Change PLT code to avoid using r2 - it used by GCC to return large startures
[deliverable/binutils-gdb.git] / bfd / syms.c
1 /* Generic symbol-table support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23 /*
24 SECTION
25 Symbols
26
27 BFD tries to maintain as much symbol information as it can when
28 it moves information from file to file. BFD passes information
29 to applications though the <<asymbol>> structure. When the
30 application requests the symbol table, BFD reads the table in
31 the native form and translates parts of it into the internal
32 format. To maintain more than the information passed to
33 applications, some targets keep some information ``behind the
34 scenes'' in a structure only the particular back end knows
35 about. For example, the coff back end keeps the original
36 symbol table structure as well as the canonical structure when
37 a BFD is read in. On output, the coff back end can reconstruct
38 the output symbol table so that no information is lost, even
39 information unique to coff which BFD doesn't know or
40 understand. If a coff symbol table were read, but were written
41 through an a.out back end, all the coff specific information
42 would be lost. The symbol table of a BFD
43 is not necessarily read in until a canonicalize request is
44 made. Then the BFD back end fills in a table provided by the
45 application with pointers to the canonical information. To
46 output symbols, the application provides BFD with a table of
47 pointers to pointers to <<asymbol>>s. This allows applications
48 like the linker to output a symbol as it was read, since the ``behind
49 the scenes'' information will be still available.
50 @menu
51 @* Reading Symbols::
52 @* Writing Symbols::
53 @* Mini Symbols::
54 @* typedef asymbol::
55 @* symbol handling functions::
56 @end menu
57
58 INODE
59 Reading Symbols, Writing Symbols, Symbols, Symbols
60 SUBSECTION
61 Reading symbols
62
63 There are two stages to reading a symbol table from a BFD:
64 allocating storage, and the actual reading process. This is an
65 excerpt from an application which reads the symbol table:
66
67 | long storage_needed;
68 | asymbol **symbol_table;
69 | long number_of_symbols;
70 | long i;
71 |
72 | storage_needed = bfd_get_symtab_upper_bound (abfd);
73 |
74 | if (storage_needed < 0)
75 | FAIL
76 |
77 | if (storage_needed == 0) {
78 | return ;
79 | }
80 | symbol_table = (asymbol **) xmalloc (storage_needed);
81 | ...
82 | number_of_symbols =
83 | bfd_canonicalize_symtab (abfd, symbol_table);
84 |
85 | if (number_of_symbols < 0)
86 | FAIL
87 |
88 | for (i = 0; i < number_of_symbols; i++) {
89 | process_symbol (symbol_table[i]);
90 | }
91
92 All storage for the symbols themselves is in an objalloc
93 connected to the BFD; it is freed when the BFD is closed.
94
95 INODE
96 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
97 SUBSECTION
98 Writing symbols
99
100 Writing of a symbol table is automatic when a BFD open for
101 writing is closed. The application attaches a vector of
102 pointers to pointers to symbols to the BFD being written, and
103 fills in the symbol count. The close and cleanup code reads
104 through the table provided and performs all the necessary
105 operations. The BFD output code must always be provided with an
106 ``owned'' symbol: one which has come from another BFD, or one
107 which has been created using <<bfd_make_empty_symbol>>. Here is an
108 example showing the creation of a symbol table with only one element:
109
110 | #include "bfd.h"
111 | main()
112 | {
113 | bfd *abfd;
114 | asymbol *ptrs[2];
115 | asymbol *new;
116 |
117 | abfd = bfd_openw("foo","a.out-sunos-big");
118 | bfd_set_format(abfd, bfd_object);
119 | new = bfd_make_empty_symbol(abfd);
120 | new->name = "dummy_symbol";
121 | new->section = bfd_make_section_old_way(abfd, ".text");
122 | new->flags = BSF_GLOBAL;
123 | new->value = 0x12345;
124 |
125 | ptrs[0] = new;
126 | ptrs[1] = (asymbol *)0;
127 |
128 | bfd_set_symtab(abfd, ptrs, 1);
129 | bfd_close(abfd);
130 | }
131 |
132 | ./makesym
133 | nm foo
134 | 00012345 A dummy_symbol
135
136 Many formats cannot represent arbitary symbol information; for
137 instance, the <<a.out>> object format does not allow an
138 arbitary number of sections. A symbol pointing to a section
139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
140 be described.
141
142 INODE
143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
144 SUBSECTION
145 Mini Symbols
146
147 Mini symbols provide read-only access to the symbol table.
148 They use less memory space, but require more time to access.
149 They can be useful for tools like nm or objdump, which may
150 have to handle symbol tables of extremely large executables.
151
152 The <<bfd_read_minisymbols>> function will read the symbols
153 into memory in an internal form. It will return a <<void *>>
154 pointer to a block of memory, a symbol count, and the size of
155 each symbol. The pointer is allocated using <<malloc>>, and
156 should be freed by the caller when it is no longer needed.
157
158 The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 to a minisymbol, and a pointer to a structure returned by
160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 The return value may or may not be the same as the value from
162 <<bfd_make_empty_symbol>> which was passed in.
163
164 */
165
166 /*
167 DOCDD
168 INODE
169 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
170
171 */
172 /*
173 SUBSECTION
174 typedef asymbol
175
176 An <<asymbol>> has the form:
177
178 */
179
180 /*
181 CODE_FRAGMENT
182
183 .
184 .typedef struct symbol_cache_entry
185 .{
186 . {* A pointer to the BFD which owns the symbol. This information
187 . is necessary so that a back end can work out what additional
188 . information (invisible to the application writer) is carried
189 . with the symbol.
190 .
191 . This field is *almost* redundant, since you can use section->owner
192 . instead, except that some symbols point to the global sections
193 . bfd_{abs,com,und}_section. This could be fixed by making
194 . these globals be per-bfd (or per-target-flavor). FIXME. *}
195 .
196 . struct _bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
197 .
198 . {* The text of the symbol. The name is left alone, and not copied; the
199 . application may not alter it. *}
200 . CONST char *name;
201 .
202 . {* The value of the symbol. This really should be a union of a
203 . numeric value with a pointer, since some flags indicate that
204 . a pointer to another symbol is stored here. *}
205 . symvalue value;
206 .
207 . {* Attributes of a symbol: *}
208 .
209 .#define BSF_NO_FLAGS 0x00
210 .
211 . {* The symbol has local scope; <<static>> in <<C>>. The value
212 . is the offset into the section of the data. *}
213 .#define BSF_LOCAL 0x01
214 .
215 . {* The symbol has global scope; initialized data in <<C>>. The
216 . value is the offset into the section of the data. *}
217 .#define BSF_GLOBAL 0x02
218 .
219 . {* The symbol has global scope and is exported. The value is
220 . the offset into the section of the data. *}
221 .#define BSF_EXPORT BSF_GLOBAL {* no real difference *}
222 .
223 . {* A normal C symbol would be one of:
224 . <<BSF_LOCAL>>, <<BSF_FORT_COMM>>, <<BSF_UNDEFINED>> or
225 . <<BSF_GLOBAL>> *}
226 .
227 . {* The symbol is a debugging record. The value has an arbitary
228 . meaning, unless BSF_DEBUGGING_RELOC is also set. *}
229 .#define BSF_DEBUGGING 0x08
230 .
231 . {* The symbol denotes a function entry point. Used in ELF,
232 . perhaps others someday. *}
233 .#define BSF_FUNCTION 0x10
234 .
235 . {* Used by the linker. *}
236 .#define BSF_KEEP 0x20
237 .#define BSF_KEEP_G 0x40
238 .
239 . {* A weak global symbol, overridable without warnings by
240 . a regular global symbol of the same name. *}
241 .#define BSF_WEAK 0x80
242 .
243 . {* This symbol was created to point to a section, e.g. ELF's
244 . STT_SECTION symbols. *}
245 .#define BSF_SECTION_SYM 0x100
246 .
247 . {* The symbol used to be a common symbol, but now it is
248 . allocated. *}
249 .#define BSF_OLD_COMMON 0x200
250 .
251 . {* The default value for common data. *}
252 .#define BFD_FORT_COMM_DEFAULT_VALUE 0
253 .
254 . {* In some files the type of a symbol sometimes alters its
255 . location in an output file - ie in coff a <<ISFCN>> symbol
256 . which is also <<C_EXT>> symbol appears where it was
257 . declared and not at the end of a section. This bit is set
258 . by the target BFD part to convey this information. *}
259 .
260 .#define BSF_NOT_AT_END 0x400
261 .
262 . {* Signal that the symbol is the label of constructor section. *}
263 .#define BSF_CONSTRUCTOR 0x800
264 .
265 . {* Signal that the symbol is a warning symbol. The name is a
266 . warning. The name of the next symbol is the one to warn about;
267 . if a reference is made to a symbol with the same name as the next
268 . symbol, a warning is issued by the linker. *}
269 .#define BSF_WARNING 0x1000
270 .
271 . {* Signal that the symbol is indirect. This symbol is an indirect
272 . pointer to the symbol with the same name as the next symbol. *}
273 .#define BSF_INDIRECT 0x2000
274 .
275 . {* BSF_FILE marks symbols that contain a file name. This is used
276 . for ELF STT_FILE symbols. *}
277 .#define BSF_FILE 0x4000
278 .
279 . {* Symbol is from dynamic linking information. *}
280 .#define BSF_DYNAMIC 0x8000
281 .
282 . {* The symbol denotes a data object. Used in ELF, and perhaps
283 . others someday. *}
284 .#define BSF_OBJECT 0x10000
285 .
286 . {* This symbol is a debugging symbol. The value is the offset
287 . into the section of the data. BSF_DEBUGGING should be set
288 . as well. *}
289 .#define BSF_DEBUGGING_RELOC 0x20000
290 .
291 . flagword flags;
292 .
293 . {* A pointer to the section to which this symbol is
294 . relative. This will always be non NULL, there are special
295 . sections for undefined and absolute symbols. *}
296 . struct sec *section;
297 .
298 . {* Back end special data. *}
299 . union
300 . {
301 . PTR p;
302 . bfd_vma i;
303 . } udata;
304 .
305 .} asymbol;
306 */
307
308 #include "bfd.h"
309 #include "sysdep.h"
310 #include "libbfd.h"
311 #include "bfdlink.h"
312 #include "aout/stab_gnu.h"
313
314 static char coff_section_type PARAMS ((const char *));
315
316 /*
317 DOCDD
318 INODE
319 symbol handling functions, , typedef asymbol, Symbols
320 SUBSECTION
321 Symbol handling functions
322 */
323
324 /*
325 FUNCTION
326 bfd_get_symtab_upper_bound
327
328 DESCRIPTION
329 Return the number of bytes required to store a vector of pointers
330 to <<asymbols>> for all the symbols in the BFD @var{abfd},
331 including a terminal NULL pointer. If there are no symbols in
332 the BFD, then return 0. If an error occurs, return -1.
333
334 .#define bfd_get_symtab_upper_bound(abfd) \
335 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
336
337 */
338
339 /*
340 FUNCTION
341 bfd_is_local_label
342
343 SYNOPSIS
344 boolean bfd_is_local_label(bfd *abfd, asymbol *sym);
345
346 DESCRIPTION
347 Return true if the given symbol @var{sym} in the BFD @var{abfd} is
348 a compiler generated local label, else return false.
349 */
350
351 boolean
352 bfd_is_local_label (abfd, sym)
353 bfd *abfd;
354 asymbol *sym;
355 {
356 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
357 return false;
358 if (sym->name == NULL)
359 return false;
360 return bfd_is_local_label_name (abfd, sym->name);
361 }
362
363 /*
364 FUNCTION
365 bfd_is_local_label_name
366
367 SYNOPSIS
368 boolean bfd_is_local_label_name(bfd *abfd, const char *name);
369
370 DESCRIPTION
371 Return true if a symbol with the name @var{name} in the BFD
372 @var{abfd} is a compiler generated local label, else return
373 false. This just checks whether the name has the form of a
374 local label.
375
376 .#define bfd_is_local_label_name(abfd, name) \
377 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
378 */
379
380 /*
381 FUNCTION
382 bfd_canonicalize_symtab
383
384 DESCRIPTION
385 Read the symbols from the BFD @var{abfd}, and fills in
386 the vector @var{location} with pointers to the symbols and
387 a trailing NULL.
388 Return the actual number of symbol pointers, not
389 including the NULL.
390
391 .#define bfd_canonicalize_symtab(abfd, location) \
392 . BFD_SEND (abfd, _bfd_canonicalize_symtab,\
393 . (abfd, location))
394
395 */
396
397 /*
398 FUNCTION
399 bfd_set_symtab
400
401 SYNOPSIS
402 boolean bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int count);
403
404 DESCRIPTION
405 Arrange that when the output BFD @var{abfd} is closed,
406 the table @var{location} of @var{count} pointers to symbols
407 will be written.
408 */
409
410 boolean
411 bfd_set_symtab (abfd, location, symcount)
412 bfd *abfd;
413 asymbol **location;
414 unsigned int symcount;
415 {
416 if ((abfd->format != bfd_object) || (bfd_read_p (abfd)))
417 {
418 bfd_set_error (bfd_error_invalid_operation);
419 return false;
420 }
421
422 bfd_get_outsymbols (abfd) = location;
423 bfd_get_symcount (abfd) = symcount;
424 return true;
425 }
426
427 /*
428 FUNCTION
429 bfd_print_symbol_vandf
430
431 SYNOPSIS
432 void bfd_print_symbol_vandf(PTR file, asymbol *symbol);
433
434 DESCRIPTION
435 Print the value and flags of the @var{symbol} supplied to the
436 stream @var{file}.
437 */
438 void
439 bfd_print_symbol_vandf (arg, symbol)
440 PTR arg;
441 asymbol *symbol;
442 {
443 FILE *file = (FILE *) arg;
444 flagword type = symbol->flags;
445 if (symbol->section != (asection *) NULL)
446 {
447 fprintf_vma (file, symbol->value + symbol->section->vma);
448 }
449 else
450 {
451 fprintf_vma (file, symbol->value);
452 }
453
454 /* This presumes that a symbol can not be both BSF_DEBUGGING and
455 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
456 BSF_OBJECT. */
457 fprintf (file, " %c%c%c%c%c%c%c",
458 ((type & BSF_LOCAL)
459 ? (type & BSF_GLOBAL) ? '!' : 'l'
460 : (type & BSF_GLOBAL) ? 'g' : ' '),
461 (type & BSF_WEAK) ? 'w' : ' ',
462 (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
463 (type & BSF_WARNING) ? 'W' : ' ',
464 (type & BSF_INDIRECT) ? 'I' : ' ',
465 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
466 ((type & BSF_FUNCTION)
467 ? 'F'
468 : ((type & BSF_FILE)
469 ? 'f'
470 : ((type & BSF_OBJECT) ? 'O' : ' '))));
471 }
472
473 /*
474 FUNCTION
475 bfd_make_empty_symbol
476
477 DESCRIPTION
478 Create a new <<asymbol>> structure for the BFD @var{abfd}
479 and return a pointer to it.
480
481 This routine is necessary because each back end has private
482 information surrounding the <<asymbol>>. Building your own
483 <<asymbol>> and pointing to it will not create the private
484 information, and will cause problems later on.
485
486 .#define bfd_make_empty_symbol(abfd) \
487 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
488 */
489
490 /*
491 FUNCTION
492 bfd_make_debug_symbol
493
494 DESCRIPTION
495 Create a new <<asymbol>> structure for the BFD @var{abfd},
496 to be used as a debugging symbol. Further details of its use have
497 yet to be worked out.
498
499 .#define bfd_make_debug_symbol(abfd,ptr,size) \
500 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
501 */
502
503 struct section_to_type
504 {
505 CONST char *section;
506 char type;
507 };
508
509 /* Map section names to POSIX/BSD single-character symbol types.
510 This table is probably incomplete. It is sorted for convenience of
511 adding entries. Since it is so short, a linear search is used. */
512 static CONST struct section_to_type stt[] =
513 {
514 {"*DEBUG*", 'N'},
515 {".bss", 'b'},
516 {"zerovars", 'b'}, /* MRI .bss */
517 {".data", 'd'},
518 {"vars", 'd'}, /* MRI .data */
519 {".rdata", 'r'}, /* Read only data. */
520 {".rodata", 'r'}, /* Read only data. */
521 {".sbss", 's'}, /* Small BSS (uninitialized data). */
522 {".scommon", 'c'}, /* Small common. */
523 {".sdata", 'g'}, /* Small initialized data. */
524 {".text", 't'},
525 {"code", 't'}, /* MRI .text */
526 {".drectve", 'i'}, /* MSVC's .drective section */
527 {".idata", 'i'}, /* MSVC's .idata (import) section */
528 {".edata", 'e'}, /* MSVC's .edata (export) section */
529 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
530 {".debug", 'N'}, /* MSVC's .debug (non-standard debug syms) */
531 {0, 0}
532 };
533
534 /* Return the single-character symbol type corresponding to
535 section S, or '?' for an unknown COFF section.
536
537 Check for any leading string which matches, so .text5 returns
538 't' as well as .text */
539
540 static char
541 coff_section_type (s)
542 const char *s;
543 {
544 CONST struct section_to_type *t;
545
546 for (t = &stt[0]; t->section; t++)
547 if (!strncmp (s, t->section, strlen (t->section)))
548 return t->type;
549
550 return '?';
551 }
552
553 #ifndef islower
554 #define islower(c) ((c) >= 'a' && (c) <= 'z')
555 #endif
556 #ifndef toupper
557 #define toupper(c) (islower(c) ? ((c) & ~0x20) : (c))
558 #endif
559
560 /*
561 FUNCTION
562 bfd_decode_symclass
563
564 DESCRIPTION
565 Return a character corresponding to the symbol
566 class of @var{symbol}, or '?' for an unknown class.
567
568 SYNOPSIS
569 int bfd_decode_symclass(asymbol *symbol);
570 */
571 int
572 bfd_decode_symclass (symbol)
573 asymbol *symbol;
574 {
575 char c;
576
577 if (bfd_is_com_section (symbol->section))
578 return 'C';
579 if (bfd_is_und_section (symbol->section))
580 {
581 if (symbol->flags & BSF_WEAK)
582 {
583 /* If weak, determine if it's specifically an object
584 or non-object weak. */
585 if (symbol->flags & BSF_OBJECT)
586 return 'v';
587 else
588 return 'w';
589 }
590 else
591 return 'U';
592 }
593 if (bfd_is_ind_section (symbol->section))
594 return 'I';
595 if (symbol->flags & BSF_WEAK)
596 {
597 /* If weak, determine if it's specifically an object
598 or non-object weak. */
599 if (symbol->flags & BSF_OBJECT)
600 return 'V';
601 else
602 return 'W';
603 }
604 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
605 return '?';
606
607 if (bfd_is_abs_section (symbol->section))
608 c = 'a';
609 else if (symbol->section)
610 c = coff_section_type (symbol->section->name);
611 else
612 return '?';
613 if (symbol->flags & BSF_GLOBAL)
614 c = toupper (c);
615 return c;
616
617 /* We don't have to handle these cases just yet, but we will soon:
618 N_SETV: 'v';
619 N_SETA: 'l';
620 N_SETT: 'x';
621 N_SETD: 'z';
622 N_SETB: 's';
623 N_INDR: 'i';
624 */
625 }
626
627 /*
628 FUNCTION
629 bfd_is_undefined_symclass
630
631 DESCRIPTION
632 Returns non-zero if the class symbol returned by
633 bfd_decode_symclass represents an undefined symbol.
634 Returns zero otherwise.
635
636 SYNOPSIS
637 boolean bfd_is_undefined_symclass (int symclass);
638 */
639
640 boolean
641 bfd_is_undefined_symclass (symclass)
642 int symclass;
643 {
644 return symclass == 'U' || symclass == 'w' || symclass == 'v';
645 }
646
647 /*
648 FUNCTION
649 bfd_symbol_info
650
651 DESCRIPTION
652 Fill in the basic info about symbol that nm needs.
653 Additional info may be added by the back-ends after
654 calling this function.
655
656 SYNOPSIS
657 void bfd_symbol_info(asymbol *symbol, symbol_info *ret);
658 */
659
660 void
661 bfd_symbol_info (symbol, ret)
662 asymbol *symbol;
663 symbol_info *ret;
664 {
665 ret->type = bfd_decode_symclass (symbol);
666
667 if (bfd_is_undefined_symclass (ret->type))
668 ret->value = 0;
669 else
670 ret->value = symbol->value + symbol->section->vma;
671
672 ret->name = symbol->name;
673 }
674
675 /*
676 FUNCTION
677 bfd_copy_private_symbol_data
678
679 SYNOPSIS
680 boolean bfd_copy_private_symbol_data(bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
681
682 DESCRIPTION
683 Copy private symbol information from @var{isym} in the BFD
684 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
685 Return <<true>> on success, <<false>> on error. Possible error
686 returns are:
687
688 o <<bfd_error_no_memory>> -
689 Not enough memory exists to create private data for @var{osec}.
690
691 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
692 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
693 . (ibfd, isymbol, obfd, osymbol))
694
695 */
696
697 /* The generic version of the function which returns mini symbols.
698 This is used when the backend does not provide a more efficient
699 version. It just uses BFD asymbol structures as mini symbols. */
700
701 long
702 _bfd_generic_read_minisymbols (abfd, dynamic, minisymsp, sizep)
703 bfd *abfd;
704 boolean dynamic;
705 PTR *minisymsp;
706 unsigned int *sizep;
707 {
708 long storage;
709 asymbol **syms = NULL;
710 long symcount;
711
712 if (dynamic)
713 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
714 else
715 storage = bfd_get_symtab_upper_bound (abfd);
716 if (storage < 0)
717 goto error_return;
718
719 syms = (asymbol **) bfd_malloc ((size_t) storage);
720 if (syms == NULL)
721 goto error_return;
722
723 if (dynamic)
724 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
725 else
726 symcount = bfd_canonicalize_symtab (abfd, syms);
727 if (symcount < 0)
728 goto error_return;
729
730 *minisymsp = (PTR) syms;
731 *sizep = sizeof (asymbol *);
732 return symcount;
733
734 error_return:
735 if (syms != NULL)
736 free (syms);
737 return -1;
738 }
739
740 /* The generic version of the function which converts a minisymbol to
741 an asymbol. We don't worry about the sym argument we are passed;
742 we just return the asymbol the minisymbol points to. */
743
744 /*ARGSUSED*/
745 asymbol *
746 _bfd_generic_minisymbol_to_symbol (abfd, dynamic, minisym, sym)
747 bfd *abfd ATTRIBUTE_UNUSED;
748 boolean dynamic ATTRIBUTE_UNUSED;
749 const PTR minisym;
750 asymbol *sym ATTRIBUTE_UNUSED;
751 {
752 return *(asymbol **) minisym;
753 }
754
755 /* Look through stabs debugging information in .stab and .stabstr
756 sections to find the source file and line closest to a desired
757 location. This is used by COFF and ELF targets. It sets *pfound
758 to true if it finds some information. The *pinfo field is used to
759 pass cached information in and out of this routine; this first time
760 the routine is called for a BFD, *pinfo should be NULL. The value
761 placed in *pinfo should be saved with the BFD, and passed back each
762 time this function is called. */
763
764 /* We use a cache by default. */
765
766 #define ENABLE_CACHING
767
768 /* We keep an array of indexentry structures to record where in the
769 stabs section we should look to find line number information for a
770 particular address. */
771
772 struct indexentry
773 {
774 bfd_vma val;
775 bfd_byte *stab;
776 bfd_byte *str;
777 char *directory_name;
778 char *file_name;
779 char *function_name;
780 };
781
782 /* Compare two indexentry structures. This is called via qsort. */
783
784 static int
785 cmpindexentry (a, b)
786 const PTR a;
787 const PTR b;
788 {
789 const struct indexentry *contestantA = (const struct indexentry *) a;
790 const struct indexentry *contestantB = (const struct indexentry *) b;
791
792 if (contestantA->val < contestantB->val)
793 return -1;
794 else if (contestantA->val > contestantB->val)
795 return 1;
796 else
797 return 0;
798 }
799
800 /* A pointer to this structure is stored in *pinfo. */
801
802 struct stab_find_info
803 {
804 /* The .stab section. */
805 asection *stabsec;
806 /* The .stabstr section. */
807 asection *strsec;
808 /* The contents of the .stab section. */
809 bfd_byte *stabs;
810 /* The contents of the .stabstr section. */
811 bfd_byte *strs;
812
813 /* A table that indexes stabs by memory address. */
814 struct indexentry *indextable;
815 /* The number of entries in indextable. */
816 int indextablesize;
817
818 #ifdef ENABLE_CACHING
819 /* Cached values to restart quickly. */
820 struct indexentry *cached_indexentry;
821 bfd_vma cached_offset;
822 bfd_byte *cached_stab;
823 char *cached_file_name;
824 #endif
825
826 /* Saved ptr to malloc'ed filename. */
827 char *filename;
828 };
829
830 boolean
831 _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, pfound,
832 pfilename, pfnname, pline, pinfo)
833 bfd *abfd;
834 asymbol **symbols;
835 asection *section;
836 bfd_vma offset;
837 boolean *pfound;
838 const char **pfilename;
839 const char **pfnname;
840 unsigned int *pline;
841 PTR *pinfo;
842 {
843 struct stab_find_info *info;
844 bfd_size_type stabsize, strsize;
845 bfd_byte *stab, *str;
846 bfd_byte *last_stab = NULL;
847 bfd_size_type stroff;
848 struct indexentry *indexentry;
849 char *directory_name, *file_name;
850 int saw_fun;
851
852 *pfound = false;
853 *pfilename = bfd_get_filename (abfd);
854 *pfnname = NULL;
855 *pline = 0;
856
857 /* Stabs entries use a 12 byte format:
858 4 byte string table index
859 1 byte stab type
860 1 byte stab other field
861 2 byte stab desc field
862 4 byte stab value
863 FIXME: This will have to change for a 64 bit object format.
864
865 The stabs symbols are divided into compilation units. For the
866 first entry in each unit, the type of 0, the value is the length
867 of the string table for this unit, and the desc field is the
868 number of stabs symbols for this unit. */
869
870 #define STRDXOFF (0)
871 #define TYPEOFF (4)
872 #define OTHEROFF (5)
873 #define DESCOFF (6)
874 #define VALOFF (8)
875 #define STABSIZE (12)
876
877 info = (struct stab_find_info *) *pinfo;
878 if (info != NULL)
879 {
880 if (info->stabsec == NULL || info->strsec == NULL)
881 {
882 /* No stabs debugging information. */
883 return true;
884 }
885
886 stabsize = info->stabsec->_raw_size;
887 strsize = info->strsec->_raw_size;
888 }
889 else
890 {
891 long reloc_size, reloc_count;
892 arelent **reloc_vector;
893 int i;
894 char *name;
895 char *file_name;
896 char *directory_name;
897 char *function_name;
898
899 info = (struct stab_find_info *) bfd_zalloc (abfd, sizeof *info);
900 if (info == NULL)
901 return false;
902
903 /* FIXME: When using the linker --split-by-file or
904 --split-by-reloc options, it is possible for the .stab and
905 .stabstr sections to be split. We should handle that. */
906
907 info->stabsec = bfd_get_section_by_name (abfd, ".stab");
908 info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
909
910 if (info->stabsec == NULL || info->strsec == NULL)
911 {
912 /* No stabs debugging information. Set *pinfo so that we
913 can return quickly in the info != NULL case above. */
914 *pinfo = (PTR) info;
915 return true;
916 }
917
918 stabsize = info->stabsec->_raw_size;
919 strsize = info->strsec->_raw_size;
920
921 info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
922 info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
923 if (info->stabs == NULL || info->strs == NULL)
924 return false;
925
926 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs, 0,
927 stabsize)
928 || ! bfd_get_section_contents (abfd, info->strsec, info->strs, 0,
929 strsize))
930 return false;
931
932 /* If this is a relocateable object file, we have to relocate
933 the entries in .stab. This should always be simple 32 bit
934 relocations against symbols defined in this object file, so
935 this should be no big deal. */
936 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
937 if (reloc_size < 0)
938 return false;
939 reloc_vector = (arelent **) bfd_malloc (reloc_size);
940 if (reloc_vector == NULL && reloc_size != 0)
941 return false;
942 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
943 symbols);
944 if (reloc_count < 0)
945 {
946 if (reloc_vector != NULL)
947 free (reloc_vector);
948 return false;
949 }
950 if (reloc_count > 0)
951 {
952 arelent **pr;
953
954 for (pr = reloc_vector; *pr != NULL; pr++)
955 {
956 arelent *r;
957 unsigned long val;
958 asymbol *sym;
959
960 r = *pr;
961 if (r->howto->rightshift != 0
962 || r->howto->size != 2
963 || r->howto->bitsize != 32
964 || r->howto->pc_relative
965 || r->howto->bitpos != 0
966 || r->howto->dst_mask != 0xffffffff)
967 {
968 (*_bfd_error_handler)
969 (_("Unsupported .stab relocation"));
970 bfd_set_error (bfd_error_invalid_operation);
971 if (reloc_vector != NULL)
972 free (reloc_vector);
973 return false;
974 }
975
976 val = bfd_get_32 (abfd, info->stabs + r->address);
977 val &= r->howto->src_mask;
978 sym = *r->sym_ptr_ptr;
979 val += sym->value + sym->section->vma + r->addend;
980 bfd_put_32 (abfd, val, info->stabs + r->address);
981 }
982 }
983
984 if (reloc_vector != NULL)
985 free (reloc_vector);
986
987 /* First time through this function, build a table matching
988 function VM addresses to stabs, then sort based on starting
989 VM address. Do this in two passes: once to count how many
990 table entries we'll need, and a second to actually build the
991 table. */
992
993 info->indextablesize = 0;
994 saw_fun = 1;
995 for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
996 {
997 if (stab[TYPEOFF] == N_SO)
998 {
999 /* N_SO with null name indicates EOF */
1000 if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1001 continue;
1002
1003 /* if we did not see a function def, leave space for one. */
1004 if (saw_fun == 0)
1005 ++info->indextablesize;
1006
1007 saw_fun = 0;
1008
1009 /* two N_SO's in a row is a filename and directory. Skip */
1010 if (stab + STABSIZE < info->stabs + stabsize
1011 && *(stab + STABSIZE + TYPEOFF) == N_SO)
1012 {
1013 stab += STABSIZE;
1014 }
1015 }
1016 else if (stab[TYPEOFF] == N_FUN)
1017 {
1018 saw_fun = 1;
1019 ++info->indextablesize;
1020 }
1021 }
1022
1023 if (saw_fun == 0)
1024 ++info->indextablesize;
1025
1026 if (info->indextablesize == 0)
1027 return true;
1028 ++info->indextablesize;
1029
1030 info->indextable = ((struct indexentry *)
1031 bfd_alloc (abfd,
1032 (sizeof (struct indexentry)
1033 * info->indextablesize)));
1034 if (info->indextable == NULL)
1035 return false;
1036
1037 file_name = NULL;
1038 directory_name = NULL;
1039 saw_fun = 1;
1040
1041 for (i = 0, stroff = 0, stab = info->stabs, str = info->strs;
1042 i < info->indextablesize && stab < info->stabs + stabsize;
1043 stab += STABSIZE)
1044 {
1045 switch (stab[TYPEOFF])
1046 {
1047 case 0:
1048 /* This is the first entry in a compilation unit. */
1049 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1050 break;
1051 str += stroff;
1052 stroff = bfd_get_32 (abfd, stab + VALOFF);
1053 break;
1054
1055 case N_SO:
1056 /* The main file name. */
1057
1058 /* The following code creates a new indextable entry with
1059 a NULL function name if there were no N_FUNs in a file.
1060 Note that a N_SO without a file name is an EOF and
1061 there could be 2 N_SO following it with the new filename
1062 and directory. */
1063 if (saw_fun == 0)
1064 {
1065 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1066 info->indextable[i].stab = last_stab;
1067 info->indextable[i].str = str;
1068 info->indextable[i].directory_name = directory_name;
1069 info->indextable[i].file_name = file_name;
1070 info->indextable[i].function_name = NULL;
1071 ++i;
1072 }
1073 saw_fun = 0;
1074
1075 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1076 if (*file_name == '\0')
1077 {
1078 directory_name = NULL;
1079 file_name = NULL;
1080 saw_fun = 1;
1081 }
1082 else
1083 {
1084 last_stab = stab;
1085 if (stab + STABSIZE >= info->stabs + stabsize
1086 || *(stab + STABSIZE + TYPEOFF) != N_SO)
1087 {
1088 directory_name = NULL;
1089 }
1090 else
1091 {
1092 /* Two consecutive N_SOs are a directory and a
1093 file name. */
1094 stab += STABSIZE;
1095 directory_name = file_name;
1096 file_name = ((char *) str
1097 + bfd_get_32 (abfd, stab + STRDXOFF));
1098 }
1099 }
1100 break;
1101
1102 case N_SOL:
1103 /* The name of an include file. */
1104 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1105 break;
1106
1107 case N_FUN:
1108 /* A function name. */
1109 saw_fun = 1;
1110 name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1111
1112 if (*name == '\0')
1113 name = NULL;
1114
1115 function_name = name;
1116
1117 if (name == NULL)
1118 continue;
1119
1120 info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1121 info->indextable[i].stab = stab;
1122 info->indextable[i].str = str;
1123 info->indextable[i].directory_name = directory_name;
1124 info->indextable[i].file_name = file_name;
1125 info->indextable[i].function_name = function_name;
1126 ++i;
1127 break;
1128 }
1129 }
1130
1131 if (saw_fun == 0)
1132 {
1133 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1134 info->indextable[i].stab = last_stab;
1135 info->indextable[i].str = str;
1136 info->indextable[i].directory_name = directory_name;
1137 info->indextable[i].file_name = file_name;
1138 info->indextable[i].function_name = NULL;
1139 ++i;
1140 }
1141
1142 info->indextable[i].val = (bfd_vma) -1;
1143 info->indextable[i].stab = info->stabs + stabsize;
1144 info->indextable[i].str = str;
1145 info->indextable[i].directory_name = NULL;
1146 info->indextable[i].file_name = NULL;
1147 info->indextable[i].function_name = NULL;
1148 ++i;
1149
1150 info->indextablesize = i;
1151 qsort (info->indextable, i, sizeof (struct indexentry), cmpindexentry);
1152
1153 *pinfo = (PTR) info;
1154 }
1155
1156 /* We are passed a section relative offset. The offsets in the
1157 stabs information are absolute. */
1158 offset += bfd_get_section_vma (abfd, section);
1159
1160 #ifdef ENABLE_CACHING
1161 if (info->cached_indexentry != NULL
1162 && offset >= info->cached_offset
1163 && offset < (info->cached_indexentry + 1)->val)
1164 {
1165 stab = info->cached_stab;
1166 indexentry = info->cached_indexentry;
1167 file_name = info->cached_file_name;
1168 }
1169 else
1170 #endif
1171 {
1172 /* Cache non-existant or invalid. Do binary search on
1173 indextable. */
1174
1175 long low, high;
1176 long mid = -1;
1177
1178 indexentry = NULL;
1179
1180 low = 0;
1181 high = info->indextablesize - 1;
1182 while (low != high)
1183 {
1184 mid = (high + low) / 2;
1185 if (offset >= info->indextable[mid].val
1186 && offset < info->indextable[mid + 1].val)
1187 {
1188 indexentry = &info->indextable[mid];
1189 break;
1190 }
1191
1192 if (info->indextable[mid].val > offset)
1193 high = mid;
1194 else
1195 low = mid + 1;
1196 }
1197
1198 if (indexentry == NULL)
1199 return true;
1200
1201 stab = indexentry->stab + STABSIZE;
1202 file_name = indexentry->file_name;
1203 }
1204
1205 directory_name = indexentry->directory_name;
1206 str = indexentry->str;
1207
1208 for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1209 {
1210 boolean done;
1211 bfd_vma val;
1212
1213 done = false;
1214
1215 switch (stab[TYPEOFF])
1216 {
1217 case N_SOL:
1218 /* The name of an include file. */
1219 val = bfd_get_32 (abfd, stab + VALOFF);
1220 if (val <= offset)
1221 {
1222 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1223 *pline = 0;
1224 }
1225 break;
1226
1227 case N_SLINE:
1228 case N_DSLINE:
1229 case N_BSLINE:
1230 /* A line number. The value is relative to the start of the
1231 current function. */
1232 val = indexentry->val + bfd_get_32 (abfd, stab + VALOFF);
1233 if (val <= offset)
1234 {
1235 *pline = bfd_get_16 (abfd, stab + DESCOFF);
1236
1237 #ifdef ENABLE_CACHING
1238 info->cached_stab = stab;
1239 info->cached_offset = val;
1240 info->cached_file_name = file_name;
1241 info->cached_indexentry = indexentry;
1242 #endif
1243 }
1244 if (val > offset)
1245 done = true;
1246 break;
1247
1248 case N_FUN:
1249 case N_SO:
1250 done = true;
1251 break;
1252 }
1253
1254 if (done)
1255 break;
1256 }
1257
1258 *pfound = true;
1259
1260 if (IS_ABSOLUTE_PATH(file_name) || directory_name == NULL)
1261 *pfilename = file_name;
1262 else
1263 {
1264 size_t dirlen;
1265
1266 dirlen = strlen (directory_name);
1267 if (info->filename == NULL
1268 || strncmp (info->filename, directory_name, dirlen) != 0
1269 || strcmp (info->filename + dirlen, file_name) != 0)
1270 {
1271 if (info->filename != NULL)
1272 free (info->filename);
1273 info->filename = (char *) bfd_malloc (dirlen +
1274 strlen (file_name)
1275 + 1);
1276 if (info->filename == NULL)
1277 return false;
1278 strcpy (info->filename, directory_name);
1279 strcpy (info->filename + dirlen, file_name);
1280 }
1281
1282 *pfilename = info->filename;
1283 }
1284
1285 if (indexentry->function_name != NULL)
1286 {
1287 char *s;
1288
1289 /* This will typically be something like main:F(0,1), so we want
1290 to clobber the colon. It's OK to change the name, since the
1291 string is in our own local storage anyhow. */
1292
1293 s = strchr (indexentry->function_name, ':');
1294 if (s != NULL)
1295 *s = '\0';
1296
1297 *pfnname = indexentry->function_name;
1298 }
1299
1300 return true;
1301 }
This page took 0.057266 seconds and 4 git commands to generate.