* sunos.c (sunos_scan_ext_relocs): Only check the reloc symbol
[deliverable/binutils-gdb.git] / bfd / sunos.c
1 /* BFD backend for SunOS binaries.
2 Copyright (C) 1990, 91, 92, 93, 94, 1995 Free Software Foundation, Inc.
3 Written by Cygnus Support.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #define TARGETNAME "a.out-sunos-big"
22 #define MY(OP) CAT(sunos_big_,OP)
23
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libaout.h"
27
28 /* Static routines defined in this file. */
29
30 static boolean sunos_read_dynamic_info PARAMS ((bfd *));
31 static long sunos_get_dynamic_symtab_upper_bound PARAMS ((bfd *));
32 static boolean sunos_slurp_dynamic_symtab PARAMS ((bfd *));
33 static long sunos_canonicalize_dynamic_symtab PARAMS ((bfd *, asymbol **));
34 static long sunos_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
35 static long sunos_canonicalize_dynamic_reloc
36 PARAMS ((bfd *, arelent **, asymbol **));
37 static struct bfd_hash_entry *sunos_link_hash_newfunc
38 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
39 static struct bfd_link_hash_table *sunos_link_hash_table_create
40 PARAMS ((bfd *));
41 static boolean sunos_create_dynamic_sections
42 PARAMS ((bfd *, struct bfd_link_info *, boolean));
43 static boolean sunos_add_dynamic_symbols
44 PARAMS ((bfd *, struct bfd_link_info *, struct external_nlist **,
45 bfd_size_type *, char **));
46 static boolean sunos_add_one_symbol
47 PARAMS ((struct bfd_link_info *, bfd *, const char *, flagword, asection *,
48 bfd_vma, const char *, boolean, boolean,
49 struct bfd_link_hash_entry **));
50 static boolean sunos_scan_relocs
51 PARAMS ((struct bfd_link_info *, bfd *, asection *, bfd_size_type));
52 static boolean sunos_scan_std_relocs
53 PARAMS ((struct bfd_link_info *, bfd *, asection *,
54 const struct reloc_std_external *, bfd_size_type));
55 static boolean sunos_scan_ext_relocs
56 PARAMS ((struct bfd_link_info *, bfd *, asection *,
57 const struct reloc_ext_external *, bfd_size_type));
58 static boolean sunos_link_dynamic_object
59 PARAMS ((struct bfd_link_info *, bfd *));
60 static boolean sunos_write_dynamic_symbol
61 PARAMS ((bfd *, struct bfd_link_info *, struct aout_link_hash_entry *));
62 static boolean sunos_check_dynamic_reloc
63 PARAMS ((struct bfd_link_info *, bfd *, asection *,
64 struct aout_link_hash_entry *, PTR, bfd_byte *, boolean *,
65 bfd_vma *));
66 static boolean sunos_finish_dynamic_link
67 PARAMS ((bfd *, struct bfd_link_info *));
68
69 #define MY_get_dynamic_symtab_upper_bound sunos_get_dynamic_symtab_upper_bound
70 #define MY_canonicalize_dynamic_symtab sunos_canonicalize_dynamic_symtab
71 #define MY_get_dynamic_reloc_upper_bound sunos_get_dynamic_reloc_upper_bound
72 #define MY_canonicalize_dynamic_reloc sunos_canonicalize_dynamic_reloc
73 #define MY_bfd_link_hash_table_create sunos_link_hash_table_create
74 #define MY_add_dynamic_symbols sunos_add_dynamic_symbols
75 #define MY_add_one_symbol sunos_add_one_symbol
76 #define MY_link_dynamic_object sunos_link_dynamic_object
77 #define MY_write_dynamic_symbol sunos_write_dynamic_symbol
78 #define MY_check_dynamic_reloc sunos_check_dynamic_reloc
79 #define MY_finish_dynamic_link sunos_finish_dynamic_link
80
81 /* Include the usual a.out support. */
82 #include "aoutf1.h"
83
84 /* SunOS shared library support. We store a pointer to this structure
85 in obj_aout_dynamic_info (abfd). */
86
87 struct sunos_dynamic_info
88 {
89 /* Whether we found any dynamic information. */
90 boolean valid;
91 /* Dynamic information. */
92 struct internal_sun4_dynamic_link dyninfo;
93 /* Number of dynamic symbols. */
94 unsigned long dynsym_count;
95 /* Read in nlists for dynamic symbols. */
96 struct external_nlist *dynsym;
97 /* asymbol structures for dynamic symbols. */
98 aout_symbol_type *canonical_dynsym;
99 /* Read in dynamic string table. */
100 char *dynstr;
101 /* Number of dynamic relocs. */
102 unsigned long dynrel_count;
103 /* Read in dynamic relocs. This may be reloc_std_external or
104 reloc_ext_external. */
105 PTR dynrel;
106 /* arelent structures for dynamic relocs. */
107 arelent *canonical_dynrel;
108 };
109
110 /* The hash table of dynamic symbols is composed of two word entries.
111 See include/aout/sun4.h for details. */
112
113 #define HASH_ENTRY_SIZE (2 * BYTES_IN_WORD)
114
115 /* Read in the basic dynamic information. This locates the __DYNAMIC
116 structure and uses it to find the dynamic_link structure. It
117 creates and saves a sunos_dynamic_info structure. If it can't find
118 __DYNAMIC, it sets the valid field of the sunos_dynamic_info
119 structure to false to avoid doing this work again. */
120
121 static boolean
122 sunos_read_dynamic_info (abfd)
123 bfd *abfd;
124 {
125 struct sunos_dynamic_info *info;
126 asection *dynsec;
127 bfd_vma dynoff;
128 struct external_sun4_dynamic dyninfo;
129 unsigned long dynver;
130 struct external_sun4_dynamic_link linkinfo;
131
132 if (obj_aout_dynamic_info (abfd) != (PTR) NULL)
133 return true;
134
135 if ((abfd->flags & DYNAMIC) == 0)
136 {
137 bfd_set_error (bfd_error_invalid_operation);
138 return false;
139 }
140
141 info = ((struct sunos_dynamic_info *)
142 bfd_zalloc (abfd, sizeof (struct sunos_dynamic_info)));
143 if (!info)
144 {
145 bfd_set_error (bfd_error_no_memory);
146 return false;
147 }
148 info->valid = false;
149 info->dynsym = NULL;
150 info->dynstr = NULL;
151 info->canonical_dynsym = NULL;
152 info->dynrel = NULL;
153 info->canonical_dynrel = NULL;
154 obj_aout_dynamic_info (abfd) = (PTR) info;
155
156 /* This code used to look for the __DYNAMIC symbol to locate the dynamic
157 linking information.
158 However this inhibits recovering the dynamic symbols from a
159 stripped object file, so blindly assume that the dynamic linking
160 information is located at the start of the data section.
161 We could verify this assumption later by looking through the dynamic
162 symbols for the __DYNAMIC symbol. */
163 if ((abfd->flags & DYNAMIC) == 0)
164 return true;
165 if (! bfd_get_section_contents (abfd, obj_datasec (abfd), (PTR) &dyninfo,
166 (file_ptr) 0, sizeof dyninfo))
167 return true;
168
169 dynver = GET_WORD (abfd, dyninfo.ld_version);
170 if (dynver != 2 && dynver != 3)
171 return true;
172
173 dynoff = GET_WORD (abfd, dyninfo.ld);
174
175 /* dynoff is a virtual address. It is probably always in the .data
176 section, but this code should work even if it moves. */
177 if (dynoff < bfd_get_section_vma (abfd, obj_datasec (abfd)))
178 dynsec = obj_textsec (abfd);
179 else
180 dynsec = obj_datasec (abfd);
181 dynoff -= bfd_get_section_vma (abfd, dynsec);
182 if (dynoff > bfd_section_size (abfd, dynsec))
183 return true;
184
185 /* This executable appears to be dynamically linked in a way that we
186 can understand. */
187 if (! bfd_get_section_contents (abfd, dynsec, (PTR) &linkinfo, dynoff,
188 (bfd_size_type) sizeof linkinfo))
189 return true;
190
191 /* Swap in the dynamic link information. */
192 info->dyninfo.ld_loaded = GET_WORD (abfd, linkinfo.ld_loaded);
193 info->dyninfo.ld_need = GET_WORD (abfd, linkinfo.ld_need);
194 info->dyninfo.ld_rules = GET_WORD (abfd, linkinfo.ld_rules);
195 info->dyninfo.ld_got = GET_WORD (abfd, linkinfo.ld_got);
196 info->dyninfo.ld_plt = GET_WORD (abfd, linkinfo.ld_plt);
197 info->dyninfo.ld_rel = GET_WORD (abfd, linkinfo.ld_rel);
198 info->dyninfo.ld_hash = GET_WORD (abfd, linkinfo.ld_hash);
199 info->dyninfo.ld_stab = GET_WORD (abfd, linkinfo.ld_stab);
200 info->dyninfo.ld_stab_hash = GET_WORD (abfd, linkinfo.ld_stab_hash);
201 info->dyninfo.ld_buckets = GET_WORD (abfd, linkinfo.ld_buckets);
202 info->dyninfo.ld_symbols = GET_WORD (abfd, linkinfo.ld_symbols);
203 info->dyninfo.ld_symb_size = GET_WORD (abfd, linkinfo.ld_symb_size);
204 info->dyninfo.ld_text = GET_WORD (abfd, linkinfo.ld_text);
205 info->dyninfo.ld_plt_sz = GET_WORD (abfd, linkinfo.ld_plt_sz);
206
207 /* Reportedly the addresses need to be offset by the size of the
208 exec header in an NMAGIC file. */
209 if (adata (abfd).magic == n_magic)
210 {
211 unsigned long exec_bytes_size = adata (abfd).exec_bytes_size;
212
213 info->dyninfo.ld_need += exec_bytes_size;
214 info->dyninfo.ld_rules += exec_bytes_size;
215 info->dyninfo.ld_rel += exec_bytes_size;
216 info->dyninfo.ld_hash += exec_bytes_size;
217 info->dyninfo.ld_stab += exec_bytes_size;
218 info->dyninfo.ld_symbols += exec_bytes_size;
219 }
220
221 /* The only way to get the size of the symbol information appears to
222 be to determine the distance between it and the string table. */
223 info->dynsym_count = ((info->dyninfo.ld_symbols - info->dyninfo.ld_stab)
224 / EXTERNAL_NLIST_SIZE);
225 BFD_ASSERT (info->dynsym_count * EXTERNAL_NLIST_SIZE
226 == (unsigned long) (info->dyninfo.ld_symbols
227 - info->dyninfo.ld_stab));
228
229 /* Similarly, the relocs end at the hash table. */
230 info->dynrel_count = ((info->dyninfo.ld_hash - info->dyninfo.ld_rel)
231 / obj_reloc_entry_size (abfd));
232 BFD_ASSERT (info->dynrel_count * obj_reloc_entry_size (abfd)
233 == (unsigned long) (info->dyninfo.ld_hash
234 - info->dyninfo.ld_rel));
235
236 info->valid = true;
237
238 return true;
239 }
240
241 /* Return the amount of memory required for the dynamic symbols. */
242
243 static long
244 sunos_get_dynamic_symtab_upper_bound (abfd)
245 bfd *abfd;
246 {
247 struct sunos_dynamic_info *info;
248
249 if (! sunos_read_dynamic_info (abfd))
250 return -1;
251
252 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
253 if (! info->valid)
254 {
255 bfd_set_error (bfd_error_no_symbols);
256 return -1;
257 }
258
259 return (info->dynsym_count + 1) * sizeof (asymbol *);
260 }
261
262 /* Read the external dynamic symbols. */
263
264 static boolean
265 sunos_slurp_dynamic_symtab (abfd)
266 bfd *abfd;
267 {
268 struct sunos_dynamic_info *info;
269
270 /* Get the general dynamic information. */
271 if (obj_aout_dynamic_info (abfd) == NULL)
272 {
273 if (! sunos_read_dynamic_info (abfd))
274 return false;
275 }
276
277 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
278 if (! info->valid)
279 {
280 bfd_set_error (bfd_error_no_symbols);
281 return false;
282 }
283
284 /* Get the dynamic nlist structures. */
285 if (info->dynsym == (struct external_nlist *) NULL)
286 {
287 info->dynsym = ((struct external_nlist *)
288 bfd_alloc (abfd,
289 (info->dynsym_count
290 * EXTERNAL_NLIST_SIZE)));
291 if (info->dynsym == NULL && info->dynsym_count != 0)
292 {
293 bfd_set_error (bfd_error_no_memory);
294 return false;
295 }
296 if (bfd_seek (abfd, info->dyninfo.ld_stab, SEEK_SET) != 0
297 || (bfd_read ((PTR) info->dynsym, info->dynsym_count,
298 EXTERNAL_NLIST_SIZE, abfd)
299 != info->dynsym_count * EXTERNAL_NLIST_SIZE))
300 {
301 if (info->dynsym != NULL)
302 {
303 bfd_release (abfd, info->dynsym);
304 info->dynsym = NULL;
305 }
306 return false;
307 }
308 }
309
310 /* Get the dynamic strings. */
311 if (info->dynstr == (char *) NULL)
312 {
313 info->dynstr = (char *) bfd_alloc (abfd, info->dyninfo.ld_symb_size);
314 if (info->dynstr == NULL && info->dyninfo.ld_symb_size != 0)
315 {
316 bfd_set_error (bfd_error_no_memory);
317 return false;
318 }
319 if (bfd_seek (abfd, info->dyninfo.ld_symbols, SEEK_SET) != 0
320 || (bfd_read ((PTR) info->dynstr, 1, info->dyninfo.ld_symb_size,
321 abfd)
322 != info->dyninfo.ld_symb_size))
323 {
324 if (info->dynstr != NULL)
325 {
326 bfd_release (abfd, info->dynstr);
327 info->dynstr = NULL;
328 }
329 return false;
330 }
331 }
332
333 return true;
334 }
335
336 /* Read in the dynamic symbols. */
337
338 static long
339 sunos_canonicalize_dynamic_symtab (abfd, storage)
340 bfd *abfd;
341 asymbol **storage;
342 {
343 struct sunos_dynamic_info *info;
344 unsigned long i;
345
346 if (! sunos_slurp_dynamic_symtab (abfd))
347 return -1;
348
349 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
350
351 #ifdef CHECK_DYNAMIC_HASH
352 /* Check my understanding of the dynamic hash table by making sure
353 that each symbol can be located in the hash table. */
354 {
355 bfd_size_type table_size;
356 bfd_byte *table;
357 bfd_size_type i;
358
359 if (info->dyninfo.ld_buckets > info->dynsym_count)
360 abort ();
361 table_size = info->dyninfo.ld_stab - info->dyninfo.ld_hash;
362 table = (bfd_byte *) malloc (table_size);
363 if (table == NULL && table_size != 0)
364 abort ();
365 if (bfd_seek (abfd, info->dyninfo.ld_hash, SEEK_SET) != 0
366 || bfd_read ((PTR) table, 1, table_size, abfd) != table_size)
367 abort ();
368 for (i = 0; i < info->dynsym_count; i++)
369 {
370 unsigned char *name;
371 unsigned long hash;
372
373 name = ((unsigned char *) info->dynstr
374 + GET_WORD (abfd, info->dynsym[i].e_strx));
375 hash = 0;
376 while (*name != '\0')
377 hash = (hash << 1) + *name++;
378 hash &= 0x7fffffff;
379 hash %= info->dyninfo.ld_buckets;
380 while (GET_WORD (abfd, table + hash * HASH_ENTRY_SIZE) != i)
381 {
382 hash = GET_WORD (abfd,
383 table + hash * HASH_ENTRY_SIZE + BYTES_IN_WORD);
384 if (hash == 0 || hash >= table_size / HASH_ENTRY_SIZE)
385 abort ();
386 }
387 }
388 free (table);
389 }
390 #endif /* CHECK_DYNAMIC_HASH */
391
392 /* Get the asymbol structures corresponding to the dynamic nlist
393 structures. */
394 if (info->canonical_dynsym == (aout_symbol_type *) NULL)
395 {
396 info->canonical_dynsym = ((aout_symbol_type *)
397 bfd_alloc (abfd,
398 (info->dynsym_count
399 * sizeof (aout_symbol_type))));
400 if (info->canonical_dynsym == NULL && info->dynsym_count != 0)
401 {
402 bfd_set_error (bfd_error_no_memory);
403 return -1;
404 }
405
406 if (! aout_32_translate_symbol_table (abfd, info->canonical_dynsym,
407 info->dynsym, info->dynsym_count,
408 info->dynstr,
409 info->dyninfo.ld_symb_size,
410 true))
411 {
412 if (info->canonical_dynsym != NULL)
413 {
414 bfd_release (abfd, info->canonical_dynsym);
415 info->canonical_dynsym = NULL;
416 }
417 return -1;
418 }
419 }
420
421 /* Return pointers to the dynamic asymbol structures. */
422 for (i = 0; i < info->dynsym_count; i++)
423 *storage++ = (asymbol *) (info->canonical_dynsym + i);
424 *storage = NULL;
425
426 return info->dynsym_count;
427 }
428
429 /* Return the amount of memory required for the dynamic relocs. */
430
431 static long
432 sunos_get_dynamic_reloc_upper_bound (abfd)
433 bfd *abfd;
434 {
435 struct sunos_dynamic_info *info;
436
437 if (! sunos_read_dynamic_info (abfd))
438 return -1;
439
440 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
441 if (! info->valid)
442 {
443 bfd_set_error (bfd_error_no_symbols);
444 return -1;
445 }
446
447 return (info->dynrel_count + 1) * sizeof (arelent *);
448 }
449
450 /* Read in the dynamic relocs. */
451
452 static long
453 sunos_canonicalize_dynamic_reloc (abfd, storage, syms)
454 bfd *abfd;
455 arelent **storage;
456 asymbol **syms;
457 {
458 struct sunos_dynamic_info *info;
459 unsigned long i;
460
461 /* Get the general dynamic information. */
462 if (obj_aout_dynamic_info (abfd) == (PTR) NULL)
463 {
464 if (! sunos_read_dynamic_info (abfd))
465 return -1;
466 }
467
468 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
469 if (! info->valid)
470 {
471 bfd_set_error (bfd_error_no_symbols);
472 return -1;
473 }
474
475 /* Get the dynamic reloc information. */
476 if (info->dynrel == NULL)
477 {
478 info->dynrel = (PTR) bfd_alloc (abfd,
479 (info->dynrel_count
480 * obj_reloc_entry_size (abfd)));
481 if (info->dynrel == NULL && info->dynrel_count != 0)
482 {
483 bfd_set_error (bfd_error_no_memory);
484 return -1;
485 }
486 if (bfd_seek (abfd, info->dyninfo.ld_rel, SEEK_SET) != 0
487 || (bfd_read ((PTR) info->dynrel, info->dynrel_count,
488 obj_reloc_entry_size (abfd), abfd)
489 != info->dynrel_count * obj_reloc_entry_size (abfd)))
490 {
491 if (info->dynrel != NULL)
492 {
493 bfd_release (abfd, info->dynrel);
494 info->dynrel = NULL;
495 }
496 return -1;
497 }
498 }
499
500 /* Get the arelent structures corresponding to the dynamic reloc
501 information. */
502 if (info->canonical_dynrel == (arelent *) NULL)
503 {
504 arelent *to;
505
506 info->canonical_dynrel = ((arelent *)
507 bfd_alloc (abfd,
508 (info->dynrel_count
509 * sizeof (arelent))));
510 if (info->canonical_dynrel == NULL && info->dynrel_count != 0)
511 {
512 bfd_set_error (bfd_error_no_memory);
513 return -1;
514 }
515
516 to = info->canonical_dynrel;
517
518 if (obj_reloc_entry_size (abfd) == RELOC_EXT_SIZE)
519 {
520 register struct reloc_ext_external *p;
521 struct reloc_ext_external *pend;
522
523 p = (struct reloc_ext_external *) info->dynrel;
524 pend = p + info->dynrel_count;
525 for (; p < pend; p++, to++)
526 NAME(aout,swap_ext_reloc_in) (abfd, p, to, syms,
527 info->dynsym_count);
528 }
529 else
530 {
531 register struct reloc_std_external *p;
532 struct reloc_std_external *pend;
533
534 p = (struct reloc_std_external *) info->dynrel;
535 pend = p + info->dynrel_count;
536 for (; p < pend; p++, to++)
537 NAME(aout,swap_std_reloc_in) (abfd, p, to, syms,
538 info->dynsym_count);
539 }
540 }
541
542 /* Return pointers to the dynamic arelent structures. */
543 for (i = 0; i < info->dynrel_count; i++)
544 *storage++ = info->canonical_dynrel + i;
545 *storage = NULL;
546
547 return info->dynrel_count;
548 }
549 \f
550 /* Code to handle linking of SunOS shared libraries. */
551
552 /* A SPARC procedure linkage table entry is 12 bytes. The first entry
553 in the table is a jump which is filled in by the runtime linker.
554 The remaining entries are branches back to the first entry,
555 followed by an index into the relocation table encoded to look like
556 a sethi of %g0. */
557
558 #define SPARC_PLT_ENTRY_SIZE (12)
559
560 static const bfd_byte sparc_plt_first_entry[SPARC_PLT_ENTRY_SIZE] =
561 {
562 /* sethi %hi(0),%g1; address filled in by runtime linker. */
563 0x3, 0, 0, 0,
564 /* jmp %g1; offset filled in by runtime linker. */
565 0x81, 0xc0, 0x60, 0,
566 /* nop */
567 0x1, 0, 0, 0
568 };
569
570 /* save %sp, -96, %sp */
571 #define SPARC_PLT_ENTRY_WORD0 0x9de3bfa0
572 /* call; address filled in later. */
573 #define SPARC_PLT_ENTRY_WORD1 0x40000000
574 /* sethi; reloc index filled in later. */
575 #define SPARC_PLT_ENTRY_WORD2 0x01000000
576
577 /* This sequence is used when for the jump table entry to a defined
578 symbol in a complete executable. It is used when linking PIC
579 compiled code which is not being put into a shared library. */
580 /* sethi <address to be filled in later>, %g1 */
581 #define SPARC_PLT_PIC_WORD0 0x03000000
582 /* jmp %g1 + <address to be filled in later> */
583 #define SPARC_PLT_PIC_WORD1 0x81c06000
584 /* nop */
585 #define SPARC_PLT_PIC_WORD2 0x01000000
586
587 /* An m68k procedure linkage table entry is 8 bytes. The first entry
588 in the table is a jump which is filled in the by the runtime
589 linker. The remaining entries are branches back to the first
590 entry, followed by a two byte index into the relocation table. */
591
592 #define M68K_PLT_ENTRY_SIZE (8)
593
594 static const bfd_byte m68k_plt_first_entry[M68K_PLT_ENTRY_SIZE] =
595 {
596 /* jmps @# */
597 0x4e, 0xf9,
598 /* Filled in by runtime linker with a magic address. */
599 0, 0, 0, 0,
600 /* Not used? */
601 0, 0
602 };
603
604 /* bsrl */
605 #define M68K_PLT_ENTRY_WORD0 (0x61ff)
606 /* Remaining words filled in later. */
607
608 /* An entry in the SunOS linker hash table. */
609
610 struct sunos_link_hash_entry
611 {
612 struct aout_link_hash_entry root;
613
614 /* If this is a dynamic symbol, this is its index into the dynamic
615 symbol table. This is initialized to -1. As the linker looks at
616 the input files, it changes this to -2 if it will be added to the
617 dynamic symbol table. After all the input files have been seen,
618 the linker will know whether to build a dynamic symbol table; if
619 it does build one, this becomes the index into the table. */
620 long dynindx;
621
622 /* If this is a dynamic symbol, this is the index of the name in the
623 dynamic symbol string table. */
624 long dynstr_index;
625
626 /* The offset into the global offset table used for this symbol. If
627 the symbol does not require a GOT entry, this is 0. */
628 bfd_vma got_offset;
629
630 /* The offset into the procedure linkage table used for this symbol.
631 If the symbol does not require a PLT entry, this is 0. */
632 bfd_vma plt_offset;
633
634 /* Some linker flags. */
635 unsigned char flags;
636 /* Symbol is referenced by a regular object. */
637 #define SUNOS_REF_REGULAR 01
638 /* Symbol is defined by a regular object. */
639 #define SUNOS_DEF_REGULAR 02
640 /* Symbol is referenced by a dynamic object. */
641 #define SUNOS_REF_DYNAMIC 010
642 /* Symbol is defined by a dynamic object. */
643 #define SUNOS_DEF_DYNAMIC 020
644 };
645
646 /* The SunOS linker hash table. */
647
648 struct sunos_link_hash_table
649 {
650 struct aout_link_hash_table root;
651
652 /* The object which holds the dynamic sections. */
653 bfd *dynobj;
654
655 /* Whether we have created the dynamic sections. */
656 boolean dynamic_sections_created;
657
658 /* Whether we need the dynamic sections. */
659 boolean dynamic_sections_needed;
660
661 /* The number of dynamic symbols. */
662 size_t dynsymcount;
663
664 /* The number of buckets in the hash table. */
665 size_t bucketcount;
666
667 /* The list of dynamic objects needed by dynamic objects included in
668 the link. */
669 struct bfd_link_needed_list *needed;
670 };
671
672 /* Routine to create an entry in an SunOS link hash table. */
673
674 static struct bfd_hash_entry *
675 sunos_link_hash_newfunc (entry, table, string)
676 struct bfd_hash_entry *entry;
677 struct bfd_hash_table *table;
678 const char *string;
679 {
680 struct sunos_link_hash_entry *ret = (struct sunos_link_hash_entry *) entry;
681
682 /* Allocate the structure if it has not already been allocated by a
683 subclass. */
684 if (ret == (struct sunos_link_hash_entry *) NULL)
685 ret = ((struct sunos_link_hash_entry *)
686 bfd_hash_allocate (table, sizeof (struct sunos_link_hash_entry)));
687 if (ret == (struct sunos_link_hash_entry *) NULL)
688 {
689 bfd_set_error (bfd_error_no_memory);
690 return (struct bfd_hash_entry *) ret;
691 }
692
693 /* Call the allocation method of the superclass. */
694 ret = ((struct sunos_link_hash_entry *)
695 NAME(aout,link_hash_newfunc) ((struct bfd_hash_entry *) ret,
696 table, string));
697 if (ret != NULL)
698 {
699 /* Set local fields. */
700 ret->dynindx = -1;
701 ret->dynstr_index = -1;
702 ret->got_offset = 0;
703 ret->plt_offset = 0;
704 ret->flags = 0;
705 }
706
707 return (struct bfd_hash_entry *) ret;
708 }
709
710 /* Create a SunOS link hash table. */
711
712 static struct bfd_link_hash_table *
713 sunos_link_hash_table_create (abfd)
714 bfd *abfd;
715 {
716 struct sunos_link_hash_table *ret;
717
718 ret = ((struct sunos_link_hash_table *)
719 bfd_alloc (abfd, sizeof (struct sunos_link_hash_table)));
720 if (ret == (struct sunos_link_hash_table *) NULL)
721 {
722 bfd_set_error (bfd_error_no_memory);
723 return (struct bfd_link_hash_table *) NULL;
724 }
725 if (! NAME(aout,link_hash_table_init) (&ret->root, abfd,
726 sunos_link_hash_newfunc))
727 {
728 bfd_release (abfd, ret);
729 return (struct bfd_link_hash_table *) NULL;
730 }
731
732 ret->dynobj = NULL;
733 ret->dynamic_sections_created = false;
734 ret->dynamic_sections_needed = false;
735 ret->dynsymcount = 0;
736 ret->bucketcount = 0;
737 ret->needed = NULL;
738
739 return &ret->root.root;
740 }
741
742 /* Look up an entry in an SunOS link hash table. */
743
744 #define sunos_link_hash_lookup(table, string, create, copy, follow) \
745 ((struct sunos_link_hash_entry *) \
746 aout_link_hash_lookup (&(table)->root, (string), (create), (copy),\
747 (follow)))
748
749 /* Traverse a SunOS link hash table. */
750
751 #define sunos_link_hash_traverse(table, func, info) \
752 (aout_link_hash_traverse \
753 (&(table)->root, \
754 (boolean (*) PARAMS ((struct aout_link_hash_entry *, PTR))) (func), \
755 (info)))
756
757 /* Get the SunOS link hash table from the info structure. This is
758 just a cast. */
759
760 #define sunos_hash_table(p) ((struct sunos_link_hash_table *) ((p)->hash))
761
762 static boolean sunos_scan_dynamic_symbol
763 PARAMS ((struct sunos_link_hash_entry *, PTR));
764
765 /* Create the dynamic sections needed if we are linking against a
766 dynamic object, or if we are linking PIC compiled code. ABFD is a
767 bfd we can attach the dynamic sections to. The linker script will
768 look for these special sections names and put them in the right
769 place in the output file. See include/aout/sun4.h for more details
770 of the dynamic linking information. */
771
772 static boolean
773 sunos_create_dynamic_sections (abfd, info, needed)
774 bfd *abfd;
775 struct bfd_link_info *info;
776 boolean needed;
777 {
778 asection *s;
779
780 if (! sunos_hash_table (info)->dynamic_sections_created)
781 {
782 flagword flags;
783
784 sunos_hash_table (info)->dynobj = abfd;
785
786 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY;
787
788 /* The .dynamic section holds the basic dynamic information: the
789 sun4_dynamic structure, the dynamic debugger information, and
790 the sun4_dynamic_link structure. */
791 s = bfd_make_section (abfd, ".dynamic");
792 if (s == NULL
793 || ! bfd_set_section_flags (abfd, s, flags)
794 || ! bfd_set_section_alignment (abfd, s, 2))
795 return false;
796
797 /* The .got section holds the global offset table. The address
798 is put in the ld_got field. */
799 s = bfd_make_section (abfd, ".got");
800 if (s == NULL
801 || ! bfd_set_section_flags (abfd, s, flags)
802 || ! bfd_set_section_alignment (abfd, s, 2))
803 return false;
804
805 /* The .plt section holds the procedure linkage table. The
806 address is put in the ld_plt field. */
807 s = bfd_make_section (abfd, ".plt");
808 if (s == NULL
809 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
810 || ! bfd_set_section_alignment (abfd, s, 2))
811 return false;
812
813 /* The .dynrel section holds the dynamic relocs. The address is
814 put in the ld_rel field. */
815 s = bfd_make_section (abfd, ".dynrel");
816 if (s == NULL
817 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
818 || ! bfd_set_section_alignment (abfd, s, 2))
819 return false;
820
821 /* The .hash section holds the dynamic hash table. The address
822 is put in the ld_hash field. */
823 s = bfd_make_section (abfd, ".hash");
824 if (s == NULL
825 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
826 || ! bfd_set_section_alignment (abfd, s, 2))
827 return false;
828
829 /* The .dynsym section holds the dynamic symbols. The address
830 is put in the ld_stab field. */
831 s = bfd_make_section (abfd, ".dynsym");
832 if (s == NULL
833 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
834 || ! bfd_set_section_alignment (abfd, s, 2))
835 return false;
836
837 /* The .dynstr section holds the dynamic symbol string table.
838 The address is put in the ld_symbols field. */
839 s = bfd_make_section (abfd, ".dynstr");
840 if (s == NULL
841 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
842 || ! bfd_set_section_alignment (abfd, s, 2))
843 return false;
844
845 sunos_hash_table (info)->dynamic_sections_created = true;
846 }
847
848 if (needed && ! sunos_hash_table (info)->dynamic_sections_needed)
849 {
850 bfd *dynobj;
851
852 dynobj = sunos_hash_table (info)->dynobj;
853
854 s = bfd_get_section_by_name (dynobj, ".got");
855 s->_raw_size = BYTES_IN_WORD;
856
857 sunos_hash_table (info)->dynamic_sections_needed = true;
858 }
859
860 return true;
861 }
862
863 /* Add dynamic symbols during a link. This is called by the a.out
864 backend linker when it encounters an object with the DYNAMIC flag
865 set. */
866
867 static boolean
868 sunos_add_dynamic_symbols (abfd, info, symsp, sym_countp, stringsp)
869 bfd *abfd;
870 struct bfd_link_info *info;
871 struct external_nlist **symsp;
872 bfd_size_type *sym_countp;
873 char **stringsp;
874 {
875 asection *s;
876 bfd *dynobj;
877 struct sunos_dynamic_info *dinfo;
878 unsigned long need;
879
880 /* We do not want to include the sections in a dynamic object in the
881 output file. We hack by simply clobbering the list of sections
882 in the BFD. This could be handled more cleanly by, say, a new
883 section flag; the existing SEC_NEVER_LOAD flag is not the one we
884 want, because that one still implies that the section takes up
885 space in the output file. */
886 abfd->sections = NULL;
887
888 /* The native linker seems to just ignore dynamic objects when -r is
889 used. */
890 if (info->relocateable)
891 return true;
892
893 /* There's no hope of using a dynamic object which does not exactly
894 match the format of the output file. */
895 if (info->hash->creator != abfd->xvec)
896 {
897 bfd_set_error (bfd_error_invalid_operation);
898 return false;
899 }
900
901 /* Make sure we have all the required information. */
902 if (! sunos_create_dynamic_sections (abfd, info, true))
903 return false;
904
905 /* Make sure we have a .need and a .rules sections. These are only
906 needed if there really is a dynamic object in the link, so they
907 are not added by sunos_create_dynamic_sections. */
908 dynobj = sunos_hash_table (info)->dynobj;
909 if (bfd_get_section_by_name (dynobj, ".need") == NULL)
910 {
911 /* The .need section holds the list of names of shared objets
912 which must be included at runtime. The address of this
913 section is put in the ld_need field. */
914 s = bfd_make_section (dynobj, ".need");
915 if (s == NULL
916 || ! bfd_set_section_flags (dynobj, s,
917 (SEC_ALLOC
918 | SEC_LOAD
919 | SEC_HAS_CONTENTS
920 | SEC_IN_MEMORY
921 | SEC_READONLY))
922 || ! bfd_set_section_alignment (dynobj, s, 2))
923 return false;
924 }
925
926 if (bfd_get_section_by_name (dynobj, ".rules") == NULL)
927 {
928 /* The .rules section holds the path to search for shared
929 objects. The address of this section is put in the ld_rules
930 field. */
931 s = bfd_make_section (dynobj, ".rules");
932 if (s == NULL
933 || ! bfd_set_section_flags (dynobj, s,
934 (SEC_ALLOC
935 | SEC_LOAD
936 | SEC_HAS_CONTENTS
937 | SEC_IN_MEMORY
938 | SEC_READONLY))
939 || ! bfd_set_section_alignment (dynobj, s, 2))
940 return false;
941 }
942
943 /* Pick up the dynamic symbols and return them to the caller. */
944 if (! sunos_slurp_dynamic_symtab (abfd))
945 return false;
946
947 dinfo = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
948 *symsp = dinfo->dynsym;
949 *sym_countp = dinfo->dynsym_count;
950 *stringsp = dinfo->dynstr;
951
952 /* Record information about any other objects needed by this one. */
953 need = dinfo->dyninfo.ld_need;
954 while (need != 0)
955 {
956 bfd_byte buf[16];
957 unsigned long name, flags;
958 unsigned short major_vno, minor_vno;
959 struct bfd_link_needed_list *needed, **pp;
960 bfd_byte b;
961
962 if (bfd_seek (abfd, need, SEEK_SET) != 0
963 || bfd_read (buf, 1, 16, abfd) != 16)
964 return false;
965
966 /* For the format of an ld_need entry, see aout/sun4.h. We
967 should probably define structs for this manipulation. */
968
969 name = bfd_get_32 (abfd, buf);
970 flags = bfd_get_32 (abfd, buf + 4);
971 major_vno = bfd_get_16 (abfd, buf + 8);
972 minor_vno = bfd_get_16 (abfd, buf + 10);
973 need = bfd_get_32 (abfd, buf + 12);
974
975 needed = (struct bfd_link_needed_list *) bfd_alloc (abfd, sizeof (struct bfd_link_needed_list));
976 if (needed == NULL)
977 {
978 bfd_set_error (bfd_error_no_memory);
979 return false;
980 }
981 needed->by = abfd;
982
983 /* We return the name as [-l]name[.maj][.min]. */
984
985 if ((flags & 0x80000000) != 0)
986 bfd_alloc_grow (abfd, "-l", 2);
987 if (bfd_seek (abfd, name, SEEK_SET) != 0)
988 return false;
989 do
990 {
991 if (bfd_read (&b, 1, 1, abfd) != 1)
992 return false;
993 bfd_alloc_grow (abfd, &b, 1);
994 }
995 while (b != '\0');
996 if (major_vno != 0)
997 {
998 char verbuf[30];
999
1000 sprintf (verbuf, ".%d", major_vno);
1001 bfd_alloc_grow (abfd, verbuf, strlen (verbuf));
1002 if (minor_vno != 0)
1003 {
1004 sprintf (verbuf, ".%d", minor_vno);
1005 bfd_alloc_grow (abfd, verbuf, strlen (verbuf));
1006 }
1007 }
1008 needed->name = bfd_alloc_finish (abfd);
1009 if (needed->name == NULL)
1010 {
1011 bfd_set_error (bfd_error_no_memory);
1012 return false;
1013 }
1014
1015 needed->next = NULL;
1016
1017 for (pp = &sunos_hash_table (info)->needed;
1018 *pp != NULL;
1019 pp = &(*pp)->next)
1020 ;
1021 *pp = needed;
1022 }
1023
1024 return true;
1025 }
1026
1027 /* Function to add a single symbol to the linker hash table. This is
1028 a wrapper around _bfd_generic_link_add_one_symbol which handles the
1029 tweaking needed for dynamic linking support. */
1030
1031 static boolean
1032 sunos_add_one_symbol (info, abfd, name, flags, section, value, string,
1033 copy, collect, hashp)
1034 struct bfd_link_info *info;
1035 bfd *abfd;
1036 const char *name;
1037 flagword flags;
1038 asection *section;
1039 bfd_vma value;
1040 const char *string;
1041 boolean copy;
1042 boolean collect;
1043 struct bfd_link_hash_entry **hashp;
1044 {
1045 struct sunos_link_hash_entry *h;
1046 int new_flag;
1047
1048 if (! sunos_hash_table (info)->dynamic_sections_created)
1049 {
1050 /* We must create the dynamic sections while reading the input
1051 files, even though at this point we don't know if any of the
1052 sections will be needed. This will ensure that the dynamic
1053 sections are mapped to the right output section. It does no
1054 harm to create these sections if they are not needed. */
1055 if (! sunos_create_dynamic_sections (abfd, info, false))
1056 return false;
1057 }
1058
1059 h = sunos_link_hash_lookup (sunos_hash_table (info), name, true, copy,
1060 false);
1061 if (h == NULL)
1062 return false;
1063
1064 if (hashp != NULL)
1065 *hashp = (struct bfd_link_hash_entry *) h;
1066
1067 /* Treat a common symbol in a dynamic object as defined in the .bss
1068 section of the dynamic object. We don't want to allocate space
1069 for it in our process image. */
1070 if ((abfd->flags & DYNAMIC) != 0
1071 && bfd_is_com_section (section))
1072 section = obj_bsssec (abfd);
1073
1074 if (! bfd_is_und_section (section)
1075 && h->root.root.type != bfd_link_hash_new
1076 && h->root.root.type != bfd_link_hash_undefined
1077 && h->root.root.type != bfd_link_hash_defweak)
1078 {
1079 /* We are defining the symbol, and it is already defined. This
1080 is a potential multiple definition error. */
1081 if ((abfd->flags & DYNAMIC) != 0)
1082 {
1083 /* The definition we are adding is from a dynamic object.
1084 We do not want this new definition to override the
1085 existing definition, so we pretend it is just a
1086 reference. */
1087 section = bfd_und_section_ptr;
1088 }
1089 else if (h->root.root.type == bfd_link_hash_defined
1090 && h->root.root.u.def.section->owner != NULL
1091 && (h->root.root.u.def.section->owner->flags & DYNAMIC) != 0)
1092 {
1093 /* The existing definition is from a dynamic object. We
1094 want to override it with the definition we just found.
1095 Clobber the existing definition. */
1096 h->root.root.type = bfd_link_hash_new;
1097 }
1098 else if (h->root.root.type == bfd_link_hash_common
1099 && (h->root.root.u.c.p->section->owner->flags & DYNAMIC) != 0)
1100 {
1101 /* The existing definition is from a dynamic object. We
1102 want to override it with the definition we just found.
1103 Clobber the existing definition. We can't set it to new,
1104 because it is on the undefined list. */
1105 h->root.root.type = bfd_link_hash_undefined;
1106 h->root.root.u.undef.abfd = h->root.root.u.c.p->section->owner;
1107 }
1108 }
1109
1110 /* Do the usual procedure for adding a symbol. */
1111 if (! _bfd_generic_link_add_one_symbol (info, abfd, name, flags, section,
1112 value, string, copy, collect,
1113 hashp))
1114 return false;
1115
1116 if (abfd->xvec == info->hash->creator)
1117 {
1118 /* Set a flag in the hash table entry indicating the type of
1119 reference or definition we just found. Keep a count of the
1120 number of dynamic symbols we find. A dynamic symbol is one
1121 which is referenced or defined by both a regular object and a
1122 shared object. */
1123 if ((abfd->flags & DYNAMIC) == 0)
1124 {
1125 if (bfd_is_und_section (section))
1126 new_flag = SUNOS_REF_REGULAR;
1127 else
1128 new_flag = SUNOS_DEF_REGULAR;
1129 }
1130 else
1131 {
1132 if (bfd_is_und_section (section))
1133 new_flag = SUNOS_REF_DYNAMIC;
1134 else
1135 new_flag = SUNOS_DEF_DYNAMIC;
1136 }
1137 h->flags |= new_flag;
1138
1139 if (h->dynindx == -1
1140 && (h->flags & (SUNOS_DEF_REGULAR | SUNOS_REF_REGULAR)) != 0)
1141 {
1142 ++sunos_hash_table (info)->dynsymcount;
1143 h->dynindx = -2;
1144 }
1145 }
1146
1147 return true;
1148 }
1149
1150 /* Return the list of objects needed by BFD. */
1151
1152 /*ARGSUSED*/
1153 struct bfd_link_needed_list *
1154 bfd_sunos_get_needed_list (abfd, info)
1155 bfd *abfd;
1156 struct bfd_link_info *info;
1157 {
1158 return sunos_hash_table (info)->needed;
1159 }
1160
1161 /* Record an assignment made to a symbol by a linker script. We need
1162 this in case some dynamic object refers to this symbol. */
1163
1164 boolean
1165 bfd_sunos_record_link_assignment (output_bfd, info, name)
1166 bfd *output_bfd;
1167 struct bfd_link_info *info;
1168 const char *name;
1169 {
1170 struct sunos_link_hash_entry *h;
1171
1172 if (output_bfd->xvec != &MY(vec))
1173 return true;
1174
1175 /* This is called after we have examined all the input objects. If
1176 the symbol does not exist, it merely means that no object refers
1177 to it, and we can just ignore it at this point. */
1178 h = sunos_link_hash_lookup (sunos_hash_table (info), name,
1179 false, false, false);
1180 if (h == NULL)
1181 return true;
1182
1183 /* In a shared library, the __DYNAMIC symbol does not appear in the
1184 dynamic symbol table. */
1185 if (! info->shared || strcmp (name, "__DYNAMIC") != 0)
1186 {
1187 h->flags |= SUNOS_DEF_REGULAR;
1188
1189 if (h->dynindx == -1)
1190 {
1191 ++sunos_hash_table (info)->dynsymcount;
1192 h->dynindx = -2;
1193 }
1194 }
1195
1196 return true;
1197 }
1198
1199 /* Set up the sizes and contents of the dynamic sections created in
1200 sunos_add_dynamic_symbols. This is called by the SunOS linker
1201 emulation before_allocation routine. We must set the sizes of the
1202 sections before the linker sets the addresses of the various
1203 sections. This unfortunately requires reading all the relocs so
1204 that we can work out which ones need to become dynamic relocs. If
1205 info->keep_memory is true, we keep the relocs in memory; otherwise,
1206 we discard them, and will read them again later. */
1207
1208 boolean
1209 bfd_sunos_size_dynamic_sections (output_bfd, info, sdynptr, sneedptr,
1210 srulesptr)
1211 bfd *output_bfd;
1212 struct bfd_link_info *info;
1213 asection **sdynptr;
1214 asection **sneedptr;
1215 asection **srulesptr;
1216 {
1217 bfd *dynobj;
1218 size_t dynsymcount;
1219 struct sunos_link_hash_entry *h;
1220 asection *s;
1221 size_t bucketcount;
1222 size_t hashalloc;
1223 size_t i;
1224 bfd *sub;
1225
1226 *sdynptr = NULL;
1227 *sneedptr = NULL;
1228 *srulesptr = NULL;
1229
1230 if (output_bfd->xvec != &MY(vec))
1231 return true;
1232
1233 /* Look through all the input BFD's and read their relocs. It would
1234 be better if we didn't have to do this, but there is no other way
1235 to determine the number of dynamic relocs we need, and, more
1236 importantly, there is no other way to know which symbols should
1237 get an entry in the procedure linkage table. */
1238 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
1239 {
1240 if ((sub->flags & DYNAMIC) == 0
1241 && sub->xvec == output_bfd->xvec)
1242 {
1243 if (! sunos_scan_relocs (info, sub, obj_textsec (sub),
1244 exec_hdr (sub)->a_trsize)
1245 || ! sunos_scan_relocs (info, sub, obj_datasec (sub),
1246 exec_hdr (sub)->a_drsize))
1247 return false;
1248 }
1249 }
1250
1251 dynobj = sunos_hash_table (info)->dynobj;
1252 dynsymcount = sunos_hash_table (info)->dynsymcount;
1253
1254 /* If there were no dynamic objects in the link, and we don't need
1255 to build a global offset table, there is nothing to do here. */
1256 if (! sunos_hash_table (info)->dynamic_sections_needed)
1257 return true;
1258
1259 /* If __GLOBAL_OFFSET_TABLE_ was mentioned, define it. */
1260 h = sunos_link_hash_lookup (sunos_hash_table (info),
1261 "__GLOBAL_OFFSET_TABLE_", false, false, false);
1262 if (h != NULL && (h->flags & SUNOS_REF_REGULAR) != 0)
1263 {
1264 h->flags |= SUNOS_DEF_REGULAR;
1265 if (h->dynindx == -1)
1266 {
1267 ++sunos_hash_table (info)->dynsymcount;
1268 h->dynindx = -2;
1269 }
1270 h->root.root.type = bfd_link_hash_defined;
1271 h->root.root.u.def.section = bfd_get_section_by_name (dynobj, ".got");
1272 h->root.root.u.def.value = 0;
1273 }
1274
1275 /* The .dynamic section is always the same size. */
1276 s = bfd_get_section_by_name (dynobj, ".dynamic");
1277 BFD_ASSERT (s != NULL);
1278 s->_raw_size = (sizeof (struct external_sun4_dynamic)
1279 + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE
1280 + sizeof (struct external_sun4_dynamic_link));
1281
1282 /* Set the size of the .dynsym and .hash sections. We counted the
1283 number of dynamic symbols as we read the input files. We will
1284 build the dynamic symbol table (.dynsym) and the hash table
1285 (.hash) when we build the final symbol table, because until then
1286 we do not know the correct value to give the symbols. We build
1287 the dynamic symbol string table (.dynstr) in a traversal of the
1288 symbol table using sunos_scan_dynamic_symbol. */
1289 s = bfd_get_section_by_name (dynobj, ".dynsym");
1290 BFD_ASSERT (s != NULL);
1291 s->_raw_size = dynsymcount * sizeof (struct external_nlist);
1292 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
1293 if (s->contents == NULL && s->_raw_size != 0)
1294 {
1295 bfd_set_error (bfd_error_no_memory);
1296 return false;
1297 }
1298
1299 /* The number of buckets is just the number of symbols divided by
1300 four. To compute the final size of the hash table, we must
1301 actually compute the hash table. Normally we need exactly as
1302 many entries in the hash table as there are dynamic symbols, but
1303 if some of the buckets are not used we will need additional
1304 entries. In the worst case, every symbol will hash to the same
1305 bucket, and we will need BUCKETCOUNT - 1 extra entries. */
1306 if (dynsymcount >= 4)
1307 bucketcount = dynsymcount / 4;
1308 else if (dynsymcount > 0)
1309 bucketcount = dynsymcount;
1310 else
1311 bucketcount = 1;
1312 s = bfd_get_section_by_name (dynobj, ".hash");
1313 BFD_ASSERT (s != NULL);
1314 hashalloc = (dynsymcount + bucketcount - 1) * HASH_ENTRY_SIZE;
1315 s->contents = (bfd_byte *) bfd_alloc (dynobj, hashalloc);
1316 if (s->contents == NULL && dynsymcount > 0)
1317 {
1318 bfd_set_error (bfd_error_no_memory);
1319 return false;
1320 }
1321 memset (s->contents, 0, hashalloc);
1322 for (i = 0; i < bucketcount; i++)
1323 PUT_WORD (output_bfd, (bfd_vma) -1, s->contents + i * HASH_ENTRY_SIZE);
1324 s->_raw_size = bucketcount * HASH_ENTRY_SIZE;
1325
1326 sunos_hash_table (info)->bucketcount = bucketcount;
1327
1328 /* Scan all the symbols, place them in the dynamic symbol table, and
1329 build the dynamic hash table. We reuse dynsymcount as a counter
1330 for the number of symbols we have added so far. */
1331 sunos_hash_table (info)->dynsymcount = 0;
1332 sunos_link_hash_traverse (sunos_hash_table (info),
1333 sunos_scan_dynamic_symbol,
1334 (PTR) info);
1335 BFD_ASSERT (sunos_hash_table (info)->dynsymcount == dynsymcount);
1336
1337 /* The SunOS native linker seems to align the total size of the
1338 symbol strings to a multiple of 8. I don't know if this is
1339 important, but it can't hurt much. */
1340 s = bfd_get_section_by_name (dynobj, ".dynstr");
1341 BFD_ASSERT (s != NULL);
1342 if ((s->_raw_size & 7) != 0)
1343 {
1344 bfd_size_type add;
1345 bfd_byte *contents;
1346
1347 add = 8 - (s->_raw_size & 7);
1348 contents = (bfd_byte *) realloc (s->contents,
1349 (size_t) (s->_raw_size + add));
1350 if (contents == NULL)
1351 {
1352 bfd_set_error (bfd_error_no_memory);
1353 return false;
1354 }
1355 memset (contents + s->_raw_size, 0, (size_t) add);
1356 s->contents = contents;
1357 s->_raw_size += add;
1358 }
1359
1360 /* Now that we have worked out the sizes of the procedure linkage
1361 table and the dynamic relocs, allocate storage for them. */
1362 s = bfd_get_section_by_name (dynobj, ".plt");
1363 BFD_ASSERT (s != NULL);
1364 if (s->_raw_size != 0)
1365 {
1366 s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
1367 if (s->contents == NULL)
1368 {
1369 bfd_set_error (bfd_error_no_memory);
1370 return false;
1371 }
1372
1373 /* Fill in the first entry in the table. */
1374 switch (bfd_get_arch (dynobj))
1375 {
1376 case bfd_arch_sparc:
1377 memcpy (s->contents, sparc_plt_first_entry, SPARC_PLT_ENTRY_SIZE);
1378 break;
1379
1380 case bfd_arch_m68k:
1381 memcpy (s->contents, m68k_plt_first_entry, M68K_PLT_ENTRY_SIZE);
1382 break;
1383
1384 default:
1385 abort ();
1386 }
1387 }
1388
1389 s = bfd_get_section_by_name (dynobj, ".dynrel");
1390 if (s->_raw_size != 0)
1391 {
1392 s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
1393 if (s->contents == NULL)
1394 {
1395 bfd_set_error (bfd_error_no_memory);
1396 return false;
1397 }
1398 }
1399 /* We use the reloc_count field to keep track of how many of the
1400 relocs we have output so far. */
1401 s->reloc_count = 0;
1402
1403 /* Make space for the global offset table. */
1404 s = bfd_get_section_by_name (dynobj, ".got");
1405 s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
1406 if (s->contents == NULL)
1407 {
1408 bfd_set_error (bfd_error_no_memory);
1409 return false;
1410 }
1411
1412 *sdynptr = bfd_get_section_by_name (dynobj, ".dynamic");
1413 *sneedptr = bfd_get_section_by_name (dynobj, ".need");
1414 *srulesptr = bfd_get_section_by_name (dynobj, ".rules");
1415
1416 return true;
1417 }
1418
1419 /* Scan the relocs for an input section. */
1420
1421 static boolean
1422 sunos_scan_relocs (info, abfd, sec, rel_size)
1423 struct bfd_link_info *info;
1424 bfd *abfd;
1425 asection *sec;
1426 bfd_size_type rel_size;
1427 {
1428 PTR relocs;
1429 PTR free_relocs = NULL;
1430
1431 if (rel_size == 0)
1432 return true;
1433
1434 if (! info->keep_memory)
1435 relocs = free_relocs = malloc ((size_t) rel_size);
1436 else
1437 {
1438 struct aout_section_data_struct *n;
1439
1440 n = ((struct aout_section_data_struct *)
1441 bfd_alloc (abfd, sizeof (struct aout_section_data_struct)));
1442 if (n == NULL)
1443 relocs = NULL;
1444 else
1445 {
1446 set_aout_section_data (sec, n);
1447 relocs = malloc ((size_t) rel_size);
1448 aout_section_data (sec)->relocs = relocs;
1449 }
1450 }
1451 if (relocs == NULL)
1452 {
1453 bfd_set_error (bfd_error_no_memory);
1454 return false;
1455 }
1456
1457 if (bfd_seek (abfd, sec->rel_filepos, SEEK_SET) != 0
1458 || bfd_read (relocs, 1, rel_size, abfd) != rel_size)
1459 goto error_return;
1460
1461 if (obj_reloc_entry_size (abfd) == RELOC_STD_SIZE)
1462 {
1463 if (! sunos_scan_std_relocs (info, abfd, sec,
1464 (struct reloc_std_external *) relocs,
1465 rel_size))
1466 goto error_return;
1467 }
1468 else
1469 {
1470 if (! sunos_scan_ext_relocs (info, abfd, sec,
1471 (struct reloc_ext_external *) relocs,
1472 rel_size))
1473 goto error_return;
1474 }
1475
1476 if (free_relocs != NULL)
1477 free (free_relocs);
1478
1479 return true;
1480
1481 error_return:
1482 if (free_relocs != NULL)
1483 free (free_relocs);
1484 return false;
1485 }
1486
1487 /* Scan the relocs for an input section using standard relocs. We
1488 need to figure out what to do for each reloc against a dynamic
1489 symbol. If the symbol is in the .text section, an entry is made in
1490 the procedure linkage table. Note that this will do the wrong
1491 thing if the symbol is actually data; I don't think the Sun 3
1492 native linker handles this case correctly either. If the symbol is
1493 not in the .text section, we must preserve the reloc as a dynamic
1494 reloc. FIXME: We should also handle the PIC relocs here by
1495 building global offset table entries. */
1496
1497 static boolean
1498 sunos_scan_std_relocs (info, abfd, sec, relocs, rel_size)
1499 struct bfd_link_info *info;
1500 bfd *abfd;
1501 asection *sec;
1502 const struct reloc_std_external *relocs;
1503 bfd_size_type rel_size;
1504 {
1505 bfd *dynobj;
1506 asection *splt = NULL;
1507 asection *srel = NULL;
1508 struct sunos_link_hash_entry **sym_hashes;
1509 const struct reloc_std_external *rel, *relend;
1510
1511 /* We only know how to handle m68k plt entries. */
1512 if (bfd_get_arch (abfd) != bfd_arch_m68k)
1513 {
1514 bfd_set_error (bfd_error_invalid_target);
1515 return false;
1516 }
1517
1518 dynobj = NULL;
1519
1520 sym_hashes = (struct sunos_link_hash_entry **) obj_aout_sym_hashes (abfd);
1521
1522 relend = relocs + rel_size / RELOC_STD_SIZE;
1523 for (rel = relocs; rel < relend; rel++)
1524 {
1525 int r_index;
1526 struct sunos_link_hash_entry *h;
1527
1528 /* We only want relocs against external symbols. */
1529 if (abfd->xvec->header_byteorder_big_p)
1530 {
1531 if ((rel->r_type[0] & RELOC_STD_BITS_EXTERN_BIG) == 0)
1532 continue;
1533 }
1534 else
1535 {
1536 if ((rel->r_type[0] & RELOC_STD_BITS_EXTERN_LITTLE) == 0)
1537 continue;
1538 }
1539
1540 /* Get the symbol index. */
1541 if (abfd->xvec->header_byteorder_big_p)
1542 r_index = ((rel->r_index[0] << 16)
1543 | (rel->r_index[1] << 8)
1544 | rel->r_index[2]);
1545 else
1546 r_index = ((rel->r_index[2] << 16)
1547 | (rel->r_index[1] << 8)
1548 | rel->r_index[0]);
1549
1550 /* Get the hash table entry. */
1551 h = sym_hashes[r_index];
1552 if (h == NULL)
1553 {
1554 /* This should not normally happen, but it will in any case
1555 be caught in the relocation phase. */
1556 continue;
1557 }
1558
1559 /* At this point common symbols have already been allocated, so
1560 we don't have to worry about them. We need to consider that
1561 we may have already seen this symbol and marked it undefined;
1562 if the symbol is really undefined, then SUNOS_DEF_DYNAMIC
1563 will be zero. */
1564 if (h->root.root.type != bfd_link_hash_defined
1565 && h->root.root.type != bfd_link_hash_defweak
1566 && h->root.root.type != bfd_link_hash_undefined)
1567 continue;
1568
1569 if ((h->flags & SUNOS_DEF_DYNAMIC) == 0
1570 || (h->flags & SUNOS_DEF_REGULAR) != 0)
1571 continue;
1572
1573 if (dynobj == NULL)
1574 {
1575 if (! sunos_create_dynamic_sections (abfd, info, true))
1576 return false;
1577 dynobj = sunos_hash_table (info)->dynobj;
1578 splt = bfd_get_section_by_name (dynobj, ".plt");
1579 srel = bfd_get_section_by_name (dynobj, ".dynrel");
1580 BFD_ASSERT (splt != NULL && srel != NULL);
1581 }
1582
1583 BFD_ASSERT ((h->flags & SUNOS_REF_REGULAR) != 0);
1584 BFD_ASSERT (h->plt_offset != 0
1585 || ((h->root.root.type == bfd_link_hash_defined
1586 || h->root.root.type == bfd_link_hash_defweak)
1587 ? (h->root.root.u.def.section->owner->flags
1588 & DYNAMIC) != 0
1589 : (h->root.root.u.undef.abfd->flags & DYNAMIC) != 0));
1590
1591 /* This reloc is against a symbol defined only by a dynamic
1592 object. */
1593
1594 if (h->root.root.type == bfd_link_hash_undefined)
1595 {
1596 /* Presumably this symbol was marked as being undefined by
1597 an earlier reloc. */
1598 srel->_raw_size += RELOC_STD_SIZE;
1599 }
1600 else if ((h->root.root.u.def.section->flags & SEC_CODE) == 0)
1601 {
1602 bfd *sub;
1603
1604 /* This reloc is not in the .text section. It must be
1605 copied into the dynamic relocs. We mark the symbol as
1606 being undefined. */
1607 srel->_raw_size += RELOC_STD_SIZE;
1608 sub = h->root.root.u.def.section->owner;
1609 h->root.root.type = bfd_link_hash_undefined;
1610 h->root.root.u.undef.abfd = sub;
1611 }
1612 else
1613 {
1614 /* This symbol is in the .text section. We must give it an
1615 entry in the procedure linkage table, if we have not
1616 already done so. We change the definition of the symbol
1617 to the .plt section; this will cause relocs against it to
1618 be handled correctly. */
1619 if (h->plt_offset == 0)
1620 {
1621 if (splt->_raw_size == 0)
1622 splt->_raw_size = M68K_PLT_ENTRY_SIZE;
1623 h->plt_offset = splt->_raw_size;
1624
1625 if ((h->flags & SUNOS_DEF_REGULAR) == 0)
1626 {
1627 h->root.root.u.def.section = splt;
1628 h->root.root.u.def.value = splt->_raw_size;
1629 }
1630
1631 splt->_raw_size += M68K_PLT_ENTRY_SIZE;
1632
1633 /* We may also need a dynamic reloc entry. */
1634 if ((h->flags & SUNOS_DEF_REGULAR) == 0)
1635 srel->_raw_size += RELOC_STD_SIZE;
1636 }
1637 }
1638 }
1639
1640 return true;
1641 }
1642
1643 /* Scan the relocs for an input section using extended relocs. We
1644 need to figure out what to do for each reloc against a dynamic
1645 symbol. If the reloc is a WDISP30, and the symbol is in the .text
1646 section, an entry is made in the procedure linkage table.
1647 Otherwise, we must preserve the reloc as a dynamic reloc. */
1648
1649 static boolean
1650 sunos_scan_ext_relocs (info, abfd, sec, relocs, rel_size)
1651 struct bfd_link_info *info;
1652 bfd *abfd;
1653 asection *sec;
1654 const struct reloc_ext_external *relocs;
1655 bfd_size_type rel_size;
1656 {
1657 bfd *dynobj;
1658 struct sunos_link_hash_entry **sym_hashes;
1659 const struct reloc_ext_external *rel, *relend;
1660 asection *splt = NULL;
1661 asection *sgot = NULL;
1662 asection *srel = NULL;
1663
1664 /* We only know how to handle SPARC plt entries. */
1665 if (bfd_get_arch (abfd) != bfd_arch_sparc)
1666 {
1667 bfd_set_error (bfd_error_invalid_target);
1668 return false;
1669 }
1670
1671 dynobj = NULL;
1672
1673 sym_hashes = (struct sunos_link_hash_entry **) obj_aout_sym_hashes (abfd);
1674
1675 relend = relocs + rel_size / RELOC_EXT_SIZE;
1676 for (rel = relocs; rel < relend; rel++)
1677 {
1678 unsigned int r_index;
1679 int r_extern;
1680 int r_type;
1681 struct sunos_link_hash_entry *h = NULL;
1682
1683 /* Swap in the reloc information. */
1684 if (abfd->xvec->header_byteorder_big_p)
1685 {
1686 r_index = ((rel->r_index[0] << 16)
1687 | (rel->r_index[1] << 8)
1688 | rel->r_index[2]);
1689 r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_BIG));
1690 r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_BIG)
1691 >> RELOC_EXT_BITS_TYPE_SH_BIG);
1692 }
1693 else
1694 {
1695 r_index = ((rel->r_index[2] << 16)
1696 | (rel->r_index[1] << 8)
1697 | rel->r_index[0]);
1698 r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_LITTLE));
1699 r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE)
1700 >> RELOC_EXT_BITS_TYPE_SH_LITTLE);
1701 }
1702
1703 if (r_extern)
1704 {
1705 h = sym_hashes[r_index];
1706 if (h == NULL)
1707 {
1708 /* This should not normally happen, but it will in any
1709 case be caught in the relocation phase. */
1710 continue;
1711 }
1712 }
1713
1714 /* If this is a base relative reloc, we need to make an entry in
1715 the .got section. */
1716 if (r_type == RELOC_BASE10
1717 || r_type == RELOC_BASE13
1718 || r_type == RELOC_BASE22)
1719 {
1720 if (dynobj == NULL)
1721 {
1722 if (! sunos_create_dynamic_sections (abfd, info, true))
1723 return false;
1724 dynobj = sunos_hash_table (info)->dynobj;
1725 splt = bfd_get_section_by_name (dynobj, ".plt");
1726 sgot = bfd_get_section_by_name (dynobj, ".got");
1727 srel = bfd_get_section_by_name (dynobj, ".dynrel");
1728 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
1729 }
1730
1731 if (r_extern)
1732 {
1733 if (h->got_offset != 0)
1734 continue;
1735
1736 h->got_offset = sgot->_raw_size;
1737 }
1738 else
1739 {
1740 if (r_index >= bfd_get_symcount (abfd))
1741 {
1742 /* This is abnormal, but should be caught in the
1743 relocation phase. */
1744 continue;
1745 }
1746
1747 if (adata (abfd).local_got_offsets == NULL)
1748 {
1749 adata (abfd).local_got_offsets =
1750 (bfd_vma *) bfd_zalloc (abfd,
1751 (bfd_get_symcount (abfd)
1752 * sizeof (bfd_vma)));
1753 if (adata (abfd).local_got_offsets == NULL)
1754 {
1755 bfd_set_error (bfd_error_no_memory);
1756 return false;
1757 }
1758 }
1759
1760 if (adata (abfd).local_got_offsets[r_index] != 0)
1761 continue;
1762
1763 adata (abfd).local_got_offsets[r_index] = sgot->_raw_size;
1764 }
1765
1766 sgot->_raw_size += BYTES_IN_WORD;
1767
1768 /* If we are making a shared library, or if the symbol is
1769 defined by a dynamic object, we will need a dynamic reloc
1770 entry. */
1771 if (info->shared
1772 || (h != NULL
1773 && (h->flags & SUNOS_DEF_DYNAMIC) != 0
1774 && (h->flags & SUNOS_DEF_REGULAR) == 0))
1775 srel->_raw_size += RELOC_EXT_SIZE;
1776
1777 continue;
1778 }
1779
1780 /* Otherwise, we are only interested in relocs against symbols
1781 defined in dynamic objects but not in regular objects. We
1782 only need to consider relocs against external symbols. */
1783 if (! r_extern)
1784 {
1785 /* But, if we are creating a shared library, we need to
1786 generate an absolute reloc. */
1787 if (info->shared)
1788 {
1789 if (dynobj == NULL)
1790 {
1791 if (! sunos_create_dynamic_sections (abfd, info, true))
1792 return false;
1793 dynobj = sunos_hash_table (info)->dynobj;
1794 splt = bfd_get_section_by_name (dynobj, ".plt");
1795 sgot = bfd_get_section_by_name (dynobj, ".got");
1796 srel = bfd_get_section_by_name (dynobj, ".dynrel");
1797 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
1798 }
1799
1800 srel->_raw_size += RELOC_EXT_SIZE;
1801 }
1802
1803 continue;
1804 }
1805
1806 /* At this point common symbols have already been allocated, so
1807 we don't have to worry about them. We need to consider that
1808 we may have already seen this symbol and marked it undefined;
1809 if the symbol is really undefined, then SUNOS_DEF_DYNAMIC
1810 will be zero. */
1811 if (h->root.root.type != bfd_link_hash_defined
1812 && h->root.root.type != bfd_link_hash_defweak
1813 && h->root.root.type != bfd_link_hash_undefined)
1814 continue;
1815
1816 if (r_type != RELOC_JMP_TBL
1817 && ! info->shared
1818 && ((h->flags & SUNOS_DEF_DYNAMIC) == 0
1819 || (h->flags & SUNOS_DEF_REGULAR) != 0))
1820 continue;
1821
1822 if (strcmp (h->root.root.root.string, "__GLOBAL_OFFSET_TABLE_") == 0)
1823 continue;
1824
1825 if (dynobj == NULL)
1826 {
1827 if (! sunos_create_dynamic_sections (abfd, info, true))
1828 return false;
1829 dynobj = sunos_hash_table (info)->dynobj;
1830 splt = bfd_get_section_by_name (dynobj, ".plt");
1831 sgot = bfd_get_section_by_name (dynobj, ".got");
1832 srel = bfd_get_section_by_name (dynobj, ".dynrel");
1833 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
1834 }
1835
1836 BFD_ASSERT (r_type == RELOC_JMP_TBL
1837 || (h->flags & SUNOS_REF_REGULAR) != 0);
1838 BFD_ASSERT (r_type == RELOC_JMP_TBL
1839 || info->shared
1840 || h->plt_offset != 0
1841 || ((h->root.root.type == bfd_link_hash_defined
1842 || h->root.root.type == bfd_link_hash_defweak)
1843 ? (h->root.root.u.def.section->owner->flags
1844 & DYNAMIC) != 0
1845 : (h->root.root.u.undef.abfd->flags & DYNAMIC) != 0));
1846
1847 /* This reloc is against a symbol defined only by a dynamic
1848 object, or it is a jump table reloc from PIC compiled code. */
1849
1850 if (r_type != RELOC_JMP_TBL
1851 && h->root.root.type == bfd_link_hash_undefined)
1852 {
1853 /* Presumably this symbol was marked as being undefined by
1854 an earlier reloc. */
1855 srel->_raw_size += RELOC_EXT_SIZE;
1856 }
1857 else if (r_type != RELOC_JMP_TBL
1858 && (h->root.root.u.def.section->flags & SEC_CODE) == 0)
1859 {
1860 bfd *sub;
1861
1862 /* This reloc is not in the .text section. It must be
1863 copied into the dynamic relocs. We mark the symbol as
1864 being undefined. */
1865 srel->_raw_size += RELOC_EXT_SIZE;
1866 if ((h->flags & SUNOS_DEF_REGULAR) == 0)
1867 {
1868 sub = h->root.root.u.def.section->owner;
1869 h->root.root.type = bfd_link_hash_undefined;
1870 h->root.root.u.undef.abfd = sub;
1871 }
1872 }
1873 else
1874 {
1875 /* This symbol is in the .text section. We must give it an
1876 entry in the procedure linkage table, if we have not
1877 already done so. We change the definition of the symbol
1878 to the .plt section; this will cause relocs against it to
1879 be handled correctly. */
1880 if (h->plt_offset == 0)
1881 {
1882 if (splt->_raw_size == 0)
1883 splt->_raw_size = SPARC_PLT_ENTRY_SIZE;
1884 h->plt_offset = splt->_raw_size;
1885
1886 if ((h->flags & SUNOS_DEF_REGULAR) == 0)
1887 {
1888 if (h->root.root.type == bfd_link_hash_undefined)
1889 h->root.root.type = bfd_link_hash_defined;
1890 h->root.root.u.def.section = splt;
1891 h->root.root.u.def.value = splt->_raw_size;
1892 }
1893
1894 splt->_raw_size += SPARC_PLT_ENTRY_SIZE;
1895
1896 /* We will also need a dynamic reloc entry, unless this
1897 is a JMP_TBL reloc produced by linking PIC compiled
1898 code, and we are not making a shared library. */
1899 if (info->shared || (h->flags & SUNOS_DEF_REGULAR) == 0)
1900 srel->_raw_size += RELOC_EXT_SIZE;
1901 }
1902
1903 /* If we are creating a shared library, we need to copy over
1904 any reloc other than a jump table reloc. */
1905 if (info->shared && r_type != RELOC_JMP_TBL)
1906 srel->_raw_size += RELOC_EXT_SIZE;
1907 }
1908 }
1909
1910 return true;
1911 }
1912
1913 /* Build the hash table of dynamic symbols, and to mark as written all
1914 symbols from dynamic objects which we do not plan to write out. */
1915
1916 static boolean
1917 sunos_scan_dynamic_symbol (h, data)
1918 struct sunos_link_hash_entry *h;
1919 PTR data;
1920 {
1921 struct bfd_link_info *info = (struct bfd_link_info *) data;
1922
1923 /* Set the written flag for symbols we do not want to write out as
1924 part of the regular symbol table. This is all symbols which are
1925 not defined in a regular object file. For some reason symbols
1926 which are referenced by a regular object and defined by a dynamic
1927 object do not seem to show up in the regular symbol table. */
1928 if ((h->flags & SUNOS_DEF_REGULAR) == 0
1929 && strcmp (h->root.root.root.string, "__DYNAMIC") != 0)
1930 h->root.written = true;
1931
1932 /* If this symbol is defined by a dynamic object and referenced by a
1933 regular object, see whether we gave it a reasonable value while
1934 scanning the relocs. */
1935
1936 if ((h->flags & SUNOS_DEF_REGULAR) == 0
1937 && (h->flags & SUNOS_DEF_DYNAMIC) != 0
1938 && (h->flags & SUNOS_REF_REGULAR) != 0)
1939 {
1940 if ((h->root.root.type == bfd_link_hash_defined
1941 || h->root.root.type == bfd_link_hash_defweak)
1942 && ((h->root.root.u.def.section->owner->flags & DYNAMIC) != 0)
1943 && h->root.root.u.def.section->output_section == NULL)
1944 {
1945 bfd *sub;
1946
1947 /* This symbol is currently defined in a dynamic section
1948 which is not being put into the output file. This
1949 implies that there is no reloc against the symbol. I'm
1950 not sure why this case would ever occur. In any case, we
1951 change the symbol to be undefined. */
1952 sub = h->root.root.u.def.section->owner;
1953 h->root.root.type = bfd_link_hash_undefined;
1954 h->root.root.u.undef.abfd = sub;
1955 }
1956 }
1957
1958 /* If this symbol is defined or referenced by a regular file, add it
1959 to the dynamic symbols. */
1960 if ((h->flags & (SUNOS_DEF_REGULAR | SUNOS_REF_REGULAR)) != 0)
1961 {
1962 asection *s;
1963 size_t len;
1964 bfd_byte *contents;
1965 unsigned char *name;
1966 unsigned long hash;
1967 bfd *dynobj;
1968
1969 BFD_ASSERT (h->dynindx == -2);
1970
1971 dynobj = sunos_hash_table (info)->dynobj;
1972
1973 h->dynindx = sunos_hash_table (info)->dynsymcount;
1974 ++sunos_hash_table (info)->dynsymcount;
1975
1976 len = strlen (h->root.root.root.string);
1977
1978 /* We don't bother to construct a BFD hash table for the strings
1979 which are the names of the dynamic symbols. Using a hash
1980 table for the regular symbols is beneficial, because the
1981 regular symbols includes the debugging symbols, which have
1982 long names and are often duplicated in several object files.
1983 There are no debugging symbols in the dynamic symbols. */
1984 s = bfd_get_section_by_name (dynobj, ".dynstr");
1985 BFD_ASSERT (s != NULL);
1986 if (s->contents == NULL)
1987 contents = (bfd_byte *) malloc (len + 1);
1988 else
1989 contents = (bfd_byte *) realloc (s->contents,
1990 (size_t) (s->_raw_size + len + 1));
1991 if (contents == NULL)
1992 {
1993 bfd_set_error (bfd_error_no_memory);
1994 return false;
1995 }
1996 s->contents = contents;
1997
1998 h->dynstr_index = s->_raw_size;
1999 strcpy (contents + s->_raw_size, h->root.root.root.string);
2000 s->_raw_size += len + 1;
2001
2002 /* Add it to the dynamic hash table. */
2003 name = (unsigned char *) h->root.root.root.string;
2004 hash = 0;
2005 while (*name != '\0')
2006 hash = (hash << 1) + *name++;
2007 hash &= 0x7fffffff;
2008 hash %= sunos_hash_table (info)->bucketcount;
2009
2010 s = bfd_get_section_by_name (dynobj, ".hash");
2011 BFD_ASSERT (s != NULL);
2012
2013 if (GET_SWORD (dynobj, s->contents + hash * HASH_ENTRY_SIZE) == -1)
2014 PUT_WORD (dynobj, h->dynindx, s->contents + hash * HASH_ENTRY_SIZE);
2015 else
2016 {
2017 bfd_vma next;
2018
2019 next = GET_WORD (dynobj,
2020 (s->contents
2021 + hash * HASH_ENTRY_SIZE
2022 + BYTES_IN_WORD));
2023 PUT_WORD (dynobj, s->_raw_size / HASH_ENTRY_SIZE,
2024 s->contents + hash * HASH_ENTRY_SIZE + BYTES_IN_WORD);
2025 PUT_WORD (dynobj, h->dynindx, s->contents + s->_raw_size);
2026 PUT_WORD (dynobj, next, s->contents + s->_raw_size + BYTES_IN_WORD);
2027 s->_raw_size += HASH_ENTRY_SIZE;
2028 }
2029 }
2030
2031 return true;
2032 }
2033
2034 /* Link a dynamic object. We actually don't have anything to do at
2035 this point. This entry point exists to prevent the regular linker
2036 code from doing anything with the object. */
2037
2038 /*ARGSUSED*/
2039 static boolean
2040 sunos_link_dynamic_object (info, abfd)
2041 struct bfd_link_info *info;
2042 bfd *abfd;
2043 {
2044 return true;
2045 }
2046
2047 /* Write out a dynamic symbol. This is called by the final traversal
2048 over the symbol table. */
2049
2050 static boolean
2051 sunos_write_dynamic_symbol (output_bfd, info, harg)
2052 bfd *output_bfd;
2053 struct bfd_link_info *info;
2054 struct aout_link_hash_entry *harg;
2055 {
2056 struct sunos_link_hash_entry *h = (struct sunos_link_hash_entry *) harg;
2057 int type;
2058 bfd_vma val;
2059 asection *s;
2060 struct external_nlist *outsym;
2061
2062 if (h->dynindx < 0)
2063 return true;
2064
2065 switch (h->root.root.type)
2066 {
2067 default:
2068 case bfd_link_hash_new:
2069 abort ();
2070 /* Avoid variable not initialized warnings. */
2071 return true;
2072 case bfd_link_hash_undefined:
2073 type = N_UNDF | N_EXT;
2074 val = 0;
2075 break;
2076 case bfd_link_hash_defined:
2077 case bfd_link_hash_defweak:
2078 {
2079 asection *sec;
2080 asection *output_section;
2081
2082 sec = h->root.root.u.def.section;
2083 output_section = sec->output_section;
2084 BFD_ASSERT (bfd_is_abs_section (output_section)
2085 || output_section->owner == output_bfd);
2086 if (h->plt_offset != 0
2087 && (h->flags & SUNOS_DEF_REGULAR) == 0)
2088 {
2089 type = N_UNDF | N_EXT;
2090 val = 0;
2091 }
2092 else
2093 {
2094 if (output_section == obj_textsec (output_bfd))
2095 type = (h->root.root.type == bfd_link_hash_defined
2096 ? N_TEXT
2097 : N_WEAKT);
2098 else if (output_section == obj_datasec (output_bfd))
2099 type = (h->root.root.type == bfd_link_hash_defined
2100 ? N_DATA
2101 : N_WEAKD);
2102 else if (output_section == obj_bsssec (output_bfd))
2103 type = (h->root.root.type == bfd_link_hash_defined
2104 ? N_BSS
2105 : N_WEAKB);
2106 else
2107 type = (h->root.root.type == bfd_link_hash_defined
2108 ? N_ABS
2109 : N_WEAKA);
2110 type |= N_EXT;
2111 val = (h->root.root.u.def.value
2112 + output_section->vma
2113 + sec->output_offset);
2114 }
2115 }
2116 break;
2117 case bfd_link_hash_common:
2118 type = N_UNDF | N_EXT;
2119 val = h->root.root.u.c.size;
2120 break;
2121 case bfd_link_hash_undefweak:
2122 type = N_WEAKU;
2123 val = 0;
2124 break;
2125 case bfd_link_hash_indirect:
2126 case bfd_link_hash_warning:
2127 /* FIXME: Ignore these for now. The circumstances under which
2128 they should be written out are not clear to me. */
2129 return true;
2130 }
2131
2132 s = bfd_get_section_by_name (sunos_hash_table (info)->dynobj, ".dynsym");
2133 BFD_ASSERT (s != NULL);
2134 outsym = ((struct external_nlist *)
2135 (s->contents + h->dynindx * EXTERNAL_NLIST_SIZE));
2136
2137 bfd_h_put_8 (output_bfd, type, outsym->e_type);
2138 bfd_h_put_8 (output_bfd, 0, outsym->e_other);
2139
2140 /* FIXME: The native linker doesn't use 0 for desc. It seems to use
2141 one less than the desc value in the shared library, although that
2142 seems unlikely. */
2143 bfd_h_put_16 (output_bfd, 0, outsym->e_desc);
2144
2145 PUT_WORD (output_bfd, h->dynstr_index, outsym->e_strx);
2146 PUT_WORD (output_bfd, val, outsym->e_value);
2147
2148 /* If this symbol is in the procedure linkage table, fill in the
2149 table entry. */
2150 if (h->plt_offset != 0)
2151 {
2152 bfd *dynobj;
2153 asection *splt;
2154 bfd_byte *p;
2155 asection *s;
2156 bfd_vma r_address;
2157
2158 dynobj = sunos_hash_table (info)->dynobj;
2159 splt = bfd_get_section_by_name (dynobj, ".plt");
2160 p = splt->contents + h->plt_offset;
2161
2162 s = bfd_get_section_by_name (dynobj, ".dynrel");
2163
2164 r_address = (splt->output_section->vma
2165 + splt->output_offset
2166 + h->plt_offset);
2167
2168 switch (bfd_get_arch (output_bfd))
2169 {
2170 case bfd_arch_sparc:
2171 if (info->shared || (h->flags & SUNOS_DEF_REGULAR) == 0)
2172 {
2173 bfd_put_32 (output_bfd, SPARC_PLT_ENTRY_WORD0, p);
2174 bfd_put_32 (output_bfd,
2175 (SPARC_PLT_ENTRY_WORD1
2176 + (((- (h->plt_offset + 4) >> 2)
2177 & 0x3fffffff))),
2178 p + 4);
2179 bfd_put_32 (output_bfd, SPARC_PLT_ENTRY_WORD2 + s->reloc_count,
2180 p + 8);
2181 }
2182 else
2183 {
2184 bfd_vma val;
2185
2186 val = (h->root.root.u.def.section->output_section->vma
2187 + h->root.root.u.def.section->output_offset
2188 + h->root.root.u.def.value);
2189 bfd_put_32 (output_bfd,
2190 SPARC_PLT_PIC_WORD0 + ((val >> 10) & 0x3fffff),
2191 p);
2192 bfd_put_32 (output_bfd,
2193 SPARC_PLT_PIC_WORD1 + (val & 0x3ff),
2194 p + 4);
2195 bfd_put_32 (output_bfd, SPARC_PLT_PIC_WORD2, p + 8);
2196 }
2197 break;
2198
2199 case bfd_arch_m68k:
2200 if (! info->shared && (h->flags & SUNOS_DEF_REGULAR) != 0)
2201 abort ();
2202 bfd_put_16 (output_bfd, M68K_PLT_ENTRY_WORD0, p);
2203 bfd_put_32 (output_bfd, (- (h->plt_offset + 2)), p + 2);
2204 bfd_put_16 (output_bfd, s->reloc_count, p + 6);
2205 r_address += 2;
2206 break;
2207
2208 default:
2209 abort ();
2210 }
2211
2212 /* We also need to add a jump table reloc, unless this is the
2213 result of a JMP_TBL reloc from PIC compiled code. */
2214 if (info->shared || (h->flags & SUNOS_DEF_REGULAR) == 0)
2215 {
2216 BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj)
2217 < s->_raw_size);
2218 p = s->contents + s->reloc_count * obj_reloc_entry_size (output_bfd);
2219 if (obj_reloc_entry_size (output_bfd) == RELOC_STD_SIZE)
2220 {
2221 struct reloc_std_external *srel;
2222
2223 srel = (struct reloc_std_external *) p;
2224 PUT_WORD (output_bfd, r_address, srel->r_address);
2225 if (output_bfd->xvec->header_byteorder_big_p)
2226 {
2227 srel->r_index[0] = h->dynindx >> 16;
2228 srel->r_index[1] = h->dynindx >> 8;
2229 srel->r_index[2] = h->dynindx;
2230 srel->r_type[0] = (RELOC_STD_BITS_EXTERN_BIG
2231 | RELOC_STD_BITS_JMPTABLE_BIG);
2232 }
2233 else
2234 {
2235 srel->r_index[2] = h->dynindx >> 16;
2236 srel->r_index[1] = h->dynindx >> 8;
2237 srel->r_index[0] = h->dynindx;
2238 srel->r_type[0] = (RELOC_STD_BITS_EXTERN_LITTLE
2239 | RELOC_STD_BITS_JMPTABLE_LITTLE);
2240 }
2241 }
2242 else
2243 {
2244 struct reloc_ext_external *erel;
2245
2246 erel = (struct reloc_ext_external *) p;
2247 PUT_WORD (output_bfd, r_address, erel->r_address);
2248 if (output_bfd->xvec->header_byteorder_big_p)
2249 {
2250 erel->r_index[0] = h->dynindx >> 16;
2251 erel->r_index[1] = h->dynindx >> 8;
2252 erel->r_index[2] = h->dynindx;
2253 erel->r_type[0] =
2254 (RELOC_EXT_BITS_EXTERN_BIG
2255 | (RELOC_JMP_SLOT << RELOC_EXT_BITS_TYPE_SH_BIG));
2256 }
2257 else
2258 {
2259 erel->r_index[2] = h->dynindx >> 16;
2260 erel->r_index[1] = h->dynindx >> 8;
2261 erel->r_index[0] = h->dynindx;
2262 erel->r_type[0] =
2263 (RELOC_EXT_BITS_EXTERN_LITTLE
2264 | (RELOC_JMP_SLOT << RELOC_EXT_BITS_TYPE_SH_LITTLE));
2265 }
2266 PUT_WORD (output_bfd, (bfd_vma) 0, erel->r_addend);
2267 }
2268
2269 ++s->reloc_count;
2270 }
2271 }
2272
2273 return true;
2274 }
2275
2276 /* This is called for each reloc against an external symbol. If this
2277 is a reloc which are are going to copy as a dynamic reloc, then
2278 copy it over, and tell the caller to not bother processing this
2279 reloc. */
2280
2281 /*ARGSUSED*/
2282 static boolean
2283 sunos_check_dynamic_reloc (info, input_bfd, input_section, harg, reloc,
2284 contents, skip, relocationp)
2285 struct bfd_link_info *info;
2286 bfd *input_bfd;
2287 asection *input_section;
2288 struct aout_link_hash_entry *harg;
2289 PTR reloc;
2290 bfd_byte *contents;
2291 boolean *skip;
2292 bfd_vma *relocationp;
2293 {
2294 struct sunos_link_hash_entry *h = (struct sunos_link_hash_entry *) harg;
2295 bfd *dynobj;
2296 boolean baserel;
2297 boolean jmptbl;
2298 asection *s;
2299 bfd_byte *p;
2300 long indx;
2301
2302 *skip = false;
2303
2304 dynobj = sunos_hash_table (info)->dynobj;
2305
2306 if (h != NULL && h->plt_offset != 0)
2307 {
2308 asection *splt;
2309
2310 /* Redirect the relocation to the PLT entry. */
2311 splt = bfd_get_section_by_name (dynobj, ".plt");
2312 *relocationp = (splt->output_section->vma
2313 + splt->output_offset
2314 + h->plt_offset);
2315 }
2316
2317 if (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE)
2318 {
2319 struct reloc_std_external *srel;
2320
2321 srel = (struct reloc_std_external *) reloc;
2322 if (input_bfd->xvec->header_byteorder_big_p)
2323 {
2324 baserel = (0 != (srel->r_type[0] & RELOC_STD_BITS_BASEREL_BIG));
2325 jmptbl = (0 != (srel->r_type[0] & RELOC_STD_BITS_JMPTABLE_BIG));
2326 }
2327 else
2328 {
2329 baserel = (0 != (srel->r_type[0] & RELOC_STD_BITS_BASEREL_LITTLE));
2330 jmptbl = (0 != (srel->r_type[0] & RELOC_STD_BITS_JMPTABLE_LITTLE));
2331 }
2332 }
2333 else
2334 {
2335 struct reloc_ext_external *erel;
2336 int r_type;
2337
2338 erel = (struct reloc_ext_external *) reloc;
2339 if (input_bfd->xvec->header_byteorder_big_p)
2340 r_type = ((erel->r_type[0] & RELOC_EXT_BITS_TYPE_BIG)
2341 >> RELOC_EXT_BITS_TYPE_SH_BIG);
2342 else
2343 r_type = ((erel->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE)
2344 >> RELOC_EXT_BITS_TYPE_SH_LITTLE);
2345 baserel = (r_type == RELOC_BASE10
2346 || r_type == RELOC_BASE13
2347 || r_type == RELOC_BASE22);
2348 jmptbl = r_type == RELOC_JMP_TBL;
2349 }
2350
2351 if (baserel)
2352 {
2353 bfd_vma *got_offsetp;
2354 asection *sgot;
2355
2356 if (h != NULL)
2357 got_offsetp = &h->got_offset;
2358 else if (adata (input_bfd).local_got_offsets == NULL)
2359 got_offsetp = NULL;
2360 else
2361 {
2362 struct reloc_std_external *srel;
2363 int r_index;
2364
2365 srel = (struct reloc_std_external *) reloc;
2366 if (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE)
2367 {
2368 if (input_bfd->xvec->header_byteorder_big_p)
2369 r_index = ((srel->r_index[0] << 16)
2370 | (srel->r_index[1] << 8)
2371 | srel->r_index[2]);
2372 else
2373 r_index = ((srel->r_index[2] << 16)
2374 | (srel->r_index[1] << 8)
2375 | srel->r_index[0]);
2376 }
2377 else
2378 {
2379 struct reloc_ext_external *erel;
2380
2381 erel = (struct reloc_ext_external *) reloc;
2382 if (input_bfd->xvec->header_byteorder_big_p)
2383 r_index = ((erel->r_index[0] << 16)
2384 | (erel->r_index[1] << 8)
2385 | erel->r_index[2]);
2386 else
2387 r_index = ((erel->r_index[2] << 16)
2388 | (erel->r_index[1] << 8)
2389 | erel->r_index[0]);
2390 }
2391
2392 got_offsetp = adata (input_bfd).local_got_offsets + r_index;
2393 }
2394
2395 BFD_ASSERT (got_offsetp != NULL && *got_offsetp != 0);
2396
2397 sgot = bfd_get_section_by_name (dynobj, ".got");
2398
2399 /* We set the least significant bit to indicate whether we have
2400 already initialized the GOT entry. */
2401 if ((*got_offsetp & 1) == 0)
2402 {
2403 if (h == NULL
2404 || (! info->shared
2405 && ((h->flags & SUNOS_DEF_DYNAMIC) == 0
2406 || (h->flags & SUNOS_DEF_REGULAR) != 0)))
2407 PUT_WORD (dynobj, *relocationp, sgot->contents + *got_offsetp);
2408 else
2409 PUT_WORD (dynobj, 0, sgot->contents + *got_offsetp);
2410
2411 if (info->shared
2412 || (h != NULL
2413 && (h->flags & SUNOS_DEF_DYNAMIC) != 0
2414 && (h->flags & SUNOS_DEF_REGULAR) == 0))
2415 {
2416 /* We need to create a GLOB_DAT or 32 reloc to tell the
2417 dynamic linker to fill in this entry in the table. */
2418
2419 s = bfd_get_section_by_name (dynobj, ".dynrel");
2420 BFD_ASSERT (s != NULL);
2421 BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj)
2422 < s->_raw_size);
2423
2424 p = (s->contents
2425 + s->reloc_count * obj_reloc_entry_size (dynobj));
2426
2427 if (h != NULL)
2428 indx = h->dynindx;
2429 else
2430 indx = 0;
2431
2432 if (obj_reloc_entry_size (dynobj) == RELOC_STD_SIZE)
2433 {
2434 struct reloc_std_external *srel;
2435
2436 srel = (struct reloc_std_external *) p;
2437 PUT_WORD (dynobj,
2438 (*got_offsetp
2439 + sgot->output_section->vma
2440 + sgot->output_offset),
2441 srel->r_address);
2442 if (dynobj->xvec->header_byteorder_big_p)
2443 {
2444 srel->r_index[0] = indx >> 16;
2445 srel->r_index[1] = indx >> 8;
2446 srel->r_index[2] = indx;
2447 if (h == NULL)
2448 srel->r_type[0] = 2 << RELOC_STD_BITS_LENGTH_SH_BIG;
2449 else
2450 srel->r_type[0] =
2451 (RELOC_STD_BITS_EXTERN_BIG
2452 | RELOC_STD_BITS_BASEREL_BIG
2453 | RELOC_STD_BITS_RELATIVE_BIG
2454 | (2 << RELOC_STD_BITS_LENGTH_SH_BIG));
2455 }
2456 else
2457 {
2458 srel->r_index[2] = indx >> 16;
2459 srel->r_index[1] = indx >> 8;
2460 srel->r_index[0] = indx;
2461 if (h == NULL)
2462 srel->r_type[0] = 2 << RELOC_STD_BITS_LENGTH_SH_LITTLE;
2463 else
2464 srel->r_type[0] =
2465 (RELOC_STD_BITS_EXTERN_LITTLE
2466 | RELOC_STD_BITS_BASEREL_LITTLE
2467 | RELOC_STD_BITS_RELATIVE_LITTLE
2468 | (2 << RELOC_STD_BITS_LENGTH_SH_LITTLE));
2469 }
2470 }
2471 else
2472 {
2473 struct reloc_ext_external *erel;
2474
2475 erel = (struct reloc_ext_external *) p;
2476 PUT_WORD (dynobj,
2477 (*got_offsetp
2478 + sgot->output_section->vma
2479 + sgot->output_offset),
2480 erel->r_address);
2481 if (dynobj->xvec->header_byteorder_big_p)
2482 {
2483 erel->r_index[0] = indx >> 16;
2484 erel->r_index[1] = indx >> 8;
2485 erel->r_index[2] = indx;
2486 if (h == NULL)
2487 erel->r_type[0] =
2488 RELOC_32 << RELOC_EXT_BITS_TYPE_SH_BIG;
2489 else
2490 erel->r_type[0] =
2491 (RELOC_EXT_BITS_EXTERN_BIG
2492 | (RELOC_GLOB_DAT << RELOC_EXT_BITS_TYPE_SH_BIG));
2493 }
2494 else
2495 {
2496 erel->r_index[2] = indx >> 16;
2497 erel->r_index[1] = indx >> 8;
2498 erel->r_index[0] = indx;
2499 if (h == NULL)
2500 erel->r_type[0] =
2501 RELOC_32 << RELOC_EXT_BITS_TYPE_SH_LITTLE;
2502 else
2503 erel->r_type[0] =
2504 (RELOC_EXT_BITS_EXTERN_LITTLE
2505 | (RELOC_GLOB_DAT
2506 << RELOC_EXT_BITS_TYPE_SH_LITTLE));
2507 }
2508 PUT_WORD (dynobj, 0, erel->r_addend);
2509 }
2510
2511 ++s->reloc_count;
2512 }
2513
2514 *got_offsetp |= 1;
2515 }
2516
2517 *relocationp = sgot->vma + (*got_offsetp &~ 1);
2518
2519 /* There is nothing else to do for a base relative reloc. */
2520 return true;
2521 }
2522
2523 if (! sunos_hash_table (info)->dynamic_sections_needed)
2524 return true;
2525 if (! info->shared)
2526 {
2527 if (h == NULL
2528 || h->dynindx == -1
2529 || h->root.root.type != bfd_link_hash_undefined
2530 || (h->flags & SUNOS_DEF_REGULAR) != 0
2531 || (h->flags & SUNOS_DEF_DYNAMIC) == 0
2532 || (h->root.root.u.undef.abfd->flags & DYNAMIC) == 0)
2533 return true;
2534 }
2535 else
2536 {
2537 if (h != NULL
2538 && (h->dynindx == -1
2539 || jmptbl
2540 || strcmp (h->root.root.root.string,
2541 "__GLOBAL_OFFSET_TABLE_") == 0))
2542 return true;
2543 }
2544
2545 /* It looks like this is a reloc we are supposed to copy. */
2546
2547 s = bfd_get_section_by_name (dynobj, ".dynrel");
2548 BFD_ASSERT (s != NULL);
2549 BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj) < s->_raw_size);
2550
2551 p = s->contents + s->reloc_count * obj_reloc_entry_size (dynobj);
2552
2553 /* Copy the reloc over. */
2554 memcpy (p, reloc, obj_reloc_entry_size (dynobj));
2555
2556 if (h != NULL)
2557 indx = h->dynindx;
2558 else
2559 indx = 0;
2560
2561 /* Adjust the address and symbol index. */
2562 if (obj_reloc_entry_size (dynobj) == RELOC_STD_SIZE)
2563 {
2564 struct reloc_std_external *srel;
2565
2566 srel = (struct reloc_std_external *) p;
2567 PUT_WORD (dynobj,
2568 (GET_WORD (dynobj, srel->r_address)
2569 + input_section->output_section->vma
2570 + input_section->output_offset),
2571 srel->r_address);
2572 if (dynobj->xvec->header_byteorder_big_p)
2573 {
2574 srel->r_index[0] = indx >> 16;
2575 srel->r_index[1] = indx >> 8;
2576 srel->r_index[2] = indx;
2577 }
2578 else
2579 {
2580 srel->r_index[2] = indx >> 16;
2581 srel->r_index[1] = indx >> 8;
2582 srel->r_index[0] = indx;
2583 }
2584 }
2585 else
2586 {
2587 struct reloc_ext_external *erel;
2588
2589 erel = (struct reloc_ext_external *) p;
2590 PUT_WORD (dynobj,
2591 (GET_WORD (dynobj, erel->r_address)
2592 + input_section->output_section->vma
2593 + input_section->output_offset),
2594 erel->r_address);
2595 if (dynobj->xvec->header_byteorder_big_p)
2596 {
2597 erel->r_index[0] = indx >> 16;
2598 erel->r_index[1] = indx >> 8;
2599 erel->r_index[2] = indx;
2600 }
2601 else
2602 {
2603 erel->r_index[2] = indx >> 16;
2604 erel->r_index[1] = indx >> 8;
2605 erel->r_index[0] = indx;
2606 }
2607 }
2608
2609 ++s->reloc_count;
2610
2611 if (h != NULL)
2612 *skip = true;
2613
2614 return true;
2615 }
2616
2617 /* Finish up the dynamic linking information. */
2618
2619 static boolean
2620 sunos_finish_dynamic_link (abfd, info)
2621 bfd *abfd;
2622 struct bfd_link_info *info;
2623 {
2624 bfd *dynobj;
2625 asection *o;
2626 asection *s;
2627 asection *sdyn;
2628 struct external_sun4_dynamic esd;
2629 struct external_sun4_dynamic_link esdl;
2630
2631 if (! sunos_hash_table (info)->dynamic_sections_needed)
2632 return true;
2633
2634 dynobj = sunos_hash_table (info)->dynobj;
2635
2636 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2637 BFD_ASSERT (sdyn != NULL);
2638
2639 /* Finish up the .need section. The linker emulation code filled it
2640 in, but with offsets from the start of the section instead of
2641 real addresses. Now that we know the section location, we can
2642 fill in the final values. */
2643 s = bfd_get_section_by_name (dynobj, ".need");
2644 if (s != NULL && s->_raw_size != 0)
2645 {
2646 file_ptr filepos;
2647 bfd_byte *p;
2648
2649 filepos = s->output_section->filepos + s->output_offset;
2650 p = s->contents;
2651 while (1)
2652 {
2653 bfd_vma val;
2654
2655 PUT_WORD (dynobj, GET_WORD (dynobj, p) + filepos, p);
2656 val = GET_WORD (dynobj, p + 12);
2657 if (val == 0)
2658 break;
2659 PUT_WORD (dynobj, val + filepos, p + 12);
2660 p += 16;
2661 }
2662 }
2663
2664 /* The first entry in the .got section is the address of the
2665 dynamic information, unless this is a shared library. */
2666 s = bfd_get_section_by_name (dynobj, ".got");
2667 BFD_ASSERT (s != NULL);
2668 if (info->shared)
2669 PUT_WORD (dynobj, 0, s->contents);
2670 else
2671 PUT_WORD (dynobj, sdyn->output_section->vma + sdyn->output_offset,
2672 s->contents);
2673
2674 for (o = dynobj->sections; o != NULL; o = o->next)
2675 {
2676 if ((o->flags & SEC_HAS_CONTENTS) != 0
2677 && o->contents != NULL)
2678 {
2679 BFD_ASSERT (o->output_section != NULL
2680 && o->output_section->owner == abfd);
2681 if (! bfd_set_section_contents (abfd, o->output_section,
2682 o->contents, o->output_offset,
2683 o->_raw_size))
2684 return false;
2685 }
2686 }
2687
2688 /* Finish up the dynamic link information. */
2689 PUT_WORD (dynobj, (bfd_vma) 3, esd.ld_version);
2690 PUT_WORD (dynobj,
2691 sdyn->output_section->vma + sdyn->output_offset + sizeof esd,
2692 esd.ldd);
2693 PUT_WORD (dynobj,
2694 (sdyn->output_section->vma
2695 + sdyn->output_offset
2696 + sizeof esd
2697 + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE),
2698 esd.ld);
2699
2700 if (! bfd_set_section_contents (abfd, sdyn->output_section, &esd,
2701 sdyn->output_offset, sizeof esd))
2702 return false;
2703
2704
2705 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_loaded);
2706
2707 s = bfd_get_section_by_name (dynobj, ".need");
2708 if (s == NULL || s->_raw_size == 0)
2709 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_need);
2710 else
2711 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2712 esdl.ld_need);
2713
2714 s = bfd_get_section_by_name (dynobj, ".rules");
2715 if (s == NULL || s->_raw_size == 0)
2716 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_rules);
2717 else
2718 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2719 esdl.ld_rules);
2720
2721 s = bfd_get_section_by_name (dynobj, ".got");
2722 BFD_ASSERT (s != NULL);
2723 PUT_WORD (dynobj, s->output_section->vma + s->output_offset, esdl.ld_got);
2724
2725 s = bfd_get_section_by_name (dynobj, ".plt");
2726 BFD_ASSERT (s != NULL);
2727 PUT_WORD (dynobj, s->output_section->vma + s->output_offset, esdl.ld_plt);
2728 PUT_WORD (dynobj, s->_raw_size, esdl.ld_plt_sz);
2729
2730 s = bfd_get_section_by_name (dynobj, ".dynrel");
2731 BFD_ASSERT (s != NULL);
2732 BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj) == s->_raw_size);
2733 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2734 esdl.ld_rel);
2735
2736 s = bfd_get_section_by_name (dynobj, ".hash");
2737 BFD_ASSERT (s != NULL);
2738 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2739 esdl.ld_hash);
2740
2741 s = bfd_get_section_by_name (dynobj, ".dynsym");
2742 BFD_ASSERT (s != NULL);
2743 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2744 esdl.ld_stab);
2745
2746 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_stab_hash);
2747
2748 PUT_WORD (dynobj, (bfd_vma) sunos_hash_table (info)->bucketcount,
2749 esdl.ld_buckets);
2750
2751 s = bfd_get_section_by_name (dynobj, ".dynstr");
2752 BFD_ASSERT (s != NULL);
2753 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2754 esdl.ld_symbols);
2755 PUT_WORD (dynobj, s->_raw_size, esdl.ld_symb_size);
2756
2757 /* The size of the text area is the size of the .text section
2758 rounded up to a page boundary. FIXME: Should the page size be
2759 conditional on something? */
2760 PUT_WORD (dynobj,
2761 BFD_ALIGN (obj_textsec (abfd)->_raw_size, 0x2000),
2762 esdl.ld_text);
2763
2764 if (! bfd_set_section_contents (abfd, sdyn->output_section, &esdl,
2765 (sdyn->output_offset
2766 + sizeof esd
2767 + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE),
2768 sizeof esdl))
2769 return false;
2770
2771 abfd->flags |= DYNAMIC;
2772
2773 return true;
2774 }
This page took 0.10659 seconds and 5 git commands to generate.