23a1c19823fab3d3122aadae744f3aa76fdc9d51
[deliverable/binutils-gdb.git] / bfd / syms.c
1 /* Generic symbol-table support for the BFD library.
2 Copyright (C) 1990, 91, 92, 93, 94, 95, 96, 1997
3 Free Software Foundation, Inc.
4 Written by Cygnus Support.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 /*
23 SECTION
24 Symbols
25
26 BFD tries to maintain as much symbol information as it can when
27 it moves information from file to file. BFD passes information
28 to applications though the <<asymbol>> structure. When the
29 application requests the symbol table, BFD reads the table in
30 the native form and translates parts of it into the internal
31 format. To maintain more than the information passed to
32 applications, some targets keep some information ``behind the
33 scenes'' in a structure only the particular back end knows
34 about. For example, the coff back end keeps the original
35 symbol table structure as well as the canonical structure when
36 a BFD is read in. On output, the coff back end can reconstruct
37 the output symbol table so that no information is lost, even
38 information unique to coff which BFD doesn't know or
39 understand. If a coff symbol table were read, but were written
40 through an a.out back end, all the coff specific information
41 would be lost. The symbol table of a BFD
42 is not necessarily read in until a canonicalize request is
43 made. Then the BFD back end fills in a table provided by the
44 application with pointers to the canonical information. To
45 output symbols, the application provides BFD with a table of
46 pointers to pointers to <<asymbol>>s. This allows applications
47 like the linker to output a symbol as it was read, since the ``behind
48 the scenes'' information will be still available.
49 @menu
50 @* Reading Symbols::
51 @* Writing Symbols::
52 @* Mini Symbols::
53 @* typedef asymbol::
54 @* symbol handling functions::
55 @end menu
56
57 INODE
58 Reading Symbols, Writing Symbols, Symbols, Symbols
59 SUBSECTION
60 Reading symbols
61
62 There are two stages to reading a symbol table from a BFD:
63 allocating storage, and the actual reading process. This is an
64 excerpt from an application which reads the symbol table:
65
66 | long storage_needed;
67 | asymbol **symbol_table;
68 | long number_of_symbols;
69 | long i;
70 |
71 | storage_needed = bfd_get_symtab_upper_bound (abfd);
72 |
73 | if (storage_needed < 0)
74 | FAIL
75 |
76 | if (storage_needed == 0) {
77 | return ;
78 | }
79 | symbol_table = (asymbol **) xmalloc (storage_needed);
80 | ...
81 | number_of_symbols =
82 | bfd_canonicalize_symtab (abfd, symbol_table);
83 |
84 | if (number_of_symbols < 0)
85 | FAIL
86 |
87 | for (i = 0; i < number_of_symbols; i++) {
88 | process_symbol (symbol_table[i]);
89 | }
90
91 All storage for the symbols themselves is in an obstack
92 connected to the BFD; it is freed when the BFD is closed.
93
94
95 INODE
96 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
97 SUBSECTION
98 Writing symbols
99
100 Writing of a symbol table is automatic when a BFD open for
101 writing is closed. The application attaches a vector of
102 pointers to pointers to symbols to the BFD being written, and
103 fills in the symbol count. The close and cleanup code reads
104 through the table provided and performs all the necessary
105 operations. The BFD output code must always be provided with an
106 ``owned'' symbol: one which has come from another BFD, or one
107 which has been created using <<bfd_make_empty_symbol>>. Here is an
108 example showing the creation of a symbol table with only one element:
109
110 | #include "bfd.h"
111 | main()
112 | {
113 | bfd *abfd;
114 | asymbol *ptrs[2];
115 | asymbol *new;
116 |
117 | abfd = bfd_openw("foo","a.out-sunos-big");
118 | bfd_set_format(abfd, bfd_object);
119 | new = bfd_make_empty_symbol(abfd);
120 | new->name = "dummy_symbol";
121 | new->section = bfd_make_section_old_way(abfd, ".text");
122 | new->flags = BSF_GLOBAL;
123 | new->value = 0x12345;
124 |
125 | ptrs[0] = new;
126 | ptrs[1] = (asymbol *)0;
127 |
128 | bfd_set_symtab(abfd, ptrs, 1);
129 | bfd_close(abfd);
130 | }
131 |
132 | ./makesym
133 | nm foo
134 | 00012345 A dummy_symbol
135
136 Many formats cannot represent arbitary symbol information; for
137 instance, the <<a.out>> object format does not allow an
138 arbitary number of sections. A symbol pointing to a section
139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
140 be described.
141
142 INODE
143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
144 SUBSECTION
145 Mini Symbols
146
147 Mini symbols provide read-only access to the symbol table.
148 They use less memory space, but require more time to access.
149 They can be useful for tools like nm or objdump, which may
150 have to handle symbol tables of extremely large executables.
151
152 The <<bfd_read_minisymbols>> function will read the symbols
153 into memory in an internal form. It will return a <<void *>>
154 pointer to a block of memory, a symbol count, and the size of
155 each symbol. The pointer is allocated using <<malloc>>, and
156 should be freed by the caller when it is no longer needed.
157
158 The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 to a minisymbol, and a pointer to a structure returned by
160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 The return value may or may not be the same as the value from
162 <<bfd_make_empty_symbol>> which was passed in.
163
164 */
165
166
167
168 /*
169 DOCDD
170 INODE
171 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
172
173 */
174 /*
175 SUBSECTION
176 typedef asymbol
177
178 An <<asymbol>> has the form:
179
180 */
181
182 /*
183 CODE_FRAGMENT
184
185 .
186 .typedef struct symbol_cache_entry
187 .{
188 . {* A pointer to the BFD which owns the symbol. This information
189 . is necessary so that a back end can work out what additional
190 . information (invisible to the application writer) is carried
191 . with the symbol.
192 .
193 . This field is *almost* redundant, since you can use section->owner
194 . instead, except that some symbols point to the global sections
195 . bfd_{abs,com,und}_section. This could be fixed by making
196 . these globals be per-bfd (or per-target-flavor). FIXME. *}
197 .
198 . struct _bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
199 .
200 . {* The text of the symbol. The name is left alone, and not copied; the
201 . application may not alter it. *}
202 . CONST char *name;
203 .
204 . {* The value of the symbol. This really should be a union of a
205 . numeric value with a pointer, since some flags indicate that
206 . a pointer to another symbol is stored here. *}
207 . symvalue value;
208 .
209 . {* Attributes of a symbol: *}
210 .
211 .#define BSF_NO_FLAGS 0x00
212 .
213 . {* The symbol has local scope; <<static>> in <<C>>. The value
214 . is the offset into the section of the data. *}
215 .#define BSF_LOCAL 0x01
216 .
217 . {* The symbol has global scope; initialized data in <<C>>. The
218 . value is the offset into the section of the data. *}
219 .#define BSF_GLOBAL 0x02
220 .
221 . {* The symbol has global scope and is exported. The value is
222 . the offset into the section of the data. *}
223 .#define BSF_EXPORT BSF_GLOBAL {* no real difference *}
224 .
225 . {* A normal C symbol would be one of:
226 . <<BSF_LOCAL>>, <<BSF_FORT_COMM>>, <<BSF_UNDEFINED>> or
227 . <<BSF_GLOBAL>> *}
228 .
229 . {* The symbol is a debugging record. The value has an arbitary
230 . meaning. *}
231 .#define BSF_DEBUGGING 0x08
232 .
233 . {* The symbol denotes a function entry point. Used in ELF,
234 . perhaps others someday. *}
235 .#define BSF_FUNCTION 0x10
236 .
237 . {* Used by the linker. *}
238 .#define BSF_KEEP 0x20
239 .#define BSF_KEEP_G 0x40
240 .
241 . {* A weak global symbol, overridable without warnings by
242 . a regular global symbol of the same name. *}
243 .#define BSF_WEAK 0x80
244 .
245 . {* This symbol was created to point to a section, e.g. ELF's
246 . STT_SECTION symbols. *}
247 .#define BSF_SECTION_SYM 0x100
248 .
249 . {* The symbol used to be a common symbol, but now it is
250 . allocated. *}
251 .#define BSF_OLD_COMMON 0x200
252 .
253 . {* The default value for common data. *}
254 .#define BFD_FORT_COMM_DEFAULT_VALUE 0
255 .
256 . {* In some files the type of a symbol sometimes alters its
257 . location in an output file - ie in coff a <<ISFCN>> symbol
258 . which is also <<C_EXT>> symbol appears where it was
259 . declared and not at the end of a section. This bit is set
260 . by the target BFD part to convey this information. *}
261 .
262 .#define BSF_NOT_AT_END 0x400
263 .
264 . {* Signal that the symbol is the label of constructor section. *}
265 .#define BSF_CONSTRUCTOR 0x800
266 .
267 . {* Signal that the symbol is a warning symbol. The name is a
268 . warning. The name of the next symbol is the one to warn about;
269 . if a reference is made to a symbol with the same name as the next
270 . symbol, a warning is issued by the linker. *}
271 .#define BSF_WARNING 0x1000
272 .
273 . {* Signal that the symbol is indirect. This symbol is an indirect
274 . pointer to the symbol with the same name as the next symbol. *}
275 .#define BSF_INDIRECT 0x2000
276 .
277 . {* BSF_FILE marks symbols that contain a file name. This is used
278 . for ELF STT_FILE symbols. *}
279 .#define BSF_FILE 0x4000
280 .
281 . {* Symbol is from dynamic linking information. *}
282 .#define BSF_DYNAMIC 0x8000
283 .
284 . {* The symbol denotes a data object. Used in ELF, and perhaps
285 . others someday. *}
286 .#define BSF_OBJECT 0x10000
287 .
288 . flagword flags;
289 .
290 . {* A pointer to the section to which this symbol is
291 . relative. This will always be non NULL, there are special
292 . sections for undefined and absolute symbols. *}
293 . struct sec *section;
294 .
295 . {* Back end special data. *}
296 . union
297 . {
298 . PTR p;
299 . bfd_vma i;
300 . } udata;
301 .
302 .} asymbol;
303 */
304
305 #include "bfd.h"
306 #include "sysdep.h"
307 #include "libbfd.h"
308 #include "bfdlink.h"
309 #include "aout/stab_gnu.h"
310
311 static char coff_section_type PARAMS ((const char *));
312
313 /*
314 DOCDD
315 INODE
316 symbol handling functions, , typedef asymbol, Symbols
317 SUBSECTION
318 Symbol handling functions
319 */
320
321 /*
322 FUNCTION
323 bfd_get_symtab_upper_bound
324
325 DESCRIPTION
326 Return the number of bytes required to store a vector of pointers
327 to <<asymbols>> for all the symbols in the BFD @var{abfd},
328 including a terminal NULL pointer. If there are no symbols in
329 the BFD, then return 0. If an error occurs, return -1.
330
331 .#define bfd_get_symtab_upper_bound(abfd) \
332 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
333
334 */
335
336 /*
337 FUNCTION
338 bfd_is_local_label
339
340 SYNOPSIS
341 boolean bfd_is_local_label(bfd *abfd, asymbol *sym);
342
343 DESCRIPTION
344 Return true if the given symbol @var{sym} in the BFD @var{abfd} is
345 a compiler generated local label, else return false.
346 */
347
348 boolean
349 bfd_is_local_label (abfd, sym)
350 bfd *abfd;
351 asymbol *sym;
352 {
353 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
354 return false;
355 return bfd_is_local_label_name (abfd, sym->name);
356 }
357
358 /*
359 FUNCTION
360 bfd_is_local_label_name
361
362 SYNOPSIS
363 boolean bfd_is_local_label_name(bfd *abfd, const char *name);
364
365 DESCRIPTION
366 Return true if a symbol with the name @var{name} in the BFD
367 @var{abfd} is a compiler generated local label, else return
368 false. This just checks whether the name has the form of a
369 local label.
370
371 .#define bfd_is_local_label_name(abfd, name) \
372 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
373 */
374
375 /*
376 FUNCTION
377 bfd_canonicalize_symtab
378
379 DESCRIPTION
380 Read the symbols from the BFD @var{abfd}, and fills in
381 the vector @var{location} with pointers to the symbols and
382 a trailing NULL.
383 Return the actual number of symbol pointers, not
384 including the NULL.
385
386
387 .#define bfd_canonicalize_symtab(abfd, location) \
388 . BFD_SEND (abfd, _bfd_canonicalize_symtab,\
389 . (abfd, location))
390
391 */
392
393
394 /*
395 FUNCTION
396 bfd_set_symtab
397
398 SYNOPSIS
399 boolean bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int count);
400
401 DESCRIPTION
402 Arrange that when the output BFD @var{abfd} is closed,
403 the table @var{location} of @var{count} pointers to symbols
404 will be written.
405 */
406
407 boolean
408 bfd_set_symtab (abfd, location, symcount)
409 bfd *abfd;
410 asymbol **location;
411 unsigned int symcount;
412 {
413 if ((abfd->format != bfd_object) || (bfd_read_p (abfd)))
414 {
415 bfd_set_error (bfd_error_invalid_operation);
416 return false;
417 }
418
419 bfd_get_outsymbols (abfd) = location;
420 bfd_get_symcount (abfd) = symcount;
421 return true;
422 }
423
424 /*
425 FUNCTION
426 bfd_print_symbol_vandf
427
428 SYNOPSIS
429 void bfd_print_symbol_vandf(PTR file, asymbol *symbol);
430
431 DESCRIPTION
432 Print the value and flags of the @var{symbol} supplied to the
433 stream @var{file}.
434 */
435 void
436 bfd_print_symbol_vandf (arg, symbol)
437 PTR arg;
438 asymbol *symbol;
439 {
440 FILE *file = (FILE *) arg;
441 flagword type = symbol->flags;
442 if (symbol->section != (asection *) NULL)
443 {
444 fprintf_vma (file, symbol->value + symbol->section->vma);
445 }
446 else
447 {
448 fprintf_vma (file, symbol->value);
449 }
450
451 /* This presumes that a symbol can not be both BSF_DEBUGGING and
452 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
453 BSF_OBJECT. */
454 fprintf (file, " %c%c%c%c%c%c%c",
455 ((type & BSF_LOCAL)
456 ? (type & BSF_GLOBAL) ? '!' : 'l'
457 : (type & BSF_GLOBAL) ? 'g' : ' '),
458 (type & BSF_WEAK) ? 'w' : ' ',
459 (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
460 (type & BSF_WARNING) ? 'W' : ' ',
461 (type & BSF_INDIRECT) ? 'I' : ' ',
462 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
463 ((type & BSF_FUNCTION)
464 ? 'F'
465 : ((type & BSF_FILE)
466 ? 'f'
467 : ((type & BSF_OBJECT) ? 'O' : ' '))));
468 }
469
470
471 /*
472 FUNCTION
473 bfd_make_empty_symbol
474
475 DESCRIPTION
476 Create a new <<asymbol>> structure for the BFD @var{abfd}
477 and return a pointer to it.
478
479 This routine is necessary because each back end has private
480 information surrounding the <<asymbol>>. Building your own
481 <<asymbol>> and pointing to it will not create the private
482 information, and will cause problems later on.
483
484 .#define bfd_make_empty_symbol(abfd) \
485 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
486 */
487
488 /*
489 FUNCTION
490 bfd_make_debug_symbol
491
492 DESCRIPTION
493 Create a new <<asymbol>> structure for the BFD @var{abfd},
494 to be used as a debugging symbol. Further details of its use have
495 yet to be worked out.
496
497 .#define bfd_make_debug_symbol(abfd,ptr,size) \
498 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
499 */
500
501 struct section_to_type
502 {
503 CONST char *section;
504 char type;
505 };
506
507 /* Map section names to POSIX/BSD single-character symbol types.
508 This table is probably incomplete. It is sorted for convenience of
509 adding entries. Since it is so short, a linear search is used. */
510 static CONST struct section_to_type stt[] =
511 {
512 {"*DEBUG*", 'N'},
513 {".bss", 'b'},
514 {"zerovars", 'b'}, /* MRI .bss */
515 {".data", 'd'},
516 {"vars", 'd'}, /* MRI .data */
517 {".rdata", 'r'}, /* Read only data. */
518 {".rodata", 'r'}, /* Read only data. */
519 {".sbss", 's'}, /* Small BSS (uninitialized data). */
520 {".scommon", 'c'}, /* Small common. */
521 {".sdata", 'g'}, /* Small initialized data. */
522 {".text", 't'},
523 {"code", 't'}, /* MRI .text */
524 {0, 0}
525 };
526
527 /* Return the single-character symbol type corresponding to
528 section S, or '?' for an unknown COFF section.
529
530 Check for any leading string which matches, so .text5 returns
531 't' as well as .text */
532
533 static char
534 coff_section_type (s)
535 const char *s;
536 {
537 CONST struct section_to_type *t;
538
539 for (t = &stt[0]; t->section; t++)
540 if (!strncmp (s, t->section, strlen (t->section)))
541 return t->type;
542
543 return '?';
544 }
545
546 #ifndef islower
547 #define islower(c) ((c) >= 'a' && (c) <= 'z')
548 #endif
549 #ifndef toupper
550 #define toupper(c) (islower(c) ? ((c) & ~0x20) : (c))
551 #endif
552
553 /*
554 FUNCTION
555 bfd_decode_symclass
556
557 DESCRIPTION
558 Return a character corresponding to the symbol
559 class of @var{symbol}, or '?' for an unknown class.
560
561 SYNOPSIS
562 int bfd_decode_symclass(asymbol *symbol);
563 */
564 int
565 bfd_decode_symclass (symbol)
566 asymbol *symbol;
567 {
568 char c;
569
570 if (bfd_is_com_section (symbol->section))
571 return 'C';
572 if (bfd_is_und_section (symbol->section))
573 return 'U';
574 if (bfd_is_ind_section (symbol->section))
575 return 'I';
576 if (symbol->flags & BSF_WEAK)
577 return 'W';
578 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
579 return '?';
580
581 if (bfd_is_abs_section (symbol->section))
582 c = 'a';
583 else if (symbol->section)
584 c = coff_section_type (symbol->section->name);
585 else
586 return '?';
587 if (symbol->flags & BSF_GLOBAL)
588 c = toupper (c);
589 return c;
590
591 /* We don't have to handle these cases just yet, but we will soon:
592 N_SETV: 'v';
593 N_SETA: 'l';
594 N_SETT: 'x';
595 N_SETD: 'z';
596 N_SETB: 's';
597 N_INDR: 'i';
598 */
599 }
600
601 /*
602 FUNCTION
603 bfd_symbol_info
604
605 DESCRIPTION
606 Fill in the basic info about symbol that nm needs.
607 Additional info may be added by the back-ends after
608 calling this function.
609
610 SYNOPSIS
611 void bfd_symbol_info(asymbol *symbol, symbol_info *ret);
612 */
613
614 void
615 bfd_symbol_info (symbol, ret)
616 asymbol *symbol;
617 symbol_info *ret;
618 {
619 ret->type = bfd_decode_symclass (symbol);
620 if (ret->type != 'U')
621 ret->value = symbol->value + symbol->section->vma;
622 else
623 ret->value = 0;
624 ret->name = symbol->name;
625 }
626
627 void
628 bfd_symbol_is_absolute ()
629 {
630 abort ();
631 }
632
633 /*
634 FUNCTION
635 bfd_copy_private_symbol_data
636
637 SYNOPSIS
638 boolean bfd_copy_private_symbol_data(bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
639
640 DESCRIPTION
641 Copy private symbol information from @var{isym} in the BFD
642 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
643 Return <<true>> on success, <<false>> on error. Possible error
644 returns are:
645
646 o <<bfd_error_no_memory>> -
647 Not enough memory exists to create private data for @var{osec}.
648
649 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
650 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
651 . (ibfd, isymbol, obfd, osymbol))
652
653 */
654
655 /* The generic version of the function which returns mini symbols.
656 This is used when the backend does not provide a more efficient
657 version. It just uses BFD asymbol structures as mini symbols. */
658
659 long
660 _bfd_generic_read_minisymbols (abfd, dynamic, minisymsp, sizep)
661 bfd *abfd;
662 boolean dynamic;
663 PTR *minisymsp;
664 unsigned int *sizep;
665 {
666 long storage;
667 asymbol **syms = NULL;
668 long symcount;
669
670 if (dynamic)
671 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
672 else
673 storage = bfd_get_symtab_upper_bound (abfd);
674 if (storage < 0)
675 goto error_return;
676
677 syms = (asymbol **) bfd_malloc ((size_t) storage);
678 if (syms == NULL)
679 goto error_return;
680
681 if (dynamic)
682 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
683 else
684 symcount = bfd_canonicalize_symtab (abfd, syms);
685 if (symcount < 0)
686 goto error_return;
687
688 *minisymsp = (PTR) syms;
689 *sizep = sizeof (asymbol *);
690 return symcount;
691
692 error_return:
693 if (syms != NULL)
694 free (syms);
695 return -1;
696 }
697
698 /* The generic version of the function which converts a minisymbol to
699 an asymbol. We don't worry about the sym argument we are passed;
700 we just return the asymbol the minisymbol points to. */
701
702 /*ARGSUSED*/
703 asymbol *
704 _bfd_generic_minisymbol_to_symbol (abfd, dynamic, minisym, sym)
705 bfd *abfd;
706 boolean dynamic;
707 const PTR minisym;
708 asymbol *sym;
709 {
710 return *(asymbol **) minisym;
711 }
712
713 /* Look through stabs debugging information in .stab and .stabstr
714 sections to find the source file and line closest to a desired
715 location. This is used by COFF and ELF targets. It sets *pfound
716 to true if it finds some information. The *pinfo field is used to
717 pass cached information in and out of this routine; this first time
718 the routine is called for a BFD, *pinfo should be NULL. The value
719 placed in *pinfo should be saved with the BFD, and passed back each
720 time this function is called. */
721
722 /* A pointer to this structure is stored in *pinfo. */
723
724 struct stab_find_info
725 {
726 /* The .stab section. */
727 asection *stabsec;
728 /* The .stabstr section. */
729 asection *strsec;
730 /* The contents of the .stab section. */
731 bfd_byte *stabs;
732 /* The contents of the .stabstr section. */
733 bfd_byte *strs;
734 /* An malloc buffer to hold the file name. */
735 char *filename;
736 /* Cached values to restart quickly. */
737 bfd_vma cached_offset;
738 bfd_byte *cached_stab;
739 bfd_byte *cached_str;
740 bfd_size_type cached_stroff;
741 };
742
743 boolean
744 _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, pfound,
745 pfilename, pfnname, pline, pinfo)
746 bfd *abfd;
747 asymbol **symbols;
748 asection *section;
749 bfd_vma offset;
750 boolean *pfound;
751 const char **pfilename;
752 const char **pfnname;
753 unsigned int *pline;
754 PTR *pinfo;
755 {
756 struct stab_find_info *info;
757 bfd_size_type stabsize, strsize;
758 bfd_byte *stab, *stabend, *str;
759 bfd_size_type stroff;
760 bfd_vma fnaddr;
761 char *directory_name, *main_file_name, *current_file_name, *line_file_name;
762 char *fnname;
763 bfd_vma low_func_vma, low_line_vma;
764
765 *pfound = false;
766 *pfilename = bfd_get_filename (abfd);
767 *pfnname = NULL;
768 *pline = 0;
769
770 info = (struct stab_find_info *) *pinfo;
771 if (info != NULL)
772 {
773 if (info->stabsec == NULL || info->strsec == NULL)
774 {
775 /* No stabs debugging information. */
776 return true;
777 }
778
779 stabsize = info->stabsec->_raw_size;
780 strsize = info->strsec->_raw_size;
781 }
782 else
783 {
784 long reloc_size, reloc_count;
785 arelent **reloc_vector;
786
787 info = (struct stab_find_info *) bfd_zalloc (abfd, sizeof *info);
788 if (info == NULL)
789 return false;
790
791 /* FIXME: When using the linker --split-by-file or
792 --split-by-reloc options, it is possible for the .stab and
793 .stabstr sections to be split. We should handle that. */
794
795 info->stabsec = bfd_get_section_by_name (abfd, ".stab");
796 info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
797
798 if (info->stabsec == NULL || info->strsec == NULL)
799 {
800 /* No stabs debugging information. Set *pinfo so that we
801 can return quickly in the info != NULL case above. */
802 *pinfo = (PTR) info;
803 return true;
804 }
805
806 stabsize = info->stabsec->_raw_size;
807 strsize = info->strsec->_raw_size;
808
809 info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
810 info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
811 if (info->stabs == NULL || info->strs == NULL)
812 return false;
813
814 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs, 0,
815 stabsize)
816 || ! bfd_get_section_contents (abfd, info->strsec, info->strs, 0,
817 strsize))
818 return false;
819
820 /* If this is a relocateable object file, we have to relocate
821 the entries in .stab. This should always be simple 32 bit
822 relocations against symbols defined in this object file, so
823 this should be no big deal. */
824 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
825 if (reloc_size < 0)
826 return false;
827 reloc_vector = (arelent **) bfd_malloc (reloc_size);
828 if (reloc_vector == NULL && reloc_size != 0)
829 return false;
830 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
831 symbols);
832 if (reloc_count < 0)
833 {
834 if (reloc_vector != NULL)
835 free (reloc_vector);
836 return false;
837 }
838 if (reloc_count > 0)
839 {
840 arelent **pr;
841
842 for (pr = reloc_vector; *pr != NULL; pr++)
843 {
844 arelent *r;
845 unsigned long val;
846 asymbol *sym;
847
848 r = *pr;
849 if (r->howto->rightshift != 0
850 || r->howto->size != 2
851 || r->howto->bitsize != 32
852 || r->howto->pc_relative
853 || r->howto->bitpos != 0
854 || r->howto->dst_mask != 0xffffffff)
855 {
856 (*_bfd_error_handler)
857 ("Unsupported .stab relocation");
858 bfd_set_error (bfd_error_invalid_operation);
859 if (reloc_vector != NULL)
860 free (reloc_vector);
861 return false;
862 }
863
864 val = bfd_get_32 (abfd, info->stabs + r->address);
865 val &= r->howto->src_mask;
866 sym = *r->sym_ptr_ptr;
867 val += sym->value + sym->section->vma + r->addend;
868 bfd_put_32 (abfd, val, info->stabs + r->address);
869 }
870 }
871
872 if (reloc_vector != NULL)
873 free (reloc_vector);
874
875 *pinfo = (PTR) info;
876 }
877
878 /* We are passed a section relative offset. The offsets in the
879 stabs information are absolute. */
880 offset += bfd_get_section_vma (abfd, section);
881
882 /* Stabs entries use a 12 byte format:
883 4 byte string table index
884 1 byte stab type
885 1 byte stab other field
886 2 byte stab desc field
887 4 byte stab value
888 FIXME: This will have to change for a 64 bit object format.
889
890 The stabs symbols are divided into compilation units. For the
891 first entry in each unit, the type of 0, the value is the length
892 of the string table for this unit, and the desc field is the
893 number of stabs symbols for this unit. */
894
895 #define STRDXOFF (0)
896 #define TYPEOFF (4)
897 #define OTHEROFF (5)
898 #define DESCOFF (6)
899 #define VALOFF (8)
900 #define STABSIZE (12)
901
902 /* It would be nice if we could skip ahead to the stabs symbols for
903 the next compilation unit to quickly scan through the compilation
904 units. Unfortunately, since each line number gets a separate
905 stabs entry, it is entirely plausible that a large source file
906 will overflow the 16 bit count of stabs entries. */
907 fnaddr = 0;
908 directory_name = NULL;
909 main_file_name = NULL;
910 current_file_name = NULL;
911 line_file_name = NULL;
912 fnname = NULL;
913 low_func_vma = 0;
914 low_line_vma = 0;
915
916 stabend = info->stabs + stabsize;
917
918 if (info->cached_stab == NULL || offset < info->cached_offset)
919 {
920 stab = info->stabs;
921 str = info->strs;
922 stroff = 0;
923 }
924 else
925 {
926 stab = info->cached_stab;
927 str = info->cached_str;
928 stroff = info->cached_stroff;
929 }
930
931 info->cached_offset = offset;
932
933 for (; stab < stabend; stab += STABSIZE)
934 {
935 boolean done;
936 bfd_vma val;
937 char *name;
938
939 done = false;
940
941 switch (stab[TYPEOFF])
942 {
943 case 0:
944 /* This is the first entry in a compilation unit. */
945 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
946 {
947 done = true;
948 break;
949 }
950 str += stroff;
951 stroff = bfd_get_32 (abfd, stab + VALOFF);
952 break;
953
954 case N_SO:
955 /* The main file name. */
956
957 val = bfd_get_32 (abfd, stab + VALOFF);
958 if (val > offset)
959 {
960 done = true;
961 break;
962 }
963
964 name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
965
966 /* An empty string indicates the end of the compilation
967 unit. */
968 if (*name == '\0')
969 {
970 /* If there are functions in different sections, they
971 may have addresses larger than val, but we don't want
972 to forget the file name. When there are functions in
973 different cases, there is supposed to be an N_FUN at
974 the end of the function indicating where it ends. */
975 if (low_func_vma < val || fnname == NULL)
976 main_file_name = NULL;
977 break;
978 }
979
980 /* We know that we have to get to at least this point in the
981 stabs entries for this offset. */
982 info->cached_stab = stab;
983 info->cached_str = str;
984 info->cached_stroff = stroff;
985
986 current_file_name = name;
987
988 /* Look ahead to the next symbol. Two consecutive N_SO
989 symbols are a directory and a file name. */
990 if (stab + STABSIZE >= stabend
991 || *(stab + STABSIZE + TYPEOFF) != N_SO)
992 directory_name = NULL;
993 else
994 {
995 stab += STABSIZE;
996 directory_name = current_file_name;
997 current_file_name = ((char *) str
998 + bfd_get_32 (abfd, stab + STRDXOFF));
999 }
1000
1001 main_file_name = current_file_name;
1002
1003 break;
1004
1005 case N_SOL:
1006 /* The name of an include file. */
1007 current_file_name = ((char *) str
1008 + bfd_get_32 (abfd, stab + STRDXOFF));
1009 break;
1010
1011 case N_SLINE:
1012 case N_DSLINE:
1013 case N_BSLINE:
1014 /* A line number. The value is relative to the start of the
1015 current function. */
1016 val = fnaddr + bfd_get_32 (abfd, stab + VALOFF);
1017 if (val >= low_line_vma && val <= offset)
1018 {
1019 *pline = bfd_get_16 (abfd, stab + DESCOFF);
1020 low_line_vma = val;
1021 line_file_name = current_file_name;
1022 }
1023 break;
1024
1025 case N_FUN:
1026 /* A function name. */
1027 val = bfd_get_32 (abfd, stab + VALOFF);
1028 name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1029
1030 /* An empty string here indicates the end of a function, and
1031 the value is relative to fnaddr. */
1032
1033 if (*name == '\0')
1034 {
1035 val += fnaddr;
1036 if (val >= low_func_vma && val < offset)
1037 fnname = NULL;
1038 }
1039 else
1040 {
1041 if (val >= low_func_vma && val <= offset)
1042 {
1043 fnname = name;
1044 low_func_vma = val;
1045 }
1046
1047 fnaddr = val;
1048 }
1049
1050 break;
1051 }
1052
1053 if (done)
1054 break;
1055 }
1056
1057 if (main_file_name == NULL)
1058 {
1059 /* No information found. */
1060 return true;
1061 }
1062
1063 *pfound = true;
1064
1065 if (*pline != 0)
1066 main_file_name = line_file_name;
1067
1068 if (main_file_name != NULL)
1069 {
1070 if (main_file_name[0] == '/' || directory_name == NULL)
1071 *pfilename = main_file_name;
1072 else
1073 {
1074 size_t dirlen;
1075
1076 dirlen = strlen (directory_name);
1077 if (info->filename == NULL
1078 || strncmp (info->filename, directory_name, dirlen) != 0
1079 || strcmp (info->filename + dirlen, main_file_name) != 0)
1080 {
1081 if (info->filename != NULL)
1082 free (info->filename);
1083 info->filename = (char *) bfd_malloc (dirlen +
1084 strlen (main_file_name)
1085 + 1);
1086 if (info->filename == NULL)
1087 return false;
1088 strcpy (info->filename, directory_name);
1089 strcpy (info->filename + dirlen, main_file_name);
1090 }
1091
1092 *pfilename = info->filename;
1093 }
1094 }
1095
1096 if (fnname != NULL)
1097 {
1098 char *s;
1099
1100 /* This will typically be something like main:F(0,1), so we want
1101 to clobber the colon. It's OK to change the name, since the
1102 string is in our own local storage anyhow. */
1103
1104 s = strchr (fnname, ':');
1105 if (s != NULL)
1106 *s = '\0';
1107
1108 *pfnname = fnname;
1109 }
1110
1111 return true;
1112 }
This page took 0.052 seconds and 4 git commands to generate.