));
192 static int log2 PARAMS ((unsigned int));
193 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
194 asymbol *, PTR,
195 asection *, bfd *,
196 char **));
197 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
198 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
199 struct reloc_queue *));
200 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
201 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
202 struct reloc_queue *));
203 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
204 unsigned int,
205 struct reloc_queue *));
206
207 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
208 unsigned char *, unsigned int *,
209 struct reloc_queue *));
210 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
211 unsigned int *,
212 struct reloc_queue *));
213 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
214 unsigned int *,
215 arelent *, int,
216 struct reloc_queue *));
217 static unsigned long som_count_spaces PARAMS ((bfd *));
218 static unsigned long som_count_subspaces PARAMS ((bfd *));
219 static int compare_syms PARAMS ((const void *, const void *));
220 static int compare_subspaces PARAMS ((const void *, const void *));
221 static unsigned long som_compute_checksum PARAMS ((bfd *));
222 static boolean som_prep_headers PARAMS ((bfd *));
223 static int som_sizeof_headers PARAMS ((bfd *, boolean));
224 static boolean som_finish_writing PARAMS ((bfd *));
225 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
226 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
227 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
228 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
229 unsigned int *));
230 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
231 asymbol **, unsigned int,
232 unsigned *));
233 static boolean som_begin_writing PARAMS ((bfd *));
234 static reloc_howto_type * som_bfd_reloc_type_lookup
235 PARAMS ((bfd *, bfd_reloc_code_real_type));
236 static char som_section_type PARAMS ((const char *));
237 static int som_decode_symclass PARAMS ((asymbol *));
238 static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
239 symindex *));
240
241 static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
242 carsym **syms));
243 static boolean som_slurp_armap PARAMS ((bfd *));
244 static boolean som_write_armap PARAMS ((bfd *, unsigned int, struct orl *,
245 unsigned int, int));
246 static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
247 struct som_misc_symbol_info *));
248 static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
249 unsigned int *));
250 static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
251 static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
252 unsigned int,
253 struct lst_header));
254 static CONST char *normalize PARAMS ((CONST char *file));
255 static boolean som_is_space PARAMS ((asection *));
256 static boolean som_is_subspace PARAMS ((asection *));
257 static boolean som_is_container PARAMS ((asection *, asection *));
258 static boolean som_bfd_free_cached_info PARAMS ((bfd *));
259 static boolean som_bfd_link_split_section PARAMS ((bfd *, asection *));
260
261 /* Map SOM section names to POSIX/BSD single-character symbol types.
262
263 This table includes all the standard subspaces as defined in the
264 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
265 some reason was left out, and sections specific to embedded stabs. */
266
267 static const struct section_to_type stt[] = {
268 {"$TEXT$", 't'},
269 {"$SHLIB_INFO$", 't'},
270 {"$MILLICODE$", 't'},
271 {"$LIT$", 't'},
272 {"$CODE$", 't'},
273 {"$UNWIND_START$", 't'},
274 {"$UNWIND$", 't'},
275 {"$PRIVATE$", 'd'},
276 {"$PLT$", 'd'},
277 {"$SHLIB_DATA$", 'd'},
278 {"$DATA$", 'd'},
279 {"$SHORTDATA$", 'g'},
280 {"$DLT$", 'd'},
281 {"$GLOBAL$", 'g'},
282 {"$SHORTBSS$", 's'},
283 {"$BSS$", 'b'},
284 {"$GDB_STRINGS$", 'N'},
285 {"$GDB_SYMBOLS$", 'N'},
286 {0, 0}
287 };
288
289 /* About the relocation formatting table...
290
291 There are 256 entries in the table, one for each possible
292 relocation opcode available in SOM. We index the table by
293 the relocation opcode. The names and operations are those
294 defined by a.out_800 (4).
295
296 Right now this table is only used to count and perform minimal
297 processing on relocation streams so that they can be internalized
298 into BFD and symbolically printed by utilities. To make actual use
299 of them would be much more difficult, BFD's concept of relocations
300 is far too simple to handle SOM relocations. The basic assumption
301 that a relocation can be completely processed independent of other
302 relocations before an object file is written is invalid for SOM.
303
304 The SOM relocations are meant to be processed as a stream, they
305 specify copying of data from the input section to the output section
306 while possibly modifying the data in some manner. They also can
307 specify that a variable number of zeros or uninitialized data be
308 inserted on in the output segment at the current offset. Some
309 relocations specify that some previous relocation be re-applied at
310 the current location in the input/output sections. And finally a number
311 of relocations have effects on other sections (R_ENTRY, R_EXIT,
312 R_UNWIND_AUX and a variety of others). There isn't even enough room
313 in the BFD relocation data structure to store enough information to
314 perform all the relocations.
315
316 Each entry in the table has three fields.
317
318 The first entry is an index into this "class" of relocations. This
319 index can then be used as a variable within the relocation itself.
320
321 The second field is a format string which actually controls processing
322 of the relocation. It uses a simple postfix machine to do calculations
323 based on variables/constants found in the string and the relocation
324 stream.
325
326 The third field specifys whether or not this relocation may use
327 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
328 stored in the instruction.
329
330 Variables:
331
332 L = input space byte count
333 D = index into class of relocations
334 M = output space byte count
335 N = statement number (unused?)
336 O = stack operation
337 R = parameter relocation bits
338 S = symbol index
339 T = first 32 bits of stack unwind information
340 U = second 32 bits of stack unwind information
341 V = a literal constant (usually used in the next relocation)
342 P = a previous relocation
343
344 Lower case letters (starting with 'b') refer to following
345 bytes in the relocation stream. 'b' is the next 1 byte,
346 c is the next 2 bytes, d is the next 3 bytes, etc...
347 This is the variable part of the relocation entries that
348 makes our life a living hell.
349
350 numerical constants are also used in the format string. Note
351 the constants are represented in decimal.
352
353 '+', "*" and "=" represents the obvious postfix operators.
354 '<' represents a left shift.
355
356 Stack Operations:
357
358 Parameter Relocation Bits:
359
360 Unwind Entries:
361
362 Previous Relocations: The index field represents which in the queue
363 of 4 previous fixups should be re-applied.
364
365 Literal Constants: These are generally used to represent addend
366 parts of relocations when these constants are not stored in the
367 fields of the instructions themselves. For example the instruction
368 addil foo-$global$-0x1234 would use an override for "0x1234" rather
369 than storing it into the addil itself. */
370
371 struct fixup_format
372 {
373 int D;
374 char *format;
375 };
376
377 static const struct fixup_format som_fixup_formats[256] =
378 {
379 /* R_NO_RELOCATION */
380 0, "LD1+4*=", /* 0x00 */
381 1, "LD1+4*=", /* 0x01 */
382 2, "LD1+4*=", /* 0x02 */
383 3, "LD1+4*=", /* 0x03 */
384 4, "LD1+4*=", /* 0x04 */
385 5, "LD1+4*=", /* 0x05 */
386 6, "LD1+4*=", /* 0x06 */
387 7, "LD1+4*=", /* 0x07 */
388 8, "LD1+4*=", /* 0x08 */
389 9, "LD1+4*=", /* 0x09 */
390 10, "LD1+4*=", /* 0x0a */
391 11, "LD1+4*=", /* 0x0b */
392 12, "LD1+4*=", /* 0x0c */
393 13, "LD1+4*=", /* 0x0d */
394 14, "LD1+4*=", /* 0x0e */
395 15, "LD1+4*=", /* 0x0f */
396 16, "LD1+4*=", /* 0x10 */
397 17, "LD1+4*=", /* 0x11 */
398 18, "LD1+4*=", /* 0x12 */
399 19, "LD1+4*=", /* 0x13 */
400 20, "LD1+4*=", /* 0x14 */
401 21, "LD1+4*=", /* 0x15 */
402 22, "LD1+4*=", /* 0x16 */
403 23, "LD1+4*=", /* 0x17 */
404 0, "LD8<b+1+4*=", /* 0x18 */
405 1, "LD8<b+1+4*=", /* 0x19 */
406 2, "LD8<b+1+4*=", /* 0x1a */
407 3, "LD8<b+1+4*=", /* 0x1b */
408 0, "LD16<c+1+4*=", /* 0x1c */
409 1, "LD16<c+1+4*=", /* 0x1d */
410 2, "LD16<c+1+4*=", /* 0x1e */
411 0, "Ld1+=", /* 0x1f */
412 /* R_ZEROES */
413 0, "Lb1+4*=", /* 0x20 */
414 1, "Ld1+=", /* 0x21 */
415 /* R_UNINIT */
416 0, "Lb1+4*=", /* 0x22 */
417 1, "Ld1+=", /* 0x23 */
418 /* R_RELOCATION */
419 0, "L4=", /* 0x24 */
420 /* R_DATA_ONE_SYMBOL */
421 0, "L4=Sb=", /* 0x25 */
422 1, "L4=Sd=", /* 0x26 */
423 /* R_DATA_PLEBEL */
424 0, "L4=Sb=", /* 0x27 */
425 1, "L4=Sd=", /* 0x28 */
426 /* R_SPACE_REF */
427 0, "L4=", /* 0x29 */
428 /* R_REPEATED_INIT */
429 0, "L4=Mb1+4*=", /* 0x2a */
430 1, "Lb4*=Mb1+L*=", /* 0x2b */
431 2, "Lb4*=Md1+4*=", /* 0x2c */
432 3, "Ld1+=Me1+=", /* 0x2d */
433 /* R_SHORT_PCREL_MODE */
434 0, "", /* 0x2e */
435 /* R_LONG_PCREL_MODE */
436 0, "", /* 0x2f */
437 /* R_PCREL_CALL */
438 0, "L4=RD=Sb=", /* 0x30 */
439 1, "L4=RD=Sb=", /* 0x31 */
440 2, "L4=RD=Sb=", /* 0x32 */
441 3, "L4=RD=Sb=", /* 0x33 */
442 4, "L4=RD=Sb=", /* 0x34 */
443 5, "L4=RD=Sb=", /* 0x35 */
444 6, "L4=RD=Sb=", /* 0x36 */
445 7, "L4=RD=Sb=", /* 0x37 */
446 8, "L4=RD=Sb=", /* 0x38 */
447 9, "L4=RD=Sb=", /* 0x39 */
448 0, "L4=RD8<b+=Sb=",/* 0x3a */
449 1, "L4=RD8<b+=Sb=",/* 0x3b */
450 0, "L4=RD8<b+=Sd=",/* 0x3c */
451 1, "L4=RD8<b+=Sd=",/* 0x3d */
452 /* R_RESERVED */
453 0, "", /* 0x3e */
454 0, "", /* 0x3f */
455 /* R_ABS_CALL */
456 0, "L4=RD=Sb=", /* 0x40 */
457 1, "L4=RD=Sb=", /* 0x41 */
458 2, "L4=RD=Sb=", /* 0x42 */
459 3, "L4=RD=Sb=", /* 0x43 */
460 4, "L4=RD=Sb=", /* 0x44 */
461 5, "L4=RD=Sb=", /* 0x45 */
462 6, "L4=RD=Sb=", /* 0x46 */
463 7, "L4=RD=Sb=", /* 0x47 */
464 8, "L4=RD=Sb=", /* 0x48 */
465 9, "L4=RD=Sb=", /* 0x49 */
466 0, "L4=RD8<b+=Sb=",/* 0x4a */
467 1, "L4=RD8<b+=Sb=",/* 0x4b */
468 0, "L4=RD8<b+=Sd=",/* 0x4c */
469 1, "L4=RD8<b+=Sd=",/* 0x4d */
470 /* R_RESERVED */
471 0, "", /* 0x4e */
472 0, "", /* 0x4f */
473 /* R_DP_RELATIVE */
474 0, "L4=SD=", /* 0x50 */
475 1, "L4=SD=", /* 0x51 */
476 2, "L4=SD=", /* 0x52 */
477 3, "L4=SD=", /* 0x53 */
478 4, "L4=SD=", /* 0x54 */
479 5, "L4=SD=", /* 0x55 */
480 6, "L4=SD=", /* 0x56 */
481 7, "L4=SD=", /* 0x57 */
482 8, "L4=SD=", /* 0x58 */
483 9, "L4=SD=", /* 0x59 */
484 10, "L4=SD=", /* 0x5a */
485 11, "L4=SD=", /* 0x5b */
486 12, "L4=SD=", /* 0x5c */
487 13, "L4=SD=", /* 0x5d */
488 14, "L4=SD=", /* 0x5e */
489 15, "L4=SD=", /* 0x5f */
490 16, "L4=SD=", /* 0x60 */
491 17, "L4=SD=", /* 0x61 */
492 18, "L4=SD=", /* 0x62 */
493 19, "L4=SD=", /* 0x63 */
494 20, "L4=SD=", /* 0x64 */
495 21, "L4=SD=", /* 0x65 */
496 22, "L4=SD=", /* 0x66 */
497 23, "L4=SD=", /* 0x67 */
498 24, "L4=SD=", /* 0x68 */
499 25, "L4=SD=", /* 0x69 */
500 26, "L4=SD=", /* 0x6a */
501 27, "L4=SD=", /* 0x6b */
502 28, "L4=SD=", /* 0x6c */
503 29, "L4=SD=", /* 0x6d */
504 30, "L4=SD=", /* 0x6e */
505 31, "L4=SD=", /* 0x6f */
506 32, "L4=Sb=", /* 0x70 */
507 33, "L4=Sd=", /* 0x71 */
508 /* R_RESERVED */
509 0, "", /* 0x72 */
510 0, "", /* 0x73 */
511 0, "", /* 0x74 */
512 0, "", /* 0x75 */
513 0, "", /* 0x76 */
514 0, "", /* 0x77 */
515 /* R_DLT_REL */
516 0, "L4=Sb=", /* 0x78 */
517 1, "L4=Sd=", /* 0x79 */
518 /* R_RESERVED */
519 0, "", /* 0x7a */
520 0, "", /* 0x7b */
521 0, "", /* 0x7c */
522 0, "", /* 0x7d */
523 0, "", /* 0x7e */
524 0, "", /* 0x7f */
525 /* R_CODE_ONE_SYMBOL */
526 0, "L4=SD=", /* 0x80 */
527 1, "L4=SD=", /* 0x81 */
528 2, "L4=SD=", /* 0x82 */
529 3, "L4=SD=", /* 0x83 */
530 4, "L4=SD=", /* 0x84 */
531 5, "L4=SD=", /* 0x85 */
532 6, "L4=SD=", /* 0x86 */
533 7, "L4=SD=", /* 0x87 */
534 8, "L4=SD=", /* 0x88 */
535 9, "L4=SD=", /* 0x89 */
536 10, "L4=SD=", /* 0x8q */
537 11, "L4=SD=", /* 0x8b */
538 12, "L4=SD=", /* 0x8c */
539 13, "L4=SD=", /* 0x8d */
540 14, "L4=SD=", /* 0x8e */
541 15, "L4=SD=", /* 0x8f */
542 16, "L4=SD=", /* 0x90 */
543 17, "L4=SD=", /* 0x91 */
544 18, "L4=SD=", /* 0x92 */
545 19, "L4=SD=", /* 0x93 */
546 20, "L4=SD=", /* 0x94 */
547 21, "L4=SD=", /* 0x95 */
548 22, "L4=SD=", /* 0x96 */
549 23, "L4=SD=", /* 0x97 */
550 24, "L4=SD=", /* 0x98 */
551 25, "L4=SD=", /* 0x99 */
552 26, "L4=SD=", /* 0x9a */
553 27, "L4=SD=", /* 0x9b */
554 28, "L4=SD=", /* 0x9c */
555 29, "L4=SD=", /* 0x9d */
556 30, "L4=SD=", /* 0x9e */
557 31, "L4=SD=", /* 0x9f */
558 32, "L4=Sb=", /* 0xa0 */
559 33, "L4=Sd=", /* 0xa1 */
560 /* R_RESERVED */
561 0, "", /* 0xa2 */
562 0, "", /* 0xa3 */
563 0, "", /* 0xa4 */
564 0, "", /* 0xa5 */
565 0, "", /* 0xa6 */
566 0, "", /* 0xa7 */
567 0, "", /* 0xa8 */
568 0, "", /* 0xa9 */
569 0, "", /* 0xaa */
570 0, "", /* 0xab */
571 0, "", /* 0xac */
572 0, "", /* 0xad */
573 /* R_MILLI_REL */
574 0, "L4=Sb=", /* 0xae */
575 1, "L4=Sd=", /* 0xaf */
576 /* R_CODE_PLABEL */
577 0, "L4=Sb=", /* 0xb0 */
578 1, "L4=Sd=", /* 0xb1 */
579 /* R_BREAKPOINT */
580 0, "L4=", /* 0xb2 */
581 /* R_ENTRY */
582 0, "Te=Ue=", /* 0xb3 */
583 1, "Uf=", /* 0xb4 */
584 /* R_ALT_ENTRY */
585 0, "", /* 0xb5 */
586 /* R_EXIT */
587 0, "", /* 0xb6 */
588 /* R_BEGIN_TRY */
589 0, "", /* 0xb7 */
590 /* R_END_TRY */
591 0, "R0=", /* 0xb8 */
592 1, "Rb4*=", /* 0xb9 */
593 2, "Rd4*=", /* 0xba */
594 /* R_BEGIN_BRTAB */
595 0, "", /* 0xbb */
596 /* R_END_BRTAB */
597 0, "", /* 0xbc */
598 /* R_STATEMENT */
599 0, "Nb=", /* 0xbd */
600 1, "Nc=", /* 0xbe */
601 2, "Nd=", /* 0xbf */
602 /* R_DATA_EXPR */
603 0, "L4=", /* 0xc0 */
604 /* R_CODE_EXPR */
605 0, "L4=", /* 0xc1 */
606 /* R_FSEL */
607 0, "", /* 0xc2 */
608 /* R_LSEL */
609 0, "", /* 0xc3 */
610 /* R_RSEL */
611 0, "", /* 0xc4 */
612 /* R_N_MODE */
613 0, "", /* 0xc5 */
614 /* R_S_MODE */
615 0, "", /* 0xc6 */
616 /* R_D_MODE */
617 0, "", /* 0xc7 */
618 /* R_R_MODE */
619 0, "", /* 0xc8 */
620 /* R_DATA_OVERRIDE */
621 0, "V0=", /* 0xc9 */
622 1, "Vb=", /* 0xca */
623 2, "Vc=", /* 0xcb */
624 3, "Vd=", /* 0xcc */
625 4, "Ve=", /* 0xcd */
626 /* R_TRANSLATED */
627 0, "", /* 0xce */
628 /* R_RESERVED */
629 0, "", /* 0xcf */
630 /* R_COMP1 */
631 0, "Ob=", /* 0xd0 */
632 /* R_COMP2 */
633 0, "Ob=Sd=", /* 0xd1 */
634 /* R_COMP3 */
635 0, "Ob=Ve=", /* 0xd2 */
636 /* R_PREV_FIXUP */
637 0, "P", /* 0xd3 */
638 1, "P", /* 0xd4 */
639 2, "P", /* 0xd5 */
640 3, "P", /* 0xd6 */
641 /* R_SEC_STMT */
642 0, "", /* 0xd7 */
643 /* R_N0SEL */
644 0, "", /* 0xd8 */
645 /* R_N1SEL */
646 0, "", /* 0xd9 */
647 /* R_LINETAB */
648 0, "", /* 0xda */
649 /* R_LINETAB_ESC */
650 0, "", /* 0xdb */
651 /* R_LTP_OVERRIDE */
652 0, "", /* 0xdc */
653 /* R_COMMENT */
654 0, "", /* 0xdd */
655 /* R_RESERVED */
656 0, "", /* 0xde */
657 0, "", /* 0xdf */
658 0, "", /* 0xe0 */
659 0, "", /* 0xe1 */
660 0, "", /* 0xe2 */
661 0, "", /* 0xe3 */
662 0, "", /* 0xe4 */
663 0, "", /* 0xe5 */
664 0, "", /* 0xe6 */
665 0, "", /* 0xe7 */
666 0, "", /* 0xe8 */
667 0, "", /* 0xe9 */
668 0, "", /* 0xea */
669 0, "", /* 0xeb */
670 0, "", /* 0xec */
671 0, "", /* 0xed */
672 0, "", /* 0xee */
673 0, "", /* 0xef */
674 0, "", /* 0xf0 */
675 0, "", /* 0xf1 */
676 0, "", /* 0xf2 */
677 0, "", /* 0xf3 */
678 0, "", /* 0xf4 */
679 0, "", /* 0xf5 */
680 0, "", /* 0xf6 */
681 0, "", /* 0xf7 */
682 0, "", /* 0xf8 */
683 0, "", /* 0xf9 */
684 0, "", /* 0xfa */
685 0, "", /* 0xfb */
686 0, "", /* 0xfc */
687 0, "", /* 0xfd */
688 0, "", /* 0xfe */
689 0, "", /* 0xff */
690 };
691
692 static const int comp1_opcodes[] =
693 {
694 0x00,
695 0x40,
696 0x41,
697 0x42,
698 0x43,
699 0x44,
700 0x45,
701 0x46,
702 0x47,
703 0x48,
704 0x49,
705 0x4a,
706 0x4b,
707 0x60,
708 0x80,
709 0xa0,
710 0xc0,
711 -1
712 };
713
714 static const int comp2_opcodes[] =
715 {
716 0x00,
717 0x80,
718 0x82,
719 0xc0,
720 -1
721 };
722
723 static const int comp3_opcodes[] =
724 {
725 0x00,
726 0x02,
727 -1
728 };
729
730 /* These apparently are not in older versions of hpux reloc.h (hpux7). */
731 #ifndef R_DLT_REL
732 #define R_DLT_REL 0x78
733 #endif
734
735 #ifndef R_AUX_UNWIND
736 #define R_AUX_UNWIND 0xcf
737 #endif
738
739 #ifndef R_SEC_STMT
740 #define R_SEC_STMT 0xd7
741 #endif
742
743 /* And these first appeared in hpux10. */
744 #ifndef R_SHORT_PCREL_MODE
745 #define R_SHORT_PCREL_MODE 0x3e
746 #endif
747
748 #ifndef R_LONG_PCREL_MODE
749 #define R_LONG_PCREL_MODE 0x3f
750 #endif
751
752 #ifndef R_N0SEL
753 #define R_N0SEL 0xd8
754 #endif
755
756 #ifndef R_N1SEL
757 #define R_N1SEL 0xd9
758 #endif
759
760 #ifndef R_LINETAB
761 #define R_LINETAB 0xda
762 #endif
763
764 #ifndef R_LINETAB_ESC
765 #define R_LINETAB_ESC 0xdb
766 #endif
767
768 #ifndef R_LTP_OVERRIDE
769 #define R_LTP_OVERRIDE 0xdc
770 #endif
771
772 #ifndef R_COMMENT
773 #define R_COMMENT 0xdd
774 #endif
775
776 static reloc_howto_type som_hppa_howto_table[] =
777 {
778 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
779 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
780 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
781 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
782 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
783 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
784 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
785 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
786 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
787 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
788 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
789 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
790 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
791 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
792 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
793 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
794 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
795 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
796 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
797 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
798 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
799 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
800 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
801 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
802 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
803 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
804 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
805 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
806 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
807 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
808 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
809 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
810 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
811 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
812 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
813 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
814 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
815 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
816 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
817 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
818 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
819 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
820 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
821 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
822 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
823 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
824 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
825 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
826 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
827 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
828 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
829 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
830 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
831 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
832 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
833 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
834 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
835 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
836 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
837 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
838 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
839 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
840 {R_SHORT_PCREL_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SHORT_PCREL_MODE"},
841 {R_LONG_PCREL_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LONG_PCREL_MODE"},
842 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
843 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
844 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
845 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
846 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
847 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
848 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
849 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
850 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
851 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
852 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
853 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
854 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
855 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
856 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
857 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
858 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
859 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
860 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
861 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
862 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
863 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
864 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
865 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
866 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
867 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
868 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
869 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
870 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
871 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
872 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
873 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
874 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
875 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
876 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
877 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
878 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
879 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
880 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
881 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
882 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
883 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
884 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
885 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
886 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
887 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
888 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
889 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
890 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
891 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
892 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
893 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
894 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
895 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
896 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
897 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
898 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
899 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
900 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
901 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
902 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
903 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
904 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
905 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
906 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
907 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
908 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
909 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
910 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
911 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
912 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
913 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
914 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
915 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
916 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
917 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
918 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
919 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
920 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
921 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
922 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
923 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
924 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
925 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
926 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
927 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
928 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
929 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
930 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
931 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
932 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
933 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
934 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
935 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
936 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
937 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
938 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
939 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
940 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
941 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
942 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
943 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
944 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
945 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
946 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
947 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
948 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
949 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
950 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
951 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
952 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
953 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
954 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
955 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
956 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
957 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
958 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
959 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
960 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
961 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
962 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
963 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
964 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
965 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
966 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
967 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
968 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
969 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
970 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
971 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
972 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
973 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
974 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
975 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
976 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
977 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
978 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
979 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
980 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
981 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
982 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
983 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
984 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
985 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
986 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
987 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
988 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
989 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
990 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
991 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
992 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
993 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
994 {R_N0SEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N0SEL"},
995 {R_N1SEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N1SEL"},
996 {R_LINETAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LINETAB"},
997 {R_LINETAB_ESC, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LINETAB_ESC"},
998 {R_LTP_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LTP_OVERRIDE"},
999 {R_COMMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMMENT"},
1000 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1001 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1002 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1003 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1004 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1005 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1006 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1007 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1008 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1009 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1010 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1011 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1012 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1013 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1014 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1015 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1016 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1017 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1018 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1019 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1020 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1021 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1022 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1023 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1024 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1025 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1026 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1027 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1028 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1029 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1030 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1031 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1032 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1033 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
1034
1035 /* Initialize the SOM relocation queue. By definition the queue holds
1036 the last four multibyte fixups. */
1037
1038 static void
1039 som_initialize_reloc_queue (queue)
1040 struct reloc_queue *queue;
1041 {
1042 queue[0].reloc = NULL;
1043 queue[0].size = 0;
1044 queue[1].reloc = NULL;
1045 queue[1].size = 0;
1046 queue[2].reloc = NULL;
1047 queue[2].size = 0;
1048 queue[3].reloc = NULL;
1049 queue[3].size = 0;
1050 }
1051
1052 /* Insert a new relocation into the relocation queue. */
1053
1054 static void
1055 som_reloc_queue_insert (p, size, queue)
1056 unsigned char *p;
1057 unsigned int size;
1058 struct reloc_queue *queue;
1059 {
1060 queue[3].reloc = queue[2].reloc;
1061 queue[3].size = queue[2].size;
1062 queue[2].reloc = queue[1].reloc;
1063 queue[2].size = queue[1].size;
1064 queue[1].reloc = queue[0].reloc;
1065 queue[1].size = queue[0].size;
1066 queue[0].reloc = p;
1067 queue[0].size = size;
1068 }
1069
1070 /* When an entry in the relocation queue is reused, the entry moves
1071 to the front of the queue. */
1072
1073 static void
1074 som_reloc_queue_fix (queue, index)
1075 struct reloc_queue *queue;
1076 unsigned int index;
1077 {
1078 if (index == 0)
1079 return;
1080
1081 if (index == 1)
1082 {
1083 unsigned char *tmp1 = queue[0].reloc;
1084 unsigned int tmp2 = queue[0].size;
1085 queue[0].reloc = queue[1].reloc;
1086 queue[0].size = queue[1].size;
1087 queue[1].reloc = tmp1;
1088 queue[1].size = tmp2;
1089 return;
1090 }
1091
1092 if (index == 2)
1093 {
1094 unsigned char *tmp1 = queue[0].reloc;
1095 unsigned int tmp2 = queue[0].size;
1096 queue[0].reloc = queue[2].reloc;
1097 queue[0].size = queue[2].size;
1098 queue[2].reloc = queue[1].reloc;
1099 queue[2].size = queue[1].size;
1100 queue[1].reloc = tmp1;
1101 queue[1].size = tmp2;
1102 return;
1103 }
1104
1105 if (index == 3)
1106 {
1107 unsigned char *tmp1 = queue[0].reloc;
1108 unsigned int tmp2 = queue[0].size;
1109 queue[0].reloc = queue[3].reloc;
1110 queue[0].size = queue[3].size;
1111 queue[3].reloc = queue[2].reloc;
1112 queue[3].size = queue[2].size;
1113 queue[2].reloc = queue[1].reloc;
1114 queue[2].size = queue[1].size;
1115 queue[1].reloc = tmp1;
1116 queue[1].size = tmp2;
1117 return;
1118 }
1119 abort();
1120 }
1121
1122 /* Search for a particular relocation in the relocation queue. */
1123
1124 static int
1125 som_reloc_queue_find (p, size, queue)
1126 unsigned char *p;
1127 unsigned int size;
1128 struct reloc_queue *queue;
1129 {
1130 if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
1131 && size == queue[0].size)
1132 return 0;
1133 if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
1134 && size == queue[1].size)
1135 return 1;
1136 if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
1137 && size == queue[2].size)
1138 return 2;
1139 if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
1140 && size == queue[3].size)
1141 return 3;
1142 return -1;
1143 }
1144
1145 static unsigned char *
1146 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1147 bfd *abfd;
1148 int *subspace_reloc_sizep;
1149 unsigned char *p;
1150 unsigned int size;
1151 struct reloc_queue *queue;
1152 {
1153 int queue_index = som_reloc_queue_find (p, size, queue);
1154
1155 if (queue_index != -1)
1156 {
1157 /* Found this in a previous fixup. Undo the fixup we
1158 just built and use R_PREV_FIXUP instead. We saved
1159 a total of size - 1 bytes in the fixup stream. */
1160 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1161 p += 1;
1162 *subspace_reloc_sizep += 1;
1163 som_reloc_queue_fix (queue, queue_index);
1164 }
1165 else
1166 {
1167 som_reloc_queue_insert (p, size, queue);
1168 *subspace_reloc_sizep += size;
1169 p += size;
1170 }
1171 return p;
1172 }
1173
1174 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1175 bytes without any relocation. Update the size of the subspace
1176 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1177 current pointer into the relocation stream. */
1178
1179 static unsigned char *
1180 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1181 bfd *abfd;
1182 unsigned int skip;
1183 unsigned char *p;
1184 unsigned int *subspace_reloc_sizep;
1185 struct reloc_queue *queue;
1186 {
1187 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1188 then R_PREV_FIXUPs to get the difference down to a
1189 reasonable size. */
1190 if (skip >= 0x1000000)
1191 {
1192 skip -= 0x1000000;
1193 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1194 bfd_put_8 (abfd, 0xff, p + 1);
1195 bfd_put_16 (abfd, 0xffff, p + 2);
1196 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1197 while (skip >= 0x1000000)
1198 {
1199 skip -= 0x1000000;
1200 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1201 p++;
1202 *subspace_reloc_sizep += 1;
1203 /* No need to adjust queue here since we are repeating the
1204 most recent fixup. */
1205 }
1206 }
1207
1208 /* The difference must be less than 0x1000000. Use one
1209 more R_NO_RELOCATION entry to get to the right difference. */
1210 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1211 {
1212 /* Difference can be handled in a simple single-byte
1213 R_NO_RELOCATION entry. */
1214 if (skip <= 0x60)
1215 {
1216 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1217 *subspace_reloc_sizep += 1;
1218 p++;
1219 }
1220 /* Handle it with a two byte R_NO_RELOCATION entry. */
1221 else if (skip <= 0x1000)
1222 {
1223 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1224 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1225 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1226 }
1227 /* Handle it with a three byte R_NO_RELOCATION entry. */
1228 else
1229 {
1230 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1231 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1232 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1233 }
1234 }
1235 /* Ugh. Punt and use a 4 byte entry. */
1236 else if (skip > 0)
1237 {
1238 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1239 bfd_put_8 (abfd, (skip - 1) >> 16, p + 1);
1240 bfd_put_16 (abfd, skip - 1, p + 2);
1241 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1242 }
1243 return p;
1244 }
1245
1246 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1247 from a BFD relocation. Update the size of the subspace relocation
1248 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1249 into the relocation stream. */
1250
1251 static unsigned char *
1252 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1253 bfd *abfd;
1254 int addend;
1255 unsigned char *p;
1256 unsigned int *subspace_reloc_sizep;
1257 struct reloc_queue *queue;
1258 {
1259 if ((unsigned)(addend) + 0x80 < 0x100)
1260 {
1261 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1262 bfd_put_8 (abfd, addend, p + 1);
1263 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1264 }
1265 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1266 {
1267 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1268 bfd_put_16 (abfd, addend, p + 1);
1269 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1270 }
1271 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1272 {
1273 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1274 bfd_put_8 (abfd, addend >> 16, p + 1);
1275 bfd_put_16 (abfd, addend, p + 2);
1276 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1277 }
1278 else
1279 {
1280 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1281 bfd_put_32 (abfd, addend, p + 1);
1282 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1283 }
1284 return p;
1285 }
1286
1287 /* Handle a single function call relocation. */
1288
1289 static unsigned char *
1290 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1291 bfd *abfd;
1292 unsigned char *p;
1293 unsigned int *subspace_reloc_sizep;
1294 arelent *bfd_reloc;
1295 int sym_num;
1296 struct reloc_queue *queue;
1297 {
1298 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1299 int rtn_bits = arg_bits & 0x3;
1300 int type, done = 0;
1301
1302 /* You'll never believe all this is necessary to handle relocations
1303 for function calls. Having to compute and pack the argument
1304 relocation bits is the real nightmare.
1305
1306 If you're interested in how this works, just forget it. You really
1307 do not want to know about this braindamage. */
1308
1309 /* First see if this can be done with a "simple" relocation. Simple
1310 relocations have a symbol number < 0x100 and have simple encodings
1311 of argument relocations. */
1312
1313 if (sym_num < 0x100)
1314 {
1315 switch (arg_bits)
1316 {
1317 case 0:
1318 case 1:
1319 type = 0;
1320 break;
1321 case 1 << 8:
1322 case 1 << 8 | 1:
1323 type = 1;
1324 break;
1325 case 1 << 8 | 1 << 6:
1326 case 1 << 8 | 1 << 6 | 1:
1327 type = 2;
1328 break;
1329 case 1 << 8 | 1 << 6 | 1 << 4:
1330 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1331 type = 3;
1332 break;
1333 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1334 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1335 type = 4;
1336 break;
1337 default:
1338 /* Not one of the easy encodings. This will have to be
1339 handled by the more complex code below. */
1340 type = -1;
1341 break;
1342 }
1343 if (type != -1)
1344 {
1345 /* Account for the return value too. */
1346 if (rtn_bits)
1347 type += 5;
1348
1349 /* Emit a 2 byte relocation. Then see if it can be handled
1350 with a relocation which is already in the relocation queue. */
1351 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1352 bfd_put_8 (abfd, sym_num, p + 1);
1353 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1354 done = 1;
1355 }
1356 }
1357
1358 /* If this could not be handled with a simple relocation, then do a hard
1359 one. Hard relocations occur if the symbol number was too high or if
1360 the encoding of argument relocation bits is too complex. */
1361 if (! done)
1362 {
1363 /* Don't ask about these magic sequences. I took them straight
1364 from gas-1.36 which took them from the a.out man page. */
1365 type = rtn_bits;
1366 if ((arg_bits >> 6 & 0xf) == 0xe)
1367 type += 9 * 40;
1368 else
1369 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1370 if ((arg_bits >> 2 & 0xf) == 0xe)
1371 type += 9 * 4;
1372 else
1373 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1374
1375 /* Output the first two bytes of the relocation. These describe
1376 the length of the relocation and encoding style. */
1377 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1378 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1379 p);
1380 bfd_put_8 (abfd, type, p + 1);
1381
1382 /* Now output the symbol index and see if this bizarre relocation
1383 just happened to be in the relocation queue. */
1384 if (sym_num < 0x100)
1385 {
1386 bfd_put_8 (abfd, sym_num, p + 2);
1387 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1388 }
1389 else
1390 {
1391 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1392 bfd_put_16 (abfd, sym_num, p + 3);
1393 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1394 }
1395 }
1396 return p;
1397 }
1398
1399
1400 /* Return the logarithm of X, base 2, considering X unsigned.
1401 Abort -1 if X is not a power or two or is zero. */
1402
1403 static int
1404 log2 (x)
1405 unsigned int x;
1406 {
1407 int log = 0;
1408
1409 /* Test for 0 or a power of 2. */
1410 if (x == 0 || x != (x & -x))
1411 return -1;
1412
1413 while ((x >>= 1) != 0)
1414 log++;
1415 return log;
1416 }
1417
1418 static bfd_reloc_status_type
1419 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1420 input_section, output_bfd, error_message)
1421 bfd *abfd;
1422 arelent *reloc_entry;
1423 asymbol *symbol_in;
1424 PTR data;
1425 asection *input_section;
1426 bfd *output_bfd;
1427 char **error_message;
1428 {
1429 if (output_bfd)
1430 {
1431 reloc_entry->address += input_section->output_offset;
1432 return bfd_reloc_ok;
1433 }
1434 return bfd_reloc_ok;
1435 }
1436
1437 /* Given a generic HPPA relocation type, the instruction format,
1438 and a field selector, return one or more appropriate SOM relocations. */
1439
1440 int **
1441 hppa_som_gen_reloc_type (abfd, base_type, format, field, sym_diff)
1442 bfd *abfd;
1443 int base_type;
1444 int format;
1445 enum hppa_reloc_field_selector_type_alt field;
1446 int sym_diff;
1447 {
1448 int *final_type, **final_types;
1449
1450 final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 6);
1451 final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1452 if (!final_types || !final_type)
1453 return NULL;
1454
1455 /* The field selector may require additional relocations to be
1456 generated. It's impossible to know at this moment if additional
1457 relocations will be needed, so we make them. The code to actually
1458 write the relocation/fixup stream is responsible for removing
1459 any redundant relocations. */
1460 switch (field)
1461 {
1462 case e_fsel:
1463 case e_psel:
1464 case e_lpsel:
1465 case e_rpsel:
1466 final_types[0] = final_type;
1467 final_types[1] = NULL;
1468 final_types[2] = NULL;
1469 *final_type = base_type;
1470 break;
1471
1472 case e_tsel:
1473 case e_ltsel:
1474 case e_rtsel:
1475 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1476 if (!final_types[0])
1477 return NULL;
1478 if (field == e_tsel)
1479 *final_types[0] = R_FSEL;
1480 else if (field == e_ltsel)
1481 *final_types[0] = R_LSEL;
1482 else
1483 *final_types[0] = R_RSEL;
1484 final_types[1] = final_type;
1485 final_types[2] = NULL;
1486 *final_type = base_type;
1487 break;
1488
1489 case e_lssel:
1490 case e_rssel:
1491 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1492 if (!final_types[0])
1493 return NULL;
1494 *final_types[0] = R_S_MODE;
1495 final_types[1] = final_type;
1496 final_types[2] = NULL;
1497 *final_type = base_type;
1498 break;
1499
1500 case e_lsel:
1501 case e_rsel:
1502 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1503 if (!final_types[0])
1504 return NULL;
1505 *final_types[0] = R_N_MODE;
1506 final_types[1] = final_type;
1507 final_types[2] = NULL;
1508 *final_type = base_type;
1509 break;
1510
1511 case e_ldsel:
1512 case e_rdsel:
1513 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1514 if (!final_types[0])
1515 return NULL;
1516 *final_types[0] = R_D_MODE;
1517 final_types[1] = final_type;
1518 final_types[2] = NULL;
1519 *final_type = base_type;
1520 break;
1521
1522 case e_lrsel:
1523 case e_rrsel:
1524 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1525 if (!final_types[0])
1526 return NULL;
1527 *final_types[0] = R_R_MODE;
1528 final_types[1] = final_type;
1529 final_types[2] = NULL;
1530 *final_type = base_type;
1531 break;
1532
1533 case e_nsel:
1534 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1535 if (!final_types[0])
1536 return NULL;
1537 *final_types[0] = R_N1SEL;
1538 final_types[1] = final_type;
1539 final_types[2] = NULL;
1540 *final_type = base_type;
1541 break;
1542
1543 case e_nlsel:
1544 case e_nlrsel:
1545 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1546 if (!final_types[0])
1547 return NULL;
1548 *final_types[0] = R_N0SEL;
1549 final_types[1] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1550 if (!final_types[1])
1551 return NULL;
1552 if (field == e_nlsel)
1553 *final_types[1] = R_N_MODE;
1554 else
1555 *final_types[1] = R_R_MODE;
1556 final_types[2] = final_type;
1557 final_types[3] = NULL;
1558 *final_type = base_type;
1559 break;
1560 }
1561
1562 switch (base_type)
1563 {
1564 case R_HPPA:
1565 /* The difference of two symbols needs *very* special handling. */
1566 if (sym_diff)
1567 {
1568 final_types[0] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1569 final_types[1] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1570 final_types[2] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1571 final_types[3] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1572 if (!final_types[0] || !final_types[1] || !final_types[2])
1573 return NULL;
1574 if (field == e_fsel)
1575 *final_types[0] = R_FSEL;
1576 else if (field == e_rsel)
1577 *final_types[0] = R_RSEL;
1578 else if (field == e_lsel)
1579 *final_types[0] = R_LSEL;
1580 *final_types[1] = R_COMP2;
1581 *final_types[2] = R_COMP2;
1582 *final_types[3] = R_COMP1;
1583 final_types[4] = final_type;
1584 *final_types[4] = R_CODE_EXPR;
1585 final_types[5] = NULL;
1586 break;
1587 }
1588 /* PLABELs get their own relocation type. */
1589 else if (field == e_psel
1590 || field == e_lpsel
1591 || field == e_rpsel)
1592 {
1593 /* A PLABEL relocation that has a size of 32 bits must
1594 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1595 if (format == 32)
1596 *final_type = R_DATA_PLABEL;
1597 else
1598 *final_type = R_CODE_PLABEL;
1599 }
1600 /* PIC stuff. */
1601 else if (field == e_tsel
1602 || field == e_ltsel
1603 || field == e_rtsel)
1604 *final_type = R_DLT_REL;
1605 /* A relocation in the data space is always a full 32bits. */
1606 else if (format == 32)
1607 *final_type = R_DATA_ONE_SYMBOL;
1608
1609 break;
1610
1611 case R_HPPA_GOTOFF:
1612 /* More PLABEL special cases. */
1613 if (field == e_psel
1614 || field == e_lpsel
1615 || field == e_rpsel)
1616 *final_type = R_DATA_PLABEL;
1617 break;
1618
1619 case R_HPPA_COMPLEX:
1620 /* The difference of two symbols needs *very* special handling. */
1621 if (sym_diff)
1622 {
1623 final_types[0] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1624 final_types[1] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1625 final_types[2] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1626 final_types[3] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1627 if (!final_types[0] || !final_types[1] || !final_types[2])
1628 return NULL;
1629 if (field == e_fsel)
1630 *final_types[0] = R_FSEL;
1631 else if (field == e_rsel)
1632 *final_types[0] = R_RSEL;
1633 else if (field == e_lsel)
1634 *final_types[0] = R_LSEL;
1635 *final_types[1] = R_COMP2;
1636 *final_types[2] = R_COMP2;
1637 *final_types[3] = R_COMP1;
1638 final_types[4] = final_type;
1639 *final_types[4] = R_CODE_EXPR;
1640 final_types[5] = NULL;
1641 break;
1642 }
1643 else
1644 break;
1645
1646 case R_HPPA_NONE:
1647 case R_HPPA_ABS_CALL:
1648 case R_HPPA_PCREL_CALL:
1649 /* Right now we can default all these. */
1650 break;
1651 }
1652 return final_types;
1653 }
1654
1655 /* Return the address of the correct entry in the PA SOM relocation
1656 howto table. */
1657
1658 /*ARGSUSED*/
1659 static reloc_howto_type *
1660 som_bfd_reloc_type_lookup (abfd, code)
1661 bfd *abfd;
1662 bfd_reloc_code_real_type code;
1663 {
1664 if ((int) code < (int) R_NO_RELOCATION + 255)
1665 {
1666 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1667 return &som_hppa_howto_table[(int) code];
1668 }
1669
1670 return (reloc_howto_type *) 0;
1671 }
1672
1673 /* Perform some initialization for an object. Save results of this
1674 initialization in the BFD. */
1675
1676 static const bfd_target *
1677 som_object_setup (abfd, file_hdrp, aux_hdrp)
1678 bfd *abfd;
1679 struct header *file_hdrp;
1680 struct som_exec_auxhdr *aux_hdrp;
1681 {
1682 asection *section;
1683 int found;
1684
1685 /* som_mkobject will set bfd_error if som_mkobject fails. */
1686 if (som_mkobject (abfd) != true)
1687 return 0;
1688
1689 /* Set BFD flags based on what information is available in the SOM. */
1690 abfd->flags = NO_FLAGS;
1691 if (file_hdrp->symbol_total)
1692 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1693
1694 switch (file_hdrp->a_magic)
1695 {
1696 case DEMAND_MAGIC:
1697 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1698 break;
1699 case SHARE_MAGIC:
1700 abfd->flags |= (WP_TEXT | EXEC_P);
1701 break;
1702 case EXEC_MAGIC:
1703 abfd->flags |= (EXEC_P);
1704 break;
1705 case RELOC_MAGIC:
1706 abfd->flags |= HAS_RELOC;
1707 break;
1708 #ifdef SHL_MAGIC
1709 case SHL_MAGIC:
1710 #endif
1711 #ifdef DL_MAGIC
1712 case DL_MAGIC:
1713 #endif
1714 abfd->flags |= DYNAMIC;
1715 break;
1716
1717 default:
1718 break;
1719 }
1720
1721 /* Allocate space to hold the saved exec header information. */
1722 obj_som_exec_data (abfd) = (struct som_exec_data *)
1723 bfd_zalloc (abfd, sizeof (struct som_exec_data ));
1724 if (obj_som_exec_data (abfd) == NULL)
1725 return NULL;
1726
1727 /* The braindamaged OSF1 linker switched exec_flags and exec_entry!
1728
1729 We used to identify OSF1 binaries based on NEW_VERSION_ID, but
1730 apparently the latest HPUX linker is using NEW_VERSION_ID now.
1731
1732 It's about time, OSF has used the new id since at least 1992;
1733 HPUX didn't start till nearly 1995!.
1734
1735 The new approach examines the entry field. If it's zero or not 4
1736 byte aligned then it's not a proper code address and we guess it's
1737 really the executable flags. */
1738 found = 0;
1739 for (section = abfd->sections; section; section = section->next)
1740 {
1741 if ((section->flags & SEC_CODE) == 0)
1742 continue;
1743 if (aux_hdrp->exec_entry >= section->vma
1744 && aux_hdrp->exec_entry < section->vma + section->_cooked_size)
1745 found = 1;
1746 }
1747 if (aux_hdrp->exec_entry == 0
1748 || (aux_hdrp->exec_entry & 0x3) != 0
1749 || ! found)
1750 {
1751 bfd_get_start_address (abfd) = aux_hdrp->exec_flags;
1752 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_entry;
1753 }
1754 else
1755 {
1756 bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
1757 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1758 }
1759
1760 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, pa10);
1761 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1762
1763 /* Initialize the saved symbol table and string table to NULL.
1764 Save important offsets and sizes from the SOM header into
1765 the BFD. */
1766 obj_som_stringtab (abfd) = (char *) NULL;
1767 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1768 obj_som_sorted_syms (abfd) = NULL;
1769 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1770 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
1771 obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
1772 obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
1773 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1774
1775 return abfd->xvec;
1776 }
1777
1778 /* Convert all of the space and subspace info into BFD sections. Each space
1779 contains a number of subspaces, which in turn describe the mapping between
1780 regions of the exec file, and the address space that the program runs in.
1781 BFD sections which correspond to spaces will overlap the sections for the
1782 associated subspaces. */
1783
1784 static boolean
1785 setup_sections (abfd, file_hdr)
1786 bfd *abfd;
1787 struct header *file_hdr;
1788 {
1789 char *space_strings;
1790 unsigned int space_index, i;
1791 unsigned int total_subspaces = 0;
1792 asection **subspace_sections, *section;
1793
1794 /* First, read in space names */
1795
1796 space_strings = bfd_malloc (file_hdr->space_strings_size);
1797 if (!space_strings && file_hdr->space_strings_size != 0)
1798 goto error_return;
1799
1800 if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
1801 goto error_return;
1802 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1803 != file_hdr->space_strings_size)
1804 goto error_return;
1805
1806 /* Loop over all of the space dictionaries, building up sections */
1807 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1808 {
1809 struct space_dictionary_record space;
1810 struct subspace_dictionary_record subspace, save_subspace;
1811 int subspace_index;
1812 asection *space_asect;
1813 char *newname;
1814
1815 /* Read the space dictionary element */
1816 if (bfd_seek (abfd, file_hdr->space_location
1817 + space_index * sizeof space, SEEK_SET) < 0)
1818 goto error_return;
1819 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1820 goto error_return;
1821
1822 /* Setup the space name string */
1823 space.name.n_name = space.name.n_strx + space_strings;
1824
1825 /* Make a section out of it */
1826 newname = bfd_alloc (abfd, strlen (space.name.n_name) + 1);
1827 if (!newname)
1828 goto error_return;
1829 strcpy (newname, space.name.n_name);
1830
1831 space_asect = bfd_make_section_anyway (abfd, newname);
1832 if (!space_asect)
1833 goto error_return;
1834
1835 if (space.is_loadable == 0)
1836 space_asect->flags |= SEC_DEBUGGING;
1837
1838 /* Set up all the attributes for the space. */
1839 if (bfd_som_set_section_attributes (space_asect, space.is_defined,
1840 space.is_private, space.sort_key,
1841 space.space_number) == false)
1842 goto error_return;
1843
1844 /* If the space has no subspaces, then we're done. */
1845 if (space.subspace_quantity == 0)
1846 continue;
1847
1848 /* Now, read in the first subspace for this space */
1849 if (bfd_seek (abfd, file_hdr->subspace_location
1850 + space.subspace_index * sizeof subspace,
1851 SEEK_SET) < 0)
1852 goto error_return;
1853 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1854 goto error_return;
1855 /* Seek back to the start of the subspaces for loop below */
1856 if (bfd_seek (abfd, file_hdr->subspace_location
1857 + space.subspace_index * sizeof subspace,
1858 SEEK_SET) < 0)
1859 goto error_return;
1860
1861 /* Setup the start address and file loc from the first subspace record */
1862 space_asect->vma = subspace.subspace_start;
1863 space_asect->filepos = subspace.file_loc_init_value;
1864 space_asect->alignment_power = log2 (subspace.alignment);
1865 if (space_asect->alignment_power == -1)
1866 goto error_return;
1867
1868 /* Initialize save_subspace so we can reliably determine if this
1869 loop placed any useful values into it. */
1870 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1871
1872 /* Loop over the rest of the subspaces, building up more sections */
1873 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1874 subspace_index++)
1875 {
1876 asection *subspace_asect;
1877
1878 /* Read in the next subspace */
1879 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1880 != sizeof subspace)
1881 goto error_return;
1882
1883 /* Setup the subspace name string */
1884 subspace.name.n_name = subspace.name.n_strx + space_strings;
1885
1886 newname = bfd_alloc (abfd, strlen (subspace.name.n_name) + 1);
1887 if (!newname)
1888 goto error_return;
1889 strcpy (newname, subspace.name.n_name);
1890
1891 /* Make a section out of this subspace */
1892 subspace_asect = bfd_make_section_anyway (abfd, newname);
1893 if (!subspace_asect)
1894 goto error_return;
1895
1896 /* Store private information about the section. */
1897 if (bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1898 subspace.access_control_bits,
1899 subspace.sort_key,
1900 subspace.quadrant) == false)
1901 goto error_return;
1902
1903 /* Keep an easy mapping between subspaces and sections.
1904 Note we do not necessarily read the subspaces in the
1905 same order in which they appear in the object file.
1906
1907 So to make the target index come out correctly, we
1908 store the location of the subspace header in target
1909 index, then sort using the location of the subspace
1910 header as the key. Then we can assign correct
1911 subspace indices. */
1912 total_subspaces++;
1913 subspace_asect->target_index = bfd_tell (abfd) - sizeof (subspace);
1914
1915 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1916 by the access_control_bits in the subspace header. */
1917 switch (subspace.access_control_bits >> 4)
1918 {
1919 /* Readonly data. */
1920 case 0x0:
1921 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1922 break;
1923
1924 /* Normal data. */
1925 case 0x1:
1926 subspace_asect->flags |= SEC_DATA;
1927 break;
1928
1929 /* Readonly code and the gateways.
1930 Gateways have other attributes which do not map
1931 into anything BFD knows about. */
1932 case 0x2:
1933 case 0x4:
1934 case 0x5:
1935 case 0x6:
1936 case 0x7:
1937 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1938 break;
1939
1940 /* dynamic (writable) code. */
1941 case 0x3:
1942 subspace_asect->flags |= SEC_CODE;
1943 break;
1944 }
1945
1946 if (subspace.dup_common || subspace.is_common)
1947 subspace_asect->flags |= SEC_IS_COMMON;
1948 else if (subspace.subspace_length > 0)
1949 subspace_asect->flags |= SEC_HAS_CONTENTS;
1950
1951 if (subspace.is_loadable)
1952 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1953 else
1954 subspace_asect->flags |= SEC_DEBUGGING;
1955
1956 if (subspace.code_only)
1957 subspace_asect->flags |= SEC_CODE;
1958
1959 /* Both file_loc_init_value and initialization_length will
1960 be zero for a BSS like subspace. */
1961 if (subspace.file_loc_init_value == 0
1962 && subspace.initialization_length == 0)
1963 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD | SEC_HAS_CONTENTS);
1964
1965 /* This subspace has relocations.
1966 The fixup_request_quantity is a byte count for the number of
1967 entries in the relocation stream; it is not the actual number
1968 of relocations in the subspace. */
1969 if (subspace.fixup_request_quantity != 0)
1970 {
1971 subspace_asect->flags |= SEC_RELOC;
1972 subspace_asect->rel_filepos = subspace.fixup_request_index;
1973 som_section_data (subspace_asect)->reloc_size
1974 = subspace.fixup_request_quantity;
1975 /* We can not determine this yet. When we read in the
1976 relocation table the correct value will be filled in. */
1977 subspace_asect->reloc_count = -1;
1978 }
1979
1980 /* Update save_subspace if appropriate. */
1981 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1982 save_subspace = subspace;
1983
1984 subspace_asect->vma = subspace.subspace_start;
1985 subspace_asect->_cooked_size = subspace.subspace_length;
1986 subspace_asect->_raw_size = subspace.subspace_length;
1987 subspace_asect->filepos = subspace.file_loc_init_value;
1988 subspace_asect->alignment_power = log2 (subspace.alignment);
1989 if (subspace_asect->alignment_power == -1)
1990 goto error_return;
1991 }
1992
1993 /* Yow! there is no subspace within the space which actually
1994 has initialized information in it; this should never happen
1995 as far as I know. */
1996 if (!save_subspace.file_loc_init_value)
1997 goto error_return;
1998
1999 /* Setup the sizes for the space section based upon the info in the
2000 last subspace of the space. */
2001 space_asect->_cooked_size = save_subspace.subspace_start
2002 - space_asect->vma + save_subspace.subspace_length;
2003 space_asect->_raw_size = save_subspace.file_loc_init_value
2004 - space_asect->filepos + save_subspace.initialization_length;
2005 }
2006 /* Now that we've read in all the subspace records, we need to assign
2007 a target index to each subspace. */
2008 subspace_sections = (asection **) bfd_malloc (total_subspaces
2009 * sizeof (asection *));
2010 if (subspace_sections == NULL)
2011 goto error_return;
2012
2013 for (i = 0, section = abfd->sections; section; section = section->next)
2014 {
2015 if (!som_is_subspace (section))
2016 continue;
2017
2018 subspace_sections[i] = section;
2019 i++;
2020 }
2021 qsort (subspace_sections, total_subspaces,
2022 sizeof (asection *), compare_subspaces);
2023
2024 /* subspace_sections is now sorted in the order in which the subspaces
2025 appear in the object file. Assign an index to each one now. */
2026 for (i = 0; i < total_subspaces; i++)
2027 subspace_sections[i]->target_index = i;
2028
2029 if (space_strings != NULL)
2030 free (space_strings);
2031
2032 if (subspace_sections != NULL)
2033 free (subspace_sections);
2034
2035 return true;
2036
2037 error_return:
2038 if (space_strings != NULL)
2039 free (space_strings);
2040
2041 if (subspace_sections != NULL)
2042 free (subspace_sections);
2043 return false;
2044 }
2045
2046 /* Read in a SOM object and make it into a BFD. */
2047
2048 static const bfd_target *
2049 som_object_p (abfd)
2050 bfd *abfd;
2051 {
2052 struct header file_hdr;
2053 struct som_exec_auxhdr aux_hdr;
2054
2055 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
2056 {
2057 if (bfd_get_error () != bfd_error_system_call)
2058 bfd_set_error (bfd_error_wrong_format);
2059 return 0;
2060 }
2061
2062 if (!_PA_RISC_ID (file_hdr.system_id))
2063 {
2064 bfd_set_error (bfd_error_wrong_format);
2065 return 0;
2066 }
2067
2068 switch (file_hdr.a_magic)
2069 {
2070 case RELOC_MAGIC:
2071 case EXEC_MAGIC:
2072 case SHARE_MAGIC:
2073 case DEMAND_MAGIC:
2074 #ifdef DL_MAGIC
2075 case DL_MAGIC:
2076 #endif
2077 #ifdef SHL_MAGIC
2078 case SHL_MAGIC:
2079 #endif
2080 #ifdef EXECLIBMAGIC
2081 case EXECLIBMAGIC:
2082 #endif
2083 #ifdef SHARED_MAGIC_CNX
2084 case SHARED_MAGIC_CNX:
2085 #endif
2086 break;
2087 default:
2088 bfd_set_error (bfd_error_wrong_format);
2089 return 0;
2090 }
2091
2092 if (file_hdr.version_id != VERSION_ID
2093 && file_hdr.version_id != NEW_VERSION_ID)
2094 {
2095 bfd_set_error (bfd_error_wrong_format);
2096 return 0;
2097 }
2098
2099 /* If the aux_header_size field in the file header is zero, then this
2100 object is an incomplete executable (a .o file). Do not try to read
2101 a non-existant auxiliary header. */
2102 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
2103 if (file_hdr.aux_header_size != 0)
2104 {
2105 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
2106 {
2107 if (bfd_get_error () != bfd_error_system_call)
2108 bfd_set_error (bfd_error_wrong_format);
2109 return 0;
2110 }
2111 }
2112
2113 if (!setup_sections (abfd, &file_hdr))
2114 {
2115 /* setup_sections does not bubble up a bfd error code. */
2116 bfd_set_error (bfd_error_bad_value);
2117 return 0;
2118 }
2119
2120 /* This appears to be a valid SOM object. Do some initialization. */
2121 return som_object_setup (abfd, &file_hdr, &aux_hdr);
2122 }
2123
2124 /* Create a SOM object. */
2125
2126 static boolean
2127 som_mkobject (abfd)
2128 bfd *abfd;
2129 {
2130 /* Allocate memory to hold backend information. */
2131 abfd->tdata.som_data = (struct som_data_struct *)
2132 bfd_zalloc (abfd, sizeof (struct som_data_struct));
2133 if (abfd->tdata.som_data == NULL)
2134 return false;
2135 return true;
2136 }
2137
2138 /* Initialize some information in the file header. This routine makes
2139 not attempt at doing the right thing for a full executable; it
2140 is only meant to handle relocatable objects. */
2141
2142 static boolean
2143 som_prep_headers (abfd)
2144 bfd *abfd;
2145 {
2146 struct header *file_hdr;
2147 asection *section;
2148
2149 /* Make and attach a file header to the BFD. */
2150 file_hdr = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
2151 if (file_hdr == NULL)
2152 return false;
2153 obj_som_file_hdr (abfd) = file_hdr;
2154
2155 if (abfd->flags & (EXEC_P | DYNAMIC))
2156 {
2157
2158 /* Make and attach an exec header to the BFD. */
2159 obj_som_exec_hdr (abfd) = (struct som_exec_auxhdr *)
2160 bfd_zalloc (abfd, sizeof (struct som_exec_auxhdr));
2161 if (obj_som_exec_hdr (abfd) == NULL)
2162 return false;
2163
2164 if (abfd->flags & D_PAGED)
2165 file_hdr->a_magic = DEMAND_MAGIC;
2166 else if (abfd->flags & WP_TEXT)
2167 file_hdr->a_magic = SHARE_MAGIC;
2168 #ifdef SHL_MAGIC
2169 else if (abfd->flags & DYNAMIC)
2170 file_hdr->a_magic = SHL_MAGIC;
2171 #endif
2172 else
2173 file_hdr->a_magic = EXEC_MAGIC;
2174 }
2175 else
2176 file_hdr->a_magic = RELOC_MAGIC;
2177
2178 /* Only new format SOM is supported. */
2179 file_hdr->version_id = NEW_VERSION_ID;
2180
2181 /* These fields are optional, and embedding timestamps is not always
2182 a wise thing to do, it makes comparing objects during a multi-stage
2183 bootstrap difficult. */
2184 file_hdr->file_time.secs = 0;
2185 file_hdr->file_time.nanosecs = 0;
2186
2187 file_hdr->entry_space = 0;
2188 file_hdr->entry_subspace = 0;
2189 file_hdr->entry_offset = 0;
2190 file_hdr->presumed_dp = 0;
2191
2192 /* Now iterate over the sections translating information from
2193 BFD sections to SOM spaces/subspaces. */
2194
2195 for (section = abfd->sections; section != NULL; section = section->next)
2196 {
2197 /* Ignore anything which has not been marked as a space or
2198 subspace. */
2199 if (!som_is_space (section) && !som_is_subspace (section))
2200 continue;
2201
2202 if (som_is_space (section))
2203 {
2204 /* Allocate space for the space dictionary. */
2205 som_section_data (section)->space_dict
2206 = (struct space_dictionary_record *)
2207 bfd_zalloc (abfd, sizeof (struct space_dictionary_record));
2208 if (som_section_data (section)->space_dict == NULL)
2209 return false;
2210 /* Set space attributes. Note most attributes of SOM spaces
2211 are set based on the subspaces it contains. */
2212 som_section_data (section)->space_dict->loader_fix_index = -1;
2213 som_section_data (section)->space_dict->init_pointer_index = -1;
2214
2215 /* Set more attributes that were stuffed away in private data. */
2216 som_section_data (section)->space_dict->sort_key =
2217 som_section_data (section)->copy_data->sort_key;
2218 som_section_data (section)->space_dict->is_defined =
2219 som_section_data (section)->copy_data->is_defined;
2220 som_section_data (section)->space_dict->is_private =
2221 som_section_data (section)->copy_data->is_private;
2222 som_section_data (section)->space_dict->space_number =
2223 som_section_data (section)->copy_data->space_number;
2224 }
2225 else
2226 {
2227 /* Allocate space for the subspace dictionary. */
2228 som_section_data (section)->subspace_dict
2229 = (struct subspace_dictionary_record *)
2230 bfd_zalloc (abfd, sizeof (struct subspace_dictionary_record));
2231 if (som_section_data (section)->subspace_dict == NULL)
2232 return false;
2233
2234 /* Set subspace attributes. Basic stuff is done here, additional
2235 attributes are filled in later as more information becomes
2236 available. */
2237 if (section->flags & SEC_IS_COMMON)
2238 {
2239 som_section_data (section)->subspace_dict->dup_common = 1;
2240 som_section_data (section)->subspace_dict->is_common = 1;
2241 }
2242
2243 if (section->flags & SEC_ALLOC)
2244 som_section_data (section)->subspace_dict->is_loadable = 1;
2245
2246 if (section->flags & SEC_CODE)
2247 som_section_data (section)->subspace_dict->code_only = 1;
2248
2249 som_section_data (section)->subspace_dict->subspace_start =
2250 section->vma;
2251 som_section_data (section)->subspace_dict->subspace_length =
2252 bfd_section_size (abfd, section);
2253 som_section_data (section)->subspace_dict->initialization_length =
2254 bfd_section_size (abfd, section);
2255 som_section_data (section)->subspace_dict->alignment =
2256 1 << section->alignment_power;
2257
2258 /* Set more attributes that were stuffed away in private data. */
2259 som_section_data (section)->subspace_dict->sort_key =
2260 som_section_data (section)->copy_data->sort_key;
2261 som_section_data (section)->subspace_dict->access_control_bits =
2262 som_section_data (section)->copy_data->access_control_bits;
2263 som_section_data (section)->subspace_dict->quadrant =
2264 som_section_data (section)->copy_data->quadrant;
2265 }
2266 }
2267 return true;
2268 }
2269
2270 /* Return true if the given section is a SOM space, false otherwise. */
2271
2272 static boolean
2273 som_is_space (section)
2274 asection *section;
2275 {
2276 /* If no copy data is available, then it's neither a space nor a
2277 subspace. */
2278 if (som_section_data (section)->copy_data == NULL)
2279 return false;
2280
2281 /* If the containing space isn't the same as the given section,
2282 then this isn't a space. */
2283 if (som_section_data (section)->copy_data->container != section
2284 && (som_section_data (section)->copy_data->container->output_section
2285 != section))
2286 return false;
2287
2288 /* OK. Must be a space. */
2289 return true;
2290 }
2291
2292 /* Return true if the given section is a SOM subspace, false otherwise. */
2293
2294 static boolean
2295 som_is_subspace (section)
2296 asection *section;
2297 {
2298 /* If no copy data is available, then it's neither a space nor a
2299 subspace. */
2300 if (som_section_data (section)->copy_data == NULL)
2301 return false;
2302
2303 /* If the containing space is the same as the given section,
2304 then this isn't a subspace. */
2305 if (som_section_data (section)->copy_data->container == section
2306 || (som_section_data (section)->copy_data->container->output_section
2307 == section))
2308 return false;
2309
2310 /* OK. Must be a subspace. */
2311 return true;
2312 }
2313
2314 /* Return true if the given space containins the given subspace. It
2315 is safe to assume space really is a space, and subspace really
2316 is a subspace. */
2317
2318 static boolean
2319 som_is_container (space, subspace)
2320 asection *space, *subspace;
2321 {
2322 return (som_section_data (subspace)->copy_data->container == space
2323 || (som_section_data (subspace)->copy_data->container->output_section
2324 == space));
2325 }
2326
2327 /* Count and return the number of spaces attached to the given BFD. */
2328
2329 static unsigned long
2330 som_count_spaces (abfd)
2331 bfd *abfd;
2332 {
2333 int count = 0;
2334 asection *section;
2335
2336 for (section = abfd->sections; section != NULL; section = section->next)
2337 count += som_is_space (section);
2338
2339 return count;
2340 }
2341
2342 /* Count the number of subspaces attached to the given BFD. */
2343
2344 static unsigned long
2345 som_count_subspaces (abfd)
2346 bfd *abfd;
2347 {
2348 int count = 0;
2349 asection *section;
2350
2351 for (section = abfd->sections; section != NULL; section = section->next)
2352 count += som_is_subspace (section);
2353
2354 return count;
2355 }
2356
2357 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2358
2359 We desire symbols to be ordered starting with the symbol with the
2360 highest relocation count down to the symbol with the lowest relocation
2361 count. Doing so compacts the relocation stream. */
2362
2363 static int
2364 compare_syms (arg1, arg2)
2365 const PTR arg1;
2366 const PTR arg2;
2367
2368 {
2369 asymbol **sym1 = (asymbol **) arg1;
2370 asymbol **sym2 = (asymbol **) arg2;
2371 unsigned int count1, count2;
2372
2373 /* Get relocation count for each symbol. Note that the count
2374 is stored in the udata pointer for section symbols! */
2375 if ((*sym1)->flags & BSF_SECTION_SYM)
2376 count1 = (*sym1)->udata.i;
2377 else
2378 count1 = som_symbol_data (*sym1)->reloc_count;
2379
2380 if ((*sym2)->flags & BSF_SECTION_SYM)
2381 count2 = (*sym2)->udata.i;
2382 else
2383 count2 = som_symbol_data (*sym2)->reloc_count;
2384
2385 /* Return the appropriate value. */
2386 if (count1 < count2)
2387 return 1;
2388 else if (count1 > count2)
2389 return -1;
2390 return 0;
2391 }
2392
2393 /* Return -1, 0, 1 indicating the relative ordering of subspace1
2394 and subspace. */
2395
2396 static int
2397 compare_subspaces (arg1, arg2)
2398 const PTR arg1;
2399 const PTR arg2;
2400
2401 {
2402 asection **subspace1 = (asection **) arg1;
2403 asection **subspace2 = (asection **) arg2;
2404 unsigned int count1, count2;
2405
2406 if ((*subspace1)->target_index < (*subspace2)->target_index)
2407 return -1;
2408 else if ((*subspace2)->target_index < (*subspace1)->target_index)
2409 return 1;
2410 else
2411 return 0;
2412 }
2413
2414 /* Perform various work in preparation for emitting the fixup stream. */
2415
2416 static void
2417 som_prep_for_fixups (abfd, syms, num_syms)
2418 bfd *abfd;
2419 asymbol **syms;
2420 unsigned long num_syms;
2421 {
2422 int i;
2423 asection *section;
2424 asymbol **sorted_syms;
2425
2426 /* Most SOM relocations involving a symbol have a length which is
2427 dependent on the index of the symbol. So symbols which are
2428 used often in relocations should have a small index. */
2429
2430 /* First initialize the counters for each symbol. */
2431 for (i = 0; i < num_syms; i++)
2432 {
2433 /* Handle a section symbol; these have no pointers back to the
2434 SOM symbol info. So we just use the udata field to hold the
2435 relocation count. */
2436 if (som_symbol_data (syms[i]) == NULL
2437 || syms[i]->flags & BSF_SECTION_SYM)
2438 {
2439 syms[i]->flags |= BSF_SECTION_SYM;
2440 syms[i]->udata.i = 0;
2441 }
2442 else
2443 som_symbol_data (syms[i])->reloc_count = 0;
2444 }
2445
2446 /* Now that the counters are initialized, make a weighted count
2447 of how often a given symbol is used in a relocation. */
2448 for (section = abfd->sections; section != NULL; section = section->next)
2449 {
2450 int i;
2451
2452 /* Does this section have any relocations? */
2453 if (section->reloc_count <= 0)
2454 continue;
2455
2456 /* Walk through each relocation for this section. */
2457 for (i = 1; i < section->reloc_count; i++)
2458 {
2459 arelent *reloc = section->orelocation[i];
2460 int scale;
2461
2462 /* A relocation against a symbol in the *ABS* section really
2463 does not have a symbol. Likewise if the symbol isn't associated
2464 with any section. */
2465 if (reloc->sym_ptr_ptr == NULL
2466 || bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section))
2467 continue;
2468
2469 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2470 and R_CODE_ONE_SYMBOL relocations to come first. These
2471 two relocations have single byte versions if the symbol
2472 index is very small. */
2473 if (reloc->howto->type == R_DP_RELATIVE
2474 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2475 scale = 2;
2476 else
2477 scale = 1;
2478
2479 /* Handle section symbols by storing the count in the udata
2480 field. It will not be used and the count is very important
2481 for these symbols. */
2482 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2483 {
2484 (*reloc->sym_ptr_ptr)->udata.i =
2485 (*reloc->sym_ptr_ptr)->udata.i + scale;
2486 continue;
2487 }
2488
2489 /* A normal symbol. Increment the count. */
2490 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2491 }
2492 }
2493
2494 /* Sort a copy of the symbol table, rather than the canonical
2495 output symbol table. */
2496 sorted_syms = (asymbol **) bfd_zalloc (abfd, num_syms * sizeof (asymbol *));
2497 memcpy (sorted_syms, syms, num_syms * sizeof (asymbol *));
2498 qsort (sorted_syms, num_syms, sizeof (asymbol *), compare_syms);
2499 obj_som_sorted_syms (abfd) = sorted_syms;
2500
2501 /* Compute the symbol indexes, they will be needed by the relocation
2502 code. */
2503 for (i = 0; i < num_syms; i++)
2504 {
2505 /* A section symbol. Again, there is no pointer to backend symbol
2506 information, so we reuse the udata field again. */
2507 if (sorted_syms[i]->flags & BSF_SECTION_SYM)
2508 sorted_syms[i]->udata.i = i;
2509 else
2510 som_symbol_data (sorted_syms[i])->index = i;
2511 }
2512 }
2513
2514 static boolean
2515 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2516 bfd *abfd;
2517 unsigned long current_offset;
2518 unsigned int *total_reloc_sizep;
2519 {
2520 unsigned int i, j;
2521 /* Chunk of memory that we can use as buffer space, then throw
2522 away. */
2523 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2524 unsigned char *p;
2525 unsigned int total_reloc_size = 0;
2526 unsigned int subspace_reloc_size = 0;
2527 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2528 asection *section = abfd->sections;
2529
2530 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2531 p = tmp_space;
2532
2533 /* All the fixups for a particular subspace are emitted in a single
2534 stream. All the subspaces for a particular space are emitted
2535 as a single stream.
2536
2537 So, to get all the locations correct one must iterate through all the
2538 spaces, for each space iterate through its subspaces and output a
2539 fixups stream. */
2540 for (i = 0; i < num_spaces; i++)
2541 {
2542 asection *subsection;
2543
2544 /* Find a space. */
2545 while (!som_is_space (section))
2546 section = section->next;
2547
2548 /* Now iterate through each of its subspaces. */
2549 for (subsection = abfd->sections;
2550 subsection != NULL;
2551 subsection = subsection->next)
2552 {
2553 int reloc_offset, current_rounding_mode;
2554
2555 /* Find a subspace of this space. */
2556 if (!som_is_subspace (subsection)
2557 || !som_is_container (section, subsection))
2558 continue;
2559
2560 /* If this subspace does not have real data, then we are
2561 finised with it. */
2562 if ((subsection->flags & SEC_HAS_CONTENTS) == 0)
2563 {
2564 som_section_data (subsection)->subspace_dict->fixup_request_index
2565 = -1;
2566 continue;
2567 }
2568
2569 /* This subspace has some relocations. Put the relocation stream
2570 index into the subspace record. */
2571 som_section_data (subsection)->subspace_dict->fixup_request_index
2572 = total_reloc_size;
2573
2574 /* To make life easier start over with a clean slate for
2575 each subspace. Seek to the start of the relocation stream
2576 for this subspace in preparation for writing out its fixup
2577 stream. */
2578 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) < 0)
2579 return false;
2580
2581 /* Buffer space has already been allocated. Just perform some
2582 initialization here. */
2583 p = tmp_space;
2584 subspace_reloc_size = 0;
2585 reloc_offset = 0;
2586 som_initialize_reloc_queue (reloc_queue);
2587 current_rounding_mode = R_N_MODE;
2588
2589 /* Translate each BFD relocation into one or more SOM
2590 relocations. */
2591 for (j = 0; j < subsection->reloc_count; j++)
2592 {
2593 arelent *bfd_reloc = subsection->orelocation[j];
2594 unsigned int skip;
2595 int sym_num;
2596
2597 /* Get the symbol number. Remember it's stored in a
2598 special place for section symbols. */
2599 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2600 sym_num = (*bfd_reloc->sym_ptr_ptr)->udata.i;
2601 else
2602 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2603
2604 /* If there is not enough room for the next couple relocations,
2605 then dump the current buffer contents now. Also reinitialize
2606 the relocation queue.
2607
2608 No single BFD relocation could ever translate into more
2609 than 100 bytes of SOM relocations (20bytes is probably the
2610 upper limit, but leave lots of space for growth). */
2611 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2612 {
2613 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2614 != p - tmp_space)
2615 return false;
2616
2617 p = tmp_space;
2618 som_initialize_reloc_queue (reloc_queue);
2619 }
2620
2621 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2622 skipped. */
2623 skip = bfd_reloc->address - reloc_offset;
2624 p = som_reloc_skip (abfd, skip, p,
2625 &subspace_reloc_size, reloc_queue);
2626
2627 /* Update reloc_offset for the next iteration.
2628
2629 Many relocations do not consume input bytes. They
2630 are markers, or set state necessary to perform some
2631 later relocation. */
2632 switch (bfd_reloc->howto->type)
2633 {
2634 /* This only needs to handle relocations that may be
2635 made by hppa_som_gen_reloc. */
2636 case R_ENTRY:
2637 case R_ALT_ENTRY:
2638 case R_EXIT:
2639 case R_N_MODE:
2640 case R_S_MODE:
2641 case R_D_MODE:
2642 case R_R_MODE:
2643 case R_FSEL:
2644 case R_LSEL:
2645 case R_RSEL:
2646 case R_COMP1:
2647 case R_COMP2:
2648 case R_BEGIN_BRTAB:
2649 case R_END_BRTAB:
2650 case R_N0SEL:
2651 case R_N1SEL:
2652 reloc_offset = bfd_reloc->address;
2653 break;
2654
2655 default:
2656 reloc_offset = bfd_reloc->address + 4;
2657 break;
2658 }
2659
2660 /* Now the actual relocation we care about. */
2661 switch (bfd_reloc->howto->type)
2662 {
2663 case R_PCREL_CALL:
2664 case R_ABS_CALL:
2665 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2666 bfd_reloc, sym_num, reloc_queue);
2667 break;
2668
2669 case R_CODE_ONE_SYMBOL:
2670 case R_DP_RELATIVE:
2671 /* Account for any addend. */
2672 if (bfd_reloc->addend)
2673 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2674 &subspace_reloc_size, reloc_queue);
2675
2676 if (sym_num < 0x20)
2677 {
2678 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2679 subspace_reloc_size += 1;
2680 p += 1;
2681 }
2682 else if (sym_num < 0x100)
2683 {
2684 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2685 bfd_put_8 (abfd, sym_num, p + 1);
2686 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2687 2, reloc_queue);
2688 }
2689 else if (sym_num < 0x10000000)
2690 {
2691 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2692 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2693 bfd_put_16 (abfd, sym_num, p + 2);
2694 p = try_prev_fixup (abfd, &subspace_reloc_size,
2695 p, 4, reloc_queue);
2696 }
2697 else
2698 abort ();
2699 break;
2700
2701 case R_DATA_ONE_SYMBOL:
2702 case R_DATA_PLABEL:
2703 case R_CODE_PLABEL:
2704 case R_DLT_REL:
2705 /* Account for any addend using R_DATA_OVERRIDE. */
2706 if (bfd_reloc->howto->type != R_DATA_ONE_SYMBOL
2707 && bfd_reloc->addend)
2708 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2709 &subspace_reloc_size, reloc_queue);
2710
2711 if (sym_num < 0x100)
2712 {
2713 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2714 bfd_put_8 (abfd, sym_num, p + 1);
2715 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2716 2, reloc_queue);
2717 }
2718 else if (sym_num < 0x10000000)
2719 {
2720 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2721 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2722 bfd_put_16 (abfd, sym_num, p + 2);
2723 p = try_prev_fixup (abfd, &subspace_reloc_size,
2724 p, 4, reloc_queue);
2725 }
2726 else
2727 abort ();
2728 break;
2729
2730 case R_ENTRY:
2731 {
2732 int tmp;
2733 arelent *tmp_reloc = NULL;
2734 bfd_put_8 (abfd, R_ENTRY, p);
2735
2736 /* R_ENTRY relocations have 64 bits of associated
2737 data. Unfortunately the addend field of a bfd
2738 relocation is only 32 bits. So, we split up
2739 the 64bit unwind information and store part in
2740 the R_ENTRY relocation, and the rest in the R_EXIT
2741 relocation. */
2742 bfd_put_32 (abfd, bfd_reloc->addend, p + 1);
2743
2744 /* Find the next R_EXIT relocation. */
2745 for (tmp = j; tmp < subsection->reloc_count; tmp++)
2746 {
2747 tmp_reloc = subsection->orelocation[tmp];
2748 if (tmp_reloc->howto->type == R_EXIT)
2749 break;
2750 }
2751
2752 if (tmp == subsection->reloc_count)
2753 abort ();
2754
2755 bfd_put_32 (abfd, tmp_reloc->addend, p + 5);
2756 p = try_prev_fixup (abfd, &subspace_reloc_size,
2757 p, 9, reloc_queue);
2758 break;
2759 }
2760
2761 case R_N_MODE:
2762 case R_S_MODE:
2763 case R_D_MODE:
2764 case R_R_MODE:
2765 /* If this relocation requests the current rounding
2766 mode, then it is redundant. */
2767 if (bfd_reloc->howto->type != current_rounding_mode)
2768 {
2769 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2770 subspace_reloc_size += 1;
2771 p += 1;
2772 current_rounding_mode = bfd_reloc->howto->type;
2773 }
2774 break;
2775
2776 case R_EXIT:
2777 case R_ALT_ENTRY:
2778 case R_FSEL:
2779 case R_LSEL:
2780 case R_RSEL:
2781 case R_BEGIN_BRTAB:
2782 case R_END_BRTAB:
2783 case R_N0SEL:
2784 case R_N1SEL:
2785 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2786 subspace_reloc_size += 1;
2787 p += 1;
2788 break;
2789
2790 case R_COMP1:
2791 /* The only time we generate R_COMP1, R_COMP2 and
2792 R_CODE_EXPR relocs is for the difference of two
2793 symbols. Hence we can cheat here. */
2794 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2795 bfd_put_8 (abfd, 0x44, p + 1);
2796 p = try_prev_fixup (abfd, &subspace_reloc_size,
2797 p, 2, reloc_queue);
2798 break;
2799
2800 case R_COMP2:
2801 /* The only time we generate R_COMP1, R_COMP2 and
2802 R_CODE_EXPR relocs is for the difference of two
2803 symbols. Hence we can cheat here. */
2804 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2805 bfd_put_8 (abfd, 0x80, p + 1);
2806 bfd_put_8 (abfd, sym_num >> 16, p + 2);
2807 bfd_put_16 (abfd, sym_num, p + 3);
2808 p = try_prev_fixup (abfd, &subspace_reloc_size,
2809 p, 5, reloc_queue);
2810 break;
2811
2812 case R_CODE_EXPR:
2813 /* The only time we generate R_COMP1, R_COMP2 and
2814 R_CODE_EXPR relocs is for the difference of two
2815 symbols. Hence we can cheat here. */
2816 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2817 subspace_reloc_size += 1;
2818 p += 1;
2819 break;
2820
2821 /* Put a "R_RESERVED" relocation in the stream if
2822 we hit something we do not understand. The linker
2823 will complain loudly if this ever happens. */
2824 default:
2825 bfd_put_8 (abfd, 0xff, p);
2826 subspace_reloc_size += 1;
2827 p += 1;
2828 break;
2829 }
2830 }
2831
2832 /* Last BFD relocation for a subspace has been processed.
2833 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2834 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
2835 - reloc_offset,
2836 p, &subspace_reloc_size, reloc_queue);
2837
2838 /* Scribble out the relocations. */
2839 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2840 != p - tmp_space)
2841 return false;
2842 p = tmp_space;
2843
2844 total_reloc_size += subspace_reloc_size;
2845 som_section_data (subsection)->subspace_dict->fixup_request_quantity
2846 = subspace_reloc_size;
2847 }
2848 section = section->next;
2849 }
2850 *total_reloc_sizep = total_reloc_size;
2851 return true;
2852 }
2853
2854 /* Write out the space/subspace string table. */
2855
2856 static boolean
2857 som_write_space_strings (abfd, current_offset, string_sizep)
2858 bfd *abfd;
2859 unsigned long current_offset;
2860 unsigned int *string_sizep;
2861 {
2862 /* Chunk of memory that we can use as buffer space, then throw
2863 away. */
2864 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2865 unsigned char *p;
2866 unsigned int strings_size = 0;
2867 asection *section;
2868
2869 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2870 p = tmp_space;
2871
2872 /* Seek to the start of the space strings in preparation for writing
2873 them out. */
2874 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2875 return false;
2876
2877 /* Walk through all the spaces and subspaces (order is not important)
2878 building up and writing string table entries for their names. */
2879 for (section = abfd->sections; section != NULL; section = section->next)
2880 {
2881 int length;
2882
2883 /* Only work with space/subspaces; avoid any other sections
2884 which might have been made (.text for example). */
2885 if (!som_is_space (section) && !som_is_subspace (section))
2886 continue;
2887
2888 /* Get the length of the space/subspace name. */
2889 length = strlen (section->name);
2890
2891 /* If there is not enough room for the next entry, then dump the
2892 current buffer contents now. Each entry will take 4 bytes to
2893 hold the string length + the string itself + null terminator. */
2894 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2895 {
2896 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2897 != p - tmp_space)
2898 return false;
2899 /* Reset to beginning of the buffer space. */
2900 p = tmp_space;
2901 }
2902
2903 /* First element in a string table entry is the length of the
2904 string. Alignment issues are already handled. */
2905 bfd_put_32 (abfd, length, p);
2906 p += 4;
2907 strings_size += 4;
2908
2909 /* Record the index in the space/subspace records. */
2910 if (som_is_space (section))
2911 som_section_data (section)->space_dict->name.n_strx = strings_size;
2912 else
2913 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
2914
2915 /* Next comes the string itself + a null terminator. */
2916 strcpy (p, section->name);
2917 p += length + 1;
2918 strings_size += length + 1;
2919
2920 /* Always align up to the next word boundary. */
2921 while (strings_size % 4)
2922 {
2923 bfd_put_8 (abfd, 0, p);
2924 p++;
2925 strings_size++;
2926 }
2927 }
2928
2929 /* Done with the space/subspace strings. Write out any information
2930 contained in a partial block. */
2931 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2932 return false;
2933 *string_sizep = strings_size;
2934 return true;
2935 }
2936
2937 /* Write out the symbol string table. */
2938
2939 static boolean
2940 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
2941 bfd *abfd;
2942 unsigned long current_offset;
2943 asymbol **syms;
2944 unsigned int num_syms;
2945 unsigned int *string_sizep;
2946 {
2947 unsigned int i;
2948
2949 /* Chunk of memory that we can use as buffer space, then throw
2950 away. */
2951 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2952 unsigned char *p;
2953 unsigned int strings_size = 0;
2954
2955 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2956 p = tmp_space;
2957
2958 /* Seek to the start of the space strings in preparation for writing
2959 them out. */
2960 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2961 return false;
2962
2963 for (i = 0; i < num_syms; i++)
2964 {
2965 int length = strlen (syms[i]->name);
2966
2967 /* If there is not enough room for the next entry, then dump the
2968 current buffer contents now. */
2969 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2970 {
2971 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2972 != p - tmp_space)
2973 return false;
2974 /* Reset to beginning of the buffer space. */
2975 p = tmp_space;
2976 }
2977
2978 /* First element in a string table entry is the length of the
2979 string. This must always be 4 byte aligned. This is also
2980 an appropriate time to fill in the string index field in the
2981 symbol table entry. */
2982 bfd_put_32 (abfd, length, p);
2983 strings_size += 4;
2984 p += 4;
2985
2986 /* Next comes the string itself + a null terminator. */
2987 strcpy (p, syms[i]->name);
2988
2989 som_symbol_data(syms[i])->stringtab_offset = strings_size;
2990 p += length + 1;
2991 strings_size += length + 1;
2992
2993 /* Always align up to the next word boundary. */
2994 while (strings_size % 4)
2995 {
2996 bfd_put_8 (abfd, 0, p);
2997 strings_size++;
2998 p++;
2999 }
3000 }
3001
3002 /* Scribble out any partial block. */
3003 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
3004 return false;
3005
3006 *string_sizep = strings_size;
3007 return true;
3008 }
3009
3010 /* Compute variable information to be placed in the SOM headers,
3011 space/subspace dictionaries, relocation streams, etc. Begin
3012 writing parts of the object file. */
3013
3014 static boolean
3015 som_begin_writing (abfd)
3016 bfd *abfd;
3017 {
3018 unsigned long current_offset = 0;
3019 int strings_size = 0;
3020 unsigned int total_reloc_size = 0;
3021 unsigned long num_spaces, num_subspaces, i;
3022 asection *section;
3023 unsigned int total_subspaces = 0;
3024 struct som_exec_auxhdr *exec_header = NULL;
3025
3026 /* The file header will always be first in an object file,
3027 everything else can be in random locations. To keep things
3028 "simple" BFD will lay out the object file in the manner suggested
3029 by the PRO ABI for PA-RISC Systems. */
3030
3031 /* Before any output can really begin offsets for all the major
3032 portions of the object file must be computed. So, starting
3033 with the initial file header compute (and sometimes write)
3034 each portion of the object file. */
3035
3036 /* Make room for the file header, it's contents are not complete
3037 yet, so it can not be written at this time. */
3038 current_offset += sizeof (struct header);
3039
3040 /* Any auxiliary headers will follow the file header. Right now
3041 we support only the copyright and version headers. */
3042 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
3043 obj_som_file_hdr (abfd)->aux_header_size = 0;
3044 if (abfd->flags & (EXEC_P | DYNAMIC))
3045 {
3046 /* Parts of the exec header will be filled in later, so
3047 delay writing the header itself. Fill in the defaults,
3048 and write it later. */
3049 current_offset += sizeof (struct som_exec_auxhdr);
3050 obj_som_file_hdr (abfd)->aux_header_size
3051 += sizeof (struct som_exec_auxhdr);
3052 exec_header = obj_som_exec_hdr (abfd);
3053 exec_header->som_auxhdr.type = EXEC_AUX_ID;
3054 exec_header->som_auxhdr.length = 40;
3055 }
3056 if (obj_som_version_hdr (abfd) != NULL)
3057 {
3058 unsigned int len;
3059
3060 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
3061 return false;
3062
3063 /* Write the aux_id structure and the string length. */
3064 len = sizeof (struct aux_id) + sizeof (unsigned int);
3065 obj_som_file_hdr (abfd)->aux_header_size += len;
3066 current_offset += len;
3067 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
3068 return false;
3069
3070 /* Write the version string. */
3071 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
3072 obj_som_file_hdr (abfd)->aux_header_size += len;
3073 current_offset += len;
3074 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
3075 len, 1, abfd) != len)
3076 return false;
3077 }
3078
3079 if (obj_som_copyright_hdr (abfd) != NULL)
3080 {
3081 unsigned int len;
3082
3083 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
3084 return false;
3085
3086 /* Write the aux_id structure and the string length. */
3087 len = sizeof (struct aux_id) + sizeof (unsigned int);
3088 obj_som_file_hdr (abfd)->aux_header_size += len;
3089 current_offset += len;
3090 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
3091 return false;
3092
3093 /* Write the copyright string. */
3094 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
3095 obj_som_file_hdr (abfd)->aux_header_size += len;
3096 current_offset += len;
3097 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
3098 len, 1, abfd) != len)
3099 return false;
3100 }
3101
3102 /* Next comes the initialization pointers; we have no initialization
3103 pointers, so current offset does not change. */
3104 obj_som_file_hdr (abfd)->init_array_location = current_offset;
3105 obj_som_file_hdr (abfd)->init_array_total = 0;
3106
3107 /* Next are the space records. These are fixed length records.
3108
3109 Count the number of spaces to determine how much room is needed
3110 in the object file for the space records.
3111
3112 The names of the spaces are stored in a separate string table,
3113 and the index for each space into the string table is computed
3114 below. Therefore, it is not possible to write the space headers
3115 at this time. */
3116 num_spaces = som_count_spaces (abfd);
3117 obj_som_file_hdr (abfd)->space_location = current_offset;
3118 obj_som_file_hdr (abfd)->space_total = num_spaces;
3119 current_offset += num_spaces * sizeof (struct space_dictionary_record);
3120
3121 /* Next are the subspace records. These are fixed length records.
3122
3123 Count the number of subspaes to determine how much room is needed
3124 in the object file for the subspace records.
3125
3126 A variety if fields in the subspace record are still unknown at
3127 this time (index into string table, fixup stream location/size, etc). */
3128 num_subspaces = som_count_subspaces (abfd);
3129 obj_som_file_hdr (abfd)->subspace_location = current_offset;
3130 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
3131 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
3132
3133 /* Next is the string table for the space/subspace names. We will
3134 build and write the string table on the fly. At the same time
3135 we will fill in the space/subspace name index fields. */
3136
3137 /* The string table needs to be aligned on a word boundary. */
3138 if (current_offset % 4)
3139 current_offset += (4 - (current_offset % 4));
3140
3141 /* Mark the offset of the space/subspace string table in the
3142 file header. */
3143 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
3144
3145 /* Scribble out the space strings. */
3146 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
3147 return false;
3148
3149 /* Record total string table size in the header and update the
3150 current offset. */
3151 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
3152 current_offset += strings_size;
3153
3154 /* Next is the compiler records. We do not use these. */
3155 obj_som_file_hdr (abfd)->compiler_location = current_offset;
3156 obj_som_file_hdr (abfd)->compiler_total = 0;
3157
3158 /* Now compute the file positions for the loadable subspaces, taking
3159 care to make sure everything stays properly aligned. */
3160
3161 section = abfd->sections;
3162 for (i = 0; i < num_spaces; i++)
3163 {
3164 asection *subsection;
3165 int first_subspace;
3166 unsigned int subspace_offset = 0;
3167
3168 /* Find a space. */
3169 while (!som_is_space (section))
3170 section = section->next;
3171
3172 first_subspace = 1;
3173 /* Now look for all its subspaces. */
3174 for (subsection = abfd->sections;
3175 subsection != NULL;
3176 subsection = subsection->next)
3177 {
3178
3179 if (!som_is_subspace (subsection)
3180 || !som_is_container (section, subsection)
3181 || (subsection->flags & SEC_ALLOC) == 0)
3182 continue;
3183
3184 /* If this is the first subspace in the space, and we are
3185 building an executable, then take care to make sure all
3186 the alignments are correct and update the exec header. */
3187 if (first_subspace
3188 && (abfd->flags & (EXEC_P | DYNAMIC)))
3189 {
3190 /* Demand paged executables have each space aligned to a
3191 page boundary. Sharable executables (write-protected
3192 text) have just the private (aka data & bss) space aligned
3193 to a page boundary. Ugh. Not true for HPUX.
3194
3195 The HPUX kernel requires the text to always be page aligned
3196 within the file regardless of the executable's type. */
3197 if (abfd->flags & (D_PAGED | DYNAMIC)
3198 || (subsection->flags & SEC_CODE)
3199 || ((abfd->flags & WP_TEXT)
3200 && (subsection->flags & SEC_DATA)))
3201 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3202
3203 /* Update the exec header. */
3204 if (subsection->flags & SEC_CODE && exec_header->exec_tfile == 0)
3205 {
3206 exec_header->exec_tmem = section->vma;
3207 exec_header->exec_tfile = current_offset;
3208 }
3209 if (subsection->flags & SEC_DATA && exec_header->exec_dfile == 0)
3210 {
3211 exec_header->exec_dmem = section->vma;
3212 exec_header->exec_dfile = current_offset;
3213 }
3214
3215 /* Keep track of exactly where we are within a particular
3216 space. This is necessary as the braindamaged HPUX
3217 loader will create holes between subspaces *and*
3218 subspace alignments are *NOT* preserved. What a crock. */
3219 subspace_offset = subsection->vma;
3220
3221 /* Only do this for the first subspace within each space. */
3222 first_subspace = 0;
3223 }
3224 else if (abfd->flags & (EXEC_P | DYNAMIC))
3225 {
3226 /* The braindamaged HPUX loader may have created a hole
3227 between two subspaces. It is *not* sufficient to use
3228 the alignment specifications within the subspaces to
3229 account for these holes -- I've run into at least one
3230 case where the loader left one code subspace unaligned
3231 in a final executable.
3232
3233 To combat this we keep a current offset within each space,
3234 and use the subspace vma fields to detect and preserve
3235 holes. What a crock!
3236
3237 ps. This is not necessary for unloadable space/subspaces. */
3238 current_offset += subsection->vma - subspace_offset;
3239 if (subsection->flags & SEC_CODE)
3240 exec_header->exec_tsize += subsection->vma - subspace_offset;
3241 else
3242 exec_header->exec_dsize += subsection->vma - subspace_offset;
3243 subspace_offset += subsection->vma - subspace_offset;
3244 }
3245
3246
3247 subsection->target_index = total_subspaces++;
3248 /* This is real data to be loaded from the file. */
3249 if (subsection->flags & SEC_LOAD)
3250 {
3251 /* Update the size of the code & data. */
3252 if (abfd->flags & (EXEC_P | DYNAMIC)
3253 && subsection->flags & SEC_CODE)
3254 exec_header->exec_tsize += subsection->_cooked_size;
3255 else if (abfd->flags & (EXEC_P | DYNAMIC)
3256 && subsection->flags & SEC_DATA)
3257 exec_header->exec_dsize += subsection->_cooked_size;
3258 som_section_data (subsection)->subspace_dict->file_loc_init_value
3259 = current_offset;
3260 subsection->filepos = current_offset;
3261 current_offset += bfd_section_size (abfd, subsection);
3262 subspace_offset += bfd_section_size (abfd, subsection);
3263 }
3264 /* Looks like uninitialized data. */
3265 else
3266 {
3267 /* Update the size of the bss section. */
3268 if (abfd->flags & (EXEC_P | DYNAMIC))
3269 exec_header->exec_bsize += subsection->_cooked_size;
3270
3271 som_section_data (subsection)->subspace_dict->file_loc_init_value
3272 = 0;
3273 som_section_data (subsection)->subspace_dict->
3274 initialization_length = 0;
3275 }
3276 }
3277 /* Goto the next section. */
3278 section = section->next;
3279 }
3280
3281 /* Finally compute the file positions for unloadable subspaces.
3282 If building an executable, start the unloadable stuff on its
3283 own page. */
3284
3285 if (abfd->flags & (EXEC_P | DYNAMIC))
3286 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3287
3288 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3289 section = abfd->sections;
3290 for (i = 0; i < num_spaces; i++)
3291 {
3292 asection *subsection;
3293
3294 /* Find a space. */
3295 while (!som_is_space (section))
3296 section = section->next;
3297
3298 if (abfd->flags & (EXEC_P | DYNAMIC))
3299 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3300
3301 /* Now look for all its subspaces. */
3302 for (subsection = abfd->sections;
3303 subsection != NULL;
3304 subsection = subsection->next)
3305 {
3306
3307 if (!som_is_subspace (subsection)
3308 || !som_is_container (section, subsection)
3309 || (subsection->flags & SEC_ALLOC) != 0)
3310 continue;
3311
3312 subsection->target_index = total_subspaces++;
3313 /* This is real data to be loaded from the file. */
3314 if ((subsection->flags & SEC_LOAD) == 0)
3315 {
3316 som_section_data (subsection)->subspace_dict->file_loc_init_value
3317 = current_offset;
3318 subsection->filepos = current_offset;
3319 current_offset += bfd_section_size (abfd, subsection);
3320 }
3321 /* Looks like uninitialized data. */
3322 else
3323 {
3324 som_section_data (subsection)->subspace_dict->file_loc_init_value
3325 = 0;
3326 som_section_data (subsection)->subspace_dict->
3327 initialization_length = bfd_section_size (abfd, subsection);
3328 }
3329 }
3330 /* Goto the next section. */
3331 section = section->next;
3332 }
3333
3334 /* If building an executable, then make sure to seek to and write
3335 one byte at the end of the file to make sure any necessary
3336 zeros are filled in. Ugh. */
3337 if (abfd->flags & (EXEC_P | DYNAMIC))
3338 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3339 if (bfd_seek (abfd, current_offset - 1, SEEK_SET) < 0)
3340 return false;
3341 if (bfd_write ((PTR) "", 1, 1, abfd) != 1)
3342 return false;
3343
3344 obj_som_file_hdr (abfd)->unloadable_sp_size
3345 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3346
3347 /* Loader fixups are not supported in any way shape or form. */
3348 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3349 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3350
3351 /* Done. Store the total size of the SOM so far. */
3352 obj_som_file_hdr (abfd)->som_length = current_offset;
3353
3354 return true;
3355 }
3356
3357 /* Finally, scribble out the various headers to the disk. */
3358
3359 static boolean
3360 som_finish_writing (abfd)
3361 bfd *abfd;
3362 {
3363 int num_spaces = som_count_spaces (abfd);
3364 asymbol **syms = bfd_get_outsymbols (abfd);
3365 int i, num_syms, strings_size;
3366 int subspace_index = 0;
3367 file_ptr location;
3368 asection *section;
3369 unsigned long current_offset;
3370 unsigned int total_reloc_size;
3371
3372 /* Next is the symbol table. These are fixed length records.
3373
3374 Count the number of symbols to determine how much room is needed
3375 in the object file for the symbol table.
3376
3377 The names of the symbols are stored in a separate string table,
3378 and the index for each symbol name into the string table is computed
3379 below. Therefore, it is not possible to write the symbol table
3380 at this time.
3381
3382 These used to be output before the subspace contents, but they
3383 were moved here to work around a stupid bug in the hpux linker
3384 (fixed in hpux10). */
3385 current_offset = obj_som_file_hdr (abfd)->som_length;
3386
3387 /* Make sure we're on a word boundary. */
3388 if (current_offset % 4)
3389 current_offset += (4 - (current_offset % 4));
3390
3391 num_syms = bfd_get_symcount (abfd);
3392 obj_som_file_hdr (abfd)->symbol_location = current_offset;
3393 obj_som_file_hdr (abfd)->symbol_total = num_syms;
3394 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
3395
3396 /* Next are the symbol strings.
3397 Align them to a word boundary. */
3398 if (current_offset % 4)
3399 current_offset += (4 - (current_offset % 4));
3400 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
3401
3402 /* Scribble out the symbol strings. */
3403 if (som_write_symbol_strings (abfd, current_offset, syms,
3404 num_syms, &strings_size)
3405 == false)
3406 return false;
3407
3408 /* Record total string table size in header and update the
3409 current offset. */
3410 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
3411 current_offset += strings_size;
3412
3413 /* Do prep work before handling fixups. */
3414 som_prep_for_fixups (abfd,
3415 bfd_get_outsymbols (abfd),
3416 bfd_get_symcount (abfd));
3417
3418 /* At the end of the file is the fixup stream which starts on a
3419 word boundary. */
3420 if (current_offset % 4)
3421 current_offset += (4 - (current_offset % 4));
3422 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
3423
3424 /* Write the fixups and update fields in subspace headers which
3425 relate to the fixup stream. */
3426 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
3427 return false;
3428
3429 /* Record the total size of the fixup stream in the file header. */
3430 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
3431
3432 /* Done. Store the total size of the SOM. */
3433 obj_som_file_hdr (abfd)->som_length = current_offset + total_reloc_size;
3434
3435 /* Now that the symbol table information is complete, build and
3436 write the symbol table. */
3437 if (som_build_and_write_symbol_table (abfd) == false)
3438 return false;
3439
3440 /* Subspaces are written first so that we can set up information
3441 about them in their containing spaces as the subspace is written. */
3442
3443 /* Seek to the start of the subspace dictionary records. */
3444 location = obj_som_file_hdr (abfd)->subspace_location;
3445 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3446 return false;
3447
3448 section = abfd->sections;
3449 /* Now for each loadable space write out records for its subspaces. */
3450 for (i = 0; i < num_spaces; i++)
3451 {
3452 asection *subsection;
3453
3454 /* Find a space. */
3455 while (!som_is_space (section))
3456 section = section->next;
3457
3458 /* Now look for all its subspaces. */
3459 for (subsection = abfd->sections;
3460 subsection != NULL;
3461 subsection = subsection->next)
3462 {
3463
3464 /* Skip any section which does not correspond to a space
3465 or subspace. Or does not have SEC_ALLOC set (and therefore
3466 has no real bits on the disk). */
3467 if (!som_is_subspace (subsection)
3468 || !som_is_container (section, subsection)
3469 || (subsection->flags & SEC_ALLOC) == 0)
3470 continue;
3471
3472 /* If this is the first subspace for this space, then save
3473 the index of the subspace in its containing space. Also
3474 set "is_loadable" in the containing space. */
3475
3476 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3477 {
3478 som_section_data (section)->space_dict->is_loadable = 1;
3479 som_section_data (section)->space_dict->subspace_index
3480 = subspace_index;
3481 }
3482
3483 /* Increment the number of subspaces seen and the number of
3484 subspaces contained within the current space. */
3485 subspace_index++;
3486 som_section_data (section)->space_dict->subspace_quantity++;
3487
3488 /* Mark the index of the current space within the subspace's
3489 dictionary record. */
3490 som_section_data (subsection)->subspace_dict->space_index = i;
3491
3492 /* Dump the current subspace header. */
3493 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3494 sizeof (struct subspace_dictionary_record), 1, abfd)
3495 != sizeof (struct subspace_dictionary_record))
3496 return false;
3497 }
3498 /* Goto the next section. */
3499 section = section->next;
3500 }
3501
3502 /* Now repeat the process for unloadable subspaces. */
3503 section = abfd->sections;
3504 /* Now for each space write out records for its subspaces. */
3505 for (i = 0; i < num_spaces; i++)
3506 {
3507 asection *subsection;
3508
3509 /* Find a space. */
3510 while (!som_is_space (section))
3511 section = section->next;
3512
3513 /* Now look for all its subspaces. */
3514 for (subsection = abfd->sections;
3515 subsection != NULL;
3516 subsection = subsection->next)
3517 {
3518
3519 /* Skip any section which does not correspond to a space or
3520 subspace, or which SEC_ALLOC set (and therefore handled
3521 in the loadable spaces/subspaces code above). */
3522
3523 if (!som_is_subspace (subsection)
3524 || !som_is_container (section, subsection)
3525 || (subsection->flags & SEC_ALLOC) != 0)
3526 continue;
3527
3528 /* If this is the first subspace for this space, then save
3529 the index of the subspace in its containing space. Clear
3530 "is_loadable". */
3531
3532 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3533 {
3534 som_section_data (section)->space_dict->is_loadable = 0;
3535 som_section_data (section)->space_dict->subspace_index
3536 = subspace_index;
3537 }
3538
3539 /* Increment the number of subspaces seen and the number of
3540 subspaces contained within the current space. */
3541 som_section_data (section)->space_dict->subspace_quantity++;
3542 subspace_index++;
3543
3544 /* Mark the index of the current space within the subspace's
3545 dictionary record. */
3546 som_section_data (subsection)->subspace_dict->space_index = i;
3547
3548 /* Dump this subspace header. */
3549 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3550 sizeof (struct subspace_dictionary_record), 1, abfd)
3551 != sizeof (struct subspace_dictionary_record))
3552 return false;
3553 }
3554 /* Goto the next section. */
3555 section = section->next;
3556 }
3557
3558 /* All the subspace dictiondary records are written, and all the
3559 fields are set up in the space dictionary records.
3560
3561 Seek to the right location and start writing the space
3562 dictionary records. */
3563 location = obj_som_file_hdr (abfd)->space_location;
3564 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3565 return false;
3566
3567 section = abfd->sections;
3568 for (i = 0; i < num_spaces; i++)
3569 {
3570
3571 /* Find a space. */
3572 while (!som_is_space (section))
3573 section = section->next;
3574
3575 /* Dump its header */
3576 if (bfd_write ((PTR) som_section_data (section)->space_dict,
3577 sizeof (struct space_dictionary_record), 1, abfd)
3578 != sizeof (struct space_dictionary_record))
3579 return false;
3580
3581 /* Goto the next section. */
3582 section = section->next;
3583 }
3584
3585 /* Setting of the system_id has to happen very late now that copying of
3586 BFD private data happens *after* section contents are set. */
3587 if (abfd->flags & (EXEC_P | DYNAMIC))
3588 obj_som_file_hdr(abfd)->system_id = obj_som_exec_data (abfd)->system_id;
3589 else if (bfd_get_mach (abfd) == pa11)
3590 obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC1_1;
3591 else
3592 obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC1_0;
3593
3594 /* Compute the checksum for the file header just before writing
3595 the header to disk. */
3596 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3597
3598 /* Only thing left to do is write out the file header. It is always
3599 at location zero. Seek there and write it. */
3600 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) < 0)
3601 return false;
3602 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3603 sizeof (struct header), 1, abfd)
3604 != sizeof (struct header))
3605 return false;
3606
3607 /* Now write the exec header. */
3608 if (abfd->flags & (EXEC_P | DYNAMIC))
3609 {
3610 long tmp;
3611 struct som_exec_auxhdr *exec_header;
3612
3613 exec_header = obj_som_exec_hdr (abfd);
3614 exec_header->exec_entry = bfd_get_start_address (abfd);
3615 exec_header->exec_flags = obj_som_exec_data (abfd)->exec_flags;
3616
3617 /* Oh joys. Ram some of the BSS data into the DATA section
3618 to be compatable with how the hp linker makes objects
3619 (saves memory space). */
3620 tmp = exec_header->exec_dsize;
3621 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3622 exec_header->exec_bsize -= (tmp - exec_header->exec_dsize);
3623 if (exec_header->exec_bsize < 0)
3624 exec_header->exec_bsize = 0;
3625 exec_header->exec_dsize = tmp;
3626
3627 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
3628 SEEK_SET) < 0)
3629 return false;
3630
3631 if (bfd_write ((PTR) exec_header, AUX_HDR_SIZE, 1, abfd)
3632 != AUX_HDR_SIZE)
3633 return false;
3634 }
3635 return true;
3636 }
3637
3638 /* Compute and return the checksum for a SOM file header. */
3639
3640 static unsigned long
3641 som_compute_checksum (abfd)
3642 bfd *abfd;
3643 {
3644 unsigned long checksum, count, i;
3645 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3646
3647 checksum = 0;
3648 count = sizeof (struct header) / sizeof (unsigned long);
3649 for (i = 0; i < count; i++)
3650 checksum ^= *(buffer + i);
3651
3652 return checksum;
3653 }
3654
3655 static void
3656 som_bfd_derive_misc_symbol_info (abfd, sym, info)
3657 bfd *abfd;
3658 asymbol *sym;
3659 struct som_misc_symbol_info *info;
3660 {
3661 /* Initialize. */
3662 memset (info, 0, sizeof (struct som_misc_symbol_info));
3663
3664 /* The HP SOM linker requires detailed type information about
3665 all symbols (including undefined symbols!). Unfortunately,
3666 the type specified in an import/export statement does not
3667 always match what the linker wants. Severe braindamage. */
3668
3669 /* Section symbols will not have a SOM symbol type assigned to
3670 them yet. Assign all section symbols type ST_DATA. */
3671 if (sym->flags & BSF_SECTION_SYM)
3672 info->symbol_type = ST_DATA;
3673 else
3674 {
3675 /* Common symbols must have scope SS_UNSAT and type
3676 ST_STORAGE or the linker will choke. */
3677 if (bfd_is_com_section (sym->section))
3678 {
3679 info->symbol_scope = SS_UNSAT;
3680 info->symbol_type = ST_STORAGE;
3681 }
3682
3683 /* It is possible to have a symbol without an associated
3684 type. This happens if the user imported the symbol
3685 without a type and the symbol was never defined
3686 locally. If BSF_FUNCTION is set for this symbol, then
3687 assign it type ST_CODE (the HP linker requires undefined
3688 external functions to have type ST_CODE rather than ST_ENTRY). */
3689 else if ((som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3690 || som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3691 && bfd_is_und_section (sym->section)
3692 && sym->flags & BSF_FUNCTION)
3693 info->symbol_type = ST_CODE;
3694
3695 /* Handle function symbols which were defined in this file.
3696 They should have type ST_ENTRY. Also retrieve the argument
3697 relocation bits from the SOM backend information. */
3698 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3699 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3700 && (sym->flags & BSF_FUNCTION))
3701 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3702 && (sym->flags & BSF_FUNCTION)))
3703 {
3704 info->symbol_type = ST_ENTRY;
3705 info->arg_reloc = som_symbol_data (sym)->tc_data.hppa_arg_reloc;
3706 }
3707
3708 /* If the type is unknown at this point, it should be ST_DATA or
3709 ST_CODE (function/ST_ENTRY symbols were handled as special
3710 cases above). */
3711 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3712 {
3713 if (sym->section->flags & SEC_CODE)
3714 info->symbol_type = ST_CODE;
3715 else
3716 info->symbol_type = ST_DATA;
3717 }
3718
3719 /* From now on it's a very simple mapping. */
3720 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3721 info->symbol_type = ST_ABSOLUTE;
3722 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3723 info->symbol_type = ST_CODE;
3724 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3725 info->symbol_type = ST_DATA;
3726 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3727 info->symbol_type = ST_MILLICODE;
3728 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3729 info->symbol_type = ST_PLABEL;
3730 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3731 info->symbol_type = ST_PRI_PROG;
3732 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3733 info->symbol_type = ST_SEC_PROG;
3734 }
3735
3736 /* Now handle the symbol's scope. Exported data which is not
3737 in the common section has scope SS_UNIVERSAL. Note scope
3738 of common symbols was handled earlier! */
3739 if (bfd_is_und_section (sym->section))
3740 info->symbol_scope = SS_UNSAT;
3741 else if (sym->flags & BSF_EXPORT && ! bfd_is_com_section (sym->section))
3742 info->symbol_scope = SS_UNIVERSAL;
3743 /* Anything else which is not in the common section has scope
3744 SS_LOCAL. */
3745 else if (! bfd_is_com_section (sym->section))
3746 info->symbol_scope = SS_LOCAL;
3747
3748 /* Now set the symbol_info field. It has no real meaning
3749 for undefined or common symbols, but the HP linker will
3750 choke if it's not set to some "reasonable" value. We
3751 use zero as a reasonable value. */
3752 if (bfd_is_com_section (sym->section)
3753 || bfd_is_und_section (sym->section)
3754 || bfd_is_abs_section (sym->section))
3755 info->symbol_info = 0;
3756 /* For all other symbols, the symbol_info field contains the
3757 subspace index of the space this symbol is contained in. */
3758 else
3759 info->symbol_info = sym->section->target_index;
3760
3761 /* Set the symbol's value. */
3762 info->symbol_value = sym->value + sym->section->vma;
3763 }
3764
3765 /* Build and write, in one big chunk, the entire symbol table for
3766 this BFD. */
3767
3768 static boolean
3769 som_build_and_write_symbol_table (abfd)
3770 bfd *abfd;
3771 {
3772 unsigned int num_syms = bfd_get_symcount (abfd);
3773 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
3774 asymbol **bfd_syms = obj_som_sorted_syms (abfd);
3775 struct symbol_dictionary_record *som_symtab = NULL;
3776 int i, symtab_size;
3777
3778 /* Compute total symbol table size and allocate a chunk of memory
3779 to hold the symbol table as we build it. */
3780 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
3781 som_symtab = (struct symbol_dictionary_record *) bfd_malloc (symtab_size);
3782 if (som_symtab == NULL && symtab_size != 0)
3783 goto error_return;
3784 memset (som_symtab, 0, symtab_size);
3785
3786 /* Walk over each symbol. */
3787 for (i = 0; i < num_syms; i++)
3788 {
3789 struct som_misc_symbol_info info;
3790
3791 /* This is really an index into the symbol strings table.
3792 By the time we get here, the index has already been
3793 computed and stored into the name field in the BFD symbol. */
3794 som_symtab[i].name.n_strx = som_symbol_data(bfd_syms[i])->stringtab_offset;
3795
3796 /* Derive SOM information from the BFD symbol. */
3797 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
3798
3799 /* Now use it. */
3800 som_symtab[i].symbol_type = info.symbol_type;
3801 som_symtab[i].symbol_scope = info.symbol_scope;
3802 som_symtab[i].arg_reloc = info.arg_reloc;
3803 som_symtab[i].symbol_info = info.symbol_info;
3804 som_symtab[i].symbol_value = info.symbol_value;
3805 }
3806
3807 /* Everything is ready, seek to the right location and
3808 scribble out the symbol table. */
3809 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
3810 return false;
3811
3812 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
3813 goto error_return;
3814
3815 if (som_symtab != NULL)
3816 free (som_symtab);
3817 return true;
3818 error_return:
3819 if (som_symtab != NULL)
3820 free (som_symtab);
3821 return false;
3822 }
3823
3824 /* Write an object in SOM format. */
3825
3826 static boolean
3827 som_write_object_contents (abfd)
3828 bfd *abfd;
3829 {
3830 if (abfd->output_has_begun == false)
3831 {
3832 /* Set up fixed parts of the file, space, and subspace headers.
3833 Notify the world that output has begun. */
3834 som_prep_headers (abfd);
3835 abfd->output_has_begun = true;
3836 /* Start writing the object file. This include all the string
3837 tables, fixup streams, and other portions of the object file. */
3838 som_begin_writing (abfd);
3839 }
3840
3841 return (som_finish_writing (abfd));
3842 }
3843
3844 \f
3845 /* Read and save the string table associated with the given BFD. */
3846
3847 static boolean
3848 som_slurp_string_table (abfd)
3849 bfd *abfd;
3850 {
3851 char *stringtab;
3852
3853 /* Use the saved version if its available. */
3854 if (obj_som_stringtab (abfd) != NULL)
3855 return true;
3856
3857 /* I don't think this can currently happen, and I'm not sure it should
3858 really be an error, but it's better than getting unpredictable results
3859 from the host's malloc when passed a size of zero. */
3860 if (obj_som_stringtab_size (abfd) == 0)
3861 {
3862 bfd_set_error (bfd_error_no_symbols);
3863 return false;
3864 }
3865
3866 /* Allocate and read in the string table. */
3867 stringtab = bfd_malloc (obj_som_stringtab_size (abfd));
3868 if (stringtab == NULL)
3869 return false;
3870 memset (stringtab, 0, obj_som_stringtab_size (abfd));
3871
3872 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
3873 return false;
3874
3875 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
3876 != obj_som_stringtab_size (abfd))
3877 return false;
3878
3879 /* Save our results and return success. */
3880 obj_som_stringtab (abfd) = stringtab;
3881 return true;
3882 }
3883
3884 /* Return the amount of data (in bytes) required to hold the symbol
3885 table for this object. */
3886
3887 static long
3888 som_get_symtab_upper_bound (abfd)
3889 bfd *abfd;
3890 {
3891 if (!som_slurp_symbol_table (abfd))
3892 return -1;
3893
3894 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
3895 }
3896
3897 /* Convert from a SOM subspace index to a BFD section. */
3898
3899 static asection *
3900 bfd_section_from_som_symbol (abfd, symbol)
3901 bfd *abfd;
3902 struct symbol_dictionary_record *symbol;
3903 {
3904 asection *section;
3905
3906 /* The meaning of the symbol_info field changes for functions
3907 within executables. So only use the quick symbol_info mapping for
3908 incomplete objects and non-function symbols in executables. */
3909 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
3910 || (symbol->symbol_type != ST_ENTRY
3911 && symbol->symbol_type != ST_PRI_PROG
3912 && symbol->symbol_type != ST_SEC_PROG
3913 && symbol->symbol_type != ST_MILLICODE))
3914 {
3915 unsigned int index = symbol->symbol_info;
3916 for (section = abfd->sections; section != NULL; section = section->next)
3917 if (section->target_index == index && som_is_subspace (section))
3918 return section;
3919
3920 /* Could be a symbol from an external library (such as an OMOS
3921 shared library). Don't abort. */
3922 return bfd_abs_section_ptr;
3923
3924 }
3925 else
3926 {
3927 unsigned int value = symbol->symbol_value;
3928
3929 /* For executables we will have to use the symbol's address and
3930 find out what section would contain that address. Yuk. */
3931 for (section = abfd->sections; section; section = section->next)
3932 {
3933 if (value >= section->vma
3934 && value <= section->vma + section->_cooked_size
3935 && som_is_subspace (section))
3936 return section;
3937 }
3938
3939 /* Could be a symbol from an external library (such as an OMOS
3940 shared library). Don't abort. */
3941 return bfd_abs_section_ptr;
3942
3943 }
3944 }
3945
3946 /* Read and save the symbol table associated with the given BFD. */
3947
3948 static unsigned int
3949 som_slurp_symbol_table (abfd)
3950 bfd *abfd;
3951 {
3952 int symbol_count = bfd_get_symcount (abfd);
3953 int symsize = sizeof (struct symbol_dictionary_record);
3954 char *stringtab;
3955 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
3956 som_symbol_type *sym, *symbase;
3957
3958 /* Return saved value if it exists. */
3959 if (obj_som_symtab (abfd) != NULL)
3960 goto successful_return;
3961
3962 /* Special case. This is *not* an error. */
3963 if (symbol_count == 0)
3964 goto successful_return;
3965
3966 if (!som_slurp_string_table (abfd))
3967 goto error_return;
3968
3969 stringtab = obj_som_stringtab (abfd);
3970
3971 symbase = ((som_symbol_type *)
3972 bfd_malloc (symbol_count * sizeof (som_symbol_type)));
3973 if (symbase == NULL)
3974 goto error_return;
3975 memset (symbase, 0, symbol_count * sizeof (som_symbol_type));
3976
3977 /* Read in the external SOM representation. */
3978 buf = bfd_malloc (symbol_count * symsize);
3979 if (buf == NULL && symbol_count * symsize != 0)
3980 goto error_return;
3981 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
3982 goto error_return;
3983 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
3984 != symbol_count * symsize)
3985 goto error_return;
3986
3987 /* Iterate over all the symbols and internalize them. */
3988 endbufp = buf + symbol_count;
3989 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
3990 {
3991
3992 /* I don't think we care about these. */
3993 if (bufp->symbol_type == ST_SYM_EXT
3994 || bufp->symbol_type == ST_ARG_EXT)
3995 continue;
3996
3997 /* Set some private data we care about. */
3998 if (bufp->symbol_type == ST_NULL)
3999 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
4000 else if (bufp->symbol_type == ST_ABSOLUTE)
4001 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
4002 else if (bufp->symbol_type == ST_DATA)
4003 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
4004 else if (bufp->symbol_type == ST_CODE)
4005 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
4006 else if (bufp->symbol_type == ST_PRI_PROG)
4007 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
4008 else if (bufp->symbol_type == ST_SEC_PROG)
4009 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
4010 else if (bufp->symbol_type == ST_ENTRY)
4011 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
4012 else if (bufp->symbol_type == ST_MILLICODE)
4013 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
4014 else if (bufp->symbol_type == ST_PLABEL)
4015 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
4016 else
4017 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
4018 som_symbol_data (sym)->tc_data.hppa_arg_reloc = bufp->arg_reloc;
4019
4020 /* Some reasonable defaults. */
4021 sym->symbol.the_bfd = abfd;
4022 sym->symbol.name = bufp->name.n_strx + stringtab;
4023 sym->symbol.value = bufp->symbol_value;
4024 sym->symbol.section = 0;
4025 sym->symbol.flags = 0;
4026
4027 switch (bufp->symbol_type)
4028 {
4029 case ST_ENTRY:
4030 case ST_MILLICODE:
4031 sym->symbol.flags |= BSF_FUNCTION;
4032 sym->symbol.value &= ~0x3;
4033 break;
4034
4035 case ST_STUB:
4036 case ST_CODE:
4037 case ST_PRI_PROG:
4038 case ST_SEC_PROG:
4039 sym->symbol.value &= ~0x3;
4040 /* If the symbol's scope is ST_UNSAT, then these are
4041 undefined function symbols. */
4042 if (bufp->symbol_scope == SS_UNSAT)
4043 sym->symbol.flags |= BSF_FUNCTION;
4044
4045
4046 default:
4047 break;
4048 }
4049
4050 /* Handle scoping and section information. */
4051 switch (bufp->symbol_scope)
4052 {
4053 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
4054 so the section associated with this symbol can't be known. */
4055 case SS_EXTERNAL:
4056 if (bufp->symbol_type != ST_STORAGE)
4057 sym->symbol.section = bfd_und_section_ptr;
4058 else
4059 sym->symbol.section = bfd_com_section_ptr;
4060 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
4061 break;
4062
4063 case SS_UNSAT:
4064 if (bufp->symbol_type != ST_STORAGE)
4065 sym->symbol.section = bfd_und_section_ptr;
4066 else
4067 sym->symbol.section = bfd_com_section_ptr;
4068 break;
4069
4070 case SS_UNIVERSAL:
4071 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
4072 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
4073 sym->symbol.value -= sym->symbol.section->vma;
4074 break;
4075
4076 #if 0
4077 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
4078 Sound dumb? It is. */
4079 case SS_GLOBAL:
4080 #endif
4081 case SS_LOCAL:
4082 sym->symbol.flags |= BSF_LOCAL;
4083 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
4084 sym->symbol.value -= sym->symbol.section->vma;
4085 break;
4086 }
4087
4088 /* Mark section symbols and symbols used by the debugger.
4089 Note $START$ is a magic code symbol, NOT a section symbol. */
4090 if (sym->symbol.name[0] == '$'
4091 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$'
4092 && !strcmp (sym->symbol.name, sym->symbol.section->name))
4093 sym->symbol.flags |= BSF_SECTION_SYM;
4094 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
4095 {
4096 sym->symbol.flags |= BSF_SECTION_SYM;
4097 sym->symbol.name = sym->symbol.section->name;
4098 }
4099 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
4100 sym->symbol.flags |= BSF_DEBUGGING;
4101
4102 /* Note increment at bottom of loop, since we skip some symbols
4103 we can not include it as part of the for statement. */
4104 sym++;
4105 }
4106
4107 /* We modify the symbol count to record the number of BFD symbols we
4108 created. */
4109 bfd_get_symcount (abfd) = sym - symbase;
4110
4111 /* Save our results and return success. */
4112 obj_som_symtab (abfd) = symbase;
4113 successful_return:
4114 if (buf != NULL)
4115 free (buf);
4116 return (true);
4117
4118 error_return:
4119 if (buf != NULL)
4120 free (buf);
4121 return false;
4122 }
4123
4124 /* Canonicalize a SOM symbol table. Return the number of entries
4125 in the symbol table. */
4126
4127 static long
4128 som_get_symtab (abfd, location)
4129 bfd *abfd;
4130 asymbol **location;
4131 {
4132 int i;
4133 som_symbol_type *symbase;
4134
4135 if (!som_slurp_symbol_table (abfd))
4136 return -1;
4137
4138 i = bfd_get_symcount (abfd);
4139 symbase = obj_som_symtab (abfd);
4140
4141 for (; i > 0; i--, location++, symbase++)
4142 *location = &symbase->symbol;
4143
4144 /* Final null pointer. */
4145 *location = 0;
4146 return (bfd_get_symcount (abfd));
4147 }
4148
4149 /* Make a SOM symbol. There is nothing special to do here. */
4150
4151 static asymbol *
4152 som_make_empty_symbol (abfd)
4153 bfd *abfd;
4154 {
4155 som_symbol_type *new =
4156 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
4157 if (new == NULL)
4158 return 0;
4159 new->symbol.the_bfd = abfd;
4160
4161 return &new->symbol;
4162 }
4163
4164 /* Print symbol information. */
4165
4166 static void
4167 som_print_symbol (ignore_abfd, afile, symbol, how)
4168 bfd *ignore_abfd;
4169 PTR afile;
4170 asymbol *symbol;
4171 bfd_print_symbol_type how;
4172 {
4173 FILE *file = (FILE *) afile;
4174 switch (how)
4175 {
4176 case bfd_print_symbol_name:
4177 fprintf (file, "%s", symbol->name);
4178 break;
4179 case bfd_print_symbol_more:
4180 fprintf (file, "som ");
4181 fprintf_vma (file, symbol->value);
4182 fprintf (file, " %lx", (long) symbol->flags);
4183 break;
4184 case bfd_print_symbol_all:
4185 {
4186 CONST char *section_name;
4187 section_name = symbol->section ? symbol->section->name : "(*none*)";
4188 bfd_print_symbol_vandf ((PTR) file, symbol);
4189 fprintf (file, " %s\t%s", section_name, symbol->name);
4190 break;
4191 }
4192 }
4193 }
4194
4195 static boolean
4196 som_bfd_is_local_label (abfd, sym)
4197 bfd *abfd;
4198 asymbol *sym;
4199 {
4200 return (sym->name[0] == 'L' && sym->name[1] == '$');
4201 }
4202
4203 /* Count or process variable-length SOM fixup records.
4204
4205 To avoid code duplication we use this code both to compute the number
4206 of relocations requested by a stream, and to internalize the stream.
4207
4208 When computing the number of relocations requested by a stream the
4209 variables rptr, section, and symbols have no meaning.
4210
4211 Return the number of relocations requested by the fixup stream. When
4212 not just counting
4213
4214 This needs at least two or three more passes to get it cleaned up. */
4215
4216 static unsigned int
4217 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
4218 unsigned char *fixup;
4219 unsigned int end;
4220 arelent *internal_relocs;
4221 asection *section;
4222 asymbol **symbols;
4223 boolean just_count;
4224 {
4225 unsigned int op, varname, deallocate_contents = 0;
4226 unsigned char *end_fixups = &fixup[end];
4227 const struct fixup_format *fp;
4228 char *cp;
4229 unsigned char *save_fixup;
4230 int variables[26], stack[20], c, v, count, prev_fixup, *sp, saved_unwind_bits;
4231 const int *subop;
4232 arelent *rptr= internal_relocs;
4233 unsigned int offset = 0;
4234
4235 #define var(c) variables[(c) - 'A']
4236 #define push(v) (*sp++ = (v))
4237 #define pop() (*--sp)
4238 #define emptystack() (sp == stack)
4239
4240 som_initialize_reloc_queue (reloc_queue);
4241 memset (variables, 0, sizeof (variables));
4242 memset (stack, 0, sizeof (stack));
4243 count = 0;
4244 prev_fixup = 0;
4245 saved_unwind_bits = 0;
4246 sp = stack;
4247
4248 while (fixup < end_fixups)
4249 {
4250
4251 /* Save pointer to the start of this fixup. We'll use
4252 it later to determine if it is necessary to put this fixup
4253 on the queue. */
4254 save_fixup = fixup;
4255
4256 /* Get the fixup code and its associated format. */
4257 op = *fixup++;
4258 fp = &som_fixup_formats[op];
4259
4260 /* Handle a request for a previous fixup. */
4261 if (*fp->format == 'P')
4262 {
4263 /* Get pointer to the beginning of the prev fixup, move
4264 the repeated fixup to the head of the queue. */
4265 fixup = reloc_queue[fp->D].reloc;
4266 som_reloc_queue_fix (reloc_queue, fp->D);
4267 prev_fixup = 1;
4268
4269 /* Get the fixup code and its associated format. */
4270 op = *fixup++;
4271 fp = &som_fixup_formats[op];
4272 }
4273
4274 /* If this fixup will be passed to BFD, set some reasonable defaults. */
4275 if (! just_count
4276 && som_hppa_howto_table[op].type != R_NO_RELOCATION
4277 && som_hppa_howto_table[op].type != R_DATA_OVERRIDE)
4278 {
4279 rptr->address = offset;
4280 rptr->howto = &som_hppa_howto_table[op];
4281 rptr->addend = 0;
4282 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
4283 }
4284
4285 /* Set default input length to 0. Get the opcode class index
4286 into D. */
4287 var ('L') = 0;
4288 var ('D') = fp->D;
4289 var ('U') = saved_unwind_bits;
4290
4291 /* Get the opcode format. */
4292 cp = fp->format;
4293
4294 /* Process the format string. Parsing happens in two phases,
4295 parse RHS, then assign to LHS. Repeat until no more
4296 characters in the format string. */
4297 while (*cp)
4298 {
4299 /* The variable this pass is going to compute a value for. */
4300 varname = *cp++;
4301
4302 /* Start processing RHS. Continue until a NULL or '=' is found. */
4303 do
4304 {
4305 c = *cp++;
4306
4307 /* If this is a variable, push it on the stack. */
4308 if (isupper (c))
4309 push (var (c));
4310
4311 /* If this is a lower case letter, then it represents
4312 additional data from the fixup stream to be pushed onto
4313 the stack. */
4314 else if (islower (c))
4315 {
4316 int bits = (c - 'a') * 8;
4317 for (v = 0; c > 'a'; --c)
4318 v = (v << 8) | *fixup++;
4319 if (varname == 'V')
4320 v = sign_extend (v, bits);
4321 push (v);
4322 }
4323
4324 /* A decimal constant. Push it on the stack. */
4325 else if (isdigit (c))
4326 {
4327 v = c - '0';
4328 while (isdigit (*cp))
4329 v = (v * 10) + (*cp++ - '0');
4330 push (v);
4331 }
4332 else
4333
4334 /* An operator. Pop two two values from the stack and
4335 use them as operands to the given operation. Push
4336 the result of the operation back on the stack. */
4337 switch (c)
4338 {
4339 case '+':
4340 v = pop ();
4341 v += pop ();
4342 push (v);
4343 break;
4344 case '*':
4345 v = pop ();
4346 v *= pop ();
4347 push (v);
4348 break;
4349 case '<':
4350 v = pop ();
4351 v = pop () << v;
4352 push (v);
4353 break;
4354 default:
4355 abort ();
4356 }
4357 }
4358 while (*cp && *cp != '=');
4359
4360 /* Move over the equal operator. */
4361 cp++;
4362
4363 /* Pop the RHS off the stack. */
4364 c = pop ();
4365
4366 /* Perform the assignment. */
4367 var (varname) = c;
4368
4369 /* Handle side effects. and special 'O' stack cases. */
4370 switch (varname)
4371 {
4372 /* Consume some bytes from the input space. */
4373 case 'L':
4374 offset += c;
4375 break;
4376 /* A symbol to use in the relocation. Make a note
4377 of this if we are not just counting. */
4378 case 'S':
4379 if (! just_count)
4380 rptr->sym_ptr_ptr = &symbols[c];
4381 break;
4382 /* Argument relocation bits for a function call. */
4383 case 'R':
4384 if (! just_count)
4385 {
4386 unsigned int tmp = var ('R');
4387 rptr->addend = 0;
4388
4389 if ((som_hppa_howto_table[op].type == R_PCREL_CALL
4390 && R_PCREL_CALL + 10 > op)
4391 || (som_hppa_howto_table[op].type == R_ABS_CALL
4392 && R_ABS_CALL + 10 > op))
4393 {
4394 /* Simple encoding. */
4395 if (tmp > 4)
4396 {
4397 tmp -= 5;
4398 rptr->addend |= 1;
4399 }
4400 if (tmp == 4)
4401 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2;
4402 else if (tmp == 3)
4403 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4;
4404 else if (tmp == 2)
4405 rptr->addend |= 1 << 8 | 1 << 6;
4406 else if (tmp == 1)
4407 rptr->addend |= 1 << 8;
4408 }
4409 else
4410 {
4411 unsigned int tmp1, tmp2;
4412
4413 /* First part is easy -- low order two bits are
4414 directly copied, then shifted away. */
4415 rptr->addend = tmp & 0x3;
4416 tmp >>= 2;
4417
4418 /* Diving the result by 10 gives us the second
4419 part. If it is 9, then the first two words
4420 are a double precision paramater, else it is
4421 3 * the first arg bits + the 2nd arg bits. */
4422 tmp1 = tmp / 10;
4423 tmp -= tmp1 * 10;
4424 if (tmp1 == 9)
4425 rptr->addend += (0xe << 6);
4426 else
4427 {
4428 /* Get the two pieces. */
4429 tmp2 = tmp1 / 3;
4430 tmp1 -= tmp2 * 3;
4431 /* Put them in the addend. */
4432 rptr->addend += (tmp2 << 8) + (tmp1 << 6);
4433 }
4434
4435 /* What's left is the third part. It's unpacked
4436 just like the second. */
4437 if (tmp == 9)
4438 rptr->addend += (0xe << 2);
4439 else
4440 {
4441 tmp2 = tmp / 3;
4442 tmp -= tmp2 * 3;
4443 rptr->addend += (tmp2 << 4) + (tmp << 2);
4444 }
4445 }
4446 rptr->addend = HPPA_R_ADDEND (rptr->addend, 0);
4447 }
4448 break;
4449 /* Handle the linker expression stack. */
4450 case 'O':
4451 switch (op)
4452 {
4453 case R_COMP1:
4454 subop = comp1_opcodes;
4455 break;
4456 case R_COMP2:
4457 subop = comp2_opcodes;
4458 break;
4459 case R_COMP3:
4460 subop = comp3_opcodes;
4461 break;
4462 default:
4463 abort ();
4464 }
4465 while (*subop <= (unsigned char) c)
4466 ++subop;
4467 --subop;
4468 break;
4469 /* The lower 32unwind bits must be persistent. */
4470 case 'U':
4471 saved_unwind_bits = var ('U');
4472 break;
4473
4474 default:
4475 break;
4476 }
4477 }
4478
4479 /* If we used a previous fixup, clean up after it. */
4480 if (prev_fixup)
4481 {
4482 fixup = save_fixup + 1;
4483 prev_fixup = 0;
4484 }
4485 /* Queue it. */
4486 else if (fixup > save_fixup + 1)
4487 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4488
4489 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4490 fixups to BFD. */
4491 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4492 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4493 {
4494 /* Done with a single reloction. Loop back to the top. */
4495 if (! just_count)
4496 {
4497 if (som_hppa_howto_table[op].type == R_ENTRY)
4498 rptr->addend = var ('T');
4499 else if (som_hppa_howto_table[op].type == R_EXIT)
4500 rptr->addend = var ('U');
4501 else if (som_hppa_howto_table[op].type == R_PCREL_CALL
4502 || som_hppa_howto_table[op].type == R_ABS_CALL)
4503 ;
4504 else if (som_hppa_howto_table[op].type == R_DATA_ONE_SYMBOL)
4505 {
4506 unsigned addend = var ('V');
4507
4508 /* Try what was specified in R_DATA_OVERRIDE first
4509 (if anything). Then the hard way using the
4510 section contents. */
4511 rptr->addend = var ('V');
4512
4513 if (rptr->addend == 0 && !section->contents)
4514 {
4515 /* Got to read the damn contents first. We don't
4516 bother saving the contents (yet). Add it one
4517 day if the need arises. */
4518 section->contents = bfd_malloc (section->_raw_size);
4519 if (section->contents == NULL)
4520 return -1;
4521
4522 deallocate_contents = 1;
4523 bfd_get_section_contents (section->owner,
4524 section,
4525 section->contents,
4526 0,
4527 section->_raw_size);
4528 }
4529 else if (rptr->addend == 0)
4530 rptr->addend = bfd_get_32 (section->owner,
4531 (section->contents
4532 + offset - var ('L')));
4533
4534 }
4535 else
4536 rptr->addend = var ('V');
4537 rptr++;
4538 }
4539 count++;
4540 /* Now that we've handled a "full" relocation, reset
4541 some state. */
4542 memset (variables, 0, sizeof (variables));
4543 memset (stack, 0, sizeof (stack));
4544 }
4545 }
4546 if (deallocate_contents)
4547 free (section->contents);
4548
4549 return count;
4550
4551 #undef var
4552 #undef push
4553 #undef pop
4554 #undef emptystack
4555 }
4556
4557 /* Read in the relocs (aka fixups in SOM terms) for a section.
4558
4559 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4560 set to true to indicate it only needs a count of the number
4561 of actual relocations. */
4562
4563 static boolean
4564 som_slurp_reloc_table (abfd, section, symbols, just_count)
4565 bfd *abfd;
4566 asection *section;
4567 asymbol **symbols;
4568 boolean just_count;
4569 {
4570 char *external_relocs;
4571 unsigned int fixup_stream_size;
4572 arelent *internal_relocs;
4573 unsigned int num_relocs;
4574
4575 fixup_stream_size = som_section_data (section)->reloc_size;
4576 /* If there were no relocations, then there is nothing to do. */
4577 if (section->reloc_count == 0)
4578 return true;
4579
4580 /* If reloc_count is -1, then the relocation stream has not been
4581 parsed. We must do so now to know how many relocations exist. */
4582 if (section->reloc_count == -1)
4583 {
4584 external_relocs = (char *) bfd_malloc (fixup_stream_size);
4585 if (external_relocs == (char *) NULL)
4586 return false;
4587 /* Read in the external forms. */
4588 if (bfd_seek (abfd,
4589 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4590 SEEK_SET)
4591 != 0)
4592 return false;
4593 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
4594 != fixup_stream_size)
4595 return false;
4596
4597 /* Let callers know how many relocations found.
4598 also save the relocation stream as we will
4599 need it again. */
4600 section->reloc_count = som_set_reloc_info (external_relocs,
4601 fixup_stream_size,
4602 NULL, NULL, NULL, true);
4603
4604 som_section_data (section)->reloc_stream = external_relocs;
4605 }
4606
4607 /* If the caller only wanted a count, then return now. */
4608 if (just_count)
4609 return true;
4610
4611 num_relocs = section->reloc_count;
4612 external_relocs = som_section_data (section)->reloc_stream;
4613 /* Return saved information about the relocations if it is available. */
4614 if (section->relocation != (arelent *) NULL)
4615 return true;
4616
4617 internal_relocs = (arelent *)
4618 bfd_zalloc (abfd, (num_relocs * sizeof (arelent)));
4619 if (internal_relocs == (arelent *) NULL)
4620 return false;
4621
4622 /* Process and internalize the relocations. */
4623 som_set_reloc_info (external_relocs, fixup_stream_size,
4624 internal_relocs, section, symbols, false);
4625
4626 /* We're done with the external relocations. Free them. */
4627 free (external_relocs);
4628
4629 /* Save our results and return success. */
4630 section->relocation = internal_relocs;
4631 return (true);
4632 }
4633
4634 /* Return the number of bytes required to store the relocation
4635 information associated with the given section. */
4636
4637 static long
4638 som_get_reloc_upper_bound (abfd, asect)
4639 bfd *abfd;
4640 sec_ptr asect;
4641 {
4642 /* If section has relocations, then read in the relocation stream
4643 and parse it to determine how many relocations exist. */
4644 if (asect->flags & SEC_RELOC)
4645 {
4646 if (! som_slurp_reloc_table (abfd, asect, NULL, true))
4647 return -1;
4648 return (asect->reloc_count + 1) * sizeof (arelent *);
4649 }
4650 /* There are no relocations. */
4651 return 0;
4652 }
4653
4654 /* Convert relocations from SOM (external) form into BFD internal
4655 form. Return the number of relocations. */
4656
4657 static long
4658 som_canonicalize_reloc (abfd, section, relptr, symbols)
4659 bfd *abfd;
4660 sec_ptr section;
4661 arelent **relptr;
4662 asymbol **symbols;
4663 {
4664 arelent *tblptr;
4665 int count;
4666
4667 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
4668 return -1;
4669
4670 count = section->reloc_count;
4671 tblptr = section->relocation;
4672
4673 while (count--)
4674 *relptr++ = tblptr++;
4675
4676 *relptr = (arelent *) NULL;
4677 return section->reloc_count;
4678 }
4679
4680 extern const bfd_target som_vec;
4681
4682 /* A hook to set up object file dependent section information. */
4683
4684 static boolean
4685 som_new_section_hook (abfd, newsect)
4686 bfd *abfd;
4687 asection *newsect;
4688 {
4689 newsect->used_by_bfd =
4690 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
4691 if (!newsect->used_by_bfd)
4692 return false;
4693 newsect->alignment_power = 3;
4694
4695 /* We allow more than three sections internally */
4696 return true;
4697 }
4698
4699 /* Copy any private info we understand from the input symbol
4700 to the output symbol. */
4701
4702 static boolean
4703 som_bfd_copy_private_symbol_data (ibfd, isymbol, obfd, osymbol)
4704 bfd *ibfd;
4705 asymbol *isymbol;
4706 bfd *obfd;
4707 asymbol *osymbol;
4708 {
4709 struct som_symbol *input_symbol = (struct som_symbol *) isymbol;
4710 struct som_symbol *output_symbol = (struct som_symbol *) osymbol;
4711
4712 /* One day we may try to grok other private data. */
4713 if (ibfd->xvec->flavour != bfd_target_som_flavour
4714 || obfd->xvec->flavour != bfd_target_som_flavour)
4715 return false;
4716
4717 /* The only private information we need to copy is the argument relocation
4718 bits. */
4719 output_symbol->tc_data.hppa_arg_reloc = input_symbol->tc_data.hppa_arg_reloc;
4720
4721 return true;
4722 }
4723
4724 /* Copy any private info we understand from the input section
4725 to the output section. */
4726 static boolean
4727 som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
4728 bfd *ibfd;
4729 asection *isection;
4730 bfd *obfd;
4731 asection *osection;
4732 {
4733 /* One day we may try to grok other private data. */
4734 if (ibfd->xvec->flavour != bfd_target_som_flavour
4735 || obfd->xvec->flavour != bfd_target_som_flavour
4736 || (!som_is_space (isection) && !som_is_subspace (isection)))
4737 return true;
4738
4739 som_section_data (osection)->copy_data
4740 = (struct som_copyable_section_data_struct *)
4741 bfd_zalloc (obfd, sizeof (struct som_copyable_section_data_struct));
4742 if (som_section_data (osection)->copy_data == NULL)
4743 return false;
4744
4745 memcpy (som_section_data (osection)->copy_data,
4746 som_section_data (isection)->copy_data,
4747 sizeof (struct som_copyable_section_data_struct));
4748
4749 /* Reparent if necessary. */
4750 if (som_section_data (osection)->copy_data->container)
4751 som_section_data (osection)->copy_data->container =
4752 som_section_data (osection)->copy_data->container->output_section;
4753
4754 return true;
4755 }
4756
4757 /* Copy any private info we understand from the input bfd
4758 to the output bfd. */
4759
4760 static boolean
4761 som_bfd_copy_private_bfd_data (ibfd, obfd)
4762 bfd *ibfd, *obfd;
4763 {
4764 /* One day we may try to grok other private data. */
4765 if (ibfd->xvec->flavour != bfd_target_som_flavour
4766 || obfd->xvec->flavour != bfd_target_som_flavour)
4767 return true;
4768
4769 /* Allocate some memory to hold the data we need. */
4770 obj_som_exec_data (obfd) = (struct som_exec_data *)
4771 bfd_zalloc (obfd, sizeof (struct som_exec_data));
4772 if (obj_som_exec_data (obfd) == NULL)
4773 return false;
4774
4775 /* Now copy the data. */
4776 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
4777 sizeof (struct som_exec_data));
4778
4779 return true;
4780 }
4781
4782 /* Set backend info for sections which can not be described
4783 in the BFD data structures. */
4784
4785 boolean
4786 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
4787 asection *section;
4788 int defined;
4789 int private;
4790 unsigned int sort_key;
4791 int spnum;
4792 {
4793 /* Allocate memory to hold the magic information. */
4794 if (som_section_data (section)->copy_data == NULL)
4795 {
4796 som_section_data (section)->copy_data
4797 = (struct som_copyable_section_data_struct *)
4798 bfd_zalloc (section->owner,
4799 sizeof (struct som_copyable_section_data_struct));
4800 if (som_section_data (section)->copy_data == NULL)
4801 return false;
4802 }
4803 som_section_data (section)->copy_data->sort_key = sort_key;
4804 som_section_data (section)->copy_data->is_defined = defined;
4805 som_section_data (section)->copy_data->is_private = private;
4806 som_section_data (section)->copy_data->container = section;
4807 som_section_data (section)->copy_data->space_number = spnum;
4808 return true;
4809 }
4810
4811 /* Set backend info for subsections which can not be described
4812 in the BFD data structures. */
4813
4814 boolean
4815 bfd_som_set_subsection_attributes (section, container, access,
4816 sort_key, quadrant)
4817 asection *section;
4818 asection *container;
4819 int access;
4820 unsigned int sort_key;
4821 int quadrant;
4822 {
4823 /* Allocate memory to hold the magic information. */
4824 if (som_section_data (section)->copy_data == NULL)
4825 {
4826 som_section_data (section)->copy_data
4827 = (struct som_copyable_section_data_struct *)
4828 bfd_zalloc (section->owner,
4829 sizeof (struct som_copyable_section_data_struct));
4830 if (som_section_data (section)->copy_data == NULL)
4831 return false;
4832 }
4833 som_section_data (section)->copy_data->sort_key = sort_key;
4834 som_section_data (section)->copy_data->access_control_bits = access;
4835 som_section_data (section)->copy_data->quadrant = quadrant;
4836 som_section_data (section)->copy_data->container = container;
4837 return true;
4838 }
4839
4840 /* Set the full SOM symbol type. SOM needs far more symbol information
4841 than any other object file format I'm aware of. It is mandatory
4842 to be able to know if a symbol is an entry point, millicode, data,
4843 code, absolute, storage request, or procedure label. If you get
4844 the symbol type wrong your program will not link. */
4845
4846 void
4847 bfd_som_set_symbol_type (symbol, type)
4848 asymbol *symbol;
4849 unsigned int type;
4850 {
4851 som_symbol_data (symbol)->som_type = type;
4852 }
4853
4854 /* Attach an auxiliary header to the BFD backend so that it may be
4855 written into the object file. */
4856 boolean
4857 bfd_som_attach_aux_hdr (abfd, type, string)
4858 bfd *abfd;
4859 int type;
4860 char *string;
4861 {
4862 if (type == VERSION_AUX_ID)
4863 {
4864 int len = strlen (string);
4865 int pad = 0;
4866
4867 if (len % 4)
4868 pad = (4 - (len % 4));
4869 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
4870 bfd_zalloc (abfd, sizeof (struct aux_id)
4871 + sizeof (unsigned int) + len + pad);
4872 if (!obj_som_version_hdr (abfd))
4873 return false;
4874 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
4875 obj_som_version_hdr (abfd)->header_id.length = len + pad;
4876 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
4877 obj_som_version_hdr (abfd)->string_length = len;
4878 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
4879 }
4880 else if (type == COPYRIGHT_AUX_ID)
4881 {
4882 int len = strlen (string);
4883 int pad = 0;
4884
4885 if (len % 4)
4886 pad = (4 - (len % 4));
4887 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
4888 bfd_zalloc (abfd, sizeof (struct aux_id)
4889 + sizeof (unsigned int) + len + pad);
4890 if (!obj_som_copyright_hdr (abfd))
4891 return false;
4892 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
4893 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
4894 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
4895 obj_som_copyright_hdr (abfd)->string_length = len;
4896 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
4897 }
4898 return true;
4899 }
4900
4901 static boolean
4902 som_get_section_contents (abfd, section, location, offset, count)
4903 bfd *abfd;
4904 sec_ptr section;
4905 PTR location;
4906 file_ptr offset;
4907 bfd_size_type count;
4908 {
4909 if (count == 0 || ((section->flags & SEC_HAS_CONTENTS) == 0))
4910 return true;
4911 if ((bfd_size_type)(offset+count) > section->_raw_size
4912 || bfd_seek (abfd, (file_ptr)(section->filepos + offset), SEEK_SET) == -1
4913 || bfd_read (location, (bfd_size_type)1, count, abfd) != count)
4914 return (false); /* on error */
4915 return (true);
4916 }
4917
4918 static boolean
4919 som_set_section_contents (abfd, section, location, offset, count)
4920 bfd *abfd;
4921 sec_ptr section;
4922 PTR location;
4923 file_ptr offset;
4924 bfd_size_type count;
4925 {
4926 if (abfd->output_has_begun == false)
4927 {
4928 /* Set up fixed parts of the file, space, and subspace headers.
4929 Notify the world that output has begun. */
4930 som_prep_headers (abfd);
4931 abfd->output_has_begun = true;
4932 /* Start writing the object file. This include all the string
4933 tables, fixup streams, and other portions of the object file. */
4934 som_begin_writing (abfd);
4935 }
4936
4937 /* Only write subspaces which have "real" contents (eg. the contents
4938 are not generated at run time by the OS). */
4939 if (!som_is_subspace (section)
4940 || ((section->flags & SEC_HAS_CONTENTS) == 0))
4941 return true;
4942
4943 /* Seek to the proper offset within the object file and write the
4944 data. */
4945 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
4946 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
4947 return false;
4948
4949 if (bfd_write ((PTR) location, 1, count, abfd) != count)
4950 return false;
4951 return true;
4952 }
4953
4954 static boolean
4955 som_set_arch_mach (abfd, arch, machine)
4956 bfd *abfd;
4957 enum bfd_architecture arch;
4958 unsigned long machine;
4959 {
4960 /* Allow any architecture to be supported by the SOM backend */
4961 return bfd_default_set_arch_mach (abfd, arch, machine);
4962 }
4963
4964 static boolean
4965 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
4966 functionname_ptr, line_ptr)
4967 bfd *abfd;
4968 asection *section;
4969 asymbol **symbols;
4970 bfd_vma offset;
4971 CONST char **filename_ptr;
4972 CONST char **functionname_ptr;
4973 unsigned int *line_ptr;
4974 {
4975 return (false);
4976 }
4977
4978 static int
4979 som_sizeof_headers (abfd, reloc)
4980 bfd *abfd;
4981 boolean reloc;
4982 {
4983 (*_bfd_error_handler) ("som_sizeof_headers unimplemented");
4984 fflush (stderr);
4985 abort ();
4986 return (0);
4987 }
4988
4989 /* Return the single-character symbol type corresponding to
4990 SOM section S, or '?' for an unknown SOM section. */
4991
4992 static char
4993 som_section_type (s)
4994 const char *s;
4995 {
4996 const struct section_to_type *t;
4997
4998 for (t = &stt[0]; t->section; t++)
4999 if (!strcmp (s, t->section))
5000 return t->type;
5001 return '?';
5002 }
5003
5004 static int
5005 som_decode_symclass (symbol)
5006 asymbol *symbol;
5007 {
5008 char c;
5009
5010 if (bfd_is_com_section (symbol->section))
5011 return 'C';
5012 if (bfd_is_und_section (symbol->section))
5013 return 'U';
5014 if (bfd_is_ind_section (symbol->section))
5015 return 'I';
5016 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
5017 return '?';
5018
5019 if (bfd_is_abs_section (symbol->section)
5020 || (som_symbol_data (symbol) != NULL
5021 && som_symbol_data (symbol)->som_type == SYMBOL_TYPE_ABSOLUTE))
5022 c = 'a';
5023 else if (symbol->section)
5024 c = som_section_type (symbol->section->name);
5025 else
5026 return '?';
5027 if (symbol->flags & BSF_GLOBAL)
5028 c = toupper (c);
5029 return c;
5030 }
5031
5032 /* Return information about SOM symbol SYMBOL in RET. */
5033
5034 static void
5035 som_get_symbol_info (ignore_abfd, symbol, ret)
5036 bfd *ignore_abfd;
5037 asymbol *symbol;
5038 symbol_info *ret;
5039 {
5040 ret->type = som_decode_symclass (symbol);
5041 if (ret->type != 'U')
5042 ret->value = symbol->value+symbol->section->vma;
5043 else
5044 ret->value = 0;
5045 ret->name = symbol->name;
5046 }
5047
5048 /* Count the number of symbols in the archive symbol table. Necessary
5049 so that we can allocate space for all the carsyms at once. */
5050
5051 static boolean
5052 som_bfd_count_ar_symbols (abfd, lst_header, count)
5053 bfd *abfd;
5054 struct lst_header *lst_header;
5055 symindex *count;
5056 {
5057 unsigned int i;
5058 unsigned int *hash_table = NULL;
5059 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5060
5061 hash_table =
5062 (unsigned int *) bfd_malloc (lst_header->hash_size
5063 * sizeof (unsigned int));
5064 if (hash_table == NULL && lst_header->hash_size != 0)
5065 goto error_return;
5066
5067 /* Don't forget to initialize the counter! */
5068 *count = 0;
5069
5070 /* Read in the hash table. The has table is an array of 32bit file offsets
5071 which point to the hash chains. */
5072 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
5073 != lst_header->hash_size * 4)
5074 goto error_return;
5075
5076 /* Walk each chain counting the number of symbols found on that particular
5077 chain. */
5078 for (i = 0; i < lst_header->hash_size; i++)
5079 {
5080 struct lst_symbol_record lst_symbol;
5081
5082 /* An empty chain has zero as it's file offset. */
5083 if (hash_table[i] == 0)
5084 continue;
5085
5086 /* Seek to the first symbol in this hash chain. */
5087 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
5088 goto error_return;
5089
5090 /* Read in this symbol and update the counter. */
5091 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5092 != sizeof (lst_symbol))
5093 goto error_return;
5094
5095 (*count)++;
5096
5097 /* Now iterate through the rest of the symbols on this chain. */
5098 while (lst_symbol.next_entry)
5099 {
5100
5101 /* Seek to the next symbol. */
5102 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
5103 < 0)
5104 goto error_return;
5105
5106 /* Read the symbol in and update the counter. */
5107 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5108 != sizeof (lst_symbol))
5109 goto error_return;
5110
5111 (*count)++;
5112 }
5113 }
5114 if (hash_table != NULL)
5115 free (hash_table);
5116 return true;
5117
5118 error_return:
5119 if (hash_table != NULL)
5120 free (hash_table);
5121 return false;
5122 }
5123
5124 /* Fill in the canonical archive symbols (SYMS) from the archive described
5125 by ABFD and LST_HEADER. */
5126
5127 static boolean
5128 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
5129 bfd *abfd;
5130 struct lst_header *lst_header;
5131 carsym **syms;
5132 {
5133 unsigned int i, len;
5134 carsym *set = syms[0];
5135 unsigned int *hash_table = NULL;
5136 struct som_entry *som_dict = NULL;
5137 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5138
5139 hash_table =
5140 (unsigned int *) bfd_malloc (lst_header->hash_size
5141 * sizeof (unsigned int));
5142 if (hash_table == NULL && lst_header->hash_size != 0)
5143 goto error_return;
5144
5145 som_dict =
5146 (struct som_entry *) bfd_malloc (lst_header->module_count
5147 * sizeof (struct som_entry));
5148 if (som_dict == NULL && lst_header->module_count != 0)
5149 goto error_return;
5150
5151 /* Read in the hash table. The has table is an array of 32bit file offsets
5152 which point to the hash chains. */
5153 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
5154 != lst_header->hash_size * 4)
5155 goto error_return;
5156
5157 /* Seek to and read in the SOM dictionary. We will need this to fill
5158 in the carsym's filepos field. */
5159 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
5160 goto error_return;
5161
5162 if (bfd_read ((PTR) som_dict, lst_header->module_count,
5163 sizeof (struct som_entry), abfd)
5164 != lst_header->module_count * sizeof (struct som_entry))
5165 goto error_return;
5166
5167 /* Walk each chain filling in the carsyms as we go along. */
5168 for (i = 0; i < lst_header->hash_size; i++)
5169 {
5170 struct lst_symbol_record lst_symbol;
5171
5172 /* An empty chain has zero as it's file offset. */
5173 if (hash_table[i] == 0)
5174 continue;
5175
5176 /* Seek to and read the first symbol on the chain. */
5177 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
5178 goto error_return;
5179
5180 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5181 != sizeof (lst_symbol))
5182 goto error_return;
5183
5184 /* Get the name of the symbol, first get the length which is stored
5185 as a 32bit integer just before the symbol.
5186
5187 One might ask why we don't just read in the entire string table
5188 and index into it. Well, according to the SOM ABI the string
5189 index can point *anywhere* in the archive to save space, so just
5190 using the string table would not be safe. */
5191 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5192 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
5193 goto error_return;
5194
5195 if (bfd_read (&len, 1, 4, abfd) != 4)
5196 goto error_return;
5197
5198 /* Allocate space for the name and null terminate it too. */
5199 set->name = bfd_zalloc (abfd, len + 1);
5200 if (!set->name)
5201 goto error_return;
5202 if (bfd_read (set->name, 1, len, abfd) != len)
5203 goto error_return;
5204
5205 set->name[len] = 0;
5206
5207 /* Fill in the file offset. Note that the "location" field points
5208 to the SOM itself, not the ar_hdr in front of it. */
5209 set->file_offset = som_dict[lst_symbol.som_index].location
5210 - sizeof (struct ar_hdr);
5211
5212 /* Go to the next symbol. */
5213 set++;
5214
5215 /* Iterate through the rest of the chain. */
5216 while (lst_symbol.next_entry)
5217 {
5218 /* Seek to the next symbol and read it in. */
5219 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET) <0)
5220 goto error_return;
5221
5222 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5223 != sizeof (lst_symbol))
5224 goto error_return;
5225
5226 /* Seek to the name length & string and read them in. */
5227 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5228 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
5229 goto error_return;
5230
5231 if (bfd_read (&len, 1, 4, abfd) != 4)
5232 goto error_return;
5233
5234 /* Allocate space for the name and null terminate it too. */
5235 set->name = bfd_zalloc (abfd, len + 1);
5236 if (!set->name)
5237 goto error_return;
5238
5239 if (bfd_read (set->name, 1, len, abfd) != len)
5240 goto error_return;
5241 set->name[len] = 0;
5242
5243 /* Fill in the file offset. Note that the "location" field points
5244 to the SOM itself, not the ar_hdr in front of it. */
5245 set->file_offset = som_dict[lst_symbol.som_index].location
5246 - sizeof (struct ar_hdr);
5247
5248 /* Go on to the next symbol. */
5249 set++;
5250 }
5251 }
5252 /* If we haven't died by now, then we successfully read the entire
5253 archive symbol table. */
5254 if (hash_table != NULL)
5255 free (hash_table);
5256 if (som_dict != NULL)
5257 free (som_dict);
5258 return true;
5259
5260 error_return:
5261 if (hash_table != NULL)
5262 free (hash_table);
5263 if (som_dict != NULL)
5264 free (som_dict);
5265 return false;
5266 }
5267
5268 /* Read in the LST from the archive. */
5269 static boolean
5270 som_slurp_armap (abfd)
5271 bfd *abfd;
5272 {
5273 struct lst_header lst_header;
5274 struct ar_hdr ar_header;
5275 unsigned int parsed_size;
5276 struct artdata *ardata = bfd_ardata (abfd);
5277 char nextname[17];
5278 int i = bfd_read ((PTR) nextname, 1, 16, abfd);
5279
5280 /* Special cases. */
5281 if (i == 0)
5282 return true;
5283 if (i != 16)
5284 return false;
5285
5286 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
5287 return false;
5288
5289 /* For archives without .o files there is no symbol table. */
5290 if (strncmp (nextname, "/ ", 16))
5291 {
5292 bfd_has_map (abfd) = false;
5293 return true;
5294 }
5295
5296 /* Read in and sanity check the archive header. */
5297 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
5298 != sizeof (struct ar_hdr))
5299 return false;
5300
5301 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
5302 {
5303 bfd_set_error (bfd_error_malformed_archive);
5304 return false;
5305 }
5306
5307 /* How big is the archive symbol table entry? */
5308 errno = 0;
5309 parsed_size = strtol (ar_header.ar_size, NULL, 10);
5310 if (errno != 0)
5311 {
5312 bfd_set_error (bfd_error_malformed_archive);
5313 return false;
5314 }
5315
5316 /* Save off the file offset of the first real user data. */
5317 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
5318
5319 /* Read in the library symbol table. We'll make heavy use of this
5320 in just a minute. */
5321 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
5322 != sizeof (struct lst_header))
5323 return false;
5324
5325 /* Sanity check. */
5326 if (lst_header.a_magic != LIBMAGIC)
5327 {
5328 bfd_set_error (bfd_error_malformed_archive);
5329 return false;
5330 }
5331
5332 /* Count the number of symbols in the library symbol table. */
5333 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
5334 == false)
5335 return false;
5336
5337 /* Get back to the start of the library symbol table. */
5338 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size
5339 + sizeof (struct lst_header), SEEK_SET) < 0)
5340 return false;
5341
5342 /* Initializae the cache and allocate space for the library symbols. */
5343 ardata->cache = 0;
5344 ardata->symdefs = (carsym *) bfd_alloc (abfd,
5345 (ardata->symdef_count
5346 * sizeof (carsym)));
5347 if (!ardata->symdefs)
5348 return false;
5349
5350 /* Now fill in the canonical archive symbols. */
5351 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
5352 == false)
5353 return false;
5354
5355 /* Seek back to the "first" file in the archive. Note the "first"
5356 file may be the extended name table. */
5357 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) < 0)
5358 return false;
5359
5360 /* Notify the generic archive code that we have a symbol map. */
5361 bfd_has_map (abfd) = true;
5362 return true;
5363 }
5364
5365 /* Begin preparing to write a SOM library symbol table.
5366
5367 As part of the prep work we need to determine the number of symbols
5368 and the size of the associated string section. */
5369
5370 static boolean
5371 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
5372 bfd *abfd;
5373 unsigned int *num_syms, *stringsize;
5374 {
5375 bfd *curr_bfd = abfd->archive_head;
5376
5377 /* Some initialization. */
5378 *num_syms = 0;
5379 *stringsize = 0;
5380
5381 /* Iterate over each BFD within this archive. */
5382 while (curr_bfd != NULL)
5383 {
5384 unsigned int curr_count, i;
5385 som_symbol_type *sym;
5386
5387 /* Don't bother for non-SOM objects. */
5388 if (curr_bfd->format != bfd_object
5389 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5390 {
5391 curr_bfd = curr_bfd->next;
5392 continue;
5393 }
5394
5395 /* Make sure the symbol table has been read, then snag a pointer
5396 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5397 but doing so avoids allocating lots of extra memory. */
5398 if (som_slurp_symbol_table (curr_bfd) == false)
5399 return false;
5400
5401 sym = obj_som_symtab (curr_bfd);
5402 curr_count = bfd_get_symcount (curr_bfd);
5403
5404 /* Examine each symbol to determine if it belongs in the
5405 library symbol table. */
5406 for (i = 0; i < curr_count; i++, sym++)
5407 {
5408 struct som_misc_symbol_info info;
5409
5410 /* Derive SOM information from the BFD symbol. */
5411 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5412
5413 /* Should we include this symbol? */
5414 if (info.symbol_type == ST_NULL
5415 || info.symbol_type == ST_SYM_EXT
5416 || info.symbol_type == ST_ARG_EXT)
5417 continue;
5418
5419 /* Only global symbols and unsatisfied commons. */
5420 if (info.symbol_scope != SS_UNIVERSAL
5421 && info.symbol_type != ST_STORAGE)
5422 continue;
5423
5424 /* Do no include undefined symbols. */
5425 if (bfd_is_und_section (sym->symbol.section))
5426 continue;
5427
5428 /* Bump the various counters, being careful to honor
5429 alignment considerations in the string table. */
5430 (*num_syms)++;
5431 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5432 while (*stringsize % 4)
5433 (*stringsize)++;
5434 }
5435
5436 curr_bfd = curr_bfd->next;
5437 }
5438 return true;
5439 }
5440
5441 /* Hash a symbol name based on the hashing algorithm presented in the
5442 SOM ABI. */
5443 static unsigned int
5444 som_bfd_ar_symbol_hash (symbol)
5445 asymbol *symbol;
5446 {
5447 unsigned int len = strlen (symbol->name);
5448
5449 /* Names with length 1 are special. */
5450 if (len == 1)
5451 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5452
5453 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5454 | (symbol->name[len-2] << 8) | symbol->name[len-1];
5455 }
5456
5457 static CONST char *
5458 normalize (file)
5459 CONST char *file;
5460 {
5461 CONST char *filename = strrchr (file, '/');
5462
5463 if (filename != NULL)
5464 filename++;
5465 else
5466 filename = file;
5467 return filename;
5468 }
5469
5470 /* Do the bulk of the work required to write the SOM library
5471 symbol table. */
5472
5473 static boolean
5474 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst)
5475 bfd *abfd;
5476 unsigned int nsyms, string_size;
5477 struct lst_header lst;
5478 {
5479 file_ptr lst_filepos;
5480 char *strings = NULL, *p;
5481 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5482 bfd *curr_bfd;
5483 unsigned int *hash_table = NULL;
5484 struct som_entry *som_dict = NULL;
5485 struct lst_symbol_record **last_hash_entry = NULL;
5486 unsigned int curr_som_offset, som_index, extended_name_length = 0;
5487 unsigned int maxname = abfd->xvec->ar_max_namelen;
5488
5489 hash_table =
5490 (unsigned int *) bfd_malloc (lst.hash_size * sizeof (unsigned int));
5491 if (hash_table == NULL && lst.hash_size != 0)
5492 goto error_return;
5493 som_dict =
5494 (struct som_entry *) bfd_malloc (lst.module_count
5495 * sizeof (struct som_entry));
5496 if (som_dict == NULL && lst.module_count != 0)
5497 goto error_return;
5498
5499 last_hash_entry =
5500 ((struct lst_symbol_record **)
5501 bfd_malloc (lst.hash_size * sizeof (struct lst_symbol_record *)));
5502 if (last_hash_entry == NULL && lst.hash_size != 0)
5503 goto error_return;
5504
5505 /* Lots of fields are file positions relative to the start
5506 of the lst record. So save its location. */
5507 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5508
5509 /* Some initialization. */
5510 memset (hash_table, 0, 4 * lst.hash_size);
5511 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
5512 memset (last_hash_entry, 0,
5513 lst.hash_size * sizeof (struct lst_symbol_record *));
5514
5515 /* Symbols have som_index fields, so we have to keep track of the
5516 index of each SOM in the archive.
5517
5518 The SOM dictionary has (among other things) the absolute file
5519 position for the SOM which a particular dictionary entry
5520 describes. We have to compute that information as we iterate
5521 through the SOMs/symbols. */
5522 som_index = 0;
5523 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5524
5525 /* Yow! We have to know the size of the extended name table
5526 too. */
5527 for (curr_bfd = abfd->archive_head;
5528 curr_bfd != NULL;
5529 curr_bfd = curr_bfd->next)
5530 {
5531 CONST char *normal = normalize (curr_bfd->filename);
5532 unsigned int thislen;
5533
5534 if (!normal)
5535 return false;
5536 thislen = strlen (normal);
5537 if (thislen > maxname)
5538 extended_name_length += thislen + 1;
5539 }
5540
5541 /* Make room for the archive header and the contents of the
5542 extended string table. */
5543 if (extended_name_length)
5544 curr_som_offset += extended_name_length + sizeof (struct ar_hdr);
5545
5546 /* Make sure we're properly aligned. */
5547 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5548
5549 /* FIXME should be done with buffers just like everything else... */
5550 lst_syms = bfd_malloc (nsyms * sizeof (struct lst_symbol_record));
5551 if (lst_syms == NULL && nsyms != 0)
5552 goto error_return;
5553 strings = bfd_malloc (string_size);
5554 if (strings == NULL && string_size != 0)
5555 goto error_return;
5556
5557 p = strings;
5558 curr_lst_sym = lst_syms;
5559
5560 curr_bfd = abfd->archive_head;
5561 while (curr_bfd != NULL)
5562 {
5563 unsigned int curr_count, i;
5564 som_symbol_type *sym;
5565
5566 /* Don't bother for non-SOM objects. */
5567 if (curr_bfd->format != bfd_object
5568 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5569 {
5570 curr_bfd = curr_bfd->next;
5571 continue;
5572 }
5573
5574 /* Make sure the symbol table has been read, then snag a pointer
5575 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5576 but doing so avoids allocating lots of extra memory. */
5577 if (som_slurp_symbol_table (curr_bfd) == false)
5578 goto error_return;
5579
5580 sym = obj_som_symtab (curr_bfd);
5581 curr_count = bfd_get_symcount (curr_bfd);
5582
5583 for (i = 0; i < curr_count; i++, sym++)
5584 {
5585 struct som_misc_symbol_info info;
5586
5587 /* Derive SOM information from the BFD symbol. */
5588 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5589
5590 /* Should we include this symbol? */
5591 if (info.symbol_type == ST_NULL
5592 || info.symbol_type == ST_SYM_EXT
5593 || info.symbol_type == ST_ARG_EXT)
5594 continue;
5595
5596 /* Only global symbols and unsatisfied commons. */
5597 if (info.symbol_scope != SS_UNIVERSAL
5598 && info.symbol_type != ST_STORAGE)
5599 continue;
5600
5601 /* Do no include undefined symbols. */
5602 if (bfd_is_und_section (sym->symbol.section))
5603 continue;
5604
5605 /* If this is the first symbol from this SOM, then update
5606 the SOM dictionary too. */
5607 if (som_dict[som_index].location == 0)
5608 {
5609 som_dict[som_index].location = curr_som_offset;
5610 som_dict[som_index].length = arelt_size (curr_bfd);
5611 }
5612
5613 /* Fill in the lst symbol record. */
5614 curr_lst_sym->hidden = 0;
5615 curr_lst_sym->secondary_def = 0;
5616 curr_lst_sym->symbol_type = info.symbol_type;
5617 curr_lst_sym->symbol_scope = info.symbol_scope;
5618 curr_lst_sym->check_level = 0;
5619 curr_lst_sym->must_qualify = 0;
5620 curr_lst_sym->initially_frozen = 0;
5621 curr_lst_sym->memory_resident = 0;
5622 curr_lst_sym->is_common = bfd_is_com_section (sym->symbol.section);
5623 curr_lst_sym->dup_common = 0;
5624 curr_lst_sym->xleast = 0;
5625 curr_lst_sym->arg_reloc = info.arg_reloc;
5626 curr_lst_sym->name.n_strx = p - strings + 4;
5627 curr_lst_sym->qualifier_name.n_strx = 0;
5628 curr_lst_sym->symbol_info = info.symbol_info;
5629 curr_lst_sym->symbol_value = info.symbol_value;
5630 curr_lst_sym->symbol_descriptor = 0;
5631 curr_lst_sym->reserved = 0;
5632 curr_lst_sym->som_index = som_index;
5633 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
5634 curr_lst_sym->next_entry = 0;
5635
5636 /* Insert into the hash table. */
5637 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
5638 {
5639 struct lst_symbol_record *tmp;
5640
5641 /* There is already something at the head of this hash chain,
5642 so tack this symbol onto the end of the chain. */
5643 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
5644 tmp->next_entry
5645 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5646 + lst.hash_size * 4
5647 + lst.module_count * sizeof (struct som_entry)
5648 + sizeof (struct lst_header);
5649 }
5650 else
5651 {
5652 /* First entry in this hash chain. */
5653 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
5654 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5655 + lst.hash_size * 4
5656 + lst.module_count * sizeof (struct som_entry)
5657 + sizeof (struct lst_header);
5658 }
5659
5660 /* Keep track of the last symbol we added to this chain so we can
5661 easily update its next_entry pointer. */
5662 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
5663 = curr_lst_sym;
5664
5665
5666 /* Update the string table. */
5667 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
5668 p += 4;
5669 strcpy (p, sym->symbol.name);
5670 p += strlen (sym->symbol.name) + 1;
5671 while ((int)p % 4)
5672 {
5673 bfd_put_8 (abfd, 0, p);
5674 p++;
5675 }
5676
5677 /* Head to the next symbol. */
5678 curr_lst_sym++;
5679 }
5680
5681 /* Keep track of where each SOM will finally reside; then look
5682 at the next BFD. */
5683 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
5684
5685 /* A particular object in the archive may have an odd length; the
5686 linker requires objects begin on an even boundary. So round
5687 up the current offset as necessary. */
5688 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5689 curr_bfd = curr_bfd->next;
5690 som_index++;
5691 }
5692
5693 /* Now scribble out the hash table. */
5694 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
5695 != lst.hash_size * 4)
5696 goto error_return;
5697
5698 /* Then the SOM dictionary. */
5699 if (bfd_write ((PTR) som_dict, lst.module_count,
5700 sizeof (struct som_entry), abfd)
5701 != lst.module_count * sizeof (struct som_entry))
5702 goto error_return;
5703
5704 /* The library symbols. */
5705 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
5706 != nsyms * sizeof (struct lst_symbol_record))
5707 goto error_return;
5708
5709 /* And finally the strings. */
5710 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
5711 goto error_return;
5712
5713 if (hash_table != NULL)
5714 free (hash_table);
5715 if (som_dict != NULL)
5716 free (som_dict);
5717 if (last_hash_entry != NULL)
5718 free (last_hash_entry);
5719 if (lst_syms != NULL)
5720 free (lst_syms);
5721 if (strings != NULL)
5722 free (strings);
5723 return true;
5724
5725 error_return:
5726 if (hash_table != NULL)
5727 free (hash_table);
5728 if (som_dict != NULL)
5729 free (som_dict);
5730 if (last_hash_entry != NULL)
5731 free (last_hash_entry);
5732 if (lst_syms != NULL)
5733 free (lst_syms);
5734 if (strings != NULL)
5735 free (strings);
5736
5737 return false;
5738 }
5739
5740 /* SOM almost uses the SVR4 style extended name support, but not
5741 quite. */
5742
5743 static boolean
5744 som_construct_extended_name_table (abfd, tabloc, tablen, name)
5745 bfd *abfd;
5746 char **tabloc;
5747 bfd_size_type *tablen;
5748 const char **name;
5749 {
5750 *name = "//";
5751 return _bfd_construct_extended_name_table (abfd, false, tabloc, tablen);
5752 }
5753
5754 /* Write out the LST for the archive.
5755
5756 You'll never believe this is really how armaps are handled in SOM... */
5757
5758 /*ARGSUSED*/
5759 static boolean
5760 som_write_armap (abfd, elength, map, orl_count, stridx)
5761 bfd *abfd;
5762 unsigned int elength;
5763 struct orl *map;
5764 unsigned int orl_count;
5765 int stridx;
5766 {
5767 bfd *curr_bfd;
5768 struct stat statbuf;
5769 unsigned int i, lst_size, nsyms, stringsize;
5770 struct ar_hdr hdr;
5771 struct lst_header lst;
5772 int *p;
5773
5774 /* We'll use this for the archive's date and mode later. */
5775 if (stat (abfd->filename, &statbuf) != 0)
5776 {
5777 bfd_set_error (bfd_error_system_call);
5778 return false;
5779 }
5780 /* Fudge factor. */
5781 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
5782
5783 /* Account for the lst header first. */
5784 lst_size = sizeof (struct lst_header);
5785
5786 /* Start building the LST header. */
5787 /* FIXME: Do we need to examine each element to determine the
5788 largest id number? */
5789 lst.system_id = CPU_PA_RISC1_0;
5790 lst.a_magic = LIBMAGIC;
5791 lst.version_id = VERSION_ID;
5792 lst.file_time.secs = 0;
5793 lst.file_time.nanosecs = 0;
5794
5795 lst.hash_loc = lst_size;
5796 lst.hash_size = SOM_LST_HASH_SIZE;
5797
5798 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
5799 lst_size += 4 * SOM_LST_HASH_SIZE;
5800
5801 /* We need to count the number of SOMs in this archive. */
5802 curr_bfd = abfd->archive_head;
5803 lst.module_count = 0;
5804 while (curr_bfd != NULL)
5805 {
5806 /* Only true SOM objects count. */
5807 if (curr_bfd->format == bfd_object
5808 && curr_bfd->xvec->flavour == bfd_target_som_flavour)
5809 lst.module_count++;
5810 curr_bfd = curr_bfd->next;
5811 }
5812 lst.module_limit = lst.module_count;
5813 lst.dir_loc = lst_size;
5814 lst_size += sizeof (struct som_entry) * lst.module_count;
5815
5816 /* We don't support import/export tables, auxiliary headers,
5817 or free lists yet. Make the linker work a little harder
5818 to make our life easier. */
5819
5820 lst.export_loc = 0;
5821 lst.export_count = 0;
5822 lst.import_loc = 0;
5823 lst.aux_loc = 0;
5824 lst.aux_size = 0;
5825
5826 /* Count how many symbols we will have on the hash chains and the
5827 size of the associated string table. */
5828 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
5829 return false;
5830
5831 lst_size += sizeof (struct lst_symbol_record) * nsyms;
5832
5833 /* For the string table. One day we might actually use this info
5834 to avoid small seeks/reads when reading archives. */
5835 lst.string_loc = lst_size;
5836 lst.string_size = stringsize;
5837 lst_size += stringsize;
5838
5839 /* SOM ABI says this must be zero. */
5840 lst.free_list = 0;
5841 lst.file_end = lst_size;
5842
5843 /* Compute the checksum. Must happen after the entire lst header
5844 has filled in. */
5845 p = (int *)&lst;
5846 lst.checksum = 0;
5847 for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
5848 lst.checksum ^= *p++;
5849
5850 sprintf (hdr.ar_name, "/ ");
5851 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
5852 sprintf (hdr.ar_uid, "%ld", (long) getuid ());
5853 sprintf (hdr.ar_gid, "%ld", (long) getgid ());
5854 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
5855 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
5856 hdr.ar_fmag[0] = '`';
5857 hdr.ar_fmag[1] = '\012';
5858
5859 /* Turn any nulls into spaces. */
5860 for (i = 0; i < sizeof (struct ar_hdr); i++)
5861 if (((char *) (&hdr))[i] == '\0')
5862 (((char *) (&hdr))[i]) = ' ';
5863
5864 /* Scribble out the ar header. */
5865 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
5866 != sizeof (struct ar_hdr))
5867 return false;
5868
5869 /* Now scribble out the lst header. */
5870 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
5871 != sizeof (struct lst_header))
5872 return false;
5873
5874 /* Build and write the armap. */
5875 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst) == false)
5876 return false;
5877
5878 /* Done. */
5879 return true;
5880 }
5881
5882 /* Free all information we have cached for this BFD. We can always
5883 read it again later if we need it. */
5884
5885 static boolean
5886 som_bfd_free_cached_info (abfd)
5887 bfd *abfd;
5888 {
5889 asection *o;
5890
5891 if (bfd_get_format (abfd) != bfd_object)
5892 return true;
5893
5894 #define FREE(x) if (x != NULL) { free (x); x = NULL; }
5895 /* Free the native string and symbol tables. */
5896 FREE (obj_som_symtab (abfd));
5897 FREE (obj_som_stringtab (abfd));
5898 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5899 {
5900 /* Free the native relocations. */
5901 o->reloc_count = -1;
5902 FREE (som_section_data (o)->reloc_stream);
5903 /* Free the generic relocations. */
5904 FREE (o->relocation);
5905 }
5906 #undef FREE
5907
5908 return true;
5909 }
5910
5911 /* End of miscellaneous support functions. */
5912
5913 /* Linker support functions. */
5914 static boolean
5915 som_bfd_link_split_section (abfd, sec)
5916 bfd *abfd;
5917 asection *sec;
5918 {
5919 return (som_is_subspace (sec) && sec->_raw_size > 240000);
5920 }
5921
5922 #define som_close_and_cleanup som_bfd_free_cached_info
5923
5924 #define som_read_ar_hdr _bfd_generic_read_ar_hdr
5925 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
5926 #define som_get_elt_at_index _bfd_generic_get_elt_at_index
5927 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
5928 #define som_truncate_arname bfd_bsd_truncate_arname
5929 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
5930 #define som_update_armap_timestamp bfd_true
5931 #define som_bfd_print_private_bfd_data _bfd_generic_bfd_print_private_bfd_data
5932
5933 #define som_get_lineno _bfd_nosymbols_get_lineno
5934 #define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol
5935 #define som_read_minisymbols _bfd_generic_read_minisymbols
5936 #define som_minisymbol_to_symbol _bfd_generic_minisymbol_to_symbol
5937 #define som_get_section_contents_in_window \
5938 _bfd_generic_get_section_contents_in_window
5939
5940 #define som_bfd_get_relocated_section_contents \
5941 bfd_generic_get_relocated_section_contents
5942 #define som_bfd_relax_section bfd_generic_relax_section
5943 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
5944 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
5945 #define som_bfd_final_link _bfd_generic_final_link
5946
5947
5948 const bfd_target som_vec =
5949 {
5950 "som", /* name */
5951 bfd_target_som_flavour,
5952 BFD_ENDIAN_BIG, /* target byte order */
5953 BFD_ENDIAN_BIG, /* target headers byte order */
5954 (HAS_RELOC | EXEC_P | /* object flags */
5955 HAS_LINENO | HAS_DEBUG |
5956 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
5957 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
5958 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
5959
5960 /* leading_symbol_char: is the first char of a user symbol
5961 predictable, and if so what is it */
5962 0,
5963 '/', /* ar_pad_char */
5964 14, /* ar_max_namelen */
5965 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5966 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5967 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
5968 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5969 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5970 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
5971 {_bfd_dummy_target,
5972 som_object_p, /* bfd_check_format */
5973 bfd_generic_archive_p,
5974 _bfd_dummy_target
5975 },
5976 {
5977 bfd_false,
5978 som_mkobject,
5979 _bfd_generic_mkarchive,
5980 bfd_false
5981 },
5982 {
5983 bfd_false,
5984 som_write_object_contents,
5985 _bfd_write_archive_contents,
5986 bfd_false,
5987 },
5988 #undef som
5989
5990 BFD_JUMP_TABLE_GENERIC (som),
5991 BFD_JUMP_TABLE_COPY (som),
5992 BFD_JUMP_TABLE_CORE (_bfd_nocore),
5993 BFD_JUMP_TABLE_ARCHIVE (som),
5994 BFD_JUMP_TABLE_SYMBOLS (som),
5995 BFD_JUMP_TABLE_RELOCS (som),
5996 BFD_JUMP_TABLE_WRITE (som),
5997 BFD_JUMP_TABLE_LINK (som),
5998 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
5999
6000 (PTR) 0
6001 };
6002
6003 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */
This page took 0.175529 seconds and 5 git commands to generate.