71ad457fc86e399840e26323c0fccee3c703ecaf
[deliverable/binutils-gdb.git] / bfd / sunos.c
1 /* BFD backend for SunOS binaries.
2 Copyright (C) 1990, 91, 92, 93, 94 Free Software Foundation, Inc.
3 Written by Cygnus Support.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 #define TARGETNAME "a.out-sunos-big"
22 #define MY(OP) CAT(sunos_big_,OP)
23
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libaout.h"
27
28 /* Static routines defined in this file. */
29
30 static boolean sunos_read_dynamic_info PARAMS ((bfd *));
31 static long sunos_get_dynamic_symtab_upper_bound PARAMS ((bfd *));
32 static long sunos_canonicalize_dynamic_symtab PARAMS ((bfd *, asymbol **));
33 static long sunos_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
34 static long sunos_canonicalize_dynamic_reloc
35 PARAMS ((bfd *, arelent **, asymbol **));
36 static struct bfd_hash_entry *sunos_link_hash_newfunc
37 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
38 static struct bfd_link_hash_table *sunos_link_hash_table_create
39 PARAMS ((bfd *));
40 static boolean sunos_add_dynamic_symbols
41 PARAMS ((bfd *, struct bfd_link_info *));
42 static boolean sunos_add_one_symbol
43 PARAMS ((struct bfd_link_info *, bfd *, const char *, flagword, asection *,
44 bfd_vma, const char *, boolean, boolean,
45 struct bfd_link_hash_entry **));
46 static boolean sunos_scan_relocs
47 PARAMS ((struct bfd_link_info *, bfd *, asection *, bfd_size_type));
48 static boolean sunos_scan_std_relocs
49 PARAMS ((struct bfd_link_info *, bfd *, asection *,
50 const struct reloc_std_external *, bfd_size_type));
51 static boolean sunos_scan_ext_relocs
52 PARAMS ((struct bfd_link_info *, bfd *, asection *,
53 const struct reloc_ext_external *, bfd_size_type));
54 static boolean sunos_link_dynamic_object
55 PARAMS ((struct bfd_link_info *, bfd *));
56 static boolean sunos_write_dynamic_symbol
57 PARAMS ((bfd *, struct bfd_link_info *, struct aout_link_hash_entry *));
58 static boolean sunos_check_dynamic_reloc
59 PARAMS ((struct bfd_link_info *, bfd *, asection *,
60 struct aout_link_hash_entry *, PTR, boolean *));
61 static boolean sunos_finish_dynamic_link
62 PARAMS ((bfd *, struct bfd_link_info *));
63
64 #define MY_get_dynamic_symtab_upper_bound sunos_get_dynamic_symtab_upper_bound
65 #define MY_canonicalize_dynamic_symtab sunos_canonicalize_dynamic_symtab
66 #define MY_get_dynamic_reloc_upper_bound sunos_get_dynamic_reloc_upper_bound
67 #define MY_canonicalize_dynamic_reloc sunos_canonicalize_dynamic_reloc
68 #define MY_bfd_link_hash_table_create sunos_link_hash_table_create
69 #define MY_add_dynamic_symbols sunos_add_dynamic_symbols
70 #define MY_add_one_symbol sunos_add_one_symbol
71 #define MY_link_dynamic_object sunos_link_dynamic_object
72 #define MY_write_dynamic_symbol sunos_write_dynamic_symbol
73 #define MY_check_dynamic_reloc sunos_check_dynamic_reloc
74 #define MY_finish_dynamic_link sunos_finish_dynamic_link
75
76 /* Include the usual a.out support. */
77 #include "aoutf1.h"
78
79 /* SunOS shared library support. We store a pointer to this structure
80 in obj_aout_dynamic_info (abfd). */
81
82 struct sunos_dynamic_info
83 {
84 /* Whether we found any dynamic information. */
85 boolean valid;
86 /* Dynamic information. */
87 struct internal_sun4_dynamic_link dyninfo;
88 /* Number of dynamic symbols. */
89 long dynsym_count;
90 /* Read in nlists for dynamic symbols. */
91 struct external_nlist *dynsym;
92 /* asymbol structures for dynamic symbols. */
93 aout_symbol_type *canonical_dynsym;
94 /* Read in dynamic string table. */
95 char *dynstr;
96 /* Number of dynamic relocs. */
97 long dynrel_count;
98 /* Read in dynamic relocs. This may be reloc_std_external or
99 reloc_ext_external. */
100 PTR dynrel;
101 /* arelent structures for dynamic relocs. */
102 arelent *canonical_dynrel;
103 };
104
105 /* The hash table of dynamic symbols is composed of two word entries.
106 See include/aout/sun4.h for details. */
107
108 #define HASH_ENTRY_SIZE (2 * BYTES_IN_WORD)
109
110 /* Read in the basic dynamic information. This locates the __DYNAMIC
111 structure and uses it to find the dynamic_link structure. It
112 creates and saves a sunos_dynamic_info structure. If it can't find
113 __DYNAMIC, it sets the valid field of the sunos_dynamic_info
114 structure to false to avoid doing this work again. */
115
116 static boolean
117 sunos_read_dynamic_info (abfd)
118 bfd *abfd;
119 {
120 struct sunos_dynamic_info *info;
121 asection *dynsec;
122 file_ptr dynoff;
123 struct external_sun4_dynamic dyninfo;
124 unsigned long dynver;
125 struct external_sun4_dynamic_link linkinfo;
126
127 if (obj_aout_dynamic_info (abfd) != (PTR) NULL)
128 return true;
129
130 if ((abfd->flags & DYNAMIC) == 0)
131 {
132 bfd_set_error (bfd_error_invalid_operation);
133 return false;
134 }
135
136 info = ((struct sunos_dynamic_info *)
137 bfd_zalloc (abfd, sizeof (struct sunos_dynamic_info)));
138 if (!info)
139 {
140 bfd_set_error (bfd_error_no_memory);
141 return false;
142 }
143 info->valid = false;
144 info->dynsym = NULL;
145 info->dynstr = NULL;
146 info->canonical_dynsym = NULL;
147 info->dynrel = NULL;
148 info->canonical_dynrel = NULL;
149 obj_aout_dynamic_info (abfd) = (PTR) info;
150
151 /* This code used to look for the __DYNAMIC symbol to locate the dynamic
152 linking information.
153 However this inhibits recovering the dynamic symbols from a
154 stripped object file, so blindly assume that the dynamic linking
155 information is located at the start of the data section.
156 We could verify this assumption later by looking through the dynamic
157 symbols for the __DYNAMIC symbol. */
158 if ((abfd->flags & DYNAMIC) == 0)
159 return true;
160 if (! bfd_get_section_contents (abfd, obj_datasec (abfd), (PTR) &dyninfo,
161 (file_ptr) 0, sizeof dyninfo))
162 return true;
163
164 dynver = GET_WORD (abfd, dyninfo.ld_version);
165 if (dynver != 2 && dynver != 3)
166 return true;
167
168 dynoff = GET_WORD (abfd, dyninfo.ld);
169
170 /* dynoff is a virtual address. It is probably always in the .data
171 section, but this code should work even if it moves. */
172 if (dynoff < bfd_get_section_vma (abfd, obj_datasec (abfd)))
173 dynsec = obj_textsec (abfd);
174 else
175 dynsec = obj_datasec (abfd);
176 dynoff -= bfd_get_section_vma (abfd, dynsec);
177 if (dynoff < 0 || dynoff > bfd_section_size (abfd, dynsec))
178 return true;
179
180 /* This executable appears to be dynamically linked in a way that we
181 can understand. */
182 if (! bfd_get_section_contents (abfd, dynsec, (PTR) &linkinfo, dynoff,
183 (bfd_size_type) sizeof linkinfo))
184 return true;
185
186 /* Swap in the dynamic link information. */
187 info->dyninfo.ld_loaded = GET_WORD (abfd, linkinfo.ld_loaded);
188 info->dyninfo.ld_need = GET_WORD (abfd, linkinfo.ld_need);
189 info->dyninfo.ld_rules = GET_WORD (abfd, linkinfo.ld_rules);
190 info->dyninfo.ld_got = GET_WORD (abfd, linkinfo.ld_got);
191 info->dyninfo.ld_plt = GET_WORD (abfd, linkinfo.ld_plt);
192 info->dyninfo.ld_rel = GET_WORD (abfd, linkinfo.ld_rel);
193 info->dyninfo.ld_hash = GET_WORD (abfd, linkinfo.ld_hash);
194 info->dyninfo.ld_stab = GET_WORD (abfd, linkinfo.ld_stab);
195 info->dyninfo.ld_stab_hash = GET_WORD (abfd, linkinfo.ld_stab_hash);
196 info->dyninfo.ld_buckets = GET_WORD (abfd, linkinfo.ld_buckets);
197 info->dyninfo.ld_symbols = GET_WORD (abfd, linkinfo.ld_symbols);
198 info->dyninfo.ld_symb_size = GET_WORD (abfd, linkinfo.ld_symb_size);
199 info->dyninfo.ld_text = GET_WORD (abfd, linkinfo.ld_text);
200 info->dyninfo.ld_plt_sz = GET_WORD (abfd, linkinfo.ld_plt_sz);
201
202 /* The only way to get the size of the symbol information appears to
203 be to determine the distance between it and the string table. */
204 info->dynsym_count = ((info->dyninfo.ld_symbols - info->dyninfo.ld_stab)
205 / EXTERNAL_NLIST_SIZE);
206 BFD_ASSERT (info->dynsym_count * EXTERNAL_NLIST_SIZE
207 == info->dyninfo.ld_symbols - info->dyninfo.ld_stab);
208
209 /* Similarly, the relocs end at the hash table. */
210 info->dynrel_count = ((info->dyninfo.ld_hash - info->dyninfo.ld_rel)
211 / obj_reloc_entry_size (abfd));
212 BFD_ASSERT (info->dynrel_count * obj_reloc_entry_size (abfd)
213 == info->dyninfo.ld_hash - info->dyninfo.ld_rel);
214
215 info->valid = true;
216
217 return true;
218 }
219
220 /* Return the amount of memory required for the dynamic symbols. */
221
222 static long
223 sunos_get_dynamic_symtab_upper_bound (abfd)
224 bfd *abfd;
225 {
226 struct sunos_dynamic_info *info;
227
228 if (! sunos_read_dynamic_info (abfd))
229 return -1;
230
231 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
232 if (! info->valid)
233 {
234 bfd_set_error (bfd_error_no_symbols);
235 return -1;
236 }
237
238 return (info->dynsym_count + 1) * sizeof (asymbol *);
239 }
240
241 /* Read in the dynamic symbols. */
242
243 static long
244 sunos_canonicalize_dynamic_symtab (abfd, storage)
245 bfd *abfd;
246 asymbol **storage;
247 {
248 struct sunos_dynamic_info *info;
249 long i;
250
251 /* Get the general dynamic information. */
252 if (obj_aout_dynamic_info (abfd) == NULL)
253 {
254 if (! sunos_read_dynamic_info (abfd))
255 return -1;
256 }
257
258 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
259 if (! info->valid)
260 {
261 bfd_set_error (bfd_error_no_symbols);
262 return -1;
263 }
264
265 /* Get the dynamic nlist structures. */
266 if (info->dynsym == (struct external_nlist *) NULL)
267 {
268 info->dynsym = ((struct external_nlist *)
269 bfd_alloc (abfd,
270 (info->dynsym_count
271 * EXTERNAL_NLIST_SIZE)));
272 if (info->dynsym == NULL && info->dynsym_count != 0)
273 {
274 bfd_set_error (bfd_error_no_memory);
275 return -1;
276 }
277 if (bfd_seek (abfd, info->dyninfo.ld_stab, SEEK_SET) != 0
278 || (bfd_read ((PTR) info->dynsym, info->dynsym_count,
279 EXTERNAL_NLIST_SIZE, abfd)
280 != info->dynsym_count * EXTERNAL_NLIST_SIZE))
281 {
282 if (info->dynsym != NULL)
283 {
284 bfd_release (abfd, info->dynsym);
285 info->dynsym = NULL;
286 }
287 return -1;
288 }
289 }
290
291 /* Get the dynamic strings. */
292 if (info->dynstr == (char *) NULL)
293 {
294 info->dynstr = (char *) bfd_alloc (abfd, info->dyninfo.ld_symb_size);
295 if (info->dynstr == NULL && info->dyninfo.ld_symb_size != 0)
296 {
297 bfd_set_error (bfd_error_no_memory);
298 return -1;
299 }
300 if (bfd_seek (abfd, info->dyninfo.ld_symbols, SEEK_SET) != 0
301 || (bfd_read ((PTR) info->dynstr, 1, info->dyninfo.ld_symb_size,
302 abfd)
303 != info->dyninfo.ld_symb_size))
304 {
305 if (info->dynstr != NULL)
306 {
307 bfd_release (abfd, info->dynstr);
308 info->dynstr = NULL;
309 }
310 return -1;
311 }
312 }
313
314 #ifdef CHECK_DYNAMIC_HASH
315 /* Check my understanding of the dynamic hash table by making sure
316 that each symbol can be located in the hash table. */
317 {
318 bfd_size_type table_size;
319 bfd_byte *table;
320 bfd_size_type i;
321
322 if (info->dyninfo.ld_buckets > info->dynsym_count)
323 abort ();
324 table_size = info->dyninfo.ld_stab - info->dyninfo.ld_hash;
325 table = (bfd_byte *) malloc (table_size);
326 if (table == NULL && table_size != 0)
327 abort ();
328 if (bfd_seek (abfd, info->dyninfo.ld_hash, SEEK_SET) != 0
329 || bfd_read ((PTR) table, 1, table_size, abfd) != table_size)
330 abort ();
331 for (i = 0; i < info->dynsym_count; i++)
332 {
333 unsigned char *name;
334 unsigned long hash;
335
336 name = ((unsigned char *) info->dynstr
337 + GET_WORD (abfd, info->dynsym[i].e_strx));
338 hash = 0;
339 while (*name != '\0')
340 hash = (hash << 1) + *name++;
341 hash &= 0x7fffffff;
342 hash %= info->dyninfo.ld_buckets;
343 while (GET_WORD (abfd, table + hash * HASH_ENTRY_SIZE) != i)
344 {
345 hash = GET_WORD (abfd,
346 table + hash * HASH_ENTRY_SIZE + BYTES_IN_WORD);
347 if (hash == 0 || hash >= table_size / HASH_ENTRY_SIZE)
348 abort ();
349 }
350 }
351 free (table);
352 }
353 #endif /* CHECK_DYNAMIC_HASH */
354
355 /* Get the asymbol structures corresponding to the dynamic nlist
356 structures. */
357 if (info->canonical_dynsym == (aout_symbol_type *) NULL)
358 {
359 info->canonical_dynsym = ((aout_symbol_type *)
360 bfd_alloc (abfd,
361 (info->dynsym_count
362 * sizeof (aout_symbol_type))));
363 if (info->canonical_dynsym == NULL && info->dynsym_count != 0)
364 {
365 bfd_set_error (bfd_error_no_memory);
366 return -1;
367 }
368
369 if (! aout_32_translate_symbol_table (abfd, info->canonical_dynsym,
370 info->dynsym, info->dynsym_count,
371 info->dynstr,
372 info->dyninfo.ld_symb_size,
373 true))
374 {
375 if (info->canonical_dynsym != NULL)
376 {
377 bfd_release (abfd, info->canonical_dynsym);
378 info->canonical_dynsym = NULL;
379 }
380 return -1;
381 }
382 }
383
384 /* Return pointers to the dynamic asymbol structures. */
385 for (i = 0; i < info->dynsym_count; i++)
386 *storage++ = (asymbol *) (info->canonical_dynsym + i);
387 *storage = NULL;
388
389 return info->dynsym_count;
390 }
391
392 /* Return the amount of memory required for the dynamic relocs. */
393
394 static long
395 sunos_get_dynamic_reloc_upper_bound (abfd)
396 bfd *abfd;
397 {
398 struct sunos_dynamic_info *info;
399
400 if (! sunos_read_dynamic_info (abfd))
401 return -1;
402
403 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
404 if (! info->valid)
405 {
406 bfd_set_error (bfd_error_no_symbols);
407 return -1;
408 }
409
410 return (info->dynrel_count + 1) * sizeof (arelent *);
411 }
412
413 /* Read in the dynamic relocs. */
414
415 static long
416 sunos_canonicalize_dynamic_reloc (abfd, storage, syms)
417 bfd *abfd;
418 arelent **storage;
419 asymbol **syms;
420 {
421 struct sunos_dynamic_info *info;
422 long i;
423
424 /* Get the general dynamic information. */
425 if (obj_aout_dynamic_info (abfd) == (PTR) NULL)
426 {
427 if (! sunos_read_dynamic_info (abfd))
428 return -1;
429 }
430
431 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
432 if (! info->valid)
433 {
434 bfd_set_error (bfd_error_no_symbols);
435 return -1;
436 }
437
438 /* Get the dynamic reloc information. */
439 if (info->dynrel == NULL)
440 {
441 info->dynrel = (PTR) bfd_alloc (abfd,
442 (info->dynrel_count
443 * obj_reloc_entry_size (abfd)));
444 if (info->dynrel == NULL && info->dynrel_count != 0)
445 {
446 bfd_set_error (bfd_error_no_memory);
447 return -1;
448 }
449 if (bfd_seek (abfd, info->dyninfo.ld_rel, SEEK_SET) != 0
450 || (bfd_read ((PTR) info->dynrel, info->dynrel_count,
451 obj_reloc_entry_size (abfd), abfd)
452 != info->dynrel_count * obj_reloc_entry_size (abfd)))
453 {
454 if (info->dynrel != NULL)
455 {
456 bfd_release (abfd, info->dynrel);
457 info->dynrel = NULL;
458 }
459 return -1;
460 }
461 }
462
463 /* Get the arelent structures corresponding to the dynamic reloc
464 information. */
465 if (info->canonical_dynrel == (arelent *) NULL)
466 {
467 arelent *to;
468
469 info->canonical_dynrel = ((arelent *)
470 bfd_alloc (abfd,
471 (info->dynrel_count
472 * sizeof (arelent))));
473 if (info->canonical_dynrel == NULL && info->dynrel_count != 0)
474 {
475 bfd_set_error (bfd_error_no_memory);
476 return -1;
477 }
478
479 to = info->canonical_dynrel;
480
481 if (obj_reloc_entry_size (abfd) == RELOC_EXT_SIZE)
482 {
483 register struct reloc_ext_external *p;
484 struct reloc_ext_external *pend;
485
486 p = (struct reloc_ext_external *) info->dynrel;
487 pend = p + info->dynrel_count;
488 for (; p < pend; p++, to++)
489 NAME(aout,swap_ext_reloc_in) (abfd, p, to, syms);
490 }
491 else
492 {
493 register struct reloc_std_external *p;
494 struct reloc_std_external *pend;
495
496 p = (struct reloc_std_external *) info->dynrel;
497 pend = p + info->dynrel_count;
498 for (; p < pend; p++, to++)
499 NAME(aout,swap_std_reloc_in) (abfd, p, to, syms);
500 }
501 }
502
503 /* Return pointers to the dynamic arelent structures. */
504 for (i = 0; i < info->dynrel_count; i++)
505 *storage++ = info->canonical_dynrel + i;
506 *storage = NULL;
507
508 return info->dynrel_count;
509 }
510 \f
511 /* Code to handle linking of SunOS shared libraries. */
512
513 /* A SPARC procedure linkage table entry is 12 bytes. The first entry
514 in the table is a jump which is filled in by the runtime linker.
515 The remaining entries are branches back to the first entry,
516 followed by an index into the relocation table encoded to look like
517 a sethi of %g0. */
518
519 #define SPARC_PLT_ENTRY_SIZE (12)
520
521 static bfd_byte sparc_plt_first_entry[SPARC_PLT_ENTRY_SIZE] =
522 {
523 /* sethi %hi(0),%g1; address filled in by runtime linker. */
524 0x3, 0, 0, 0,
525 /* jmp %g1; offset filled in by runtime linker. */
526 0x81, 0xc0, 0x60, 0,
527 /* nop */
528 0x1, 0, 0, 0
529 };
530
531 /* save %sp, -96, %sp */
532 #define SPARC_PLT_ENTRY_WORD0 0x9de3bfa0
533 /* call; address filled in later. */
534 #define SPARC_PLT_ENTRY_WORD1 0x40000000
535 /* sethi; reloc index filled in later. */
536 #define SPARC_PLT_ENTRY_WORD2 0x01000000
537
538 /* An m68k procedure linkage table entry is 8 bytes. The first entry
539 in the table is a jump which is filled in the by the runtime
540 linker. The remaining entries are branches back to the first
541 entry, followed by a two byte index into the relocation table. */
542
543 #define M68K_PLT_ENTRY_SIZE (8)
544
545 static bfd_byte m68k_plt_first_entry[M68K_PLT_ENTRY_SIZE] =
546 {
547 /* jmps @# */
548 0x4e, 0xf9,
549 /* Filled in by runtime linker with a magic address. */
550 0, 0, 0, 0,
551 /* Not used? */
552 0, 0
553 };
554
555 /* bsrl */
556 #define M68K_PLT_ENTRY_WORD0 (0x61ff)
557 /* Remaining words filled in later. */
558
559 /* An entry in the SunOS linker hash table. */
560
561 struct sunos_link_hash_entry
562 {
563 struct aout_link_hash_entry root;
564
565 /* If this is a dynamic symbol, this is its index into the dynamic
566 symbol table. This is initialized to -1. As the linker looks at
567 the input files, it changes this to -2 if it will be added to the
568 dynamic symbol table. After all the input files have been seen,
569 the linker will know whether to build a dynamic symbol table; if
570 it does build one, this becomes the index into the table. */
571 long dynindx;
572
573 /* If this is a dynamic symbol, this is the index of the name in the
574 dynamic symbol string table. */
575 long dynstr_index;
576
577 /* Some linker flags. */
578 unsigned char flags;
579 /* Symbol is referenced by a regular object. */
580 #define SUNOS_REF_REGULAR 01
581 /* Symbol is defined by a regular object. */
582 #define SUNOS_DEF_REGULAR 02
583 /* Symbol is referenced by a dynamic object. */
584 #define SUNOS_REF_DYNAMIC 010
585 /* Symbol is defined by a dynamic object. */
586 #define SUNOS_DEF_DYNAMIC 020
587 };
588
589 /* The SunOS linker hash table. */
590
591 struct sunos_link_hash_table
592 {
593 struct aout_link_hash_table root;
594
595 /* The first dynamic object found during the link. */
596 bfd *dynobj;
597
598 /* The number of dynamic symbols. */
599 size_t dynsymcount;
600
601 /* The number of buckets in the hash table. */
602 size_t bucketcount;
603 };
604
605 /* Routine to create an entry in an SunOS link hash table. */
606
607 static struct bfd_hash_entry *
608 sunos_link_hash_newfunc (entry, table, string)
609 struct bfd_hash_entry *entry;
610 struct bfd_hash_table *table;
611 const char *string;
612 {
613 struct sunos_link_hash_entry *ret = (struct sunos_link_hash_entry *) entry;
614
615 /* Allocate the structure if it has not already been allocated by a
616 subclass. */
617 if (ret == (struct sunos_link_hash_entry *) NULL)
618 ret = ((struct sunos_link_hash_entry *)
619 bfd_hash_allocate (table, sizeof (struct sunos_link_hash_entry)));
620 if (ret == (struct sunos_link_hash_entry *) NULL)
621 {
622 bfd_set_error (bfd_error_no_memory);
623 return (struct bfd_hash_entry *) ret;
624 }
625
626 /* Call the allocation method of the superclass. */
627 ret = ((struct sunos_link_hash_entry *)
628 NAME(aout,link_hash_newfunc) ((struct bfd_hash_entry *) ret,
629 table, string));
630 if (ret != NULL)
631 {
632 /* Set local fields. */
633 ret->dynindx = -1;
634 ret->dynstr_index = -1;
635 ret->flags = 0;
636 }
637
638 return (struct bfd_hash_entry *) ret;
639 }
640
641 /* Create a SunOS link hash table. */
642
643 static struct bfd_link_hash_table *
644 sunos_link_hash_table_create (abfd)
645 bfd *abfd;
646 {
647 struct sunos_link_hash_table *ret;
648
649 ret = ((struct sunos_link_hash_table *)
650 malloc (sizeof (struct sunos_link_hash_table)));
651 if (ret == (struct sunos_link_hash_table *) NULL)
652 {
653 bfd_set_error (bfd_error_no_memory);
654 return (struct bfd_link_hash_table *) NULL;
655 }
656 if (! NAME(aout,link_hash_table_init) (&ret->root, abfd,
657 sunos_link_hash_newfunc))
658 {
659 free (ret);
660 return (struct bfd_link_hash_table *) NULL;
661 }
662
663 ret->dynobj = NULL;
664 ret->dynsymcount = 0;
665 ret->bucketcount = 0;
666
667 return &ret->root.root;
668 }
669
670 /* Look up an entry in an SunOS link hash table. */
671
672 #define sunos_link_hash_lookup(table, string, create, copy, follow) \
673 ((struct sunos_link_hash_entry *) \
674 aout_link_hash_lookup (&(table)->root, (string), (create), (copy),\
675 (follow)))
676
677 /* Traverse a SunOS link hash table. */
678
679 #define sunos_link_hash_traverse(table, func, info) \
680 (aout_link_hash_traverse \
681 (&(table)->root, \
682 (boolean (*) PARAMS ((struct aout_link_hash_entry *, PTR))) (func), \
683 (info)))
684
685 /* Get the SunOS link hash table from the info structure. This is
686 just a cast. */
687
688 #define sunos_hash_table(p) ((struct sunos_link_hash_table *) ((p)->hash))
689
690 static boolean sunos_scan_dynamic_symbol
691 PARAMS ((struct sunos_link_hash_entry *, PTR));
692
693 /* Add dynamic symbols during a link. This is called by the a.out
694 backend linker when it encounters an object with the DYNAMIC flag
695 set. */
696
697 static boolean
698 sunos_add_dynamic_symbols (abfd, info)
699 bfd *abfd;
700 struct bfd_link_info *info;
701 {
702 asection *s;
703
704 /* We do not want to include the sections in a dynamic object in the
705 output file. We hack by simply clobbering the list of sections
706 in the BFD. This could be handled more cleanly by, say, a new
707 section flag; the existing SEC_NEVER_LOAD flag is not the one we
708 want, because that one still implies that the section takes up
709 space in the output file. */
710 abfd->sections = NULL;
711
712 /* The native linker seems to just ignore dynamic objects when -r is
713 used. */
714 if (info->relocateable)
715 return true;
716
717 /* There's no hope of using a dynamic object which does not exactly
718 match the format of the output file. */
719 if (info->hash->creator != abfd->xvec)
720 {
721 bfd_set_error (bfd_error_invalid_operation);
722 return false;
723 }
724
725 /* If this is the first dynamic object, create some new sections to
726 hold dynamic linking information. We need to put these sections
727 somewhere, and the first dynamic object is as good a place as
728 any. The linker script will look for these special section names
729 and put them in the right place in the output file. See
730 include/aout/sun4.h for more details of the dynamic linking
731 information. */
732 if (sunos_hash_table (info)->dynobj == NULL)
733 {
734 flagword flags;
735 asection *sdyn;
736
737 sunos_hash_table (info)->dynobj = abfd;
738
739 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY;
740
741 /* The .dynamic section holds the basic dynamic information: the
742 sun4_dynamic structure, the dynamic debugger information, and
743 the sun4_dynamic_link structure. */
744 s = bfd_make_section (abfd, ".dynamic");
745 if (s == NULL
746 || ! bfd_set_section_flags (abfd, s, flags)
747 || ! bfd_set_section_alignment (abfd, s, 2))
748 return false;
749 sdyn = s;
750
751 /* The .need section holds the list of names of shared objets
752 which must be included at runtime. The address of this
753 section is put in the ld_need field. */
754 s = bfd_make_section (abfd, ".need");
755 if (s == NULL
756 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
757 || ! bfd_set_section_alignment (abfd, s, 2))
758 return false;
759
760 /* The .rules section holds the path to search for shared
761 objects. The address of this section is put in the ld_rules
762 field. */
763 s = bfd_make_section (abfd, ".rules");
764 if (s == NULL
765 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
766 || ! bfd_set_section_alignment (abfd, s, 2))
767 return false;
768
769 /* The .got section holds the global offset table. I don't
770 really know how this works, actually. It seems to only be
771 used for PIC code. The address minus four is put in the
772 ld_got field. */
773 s = bfd_make_section (abfd, ".got");
774 if (s == NULL
775 || ! bfd_set_section_flags (abfd, s, flags)
776 || ! bfd_set_section_alignment (abfd, s, 2))
777 return false;
778 s->_raw_size = BYTES_IN_WORD;
779
780 /* The .plt section holds the procedure linkage table. The
781 address is put in the ld_plt field. */
782 s = bfd_make_section (abfd, ".plt");
783 if (s == NULL
784 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
785 || ! bfd_set_section_alignment (abfd, s, 2))
786 return false;
787
788 /* The .dynrel section holds the dynamic relocs. The address is
789 put in the ld_rel field. */
790 s = bfd_make_section (abfd, ".dynrel");
791 if (s == NULL
792 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
793 || ! bfd_set_section_alignment (abfd, s, 2))
794 return false;
795
796 /* The .hash section holds the dynamic hash table. The address
797 is put in the ld_hash field. */
798 s = bfd_make_section (abfd, ".hash");
799 if (s == NULL
800 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
801 || ! bfd_set_section_alignment (abfd, s, 2))
802 return false;
803
804 /* The .dynsym section holds the dynamic symbols. The address
805 is put in the ld_stab field. */
806 s = bfd_make_section (abfd, ".dynsym");
807 if (s == NULL
808 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
809 || ! bfd_set_section_alignment (abfd, s, 2))
810 return false;
811
812 /* The .dynstr section holds the dynamic symbol string table.
813 The address is put in the ld_symbols field. */
814 s = bfd_make_section (abfd, ".dynstr");
815 if (s == NULL
816 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
817 || ! bfd_set_section_alignment (abfd, s, 2))
818 return false;
819 }
820
821 return true;
822 }
823
824 /* Function to add a single symbol to the linker hash table. This is
825 a wrapper around _bfd_generic_link_add_one_symbol which handles the
826 tweaking needed for dynamic linking support. */
827
828 static boolean
829 sunos_add_one_symbol (info, abfd, name, flags, section, value, string,
830 copy, collect, hashp)
831 struct bfd_link_info *info;
832 bfd *abfd;
833 const char *name;
834 flagword flags;
835 asection *section;
836 bfd_vma value;
837 const char *string;
838 boolean copy;
839 boolean collect;
840 struct bfd_link_hash_entry **hashp;
841 {
842 struct sunos_link_hash_entry *h;
843 int new_flag;
844
845 h = sunos_link_hash_lookup (sunos_hash_table (info), name, true, copy,
846 false);
847 if (h == NULL)
848 return false;
849
850 if (hashp != NULL)
851 *hashp = (struct bfd_link_hash_entry *) h;
852
853 /* Treat a common symbol in a dynamic object as defined in the .bss
854 section of the dynamic object. We don't want to allocate space
855 for it in our process image. */
856 if ((abfd->flags & DYNAMIC) != 0
857 && bfd_is_com_section (section))
858 section = obj_bsssec (abfd);
859
860 if (! bfd_is_und_section (section)
861 && h->root.root.type != bfd_link_hash_new
862 && h->root.root.type != bfd_link_hash_undefined)
863 {
864 /* We are defining the symbol, and it is already defined. This
865 is a potential multiple definition error. */
866 if ((abfd->flags & DYNAMIC) != 0)
867 {
868 /* The definition we are adding is from a dynamic object.
869 We do not want this new definition to override the
870 existing definition, so we pretend it is just a
871 reference. */
872 section = bfd_und_section_ptr;
873 }
874 else if ((h->root.root.type == bfd_link_hash_defined
875 && h->root.root.u.def.section->owner != NULL
876 && (h->root.root.u.def.section->owner->flags & DYNAMIC) != 0)
877 || (h->root.root.type == bfd_link_hash_common
878 && ((h->root.root.u.c.section->owner->flags & DYNAMIC)
879 != 0)))
880 {
881 /* The existing definition is from a dynamic object. We
882 want to override it with the definition we just found.
883 Clobber the existing definition. */
884 h->root.root.type = bfd_link_hash_new;
885 }
886 }
887
888 /* Do the usual procedure for adding a symbol. */
889 if (! _bfd_generic_link_add_one_symbol (info, abfd, name, flags, section,
890 value, string, copy, collect,
891 hashp))
892 return false;
893
894 /* Set a flag in the hash table entry indicating the type of
895 reference or definition we just found. Keep a count of the
896 number of dynamic symbols we find. A dynamic symbol is one which
897 is referenced or defined by both a regular object and a shared
898 object. */
899 if ((abfd->flags & DYNAMIC) == 0)
900 {
901 if (bfd_is_und_section (section))
902 new_flag = SUNOS_REF_REGULAR;
903 else
904 new_flag = SUNOS_DEF_REGULAR;
905 }
906 else
907 {
908 if (bfd_is_und_section (section))
909 new_flag = SUNOS_REF_DYNAMIC;
910 else
911 new_flag = SUNOS_DEF_DYNAMIC;
912 }
913 h->flags |= new_flag;
914
915 if (h->dynindx == -1
916 && (h->flags & (SUNOS_DEF_REGULAR | SUNOS_REF_REGULAR)) != 0)
917 {
918 ++sunos_hash_table (info)->dynsymcount;
919 h->dynindx = -2;
920 }
921
922 return true;
923 }
924
925 /* Record an assignment made to a symbol by a linker script. We need
926 this in case some dynamic object refers to this symbol. */
927
928 boolean
929 bfd_sunos_record_link_assignment (output_bfd, info, name)
930 bfd *output_bfd;
931 struct bfd_link_info *info;
932 const char *name;
933 {
934 struct sunos_link_hash_entry *h;
935
936 /* This is called after we have examined all the input objects. If
937 the symbol does not exist, it merely means that no object refers
938 to it, and we can just ignore it at this point. */
939 h = sunos_link_hash_lookup (sunos_hash_table (info), name,
940 false, false, false);
941 if (h == NULL)
942 return true;
943
944 h->flags |= SUNOS_DEF_REGULAR;
945
946 if (h->dynindx == -1)
947 {
948 ++sunos_hash_table (info)->dynsymcount;
949 h->dynindx = -2;
950 }
951
952 return true;
953 }
954
955 /* Set up the sizes and contents of the dynamic sections created in
956 sunos_add_dynamic_symbols. This is called by the SunOS linker
957 emulation before_allocation routine. We must set the sizes of the
958 sections before the linker sets the addresses of the various
959 sections. This unfortunately requires reading all the relocs so
960 that we can work out which ones need to become dynamic relocs. If
961 info->keep_memory is true, we keep the relocs in memory; otherwise,
962 we discard them, and will read them again later. */
963
964 boolean
965 bfd_sunos_size_dynamic_sections (output_bfd, info, sdynptr, sneedptr,
966 srulesptr)
967 bfd *output_bfd;
968 struct bfd_link_info *info;
969 asection **sdynptr;
970 asection **sneedptr;
971 asection **srulesptr;
972 {
973 bfd *dynobj;
974 size_t dynsymcount;
975 asection *s;
976 size_t bucketcount;
977 size_t hashalloc;
978 size_t i;
979 bfd *sub;
980
981 *sdynptr = NULL;
982 *sneedptr = NULL;
983 *srulesptr = NULL;
984
985 dynobj = sunos_hash_table (info)->dynobj;
986 dynsymcount = sunos_hash_table (info)->dynsymcount;
987
988 /* If there were no dynamic objects in the link, there is nothing to
989 do here. */
990 if (dynobj == NULL)
991 return true;
992
993 /* The .dynamic section is always the same size. */
994 s = bfd_get_section_by_name (dynobj, ".dynamic");
995 BFD_ASSERT (s != NULL);
996 s->_raw_size = (sizeof (struct external_sun4_dynamic)
997 + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE
998 + sizeof (struct external_sun4_dynamic_link));
999
1000 /* Set the size of the .dynsym and .hash sections. We counted the
1001 number of dynamic symbols as we read the input files. We will
1002 build the dynamic symbol table (.dynsym) and the hash table
1003 (.hash) when we build the final symbol table, because until then
1004 we do not know the correct value to give the symbols. We build
1005 the dynamic symbol string table (.dynstr) in a traversal of the
1006 symbol table using sunos_scan_dynamic_symbol. */
1007 s = bfd_get_section_by_name (dynobj, ".dynsym");
1008 BFD_ASSERT (s != NULL);
1009 s->_raw_size = dynsymcount * sizeof (struct external_nlist);
1010 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
1011 if (s->contents == NULL && s->_raw_size != 0)
1012 {
1013 bfd_set_error (bfd_error_no_memory);
1014 return false;
1015 }
1016
1017 /* The number of buckets is just the number of symbols divided by
1018 four. The compute the final size of the hash table, we must
1019 actually compute the hash table. Normally we need exactly as
1020 many entries in the hash table as there are dynamic symbols, but
1021 if some of the buckets are not used we will need additional
1022 entries. In the worse case, every symbol will hash to the same
1023 bucket, and we will need BUCKETCOUNT - 1 extra entries. */
1024 if (dynsymcount >= 4)
1025 bucketcount = dynsymcount / 4;
1026 else if (dynsymcount > 0)
1027 bucketcount = dynsymcount;
1028 else
1029 bucketcount = 1;
1030 s = bfd_get_section_by_name (dynobj, ".hash");
1031 BFD_ASSERT (s != NULL);
1032 hashalloc = (dynsymcount + bucketcount - 1) * HASH_ENTRY_SIZE;
1033 s->contents = (bfd_byte *) bfd_alloc (dynobj, hashalloc);
1034 if (s->contents == NULL && dynsymcount > 0)
1035 {
1036 bfd_set_error (bfd_error_no_memory);
1037 return false;
1038 }
1039 memset (s->contents, 0, hashalloc);
1040 for (i = 0; i < bucketcount; i++)
1041 PUT_WORD (output_bfd, (bfd_vma) -1, s->contents + i * HASH_ENTRY_SIZE);
1042 s->_raw_size = bucketcount * HASH_ENTRY_SIZE;
1043
1044 sunos_hash_table (info)->bucketcount = bucketcount;
1045
1046 /* Look through all the input BFD's and read their relocs. It would
1047 be better if we didn't have to do this, but there is no other way
1048 to determine the number of dynamic relocs we need, and, more
1049 importantly, there is no other way to know which symbols should
1050 get an entry in the procedure linkage table. */
1051 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
1052 {
1053 if ((sub->flags & DYNAMIC) == 0)
1054 {
1055 if (! sunos_scan_relocs (info, sub, obj_textsec (sub),
1056 exec_hdr (sub)->a_trsize)
1057 || ! sunos_scan_relocs (info, sub, obj_datasec (sub),
1058 exec_hdr (sub)->a_drsize))
1059 return false;
1060 }
1061 }
1062
1063 /* Scan all the symbols, place them in the dynamic symbol table, and
1064 build the dynamic hash table. We reuse dynsymcount as a counter
1065 for the number of symbols we have added so far. */
1066 sunos_hash_table (info)->dynsymcount = 0;
1067 sunos_link_hash_traverse (sunos_hash_table (info),
1068 sunos_scan_dynamic_symbol,
1069 (PTR) info);
1070 BFD_ASSERT (sunos_hash_table (info)->dynsymcount == dynsymcount);
1071
1072 /* The SunOS native linker seems to align the total size of the
1073 symbol strings to a multiple of 8. I don't know if this is
1074 important, but it can't hurt much. */
1075 s = bfd_get_section_by_name (dynobj, ".dynstr");
1076 BFD_ASSERT (s != NULL);
1077 if ((s->_raw_size & 7) != 0)
1078 {
1079 bfd_size_type add;
1080 bfd_byte *contents;
1081
1082 add = 8 - (s->_raw_size & 7);
1083 contents = (bfd_byte *) realloc (s->contents, s->_raw_size + add);
1084 if (contents == NULL)
1085 {
1086 bfd_set_error (bfd_error_no_memory);
1087 return false;
1088 }
1089 memset (contents + s->_raw_size, 0, add);
1090 s->contents = contents;
1091 s->_raw_size += add;
1092 }
1093
1094 /* Now that we have worked out the sizes of the procedure linkage
1095 table and the dynamic relocs, allocate storage for them. */
1096 s = bfd_get_section_by_name (dynobj, ".plt");
1097 BFD_ASSERT (s != NULL);
1098 if (s->_raw_size != 0)
1099 {
1100 s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
1101 if (s->contents == NULL)
1102 {
1103 bfd_set_error (bfd_error_no_memory);
1104 return false;
1105 }
1106
1107 /* Fill in the first entry in the table. */
1108 switch (bfd_get_arch (dynobj))
1109 {
1110 case bfd_arch_sparc:
1111 memcpy (s->contents, sparc_plt_first_entry, SPARC_PLT_ENTRY_SIZE);
1112 break;
1113
1114 case bfd_arch_m68k:
1115 memcpy (s->contents, m68k_plt_first_entry, M68K_PLT_ENTRY_SIZE);
1116 break;
1117
1118 default:
1119 abort ();
1120 }
1121 }
1122
1123 s = bfd_get_section_by_name (dynobj, ".dynrel");
1124 if (s->_raw_size != 0)
1125 {
1126 s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
1127 if (s->contents == NULL)
1128 {
1129 bfd_set_error (bfd_error_no_memory);
1130 return false;
1131 }
1132 }
1133 /* We use the reloc_count field to keep track of how many of the
1134 relocs we have output so far. */
1135 s->reloc_count = 0;
1136
1137 /* Make space for the global offset table. */
1138 s = bfd_get_section_by_name (dynobj, ".got");
1139 s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
1140 if (s->contents == NULL)
1141 {
1142 bfd_set_error (bfd_error_no_memory);
1143 return false;
1144 }
1145
1146 *sdynptr = bfd_get_section_by_name (dynobj, ".dynamic");
1147 *sneedptr = bfd_get_section_by_name (dynobj, ".need");
1148 *srulesptr = bfd_get_section_by_name (dynobj, ".rules");
1149
1150 return true;
1151 }
1152
1153 /* Scan the relocs for an input section. */
1154
1155 static boolean
1156 sunos_scan_relocs (info, abfd, sec, rel_size)
1157 struct bfd_link_info *info;
1158 bfd *abfd;
1159 asection *sec;
1160 bfd_size_type rel_size;
1161 {
1162 PTR relocs;
1163 PTR free_relocs = NULL;
1164
1165 if (rel_size == 0)
1166 return true;
1167
1168 if (! info->keep_memory)
1169 relocs = free_relocs = malloc (rel_size);
1170 else
1171 {
1172 aout_section_data (sec) =
1173 ((struct aout_section_data_struct *)
1174 bfd_alloc (abfd, sizeof (struct aout_section_data_struct)));
1175 if (aout_section_data (sec) == NULL)
1176 relocs = NULL;
1177 else
1178 relocs = aout_section_data (sec)->relocs = malloc (rel_size);
1179 }
1180 if (relocs == NULL)
1181 {
1182 bfd_set_error (bfd_error_no_memory);
1183 return false;
1184 }
1185
1186 if (bfd_seek (abfd, sec->rel_filepos, SEEK_SET) != 0
1187 || bfd_read (relocs, 1, rel_size, abfd) != rel_size)
1188 goto error_return;
1189
1190 if (obj_reloc_entry_size (abfd) == RELOC_STD_SIZE)
1191 {
1192 if (! sunos_scan_std_relocs (info, abfd, sec,
1193 (struct reloc_std_external *) relocs,
1194 rel_size))
1195 goto error_return;
1196 }
1197 else
1198 {
1199 if (! sunos_scan_ext_relocs (info, abfd, sec,
1200 (struct reloc_ext_external *) relocs,
1201 rel_size))
1202 goto error_return;
1203 }
1204
1205 if (free_relocs != NULL)
1206 free (free_relocs);
1207
1208 return true;
1209
1210 error_return:
1211 if (free_relocs != NULL)
1212 free (free_relocs);
1213 return false;
1214 }
1215
1216 /* Scan the relocs for an input section using standard relocs. We
1217 need to figure out what to do for each reloc against a dynamic
1218 symbol. If the symbol is in the .text section, an entry is made in
1219 the procedure linkage table. Note that this will do the wrong
1220 thing if the symbol is actually data; I don't think the Sun 3
1221 native linker handles this case correctly either. If the symbol is
1222 not in the .text section, we must preserve the reloc as a dynamic
1223 reloc. FIXME: We should also handle the PIC relocs here by
1224 building global offset table entries. */
1225
1226 static boolean
1227 sunos_scan_std_relocs (info, abfd, sec, relocs, rel_size)
1228 struct bfd_link_info *info;
1229 bfd *abfd;
1230 asection *sec;
1231 const struct reloc_std_external *relocs;
1232 bfd_size_type rel_size;
1233 {
1234 bfd *dynobj;
1235 asection *splt;
1236 asection *srel;
1237 struct sunos_link_hash_entry **sym_hashes;
1238 const struct reloc_std_external *rel, *relend;
1239
1240 /* We only know how to handle m68k plt entries. */
1241 if (bfd_get_arch (abfd) != bfd_arch_m68k)
1242 {
1243 bfd_set_error (bfd_error_invalid_target);
1244 return false;
1245 }
1246
1247 dynobj = sunos_hash_table (info)->dynobj;
1248 splt = bfd_get_section_by_name (dynobj, ".plt");
1249 srel = bfd_get_section_by_name (dynobj, ".dynrel");
1250 BFD_ASSERT (splt != NULL && srel != NULL);
1251 sym_hashes = (struct sunos_link_hash_entry **) obj_aout_sym_hashes (abfd);
1252
1253 relend = relocs + rel_size / RELOC_STD_SIZE;
1254 for (rel = relocs; rel < relend; rel++)
1255 {
1256 int r_index;
1257 struct sunos_link_hash_entry *h;
1258
1259 /* We only want relocs against external symbols. */
1260 if (abfd->xvec->header_byteorder_big_p)
1261 {
1262 if ((rel->r_type[0] & RELOC_STD_BITS_EXTERN_BIG) == 0)
1263 continue;
1264 }
1265 else
1266 {
1267 if ((rel->r_type[0] & RELOC_STD_BITS_EXTERN_LITTLE) == 0)
1268 continue;
1269 }
1270
1271 /* Get the symbol index. */
1272 if (abfd->xvec->header_byteorder_big_p)
1273 {
1274 r_index = ((rel->r_index[0] << 16)
1275 | (rel->r_index[1] << 8)
1276 | rel->r_index[2]);
1277 }
1278 else
1279 {
1280 r_index = ((rel->r_index[2] << 16)
1281 | (rel->r_index[1] << 8)
1282 | rel->r_index[0]);
1283 }
1284
1285 /* Get the hash table entry. */
1286 h = sym_hashes[r_index];
1287 if (h == NULL)
1288 {
1289 /* This should not normally happen, but it will in any case
1290 be caught in the relocation phase. */
1291 continue;
1292 }
1293
1294 /* At this point common symbols have already been allocated, so
1295 we don't have to worry about them. We need to consider that
1296 we may have already seen this symbol and marked it undefined;
1297 if the symbols is really undefined, then SUNOS_DEF_DYNAMIC
1298 will be zero. */
1299 if (h->root.root.type != bfd_link_hash_defined
1300 && h->root.root.type != bfd_link_hash_undefined)
1301 continue;
1302
1303 if ((h->flags & SUNOS_DEF_DYNAMIC) == 0
1304 || (h->flags & SUNOS_DEF_REGULAR) != 0)
1305 continue;
1306
1307 BFD_ASSERT ((h->flags & SUNOS_REF_REGULAR) != 0);
1308 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1309 ? (h->root.root.u.def.section->owner->flags & DYNAMIC) != 0
1310 : (h->root.root.u.undef.abfd->flags & DYNAMIC) != 0);
1311
1312 /* This reloc is against a symbol defined only by a dynamic
1313 object. */
1314
1315 if (h->root.root.type == bfd_link_hash_undefined)
1316 {
1317 /* Presumably this symbol was marked as being undefined by
1318 an earlier reloc. */
1319 srel->_raw_size += RELOC_STD_SIZE;
1320 }
1321 else if ((h->root.root.u.def.section->flags & SEC_CODE) == 0)
1322 {
1323 bfd *sub;
1324
1325 /* This reloc is not in the .text section. It must be
1326 copied into the dynamic relocs. We mark the symbol as
1327 being undefined. */
1328 srel->_raw_size += RELOC_STD_SIZE;
1329 sub = h->root.root.u.def.section->owner;
1330 h->root.root.type = bfd_link_hash_undefined;
1331 h->root.root.u.undef.abfd = sub;
1332 }
1333 else
1334 {
1335 /* This symbol is in the .text section. We must give it an
1336 entry in the procedure linkage table, if we have not
1337 already done so. We change the definition of the symbol
1338 to the .plt section; this will cause relocs against it to
1339 be handled correctly. */
1340 if (h->root.root.u.def.section != splt)
1341 {
1342 if (splt->_raw_size == 0)
1343 splt->_raw_size = M68K_PLT_ENTRY_SIZE;
1344 h->root.root.u.def.section = splt;
1345 h->root.root.u.def.value = splt->_raw_size;
1346 splt->_raw_size += M68K_PLT_ENTRY_SIZE;
1347
1348 /* We will also need a dynamic reloc entry. */
1349 srel->_raw_size += RELOC_STD_SIZE;
1350 }
1351 }
1352 }
1353
1354 return true;
1355 }
1356
1357 /* Scan the relocs for an input section using extended relocs. We
1358 need to figure out what to do for each reloc against a dynamic
1359 symbol. If the reloc is a WDISP30, and the symbol is in the .text
1360 section, an entry is made in the procedure linkage table.
1361 Otherwise, we must preserve the reloc as a dynamic reloc. FIXME:
1362 We should also handle the PIC relocs here by building global offset
1363 table entries. */
1364
1365 static boolean
1366 sunos_scan_ext_relocs (info, abfd, sec, relocs, rel_size)
1367 struct bfd_link_info *info;
1368 bfd *abfd;
1369 asection *sec;
1370 const struct reloc_ext_external *relocs;
1371 bfd_size_type rel_size;
1372 {
1373 bfd *dynobj;
1374 asection *splt;
1375 asection *srel;
1376 struct sunos_link_hash_entry **sym_hashes;
1377 const struct reloc_ext_external *rel, *relend;
1378
1379 /* We only know how to handle SPARC plt entries. */
1380 if (bfd_get_arch (abfd) != bfd_arch_sparc)
1381 {
1382 bfd_set_error (bfd_error_invalid_target);
1383 return false;
1384 }
1385
1386 dynobj = sunos_hash_table (info)->dynobj;
1387 splt = bfd_get_section_by_name (dynobj, ".plt");
1388 srel = bfd_get_section_by_name (dynobj, ".dynrel");
1389 BFD_ASSERT (splt != NULL && srel != NULL);
1390 sym_hashes = (struct sunos_link_hash_entry **) obj_aout_sym_hashes (abfd);
1391
1392 relend = relocs + rel_size / RELOC_EXT_SIZE;
1393 for (rel = relocs; rel < relend; rel++)
1394 {
1395 int r_index;
1396 int r_type;
1397 struct sunos_link_hash_entry *h;
1398
1399 /* We only want relocs against external symbols. */
1400 if (abfd->xvec->header_byteorder_big_p)
1401 {
1402 if ((rel->r_type[0] & RELOC_EXT_BITS_EXTERN_BIG) == 0)
1403 continue;
1404 }
1405 else
1406 {
1407 if ((rel->r_type[0] & RELOC_EXT_BITS_EXTERN_LITTLE) == 0)
1408 continue;
1409 }
1410
1411 /* Get the symbol index and reloc type. */
1412 if (abfd->xvec->header_byteorder_big_p)
1413 {
1414 r_index = ((rel->r_index[0] << 16)
1415 | (rel->r_index[1] << 8)
1416 | rel->r_index[2]);
1417 r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_BIG)
1418 >> RELOC_EXT_BITS_TYPE_SH_BIG);
1419 }
1420 else
1421 {
1422 r_index = ((rel->r_index[2] << 16)
1423 | (rel->r_index[1] << 8)
1424 | rel->r_index[0]);
1425 r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE)
1426 >> RELOC_EXT_BITS_TYPE_SH_LITTLE);
1427 }
1428
1429 /* Get the hash table entry. */
1430 h = sym_hashes[r_index];
1431 if (h == NULL)
1432 {
1433 /* This should not normally happen, but it will in any case
1434 be caught in the relocation phase. */
1435 continue;
1436 }
1437
1438 /* At this point common symbols have already been allocated, so
1439 we don't have to worry about them. We need to consider that
1440 we may have already seen this symbol and marked it undefined;
1441 if the symbols is really undefined, then SUNOS_DEF_DYNAMIC
1442 will be zero. */
1443 if (h->root.root.type != bfd_link_hash_defined
1444 && h->root.root.type != bfd_link_hash_undefined)
1445 continue;
1446
1447 if ((h->flags & SUNOS_DEF_DYNAMIC) == 0
1448 || (h->flags & SUNOS_DEF_REGULAR) != 0)
1449 continue;
1450
1451 BFD_ASSERT ((h->flags & SUNOS_REF_REGULAR) != 0);
1452 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1453 ? (h->root.root.u.def.section->owner->flags & DYNAMIC) != 0
1454 : (h->root.root.u.undef.abfd->flags & DYNAMIC) != 0);
1455
1456 /* This reloc is against a symbol defined only by a dynamic
1457 object. */
1458
1459 if (h->root.root.type == bfd_link_hash_undefined)
1460 {
1461 /* Presumably this symbol was marked as being undefined by
1462 an earlier reloc. */
1463 srel->_raw_size += RELOC_EXT_SIZE;
1464 }
1465 else if ((h->root.root.u.def.section->flags & SEC_CODE) == 0)
1466 {
1467 bfd *sub;
1468
1469 /* This reloc is not in the .text section. It must be
1470 copied into the dynamic relocs. We mark the symbol as
1471 being undefined. */
1472 srel->_raw_size += RELOC_EXT_SIZE;
1473 sub = h->root.root.u.def.section->owner;
1474 h->root.root.type = bfd_link_hash_undefined;
1475 h->root.root.u.undef.abfd = sub;
1476 }
1477 else
1478 {
1479 /* This symbol is in the .text section. We must give it an
1480 entry in the procedure linkage table, if we have not
1481 already done so. We change the definition of the symbol
1482 to the .plt section; this will cause relocs against it to
1483 be handled correctly. */
1484 if (h->root.root.u.def.section != splt)
1485 {
1486 if (splt->_raw_size == 0)
1487 splt->_raw_size = SPARC_PLT_ENTRY_SIZE;
1488 h->root.root.u.def.section = splt;
1489 h->root.root.u.def.value = splt->_raw_size;
1490 splt->_raw_size += SPARC_PLT_ENTRY_SIZE;
1491
1492 /* We will also need a dynamic reloc entry. */
1493 srel->_raw_size += RELOC_EXT_SIZE;
1494 }
1495 }
1496 }
1497
1498 return true;
1499 }
1500
1501 /* Build the hash table of dynamic symbols, and to mark as written all
1502 symbols from dynamic objects which we do not plan to write out. */
1503
1504 static boolean
1505 sunos_scan_dynamic_symbol (h, data)
1506 struct sunos_link_hash_entry *h;
1507 PTR data;
1508 {
1509 struct bfd_link_info *info = (struct bfd_link_info *) data;
1510
1511 /* Set the written flag for symbols we do not want to write out as
1512 part of the regular symbol table. This is all symbols which are
1513 not defined in a regular object file. For some reason symbols
1514 which are referenced by a regular object and defined by a dynamic
1515 object do not seem to show up in the regular symbol table. */
1516 if ((h->flags & SUNOS_DEF_REGULAR) == 0)
1517 h->root.written = true;
1518
1519 /* If this symbol is defined by a dynamic object and referenced by a
1520 regular object, see whether we gave it a reasonable value while
1521 scanning the relocs. */
1522
1523 if ((h->flags & SUNOS_DEF_REGULAR) == 0
1524 && (h->flags & SUNOS_DEF_DYNAMIC) != 0
1525 && (h->flags & SUNOS_REF_REGULAR) != 0)
1526 {
1527 if (h->root.root.type == bfd_link_hash_defined
1528 && ((h->root.root.u.def.section->owner->flags & DYNAMIC) != 0)
1529 && h->root.root.u.def.section->output_section == NULL)
1530 {
1531 bfd *sub;
1532
1533 /* This symbol is currently defined in a dynamic section
1534 which is not being put into the output file. This
1535 implies that there is no reloc against the symbol. I'm
1536 not sure why this case would ever occur. In any case, we
1537 change the symbol to be undefined. */
1538 sub = h->root.root.u.def.section->owner;
1539 h->root.root.type = bfd_link_hash_undefined;
1540 h->root.root.u.undef.abfd = sub;
1541 }
1542 }
1543
1544 /* If this symbol is defined or referenced by a regular file, add it
1545 to the dynamic symbols. */
1546 if ((h->flags & (SUNOS_DEF_REGULAR | SUNOS_REF_REGULAR)) != 0)
1547 {
1548 asection *s;
1549 size_t len;
1550 bfd_byte *contents;
1551 unsigned char *name;
1552 unsigned long hash;
1553 bfd *dynobj;
1554
1555 BFD_ASSERT (h->dynindx == -2);
1556
1557 h->dynindx = sunos_hash_table (info)->dynsymcount;
1558 ++sunos_hash_table (info)->dynsymcount;
1559
1560 len = strlen (h->root.root.root.string);
1561
1562 /* We don't bother to construct a BFD hash table for the strings
1563 which are the names of the dynamic symbols. Using a hash
1564 table for the regular symbols is beneficial, because the
1565 regular symbols includes the debugging symbols, which have
1566 long names and are often duplicated in several object files.
1567 There are no debugging symbols in the dynamic symbols. */
1568 s = bfd_get_section_by_name (sunos_hash_table (info)->dynobj,
1569 ".dynstr");
1570 BFD_ASSERT (s != NULL);
1571 if (s->contents == NULL)
1572 contents = (bfd_byte *) malloc (len + 1);
1573 else
1574 contents = (bfd_byte *) realloc (s->contents, s->_raw_size + len + 1);
1575 if (contents == NULL)
1576 {
1577 bfd_set_error (bfd_error_no_memory);
1578 return false;
1579 }
1580 s->contents = contents;
1581
1582 h->dynstr_index = s->_raw_size;
1583 strcpy (contents + s->_raw_size, h->root.root.root.string);
1584 s->_raw_size += len + 1;
1585
1586 /* Add it to the dynamic hash table. */
1587 name = (unsigned char *) h->root.root.root.string;
1588 hash = 0;
1589 while (*name != '\0')
1590 hash = (hash << 1) + *name++;
1591 hash &= 0x7fffffff;
1592 hash %= sunos_hash_table (info)->bucketcount;
1593
1594 dynobj = sunos_hash_table (info)->dynobj;
1595 s = bfd_get_section_by_name (dynobj, ".hash");
1596 BFD_ASSERT (s != NULL);
1597
1598 if (GET_SWORD (dynobj, s->contents + hash * HASH_ENTRY_SIZE) == -1)
1599 PUT_WORD (dynobj, h->dynindx, s->contents + hash * HASH_ENTRY_SIZE);
1600 else
1601 {
1602 bfd_vma next;
1603
1604 next = GET_WORD (dynobj,
1605 (s->contents
1606 + hash * HASH_ENTRY_SIZE
1607 + BYTES_IN_WORD));
1608 PUT_WORD (dynobj, s->_raw_size / HASH_ENTRY_SIZE,
1609 s->contents + hash * HASH_ENTRY_SIZE + BYTES_IN_WORD);
1610 PUT_WORD (dynobj, h->dynindx, s->contents + s->_raw_size);
1611 PUT_WORD (dynobj, next, s->contents + s->_raw_size + BYTES_IN_WORD);
1612 s->_raw_size += HASH_ENTRY_SIZE;
1613 }
1614 }
1615
1616 return true;
1617 }
1618
1619 /* Link a dynamic object. We actually don't have anything to do at
1620 this point. This entry point exists to prevent the regular linker
1621 code from doing anything with the object. */
1622
1623 /*ARGSUSED*/
1624 static boolean
1625 sunos_link_dynamic_object (info, abfd)
1626 struct bfd_link_info *info;
1627 bfd *abfd;
1628 {
1629 return true;
1630 }
1631
1632
1633 /* Write out a dynamic symbol. This is called by the final traversal
1634 over the symbol table. */
1635
1636 static boolean
1637 sunos_write_dynamic_symbol (output_bfd, info, harg)
1638 bfd *output_bfd;
1639 struct bfd_link_info *info;
1640 struct aout_link_hash_entry *harg;
1641 {
1642 struct sunos_link_hash_entry *h = (struct sunos_link_hash_entry *) harg;
1643 boolean plt;
1644 int type;
1645 bfd_vma val;
1646 asection *s;
1647 struct external_nlist *outsym;
1648
1649 if (h->dynindx < 0)
1650 return true;
1651
1652 plt = false;
1653 switch (h->root.root.type)
1654 {
1655 default:
1656 case bfd_link_hash_new:
1657 abort ();
1658 /* Avoid variable not initialized warnings. */
1659 return true;
1660 case bfd_link_hash_undefined:
1661 type = N_UNDF | N_EXT;
1662 val = 0;
1663 break;
1664 case bfd_link_hash_defined:
1665 {
1666 asection *sec;
1667 asection *output_section;
1668
1669 sec = h->root.root.u.def.section;
1670 output_section = sec->output_section;
1671 BFD_ASSERT (bfd_is_abs_section (output_section)
1672 || output_section->owner == output_bfd);
1673 if (strcmp (sec->name, ".plt") == 0)
1674 {
1675 plt = true;
1676 type = N_UNDF | N_EXT;
1677 val = 0;
1678 }
1679 else
1680 {
1681 if (output_section == obj_textsec (output_bfd))
1682 type = N_TEXT | N_EXT;
1683 else if (output_section == obj_datasec (output_bfd))
1684 type = N_DATA | N_EXT;
1685 else if (output_section == obj_bsssec (output_bfd))
1686 type = N_BSS | N_EXT;
1687 else
1688 type = N_ABS | N_EXT;
1689 val = (h->root.root.u.def.value
1690 + output_section->vma
1691 + sec->output_offset);
1692 }
1693 }
1694 break;
1695 case bfd_link_hash_common:
1696 type = N_UNDF | N_EXT;
1697 val = h->root.root.u.c.size;
1698 break;
1699 case bfd_link_hash_weak:
1700 type = N_WEAKU;
1701 val = 0;
1702 break;
1703 case bfd_link_hash_indirect:
1704 case bfd_link_hash_warning:
1705 /* FIXME: Ignore these for now. The circumstances under which
1706 they should be written out are not clear to me. */
1707 return true;
1708 }
1709
1710 s = bfd_get_section_by_name (sunos_hash_table (info)->dynobj, ".dynsym");
1711 BFD_ASSERT (s != NULL);
1712 outsym = ((struct external_nlist *)
1713 (s->contents + h->dynindx * EXTERNAL_NLIST_SIZE));
1714
1715 bfd_h_put_8 (output_bfd, type, outsym->e_type);
1716 bfd_h_put_8 (output_bfd, 0, outsym->e_other);
1717
1718 /* FIXME: The native linker doesn't use 0 for desc. It seems to use
1719 one less than the desc value in the shared library, although that
1720 seems unlikely. */
1721 bfd_h_put_16 (output_bfd, 0, outsym->e_desc);
1722
1723 PUT_WORD (output_bfd, h->dynstr_index, outsym->e_strx);
1724 PUT_WORD (output_bfd, val, outsym->e_value);
1725
1726 /* If this symbol is in the procedure linkage table, fill in the
1727 table entry. */
1728 if (plt)
1729 {
1730 bfd_byte *p;
1731 asection *s;
1732 bfd_vma r_address;
1733
1734 p = h->root.root.u.def.section->contents + h->root.root.u.def.value;
1735
1736 s = bfd_get_section_by_name (sunos_hash_table (info)->dynobj, ".dynrel");
1737 BFD_ASSERT (s != NULL);
1738
1739 r_address = (h->root.root.u.def.section->output_section->vma
1740 + h->root.root.u.def.section->output_offset
1741 + h->root.root.u.def.value);
1742
1743 switch (bfd_get_arch (output_bfd))
1744 {
1745 case bfd_arch_sparc:
1746 bfd_put_32 (output_bfd, SPARC_PLT_ENTRY_WORD0, p);
1747 bfd_put_32 (output_bfd,
1748 (SPARC_PLT_ENTRY_WORD1
1749 + (((- (h->root.root.u.def.value + 4) >> 2)
1750 & 0x3fffffff))),
1751 p + 4);
1752 bfd_put_32 (output_bfd, SPARC_PLT_ENTRY_WORD2 + s->reloc_count,
1753 p + 8);
1754 break;
1755
1756 case bfd_arch_m68k:
1757 bfd_put_16 (output_bfd, M68K_PLT_ENTRY_WORD0, p);
1758 bfd_put_32 (output_bfd, (- (h->root.root.u.def.value + 2)), p + 2);
1759 bfd_put_16 (output_bfd, s->reloc_count, p + 6);
1760 r_address += 2;
1761 break;
1762
1763 default:
1764 abort ();
1765 }
1766
1767 /* We also need to add a jump table reloc. */
1768 p = s->contents + s->reloc_count * obj_reloc_entry_size (output_bfd);
1769 if (obj_reloc_entry_size (output_bfd) == RELOC_STD_SIZE)
1770 {
1771 struct reloc_std_external *srel;
1772
1773 srel = (struct reloc_std_external *) p;
1774 PUT_WORD (output_bfd, r_address, srel->r_address);
1775 if (output_bfd->xvec->header_byteorder_big_p)
1776 {
1777 srel->r_index[0] = h->dynindx >> 16;
1778 srel->r_index[1] = h->dynindx >> 8;
1779 srel->r_index[2] = h->dynindx;
1780 srel->r_type[0] = (RELOC_STD_BITS_EXTERN_BIG
1781 | RELOC_STD_BITS_JMPTABLE_BIG);
1782 }
1783 else
1784 {
1785 srel->r_index[2] = h->dynindx >> 16;
1786 srel->r_index[1] = h->dynindx >> 8;
1787 srel->r_index[0] = h->dynindx;
1788 srel->r_type[0] = (RELOC_STD_BITS_EXTERN_LITTLE
1789 | RELOC_STD_BITS_JMPTABLE_LITTLE);
1790 }
1791 }
1792 else
1793 {
1794 struct reloc_ext_external *erel;
1795
1796 erel = (struct reloc_ext_external *) p;
1797 PUT_WORD (output_bfd, r_address, erel->r_address);
1798 if (output_bfd->xvec->header_byteorder_big_p)
1799 {
1800 erel->r_index[0] = h->dynindx >> 16;
1801 erel->r_index[1] = h->dynindx >> 8;
1802 erel->r_index[2] = h->dynindx;
1803 erel->r_type[0] = (RELOC_EXT_BITS_EXTERN_BIG
1804 | (22 << RELOC_EXT_BITS_TYPE_SH_BIG));
1805 }
1806 else
1807 {
1808 erel->r_index[2] = h->dynindx >> 16;
1809 erel->r_index[1] = h->dynindx >> 8;
1810 erel->r_index[0] = h->dynindx;
1811 erel->r_type[0] = (RELOC_EXT_BITS_EXTERN_LITTLE
1812 | (22 << RELOC_EXT_BITS_TYPE_SH_LITTLE));
1813 }
1814 PUT_WORD (output_bfd, (bfd_vma) 0, erel->r_addend);
1815 }
1816
1817 ++s->reloc_count;
1818 }
1819
1820 return true;
1821 }
1822
1823 /* This is called for each reloc against an external symbol. If this
1824 is a reloc which are are going to copy as a dynamic reloc, then
1825 copy it over, and tell the caller to not bother processing this
1826 reloc. */
1827
1828 /*ARGSUSED*/
1829 static boolean
1830 sunos_check_dynamic_reloc (info, input_bfd, input_section, harg, reloc, skip)
1831 struct bfd_link_info *info;
1832 bfd *input_bfd;
1833 asection *input_section;
1834 struct aout_link_hash_entry *harg;
1835 PTR reloc;
1836 boolean *skip;
1837 {
1838 struct sunos_link_hash_entry *h = (struct sunos_link_hash_entry *) harg;
1839 bfd *dynobj;
1840 asection *srel;
1841 bfd_byte *p;
1842
1843 *skip = false;
1844
1845 dynobj = sunos_hash_table (info)->dynobj;
1846
1847 if (dynobj == NULL
1848 || h->dynindx == -1
1849 || h->root.root.type != bfd_link_hash_undefined
1850 || (h->flags & SUNOS_DEF_REGULAR) != 0
1851 || (h->flags & SUNOS_DEF_DYNAMIC) == 0
1852 || (h->root.root.u.undef.abfd->flags & DYNAMIC) == 0)
1853 return true;
1854
1855 /* It looks this is a reloc we are supposed to copy. */
1856
1857 srel = bfd_get_section_by_name (dynobj, ".dynrel");
1858 BFD_ASSERT (srel != NULL);
1859
1860 p = srel->contents + srel->reloc_count * obj_reloc_entry_size (dynobj);
1861
1862 /* Copy the reloc over. */
1863 memcpy (p, reloc, obj_reloc_entry_size (dynobj));
1864
1865 /* Adjust the address and symbol index. */
1866 if (obj_reloc_entry_size (dynobj) == RELOC_STD_SIZE)
1867 {
1868 struct reloc_std_external *srel;
1869
1870 srel = (struct reloc_std_external *) p;
1871 PUT_WORD (dynobj,
1872 (GET_WORD (dynobj, srel->r_address)
1873 + input_section->output_section->vma
1874 + input_section->output_offset),
1875 srel->r_address);
1876 if (dynobj->xvec->header_byteorder_big_p)
1877 {
1878 srel->r_index[0] = h->dynindx >> 16;
1879 srel->r_index[1] = h->dynindx >> 8;
1880 srel->r_index[2] = h->dynindx;
1881 }
1882 else
1883 {
1884 srel->r_index[2] = h->dynindx >> 16;
1885 srel->r_index[1] = h->dynindx >> 8;
1886 srel->r_index[0] = h->dynindx;
1887 }
1888 }
1889 else
1890 {
1891 struct reloc_ext_external *erel;
1892
1893 erel = (struct reloc_ext_external *) p;
1894 PUT_WORD (dynobj,
1895 (GET_WORD (dynobj, erel->r_address)
1896 + input_section->output_section->vma
1897 + input_section->output_offset),
1898 erel->r_address);
1899 if (dynobj->xvec->header_byteorder_big_p)
1900 {
1901 erel->r_index[0] = h->dynindx >> 16;
1902 erel->r_index[1] = h->dynindx >> 8;
1903 erel->r_index[2] = h->dynindx;
1904 }
1905 else
1906 {
1907 erel->r_index[2] = h->dynindx >> 16;
1908 erel->r_index[1] = h->dynindx >> 8;
1909 erel->r_index[0] = h->dynindx;
1910 }
1911 }
1912
1913 ++srel->reloc_count;
1914
1915 *skip = true;
1916
1917 return true;
1918 }
1919
1920 /* Finish up the dynamic linking information. */
1921
1922 static boolean
1923 sunos_finish_dynamic_link (abfd, info)
1924 bfd *abfd;
1925 struct bfd_link_info *info;
1926 {
1927 bfd *dynobj;
1928 asection *o;
1929 asection *s;
1930 asection *sdyn;
1931 struct external_sun4_dynamic esd;
1932 struct external_sun4_dynamic_link esdl;
1933
1934 dynobj = sunos_hash_table (info)->dynobj;
1935 if (dynobj == NULL)
1936 return true;
1937
1938 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
1939 BFD_ASSERT (sdyn != NULL);
1940
1941 /* Finish up the .need section. The linker emulation code filled it
1942 in, but with offsets from the start of the section instead of
1943 real addresses. Now that we know the section location, we can
1944 fill in the final values. */
1945 s = bfd_get_section_by_name (dynobj, ".need");
1946 BFD_ASSERT (s != NULL);
1947 if (s->_raw_size != 0)
1948 {
1949 file_ptr filepos;
1950 bfd_byte *p;
1951
1952 filepos = s->output_section->filepos + s->output_offset;
1953 p = s->contents;
1954 while (1)
1955 {
1956 bfd_vma val;
1957
1958 PUT_WORD (dynobj, GET_WORD (dynobj, p) + filepos, p);
1959 val = GET_WORD (dynobj, p + 12);
1960 if (val == 0)
1961 break;
1962 PUT_WORD (dynobj, val + filepos, p + 12);
1963 p += 16;
1964 }
1965 }
1966
1967 /* The first entry in the .got section is the address of the dynamic
1968 information. */
1969 s = bfd_get_section_by_name (dynobj, ".got");
1970 BFD_ASSERT (s != NULL);
1971 PUT_WORD (dynobj, sdyn->output_section->vma + sdyn->output_offset,
1972 s->contents);
1973
1974 for (o = dynobj->sections; o != NULL; o = o->next)
1975 {
1976 if ((o->flags & SEC_HAS_CONTENTS) != 0
1977 && o->contents != NULL)
1978 {
1979 BFD_ASSERT (o->output_section != NULL
1980 && o->output_section->owner == abfd);
1981 if (! bfd_set_section_contents (abfd, o->output_section,
1982 o->contents, o->output_offset,
1983 o->_raw_size))
1984 return false;
1985 }
1986 }
1987
1988 /* Finish up the dynamic link information. */
1989 PUT_WORD (dynobj, (bfd_vma) 3, esd.ld_version);
1990 PUT_WORD (dynobj,
1991 sdyn->output_section->vma + sdyn->output_offset + sizeof esd,
1992 esd.ldd);
1993 PUT_WORD (dynobj,
1994 (sdyn->output_section->vma
1995 + sdyn->output_offset
1996 + sizeof esd
1997 + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE),
1998 esd.ld);
1999
2000 if (! bfd_set_section_contents (abfd, sdyn->output_section, &esd,
2001 sdyn->output_offset, sizeof esd))
2002 return false;
2003
2004
2005 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_loaded);
2006
2007 s = bfd_get_section_by_name (dynobj, ".need");
2008 BFD_ASSERT (s != NULL);
2009 if (s->_raw_size == 0)
2010 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_need);
2011 else
2012 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2013 esdl.ld_need);
2014
2015 s = bfd_get_section_by_name (dynobj, ".rules");
2016 BFD_ASSERT (s != NULL);
2017 if (s->_raw_size == 0)
2018 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_rules);
2019 else
2020 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2021 esdl.ld_rules);
2022
2023 s = bfd_get_section_by_name (dynobj, ".got");
2024 BFD_ASSERT (s != NULL);
2025 PUT_WORD (dynobj, s->output_section->vma + s->output_offset, esdl.ld_got);
2026
2027 s = bfd_get_section_by_name (dynobj, ".plt");
2028 BFD_ASSERT (s != NULL);
2029 PUT_WORD (dynobj, s->output_section->vma + s->output_offset, esdl.ld_plt);
2030 PUT_WORD (dynobj, s->_raw_size, esdl.ld_plt_sz);
2031
2032 s = bfd_get_section_by_name (dynobj, ".dynrel");
2033 BFD_ASSERT (s != NULL);
2034 BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj) == s->_raw_size);
2035 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2036 esdl.ld_rel);
2037
2038 s = bfd_get_section_by_name (dynobj, ".hash");
2039 BFD_ASSERT (s != NULL);
2040 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2041 esdl.ld_hash);
2042
2043 s = bfd_get_section_by_name (dynobj, ".dynsym");
2044 BFD_ASSERT (s != NULL);
2045 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2046 esdl.ld_stab);
2047
2048 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_stab_hash);
2049
2050 PUT_WORD (dynobj, (bfd_vma) sunos_hash_table (info)->bucketcount,
2051 esdl.ld_buckets);
2052
2053 s = bfd_get_section_by_name (dynobj, ".dynstr");
2054 BFD_ASSERT (s != NULL);
2055 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2056 esdl.ld_symbols);
2057 PUT_WORD (dynobj, s->_raw_size, esdl.ld_symb_size);
2058
2059 /* The size of the text area is the size of the .text section
2060 rounded up to a page boundary. FIXME: Should the page size be
2061 conditional on something? */
2062 PUT_WORD (dynobj,
2063 BFD_ALIGN (obj_textsec (abfd)->_raw_size, 0x2000),
2064 esdl.ld_text);
2065
2066 if (! bfd_set_section_contents (abfd, sdyn->output_section, &esdl,
2067 (sdyn->output_offset
2068 + sizeof esd
2069 + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE),
2070 sizeof esdl))
2071 return false;
2072
2073 abfd->flags |= DYNAMIC;
2074
2075 return true;
2076 }
This page took 0.100241 seconds and 3 git commands to generate.