* common/create-version.sh (date): Use "$", not "$$" in sed
[deliverable/binutils-gdb.git] / binutils / readelf.c
1 /* readelf.c -- display contents of an ELF format file
2 Copyright 1998-2013 Free Software Foundation, Inc.
3
4 Originally developed by Eric Youngdale <eric@andante.jic.com>
5 Modifications by Nick Clifton <nickc@redhat.com>
6
7 This file is part of GNU Binutils.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
22 02110-1301, USA. */
23 \f
24 /* The difference between readelf and objdump:
25
26 Both programs are capable of displaying the contents of ELF format files,
27 so why does the binutils project have two file dumpers ?
28
29 The reason is that objdump sees an ELF file through a BFD filter of the
30 world; if BFD has a bug where, say, it disagrees about a machine constant
31 in e_flags, then the odds are good that it will remain internally
32 consistent. The linker sees it the BFD way, objdump sees it the BFD way,
33 GAS sees it the BFD way. There was need for a tool to go find out what
34 the file actually says.
35
36 This is why the readelf program does not link against the BFD library - it
37 exists as an independent program to help verify the correct working of BFD.
38
39 There is also the case that readelf can provide more information about an
40 ELF file than is provided by objdump. In particular it can display DWARF
41 debugging information which (at the moment) objdump cannot. */
42 \f
43 #include "sysdep.h"
44 #include <assert.h>
45 #include <time.h>
46 #ifdef HAVE_ZLIB_H
47 #include <zlib.h>
48 #endif
49 #ifdef HAVE_WCHAR_H
50 #include <wchar.h>
51 #endif
52
53 #if __GNUC__ >= 2
54 /* Define BFD64 here, even if our default architecture is 32 bit ELF
55 as this will allow us to read in and parse 64bit and 32bit ELF files.
56 Only do this if we believe that the compiler can support a 64 bit
57 data type. For now we only rely on GCC being able to do this. */
58 #define BFD64
59 #endif
60
61 #include "bfd.h"
62 #include "bucomm.h"
63 #include "elfcomm.h"
64 #include "dwarf.h"
65
66 #include "elf/common.h"
67 #include "elf/external.h"
68 #include "elf/internal.h"
69
70
71 /* Included here, before RELOC_MACROS_GEN_FUNC is defined, so that
72 we can obtain the H8 reloc numbers. We need these for the
73 get_reloc_size() function. We include h8.h again after defining
74 RELOC_MACROS_GEN_FUNC so that we get the naming function as well. */
75
76 #include "elf/h8.h"
77 #undef _ELF_H8_H
78
79 /* Undo the effects of #including reloc-macros.h. */
80
81 #undef START_RELOC_NUMBERS
82 #undef RELOC_NUMBER
83 #undef FAKE_RELOC
84 #undef EMPTY_RELOC
85 #undef END_RELOC_NUMBERS
86 #undef _RELOC_MACROS_H
87
88 /* The following headers use the elf/reloc-macros.h file to
89 automatically generate relocation recognition functions
90 such as elf_mips_reloc_type() */
91
92 #define RELOC_MACROS_GEN_FUNC
93
94 #include "elf/aarch64.h"
95 #include "elf/alpha.h"
96 #include "elf/arc.h"
97 #include "elf/arm.h"
98 #include "elf/avr.h"
99 #include "elf/bfin.h"
100 #include "elf/cr16.h"
101 #include "elf/cris.h"
102 #include "elf/crx.h"
103 #include "elf/d10v.h"
104 #include "elf/d30v.h"
105 #include "elf/dlx.h"
106 #include "elf/epiphany.h"
107 #include "elf/fr30.h"
108 #include "elf/frv.h"
109 #include "elf/h8.h"
110 #include "elf/hppa.h"
111 #include "elf/i386.h"
112 #include "elf/i370.h"
113 #include "elf/i860.h"
114 #include "elf/i960.h"
115 #include "elf/ia64.h"
116 #include "elf/ip2k.h"
117 #include "elf/lm32.h"
118 #include "elf/iq2000.h"
119 #include "elf/m32c.h"
120 #include "elf/m32r.h"
121 #include "elf/m68k.h"
122 #include "elf/m68hc11.h"
123 #include "elf/mcore.h"
124 #include "elf/mep.h"
125 #include "elf/metag.h"
126 #include "elf/microblaze.h"
127 #include "elf/mips.h"
128 #include "elf/mmix.h"
129 #include "elf/mn10200.h"
130 #include "elf/mn10300.h"
131 #include "elf/moxie.h"
132 #include "elf/mt.h"
133 #include "elf/msp430.h"
134 #include "elf/nios2.h"
135 #include "elf/or32.h"
136 #include "elf/pj.h"
137 #include "elf/ppc.h"
138 #include "elf/ppc64.h"
139 #include "elf/rl78.h"
140 #include "elf/rx.h"
141 #include "elf/s390.h"
142 #include "elf/score.h"
143 #include "elf/sh.h"
144 #include "elf/sparc.h"
145 #include "elf/spu.h"
146 #include "elf/tic6x.h"
147 #include "elf/tilegx.h"
148 #include "elf/tilepro.h"
149 #include "elf/v850.h"
150 #include "elf/vax.h"
151 #include "elf/x86-64.h"
152 #include "elf/xc16x.h"
153 #include "elf/xgate.h"
154 #include "elf/xstormy16.h"
155 #include "elf/xtensa.h"
156
157 #include "getopt.h"
158 #include "libiberty.h"
159 #include "safe-ctype.h"
160 #include "filenames.h"
161
162 #ifndef offsetof
163 #define offsetof(TYPE, MEMBER) ((size_t) &(((TYPE *) 0)->MEMBER))
164 #endif
165
166 char * program_name = "readelf";
167 static long archive_file_offset;
168 static unsigned long archive_file_size;
169 static unsigned long dynamic_addr;
170 static bfd_size_type dynamic_size;
171 static unsigned int dynamic_nent;
172 static char * dynamic_strings;
173 static unsigned long dynamic_strings_length;
174 static char * string_table;
175 static unsigned long string_table_length;
176 static unsigned long num_dynamic_syms;
177 static Elf_Internal_Sym * dynamic_symbols;
178 static Elf_Internal_Syminfo * dynamic_syminfo;
179 static unsigned long dynamic_syminfo_offset;
180 static unsigned int dynamic_syminfo_nent;
181 static char program_interpreter[PATH_MAX];
182 static bfd_vma dynamic_info[DT_ENCODING];
183 static bfd_vma dynamic_info_DT_GNU_HASH;
184 static bfd_vma version_info[16];
185 static Elf_Internal_Ehdr elf_header;
186 static Elf_Internal_Shdr * section_headers;
187 static Elf_Internal_Phdr * program_headers;
188 static Elf_Internal_Dyn * dynamic_section;
189 static Elf_Internal_Shdr * symtab_shndx_hdr;
190 static int show_name;
191 static int do_dynamic;
192 static int do_syms;
193 static int do_dyn_syms;
194 static int do_reloc;
195 static int do_sections;
196 static int do_section_groups;
197 static int do_section_details;
198 static int do_segments;
199 static int do_unwind;
200 static int do_using_dynamic;
201 static int do_header;
202 static int do_dump;
203 static int do_version;
204 static int do_histogram;
205 static int do_debugging;
206 static int do_arch;
207 static int do_notes;
208 static int do_archive_index;
209 static int is_32bit_elf;
210
211 struct group_list
212 {
213 struct group_list * next;
214 unsigned int section_index;
215 };
216
217 struct group
218 {
219 struct group_list * root;
220 unsigned int group_index;
221 };
222
223 static size_t group_count;
224 static struct group * section_groups;
225 static struct group ** section_headers_groups;
226
227
228 /* Flag bits indicating particular types of dump. */
229 #define HEX_DUMP (1 << 0) /* The -x command line switch. */
230 #define DISASS_DUMP (1 << 1) /* The -i command line switch. */
231 #define DEBUG_DUMP (1 << 2) /* The -w command line switch. */
232 #define STRING_DUMP (1 << 3) /* The -p command line switch. */
233 #define RELOC_DUMP (1 << 4) /* The -R command line switch. */
234
235 typedef unsigned char dump_type;
236
237 /* A linked list of the section names for which dumps were requested. */
238 struct dump_list_entry
239 {
240 char * name;
241 dump_type type;
242 struct dump_list_entry * next;
243 };
244 static struct dump_list_entry * dump_sects_byname;
245
246 /* A dynamic array of flags indicating for which sections a dump
247 has been requested via command line switches. */
248 static dump_type * cmdline_dump_sects = NULL;
249 static unsigned int num_cmdline_dump_sects = 0;
250
251 /* A dynamic array of flags indicating for which sections a dump of
252 some kind has been requested. It is reset on a per-object file
253 basis and then initialised from the cmdline_dump_sects array,
254 the results of interpreting the -w switch, and the
255 dump_sects_byname list. */
256 static dump_type * dump_sects = NULL;
257 static unsigned int num_dump_sects = 0;
258
259
260 /* How to print a vma value. */
261 typedef enum print_mode
262 {
263 HEX,
264 DEC,
265 DEC_5,
266 UNSIGNED,
267 PREFIX_HEX,
268 FULL_HEX,
269 LONG_HEX
270 }
271 print_mode;
272
273 #define UNKNOWN -1
274
275 #define SECTION_NAME(X) \
276 ((X) == NULL ? _("<none>") \
277 : string_table == NULL ? _("<no-name>") \
278 : ((X)->sh_name >= string_table_length ? _("<corrupt>") \
279 : string_table + (X)->sh_name))
280
281 #define DT_VERSIONTAGIDX(tag) (DT_VERNEEDNUM - (tag)) /* Reverse order! */
282
283 #define GET_ELF_SYMBOLS(file, section, sym_count) \
284 (is_32bit_elf ? get_32bit_elf_symbols (file, section, sym_count) \
285 : get_64bit_elf_symbols (file, section, sym_count))
286
287 #define VALID_DYNAMIC_NAME(offset) ((dynamic_strings != NULL) && (offset < dynamic_strings_length))
288 /* GET_DYNAMIC_NAME asssumes that VALID_DYNAMIC_NAME has
289 already been called and verified that the string exists. */
290 #define GET_DYNAMIC_NAME(offset) (dynamic_strings + offset)
291
292 #define REMOVE_ARCH_BITS(ADDR) \
293 do \
294 { \
295 if (elf_header.e_machine == EM_ARM) \
296 (ADDR) &= ~1; \
297 } \
298 while (0)
299 \f
300 /* Retrieve NMEMB structures, each SIZE bytes long from FILE starting at OFFSET.
301 Put the retrieved data into VAR, if it is not NULL. Otherwise allocate a buffer
302 using malloc and fill that. In either case return the pointer to the start of
303 the retrieved data or NULL if something went wrong. If something does go wrong
304 emit an error message using REASON as part of the context. */
305
306 static void *
307 get_data (void * var, FILE * file, long offset, size_t size, size_t nmemb,
308 const char * reason)
309 {
310 void * mvar;
311
312 if (size == 0 || nmemb == 0)
313 return NULL;
314
315 if (fseek (file, archive_file_offset + offset, SEEK_SET))
316 {
317 error (_("Unable to seek to 0x%lx for %s\n"),
318 (unsigned long) archive_file_offset + offset, reason);
319 return NULL;
320 }
321
322 mvar = var;
323 if (mvar == NULL)
324 {
325 /* Check for overflow. */
326 if (nmemb < (~(size_t) 0 - 1) / size)
327 /* + 1 so that we can '\0' terminate invalid string table sections. */
328 mvar = malloc (size * nmemb + 1);
329
330 if (mvar == NULL)
331 {
332 error (_("Out of memory allocating 0x%lx bytes for %s\n"),
333 (unsigned long)(size * nmemb), reason);
334 return NULL;
335 }
336
337 ((char *) mvar)[size * nmemb] = '\0';
338 }
339
340 if (fread (mvar, size, nmemb, file) != nmemb)
341 {
342 error (_("Unable to read in 0x%lx bytes of %s\n"),
343 (unsigned long)(size * nmemb), reason);
344 if (mvar != var)
345 free (mvar);
346 return NULL;
347 }
348
349 return mvar;
350 }
351
352 /* Print a VMA value. */
353
354 static int
355 print_vma (bfd_vma vma, print_mode mode)
356 {
357 int nc = 0;
358
359 switch (mode)
360 {
361 case FULL_HEX:
362 nc = printf ("0x");
363 /* Drop through. */
364
365 case LONG_HEX:
366 #ifdef BFD64
367 if (is_32bit_elf)
368 return nc + printf ("%8.8" BFD_VMA_FMT "x", vma);
369 #endif
370 printf_vma (vma);
371 return nc + 16;
372
373 case DEC_5:
374 if (vma <= 99999)
375 return printf ("%5" BFD_VMA_FMT "d", vma);
376 /* Drop through. */
377
378 case PREFIX_HEX:
379 nc = printf ("0x");
380 /* Drop through. */
381
382 case HEX:
383 return nc + printf ("%" BFD_VMA_FMT "x", vma);
384
385 case DEC:
386 return printf ("%" BFD_VMA_FMT "d", vma);
387
388 case UNSIGNED:
389 return printf ("%" BFD_VMA_FMT "u", vma);
390 }
391 return 0;
392 }
393
394 /* Display a symbol on stdout. Handles the display of control characters and
395 multibye characters (assuming the host environment supports them).
396
397 Display at most abs(WIDTH) characters, truncating as necessary, unless do_wide is true.
398
399 If WIDTH is negative then ensure that the output is at least (- WIDTH) characters,
400 padding as necessary.
401
402 Returns the number of emitted characters. */
403
404 static unsigned int
405 print_symbol (int width, const char *symbol)
406 {
407 bfd_boolean extra_padding = FALSE;
408 int num_printed = 0;
409 #ifdef HAVE_MBSTATE_T
410 mbstate_t state;
411 #endif
412 int width_remaining;
413
414 if (width < 0)
415 {
416 /* Keep the width positive. This also helps. */
417 width = - width;
418 extra_padding = TRUE;
419 }
420
421 if (do_wide)
422 /* Set the remaining width to a very large value.
423 This simplifies the code below. */
424 width_remaining = INT_MAX;
425 else
426 width_remaining = width;
427
428 #ifdef HAVE_MBSTATE_T
429 /* Initialise the multibyte conversion state. */
430 memset (& state, 0, sizeof (state));
431 #endif
432
433 while (width_remaining)
434 {
435 size_t n;
436 const char c = *symbol++;
437
438 if (c == 0)
439 break;
440
441 /* Do not print control characters directly as they can affect terminal
442 settings. Such characters usually appear in the names generated
443 by the assembler for local labels. */
444 if (ISCNTRL (c))
445 {
446 if (width_remaining < 2)
447 break;
448
449 printf ("^%c", c + 0x40);
450 width_remaining -= 2;
451 num_printed += 2;
452 }
453 else if (ISPRINT (c))
454 {
455 putchar (c);
456 width_remaining --;
457 num_printed ++;
458 }
459 else
460 {
461 #ifdef HAVE_MBSTATE_T
462 wchar_t w;
463 #endif
464 /* Let printf do the hard work of displaying multibyte characters. */
465 printf ("%.1s", symbol - 1);
466 width_remaining --;
467 num_printed ++;
468
469 #ifdef HAVE_MBSTATE_T
470 /* Try to find out how many bytes made up the character that was
471 just printed. Advance the symbol pointer past the bytes that
472 were displayed. */
473 n = mbrtowc (& w, symbol - 1, MB_CUR_MAX, & state);
474 #else
475 n = 1;
476 #endif
477 if (n != (size_t) -1 && n != (size_t) -2 && n > 0)
478 symbol += (n - 1);
479 }
480 }
481
482 if (extra_padding && num_printed < width)
483 {
484 /* Fill in the remaining spaces. */
485 printf ("%-*s", width - num_printed, " ");
486 num_printed = width;
487 }
488
489 return num_printed;
490 }
491
492 /* Return a pointer to section NAME, or NULL if no such section exists. */
493
494 static Elf_Internal_Shdr *
495 find_section (const char * name)
496 {
497 unsigned int i;
498
499 for (i = 0; i < elf_header.e_shnum; i++)
500 if (streq (SECTION_NAME (section_headers + i), name))
501 return section_headers + i;
502
503 return NULL;
504 }
505
506 /* Return a pointer to a section containing ADDR, or NULL if no such
507 section exists. */
508
509 static Elf_Internal_Shdr *
510 find_section_by_address (bfd_vma addr)
511 {
512 unsigned int i;
513
514 for (i = 0; i < elf_header.e_shnum; i++)
515 {
516 Elf_Internal_Shdr *sec = section_headers + i;
517 if (addr >= sec->sh_addr && addr < sec->sh_addr + sec->sh_size)
518 return sec;
519 }
520
521 return NULL;
522 }
523
524 /* Return a pointer to section NAME, or NULL if no such section exists,
525 restricted to the list of sections given in SET. */
526
527 static Elf_Internal_Shdr *
528 find_section_in_set (const char * name, unsigned int * set)
529 {
530 unsigned int i;
531
532 if (set != NULL)
533 {
534 while ((i = *set++) > 0)
535 if (streq (SECTION_NAME (section_headers + i), name))
536 return section_headers + i;
537 }
538
539 return find_section (name);
540 }
541
542 /* Read an unsigned LEB128 encoded value from p. Set *PLEN to the number of
543 bytes read. */
544
545 static inline unsigned long
546 read_uleb128 (unsigned char *data,
547 unsigned int *length_return,
548 const unsigned char * const end)
549 {
550 return read_leb128 (data, length_return, FALSE, end);
551 }
552
553 /* Return true if the current file is for IA-64 machine and OpenVMS ABI.
554 This OS has so many departures from the ELF standard that we test it at
555 many places. */
556
557 static inline int
558 is_ia64_vms (void)
559 {
560 return elf_header.e_machine == EM_IA_64
561 && elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS;
562 }
563
564 /* Guess the relocation size commonly used by the specific machines. */
565
566 static int
567 guess_is_rela (unsigned int e_machine)
568 {
569 switch (e_machine)
570 {
571 /* Targets that use REL relocations. */
572 case EM_386:
573 case EM_486:
574 case EM_960:
575 case EM_ARM:
576 case EM_D10V:
577 case EM_CYGNUS_D10V:
578 case EM_DLX:
579 case EM_MIPS:
580 case EM_MIPS_RS3_LE:
581 case EM_CYGNUS_M32R:
582 case EM_OPENRISC:
583 case EM_OR32:
584 case EM_SCORE:
585 case EM_XGATE:
586 return FALSE;
587
588 /* Targets that use RELA relocations. */
589 case EM_68K:
590 case EM_860:
591 case EM_AARCH64:
592 case EM_ADAPTEVA_EPIPHANY:
593 case EM_ALPHA:
594 case EM_ALTERA_NIOS2:
595 case EM_AVR:
596 case EM_AVR_OLD:
597 case EM_BLACKFIN:
598 case EM_CR16:
599 case EM_CRIS:
600 case EM_CRX:
601 case EM_D30V:
602 case EM_CYGNUS_D30V:
603 case EM_FR30:
604 case EM_CYGNUS_FR30:
605 case EM_CYGNUS_FRV:
606 case EM_H8S:
607 case EM_H8_300:
608 case EM_H8_300H:
609 case EM_IA_64:
610 case EM_IP2K:
611 case EM_IP2K_OLD:
612 case EM_IQ2000:
613 case EM_LATTICEMICO32:
614 case EM_M32C_OLD:
615 case EM_M32C:
616 case EM_M32R:
617 case EM_MCORE:
618 case EM_CYGNUS_MEP:
619 case EM_METAG:
620 case EM_MMIX:
621 case EM_MN10200:
622 case EM_CYGNUS_MN10200:
623 case EM_MN10300:
624 case EM_CYGNUS_MN10300:
625 case EM_MOXIE:
626 case EM_MSP430:
627 case EM_MSP430_OLD:
628 case EM_MT:
629 case EM_NIOS32:
630 case EM_PPC64:
631 case EM_PPC:
632 case EM_RL78:
633 case EM_RX:
634 case EM_S390:
635 case EM_S390_OLD:
636 case EM_SH:
637 case EM_SPARC:
638 case EM_SPARC32PLUS:
639 case EM_SPARCV9:
640 case EM_SPU:
641 case EM_TI_C6000:
642 case EM_TILEGX:
643 case EM_TILEPRO:
644 case EM_V800:
645 case EM_V850:
646 case EM_CYGNUS_V850:
647 case EM_VAX:
648 case EM_X86_64:
649 case EM_L1OM:
650 case EM_K1OM:
651 case EM_XSTORMY16:
652 case EM_XTENSA:
653 case EM_XTENSA_OLD:
654 case EM_MICROBLAZE:
655 case EM_MICROBLAZE_OLD:
656 return TRUE;
657
658 case EM_68HC05:
659 case EM_68HC08:
660 case EM_68HC11:
661 case EM_68HC16:
662 case EM_FX66:
663 case EM_ME16:
664 case EM_MMA:
665 case EM_NCPU:
666 case EM_NDR1:
667 case EM_PCP:
668 case EM_ST100:
669 case EM_ST19:
670 case EM_ST7:
671 case EM_ST9PLUS:
672 case EM_STARCORE:
673 case EM_SVX:
674 case EM_TINYJ:
675 default:
676 warn (_("Don't know about relocations on this machine architecture\n"));
677 return FALSE;
678 }
679 }
680
681 static int
682 slurp_rela_relocs (FILE * file,
683 unsigned long rel_offset,
684 unsigned long rel_size,
685 Elf_Internal_Rela ** relasp,
686 unsigned long * nrelasp)
687 {
688 Elf_Internal_Rela * relas;
689 unsigned long nrelas;
690 unsigned int i;
691
692 if (is_32bit_elf)
693 {
694 Elf32_External_Rela * erelas;
695
696 erelas = (Elf32_External_Rela *) get_data (NULL, file, rel_offset, 1,
697 rel_size, _("32-bit relocation data"));
698 if (!erelas)
699 return 0;
700
701 nrelas = rel_size / sizeof (Elf32_External_Rela);
702
703 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
704 sizeof (Elf_Internal_Rela));
705
706 if (relas == NULL)
707 {
708 free (erelas);
709 error (_("out of memory parsing relocs\n"));
710 return 0;
711 }
712
713 for (i = 0; i < nrelas; i++)
714 {
715 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
716 relas[i].r_info = BYTE_GET (erelas[i].r_info);
717 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
718 }
719
720 free (erelas);
721 }
722 else
723 {
724 Elf64_External_Rela * erelas;
725
726 erelas = (Elf64_External_Rela *) get_data (NULL, file, rel_offset, 1,
727 rel_size, _("64-bit relocation data"));
728 if (!erelas)
729 return 0;
730
731 nrelas = rel_size / sizeof (Elf64_External_Rela);
732
733 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
734 sizeof (Elf_Internal_Rela));
735
736 if (relas == NULL)
737 {
738 free (erelas);
739 error (_("out of memory parsing relocs\n"));
740 return 0;
741 }
742
743 for (i = 0; i < nrelas; i++)
744 {
745 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
746 relas[i].r_info = BYTE_GET (erelas[i].r_info);
747 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
748
749 /* The #ifdef BFD64 below is to prevent a compile time
750 warning. We know that if we do not have a 64 bit data
751 type that we will never execute this code anyway. */
752 #ifdef BFD64
753 if (elf_header.e_machine == EM_MIPS
754 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
755 {
756 /* In little-endian objects, r_info isn't really a
757 64-bit little-endian value: it has a 32-bit
758 little-endian symbol index followed by four
759 individual byte fields. Reorder INFO
760 accordingly. */
761 bfd_vma inf = relas[i].r_info;
762 inf = (((inf & 0xffffffff) << 32)
763 | ((inf >> 56) & 0xff)
764 | ((inf >> 40) & 0xff00)
765 | ((inf >> 24) & 0xff0000)
766 | ((inf >> 8) & 0xff000000));
767 relas[i].r_info = inf;
768 }
769 #endif /* BFD64 */
770 }
771
772 free (erelas);
773 }
774 *relasp = relas;
775 *nrelasp = nrelas;
776 return 1;
777 }
778
779 static int
780 slurp_rel_relocs (FILE * file,
781 unsigned long rel_offset,
782 unsigned long rel_size,
783 Elf_Internal_Rela ** relsp,
784 unsigned long * nrelsp)
785 {
786 Elf_Internal_Rela * rels;
787 unsigned long nrels;
788 unsigned int i;
789
790 if (is_32bit_elf)
791 {
792 Elf32_External_Rel * erels;
793
794 erels = (Elf32_External_Rel *) get_data (NULL, file, rel_offset, 1,
795 rel_size, _("32-bit relocation data"));
796 if (!erels)
797 return 0;
798
799 nrels = rel_size / sizeof (Elf32_External_Rel);
800
801 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
802
803 if (rels == NULL)
804 {
805 free (erels);
806 error (_("out of memory parsing relocs\n"));
807 return 0;
808 }
809
810 for (i = 0; i < nrels; i++)
811 {
812 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
813 rels[i].r_info = BYTE_GET (erels[i].r_info);
814 rels[i].r_addend = 0;
815 }
816
817 free (erels);
818 }
819 else
820 {
821 Elf64_External_Rel * erels;
822
823 erels = (Elf64_External_Rel *) get_data (NULL, file, rel_offset, 1,
824 rel_size, _("64-bit relocation data"));
825 if (!erels)
826 return 0;
827
828 nrels = rel_size / sizeof (Elf64_External_Rel);
829
830 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
831
832 if (rels == NULL)
833 {
834 free (erels);
835 error (_("out of memory parsing relocs\n"));
836 return 0;
837 }
838
839 for (i = 0; i < nrels; i++)
840 {
841 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
842 rels[i].r_info = BYTE_GET (erels[i].r_info);
843 rels[i].r_addend = 0;
844
845 /* The #ifdef BFD64 below is to prevent a compile time
846 warning. We know that if we do not have a 64 bit data
847 type that we will never execute this code anyway. */
848 #ifdef BFD64
849 if (elf_header.e_machine == EM_MIPS
850 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
851 {
852 /* In little-endian objects, r_info isn't really a
853 64-bit little-endian value: it has a 32-bit
854 little-endian symbol index followed by four
855 individual byte fields. Reorder INFO
856 accordingly. */
857 bfd_vma inf = rels[i].r_info;
858 inf = (((inf & 0xffffffff) << 32)
859 | ((inf >> 56) & 0xff)
860 | ((inf >> 40) & 0xff00)
861 | ((inf >> 24) & 0xff0000)
862 | ((inf >> 8) & 0xff000000));
863 rels[i].r_info = inf;
864 }
865 #endif /* BFD64 */
866 }
867
868 free (erels);
869 }
870 *relsp = rels;
871 *nrelsp = nrels;
872 return 1;
873 }
874
875 /* Returns the reloc type extracted from the reloc info field. */
876
877 static unsigned int
878 get_reloc_type (bfd_vma reloc_info)
879 {
880 if (is_32bit_elf)
881 return ELF32_R_TYPE (reloc_info);
882
883 switch (elf_header.e_machine)
884 {
885 case EM_MIPS:
886 /* Note: We assume that reloc_info has already been adjusted for us. */
887 return ELF64_MIPS_R_TYPE (reloc_info);
888
889 case EM_SPARCV9:
890 return ELF64_R_TYPE_ID (reloc_info);
891
892 default:
893 return ELF64_R_TYPE (reloc_info);
894 }
895 }
896
897 /* Return the symbol index extracted from the reloc info field. */
898
899 static bfd_vma
900 get_reloc_symindex (bfd_vma reloc_info)
901 {
902 return is_32bit_elf ? ELF32_R_SYM (reloc_info) : ELF64_R_SYM (reloc_info);
903 }
904
905 static inline bfd_boolean
906 uses_msp430x_relocs (void)
907 {
908 return
909 elf_header.e_machine == EM_MSP430 /* Paranoia. */
910 /* GCC uses osabi == ELFOSBI_STANDALONE. */
911 && (((elf_header.e_flags & EF_MSP430_MACH) == E_MSP430_MACH_MSP430X)
912 /* TI compiler uses ELFOSABI_NONE. */
913 || (elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE));
914 }
915
916 /* Display the contents of the relocation data found at the specified
917 offset. */
918
919 static void
920 dump_relocations (FILE * file,
921 unsigned long rel_offset,
922 unsigned long rel_size,
923 Elf_Internal_Sym * symtab,
924 unsigned long nsyms,
925 char * strtab,
926 unsigned long strtablen,
927 int is_rela)
928 {
929 unsigned int i;
930 Elf_Internal_Rela * rels;
931
932 if (is_rela == UNKNOWN)
933 is_rela = guess_is_rela (elf_header.e_machine);
934
935 if (is_rela)
936 {
937 if (!slurp_rela_relocs (file, rel_offset, rel_size, &rels, &rel_size))
938 return;
939 }
940 else
941 {
942 if (!slurp_rel_relocs (file, rel_offset, rel_size, &rels, &rel_size))
943 return;
944 }
945
946 if (is_32bit_elf)
947 {
948 if (is_rela)
949 {
950 if (do_wide)
951 printf (_(" Offset Info Type Sym. Value Symbol's Name + Addend\n"));
952 else
953 printf (_(" Offset Info Type Sym.Value Sym. Name + Addend\n"));
954 }
955 else
956 {
957 if (do_wide)
958 printf (_(" Offset Info Type Sym. Value Symbol's Name\n"));
959 else
960 printf (_(" Offset Info Type Sym.Value Sym. Name\n"));
961 }
962 }
963 else
964 {
965 if (is_rela)
966 {
967 if (do_wide)
968 printf (_(" Offset Info Type Symbol's Value Symbol's Name + Addend\n"));
969 else
970 printf (_(" Offset Info Type Sym. Value Sym. Name + Addend\n"));
971 }
972 else
973 {
974 if (do_wide)
975 printf (_(" Offset Info Type Symbol's Value Symbol's Name\n"));
976 else
977 printf (_(" Offset Info Type Sym. Value Sym. Name\n"));
978 }
979 }
980
981 for (i = 0; i < rel_size; i++)
982 {
983 const char * rtype;
984 bfd_vma offset;
985 bfd_vma inf;
986 bfd_vma symtab_index;
987 bfd_vma type;
988
989 offset = rels[i].r_offset;
990 inf = rels[i].r_info;
991
992 type = get_reloc_type (inf);
993 symtab_index = get_reloc_symindex (inf);
994
995 if (is_32bit_elf)
996 {
997 printf ("%8.8lx %8.8lx ",
998 (unsigned long) offset & 0xffffffff,
999 (unsigned long) inf & 0xffffffff);
1000 }
1001 else
1002 {
1003 #if BFD_HOST_64BIT_LONG
1004 printf (do_wide
1005 ? "%16.16lx %16.16lx "
1006 : "%12.12lx %12.12lx ",
1007 offset, inf);
1008 #elif BFD_HOST_64BIT_LONG_LONG
1009 #ifndef __MSVCRT__
1010 printf (do_wide
1011 ? "%16.16llx %16.16llx "
1012 : "%12.12llx %12.12llx ",
1013 offset, inf);
1014 #else
1015 printf (do_wide
1016 ? "%16.16I64x %16.16I64x "
1017 : "%12.12I64x %12.12I64x ",
1018 offset, inf);
1019 #endif
1020 #else
1021 printf (do_wide
1022 ? "%8.8lx%8.8lx %8.8lx%8.8lx "
1023 : "%4.4lx%8.8lx %4.4lx%8.8lx ",
1024 _bfd_int64_high (offset),
1025 _bfd_int64_low (offset),
1026 _bfd_int64_high (inf),
1027 _bfd_int64_low (inf));
1028 #endif
1029 }
1030
1031 switch (elf_header.e_machine)
1032 {
1033 default:
1034 rtype = NULL;
1035 break;
1036
1037 case EM_AARCH64:
1038 rtype = elf_aarch64_reloc_type (type);
1039 break;
1040
1041 case EM_M32R:
1042 case EM_CYGNUS_M32R:
1043 rtype = elf_m32r_reloc_type (type);
1044 break;
1045
1046 case EM_386:
1047 case EM_486:
1048 rtype = elf_i386_reloc_type (type);
1049 break;
1050
1051 case EM_68HC11:
1052 case EM_68HC12:
1053 rtype = elf_m68hc11_reloc_type (type);
1054 break;
1055
1056 case EM_68K:
1057 rtype = elf_m68k_reloc_type (type);
1058 break;
1059
1060 case EM_960:
1061 rtype = elf_i960_reloc_type (type);
1062 break;
1063
1064 case EM_AVR:
1065 case EM_AVR_OLD:
1066 rtype = elf_avr_reloc_type (type);
1067 break;
1068
1069 case EM_OLD_SPARCV9:
1070 case EM_SPARC32PLUS:
1071 case EM_SPARCV9:
1072 case EM_SPARC:
1073 rtype = elf_sparc_reloc_type (type);
1074 break;
1075
1076 case EM_SPU:
1077 rtype = elf_spu_reloc_type (type);
1078 break;
1079
1080 case EM_V800:
1081 rtype = v800_reloc_type (type);
1082 break;
1083 case EM_V850:
1084 case EM_CYGNUS_V850:
1085 rtype = v850_reloc_type (type);
1086 break;
1087
1088 case EM_D10V:
1089 case EM_CYGNUS_D10V:
1090 rtype = elf_d10v_reloc_type (type);
1091 break;
1092
1093 case EM_D30V:
1094 case EM_CYGNUS_D30V:
1095 rtype = elf_d30v_reloc_type (type);
1096 break;
1097
1098 case EM_DLX:
1099 rtype = elf_dlx_reloc_type (type);
1100 break;
1101
1102 case EM_SH:
1103 rtype = elf_sh_reloc_type (type);
1104 break;
1105
1106 case EM_MN10300:
1107 case EM_CYGNUS_MN10300:
1108 rtype = elf_mn10300_reloc_type (type);
1109 break;
1110
1111 case EM_MN10200:
1112 case EM_CYGNUS_MN10200:
1113 rtype = elf_mn10200_reloc_type (type);
1114 break;
1115
1116 case EM_FR30:
1117 case EM_CYGNUS_FR30:
1118 rtype = elf_fr30_reloc_type (type);
1119 break;
1120
1121 case EM_CYGNUS_FRV:
1122 rtype = elf_frv_reloc_type (type);
1123 break;
1124
1125 case EM_MCORE:
1126 rtype = elf_mcore_reloc_type (type);
1127 break;
1128
1129 case EM_MMIX:
1130 rtype = elf_mmix_reloc_type (type);
1131 break;
1132
1133 case EM_MOXIE:
1134 rtype = elf_moxie_reloc_type (type);
1135 break;
1136
1137 case EM_MSP430:
1138 if (uses_msp430x_relocs ())
1139 {
1140 rtype = elf_msp430x_reloc_type (type);
1141 break;
1142 }
1143 case EM_MSP430_OLD:
1144 rtype = elf_msp430_reloc_type (type);
1145 break;
1146
1147 case EM_PPC:
1148 rtype = elf_ppc_reloc_type (type);
1149 break;
1150
1151 case EM_PPC64:
1152 rtype = elf_ppc64_reloc_type (type);
1153 break;
1154
1155 case EM_MIPS:
1156 case EM_MIPS_RS3_LE:
1157 rtype = elf_mips_reloc_type (type);
1158 break;
1159
1160 case EM_ALPHA:
1161 rtype = elf_alpha_reloc_type (type);
1162 break;
1163
1164 case EM_ARM:
1165 rtype = elf_arm_reloc_type (type);
1166 break;
1167
1168 case EM_ARC:
1169 rtype = elf_arc_reloc_type (type);
1170 break;
1171
1172 case EM_PARISC:
1173 rtype = elf_hppa_reloc_type (type);
1174 break;
1175
1176 case EM_H8_300:
1177 case EM_H8_300H:
1178 case EM_H8S:
1179 rtype = elf_h8_reloc_type (type);
1180 break;
1181
1182 case EM_OPENRISC:
1183 case EM_OR32:
1184 rtype = elf_or32_reloc_type (type);
1185 break;
1186
1187 case EM_PJ:
1188 case EM_PJ_OLD:
1189 rtype = elf_pj_reloc_type (type);
1190 break;
1191 case EM_IA_64:
1192 rtype = elf_ia64_reloc_type (type);
1193 break;
1194
1195 case EM_CRIS:
1196 rtype = elf_cris_reloc_type (type);
1197 break;
1198
1199 case EM_860:
1200 rtype = elf_i860_reloc_type (type);
1201 break;
1202
1203 case EM_X86_64:
1204 case EM_L1OM:
1205 case EM_K1OM:
1206 rtype = elf_x86_64_reloc_type (type);
1207 break;
1208
1209 case EM_S370:
1210 rtype = i370_reloc_type (type);
1211 break;
1212
1213 case EM_S390_OLD:
1214 case EM_S390:
1215 rtype = elf_s390_reloc_type (type);
1216 break;
1217
1218 case EM_SCORE:
1219 rtype = elf_score_reloc_type (type);
1220 break;
1221
1222 case EM_XSTORMY16:
1223 rtype = elf_xstormy16_reloc_type (type);
1224 break;
1225
1226 case EM_CRX:
1227 rtype = elf_crx_reloc_type (type);
1228 break;
1229
1230 case EM_VAX:
1231 rtype = elf_vax_reloc_type (type);
1232 break;
1233
1234 case EM_ADAPTEVA_EPIPHANY:
1235 rtype = elf_epiphany_reloc_type (type);
1236 break;
1237
1238 case EM_IP2K:
1239 case EM_IP2K_OLD:
1240 rtype = elf_ip2k_reloc_type (type);
1241 break;
1242
1243 case EM_IQ2000:
1244 rtype = elf_iq2000_reloc_type (type);
1245 break;
1246
1247 case EM_XTENSA_OLD:
1248 case EM_XTENSA:
1249 rtype = elf_xtensa_reloc_type (type);
1250 break;
1251
1252 case EM_LATTICEMICO32:
1253 rtype = elf_lm32_reloc_type (type);
1254 break;
1255
1256 case EM_M32C_OLD:
1257 case EM_M32C:
1258 rtype = elf_m32c_reloc_type (type);
1259 break;
1260
1261 case EM_MT:
1262 rtype = elf_mt_reloc_type (type);
1263 break;
1264
1265 case EM_BLACKFIN:
1266 rtype = elf_bfin_reloc_type (type);
1267 break;
1268
1269 case EM_CYGNUS_MEP:
1270 rtype = elf_mep_reloc_type (type);
1271 break;
1272
1273 case EM_CR16:
1274 rtype = elf_cr16_reloc_type (type);
1275 break;
1276
1277 case EM_MICROBLAZE:
1278 case EM_MICROBLAZE_OLD:
1279 rtype = elf_microblaze_reloc_type (type);
1280 break;
1281
1282 case EM_RL78:
1283 rtype = elf_rl78_reloc_type (type);
1284 break;
1285
1286 case EM_RX:
1287 rtype = elf_rx_reloc_type (type);
1288 break;
1289
1290 case EM_METAG:
1291 rtype = elf_metag_reloc_type (type);
1292 break;
1293
1294 case EM_XC16X:
1295 case EM_C166:
1296 rtype = elf_xc16x_reloc_type (type);
1297 break;
1298
1299 case EM_TI_C6000:
1300 rtype = elf_tic6x_reloc_type (type);
1301 break;
1302
1303 case EM_TILEGX:
1304 rtype = elf_tilegx_reloc_type (type);
1305 break;
1306
1307 case EM_TILEPRO:
1308 rtype = elf_tilepro_reloc_type (type);
1309 break;
1310
1311 case EM_XGATE:
1312 rtype = elf_xgate_reloc_type (type);
1313 break;
1314
1315 case EM_ALTERA_NIOS2:
1316 rtype = elf_nios2_reloc_type (type);
1317 break;
1318 }
1319
1320 if (rtype == NULL)
1321 printf (_("unrecognized: %-7lx"), (unsigned long) type & 0xffffffff);
1322 else
1323 printf (do_wide ? "%-22.22s" : "%-17.17s", rtype);
1324
1325 if (elf_header.e_machine == EM_ALPHA
1326 && rtype != NULL
1327 && streq (rtype, "R_ALPHA_LITUSE")
1328 && is_rela)
1329 {
1330 switch (rels[i].r_addend)
1331 {
1332 case LITUSE_ALPHA_ADDR: rtype = "ADDR"; break;
1333 case LITUSE_ALPHA_BASE: rtype = "BASE"; break;
1334 case LITUSE_ALPHA_BYTOFF: rtype = "BYTOFF"; break;
1335 case LITUSE_ALPHA_JSR: rtype = "JSR"; break;
1336 case LITUSE_ALPHA_TLSGD: rtype = "TLSGD"; break;
1337 case LITUSE_ALPHA_TLSLDM: rtype = "TLSLDM"; break;
1338 case LITUSE_ALPHA_JSRDIRECT: rtype = "JSRDIRECT"; break;
1339 default: rtype = NULL;
1340 }
1341 if (rtype)
1342 printf (" (%s)", rtype);
1343 else
1344 {
1345 putchar (' ');
1346 printf (_("<unknown addend: %lx>"),
1347 (unsigned long) rels[i].r_addend);
1348 }
1349 }
1350 else if (symtab_index)
1351 {
1352 if (symtab == NULL || symtab_index >= nsyms)
1353 printf (_(" bad symbol index: %08lx"), (unsigned long) symtab_index);
1354 else
1355 {
1356 Elf_Internal_Sym * psym;
1357
1358 psym = symtab + symtab_index;
1359
1360 printf (" ");
1361
1362 if (ELF_ST_TYPE (psym->st_info) == STT_GNU_IFUNC)
1363 {
1364 const char * name;
1365 unsigned int len;
1366 unsigned int width = is_32bit_elf ? 8 : 14;
1367
1368 /* Relocations against GNU_IFUNC symbols do not use the value
1369 of the symbol as the address to relocate against. Instead
1370 they invoke the function named by the symbol and use its
1371 result as the address for relocation.
1372
1373 To indicate this to the user, do not display the value of
1374 the symbol in the "Symbols's Value" field. Instead show
1375 its name followed by () as a hint that the symbol is
1376 invoked. */
1377
1378 if (strtab == NULL
1379 || psym->st_name == 0
1380 || psym->st_name >= strtablen)
1381 name = "??";
1382 else
1383 name = strtab + psym->st_name;
1384
1385 len = print_symbol (width, name);
1386 printf ("()%-*s", len <= width ? (width + 1) - len : 1, " ");
1387 }
1388 else
1389 {
1390 print_vma (psym->st_value, LONG_HEX);
1391
1392 printf (is_32bit_elf ? " " : " ");
1393 }
1394
1395 if (psym->st_name == 0)
1396 {
1397 const char * sec_name = "<null>";
1398 char name_buf[40];
1399
1400 if (ELF_ST_TYPE (psym->st_info) == STT_SECTION)
1401 {
1402 if (psym->st_shndx < elf_header.e_shnum)
1403 sec_name
1404 = SECTION_NAME (section_headers + psym->st_shndx);
1405 else if (psym->st_shndx == SHN_ABS)
1406 sec_name = "ABS";
1407 else if (psym->st_shndx == SHN_COMMON)
1408 sec_name = "COMMON";
1409 else if ((elf_header.e_machine == EM_MIPS
1410 && psym->st_shndx == SHN_MIPS_SCOMMON)
1411 || (elf_header.e_machine == EM_TI_C6000
1412 && psym->st_shndx == SHN_TIC6X_SCOMMON))
1413 sec_name = "SCOMMON";
1414 else if (elf_header.e_machine == EM_MIPS
1415 && psym->st_shndx == SHN_MIPS_SUNDEFINED)
1416 sec_name = "SUNDEF";
1417 else if ((elf_header.e_machine == EM_X86_64
1418 || elf_header.e_machine == EM_L1OM
1419 || elf_header.e_machine == EM_K1OM)
1420 && psym->st_shndx == SHN_X86_64_LCOMMON)
1421 sec_name = "LARGE_COMMON";
1422 else if (elf_header.e_machine == EM_IA_64
1423 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX
1424 && psym->st_shndx == SHN_IA_64_ANSI_COMMON)
1425 sec_name = "ANSI_COM";
1426 else if (is_ia64_vms ()
1427 && psym->st_shndx == SHN_IA_64_VMS_SYMVEC)
1428 sec_name = "VMS_SYMVEC";
1429 else
1430 {
1431 sprintf (name_buf, "<section 0x%x>",
1432 (unsigned int) psym->st_shndx);
1433 sec_name = name_buf;
1434 }
1435 }
1436 print_symbol (22, sec_name);
1437 }
1438 else if (strtab == NULL)
1439 printf (_("<string table index: %3ld>"), psym->st_name);
1440 else if (psym->st_name >= strtablen)
1441 printf (_("<corrupt string table index: %3ld>"), psym->st_name);
1442 else
1443 print_symbol (22, strtab + psym->st_name);
1444
1445 if (is_rela)
1446 {
1447 bfd_signed_vma off = rels[i].r_addend;
1448
1449 if (off < 0)
1450 printf (" - %" BFD_VMA_FMT "x", - off);
1451 else
1452 printf (" + %" BFD_VMA_FMT "x", off);
1453 }
1454 }
1455 }
1456 else if (is_rela)
1457 {
1458 bfd_signed_vma off = rels[i].r_addend;
1459
1460 printf ("%*c", is_32bit_elf ? 12 : 20, ' ');
1461 if (off < 0)
1462 printf ("-%" BFD_VMA_FMT "x", - off);
1463 else
1464 printf ("%" BFD_VMA_FMT "x", off);
1465 }
1466
1467 if (elf_header.e_machine == EM_SPARCV9
1468 && rtype != NULL
1469 && streq (rtype, "R_SPARC_OLO10"))
1470 printf (" + %lx", (unsigned long) ELF64_R_TYPE_DATA (inf));
1471
1472 putchar ('\n');
1473
1474 #ifdef BFD64
1475 if (! is_32bit_elf && elf_header.e_machine == EM_MIPS)
1476 {
1477 bfd_vma type2 = ELF64_MIPS_R_TYPE2 (inf);
1478 bfd_vma type3 = ELF64_MIPS_R_TYPE3 (inf);
1479 const char * rtype2 = elf_mips_reloc_type (type2);
1480 const char * rtype3 = elf_mips_reloc_type (type3);
1481
1482 printf (" Type2: ");
1483
1484 if (rtype2 == NULL)
1485 printf (_("unrecognized: %-7lx"),
1486 (unsigned long) type2 & 0xffffffff);
1487 else
1488 printf ("%-17.17s", rtype2);
1489
1490 printf ("\n Type3: ");
1491
1492 if (rtype3 == NULL)
1493 printf (_("unrecognized: %-7lx"),
1494 (unsigned long) type3 & 0xffffffff);
1495 else
1496 printf ("%-17.17s", rtype3);
1497
1498 putchar ('\n');
1499 }
1500 #endif /* BFD64 */
1501 }
1502
1503 free (rels);
1504 }
1505
1506 static const char *
1507 get_mips_dynamic_type (unsigned long type)
1508 {
1509 switch (type)
1510 {
1511 case DT_MIPS_RLD_VERSION: return "MIPS_RLD_VERSION";
1512 case DT_MIPS_TIME_STAMP: return "MIPS_TIME_STAMP";
1513 case DT_MIPS_ICHECKSUM: return "MIPS_ICHECKSUM";
1514 case DT_MIPS_IVERSION: return "MIPS_IVERSION";
1515 case DT_MIPS_FLAGS: return "MIPS_FLAGS";
1516 case DT_MIPS_BASE_ADDRESS: return "MIPS_BASE_ADDRESS";
1517 case DT_MIPS_MSYM: return "MIPS_MSYM";
1518 case DT_MIPS_CONFLICT: return "MIPS_CONFLICT";
1519 case DT_MIPS_LIBLIST: return "MIPS_LIBLIST";
1520 case DT_MIPS_LOCAL_GOTNO: return "MIPS_LOCAL_GOTNO";
1521 case DT_MIPS_CONFLICTNO: return "MIPS_CONFLICTNO";
1522 case DT_MIPS_LIBLISTNO: return "MIPS_LIBLISTNO";
1523 case DT_MIPS_SYMTABNO: return "MIPS_SYMTABNO";
1524 case DT_MIPS_UNREFEXTNO: return "MIPS_UNREFEXTNO";
1525 case DT_MIPS_GOTSYM: return "MIPS_GOTSYM";
1526 case DT_MIPS_HIPAGENO: return "MIPS_HIPAGENO";
1527 case DT_MIPS_RLD_MAP: return "MIPS_RLD_MAP";
1528 case DT_MIPS_DELTA_CLASS: return "MIPS_DELTA_CLASS";
1529 case DT_MIPS_DELTA_CLASS_NO: return "MIPS_DELTA_CLASS_NO";
1530 case DT_MIPS_DELTA_INSTANCE: return "MIPS_DELTA_INSTANCE";
1531 case DT_MIPS_DELTA_INSTANCE_NO: return "MIPS_DELTA_INSTANCE_NO";
1532 case DT_MIPS_DELTA_RELOC: return "MIPS_DELTA_RELOC";
1533 case DT_MIPS_DELTA_RELOC_NO: return "MIPS_DELTA_RELOC_NO";
1534 case DT_MIPS_DELTA_SYM: return "MIPS_DELTA_SYM";
1535 case DT_MIPS_DELTA_SYM_NO: return "MIPS_DELTA_SYM_NO";
1536 case DT_MIPS_DELTA_CLASSSYM: return "MIPS_DELTA_CLASSSYM";
1537 case DT_MIPS_DELTA_CLASSSYM_NO: return "MIPS_DELTA_CLASSSYM_NO";
1538 case DT_MIPS_CXX_FLAGS: return "MIPS_CXX_FLAGS";
1539 case DT_MIPS_PIXIE_INIT: return "MIPS_PIXIE_INIT";
1540 case DT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
1541 case DT_MIPS_LOCALPAGE_GOTIDX: return "MIPS_LOCALPAGE_GOTIDX";
1542 case DT_MIPS_LOCAL_GOTIDX: return "MIPS_LOCAL_GOTIDX";
1543 case DT_MIPS_HIDDEN_GOTIDX: return "MIPS_HIDDEN_GOTIDX";
1544 case DT_MIPS_PROTECTED_GOTIDX: return "MIPS_PROTECTED_GOTIDX";
1545 case DT_MIPS_OPTIONS: return "MIPS_OPTIONS";
1546 case DT_MIPS_INTERFACE: return "MIPS_INTERFACE";
1547 case DT_MIPS_DYNSTR_ALIGN: return "MIPS_DYNSTR_ALIGN";
1548 case DT_MIPS_INTERFACE_SIZE: return "MIPS_INTERFACE_SIZE";
1549 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: return "MIPS_RLD_TEXT_RESOLVE_ADDR";
1550 case DT_MIPS_PERF_SUFFIX: return "MIPS_PERF_SUFFIX";
1551 case DT_MIPS_COMPACT_SIZE: return "MIPS_COMPACT_SIZE";
1552 case DT_MIPS_GP_VALUE: return "MIPS_GP_VALUE";
1553 case DT_MIPS_AUX_DYNAMIC: return "MIPS_AUX_DYNAMIC";
1554 case DT_MIPS_PLTGOT: return "MIPS_PLTGOT";
1555 case DT_MIPS_RWPLT: return "MIPS_RWPLT";
1556 default:
1557 return NULL;
1558 }
1559 }
1560
1561 static const char *
1562 get_sparc64_dynamic_type (unsigned long type)
1563 {
1564 switch (type)
1565 {
1566 case DT_SPARC_REGISTER: return "SPARC_REGISTER";
1567 default:
1568 return NULL;
1569 }
1570 }
1571
1572 static const char *
1573 get_ppc_dynamic_type (unsigned long type)
1574 {
1575 switch (type)
1576 {
1577 case DT_PPC_GOT: return "PPC_GOT";
1578 case DT_PPC_TLSOPT: return "PPC_TLSOPT";
1579 default:
1580 return NULL;
1581 }
1582 }
1583
1584 static const char *
1585 get_ppc64_dynamic_type (unsigned long type)
1586 {
1587 switch (type)
1588 {
1589 case DT_PPC64_GLINK: return "PPC64_GLINK";
1590 case DT_PPC64_OPD: return "PPC64_OPD";
1591 case DT_PPC64_OPDSZ: return "PPC64_OPDSZ";
1592 case DT_PPC64_TLSOPT: return "PPC64_TLSOPT";
1593 default:
1594 return NULL;
1595 }
1596 }
1597
1598 static const char *
1599 get_parisc_dynamic_type (unsigned long type)
1600 {
1601 switch (type)
1602 {
1603 case DT_HP_LOAD_MAP: return "HP_LOAD_MAP";
1604 case DT_HP_DLD_FLAGS: return "HP_DLD_FLAGS";
1605 case DT_HP_DLD_HOOK: return "HP_DLD_HOOK";
1606 case DT_HP_UX10_INIT: return "HP_UX10_INIT";
1607 case DT_HP_UX10_INITSZ: return "HP_UX10_INITSZ";
1608 case DT_HP_PREINIT: return "HP_PREINIT";
1609 case DT_HP_PREINITSZ: return "HP_PREINITSZ";
1610 case DT_HP_NEEDED: return "HP_NEEDED";
1611 case DT_HP_TIME_STAMP: return "HP_TIME_STAMP";
1612 case DT_HP_CHECKSUM: return "HP_CHECKSUM";
1613 case DT_HP_GST_SIZE: return "HP_GST_SIZE";
1614 case DT_HP_GST_VERSION: return "HP_GST_VERSION";
1615 case DT_HP_GST_HASHVAL: return "HP_GST_HASHVAL";
1616 case DT_HP_EPLTREL: return "HP_GST_EPLTREL";
1617 case DT_HP_EPLTRELSZ: return "HP_GST_EPLTRELSZ";
1618 case DT_HP_FILTERED: return "HP_FILTERED";
1619 case DT_HP_FILTER_TLS: return "HP_FILTER_TLS";
1620 case DT_HP_COMPAT_FILTERED: return "HP_COMPAT_FILTERED";
1621 case DT_HP_LAZYLOAD: return "HP_LAZYLOAD";
1622 case DT_HP_BIND_NOW_COUNT: return "HP_BIND_NOW_COUNT";
1623 case DT_PLT: return "PLT";
1624 case DT_PLT_SIZE: return "PLT_SIZE";
1625 case DT_DLT: return "DLT";
1626 case DT_DLT_SIZE: return "DLT_SIZE";
1627 default:
1628 return NULL;
1629 }
1630 }
1631
1632 static const char *
1633 get_ia64_dynamic_type (unsigned long type)
1634 {
1635 switch (type)
1636 {
1637 case DT_IA_64_PLT_RESERVE: return "IA_64_PLT_RESERVE";
1638 case DT_IA_64_VMS_SUBTYPE: return "VMS_SUBTYPE";
1639 case DT_IA_64_VMS_IMGIOCNT: return "VMS_IMGIOCNT";
1640 case DT_IA_64_VMS_LNKFLAGS: return "VMS_LNKFLAGS";
1641 case DT_IA_64_VMS_VIR_MEM_BLK_SIZ: return "VMS_VIR_MEM_BLK_SIZ";
1642 case DT_IA_64_VMS_IDENT: return "VMS_IDENT";
1643 case DT_IA_64_VMS_NEEDED_IDENT: return "VMS_NEEDED_IDENT";
1644 case DT_IA_64_VMS_IMG_RELA_CNT: return "VMS_IMG_RELA_CNT";
1645 case DT_IA_64_VMS_SEG_RELA_CNT: return "VMS_SEG_RELA_CNT";
1646 case DT_IA_64_VMS_FIXUP_RELA_CNT: return "VMS_FIXUP_RELA_CNT";
1647 case DT_IA_64_VMS_FIXUP_NEEDED: return "VMS_FIXUP_NEEDED";
1648 case DT_IA_64_VMS_SYMVEC_CNT: return "VMS_SYMVEC_CNT";
1649 case DT_IA_64_VMS_XLATED: return "VMS_XLATED";
1650 case DT_IA_64_VMS_STACKSIZE: return "VMS_STACKSIZE";
1651 case DT_IA_64_VMS_UNWINDSZ: return "VMS_UNWINDSZ";
1652 case DT_IA_64_VMS_UNWIND_CODSEG: return "VMS_UNWIND_CODSEG";
1653 case DT_IA_64_VMS_UNWIND_INFOSEG: return "VMS_UNWIND_INFOSEG";
1654 case DT_IA_64_VMS_LINKTIME: return "VMS_LINKTIME";
1655 case DT_IA_64_VMS_SEG_NO: return "VMS_SEG_NO";
1656 case DT_IA_64_VMS_SYMVEC_OFFSET: return "VMS_SYMVEC_OFFSET";
1657 case DT_IA_64_VMS_SYMVEC_SEG: return "VMS_SYMVEC_SEG";
1658 case DT_IA_64_VMS_UNWIND_OFFSET: return "VMS_UNWIND_OFFSET";
1659 case DT_IA_64_VMS_UNWIND_SEG: return "VMS_UNWIND_SEG";
1660 case DT_IA_64_VMS_STRTAB_OFFSET: return "VMS_STRTAB_OFFSET";
1661 case DT_IA_64_VMS_SYSVER_OFFSET: return "VMS_SYSVER_OFFSET";
1662 case DT_IA_64_VMS_IMG_RELA_OFF: return "VMS_IMG_RELA_OFF";
1663 case DT_IA_64_VMS_SEG_RELA_OFF: return "VMS_SEG_RELA_OFF";
1664 case DT_IA_64_VMS_FIXUP_RELA_OFF: return "VMS_FIXUP_RELA_OFF";
1665 case DT_IA_64_VMS_PLTGOT_OFFSET: return "VMS_PLTGOT_OFFSET";
1666 case DT_IA_64_VMS_PLTGOT_SEG: return "VMS_PLTGOT_SEG";
1667 case DT_IA_64_VMS_FPMODE: return "VMS_FPMODE";
1668 default:
1669 return NULL;
1670 }
1671 }
1672
1673 static const char *
1674 get_alpha_dynamic_type (unsigned long type)
1675 {
1676 switch (type)
1677 {
1678 case DT_ALPHA_PLTRO: return "ALPHA_PLTRO";
1679 default:
1680 return NULL;
1681 }
1682 }
1683
1684 static const char *
1685 get_score_dynamic_type (unsigned long type)
1686 {
1687 switch (type)
1688 {
1689 case DT_SCORE_BASE_ADDRESS: return "SCORE_BASE_ADDRESS";
1690 case DT_SCORE_LOCAL_GOTNO: return "SCORE_LOCAL_GOTNO";
1691 case DT_SCORE_SYMTABNO: return "SCORE_SYMTABNO";
1692 case DT_SCORE_GOTSYM: return "SCORE_GOTSYM";
1693 case DT_SCORE_UNREFEXTNO: return "SCORE_UNREFEXTNO";
1694 case DT_SCORE_HIPAGENO: return "SCORE_HIPAGENO";
1695 default:
1696 return NULL;
1697 }
1698 }
1699
1700 static const char *
1701 get_tic6x_dynamic_type (unsigned long type)
1702 {
1703 switch (type)
1704 {
1705 case DT_C6000_GSYM_OFFSET: return "C6000_GSYM_OFFSET";
1706 case DT_C6000_GSTR_OFFSET: return "C6000_GSTR_OFFSET";
1707 case DT_C6000_DSBT_BASE: return "C6000_DSBT_BASE";
1708 case DT_C6000_DSBT_SIZE: return "C6000_DSBT_SIZE";
1709 case DT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
1710 case DT_C6000_DSBT_INDEX: return "C6000_DSBT_INDEX";
1711 default:
1712 return NULL;
1713 }
1714 }
1715
1716 static const char *
1717 get_nios2_dynamic_type (unsigned long type)
1718 {
1719 switch (type)
1720 {
1721 case DT_NIOS2_GP: return "NIOS2_GP";
1722 default:
1723 return NULL;
1724 }
1725 }
1726
1727 static const char *
1728 get_dynamic_type (unsigned long type)
1729 {
1730 static char buff[64];
1731
1732 switch (type)
1733 {
1734 case DT_NULL: return "NULL";
1735 case DT_NEEDED: return "NEEDED";
1736 case DT_PLTRELSZ: return "PLTRELSZ";
1737 case DT_PLTGOT: return "PLTGOT";
1738 case DT_HASH: return "HASH";
1739 case DT_STRTAB: return "STRTAB";
1740 case DT_SYMTAB: return "SYMTAB";
1741 case DT_RELA: return "RELA";
1742 case DT_RELASZ: return "RELASZ";
1743 case DT_RELAENT: return "RELAENT";
1744 case DT_STRSZ: return "STRSZ";
1745 case DT_SYMENT: return "SYMENT";
1746 case DT_INIT: return "INIT";
1747 case DT_FINI: return "FINI";
1748 case DT_SONAME: return "SONAME";
1749 case DT_RPATH: return "RPATH";
1750 case DT_SYMBOLIC: return "SYMBOLIC";
1751 case DT_REL: return "REL";
1752 case DT_RELSZ: return "RELSZ";
1753 case DT_RELENT: return "RELENT";
1754 case DT_PLTREL: return "PLTREL";
1755 case DT_DEBUG: return "DEBUG";
1756 case DT_TEXTREL: return "TEXTREL";
1757 case DT_JMPREL: return "JMPREL";
1758 case DT_BIND_NOW: return "BIND_NOW";
1759 case DT_INIT_ARRAY: return "INIT_ARRAY";
1760 case DT_FINI_ARRAY: return "FINI_ARRAY";
1761 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
1762 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
1763 case DT_RUNPATH: return "RUNPATH";
1764 case DT_FLAGS: return "FLAGS";
1765
1766 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
1767 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
1768
1769 case DT_CHECKSUM: return "CHECKSUM";
1770 case DT_PLTPADSZ: return "PLTPADSZ";
1771 case DT_MOVEENT: return "MOVEENT";
1772 case DT_MOVESZ: return "MOVESZ";
1773 case DT_FEATURE: return "FEATURE";
1774 case DT_POSFLAG_1: return "POSFLAG_1";
1775 case DT_SYMINSZ: return "SYMINSZ";
1776 case DT_SYMINENT: return "SYMINENT"; /* aka VALRNGHI */
1777
1778 case DT_ADDRRNGLO: return "ADDRRNGLO";
1779 case DT_CONFIG: return "CONFIG";
1780 case DT_DEPAUDIT: return "DEPAUDIT";
1781 case DT_AUDIT: return "AUDIT";
1782 case DT_PLTPAD: return "PLTPAD";
1783 case DT_MOVETAB: return "MOVETAB";
1784 case DT_SYMINFO: return "SYMINFO"; /* aka ADDRRNGHI */
1785
1786 case DT_VERSYM: return "VERSYM";
1787
1788 case DT_TLSDESC_GOT: return "TLSDESC_GOT";
1789 case DT_TLSDESC_PLT: return "TLSDESC_PLT";
1790 case DT_RELACOUNT: return "RELACOUNT";
1791 case DT_RELCOUNT: return "RELCOUNT";
1792 case DT_FLAGS_1: return "FLAGS_1";
1793 case DT_VERDEF: return "VERDEF";
1794 case DT_VERDEFNUM: return "VERDEFNUM";
1795 case DT_VERNEED: return "VERNEED";
1796 case DT_VERNEEDNUM: return "VERNEEDNUM";
1797
1798 case DT_AUXILIARY: return "AUXILIARY";
1799 case DT_USED: return "USED";
1800 case DT_FILTER: return "FILTER";
1801
1802 case DT_GNU_PRELINKED: return "GNU_PRELINKED";
1803 case DT_GNU_CONFLICT: return "GNU_CONFLICT";
1804 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
1805 case DT_GNU_LIBLIST: return "GNU_LIBLIST";
1806 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
1807 case DT_GNU_HASH: return "GNU_HASH";
1808
1809 default:
1810 if ((type >= DT_LOPROC) && (type <= DT_HIPROC))
1811 {
1812 const char * result;
1813
1814 switch (elf_header.e_machine)
1815 {
1816 case EM_MIPS:
1817 case EM_MIPS_RS3_LE:
1818 result = get_mips_dynamic_type (type);
1819 break;
1820 case EM_SPARCV9:
1821 result = get_sparc64_dynamic_type (type);
1822 break;
1823 case EM_PPC:
1824 result = get_ppc_dynamic_type (type);
1825 break;
1826 case EM_PPC64:
1827 result = get_ppc64_dynamic_type (type);
1828 break;
1829 case EM_IA_64:
1830 result = get_ia64_dynamic_type (type);
1831 break;
1832 case EM_ALPHA:
1833 result = get_alpha_dynamic_type (type);
1834 break;
1835 case EM_SCORE:
1836 result = get_score_dynamic_type (type);
1837 break;
1838 case EM_TI_C6000:
1839 result = get_tic6x_dynamic_type (type);
1840 break;
1841 case EM_ALTERA_NIOS2:
1842 result = get_nios2_dynamic_type (type);
1843 break;
1844 default:
1845 result = NULL;
1846 break;
1847 }
1848
1849 if (result != NULL)
1850 return result;
1851
1852 snprintf (buff, sizeof (buff), _("Processor Specific: %lx"), type);
1853 }
1854 else if (((type >= DT_LOOS) && (type <= DT_HIOS))
1855 || (elf_header.e_machine == EM_PARISC
1856 && (type >= OLD_DT_LOOS) && (type <= OLD_DT_HIOS)))
1857 {
1858 const char * result;
1859
1860 switch (elf_header.e_machine)
1861 {
1862 case EM_PARISC:
1863 result = get_parisc_dynamic_type (type);
1864 break;
1865 case EM_IA_64:
1866 result = get_ia64_dynamic_type (type);
1867 break;
1868 default:
1869 result = NULL;
1870 break;
1871 }
1872
1873 if (result != NULL)
1874 return result;
1875
1876 snprintf (buff, sizeof (buff), _("Operating System specific: %lx"),
1877 type);
1878 }
1879 else
1880 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), type);
1881
1882 return buff;
1883 }
1884 }
1885
1886 static char *
1887 get_file_type (unsigned e_type)
1888 {
1889 static char buff[32];
1890
1891 switch (e_type)
1892 {
1893 case ET_NONE: return _("NONE (None)");
1894 case ET_REL: return _("REL (Relocatable file)");
1895 case ET_EXEC: return _("EXEC (Executable file)");
1896 case ET_DYN: return _("DYN (Shared object file)");
1897 case ET_CORE: return _("CORE (Core file)");
1898
1899 default:
1900 if ((e_type >= ET_LOPROC) && (e_type <= ET_HIPROC))
1901 snprintf (buff, sizeof (buff), _("Processor Specific: (%x)"), e_type);
1902 else if ((e_type >= ET_LOOS) && (e_type <= ET_HIOS))
1903 snprintf (buff, sizeof (buff), _("OS Specific: (%x)"), e_type);
1904 else
1905 snprintf (buff, sizeof (buff), _("<unknown>: %x"), e_type);
1906 return buff;
1907 }
1908 }
1909
1910 static char *
1911 get_machine_name (unsigned e_machine)
1912 {
1913 static char buff[64]; /* XXX */
1914
1915 switch (e_machine)
1916 {
1917 case EM_NONE: return _("None");
1918 case EM_AARCH64: return "AArch64";
1919 case EM_M32: return "WE32100";
1920 case EM_SPARC: return "Sparc";
1921 case EM_SPU: return "SPU";
1922 case EM_386: return "Intel 80386";
1923 case EM_68K: return "MC68000";
1924 case EM_88K: return "MC88000";
1925 case EM_486: return "Intel 80486";
1926 case EM_860: return "Intel 80860";
1927 case EM_MIPS: return "MIPS R3000";
1928 case EM_S370: return "IBM System/370";
1929 case EM_MIPS_RS3_LE: return "MIPS R4000 big-endian";
1930 case EM_OLD_SPARCV9: return "Sparc v9 (old)";
1931 case EM_PARISC: return "HPPA";
1932 case EM_PPC_OLD: return "Power PC (old)";
1933 case EM_SPARC32PLUS: return "Sparc v8+" ;
1934 case EM_960: return "Intel 90860";
1935 case EM_PPC: return "PowerPC";
1936 case EM_PPC64: return "PowerPC64";
1937 case EM_FR20: return "Fujitsu FR20";
1938 case EM_RH32: return "TRW RH32";
1939 case EM_MCORE: return "MCORE";
1940 case EM_ARM: return "ARM";
1941 case EM_OLD_ALPHA: return "Digital Alpha (old)";
1942 case EM_SH: return "Renesas / SuperH SH";
1943 case EM_SPARCV9: return "Sparc v9";
1944 case EM_TRICORE: return "Siemens Tricore";
1945 case EM_ARC: return "ARC";
1946 case EM_H8_300: return "Renesas H8/300";
1947 case EM_H8_300H: return "Renesas H8/300H";
1948 case EM_H8S: return "Renesas H8S";
1949 case EM_H8_500: return "Renesas H8/500";
1950 case EM_IA_64: return "Intel IA-64";
1951 case EM_MIPS_X: return "Stanford MIPS-X";
1952 case EM_COLDFIRE: return "Motorola Coldfire";
1953 case EM_ALPHA: return "Alpha";
1954 case EM_CYGNUS_D10V:
1955 case EM_D10V: return "d10v";
1956 case EM_CYGNUS_D30V:
1957 case EM_D30V: return "d30v";
1958 case EM_CYGNUS_M32R:
1959 case EM_M32R: return "Renesas M32R (formerly Mitsubishi M32r)";
1960 case EM_CYGNUS_V850:
1961 case EM_V800: return "Renesas V850 (using RH850 ABI)";
1962 case EM_V850: return "Renesas V850";
1963 case EM_CYGNUS_MN10300:
1964 case EM_MN10300: return "mn10300";
1965 case EM_CYGNUS_MN10200:
1966 case EM_MN10200: return "mn10200";
1967 case EM_MOXIE: return "Moxie";
1968 case EM_CYGNUS_FR30:
1969 case EM_FR30: return "Fujitsu FR30";
1970 case EM_CYGNUS_FRV: return "Fujitsu FR-V";
1971 case EM_PJ_OLD:
1972 case EM_PJ: return "picoJava";
1973 case EM_MMA: return "Fujitsu Multimedia Accelerator";
1974 case EM_PCP: return "Siemens PCP";
1975 case EM_NCPU: return "Sony nCPU embedded RISC processor";
1976 case EM_NDR1: return "Denso NDR1 microprocesspr";
1977 case EM_STARCORE: return "Motorola Star*Core processor";
1978 case EM_ME16: return "Toyota ME16 processor";
1979 case EM_ST100: return "STMicroelectronics ST100 processor";
1980 case EM_TINYJ: return "Advanced Logic Corp. TinyJ embedded processor";
1981 case EM_PDSP: return "Sony DSP processor";
1982 case EM_PDP10: return "Digital Equipment Corp. PDP-10";
1983 case EM_PDP11: return "Digital Equipment Corp. PDP-11";
1984 case EM_FX66: return "Siemens FX66 microcontroller";
1985 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 bit microcontroller";
1986 case EM_ST7: return "STMicroelectronics ST7 8-bit microcontroller";
1987 case EM_68HC16: return "Motorola MC68HC16 Microcontroller";
1988 case EM_68HC12: return "Motorola MC68HC12 Microcontroller";
1989 case EM_68HC11: return "Motorola MC68HC11 Microcontroller";
1990 case EM_68HC08: return "Motorola MC68HC08 Microcontroller";
1991 case EM_68HC05: return "Motorola MC68HC05 Microcontroller";
1992 case EM_SVX: return "Silicon Graphics SVx";
1993 case EM_ST19: return "STMicroelectronics ST19 8-bit microcontroller";
1994 case EM_VAX: return "Digital VAX";
1995 case EM_AVR_OLD:
1996 case EM_AVR: return "Atmel AVR 8-bit microcontroller";
1997 case EM_CRIS: return "Axis Communications 32-bit embedded processor";
1998 case EM_JAVELIN: return "Infineon Technologies 32-bit embedded cpu";
1999 case EM_FIREPATH: return "Element 14 64-bit DSP processor";
2000 case EM_ZSP: return "LSI Logic's 16-bit DSP processor";
2001 case EM_MMIX: return "Donald Knuth's educational 64-bit processor";
2002 case EM_HUANY: return "Harvard Universitys's machine-independent object format";
2003 case EM_PRISM: return "Vitesse Prism";
2004 case EM_X86_64: return "Advanced Micro Devices X86-64";
2005 case EM_L1OM: return "Intel L1OM";
2006 case EM_K1OM: return "Intel K1OM";
2007 case EM_S390_OLD:
2008 case EM_S390: return "IBM S/390";
2009 case EM_SCORE: return "SUNPLUS S+Core";
2010 case EM_XSTORMY16: return "Sanyo XStormy16 CPU core";
2011 case EM_OPENRISC:
2012 case EM_OR32: return "OpenRISC";
2013 case EM_ARC_A5: return "ARC International ARCompact processor";
2014 case EM_CRX: return "National Semiconductor CRX microprocessor";
2015 case EM_ADAPTEVA_EPIPHANY: return "Adapteva EPIPHANY";
2016 case EM_DLX: return "OpenDLX";
2017 case EM_IP2K_OLD:
2018 case EM_IP2K: return "Ubicom IP2xxx 8-bit microcontrollers";
2019 case EM_IQ2000: return "Vitesse IQ2000";
2020 case EM_XTENSA_OLD:
2021 case EM_XTENSA: return "Tensilica Xtensa Processor";
2022 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor";
2023 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor";
2024 case EM_NS32K: return "National Semiconductor 32000 series";
2025 case EM_TPC: return "Tenor Network TPC processor";
2026 case EM_ST200: return "STMicroelectronics ST200 microcontroller";
2027 case EM_MAX: return "MAX Processor";
2028 case EM_CR: return "National Semiconductor CompactRISC";
2029 case EM_F2MC16: return "Fujitsu F2MC16";
2030 case EM_MSP430: return "Texas Instruments msp430 microcontroller";
2031 case EM_LATTICEMICO32: return "Lattice Mico32";
2032 case EM_M32C_OLD:
2033 case EM_M32C: return "Renesas M32c";
2034 case EM_MT: return "Morpho Techologies MT processor";
2035 case EM_BLACKFIN: return "Analog Devices Blackfin";
2036 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors";
2037 case EM_SEP: return "Sharp embedded microprocessor";
2038 case EM_ARCA: return "Arca RISC microprocessor";
2039 case EM_UNICORE: return "Unicore";
2040 case EM_EXCESS: return "eXcess 16/32/64-bit configurable embedded CPU";
2041 case EM_DXP: return "Icera Semiconductor Inc. Deep Execution Processor";
2042 case EM_NIOS32: return "Altera Nios";
2043 case EM_ALTERA_NIOS2: return "Altera Nios II";
2044 case EM_C166:
2045 case EM_XC16X: return "Infineon Technologies xc16x";
2046 case EM_M16C: return "Renesas M16C series microprocessors";
2047 case EM_DSPIC30F: return "Microchip Technology dsPIC30F Digital Signal Controller";
2048 case EM_CE: return "Freescale Communication Engine RISC core";
2049 case EM_TSK3000: return "Altium TSK3000 core";
2050 case EM_RS08: return "Freescale RS08 embedded processor";
2051 case EM_ECOG2: return "Cyan Technology eCOG2 microprocessor";
2052 case EM_DSP24: return "New Japan Radio (NJR) 24-bit DSP Processor";
2053 case EM_VIDEOCORE3: return "Broadcom VideoCore III processor";
2054 case EM_SE_C17: return "Seiko Epson C17 family";
2055 case EM_TI_C6000: return "Texas Instruments TMS320C6000 DSP family";
2056 case EM_TI_C2000: return "Texas Instruments TMS320C2000 DSP family";
2057 case EM_TI_C5500: return "Texas Instruments TMS320C55x DSP family";
2058 case EM_MMDSP_PLUS: return "STMicroelectronics 64bit VLIW Data Signal Processor";
2059 case EM_CYPRESS_M8C: return "Cypress M8C microprocessor";
2060 case EM_R32C: return "Renesas R32C series microprocessors";
2061 case EM_TRIMEDIA: return "NXP Semiconductors TriMedia architecture family";
2062 case EM_QDSP6: return "QUALCOMM DSP6 Processor";
2063 case EM_8051: return "Intel 8051 and variants";
2064 case EM_STXP7X: return "STMicroelectronics STxP7x family";
2065 case EM_NDS32: return "Andes Technology compact code size embedded RISC processor family";
2066 case EM_ECOG1X: return "Cyan Technology eCOG1X family";
2067 case EM_MAXQ30: return "Dallas Semiconductor MAXQ30 Core microcontrollers";
2068 case EM_XIMO16: return "New Japan Radio (NJR) 16-bit DSP Processor";
2069 case EM_MANIK: return "M2000 Reconfigurable RISC Microprocessor";
2070 case EM_CRAYNV2: return "Cray Inc. NV2 vector architecture";
2071 case EM_CYGNUS_MEP: return "Toshiba MeP Media Engine";
2072 case EM_CR16:
2073 case EM_MICROBLAZE:
2074 case EM_MICROBLAZE_OLD: return "Xilinx MicroBlaze";
2075 case EM_RL78: return "Renesas RL78";
2076 case EM_RX: return "Renesas RX";
2077 case EM_METAG: return "Imagination Technologies Meta processor architecture";
2078 case EM_MCST_ELBRUS: return "MCST Elbrus general purpose hardware architecture";
2079 case EM_ECOG16: return "Cyan Technology eCOG16 family";
2080 case EM_ETPU: return "Freescale Extended Time Processing Unit";
2081 case EM_SLE9X: return "Infineon Technologies SLE9X core";
2082 case EM_AVR32: return "Atmel Corporation 32-bit microprocessor family";
2083 case EM_STM8: return "STMicroeletronics STM8 8-bit microcontroller";
2084 case EM_TILE64: return "Tilera TILE64 multicore architecture family";
2085 case EM_TILEPRO: return "Tilera TILEPro multicore architecture family";
2086 case EM_TILEGX: return "Tilera TILE-Gx multicore architecture family";
2087 case EM_CUDA: return "NVIDIA CUDA architecture";
2088 case EM_XGATE: return "Motorola XGATE embedded processor";
2089 default:
2090 snprintf (buff, sizeof (buff), _("<unknown>: 0x%x"), e_machine);
2091 return buff;
2092 }
2093 }
2094
2095 static void
2096 decode_ARM_machine_flags (unsigned e_flags, char buf[])
2097 {
2098 unsigned eabi;
2099 int unknown = 0;
2100
2101 eabi = EF_ARM_EABI_VERSION (e_flags);
2102 e_flags &= ~ EF_ARM_EABIMASK;
2103
2104 /* Handle "generic" ARM flags. */
2105 if (e_flags & EF_ARM_RELEXEC)
2106 {
2107 strcat (buf, ", relocatable executable");
2108 e_flags &= ~ EF_ARM_RELEXEC;
2109 }
2110
2111 if (e_flags & EF_ARM_HASENTRY)
2112 {
2113 strcat (buf, ", has entry point");
2114 e_flags &= ~ EF_ARM_HASENTRY;
2115 }
2116
2117 /* Now handle EABI specific flags. */
2118 switch (eabi)
2119 {
2120 default:
2121 strcat (buf, ", <unrecognized EABI>");
2122 if (e_flags)
2123 unknown = 1;
2124 break;
2125
2126 case EF_ARM_EABI_VER1:
2127 strcat (buf, ", Version1 EABI");
2128 while (e_flags)
2129 {
2130 unsigned flag;
2131
2132 /* Process flags one bit at a time. */
2133 flag = e_flags & - e_flags;
2134 e_flags &= ~ flag;
2135
2136 switch (flag)
2137 {
2138 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2139 strcat (buf, ", sorted symbol tables");
2140 break;
2141
2142 default:
2143 unknown = 1;
2144 break;
2145 }
2146 }
2147 break;
2148
2149 case EF_ARM_EABI_VER2:
2150 strcat (buf, ", Version2 EABI");
2151 while (e_flags)
2152 {
2153 unsigned flag;
2154
2155 /* Process flags one bit at a time. */
2156 flag = e_flags & - e_flags;
2157 e_flags &= ~ flag;
2158
2159 switch (flag)
2160 {
2161 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2162 strcat (buf, ", sorted symbol tables");
2163 break;
2164
2165 case EF_ARM_DYNSYMSUSESEGIDX:
2166 strcat (buf, ", dynamic symbols use segment index");
2167 break;
2168
2169 case EF_ARM_MAPSYMSFIRST:
2170 strcat (buf, ", mapping symbols precede others");
2171 break;
2172
2173 default:
2174 unknown = 1;
2175 break;
2176 }
2177 }
2178 break;
2179
2180 case EF_ARM_EABI_VER3:
2181 strcat (buf, ", Version3 EABI");
2182 break;
2183
2184 case EF_ARM_EABI_VER4:
2185 strcat (buf, ", Version4 EABI");
2186 while (e_flags)
2187 {
2188 unsigned flag;
2189
2190 /* Process flags one bit at a time. */
2191 flag = e_flags & - e_flags;
2192 e_flags &= ~ flag;
2193
2194 switch (flag)
2195 {
2196 case EF_ARM_BE8:
2197 strcat (buf, ", BE8");
2198 break;
2199
2200 case EF_ARM_LE8:
2201 strcat (buf, ", LE8");
2202 break;
2203
2204 default:
2205 unknown = 1;
2206 break;
2207 }
2208 break;
2209 }
2210 break;
2211
2212 case EF_ARM_EABI_VER5:
2213 strcat (buf, ", Version5 EABI");
2214 while (e_flags)
2215 {
2216 unsigned flag;
2217
2218 /* Process flags one bit at a time. */
2219 flag = e_flags & - e_flags;
2220 e_flags &= ~ flag;
2221
2222 switch (flag)
2223 {
2224 case EF_ARM_BE8:
2225 strcat (buf, ", BE8");
2226 break;
2227
2228 case EF_ARM_LE8:
2229 strcat (buf, ", LE8");
2230 break;
2231
2232 case EF_ARM_ABI_FLOAT_SOFT: /* Conflicts with EF_ARM_SOFT_FLOAT. */
2233 strcat (buf, ", soft-float ABI");
2234 break;
2235
2236 case EF_ARM_ABI_FLOAT_HARD: /* Conflicts with EF_ARM_VFP_FLOAT. */
2237 strcat (buf, ", hard-float ABI");
2238 break;
2239
2240 default:
2241 unknown = 1;
2242 break;
2243 }
2244 }
2245 break;
2246
2247 case EF_ARM_EABI_UNKNOWN:
2248 strcat (buf, ", GNU EABI");
2249 while (e_flags)
2250 {
2251 unsigned flag;
2252
2253 /* Process flags one bit at a time. */
2254 flag = e_flags & - e_flags;
2255 e_flags &= ~ flag;
2256
2257 switch (flag)
2258 {
2259 case EF_ARM_INTERWORK:
2260 strcat (buf, ", interworking enabled");
2261 break;
2262
2263 case EF_ARM_APCS_26:
2264 strcat (buf, ", uses APCS/26");
2265 break;
2266
2267 case EF_ARM_APCS_FLOAT:
2268 strcat (buf, ", uses APCS/float");
2269 break;
2270
2271 case EF_ARM_PIC:
2272 strcat (buf, ", position independent");
2273 break;
2274
2275 case EF_ARM_ALIGN8:
2276 strcat (buf, ", 8 bit structure alignment");
2277 break;
2278
2279 case EF_ARM_NEW_ABI:
2280 strcat (buf, ", uses new ABI");
2281 break;
2282
2283 case EF_ARM_OLD_ABI:
2284 strcat (buf, ", uses old ABI");
2285 break;
2286
2287 case EF_ARM_SOFT_FLOAT:
2288 strcat (buf, ", software FP");
2289 break;
2290
2291 case EF_ARM_VFP_FLOAT:
2292 strcat (buf, ", VFP");
2293 break;
2294
2295 case EF_ARM_MAVERICK_FLOAT:
2296 strcat (buf, ", Maverick FP");
2297 break;
2298
2299 default:
2300 unknown = 1;
2301 break;
2302 }
2303 }
2304 }
2305
2306 if (unknown)
2307 strcat (buf,_(", <unknown>"));
2308 }
2309
2310 static char *
2311 get_machine_flags (unsigned e_flags, unsigned e_machine)
2312 {
2313 static char buf[1024];
2314
2315 buf[0] = '\0';
2316
2317 if (e_flags)
2318 {
2319 switch (e_machine)
2320 {
2321 default:
2322 break;
2323
2324 case EM_ARM:
2325 decode_ARM_machine_flags (e_flags, buf);
2326 break;
2327
2328 case EM_BLACKFIN:
2329 if (e_flags & EF_BFIN_PIC)
2330 strcat (buf, ", PIC");
2331
2332 if (e_flags & EF_BFIN_FDPIC)
2333 strcat (buf, ", FDPIC");
2334
2335 if (e_flags & EF_BFIN_CODE_IN_L1)
2336 strcat (buf, ", code in L1");
2337
2338 if (e_flags & EF_BFIN_DATA_IN_L1)
2339 strcat (buf, ", data in L1");
2340
2341 break;
2342
2343 case EM_CYGNUS_FRV:
2344 switch (e_flags & EF_FRV_CPU_MASK)
2345 {
2346 case EF_FRV_CPU_GENERIC:
2347 break;
2348
2349 default:
2350 strcat (buf, ", fr???");
2351 break;
2352
2353 case EF_FRV_CPU_FR300:
2354 strcat (buf, ", fr300");
2355 break;
2356
2357 case EF_FRV_CPU_FR400:
2358 strcat (buf, ", fr400");
2359 break;
2360 case EF_FRV_CPU_FR405:
2361 strcat (buf, ", fr405");
2362 break;
2363
2364 case EF_FRV_CPU_FR450:
2365 strcat (buf, ", fr450");
2366 break;
2367
2368 case EF_FRV_CPU_FR500:
2369 strcat (buf, ", fr500");
2370 break;
2371 case EF_FRV_CPU_FR550:
2372 strcat (buf, ", fr550");
2373 break;
2374
2375 case EF_FRV_CPU_SIMPLE:
2376 strcat (buf, ", simple");
2377 break;
2378 case EF_FRV_CPU_TOMCAT:
2379 strcat (buf, ", tomcat");
2380 break;
2381 }
2382 break;
2383
2384 case EM_68K:
2385 if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
2386 strcat (buf, ", m68000");
2387 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
2388 strcat (buf, ", cpu32");
2389 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
2390 strcat (buf, ", fido_a");
2391 else
2392 {
2393 char const * isa = _("unknown");
2394 char const * mac = _("unknown mac");
2395 char const * additional = NULL;
2396
2397 switch (e_flags & EF_M68K_CF_ISA_MASK)
2398 {
2399 case EF_M68K_CF_ISA_A_NODIV:
2400 isa = "A";
2401 additional = ", nodiv";
2402 break;
2403 case EF_M68K_CF_ISA_A:
2404 isa = "A";
2405 break;
2406 case EF_M68K_CF_ISA_A_PLUS:
2407 isa = "A+";
2408 break;
2409 case EF_M68K_CF_ISA_B_NOUSP:
2410 isa = "B";
2411 additional = ", nousp";
2412 break;
2413 case EF_M68K_CF_ISA_B:
2414 isa = "B";
2415 break;
2416 case EF_M68K_CF_ISA_C:
2417 isa = "C";
2418 break;
2419 case EF_M68K_CF_ISA_C_NODIV:
2420 isa = "C";
2421 additional = ", nodiv";
2422 break;
2423 }
2424 strcat (buf, ", cf, isa ");
2425 strcat (buf, isa);
2426 if (additional)
2427 strcat (buf, additional);
2428 if (e_flags & EF_M68K_CF_FLOAT)
2429 strcat (buf, ", float");
2430 switch (e_flags & EF_M68K_CF_MAC_MASK)
2431 {
2432 case 0:
2433 mac = NULL;
2434 break;
2435 case EF_M68K_CF_MAC:
2436 mac = "mac";
2437 break;
2438 case EF_M68K_CF_EMAC:
2439 mac = "emac";
2440 break;
2441 case EF_M68K_CF_EMAC_B:
2442 mac = "emac_b";
2443 break;
2444 }
2445 if (mac)
2446 {
2447 strcat (buf, ", ");
2448 strcat (buf, mac);
2449 }
2450 }
2451 break;
2452
2453 case EM_PPC:
2454 if (e_flags & EF_PPC_EMB)
2455 strcat (buf, ", emb");
2456
2457 if (e_flags & EF_PPC_RELOCATABLE)
2458 strcat (buf, _(", relocatable"));
2459
2460 if (e_flags & EF_PPC_RELOCATABLE_LIB)
2461 strcat (buf, _(", relocatable-lib"));
2462 break;
2463
2464 case EM_V800:
2465 if ((e_flags & EF_RH850_ABI) == EF_RH850_ABI)
2466 strcat (buf, ", RH850 ABI");
2467
2468 if (e_flags & EF_V800_850E3)
2469 strcat (buf, ", V3 architecture");
2470
2471 if ((e_flags & (EF_RH850_FPU_DOUBLE | EF_RH850_FPU_SINGLE)) == 0)
2472 strcat (buf, ", FPU not used");
2473
2474 if ((e_flags & (EF_RH850_REGMODE22 | EF_RH850_REGMODE32)) == 0)
2475 strcat (buf, ", regmode: COMMON");
2476
2477 if ((e_flags & (EF_RH850_GP_FIX | EF_RH850_GP_NOFIX)) == 0)
2478 strcat (buf, ", r4 not used");
2479
2480 if ((e_flags & (EF_RH850_EP_FIX | EF_RH850_EP_NOFIX)) == 0)
2481 strcat (buf, ", r30 not used");
2482
2483 if ((e_flags & (EF_RH850_TP_FIX | EF_RH850_TP_NOFIX)) == 0)
2484 strcat (buf, ", r5 not used");
2485
2486 if ((e_flags & (EF_RH850_REG2_RESERVE | EF_RH850_REG2_NORESERVE)) == 0)
2487 strcat (buf, ", r2 not used");
2488
2489 for (e_flags &= 0xFFFF; e_flags; e_flags &= ~ (e_flags & - e_flags))
2490 {
2491 switch (e_flags & - e_flags)
2492 {
2493 case EF_RH850_FPU_DOUBLE: strcat (buf, ", double precision FPU"); break;
2494 case EF_RH850_FPU_SINGLE: strcat (buf, ", single precision FPU"); break;
2495 case EF_RH850_SIMD: strcat (buf, ", SIMD"); break;
2496 case EF_RH850_CACHE: strcat (buf, ", CACHE"); break;
2497 case EF_RH850_MMU: strcat (buf, ", MMU"); break;
2498 case EF_RH850_REGMODE22: strcat (buf, ", regmode:22"); break;
2499 case EF_RH850_REGMODE32: strcat (buf, ", regmode:23"); break;
2500 case EF_RH850_DATA_ALIGN8: strcat (buf, ", 8-byte alignment"); break;
2501 case EF_RH850_GP_FIX: strcat (buf, ", r4 fixed"); break;
2502 case EF_RH850_GP_NOFIX: strcat (buf, ", r4 free"); break;
2503 case EF_RH850_EP_FIX: strcat (buf, ", r30 fixed"); break;
2504 case EF_RH850_EP_NOFIX: strcat (buf, ", r30 free"); break;
2505 case EF_RH850_TP_FIX: strcat (buf, ", r5 fixed"); break;
2506 case EF_RH850_TP_NOFIX: strcat (buf, ", r5 free"); break;
2507 case EF_RH850_REG2_RESERVE: strcat (buf, ", r2 fixed"); break;
2508 case EF_RH850_REG2_NORESERVE: strcat (buf, ", r2 free"); break;
2509 default: break;
2510 }
2511 }
2512 break;
2513
2514 case EM_V850:
2515 case EM_CYGNUS_V850:
2516 switch (e_flags & EF_V850_ARCH)
2517 {
2518 case E_V850E3V5_ARCH:
2519 strcat (buf, ", v850e3v5");
2520 break;
2521 case E_V850E2V3_ARCH:
2522 strcat (buf, ", v850e2v3");
2523 break;
2524 case E_V850E2_ARCH:
2525 strcat (buf, ", v850e2");
2526 break;
2527 case E_V850E1_ARCH:
2528 strcat (buf, ", v850e1");
2529 break;
2530 case E_V850E_ARCH:
2531 strcat (buf, ", v850e");
2532 break;
2533 case E_V850_ARCH:
2534 strcat (buf, ", v850");
2535 break;
2536 default:
2537 strcat (buf, _(", unknown v850 architecture variant"));
2538 break;
2539 }
2540 break;
2541
2542 case EM_M32R:
2543 case EM_CYGNUS_M32R:
2544 if ((e_flags & EF_M32R_ARCH) == E_M32R_ARCH)
2545 strcat (buf, ", m32r");
2546 break;
2547
2548 case EM_MIPS:
2549 case EM_MIPS_RS3_LE:
2550 if (e_flags & EF_MIPS_NOREORDER)
2551 strcat (buf, ", noreorder");
2552
2553 if (e_flags & EF_MIPS_PIC)
2554 strcat (buf, ", pic");
2555
2556 if (e_flags & EF_MIPS_CPIC)
2557 strcat (buf, ", cpic");
2558
2559 if (e_flags & EF_MIPS_UCODE)
2560 strcat (buf, ", ugen_reserved");
2561
2562 if (e_flags & EF_MIPS_ABI2)
2563 strcat (buf, ", abi2");
2564
2565 if (e_flags & EF_MIPS_OPTIONS_FIRST)
2566 strcat (buf, ", odk first");
2567
2568 if (e_flags & EF_MIPS_32BITMODE)
2569 strcat (buf, ", 32bitmode");
2570
2571 switch ((e_flags & EF_MIPS_MACH))
2572 {
2573 case E_MIPS_MACH_3900: strcat (buf, ", 3900"); break;
2574 case E_MIPS_MACH_4010: strcat (buf, ", 4010"); break;
2575 case E_MIPS_MACH_4100: strcat (buf, ", 4100"); break;
2576 case E_MIPS_MACH_4111: strcat (buf, ", 4111"); break;
2577 case E_MIPS_MACH_4120: strcat (buf, ", 4120"); break;
2578 case E_MIPS_MACH_4650: strcat (buf, ", 4650"); break;
2579 case E_MIPS_MACH_5400: strcat (buf, ", 5400"); break;
2580 case E_MIPS_MACH_5500: strcat (buf, ", 5500"); break;
2581 case E_MIPS_MACH_SB1: strcat (buf, ", sb1"); break;
2582 case E_MIPS_MACH_9000: strcat (buf, ", 9000"); break;
2583 case E_MIPS_MACH_LS2E: strcat (buf, ", loongson-2e"); break;
2584 case E_MIPS_MACH_LS2F: strcat (buf, ", loongson-2f"); break;
2585 case E_MIPS_MACH_LS3A: strcat (buf, ", loongson-3a"); break;
2586 case E_MIPS_MACH_OCTEON: strcat (buf, ", octeon"); break;
2587 case E_MIPS_MACH_OCTEON2: strcat (buf, ", octeon2"); break;
2588 case E_MIPS_MACH_XLR: strcat (buf, ", xlr"); break;
2589 case 0:
2590 /* We simply ignore the field in this case to avoid confusion:
2591 MIPS ELF does not specify EF_MIPS_MACH, it is a GNU
2592 extension. */
2593 break;
2594 default: strcat (buf, _(", unknown CPU")); break;
2595 }
2596
2597 switch ((e_flags & EF_MIPS_ABI))
2598 {
2599 case E_MIPS_ABI_O32: strcat (buf, ", o32"); break;
2600 case E_MIPS_ABI_O64: strcat (buf, ", o64"); break;
2601 case E_MIPS_ABI_EABI32: strcat (buf, ", eabi32"); break;
2602 case E_MIPS_ABI_EABI64: strcat (buf, ", eabi64"); break;
2603 case 0:
2604 /* We simply ignore the field in this case to avoid confusion:
2605 MIPS ELF does not specify EF_MIPS_ABI, it is a GNU extension.
2606 This means it is likely to be an o32 file, but not for
2607 sure. */
2608 break;
2609 default: strcat (buf, _(", unknown ABI")); break;
2610 }
2611
2612 if (e_flags & EF_MIPS_ARCH_ASE_MDMX)
2613 strcat (buf, ", mdmx");
2614
2615 if (e_flags & EF_MIPS_ARCH_ASE_M16)
2616 strcat (buf, ", mips16");
2617
2618 if (e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
2619 strcat (buf, ", micromips");
2620
2621 switch ((e_flags & EF_MIPS_ARCH))
2622 {
2623 case E_MIPS_ARCH_1: strcat (buf, ", mips1"); break;
2624 case E_MIPS_ARCH_2: strcat (buf, ", mips2"); break;
2625 case E_MIPS_ARCH_3: strcat (buf, ", mips3"); break;
2626 case E_MIPS_ARCH_4: strcat (buf, ", mips4"); break;
2627 case E_MIPS_ARCH_5: strcat (buf, ", mips5"); break;
2628 case E_MIPS_ARCH_32: strcat (buf, ", mips32"); break;
2629 case E_MIPS_ARCH_32R2: strcat (buf, ", mips32r2"); break;
2630 case E_MIPS_ARCH_64: strcat (buf, ", mips64"); break;
2631 case E_MIPS_ARCH_64R2: strcat (buf, ", mips64r2"); break;
2632 default: strcat (buf, _(", unknown ISA")); break;
2633 }
2634 break;
2635
2636 case EM_SH:
2637 switch ((e_flags & EF_SH_MACH_MASK))
2638 {
2639 case EF_SH1: strcat (buf, ", sh1"); break;
2640 case EF_SH2: strcat (buf, ", sh2"); break;
2641 case EF_SH3: strcat (buf, ", sh3"); break;
2642 case EF_SH_DSP: strcat (buf, ", sh-dsp"); break;
2643 case EF_SH3_DSP: strcat (buf, ", sh3-dsp"); break;
2644 case EF_SH4AL_DSP: strcat (buf, ", sh4al-dsp"); break;
2645 case EF_SH3E: strcat (buf, ", sh3e"); break;
2646 case EF_SH4: strcat (buf, ", sh4"); break;
2647 case EF_SH5: strcat (buf, ", sh5"); break;
2648 case EF_SH2E: strcat (buf, ", sh2e"); break;
2649 case EF_SH4A: strcat (buf, ", sh4a"); break;
2650 case EF_SH2A: strcat (buf, ", sh2a"); break;
2651 case EF_SH4_NOFPU: strcat (buf, ", sh4-nofpu"); break;
2652 case EF_SH4A_NOFPU: strcat (buf, ", sh4a-nofpu"); break;
2653 case EF_SH2A_NOFPU: strcat (buf, ", sh2a-nofpu"); break;
2654 case EF_SH3_NOMMU: strcat (buf, ", sh3-nommu"); break;
2655 case EF_SH4_NOMMU_NOFPU: strcat (buf, ", sh4-nommu-nofpu"); break;
2656 case EF_SH2A_SH4_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh4-nommu-nofpu"); break;
2657 case EF_SH2A_SH3_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh3-nommu"); break;
2658 case EF_SH2A_SH4: strcat (buf, ", sh2a-or-sh4"); break;
2659 case EF_SH2A_SH3E: strcat (buf, ", sh2a-or-sh3e"); break;
2660 default: strcat (buf, _(", unknown ISA")); break;
2661 }
2662
2663 if (e_flags & EF_SH_PIC)
2664 strcat (buf, ", pic");
2665
2666 if (e_flags & EF_SH_FDPIC)
2667 strcat (buf, ", fdpic");
2668 break;
2669
2670 case EM_SPARCV9:
2671 if (e_flags & EF_SPARC_32PLUS)
2672 strcat (buf, ", v8+");
2673
2674 if (e_flags & EF_SPARC_SUN_US1)
2675 strcat (buf, ", ultrasparcI");
2676
2677 if (e_flags & EF_SPARC_SUN_US3)
2678 strcat (buf, ", ultrasparcIII");
2679
2680 if (e_flags & EF_SPARC_HAL_R1)
2681 strcat (buf, ", halr1");
2682
2683 if (e_flags & EF_SPARC_LEDATA)
2684 strcat (buf, ", ledata");
2685
2686 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_TSO)
2687 strcat (buf, ", tso");
2688
2689 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_PSO)
2690 strcat (buf, ", pso");
2691
2692 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_RMO)
2693 strcat (buf, ", rmo");
2694 break;
2695
2696 case EM_PARISC:
2697 switch (e_flags & EF_PARISC_ARCH)
2698 {
2699 case EFA_PARISC_1_0:
2700 strcpy (buf, ", PA-RISC 1.0");
2701 break;
2702 case EFA_PARISC_1_1:
2703 strcpy (buf, ", PA-RISC 1.1");
2704 break;
2705 case EFA_PARISC_2_0:
2706 strcpy (buf, ", PA-RISC 2.0");
2707 break;
2708 default:
2709 break;
2710 }
2711 if (e_flags & EF_PARISC_TRAPNIL)
2712 strcat (buf, ", trapnil");
2713 if (e_flags & EF_PARISC_EXT)
2714 strcat (buf, ", ext");
2715 if (e_flags & EF_PARISC_LSB)
2716 strcat (buf, ", lsb");
2717 if (e_flags & EF_PARISC_WIDE)
2718 strcat (buf, ", wide");
2719 if (e_flags & EF_PARISC_NO_KABP)
2720 strcat (buf, ", no kabp");
2721 if (e_flags & EF_PARISC_LAZYSWAP)
2722 strcat (buf, ", lazyswap");
2723 break;
2724
2725 case EM_PJ:
2726 case EM_PJ_OLD:
2727 if ((e_flags & EF_PICOJAVA_NEWCALLS) == EF_PICOJAVA_NEWCALLS)
2728 strcat (buf, ", new calling convention");
2729
2730 if ((e_flags & EF_PICOJAVA_GNUCALLS) == EF_PICOJAVA_GNUCALLS)
2731 strcat (buf, ", gnu calling convention");
2732 break;
2733
2734 case EM_IA_64:
2735 if ((e_flags & EF_IA_64_ABI64))
2736 strcat (buf, ", 64-bit");
2737 else
2738 strcat (buf, ", 32-bit");
2739 if ((e_flags & EF_IA_64_REDUCEDFP))
2740 strcat (buf, ", reduced fp model");
2741 if ((e_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
2742 strcat (buf, ", no function descriptors, constant gp");
2743 else if ((e_flags & EF_IA_64_CONS_GP))
2744 strcat (buf, ", constant gp");
2745 if ((e_flags & EF_IA_64_ABSOLUTE))
2746 strcat (buf, ", absolute");
2747 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
2748 {
2749 if ((e_flags & EF_IA_64_VMS_LINKAGES))
2750 strcat (buf, ", vms_linkages");
2751 switch ((e_flags & EF_IA_64_VMS_COMCOD))
2752 {
2753 case EF_IA_64_VMS_COMCOD_SUCCESS:
2754 break;
2755 case EF_IA_64_VMS_COMCOD_WARNING:
2756 strcat (buf, ", warning");
2757 break;
2758 case EF_IA_64_VMS_COMCOD_ERROR:
2759 strcat (buf, ", error");
2760 break;
2761 case EF_IA_64_VMS_COMCOD_ABORT:
2762 strcat (buf, ", abort");
2763 break;
2764 default:
2765 abort ();
2766 }
2767 }
2768 break;
2769
2770 case EM_VAX:
2771 if ((e_flags & EF_VAX_NONPIC))
2772 strcat (buf, ", non-PIC");
2773 if ((e_flags & EF_VAX_DFLOAT))
2774 strcat (buf, ", D-Float");
2775 if ((e_flags & EF_VAX_GFLOAT))
2776 strcat (buf, ", G-Float");
2777 break;
2778
2779 case EM_RX:
2780 if (e_flags & E_FLAG_RX_64BIT_DOUBLES)
2781 strcat (buf, ", 64-bit doubles");
2782 if (e_flags & E_FLAG_RX_DSP)
2783 strcat (buf, ", dsp");
2784 if (e_flags & E_FLAG_RX_PID)
2785 strcat (buf, ", pid");
2786 if (e_flags & E_FLAG_RX_ABI)
2787 strcat (buf, ", RX ABI");
2788 break;
2789
2790 case EM_S390:
2791 if (e_flags & EF_S390_HIGH_GPRS)
2792 strcat (buf, ", highgprs");
2793 break;
2794
2795 case EM_TI_C6000:
2796 if ((e_flags & EF_C6000_REL))
2797 strcat (buf, ", relocatable module");
2798 break;
2799
2800 case EM_MSP430:
2801 strcat (buf, _(": architecture variant: "));
2802 switch (e_flags & EF_MSP430_MACH)
2803 {
2804 case E_MSP430_MACH_MSP430x11: strcat (buf, "MSP430x11"); break;
2805 case E_MSP430_MACH_MSP430x11x1 : strcat (buf, "MSP430x11x1 "); break;
2806 case E_MSP430_MACH_MSP430x12: strcat (buf, "MSP430x12"); break;
2807 case E_MSP430_MACH_MSP430x13: strcat (buf, "MSP430x13"); break;
2808 case E_MSP430_MACH_MSP430x14: strcat (buf, "MSP430x14"); break;
2809 case E_MSP430_MACH_MSP430x15: strcat (buf, "MSP430x15"); break;
2810 case E_MSP430_MACH_MSP430x16: strcat (buf, "MSP430x16"); break;
2811 case E_MSP430_MACH_MSP430x31: strcat (buf, "MSP430x31"); break;
2812 case E_MSP430_MACH_MSP430x32: strcat (buf, "MSP430x32"); break;
2813 case E_MSP430_MACH_MSP430x33: strcat (buf, "MSP430x33"); break;
2814 case E_MSP430_MACH_MSP430x41: strcat (buf, "MSP430x41"); break;
2815 case E_MSP430_MACH_MSP430x42: strcat (buf, "MSP430x42"); break;
2816 case E_MSP430_MACH_MSP430x43: strcat (buf, "MSP430x43"); break;
2817 case E_MSP430_MACH_MSP430x44: strcat (buf, "MSP430x44"); break;
2818 case E_MSP430_MACH_MSP430X : strcat (buf, "MSP430X"); break;
2819 default:
2820 strcat (buf, _(": unknown")); break;
2821 }
2822
2823 if (e_flags & ~ EF_MSP430_MACH)
2824 strcat (buf, _(": unknown extra flag bits also present"));
2825 }
2826 }
2827
2828 return buf;
2829 }
2830
2831 static const char *
2832 get_osabi_name (unsigned int osabi)
2833 {
2834 static char buff[32];
2835
2836 switch (osabi)
2837 {
2838 case ELFOSABI_NONE: return "UNIX - System V";
2839 case ELFOSABI_HPUX: return "UNIX - HP-UX";
2840 case ELFOSABI_NETBSD: return "UNIX - NetBSD";
2841 case ELFOSABI_GNU: return "UNIX - GNU";
2842 case ELFOSABI_SOLARIS: return "UNIX - Solaris";
2843 case ELFOSABI_AIX: return "UNIX - AIX";
2844 case ELFOSABI_IRIX: return "UNIX - IRIX";
2845 case ELFOSABI_FREEBSD: return "UNIX - FreeBSD";
2846 case ELFOSABI_TRU64: return "UNIX - TRU64";
2847 case ELFOSABI_MODESTO: return "Novell - Modesto";
2848 case ELFOSABI_OPENBSD: return "UNIX - OpenBSD";
2849 case ELFOSABI_OPENVMS: return "VMS - OpenVMS";
2850 case ELFOSABI_NSK: return "HP - Non-Stop Kernel";
2851 case ELFOSABI_AROS: return "AROS";
2852 case ELFOSABI_FENIXOS: return "FenixOS";
2853 default:
2854 if (osabi >= 64)
2855 switch (elf_header.e_machine)
2856 {
2857 case EM_ARM:
2858 switch (osabi)
2859 {
2860 case ELFOSABI_ARM: return "ARM";
2861 default:
2862 break;
2863 }
2864 break;
2865
2866 case EM_MSP430:
2867 case EM_MSP430_OLD:
2868 switch (osabi)
2869 {
2870 case ELFOSABI_STANDALONE: return _("Standalone App");
2871 default:
2872 break;
2873 }
2874 break;
2875
2876 case EM_TI_C6000:
2877 switch (osabi)
2878 {
2879 case ELFOSABI_C6000_ELFABI: return _("Bare-metal C6000");
2880 case ELFOSABI_C6000_LINUX: return "Linux C6000";
2881 default:
2882 break;
2883 }
2884 break;
2885
2886 default:
2887 break;
2888 }
2889 snprintf (buff, sizeof (buff), _("<unknown: %x>"), osabi);
2890 return buff;
2891 }
2892 }
2893
2894 static const char *
2895 get_aarch64_segment_type (unsigned long type)
2896 {
2897 switch (type)
2898 {
2899 case PT_AARCH64_ARCHEXT:
2900 return "AARCH64_ARCHEXT";
2901 default:
2902 break;
2903 }
2904
2905 return NULL;
2906 }
2907
2908 static const char *
2909 get_arm_segment_type (unsigned long type)
2910 {
2911 switch (type)
2912 {
2913 case PT_ARM_EXIDX:
2914 return "EXIDX";
2915 default:
2916 break;
2917 }
2918
2919 return NULL;
2920 }
2921
2922 static const char *
2923 get_mips_segment_type (unsigned long type)
2924 {
2925 switch (type)
2926 {
2927 case PT_MIPS_REGINFO:
2928 return "REGINFO";
2929 case PT_MIPS_RTPROC:
2930 return "RTPROC";
2931 case PT_MIPS_OPTIONS:
2932 return "OPTIONS";
2933 default:
2934 break;
2935 }
2936
2937 return NULL;
2938 }
2939
2940 static const char *
2941 get_parisc_segment_type (unsigned long type)
2942 {
2943 switch (type)
2944 {
2945 case PT_HP_TLS: return "HP_TLS";
2946 case PT_HP_CORE_NONE: return "HP_CORE_NONE";
2947 case PT_HP_CORE_VERSION: return "HP_CORE_VERSION";
2948 case PT_HP_CORE_KERNEL: return "HP_CORE_KERNEL";
2949 case PT_HP_CORE_COMM: return "HP_CORE_COMM";
2950 case PT_HP_CORE_PROC: return "HP_CORE_PROC";
2951 case PT_HP_CORE_LOADABLE: return "HP_CORE_LOADABLE";
2952 case PT_HP_CORE_STACK: return "HP_CORE_STACK";
2953 case PT_HP_CORE_SHM: return "HP_CORE_SHM";
2954 case PT_HP_CORE_MMF: return "HP_CORE_MMF";
2955 case PT_HP_PARALLEL: return "HP_PARALLEL";
2956 case PT_HP_FASTBIND: return "HP_FASTBIND";
2957 case PT_HP_OPT_ANNOT: return "HP_OPT_ANNOT";
2958 case PT_HP_HSL_ANNOT: return "HP_HSL_ANNOT";
2959 case PT_HP_STACK: return "HP_STACK";
2960 case PT_HP_CORE_UTSNAME: return "HP_CORE_UTSNAME";
2961 case PT_PARISC_ARCHEXT: return "PARISC_ARCHEXT";
2962 case PT_PARISC_UNWIND: return "PARISC_UNWIND";
2963 case PT_PARISC_WEAKORDER: return "PARISC_WEAKORDER";
2964 default:
2965 break;
2966 }
2967
2968 return NULL;
2969 }
2970
2971 static const char *
2972 get_ia64_segment_type (unsigned long type)
2973 {
2974 switch (type)
2975 {
2976 case PT_IA_64_ARCHEXT: return "IA_64_ARCHEXT";
2977 case PT_IA_64_UNWIND: return "IA_64_UNWIND";
2978 case PT_HP_TLS: return "HP_TLS";
2979 case PT_IA_64_HP_OPT_ANOT: return "HP_OPT_ANNOT";
2980 case PT_IA_64_HP_HSL_ANOT: return "HP_HSL_ANNOT";
2981 case PT_IA_64_HP_STACK: return "HP_STACK";
2982 default:
2983 break;
2984 }
2985
2986 return NULL;
2987 }
2988
2989 static const char *
2990 get_tic6x_segment_type (unsigned long type)
2991 {
2992 switch (type)
2993 {
2994 case PT_C6000_PHATTR: return "C6000_PHATTR";
2995 default:
2996 break;
2997 }
2998
2999 return NULL;
3000 }
3001
3002 static const char *
3003 get_segment_type (unsigned long p_type)
3004 {
3005 static char buff[32];
3006
3007 switch (p_type)
3008 {
3009 case PT_NULL: return "NULL";
3010 case PT_LOAD: return "LOAD";
3011 case PT_DYNAMIC: return "DYNAMIC";
3012 case PT_INTERP: return "INTERP";
3013 case PT_NOTE: return "NOTE";
3014 case PT_SHLIB: return "SHLIB";
3015 case PT_PHDR: return "PHDR";
3016 case PT_TLS: return "TLS";
3017
3018 case PT_GNU_EH_FRAME:
3019 return "GNU_EH_FRAME";
3020 case PT_GNU_STACK: return "GNU_STACK";
3021 case PT_GNU_RELRO: return "GNU_RELRO";
3022
3023 default:
3024 if ((p_type >= PT_LOPROC) && (p_type <= PT_HIPROC))
3025 {
3026 const char * result;
3027
3028 switch (elf_header.e_machine)
3029 {
3030 case EM_AARCH64:
3031 result = get_aarch64_segment_type (p_type);
3032 break;
3033 case EM_ARM:
3034 result = get_arm_segment_type (p_type);
3035 break;
3036 case EM_MIPS:
3037 case EM_MIPS_RS3_LE:
3038 result = get_mips_segment_type (p_type);
3039 break;
3040 case EM_PARISC:
3041 result = get_parisc_segment_type (p_type);
3042 break;
3043 case EM_IA_64:
3044 result = get_ia64_segment_type (p_type);
3045 break;
3046 case EM_TI_C6000:
3047 result = get_tic6x_segment_type (p_type);
3048 break;
3049 default:
3050 result = NULL;
3051 break;
3052 }
3053
3054 if (result != NULL)
3055 return result;
3056
3057 sprintf (buff, "LOPROC+%lx", p_type - PT_LOPROC);
3058 }
3059 else if ((p_type >= PT_LOOS) && (p_type <= PT_HIOS))
3060 {
3061 const char * result;
3062
3063 switch (elf_header.e_machine)
3064 {
3065 case EM_PARISC:
3066 result = get_parisc_segment_type (p_type);
3067 break;
3068 case EM_IA_64:
3069 result = get_ia64_segment_type (p_type);
3070 break;
3071 default:
3072 result = NULL;
3073 break;
3074 }
3075
3076 if (result != NULL)
3077 return result;
3078
3079 sprintf (buff, "LOOS+%lx", p_type - PT_LOOS);
3080 }
3081 else
3082 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), p_type);
3083
3084 return buff;
3085 }
3086 }
3087
3088 static const char *
3089 get_mips_section_type_name (unsigned int sh_type)
3090 {
3091 switch (sh_type)
3092 {
3093 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
3094 case SHT_MIPS_MSYM: return "MIPS_MSYM";
3095 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
3096 case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
3097 case SHT_MIPS_UCODE: return "MIPS_UCODE";
3098 case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
3099 case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
3100 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
3101 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
3102 case SHT_MIPS_RELD: return "MIPS_RELD";
3103 case SHT_MIPS_IFACE: return "MIPS_IFACE";
3104 case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
3105 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
3106 case SHT_MIPS_SHDR: return "MIPS_SHDR";
3107 case SHT_MIPS_FDESC: return "MIPS_FDESC";
3108 case SHT_MIPS_EXTSYM: return "MIPS_EXTSYM";
3109 case SHT_MIPS_DENSE: return "MIPS_DENSE";
3110 case SHT_MIPS_PDESC: return "MIPS_PDESC";
3111 case SHT_MIPS_LOCSYM: return "MIPS_LOCSYM";
3112 case SHT_MIPS_AUXSYM: return "MIPS_AUXSYM";
3113 case SHT_MIPS_OPTSYM: return "MIPS_OPTSYM";
3114 case SHT_MIPS_LOCSTR: return "MIPS_LOCSTR";
3115 case SHT_MIPS_LINE: return "MIPS_LINE";
3116 case SHT_MIPS_RFDESC: return "MIPS_RFDESC";
3117 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
3118 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
3119 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
3120 case SHT_MIPS_DWARF: return "MIPS_DWARF";
3121 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
3122 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
3123 case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
3124 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
3125 case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
3126 case SHT_MIPS_XLATE: return "MIPS_XLATE";
3127 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
3128 case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
3129 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
3130 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
3131 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
3132 default:
3133 break;
3134 }
3135 return NULL;
3136 }
3137
3138 static const char *
3139 get_parisc_section_type_name (unsigned int sh_type)
3140 {
3141 switch (sh_type)
3142 {
3143 case SHT_PARISC_EXT: return "PARISC_EXT";
3144 case SHT_PARISC_UNWIND: return "PARISC_UNWIND";
3145 case SHT_PARISC_DOC: return "PARISC_DOC";
3146 case SHT_PARISC_ANNOT: return "PARISC_ANNOT";
3147 case SHT_PARISC_SYMEXTN: return "PARISC_SYMEXTN";
3148 case SHT_PARISC_STUBS: return "PARISC_STUBS";
3149 case SHT_PARISC_DLKM: return "PARISC_DLKM";
3150 default:
3151 break;
3152 }
3153 return NULL;
3154 }
3155
3156 static const char *
3157 get_ia64_section_type_name (unsigned int sh_type)
3158 {
3159 /* If the top 8 bits are 0x78 the next 8 are the os/abi ID. */
3160 if ((sh_type & 0xFF000000) == SHT_IA_64_LOPSREG)
3161 return get_osabi_name ((sh_type & 0x00FF0000) >> 16);
3162
3163 switch (sh_type)
3164 {
3165 case SHT_IA_64_EXT: return "IA_64_EXT";
3166 case SHT_IA_64_UNWIND: return "IA_64_UNWIND";
3167 case SHT_IA_64_PRIORITY_INIT: return "IA_64_PRIORITY_INIT";
3168 case SHT_IA_64_VMS_TRACE: return "VMS_TRACE";
3169 case SHT_IA_64_VMS_TIE_SIGNATURES: return "VMS_TIE_SIGNATURES";
3170 case SHT_IA_64_VMS_DEBUG: return "VMS_DEBUG";
3171 case SHT_IA_64_VMS_DEBUG_STR: return "VMS_DEBUG_STR";
3172 case SHT_IA_64_VMS_LINKAGES: return "VMS_LINKAGES";
3173 case SHT_IA_64_VMS_SYMBOL_VECTOR: return "VMS_SYMBOL_VECTOR";
3174 case SHT_IA_64_VMS_FIXUP: return "VMS_FIXUP";
3175 default:
3176 break;
3177 }
3178 return NULL;
3179 }
3180
3181 static const char *
3182 get_x86_64_section_type_name (unsigned int sh_type)
3183 {
3184 switch (sh_type)
3185 {
3186 case SHT_X86_64_UNWIND: return "X86_64_UNWIND";
3187 default:
3188 break;
3189 }
3190 return NULL;
3191 }
3192
3193 static const char *
3194 get_aarch64_section_type_name (unsigned int sh_type)
3195 {
3196 switch (sh_type)
3197 {
3198 case SHT_AARCH64_ATTRIBUTES:
3199 return "AARCH64_ATTRIBUTES";
3200 default:
3201 break;
3202 }
3203 return NULL;
3204 }
3205
3206 static const char *
3207 get_arm_section_type_name (unsigned int sh_type)
3208 {
3209 switch (sh_type)
3210 {
3211 case SHT_ARM_EXIDX: return "ARM_EXIDX";
3212 case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP";
3213 case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES";
3214 case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY";
3215 case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION";
3216 default:
3217 break;
3218 }
3219 return NULL;
3220 }
3221
3222 static const char *
3223 get_tic6x_section_type_name (unsigned int sh_type)
3224 {
3225 switch (sh_type)
3226 {
3227 case SHT_C6000_UNWIND:
3228 return "C6000_UNWIND";
3229 case SHT_C6000_PREEMPTMAP:
3230 return "C6000_PREEMPTMAP";
3231 case SHT_C6000_ATTRIBUTES:
3232 return "C6000_ATTRIBUTES";
3233 case SHT_TI_ICODE:
3234 return "TI_ICODE";
3235 case SHT_TI_XREF:
3236 return "TI_XREF";
3237 case SHT_TI_HANDLER:
3238 return "TI_HANDLER";
3239 case SHT_TI_INITINFO:
3240 return "TI_INITINFO";
3241 case SHT_TI_PHATTRS:
3242 return "TI_PHATTRS";
3243 default:
3244 break;
3245 }
3246 return NULL;
3247 }
3248
3249 static const char *
3250 get_msp430x_section_type_name (unsigned int sh_type)
3251 {
3252 switch (sh_type)
3253 {
3254 case SHT_MSP430_SEC_FLAGS: return "MSP430_SEC_FLAGS";
3255 case SHT_MSP430_SYM_ALIASES: return "MSP430_SYM_ALIASES";
3256 case SHT_MSP430_ATTRIBUTES: return "MSP430_ATTRIBUTES";
3257 default: return NULL;
3258 }
3259 }
3260
3261 static const char *
3262 get_section_type_name (unsigned int sh_type)
3263 {
3264 static char buff[32];
3265
3266 switch (sh_type)
3267 {
3268 case SHT_NULL: return "NULL";
3269 case SHT_PROGBITS: return "PROGBITS";
3270 case SHT_SYMTAB: return "SYMTAB";
3271 case SHT_STRTAB: return "STRTAB";
3272 case SHT_RELA: return "RELA";
3273 case SHT_HASH: return "HASH";
3274 case SHT_DYNAMIC: return "DYNAMIC";
3275 case SHT_NOTE: return "NOTE";
3276 case SHT_NOBITS: return "NOBITS";
3277 case SHT_REL: return "REL";
3278 case SHT_SHLIB: return "SHLIB";
3279 case SHT_DYNSYM: return "DYNSYM";
3280 case SHT_INIT_ARRAY: return "INIT_ARRAY";
3281 case SHT_FINI_ARRAY: return "FINI_ARRAY";
3282 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
3283 case SHT_GNU_HASH: return "GNU_HASH";
3284 case SHT_GROUP: return "GROUP";
3285 case SHT_SYMTAB_SHNDX: return "SYMTAB SECTION INDICIES";
3286 case SHT_GNU_verdef: return "VERDEF";
3287 case SHT_GNU_verneed: return "VERNEED";
3288 case SHT_GNU_versym: return "VERSYM";
3289 case 0x6ffffff0: return "VERSYM";
3290 case 0x6ffffffc: return "VERDEF";
3291 case 0x7ffffffd: return "AUXILIARY";
3292 case 0x7fffffff: return "FILTER";
3293 case SHT_GNU_LIBLIST: return "GNU_LIBLIST";
3294
3295 default:
3296 if ((sh_type >= SHT_LOPROC) && (sh_type <= SHT_HIPROC))
3297 {
3298 const char * result;
3299
3300 switch (elf_header.e_machine)
3301 {
3302 case EM_MIPS:
3303 case EM_MIPS_RS3_LE:
3304 result = get_mips_section_type_name (sh_type);
3305 break;
3306 case EM_PARISC:
3307 result = get_parisc_section_type_name (sh_type);
3308 break;
3309 case EM_IA_64:
3310 result = get_ia64_section_type_name (sh_type);
3311 break;
3312 case EM_X86_64:
3313 case EM_L1OM:
3314 case EM_K1OM:
3315 result = get_x86_64_section_type_name (sh_type);
3316 break;
3317 case EM_AARCH64:
3318 result = get_aarch64_section_type_name (sh_type);
3319 break;
3320 case EM_ARM:
3321 result = get_arm_section_type_name (sh_type);
3322 break;
3323 case EM_TI_C6000:
3324 result = get_tic6x_section_type_name (sh_type);
3325 break;
3326 case EM_MSP430:
3327 result = get_msp430x_section_type_name (sh_type);
3328 break;
3329 default:
3330 result = NULL;
3331 break;
3332 }
3333
3334 if (result != NULL)
3335 return result;
3336
3337 sprintf (buff, "LOPROC+%x", sh_type - SHT_LOPROC);
3338 }
3339 else if ((sh_type >= SHT_LOOS) && (sh_type <= SHT_HIOS))
3340 {
3341 const char * result;
3342
3343 switch (elf_header.e_machine)
3344 {
3345 case EM_IA_64:
3346 result = get_ia64_section_type_name (sh_type);
3347 break;
3348 default:
3349 result = NULL;
3350 break;
3351 }
3352
3353 if (result != NULL)
3354 return result;
3355
3356 sprintf (buff, "LOOS+%x", sh_type - SHT_LOOS);
3357 }
3358 else if ((sh_type >= SHT_LOUSER) && (sh_type <= SHT_HIUSER))
3359 sprintf (buff, "LOUSER+%x", sh_type - SHT_LOUSER);
3360 else
3361 /* This message is probably going to be displayed in a 15
3362 character wide field, so put the hex value first. */
3363 snprintf (buff, sizeof (buff), _("%08x: <unknown>"), sh_type);
3364
3365 return buff;
3366 }
3367 }
3368
3369 #define OPTION_DEBUG_DUMP 512
3370 #define OPTION_DYN_SYMS 513
3371 #define OPTION_DWARF_DEPTH 514
3372 #define OPTION_DWARF_START 515
3373 #define OPTION_DWARF_CHECK 516
3374
3375 static struct option options[] =
3376 {
3377 {"all", no_argument, 0, 'a'},
3378 {"file-header", no_argument, 0, 'h'},
3379 {"program-headers", no_argument, 0, 'l'},
3380 {"headers", no_argument, 0, 'e'},
3381 {"histogram", no_argument, 0, 'I'},
3382 {"segments", no_argument, 0, 'l'},
3383 {"sections", no_argument, 0, 'S'},
3384 {"section-headers", no_argument, 0, 'S'},
3385 {"section-groups", no_argument, 0, 'g'},
3386 {"section-details", no_argument, 0, 't'},
3387 {"full-section-name",no_argument, 0, 'N'},
3388 {"symbols", no_argument, 0, 's'},
3389 {"syms", no_argument, 0, 's'},
3390 {"dyn-syms", no_argument, 0, OPTION_DYN_SYMS},
3391 {"relocs", no_argument, 0, 'r'},
3392 {"notes", no_argument, 0, 'n'},
3393 {"dynamic", no_argument, 0, 'd'},
3394 {"arch-specific", no_argument, 0, 'A'},
3395 {"version-info", no_argument, 0, 'V'},
3396 {"use-dynamic", no_argument, 0, 'D'},
3397 {"unwind", no_argument, 0, 'u'},
3398 {"archive-index", no_argument, 0, 'c'},
3399 {"hex-dump", required_argument, 0, 'x'},
3400 {"relocated-dump", required_argument, 0, 'R'},
3401 {"string-dump", required_argument, 0, 'p'},
3402 #ifdef SUPPORT_DISASSEMBLY
3403 {"instruction-dump", required_argument, 0, 'i'},
3404 #endif
3405 {"debug-dump", optional_argument, 0, OPTION_DEBUG_DUMP},
3406
3407 {"dwarf-depth", required_argument, 0, OPTION_DWARF_DEPTH},
3408 {"dwarf-start", required_argument, 0, OPTION_DWARF_START},
3409 {"dwarf-check", no_argument, 0, OPTION_DWARF_CHECK},
3410
3411 {"version", no_argument, 0, 'v'},
3412 {"wide", no_argument, 0, 'W'},
3413 {"help", no_argument, 0, 'H'},
3414 {0, no_argument, 0, 0}
3415 };
3416
3417 static void
3418 usage (FILE * stream)
3419 {
3420 fprintf (stream, _("Usage: readelf <option(s)> elf-file(s)\n"));
3421 fprintf (stream, _(" Display information about the contents of ELF format files\n"));
3422 fprintf (stream, _(" Options are:\n\
3423 -a --all Equivalent to: -h -l -S -s -r -d -V -A -I\n\
3424 -h --file-header Display the ELF file header\n\
3425 -l --program-headers Display the program headers\n\
3426 --segments An alias for --program-headers\n\
3427 -S --section-headers Display the sections' header\n\
3428 --sections An alias for --section-headers\n\
3429 -g --section-groups Display the section groups\n\
3430 -t --section-details Display the section details\n\
3431 -e --headers Equivalent to: -h -l -S\n\
3432 -s --syms Display the symbol table\n\
3433 --symbols An alias for --syms\n\
3434 --dyn-syms Display the dynamic symbol table\n\
3435 -n --notes Display the core notes (if present)\n\
3436 -r --relocs Display the relocations (if present)\n\
3437 -u --unwind Display the unwind info (if present)\n\
3438 -d --dynamic Display the dynamic section (if present)\n\
3439 -V --version-info Display the version sections (if present)\n\
3440 -A --arch-specific Display architecture specific information (if any)\n\
3441 -c --archive-index Display the symbol/file index in an archive\n\
3442 -D --use-dynamic Use the dynamic section info when displaying symbols\n\
3443 -x --hex-dump=<number|name>\n\
3444 Dump the contents of section <number|name> as bytes\n\
3445 -p --string-dump=<number|name>\n\
3446 Dump the contents of section <number|name> as strings\n\
3447 -R --relocated-dump=<number|name>\n\
3448 Dump the contents of section <number|name> as relocated bytes\n\
3449 -w[lLiaprmfFsoRt] or\n\
3450 --debug-dump[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,\n\
3451 =frames-interp,=str,=loc,=Ranges,=pubtypes,\n\
3452 =gdb_index,=trace_info,=trace_abbrev,=trace_aranges,\n\
3453 =addr,=cu_index]\n\
3454 Display the contents of DWARF2 debug sections\n"));
3455 fprintf (stream, _("\
3456 --dwarf-depth=N Do not display DIEs at depth N or greater\n\
3457 --dwarf-start=N Display DIEs starting with N, at the same depth\n\
3458 or deeper\n"));
3459 #ifdef SUPPORT_DISASSEMBLY
3460 fprintf (stream, _("\
3461 -i --instruction-dump=<number|name>\n\
3462 Disassemble the contents of section <number|name>\n"));
3463 #endif
3464 fprintf (stream, _("\
3465 -I --histogram Display histogram of bucket list lengths\n\
3466 -W --wide Allow output width to exceed 80 characters\n\
3467 @<file> Read options from <file>\n\
3468 -H --help Display this information\n\
3469 -v --version Display the version number of readelf\n"));
3470
3471 if (REPORT_BUGS_TO[0] && stream == stdout)
3472 fprintf (stdout, _("Report bugs to %s\n"), REPORT_BUGS_TO);
3473
3474 exit (stream == stdout ? 0 : 1);
3475 }
3476
3477 /* Record the fact that the user wants the contents of section number
3478 SECTION to be displayed using the method(s) encoded as flags bits
3479 in TYPE. Note, TYPE can be zero if we are creating the array for
3480 the first time. */
3481
3482 static void
3483 request_dump_bynumber (unsigned int section, dump_type type)
3484 {
3485 if (section >= num_dump_sects)
3486 {
3487 dump_type * new_dump_sects;
3488
3489 new_dump_sects = (dump_type *) calloc (section + 1,
3490 sizeof (* dump_sects));
3491
3492 if (new_dump_sects == NULL)
3493 error (_("Out of memory allocating dump request table.\n"));
3494 else
3495 {
3496 /* Copy current flag settings. */
3497 memcpy (new_dump_sects, dump_sects, num_dump_sects * sizeof (* dump_sects));
3498
3499 free (dump_sects);
3500
3501 dump_sects = new_dump_sects;
3502 num_dump_sects = section + 1;
3503 }
3504 }
3505
3506 if (dump_sects)
3507 dump_sects[section] |= type;
3508
3509 return;
3510 }
3511
3512 /* Request a dump by section name. */
3513
3514 static void
3515 request_dump_byname (const char * section, dump_type type)
3516 {
3517 struct dump_list_entry * new_request;
3518
3519 new_request = (struct dump_list_entry *)
3520 malloc (sizeof (struct dump_list_entry));
3521 if (!new_request)
3522 error (_("Out of memory allocating dump request table.\n"));
3523
3524 new_request->name = strdup (section);
3525 if (!new_request->name)
3526 error (_("Out of memory allocating dump request table.\n"));
3527
3528 new_request->type = type;
3529
3530 new_request->next = dump_sects_byname;
3531 dump_sects_byname = new_request;
3532 }
3533
3534 static inline void
3535 request_dump (dump_type type)
3536 {
3537 int section;
3538 char * cp;
3539
3540 do_dump++;
3541 section = strtoul (optarg, & cp, 0);
3542
3543 if (! *cp && section >= 0)
3544 request_dump_bynumber (section, type);
3545 else
3546 request_dump_byname (optarg, type);
3547 }
3548
3549
3550 static void
3551 parse_args (int argc, char ** argv)
3552 {
3553 int c;
3554
3555 if (argc < 2)
3556 usage (stderr);
3557
3558 while ((c = getopt_long
3559 (argc, argv, "ADHINR:SVWacdeghi:lnp:rstuvw::x:", options, NULL)) != EOF)
3560 {
3561 switch (c)
3562 {
3563 case 0:
3564 /* Long options. */
3565 break;
3566 case 'H':
3567 usage (stdout);
3568 break;
3569
3570 case 'a':
3571 do_syms++;
3572 do_reloc++;
3573 do_unwind++;
3574 do_dynamic++;
3575 do_header++;
3576 do_sections++;
3577 do_section_groups++;
3578 do_segments++;
3579 do_version++;
3580 do_histogram++;
3581 do_arch++;
3582 do_notes++;
3583 break;
3584 case 'g':
3585 do_section_groups++;
3586 break;
3587 case 't':
3588 case 'N':
3589 do_sections++;
3590 do_section_details++;
3591 break;
3592 case 'e':
3593 do_header++;
3594 do_sections++;
3595 do_segments++;
3596 break;
3597 case 'A':
3598 do_arch++;
3599 break;
3600 case 'D':
3601 do_using_dynamic++;
3602 break;
3603 case 'r':
3604 do_reloc++;
3605 break;
3606 case 'u':
3607 do_unwind++;
3608 break;
3609 case 'h':
3610 do_header++;
3611 break;
3612 case 'l':
3613 do_segments++;
3614 break;
3615 case 's':
3616 do_syms++;
3617 break;
3618 case 'S':
3619 do_sections++;
3620 break;
3621 case 'd':
3622 do_dynamic++;
3623 break;
3624 case 'I':
3625 do_histogram++;
3626 break;
3627 case 'n':
3628 do_notes++;
3629 break;
3630 case 'c':
3631 do_archive_index++;
3632 break;
3633 case 'x':
3634 request_dump (HEX_DUMP);
3635 break;
3636 case 'p':
3637 request_dump (STRING_DUMP);
3638 break;
3639 case 'R':
3640 request_dump (RELOC_DUMP);
3641 break;
3642 case 'w':
3643 do_dump++;
3644 if (optarg == 0)
3645 {
3646 do_debugging = 1;
3647 dwarf_select_sections_all ();
3648 }
3649 else
3650 {
3651 do_debugging = 0;
3652 dwarf_select_sections_by_letters (optarg);
3653 }
3654 break;
3655 case OPTION_DEBUG_DUMP:
3656 do_dump++;
3657 if (optarg == 0)
3658 do_debugging = 1;
3659 else
3660 {
3661 do_debugging = 0;
3662 dwarf_select_sections_by_names (optarg);
3663 }
3664 break;
3665 case OPTION_DWARF_DEPTH:
3666 {
3667 char *cp;
3668
3669 dwarf_cutoff_level = strtoul (optarg, & cp, 0);
3670 }
3671 break;
3672 case OPTION_DWARF_START:
3673 {
3674 char *cp;
3675
3676 dwarf_start_die = strtoul (optarg, & cp, 0);
3677 }
3678 break;
3679 case OPTION_DWARF_CHECK:
3680 dwarf_check = 1;
3681 break;
3682 case OPTION_DYN_SYMS:
3683 do_dyn_syms++;
3684 break;
3685 #ifdef SUPPORT_DISASSEMBLY
3686 case 'i':
3687 request_dump (DISASS_DUMP);
3688 break;
3689 #endif
3690 case 'v':
3691 print_version (program_name);
3692 break;
3693 case 'V':
3694 do_version++;
3695 break;
3696 case 'W':
3697 do_wide++;
3698 break;
3699 default:
3700 /* xgettext:c-format */
3701 error (_("Invalid option '-%c'\n"), c);
3702 /* Drop through. */
3703 case '?':
3704 usage (stderr);
3705 }
3706 }
3707
3708 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
3709 && !do_segments && !do_header && !do_dump && !do_version
3710 && !do_histogram && !do_debugging && !do_arch && !do_notes
3711 && !do_section_groups && !do_archive_index
3712 && !do_dyn_syms)
3713 usage (stderr);
3714 else if (argc < 3)
3715 {
3716 warn (_("Nothing to do.\n"));
3717 usage (stderr);
3718 }
3719 }
3720
3721 static const char *
3722 get_elf_class (unsigned int elf_class)
3723 {
3724 static char buff[32];
3725
3726 switch (elf_class)
3727 {
3728 case ELFCLASSNONE: return _("none");
3729 case ELFCLASS32: return "ELF32";
3730 case ELFCLASS64: return "ELF64";
3731 default:
3732 snprintf (buff, sizeof (buff), _("<unknown: %x>"), elf_class);
3733 return buff;
3734 }
3735 }
3736
3737 static const char *
3738 get_data_encoding (unsigned int encoding)
3739 {
3740 static char buff[32];
3741
3742 switch (encoding)
3743 {
3744 case ELFDATANONE: return _("none");
3745 case ELFDATA2LSB: return _("2's complement, little endian");
3746 case ELFDATA2MSB: return _("2's complement, big endian");
3747 default:
3748 snprintf (buff, sizeof (buff), _("<unknown: %x>"), encoding);
3749 return buff;
3750 }
3751 }
3752
3753 /* Decode the data held in 'elf_header'. */
3754
3755 static int
3756 process_file_header (void)
3757 {
3758 if ( elf_header.e_ident[EI_MAG0] != ELFMAG0
3759 || elf_header.e_ident[EI_MAG1] != ELFMAG1
3760 || elf_header.e_ident[EI_MAG2] != ELFMAG2
3761 || elf_header.e_ident[EI_MAG3] != ELFMAG3)
3762 {
3763 error
3764 (_("Not an ELF file - it has the wrong magic bytes at the start\n"));
3765 return 0;
3766 }
3767
3768 init_dwarf_regnames (elf_header.e_machine);
3769
3770 if (do_header)
3771 {
3772 int i;
3773
3774 printf (_("ELF Header:\n"));
3775 printf (_(" Magic: "));
3776 for (i = 0; i < EI_NIDENT; i++)
3777 printf ("%2.2x ", elf_header.e_ident[i]);
3778 printf ("\n");
3779 printf (_(" Class: %s\n"),
3780 get_elf_class (elf_header.e_ident[EI_CLASS]));
3781 printf (_(" Data: %s\n"),
3782 get_data_encoding (elf_header.e_ident[EI_DATA]));
3783 printf (_(" Version: %d %s\n"),
3784 elf_header.e_ident[EI_VERSION],
3785 (elf_header.e_ident[EI_VERSION] == EV_CURRENT
3786 ? "(current)"
3787 : (elf_header.e_ident[EI_VERSION] != EV_NONE
3788 ? _("<unknown: %lx>")
3789 : "")));
3790 printf (_(" OS/ABI: %s\n"),
3791 get_osabi_name (elf_header.e_ident[EI_OSABI]));
3792 printf (_(" ABI Version: %d\n"),
3793 elf_header.e_ident[EI_ABIVERSION]);
3794 printf (_(" Type: %s\n"),
3795 get_file_type (elf_header.e_type));
3796 printf (_(" Machine: %s\n"),
3797 get_machine_name (elf_header.e_machine));
3798 printf (_(" Version: 0x%lx\n"),
3799 (unsigned long) elf_header.e_version);
3800
3801 printf (_(" Entry point address: "));
3802 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
3803 printf (_("\n Start of program headers: "));
3804 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
3805 printf (_(" (bytes into file)\n Start of section headers: "));
3806 print_vma ((bfd_vma) elf_header.e_shoff, DEC);
3807 printf (_(" (bytes into file)\n"));
3808
3809 printf (_(" Flags: 0x%lx%s\n"),
3810 (unsigned long) elf_header.e_flags,
3811 get_machine_flags (elf_header.e_flags, elf_header.e_machine));
3812 printf (_(" Size of this header: %ld (bytes)\n"),
3813 (long) elf_header.e_ehsize);
3814 printf (_(" Size of program headers: %ld (bytes)\n"),
3815 (long) elf_header.e_phentsize);
3816 printf (_(" Number of program headers: %ld"),
3817 (long) elf_header.e_phnum);
3818 if (section_headers != NULL
3819 && elf_header.e_phnum == PN_XNUM
3820 && section_headers[0].sh_info != 0)
3821 printf (" (%ld)", (long) section_headers[0].sh_info);
3822 putc ('\n', stdout);
3823 printf (_(" Size of section headers: %ld (bytes)\n"),
3824 (long) elf_header.e_shentsize);
3825 printf (_(" Number of section headers: %ld"),
3826 (long) elf_header.e_shnum);
3827 if (section_headers != NULL && elf_header.e_shnum == SHN_UNDEF)
3828 printf (" (%ld)", (long) section_headers[0].sh_size);
3829 putc ('\n', stdout);
3830 printf (_(" Section header string table index: %ld"),
3831 (long) elf_header.e_shstrndx);
3832 if (section_headers != NULL
3833 && elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
3834 printf (" (%u)", section_headers[0].sh_link);
3835 else if (elf_header.e_shstrndx != SHN_UNDEF
3836 && elf_header.e_shstrndx >= elf_header.e_shnum)
3837 printf (_(" <corrupt: out of range>"));
3838 putc ('\n', stdout);
3839 }
3840
3841 if (section_headers != NULL)
3842 {
3843 if (elf_header.e_phnum == PN_XNUM
3844 && section_headers[0].sh_info != 0)
3845 elf_header.e_phnum = section_headers[0].sh_info;
3846 if (elf_header.e_shnum == SHN_UNDEF)
3847 elf_header.e_shnum = section_headers[0].sh_size;
3848 if (elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
3849 elf_header.e_shstrndx = section_headers[0].sh_link;
3850 else if (elf_header.e_shstrndx >= elf_header.e_shnum)
3851 elf_header.e_shstrndx = SHN_UNDEF;
3852 free (section_headers);
3853 section_headers = NULL;
3854 }
3855
3856 return 1;
3857 }
3858
3859
3860 static int
3861 get_32bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
3862 {
3863 Elf32_External_Phdr * phdrs;
3864 Elf32_External_Phdr * external;
3865 Elf_Internal_Phdr * internal;
3866 unsigned int i;
3867
3868 phdrs = (Elf32_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
3869 elf_header.e_phentsize,
3870 elf_header.e_phnum,
3871 _("program headers"));
3872 if (!phdrs)
3873 return 0;
3874
3875 for (i = 0, internal = pheaders, external = phdrs;
3876 i < elf_header.e_phnum;
3877 i++, internal++, external++)
3878 {
3879 internal->p_type = BYTE_GET (external->p_type);
3880 internal->p_offset = BYTE_GET (external->p_offset);
3881 internal->p_vaddr = BYTE_GET (external->p_vaddr);
3882 internal->p_paddr = BYTE_GET (external->p_paddr);
3883 internal->p_filesz = BYTE_GET (external->p_filesz);
3884 internal->p_memsz = BYTE_GET (external->p_memsz);
3885 internal->p_flags = BYTE_GET (external->p_flags);
3886 internal->p_align = BYTE_GET (external->p_align);
3887 }
3888
3889 free (phdrs);
3890
3891 return 1;
3892 }
3893
3894 static int
3895 get_64bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
3896 {
3897 Elf64_External_Phdr * phdrs;
3898 Elf64_External_Phdr * external;
3899 Elf_Internal_Phdr * internal;
3900 unsigned int i;
3901
3902 phdrs = (Elf64_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
3903 elf_header.e_phentsize,
3904 elf_header.e_phnum,
3905 _("program headers"));
3906 if (!phdrs)
3907 return 0;
3908
3909 for (i = 0, internal = pheaders, external = phdrs;
3910 i < elf_header.e_phnum;
3911 i++, internal++, external++)
3912 {
3913 internal->p_type = BYTE_GET (external->p_type);
3914 internal->p_flags = BYTE_GET (external->p_flags);
3915 internal->p_offset = BYTE_GET (external->p_offset);
3916 internal->p_vaddr = BYTE_GET (external->p_vaddr);
3917 internal->p_paddr = BYTE_GET (external->p_paddr);
3918 internal->p_filesz = BYTE_GET (external->p_filesz);
3919 internal->p_memsz = BYTE_GET (external->p_memsz);
3920 internal->p_align = BYTE_GET (external->p_align);
3921 }
3922
3923 free (phdrs);
3924
3925 return 1;
3926 }
3927
3928 /* Returns 1 if the program headers were read into `program_headers'. */
3929
3930 static int
3931 get_program_headers (FILE * file)
3932 {
3933 Elf_Internal_Phdr * phdrs;
3934
3935 /* Check cache of prior read. */
3936 if (program_headers != NULL)
3937 return 1;
3938
3939 phdrs = (Elf_Internal_Phdr *) cmalloc (elf_header.e_phnum,
3940 sizeof (Elf_Internal_Phdr));
3941
3942 if (phdrs == NULL)
3943 {
3944 error (_("Out of memory\n"));
3945 return 0;
3946 }
3947
3948 if (is_32bit_elf
3949 ? get_32bit_program_headers (file, phdrs)
3950 : get_64bit_program_headers (file, phdrs))
3951 {
3952 program_headers = phdrs;
3953 return 1;
3954 }
3955
3956 free (phdrs);
3957 return 0;
3958 }
3959
3960 /* Returns 1 if the program headers were loaded. */
3961
3962 static int
3963 process_program_headers (FILE * file)
3964 {
3965 Elf_Internal_Phdr * segment;
3966 unsigned int i;
3967
3968 if (elf_header.e_phnum == 0)
3969 {
3970 /* PR binutils/12467. */
3971 if (elf_header.e_phoff != 0)
3972 warn (_("possibly corrupt ELF header - it has a non-zero program"
3973 " header offset, but no program headers"));
3974 else if (do_segments)
3975 printf (_("\nThere are no program headers in this file.\n"));
3976 return 0;
3977 }
3978
3979 if (do_segments && !do_header)
3980 {
3981 printf (_("\nElf file type is %s\n"), get_file_type (elf_header.e_type));
3982 printf (_("Entry point "));
3983 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
3984 printf (_("\nThere are %d program headers, starting at offset "),
3985 elf_header.e_phnum);
3986 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
3987 printf ("\n");
3988 }
3989
3990 if (! get_program_headers (file))
3991 return 0;
3992
3993 if (do_segments)
3994 {
3995 if (elf_header.e_phnum > 1)
3996 printf (_("\nProgram Headers:\n"));
3997 else
3998 printf (_("\nProgram Headers:\n"));
3999
4000 if (is_32bit_elf)
4001 printf
4002 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4003 else if (do_wide)
4004 printf
4005 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4006 else
4007 {
4008 printf
4009 (_(" Type Offset VirtAddr PhysAddr\n"));
4010 printf
4011 (_(" FileSiz MemSiz Flags Align\n"));
4012 }
4013 }
4014
4015 dynamic_addr = 0;
4016 dynamic_size = 0;
4017
4018 for (i = 0, segment = program_headers;
4019 i < elf_header.e_phnum;
4020 i++, segment++)
4021 {
4022 if (do_segments)
4023 {
4024 printf (" %-14.14s ", get_segment_type (segment->p_type));
4025
4026 if (is_32bit_elf)
4027 {
4028 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4029 printf ("0x%8.8lx ", (unsigned long) segment->p_vaddr);
4030 printf ("0x%8.8lx ", (unsigned long) segment->p_paddr);
4031 printf ("0x%5.5lx ", (unsigned long) segment->p_filesz);
4032 printf ("0x%5.5lx ", (unsigned long) segment->p_memsz);
4033 printf ("%c%c%c ",
4034 (segment->p_flags & PF_R ? 'R' : ' '),
4035 (segment->p_flags & PF_W ? 'W' : ' '),
4036 (segment->p_flags & PF_X ? 'E' : ' '));
4037 printf ("%#lx", (unsigned long) segment->p_align);
4038 }
4039 else if (do_wide)
4040 {
4041 if ((unsigned long) segment->p_offset == segment->p_offset)
4042 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4043 else
4044 {
4045 print_vma (segment->p_offset, FULL_HEX);
4046 putchar (' ');
4047 }
4048
4049 print_vma (segment->p_vaddr, FULL_HEX);
4050 putchar (' ');
4051 print_vma (segment->p_paddr, FULL_HEX);
4052 putchar (' ');
4053
4054 if ((unsigned long) segment->p_filesz == segment->p_filesz)
4055 printf ("0x%6.6lx ", (unsigned long) segment->p_filesz);
4056 else
4057 {
4058 print_vma (segment->p_filesz, FULL_HEX);
4059 putchar (' ');
4060 }
4061
4062 if ((unsigned long) segment->p_memsz == segment->p_memsz)
4063 printf ("0x%6.6lx", (unsigned long) segment->p_memsz);
4064 else
4065 {
4066 print_vma (segment->p_memsz, FULL_HEX);
4067 }
4068
4069 printf (" %c%c%c ",
4070 (segment->p_flags & PF_R ? 'R' : ' '),
4071 (segment->p_flags & PF_W ? 'W' : ' '),
4072 (segment->p_flags & PF_X ? 'E' : ' '));
4073
4074 if ((unsigned long) segment->p_align == segment->p_align)
4075 printf ("%#lx", (unsigned long) segment->p_align);
4076 else
4077 {
4078 print_vma (segment->p_align, PREFIX_HEX);
4079 }
4080 }
4081 else
4082 {
4083 print_vma (segment->p_offset, FULL_HEX);
4084 putchar (' ');
4085 print_vma (segment->p_vaddr, FULL_HEX);
4086 putchar (' ');
4087 print_vma (segment->p_paddr, FULL_HEX);
4088 printf ("\n ");
4089 print_vma (segment->p_filesz, FULL_HEX);
4090 putchar (' ');
4091 print_vma (segment->p_memsz, FULL_HEX);
4092 printf (" %c%c%c ",
4093 (segment->p_flags & PF_R ? 'R' : ' '),
4094 (segment->p_flags & PF_W ? 'W' : ' '),
4095 (segment->p_flags & PF_X ? 'E' : ' '));
4096 print_vma (segment->p_align, HEX);
4097 }
4098 }
4099
4100 switch (segment->p_type)
4101 {
4102 case PT_DYNAMIC:
4103 if (dynamic_addr)
4104 error (_("more than one dynamic segment\n"));
4105
4106 /* By default, assume that the .dynamic section is the first
4107 section in the DYNAMIC segment. */
4108 dynamic_addr = segment->p_offset;
4109 dynamic_size = segment->p_filesz;
4110
4111 /* Try to locate the .dynamic section. If there is
4112 a section header table, we can easily locate it. */
4113 if (section_headers != NULL)
4114 {
4115 Elf_Internal_Shdr * sec;
4116
4117 sec = find_section (".dynamic");
4118 if (sec == NULL || sec->sh_size == 0)
4119 {
4120 /* A corresponding .dynamic section is expected, but on
4121 IA-64/OpenVMS it is OK for it to be missing. */
4122 if (!is_ia64_vms ())
4123 error (_("no .dynamic section in the dynamic segment\n"));
4124 break;
4125 }
4126
4127 if (sec->sh_type == SHT_NOBITS)
4128 {
4129 dynamic_size = 0;
4130 break;
4131 }
4132
4133 dynamic_addr = sec->sh_offset;
4134 dynamic_size = sec->sh_size;
4135
4136 if (dynamic_addr < segment->p_offset
4137 || dynamic_addr > segment->p_offset + segment->p_filesz)
4138 warn (_("the .dynamic section is not contained"
4139 " within the dynamic segment\n"));
4140 else if (dynamic_addr > segment->p_offset)
4141 warn (_("the .dynamic section is not the first section"
4142 " in the dynamic segment.\n"));
4143 }
4144 break;
4145
4146 case PT_INTERP:
4147 if (fseek (file, archive_file_offset + (long) segment->p_offset,
4148 SEEK_SET))
4149 error (_("Unable to find program interpreter name\n"));
4150 else
4151 {
4152 char fmt [32];
4153 int ret = snprintf (fmt, sizeof (fmt), "%%%ds", PATH_MAX);
4154
4155 if (ret >= (int) sizeof (fmt) || ret < 0)
4156 error (_("Internal error: failed to create format string to display program interpreter\n"));
4157
4158 program_interpreter[0] = 0;
4159 if (fscanf (file, fmt, program_interpreter) <= 0)
4160 error (_("Unable to read program interpreter name\n"));
4161
4162 if (do_segments)
4163 printf (_("\n [Requesting program interpreter: %s]"),
4164 program_interpreter);
4165 }
4166 break;
4167 }
4168
4169 if (do_segments)
4170 putc ('\n', stdout);
4171 }
4172
4173 if (do_segments && section_headers != NULL && string_table != NULL)
4174 {
4175 printf (_("\n Section to Segment mapping:\n"));
4176 printf (_(" Segment Sections...\n"));
4177
4178 for (i = 0; i < elf_header.e_phnum; i++)
4179 {
4180 unsigned int j;
4181 Elf_Internal_Shdr * section;
4182
4183 segment = program_headers + i;
4184 section = section_headers + 1;
4185
4186 printf (" %2.2d ", i);
4187
4188 for (j = 1; j < elf_header.e_shnum; j++, section++)
4189 {
4190 if (!ELF_TBSS_SPECIAL (section, segment)
4191 && ELF_SECTION_IN_SEGMENT_STRICT (section, segment))
4192 printf ("%s ", SECTION_NAME (section));
4193 }
4194
4195 putc ('\n',stdout);
4196 }
4197 }
4198
4199 return 1;
4200 }
4201
4202
4203 /* Find the file offset corresponding to VMA by using the program headers. */
4204
4205 static long
4206 offset_from_vma (FILE * file, bfd_vma vma, bfd_size_type size)
4207 {
4208 Elf_Internal_Phdr * seg;
4209
4210 if (! get_program_headers (file))
4211 {
4212 warn (_("Cannot interpret virtual addresses without program headers.\n"));
4213 return (long) vma;
4214 }
4215
4216 for (seg = program_headers;
4217 seg < program_headers + elf_header.e_phnum;
4218 ++seg)
4219 {
4220 if (seg->p_type != PT_LOAD)
4221 continue;
4222
4223 if (vma >= (seg->p_vaddr & -seg->p_align)
4224 && vma + size <= seg->p_vaddr + seg->p_filesz)
4225 return vma - seg->p_vaddr + seg->p_offset;
4226 }
4227
4228 warn (_("Virtual address 0x%lx not located in any PT_LOAD segment.\n"),
4229 (unsigned long) vma);
4230 return (long) vma;
4231 }
4232
4233
4234 static int
4235 get_32bit_section_headers (FILE * file, unsigned int num)
4236 {
4237 Elf32_External_Shdr * shdrs;
4238 Elf_Internal_Shdr * internal;
4239 unsigned int i;
4240
4241 shdrs = (Elf32_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
4242 elf_header.e_shentsize, num,
4243 _("section headers"));
4244 if (!shdrs)
4245 return 0;
4246
4247 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
4248 sizeof (Elf_Internal_Shdr));
4249
4250 if (section_headers == NULL)
4251 {
4252 error (_("Out of memory\n"));
4253 return 0;
4254 }
4255
4256 for (i = 0, internal = section_headers;
4257 i < num;
4258 i++, internal++)
4259 {
4260 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
4261 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
4262 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
4263 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
4264 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
4265 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
4266 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
4267 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
4268 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
4269 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
4270 }
4271
4272 free (shdrs);
4273
4274 return 1;
4275 }
4276
4277 static int
4278 get_64bit_section_headers (FILE * file, unsigned int num)
4279 {
4280 Elf64_External_Shdr * shdrs;
4281 Elf_Internal_Shdr * internal;
4282 unsigned int i;
4283
4284 shdrs = (Elf64_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
4285 elf_header.e_shentsize, num,
4286 _("section headers"));
4287 if (!shdrs)
4288 return 0;
4289
4290 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
4291 sizeof (Elf_Internal_Shdr));
4292
4293 if (section_headers == NULL)
4294 {
4295 error (_("Out of memory\n"));
4296 return 0;
4297 }
4298
4299 for (i = 0, internal = section_headers;
4300 i < num;
4301 i++, internal++)
4302 {
4303 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
4304 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
4305 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
4306 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
4307 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
4308 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
4309 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
4310 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
4311 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
4312 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
4313 }
4314
4315 free (shdrs);
4316
4317 return 1;
4318 }
4319
4320 static Elf_Internal_Sym *
4321 get_32bit_elf_symbols (FILE * file,
4322 Elf_Internal_Shdr * section,
4323 unsigned long * num_syms_return)
4324 {
4325 unsigned long number = 0;
4326 Elf32_External_Sym * esyms = NULL;
4327 Elf_External_Sym_Shndx * shndx = NULL;
4328 Elf_Internal_Sym * isyms = NULL;
4329 Elf_Internal_Sym * psym;
4330 unsigned int j;
4331
4332 /* Run some sanity checks first. */
4333 if (section->sh_entsize == 0)
4334 {
4335 error (_("sh_entsize is zero\n"));
4336 goto exit_point;
4337 }
4338
4339 number = section->sh_size / section->sh_entsize;
4340
4341 if (number * sizeof (Elf32_External_Sym) > section->sh_size + 1)
4342 {
4343 error (_("Invalid sh_entsize\n"));
4344 goto exit_point;
4345 }
4346
4347 esyms = (Elf32_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
4348 section->sh_size, _("symbols"));
4349 if (esyms == NULL)
4350 goto exit_point;
4351
4352 shndx = NULL;
4353 if (symtab_shndx_hdr != NULL
4354 && (symtab_shndx_hdr->sh_link
4355 == (unsigned long) (section - section_headers)))
4356 {
4357 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
4358 symtab_shndx_hdr->sh_offset,
4359 1, symtab_shndx_hdr->sh_size,
4360 _("symbol table section indicies"));
4361 if (shndx == NULL)
4362 goto exit_point;
4363 }
4364
4365 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
4366
4367 if (isyms == NULL)
4368 {
4369 error (_("Out of memory\n"));
4370 goto exit_point;
4371 }
4372
4373 for (j = 0, psym = isyms; j < number; j++, psym++)
4374 {
4375 psym->st_name = BYTE_GET (esyms[j].st_name);
4376 psym->st_value = BYTE_GET (esyms[j].st_value);
4377 psym->st_size = BYTE_GET (esyms[j].st_size);
4378 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
4379 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
4380 psym->st_shndx
4381 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
4382 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
4383 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
4384 psym->st_info = BYTE_GET (esyms[j].st_info);
4385 psym->st_other = BYTE_GET (esyms[j].st_other);
4386 }
4387
4388 exit_point:
4389 if (shndx != NULL)
4390 free (shndx);
4391 if (esyms != NULL)
4392 free (esyms);
4393
4394 if (num_syms_return != NULL)
4395 * num_syms_return = isyms == NULL ? 0 : number;
4396
4397 return isyms;
4398 }
4399
4400 static Elf_Internal_Sym *
4401 get_64bit_elf_symbols (FILE * file,
4402 Elf_Internal_Shdr * section,
4403 unsigned long * num_syms_return)
4404 {
4405 unsigned long number = 0;
4406 Elf64_External_Sym * esyms = NULL;
4407 Elf_External_Sym_Shndx * shndx = NULL;
4408 Elf_Internal_Sym * isyms = NULL;
4409 Elf_Internal_Sym * psym;
4410 unsigned int j;
4411
4412 /* Run some sanity checks first. */
4413 if (section->sh_entsize == 0)
4414 {
4415 error (_("sh_entsize is zero\n"));
4416 goto exit_point;
4417 }
4418
4419 number = section->sh_size / section->sh_entsize;
4420
4421 if (number * sizeof (Elf64_External_Sym) > section->sh_size + 1)
4422 {
4423 error (_("Invalid sh_entsize\n"));
4424 goto exit_point;
4425 }
4426
4427 esyms = (Elf64_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
4428 section->sh_size, _("symbols"));
4429 if (!esyms)
4430 goto exit_point;
4431
4432 if (symtab_shndx_hdr != NULL
4433 && (symtab_shndx_hdr->sh_link
4434 == (unsigned long) (section - section_headers)))
4435 {
4436 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
4437 symtab_shndx_hdr->sh_offset,
4438 1, symtab_shndx_hdr->sh_size,
4439 _("symbol table section indicies"));
4440 if (shndx == NULL)
4441 goto exit_point;
4442 }
4443
4444 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
4445
4446 if (isyms == NULL)
4447 {
4448 error (_("Out of memory\n"));
4449 goto exit_point;
4450 }
4451
4452 for (j = 0, psym = isyms; j < number; j++, psym++)
4453 {
4454 psym->st_name = BYTE_GET (esyms[j].st_name);
4455 psym->st_info = BYTE_GET (esyms[j].st_info);
4456 psym->st_other = BYTE_GET (esyms[j].st_other);
4457 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
4458
4459 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
4460 psym->st_shndx
4461 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
4462 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
4463 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
4464
4465 psym->st_value = BYTE_GET (esyms[j].st_value);
4466 psym->st_size = BYTE_GET (esyms[j].st_size);
4467 }
4468
4469 exit_point:
4470 if (shndx != NULL)
4471 free (shndx);
4472 if (esyms != NULL)
4473 free (esyms);
4474
4475 if (num_syms_return != NULL)
4476 * num_syms_return = isyms == NULL ? 0 : number;
4477
4478 return isyms;
4479 }
4480
4481 static const char *
4482 get_elf_section_flags (bfd_vma sh_flags)
4483 {
4484 static char buff[1024];
4485 char * p = buff;
4486 int field_size = is_32bit_elf ? 8 : 16;
4487 int sindex;
4488 int size = sizeof (buff) - (field_size + 4 + 1);
4489 bfd_vma os_flags = 0;
4490 bfd_vma proc_flags = 0;
4491 bfd_vma unknown_flags = 0;
4492 static const struct
4493 {
4494 const char * str;
4495 int len;
4496 }
4497 flags [] =
4498 {
4499 /* 0 */ { STRING_COMMA_LEN ("WRITE") },
4500 /* 1 */ { STRING_COMMA_LEN ("ALLOC") },
4501 /* 2 */ { STRING_COMMA_LEN ("EXEC") },
4502 /* 3 */ { STRING_COMMA_LEN ("MERGE") },
4503 /* 4 */ { STRING_COMMA_LEN ("STRINGS") },
4504 /* 5 */ { STRING_COMMA_LEN ("INFO LINK") },
4505 /* 6 */ { STRING_COMMA_LEN ("LINK ORDER") },
4506 /* 7 */ { STRING_COMMA_LEN ("OS NONCONF") },
4507 /* 8 */ { STRING_COMMA_LEN ("GROUP") },
4508 /* 9 */ { STRING_COMMA_LEN ("TLS") },
4509 /* IA-64 specific. */
4510 /* 10 */ { STRING_COMMA_LEN ("SHORT") },
4511 /* 11 */ { STRING_COMMA_LEN ("NORECOV") },
4512 /* IA-64 OpenVMS specific. */
4513 /* 12 */ { STRING_COMMA_LEN ("VMS_GLOBAL") },
4514 /* 13 */ { STRING_COMMA_LEN ("VMS_OVERLAID") },
4515 /* 14 */ { STRING_COMMA_LEN ("VMS_SHARED") },
4516 /* 15 */ { STRING_COMMA_LEN ("VMS_VECTOR") },
4517 /* 16 */ { STRING_COMMA_LEN ("VMS_ALLOC_64BIT") },
4518 /* 17 */ { STRING_COMMA_LEN ("VMS_PROTECTED") },
4519 /* Generic. */
4520 /* 18 */ { STRING_COMMA_LEN ("EXCLUDE") },
4521 /* SPARC specific. */
4522 /* 19 */ { STRING_COMMA_LEN ("ORDERED") }
4523 };
4524
4525 if (do_section_details)
4526 {
4527 sprintf (buff, "[%*.*lx]: ",
4528 field_size, field_size, (unsigned long) sh_flags);
4529 p += field_size + 4;
4530 }
4531
4532 while (sh_flags)
4533 {
4534 bfd_vma flag;
4535
4536 flag = sh_flags & - sh_flags;
4537 sh_flags &= ~ flag;
4538
4539 if (do_section_details)
4540 {
4541 switch (flag)
4542 {
4543 case SHF_WRITE: sindex = 0; break;
4544 case SHF_ALLOC: sindex = 1; break;
4545 case SHF_EXECINSTR: sindex = 2; break;
4546 case SHF_MERGE: sindex = 3; break;
4547 case SHF_STRINGS: sindex = 4; break;
4548 case SHF_INFO_LINK: sindex = 5; break;
4549 case SHF_LINK_ORDER: sindex = 6; break;
4550 case SHF_OS_NONCONFORMING: sindex = 7; break;
4551 case SHF_GROUP: sindex = 8; break;
4552 case SHF_TLS: sindex = 9; break;
4553 case SHF_EXCLUDE: sindex = 18; break;
4554
4555 default:
4556 sindex = -1;
4557 switch (elf_header.e_machine)
4558 {
4559 case EM_IA_64:
4560 if (flag == SHF_IA_64_SHORT)
4561 sindex = 10;
4562 else if (flag == SHF_IA_64_NORECOV)
4563 sindex = 11;
4564 #ifdef BFD64
4565 else if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
4566 switch (flag)
4567 {
4568 case SHF_IA_64_VMS_GLOBAL: sindex = 12; break;
4569 case SHF_IA_64_VMS_OVERLAID: sindex = 13; break;
4570 case SHF_IA_64_VMS_SHARED: sindex = 14; break;
4571 case SHF_IA_64_VMS_VECTOR: sindex = 15; break;
4572 case SHF_IA_64_VMS_ALLOC_64BIT: sindex = 16; break;
4573 case SHF_IA_64_VMS_PROTECTED: sindex = 17; break;
4574 default: break;
4575 }
4576 #endif
4577 break;
4578
4579 case EM_386:
4580 case EM_486:
4581 case EM_X86_64:
4582 case EM_L1OM:
4583 case EM_K1OM:
4584 case EM_OLD_SPARCV9:
4585 case EM_SPARC32PLUS:
4586 case EM_SPARCV9:
4587 case EM_SPARC:
4588 if (flag == SHF_ORDERED)
4589 sindex = 19;
4590 break;
4591 default:
4592 break;
4593 }
4594 }
4595
4596 if (sindex != -1)
4597 {
4598 if (p != buff + field_size + 4)
4599 {
4600 if (size < (10 + 2))
4601 abort ();
4602 size -= 2;
4603 *p++ = ',';
4604 *p++ = ' ';
4605 }
4606
4607 size -= flags [sindex].len;
4608 p = stpcpy (p, flags [sindex].str);
4609 }
4610 else if (flag & SHF_MASKOS)
4611 os_flags |= flag;
4612 else if (flag & SHF_MASKPROC)
4613 proc_flags |= flag;
4614 else
4615 unknown_flags |= flag;
4616 }
4617 else
4618 {
4619 switch (flag)
4620 {
4621 case SHF_WRITE: *p = 'W'; break;
4622 case SHF_ALLOC: *p = 'A'; break;
4623 case SHF_EXECINSTR: *p = 'X'; break;
4624 case SHF_MERGE: *p = 'M'; break;
4625 case SHF_STRINGS: *p = 'S'; break;
4626 case SHF_INFO_LINK: *p = 'I'; break;
4627 case SHF_LINK_ORDER: *p = 'L'; break;
4628 case SHF_OS_NONCONFORMING: *p = 'O'; break;
4629 case SHF_GROUP: *p = 'G'; break;
4630 case SHF_TLS: *p = 'T'; break;
4631 case SHF_EXCLUDE: *p = 'E'; break;
4632
4633 default:
4634 if ((elf_header.e_machine == EM_X86_64
4635 || elf_header.e_machine == EM_L1OM
4636 || elf_header.e_machine == EM_K1OM)
4637 && flag == SHF_X86_64_LARGE)
4638 *p = 'l';
4639 else if (flag & SHF_MASKOS)
4640 {
4641 *p = 'o';
4642 sh_flags &= ~ SHF_MASKOS;
4643 }
4644 else if (flag & SHF_MASKPROC)
4645 {
4646 *p = 'p';
4647 sh_flags &= ~ SHF_MASKPROC;
4648 }
4649 else
4650 *p = 'x';
4651 break;
4652 }
4653 p++;
4654 }
4655 }
4656
4657 if (do_section_details)
4658 {
4659 if (os_flags)
4660 {
4661 size -= 5 + field_size;
4662 if (p != buff + field_size + 4)
4663 {
4664 if (size < (2 + 1))
4665 abort ();
4666 size -= 2;
4667 *p++ = ',';
4668 *p++ = ' ';
4669 }
4670 sprintf (p, "OS (%*.*lx)", field_size, field_size,
4671 (unsigned long) os_flags);
4672 p += 5 + field_size;
4673 }
4674 if (proc_flags)
4675 {
4676 size -= 7 + field_size;
4677 if (p != buff + field_size + 4)
4678 {
4679 if (size < (2 + 1))
4680 abort ();
4681 size -= 2;
4682 *p++ = ',';
4683 *p++ = ' ';
4684 }
4685 sprintf (p, "PROC (%*.*lx)", field_size, field_size,
4686 (unsigned long) proc_flags);
4687 p += 7 + field_size;
4688 }
4689 if (unknown_flags)
4690 {
4691 size -= 10 + field_size;
4692 if (p != buff + field_size + 4)
4693 {
4694 if (size < (2 + 1))
4695 abort ();
4696 size -= 2;
4697 *p++ = ',';
4698 *p++ = ' ';
4699 }
4700 sprintf (p, _("UNKNOWN (%*.*lx)"), field_size, field_size,
4701 (unsigned long) unknown_flags);
4702 p += 10 + field_size;
4703 }
4704 }
4705
4706 *p = '\0';
4707 return buff;
4708 }
4709
4710 static int
4711 process_section_headers (FILE * file)
4712 {
4713 Elf_Internal_Shdr * section;
4714 unsigned int i;
4715
4716 section_headers = NULL;
4717
4718 if (elf_header.e_shnum == 0)
4719 {
4720 /* PR binutils/12467. */
4721 if (elf_header.e_shoff != 0)
4722 warn (_("possibly corrupt ELF file header - it has a non-zero"
4723 " section header offset, but no section headers\n"));
4724 else if (do_sections)
4725 printf (_("\nThere are no sections in this file.\n"));
4726
4727 return 1;
4728 }
4729
4730 if (do_sections && !do_header)
4731 printf (_("There are %d section headers, starting at offset 0x%lx:\n"),
4732 elf_header.e_shnum, (unsigned long) elf_header.e_shoff);
4733
4734 if (is_32bit_elf)
4735 {
4736 if (! get_32bit_section_headers (file, elf_header.e_shnum))
4737 return 0;
4738 }
4739 else if (! get_64bit_section_headers (file, elf_header.e_shnum))
4740 return 0;
4741
4742 /* Read in the string table, so that we have names to display. */
4743 if (elf_header.e_shstrndx != SHN_UNDEF
4744 && elf_header.e_shstrndx < elf_header.e_shnum)
4745 {
4746 section = section_headers + elf_header.e_shstrndx;
4747
4748 if (section->sh_size != 0)
4749 {
4750 string_table = (char *) get_data (NULL, file, section->sh_offset,
4751 1, section->sh_size,
4752 _("string table"));
4753
4754 string_table_length = string_table != NULL ? section->sh_size : 0;
4755 }
4756 }
4757
4758 /* Scan the sections for the dynamic symbol table
4759 and dynamic string table and debug sections. */
4760 dynamic_symbols = NULL;
4761 dynamic_strings = NULL;
4762 dynamic_syminfo = NULL;
4763 symtab_shndx_hdr = NULL;
4764
4765 eh_addr_size = is_32bit_elf ? 4 : 8;
4766 switch (elf_header.e_machine)
4767 {
4768 case EM_MIPS:
4769 case EM_MIPS_RS3_LE:
4770 /* The 64-bit MIPS EABI uses a combination of 32-bit ELF and 64-bit
4771 FDE addresses. However, the ABI also has a semi-official ILP32
4772 variant for which the normal FDE address size rules apply.
4773
4774 GCC 4.0 marks EABI64 objects with a dummy .gcc_compiled_longXX
4775 section, where XX is the size of longs in bits. Unfortunately,
4776 earlier compilers provided no way of distinguishing ILP32 objects
4777 from LP64 objects, so if there's any doubt, we should assume that
4778 the official LP64 form is being used. */
4779 if ((elf_header.e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64
4780 && find_section (".gcc_compiled_long32") == NULL)
4781 eh_addr_size = 8;
4782 break;
4783
4784 case EM_H8_300:
4785 case EM_H8_300H:
4786 switch (elf_header.e_flags & EF_H8_MACH)
4787 {
4788 case E_H8_MACH_H8300:
4789 case E_H8_MACH_H8300HN:
4790 case E_H8_MACH_H8300SN:
4791 case E_H8_MACH_H8300SXN:
4792 eh_addr_size = 2;
4793 break;
4794 case E_H8_MACH_H8300H:
4795 case E_H8_MACH_H8300S:
4796 case E_H8_MACH_H8300SX:
4797 eh_addr_size = 4;
4798 break;
4799 }
4800 break;
4801
4802 case EM_M32C_OLD:
4803 case EM_M32C:
4804 switch (elf_header.e_flags & EF_M32C_CPU_MASK)
4805 {
4806 case EF_M32C_CPU_M16C:
4807 eh_addr_size = 2;
4808 break;
4809 }
4810 break;
4811 }
4812
4813 #define CHECK_ENTSIZE_VALUES(section, i, size32, size64) \
4814 do \
4815 { \
4816 bfd_size_type expected_entsize = is_32bit_elf ? size32 : size64; \
4817 if (section->sh_entsize != expected_entsize) \
4818 { \
4819 error (_("Section %d has invalid sh_entsize of %" BFD_VMA_FMT "x\n"), \
4820 i, section->sh_entsize); \
4821 error (_("(Using the expected size of %d for the rest of this dump)\n"), \
4822 (int) expected_entsize); \
4823 section->sh_entsize = expected_entsize; \
4824 } \
4825 } \
4826 while (0)
4827
4828 #define CHECK_ENTSIZE(section, i, type) \
4829 CHECK_ENTSIZE_VALUES (section, i, sizeof (Elf32_External_##type), \
4830 sizeof (Elf64_External_##type))
4831
4832 for (i = 0, section = section_headers;
4833 i < elf_header.e_shnum;
4834 i++, section++)
4835 {
4836 char * name = SECTION_NAME (section);
4837
4838 if (section->sh_type == SHT_DYNSYM)
4839 {
4840 if (dynamic_symbols != NULL)
4841 {
4842 error (_("File contains multiple dynamic symbol tables\n"));
4843 continue;
4844 }
4845
4846 CHECK_ENTSIZE (section, i, Sym);
4847 dynamic_symbols = GET_ELF_SYMBOLS (file, section, & num_dynamic_syms);
4848 }
4849 else if (section->sh_type == SHT_STRTAB
4850 && streq (name, ".dynstr"))
4851 {
4852 if (dynamic_strings != NULL)
4853 {
4854 error (_("File contains multiple dynamic string tables\n"));
4855 continue;
4856 }
4857
4858 dynamic_strings = (char *) get_data (NULL, file, section->sh_offset,
4859 1, section->sh_size,
4860 _("dynamic strings"));
4861 dynamic_strings_length = dynamic_strings == NULL ? 0 : section->sh_size;
4862 }
4863 else if (section->sh_type == SHT_SYMTAB_SHNDX)
4864 {
4865 if (symtab_shndx_hdr != NULL)
4866 {
4867 error (_("File contains multiple symtab shndx tables\n"));
4868 continue;
4869 }
4870 symtab_shndx_hdr = section;
4871 }
4872 else if (section->sh_type == SHT_SYMTAB)
4873 CHECK_ENTSIZE (section, i, Sym);
4874 else if (section->sh_type == SHT_GROUP)
4875 CHECK_ENTSIZE_VALUES (section, i, GRP_ENTRY_SIZE, GRP_ENTRY_SIZE);
4876 else if (section->sh_type == SHT_REL)
4877 CHECK_ENTSIZE (section, i, Rel);
4878 else if (section->sh_type == SHT_RELA)
4879 CHECK_ENTSIZE (section, i, Rela);
4880 else if ((do_debugging || do_debug_info || do_debug_abbrevs
4881 || do_debug_lines || do_debug_pubnames || do_debug_pubtypes
4882 || do_debug_aranges || do_debug_frames || do_debug_macinfo
4883 || do_debug_str || do_debug_loc || do_debug_ranges
4884 || do_debug_addr || do_debug_cu_index)
4885 && (const_strneq (name, ".debug_")
4886 || const_strneq (name, ".zdebug_")))
4887 {
4888 if (name[1] == 'z')
4889 name += sizeof (".zdebug_") - 1;
4890 else
4891 name += sizeof (".debug_") - 1;
4892
4893 if (do_debugging
4894 || (do_debug_info && const_strneq (name, "info"))
4895 || (do_debug_info && const_strneq (name, "types"))
4896 || (do_debug_abbrevs && const_strneq (name, "abbrev"))
4897 || (do_debug_lines && strcmp (name, "line") == 0)
4898 || (do_debug_lines && const_strneq (name, "line."))
4899 || (do_debug_pubnames && const_strneq (name, "pubnames"))
4900 || (do_debug_pubtypes && const_strneq (name, "pubtypes"))
4901 || (do_debug_aranges && const_strneq (name, "aranges"))
4902 || (do_debug_ranges && const_strneq (name, "ranges"))
4903 || (do_debug_frames && const_strneq (name, "frame"))
4904 || (do_debug_macinfo && const_strneq (name, "macinfo"))
4905 || (do_debug_macinfo && const_strneq (name, "macro"))
4906 || (do_debug_str && const_strneq (name, "str"))
4907 || (do_debug_loc && const_strneq (name, "loc"))
4908 || (do_debug_addr && const_strneq (name, "addr"))
4909 || (do_debug_cu_index && const_strneq (name, "cu_index"))
4910 || (do_debug_cu_index && const_strneq (name, "tu_index"))
4911 )
4912 request_dump_bynumber (i, DEBUG_DUMP);
4913 }
4914 /* Linkonce section to be combined with .debug_info at link time. */
4915 else if ((do_debugging || do_debug_info)
4916 && const_strneq (name, ".gnu.linkonce.wi."))
4917 request_dump_bynumber (i, DEBUG_DUMP);
4918 else if (do_debug_frames && streq (name, ".eh_frame"))
4919 request_dump_bynumber (i, DEBUG_DUMP);
4920 else if (do_gdb_index && streq (name, ".gdb_index"))
4921 request_dump_bynumber (i, DEBUG_DUMP);
4922 /* Trace sections for Itanium VMS. */
4923 else if ((do_debugging || do_trace_info || do_trace_abbrevs
4924 || do_trace_aranges)
4925 && const_strneq (name, ".trace_"))
4926 {
4927 name += sizeof (".trace_") - 1;
4928
4929 if (do_debugging
4930 || (do_trace_info && streq (name, "info"))
4931 || (do_trace_abbrevs && streq (name, "abbrev"))
4932 || (do_trace_aranges && streq (name, "aranges"))
4933 )
4934 request_dump_bynumber (i, DEBUG_DUMP);
4935 }
4936
4937 }
4938
4939 if (! do_sections)
4940 return 1;
4941
4942 if (elf_header.e_shnum > 1)
4943 printf (_("\nSection Headers:\n"));
4944 else
4945 printf (_("\nSection Header:\n"));
4946
4947 if (is_32bit_elf)
4948 {
4949 if (do_section_details)
4950 {
4951 printf (_(" [Nr] Name\n"));
4952 printf (_(" Type Addr Off Size ES Lk Inf Al\n"));
4953 }
4954 else
4955 printf
4956 (_(" [Nr] Name Type Addr Off Size ES Flg Lk Inf Al\n"));
4957 }
4958 else if (do_wide)
4959 {
4960 if (do_section_details)
4961 {
4962 printf (_(" [Nr] Name\n"));
4963 printf (_(" Type Address Off Size ES Lk Inf Al\n"));
4964 }
4965 else
4966 printf
4967 (_(" [Nr] Name Type Address Off Size ES Flg Lk Inf Al\n"));
4968 }
4969 else
4970 {
4971 if (do_section_details)
4972 {
4973 printf (_(" [Nr] Name\n"));
4974 printf (_(" Type Address Offset Link\n"));
4975 printf (_(" Size EntSize Info Align\n"));
4976 }
4977 else
4978 {
4979 printf (_(" [Nr] Name Type Address Offset\n"));
4980 printf (_(" Size EntSize Flags Link Info Align\n"));
4981 }
4982 }
4983
4984 if (do_section_details)
4985 printf (_(" Flags\n"));
4986
4987 for (i = 0, section = section_headers;
4988 i < elf_header.e_shnum;
4989 i++, section++)
4990 {
4991 printf (" [%2u] ", i);
4992 if (do_section_details)
4993 {
4994 print_symbol (INT_MAX, SECTION_NAME (section));
4995 printf ("\n ");
4996 }
4997 else
4998 {
4999 print_symbol (-17, SECTION_NAME (section));
5000 }
5001
5002 printf (do_wide ? " %-15s " : " %-15.15s ",
5003 get_section_type_name (section->sh_type));
5004
5005 if (is_32bit_elf)
5006 {
5007 const char * link_too_big = NULL;
5008
5009 print_vma (section->sh_addr, LONG_HEX);
5010
5011 printf ( " %6.6lx %6.6lx %2.2lx",
5012 (unsigned long) section->sh_offset,
5013 (unsigned long) section->sh_size,
5014 (unsigned long) section->sh_entsize);
5015
5016 if (do_section_details)
5017 fputs (" ", stdout);
5018 else
5019 printf (" %3s ", get_elf_section_flags (section->sh_flags));
5020
5021 if (section->sh_link >= elf_header.e_shnum)
5022 {
5023 link_too_big = "";
5024 /* The sh_link value is out of range. Normally this indicates
5025 an error but it can have special values in Solaris binaries. */
5026 switch (elf_header.e_machine)
5027 {
5028 case EM_386:
5029 case EM_486:
5030 case EM_X86_64:
5031 case EM_L1OM:
5032 case EM_K1OM:
5033 case EM_OLD_SPARCV9:
5034 case EM_SPARC32PLUS:
5035 case EM_SPARCV9:
5036 case EM_SPARC:
5037 if (section->sh_link == (SHN_BEFORE & 0xffff))
5038 link_too_big = "BEFORE";
5039 else if (section->sh_link == (SHN_AFTER & 0xffff))
5040 link_too_big = "AFTER";
5041 break;
5042 default:
5043 break;
5044 }
5045 }
5046
5047 if (do_section_details)
5048 {
5049 if (link_too_big != NULL && * link_too_big)
5050 printf ("<%s> ", link_too_big);
5051 else
5052 printf ("%2u ", section->sh_link);
5053 printf ("%3u %2lu\n", section->sh_info,
5054 (unsigned long) section->sh_addralign);
5055 }
5056 else
5057 printf ("%2u %3u %2lu\n",
5058 section->sh_link,
5059 section->sh_info,
5060 (unsigned long) section->sh_addralign);
5061
5062 if (link_too_big && ! * link_too_big)
5063 warn (_("section %u: sh_link value of %u is larger than the number of sections\n"),
5064 i, section->sh_link);
5065 }
5066 else if (do_wide)
5067 {
5068 print_vma (section->sh_addr, LONG_HEX);
5069
5070 if ((long) section->sh_offset == section->sh_offset)
5071 printf (" %6.6lx", (unsigned long) section->sh_offset);
5072 else
5073 {
5074 putchar (' ');
5075 print_vma (section->sh_offset, LONG_HEX);
5076 }
5077
5078 if ((unsigned long) section->sh_size == section->sh_size)
5079 printf (" %6.6lx", (unsigned long) section->sh_size);
5080 else
5081 {
5082 putchar (' ');
5083 print_vma (section->sh_size, LONG_HEX);
5084 }
5085
5086 if ((unsigned long) section->sh_entsize == section->sh_entsize)
5087 printf (" %2.2lx", (unsigned long) section->sh_entsize);
5088 else
5089 {
5090 putchar (' ');
5091 print_vma (section->sh_entsize, LONG_HEX);
5092 }
5093
5094 if (do_section_details)
5095 fputs (" ", stdout);
5096 else
5097 printf (" %3s ", get_elf_section_flags (section->sh_flags));
5098
5099 printf ("%2u %3u ", section->sh_link, section->sh_info);
5100
5101 if ((unsigned long) section->sh_addralign == section->sh_addralign)
5102 printf ("%2lu\n", (unsigned long) section->sh_addralign);
5103 else
5104 {
5105 print_vma (section->sh_addralign, DEC);
5106 putchar ('\n');
5107 }
5108 }
5109 else if (do_section_details)
5110 {
5111 printf (" %-15.15s ",
5112 get_section_type_name (section->sh_type));
5113 print_vma (section->sh_addr, LONG_HEX);
5114 if ((long) section->sh_offset == section->sh_offset)
5115 printf (" %16.16lx", (unsigned long) section->sh_offset);
5116 else
5117 {
5118 printf (" ");
5119 print_vma (section->sh_offset, LONG_HEX);
5120 }
5121 printf (" %u\n ", section->sh_link);
5122 print_vma (section->sh_size, LONG_HEX);
5123 putchar (' ');
5124 print_vma (section->sh_entsize, LONG_HEX);
5125
5126 printf (" %-16u %lu\n",
5127 section->sh_info,
5128 (unsigned long) section->sh_addralign);
5129 }
5130 else
5131 {
5132 putchar (' ');
5133 print_vma (section->sh_addr, LONG_HEX);
5134 if ((long) section->sh_offset == section->sh_offset)
5135 printf (" %8.8lx", (unsigned long) section->sh_offset);
5136 else
5137 {
5138 printf (" ");
5139 print_vma (section->sh_offset, LONG_HEX);
5140 }
5141 printf ("\n ");
5142 print_vma (section->sh_size, LONG_HEX);
5143 printf (" ");
5144 print_vma (section->sh_entsize, LONG_HEX);
5145
5146 printf (" %3s ", get_elf_section_flags (section->sh_flags));
5147
5148 printf (" %2u %3u %lu\n",
5149 section->sh_link,
5150 section->sh_info,
5151 (unsigned long) section->sh_addralign);
5152 }
5153
5154 if (do_section_details)
5155 printf (" %s\n", get_elf_section_flags (section->sh_flags));
5156 }
5157
5158 if (!do_section_details)
5159 {
5160 if (elf_header.e_machine == EM_X86_64
5161 || elf_header.e_machine == EM_L1OM
5162 || elf_header.e_machine == EM_K1OM)
5163 printf (_("Key to Flags:\n\
5164 W (write), A (alloc), X (execute), M (merge), S (strings), l (large)\n\
5165 I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)\n\
5166 O (extra OS processing required) o (OS specific), p (processor specific)\n"));
5167 else
5168 printf (_("Key to Flags:\n\
5169 W (write), A (alloc), X (execute), M (merge), S (strings)\n\
5170 I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)\n\
5171 O (extra OS processing required) o (OS specific), p (processor specific)\n"));
5172 }
5173
5174 return 1;
5175 }
5176
5177 static const char *
5178 get_group_flags (unsigned int flags)
5179 {
5180 static char buff[32];
5181 switch (flags)
5182 {
5183 case 0:
5184 return "";
5185
5186 case GRP_COMDAT:
5187 return "COMDAT ";
5188
5189 default:
5190 snprintf (buff, sizeof (buff), _("[<unknown>: 0x%x] "), flags);
5191 break;
5192 }
5193 return buff;
5194 }
5195
5196 static int
5197 process_section_groups (FILE * file)
5198 {
5199 Elf_Internal_Shdr * section;
5200 unsigned int i;
5201 struct group * group;
5202 Elf_Internal_Shdr * symtab_sec;
5203 Elf_Internal_Shdr * strtab_sec;
5204 Elf_Internal_Sym * symtab;
5205 unsigned long num_syms;
5206 char * strtab;
5207 size_t strtab_size;
5208
5209 /* Don't process section groups unless needed. */
5210 if (!do_unwind && !do_section_groups)
5211 return 1;
5212
5213 if (elf_header.e_shnum == 0)
5214 {
5215 if (do_section_groups)
5216 printf (_("\nThere are no sections to group in this file.\n"));
5217
5218 return 1;
5219 }
5220
5221 if (section_headers == NULL)
5222 {
5223 error (_("Section headers are not available!\n"));
5224 /* PR 13622: This can happen with a corrupt ELF header. */
5225 return 0;
5226 }
5227
5228 section_headers_groups = (struct group **) calloc (elf_header.e_shnum,
5229 sizeof (struct group *));
5230
5231 if (section_headers_groups == NULL)
5232 {
5233 error (_("Out of memory\n"));
5234 return 0;
5235 }
5236
5237 /* Scan the sections for the group section. */
5238 group_count = 0;
5239 for (i = 0, section = section_headers;
5240 i < elf_header.e_shnum;
5241 i++, section++)
5242 if (section->sh_type == SHT_GROUP)
5243 group_count++;
5244
5245 if (group_count == 0)
5246 {
5247 if (do_section_groups)
5248 printf (_("\nThere are no section groups in this file.\n"));
5249
5250 return 1;
5251 }
5252
5253 section_groups = (struct group *) calloc (group_count, sizeof (struct group));
5254
5255 if (section_groups == NULL)
5256 {
5257 error (_("Out of memory\n"));
5258 return 0;
5259 }
5260
5261 symtab_sec = NULL;
5262 strtab_sec = NULL;
5263 symtab = NULL;
5264 num_syms = 0;
5265 strtab = NULL;
5266 strtab_size = 0;
5267 for (i = 0, section = section_headers, group = section_groups;
5268 i < elf_header.e_shnum;
5269 i++, section++)
5270 {
5271 if (section->sh_type == SHT_GROUP)
5272 {
5273 char * name = SECTION_NAME (section);
5274 char * group_name;
5275 unsigned char * start;
5276 unsigned char * indices;
5277 unsigned int entry, j, size;
5278 Elf_Internal_Shdr * sec;
5279 Elf_Internal_Sym * sym;
5280
5281 /* Get the symbol table. */
5282 if (section->sh_link >= elf_header.e_shnum
5283 || ((sec = section_headers + section->sh_link)->sh_type
5284 != SHT_SYMTAB))
5285 {
5286 error (_("Bad sh_link in group section `%s'\n"), name);
5287 continue;
5288 }
5289
5290 if (symtab_sec != sec)
5291 {
5292 symtab_sec = sec;
5293 if (symtab)
5294 free (symtab);
5295 symtab = GET_ELF_SYMBOLS (file, symtab_sec, & num_syms);
5296 }
5297
5298 if (symtab == NULL)
5299 {
5300 error (_("Corrupt header in group section `%s'\n"), name);
5301 continue;
5302 }
5303
5304 if (section->sh_info >= num_syms)
5305 {
5306 error (_("Bad sh_info in group section `%s'\n"), name);
5307 continue;
5308 }
5309
5310 sym = symtab + section->sh_info;
5311
5312 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5313 {
5314 if (sym->st_shndx == 0
5315 || sym->st_shndx >= elf_header.e_shnum)
5316 {
5317 error (_("Bad sh_info in group section `%s'\n"), name);
5318 continue;
5319 }
5320
5321 group_name = SECTION_NAME (section_headers + sym->st_shndx);
5322 strtab_sec = NULL;
5323 if (strtab)
5324 free (strtab);
5325 strtab = NULL;
5326 strtab_size = 0;
5327 }
5328 else
5329 {
5330 /* Get the string table. */
5331 if (symtab_sec->sh_link >= elf_header.e_shnum)
5332 {
5333 strtab_sec = NULL;
5334 if (strtab)
5335 free (strtab);
5336 strtab = NULL;
5337 strtab_size = 0;
5338 }
5339 else if (strtab_sec
5340 != (sec = section_headers + symtab_sec->sh_link))
5341 {
5342 strtab_sec = sec;
5343 if (strtab)
5344 free (strtab);
5345 strtab = (char *) get_data (NULL, file, strtab_sec->sh_offset,
5346 1, strtab_sec->sh_size,
5347 _("string table"));
5348 strtab_size = strtab != NULL ? strtab_sec->sh_size : 0;
5349 }
5350 group_name = sym->st_name < strtab_size
5351 ? strtab + sym->st_name : _("<corrupt>");
5352 }
5353
5354 start = (unsigned char *) get_data (NULL, file, section->sh_offset,
5355 1, section->sh_size,
5356 _("section data"));
5357 if (start == NULL)
5358 continue;
5359
5360 indices = start;
5361 size = (section->sh_size / section->sh_entsize) - 1;
5362 entry = byte_get (indices, 4);
5363 indices += 4;
5364
5365 if (do_section_groups)
5366 {
5367 printf (_("\n%sgroup section [%5u] `%s' [%s] contains %u sections:\n"),
5368 get_group_flags (entry), i, name, group_name, size);
5369
5370 printf (_(" [Index] Name\n"));
5371 }
5372
5373 group->group_index = i;
5374
5375 for (j = 0; j < size; j++)
5376 {
5377 struct group_list * g;
5378
5379 entry = byte_get (indices, 4);
5380 indices += 4;
5381
5382 if (entry >= elf_header.e_shnum)
5383 {
5384 error (_("section [%5u] in group section [%5u] > maximum section [%5u]\n"),
5385 entry, i, elf_header.e_shnum - 1);
5386 continue;
5387 }
5388
5389 if (section_headers_groups [entry] != NULL)
5390 {
5391 if (entry)
5392 {
5393 error (_("section [%5u] in group section [%5u] already in group section [%5u]\n"),
5394 entry, i,
5395 section_headers_groups [entry]->group_index);
5396 continue;
5397 }
5398 else
5399 {
5400 /* Intel C/C++ compiler may put section 0 in a
5401 section group. We just warn it the first time
5402 and ignore it afterwards. */
5403 static int warned = 0;
5404 if (!warned)
5405 {
5406 error (_("section 0 in group section [%5u]\n"),
5407 section_headers_groups [entry]->group_index);
5408 warned++;
5409 }
5410 }
5411 }
5412
5413 section_headers_groups [entry] = group;
5414
5415 if (do_section_groups)
5416 {
5417 sec = section_headers + entry;
5418 printf (" [%5u] %s\n", entry, SECTION_NAME (sec));
5419 }
5420
5421 g = (struct group_list *) xmalloc (sizeof (struct group_list));
5422 g->section_index = entry;
5423 g->next = group->root;
5424 group->root = g;
5425 }
5426
5427 if (start)
5428 free (start);
5429
5430 group++;
5431 }
5432 }
5433
5434 if (symtab)
5435 free (symtab);
5436 if (strtab)
5437 free (strtab);
5438 return 1;
5439 }
5440
5441 /* Data used to display dynamic fixups. */
5442
5443 struct ia64_vms_dynfixup
5444 {
5445 bfd_vma needed_ident; /* Library ident number. */
5446 bfd_vma needed; /* Index in the dstrtab of the library name. */
5447 bfd_vma fixup_needed; /* Index of the library. */
5448 bfd_vma fixup_rela_cnt; /* Number of fixups. */
5449 bfd_vma fixup_rela_off; /* Fixups offset in the dynamic segment. */
5450 };
5451
5452 /* Data used to display dynamic relocations. */
5453
5454 struct ia64_vms_dynimgrela
5455 {
5456 bfd_vma img_rela_cnt; /* Number of relocations. */
5457 bfd_vma img_rela_off; /* Reloc offset in the dynamic segment. */
5458 };
5459
5460 /* Display IA-64 OpenVMS dynamic fixups (used to dynamically link a shared
5461 library). */
5462
5463 static void
5464 dump_ia64_vms_dynamic_fixups (FILE *file, struct ia64_vms_dynfixup *fixup,
5465 const char *strtab, unsigned int strtab_sz)
5466 {
5467 Elf64_External_VMS_IMAGE_FIXUP *imfs;
5468 long i;
5469 const char *lib_name;
5470
5471 imfs = get_data (NULL, file, dynamic_addr + fixup->fixup_rela_off,
5472 1, fixup->fixup_rela_cnt * sizeof (*imfs),
5473 _("dynamic section image fixups"));
5474 if (!imfs)
5475 return;
5476
5477 if (fixup->needed < strtab_sz)
5478 lib_name = strtab + fixup->needed;
5479 else
5480 {
5481 warn ("corrupt library name index of 0x%lx found in dynamic entry",
5482 (unsigned long) fixup->needed);
5483 lib_name = "???";
5484 }
5485 printf (_("\nImage fixups for needed library #%d: %s - ident: %lx\n"),
5486 (int) fixup->fixup_needed, lib_name, (long) fixup->needed_ident);
5487 printf
5488 (_("Seg Offset Type SymVec DataType\n"));
5489
5490 for (i = 0; i < (long) fixup->fixup_rela_cnt; i++)
5491 {
5492 unsigned int type;
5493 const char *rtype;
5494
5495 printf ("%3u ", (unsigned) BYTE_GET (imfs [i].fixup_seg));
5496 printf_vma ((bfd_vma) BYTE_GET (imfs [i].fixup_offset));
5497 type = BYTE_GET (imfs [i].type);
5498 rtype = elf_ia64_reloc_type (type);
5499 if (rtype == NULL)
5500 printf (" 0x%08x ", type);
5501 else
5502 printf (" %-32s ", rtype);
5503 printf ("%6u ", (unsigned) BYTE_GET (imfs [i].symvec_index));
5504 printf ("0x%08x\n", (unsigned) BYTE_GET (imfs [i].data_type));
5505 }
5506
5507 free (imfs);
5508 }
5509
5510 /* Display IA-64 OpenVMS dynamic relocations (used to relocate an image). */
5511
5512 static void
5513 dump_ia64_vms_dynamic_relocs (FILE *file, struct ia64_vms_dynimgrela *imgrela)
5514 {
5515 Elf64_External_VMS_IMAGE_RELA *imrs;
5516 long i;
5517
5518 imrs = get_data (NULL, file, dynamic_addr + imgrela->img_rela_off,
5519 1, imgrela->img_rela_cnt * sizeof (*imrs),
5520 _("dynamic section image relocations"));
5521 if (!imrs)
5522 return;
5523
5524 printf (_("\nImage relocs\n"));
5525 printf
5526 (_("Seg Offset Type Addend Seg Sym Off\n"));
5527
5528 for (i = 0; i < (long) imgrela->img_rela_cnt; i++)
5529 {
5530 unsigned int type;
5531 const char *rtype;
5532
5533 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].rela_seg));
5534 printf ("%08" BFD_VMA_FMT "x ",
5535 (bfd_vma) BYTE_GET (imrs [i].rela_offset));
5536 type = BYTE_GET (imrs [i].type);
5537 rtype = elf_ia64_reloc_type (type);
5538 if (rtype == NULL)
5539 printf ("0x%08x ", type);
5540 else
5541 printf ("%-31s ", rtype);
5542 print_vma (BYTE_GET (imrs [i].addend), FULL_HEX);
5543 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].sym_seg));
5544 printf ("%08" BFD_VMA_FMT "x\n",
5545 (bfd_vma) BYTE_GET (imrs [i].sym_offset));
5546 }
5547
5548 free (imrs);
5549 }
5550
5551 /* Display IA-64 OpenVMS dynamic relocations and fixups. */
5552
5553 static int
5554 process_ia64_vms_dynamic_relocs (FILE *file)
5555 {
5556 struct ia64_vms_dynfixup fixup;
5557 struct ia64_vms_dynimgrela imgrela;
5558 Elf_Internal_Dyn *entry;
5559 int res = 0;
5560 bfd_vma strtab_off = 0;
5561 bfd_vma strtab_sz = 0;
5562 char *strtab = NULL;
5563
5564 memset (&fixup, 0, sizeof (fixup));
5565 memset (&imgrela, 0, sizeof (imgrela));
5566
5567 /* Note: the order of the entries is specified by the OpenVMS specs. */
5568 for (entry = dynamic_section;
5569 entry < dynamic_section + dynamic_nent;
5570 entry++)
5571 {
5572 switch (entry->d_tag)
5573 {
5574 case DT_IA_64_VMS_STRTAB_OFFSET:
5575 strtab_off = entry->d_un.d_val;
5576 break;
5577 case DT_STRSZ:
5578 strtab_sz = entry->d_un.d_val;
5579 if (strtab == NULL)
5580 strtab = get_data (NULL, file, dynamic_addr + strtab_off,
5581 1, strtab_sz, _("dynamic string section"));
5582 break;
5583
5584 case DT_IA_64_VMS_NEEDED_IDENT:
5585 fixup.needed_ident = entry->d_un.d_val;
5586 break;
5587 case DT_NEEDED:
5588 fixup.needed = entry->d_un.d_val;
5589 break;
5590 case DT_IA_64_VMS_FIXUP_NEEDED:
5591 fixup.fixup_needed = entry->d_un.d_val;
5592 break;
5593 case DT_IA_64_VMS_FIXUP_RELA_CNT:
5594 fixup.fixup_rela_cnt = entry->d_un.d_val;
5595 break;
5596 case DT_IA_64_VMS_FIXUP_RELA_OFF:
5597 fixup.fixup_rela_off = entry->d_un.d_val;
5598 res++;
5599 dump_ia64_vms_dynamic_fixups (file, &fixup, strtab, strtab_sz);
5600 break;
5601
5602 case DT_IA_64_VMS_IMG_RELA_CNT:
5603 imgrela.img_rela_cnt = entry->d_un.d_val;
5604 break;
5605 case DT_IA_64_VMS_IMG_RELA_OFF:
5606 imgrela.img_rela_off = entry->d_un.d_val;
5607 res++;
5608 dump_ia64_vms_dynamic_relocs (file, &imgrela);
5609 break;
5610
5611 default:
5612 break;
5613 }
5614 }
5615
5616 if (strtab != NULL)
5617 free (strtab);
5618
5619 return res;
5620 }
5621
5622 static struct
5623 {
5624 const char * name;
5625 int reloc;
5626 int size;
5627 int rela;
5628 } dynamic_relocations [] =
5629 {
5630 { "REL", DT_REL, DT_RELSZ, FALSE },
5631 { "RELA", DT_RELA, DT_RELASZ, TRUE },
5632 { "PLT", DT_JMPREL, DT_PLTRELSZ, UNKNOWN }
5633 };
5634
5635 /* Process the reloc section. */
5636
5637 static int
5638 process_relocs (FILE * file)
5639 {
5640 unsigned long rel_size;
5641 unsigned long rel_offset;
5642
5643
5644 if (!do_reloc)
5645 return 1;
5646
5647 if (do_using_dynamic)
5648 {
5649 int is_rela;
5650 const char * name;
5651 int has_dynamic_reloc;
5652 unsigned int i;
5653
5654 has_dynamic_reloc = 0;
5655
5656 for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
5657 {
5658 is_rela = dynamic_relocations [i].rela;
5659 name = dynamic_relocations [i].name;
5660 rel_size = dynamic_info [dynamic_relocations [i].size];
5661 rel_offset = dynamic_info [dynamic_relocations [i].reloc];
5662
5663 has_dynamic_reloc |= rel_size;
5664
5665 if (is_rela == UNKNOWN)
5666 {
5667 if (dynamic_relocations [i].reloc == DT_JMPREL)
5668 switch (dynamic_info[DT_PLTREL])
5669 {
5670 case DT_REL:
5671 is_rela = FALSE;
5672 break;
5673 case DT_RELA:
5674 is_rela = TRUE;
5675 break;
5676 }
5677 }
5678
5679 if (rel_size)
5680 {
5681 printf
5682 (_("\n'%s' relocation section at offset 0x%lx contains %ld bytes:\n"),
5683 name, rel_offset, rel_size);
5684
5685 dump_relocations (file,
5686 offset_from_vma (file, rel_offset, rel_size),
5687 rel_size,
5688 dynamic_symbols, num_dynamic_syms,
5689 dynamic_strings, dynamic_strings_length, is_rela);
5690 }
5691 }
5692
5693 if (is_ia64_vms ())
5694 has_dynamic_reloc |= process_ia64_vms_dynamic_relocs (file);
5695
5696 if (! has_dynamic_reloc)
5697 printf (_("\nThere are no dynamic relocations in this file.\n"));
5698 }
5699 else
5700 {
5701 Elf_Internal_Shdr * section;
5702 unsigned long i;
5703 int found = 0;
5704
5705 for (i = 0, section = section_headers;
5706 i < elf_header.e_shnum;
5707 i++, section++)
5708 {
5709 if ( section->sh_type != SHT_RELA
5710 && section->sh_type != SHT_REL)
5711 continue;
5712
5713 rel_offset = section->sh_offset;
5714 rel_size = section->sh_size;
5715
5716 if (rel_size)
5717 {
5718 Elf_Internal_Shdr * strsec;
5719 int is_rela;
5720
5721 printf (_("\nRelocation section "));
5722
5723 if (string_table == NULL)
5724 printf ("%d", section->sh_name);
5725 else
5726 printf ("'%s'", SECTION_NAME (section));
5727
5728 printf (_(" at offset 0x%lx contains %lu entries:\n"),
5729 rel_offset, (unsigned long) (rel_size / section->sh_entsize));
5730
5731 is_rela = section->sh_type == SHT_RELA;
5732
5733 if (section->sh_link != 0
5734 && section->sh_link < elf_header.e_shnum)
5735 {
5736 Elf_Internal_Shdr * symsec;
5737 Elf_Internal_Sym * symtab;
5738 unsigned long nsyms;
5739 unsigned long strtablen = 0;
5740 char * strtab = NULL;
5741
5742 symsec = section_headers + section->sh_link;
5743 if (symsec->sh_type != SHT_SYMTAB
5744 && symsec->sh_type != SHT_DYNSYM)
5745 continue;
5746
5747 symtab = GET_ELF_SYMBOLS (file, symsec, & nsyms);
5748
5749 if (symtab == NULL)
5750 continue;
5751
5752 if (symsec->sh_link != 0
5753 && symsec->sh_link < elf_header.e_shnum)
5754 {
5755 strsec = section_headers + symsec->sh_link;
5756
5757 strtab = (char *) get_data (NULL, file, strsec->sh_offset,
5758 1, strsec->sh_size,
5759 _("string table"));
5760 strtablen = strtab == NULL ? 0 : strsec->sh_size;
5761 }
5762
5763 dump_relocations (file, rel_offset, rel_size,
5764 symtab, nsyms, strtab, strtablen, is_rela);
5765 if (strtab)
5766 free (strtab);
5767 free (symtab);
5768 }
5769 else
5770 dump_relocations (file, rel_offset, rel_size,
5771 NULL, 0, NULL, 0, is_rela);
5772
5773 found = 1;
5774 }
5775 }
5776
5777 if (! found)
5778 printf (_("\nThere are no relocations in this file.\n"));
5779 }
5780
5781 return 1;
5782 }
5783
5784 /* Process the unwind section. */
5785
5786 #include "unwind-ia64.h"
5787
5788 /* An absolute address consists of a section and an offset. If the
5789 section is NULL, the offset itself is the address, otherwise, the
5790 address equals to LOAD_ADDRESS(section) + offset. */
5791
5792 struct absaddr
5793 {
5794 unsigned short section;
5795 bfd_vma offset;
5796 };
5797
5798 #define ABSADDR(a) \
5799 ((a).section \
5800 ? section_headers [(a).section].sh_addr + (a).offset \
5801 : (a).offset)
5802
5803 struct ia64_unw_table_entry
5804 {
5805 struct absaddr start;
5806 struct absaddr end;
5807 struct absaddr info;
5808 };
5809
5810 struct ia64_unw_aux_info
5811 {
5812
5813 struct ia64_unw_table_entry *table; /* Unwind table. */
5814 unsigned long table_len; /* Length of unwind table. */
5815 unsigned char * info; /* Unwind info. */
5816 unsigned long info_size; /* Size of unwind info. */
5817 bfd_vma info_addr; /* starting address of unwind info. */
5818 bfd_vma seg_base; /* Starting address of segment. */
5819 Elf_Internal_Sym * symtab; /* The symbol table. */
5820 unsigned long nsyms; /* Number of symbols. */
5821 char * strtab; /* The string table. */
5822 unsigned long strtab_size; /* Size of string table. */
5823 };
5824
5825 static void
5826 find_symbol_for_address (Elf_Internal_Sym * symtab,
5827 unsigned long nsyms,
5828 const char * strtab,
5829 unsigned long strtab_size,
5830 struct absaddr addr,
5831 const char ** symname,
5832 bfd_vma * offset)
5833 {
5834 bfd_vma dist = 0x100000;
5835 Elf_Internal_Sym * sym;
5836 Elf_Internal_Sym * best = NULL;
5837 unsigned long i;
5838
5839 REMOVE_ARCH_BITS (addr.offset);
5840
5841 for (i = 0, sym = symtab; i < nsyms; ++i, ++sym)
5842 {
5843 bfd_vma value = sym->st_value;
5844
5845 REMOVE_ARCH_BITS (value);
5846
5847 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC
5848 && sym->st_name != 0
5849 && (addr.section == SHN_UNDEF || addr.section == sym->st_shndx)
5850 && addr.offset >= value
5851 && addr.offset - value < dist)
5852 {
5853 best = sym;
5854 dist = addr.offset - value;
5855 if (!dist)
5856 break;
5857 }
5858 }
5859
5860 if (best)
5861 {
5862 *symname = (best->st_name >= strtab_size
5863 ? _("<corrupt>") : strtab + best->st_name);
5864 *offset = dist;
5865 return;
5866 }
5867
5868 *symname = NULL;
5869 *offset = addr.offset;
5870 }
5871
5872 static void
5873 dump_ia64_unwind (struct ia64_unw_aux_info * aux)
5874 {
5875 struct ia64_unw_table_entry * tp;
5876 int in_body;
5877
5878 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
5879 {
5880 bfd_vma stamp;
5881 bfd_vma offset;
5882 const unsigned char * dp;
5883 const unsigned char * head;
5884 const char * procname;
5885
5886 find_symbol_for_address (aux->symtab, aux->nsyms, aux->strtab,
5887 aux->strtab_size, tp->start, &procname, &offset);
5888
5889 fputs ("\n<", stdout);
5890
5891 if (procname)
5892 {
5893 fputs (procname, stdout);
5894
5895 if (offset)
5896 printf ("+%lx", (unsigned long) offset);
5897 }
5898
5899 fputs (">: [", stdout);
5900 print_vma (tp->start.offset, PREFIX_HEX);
5901 fputc ('-', stdout);
5902 print_vma (tp->end.offset, PREFIX_HEX);
5903 printf ("], info at +0x%lx\n",
5904 (unsigned long) (tp->info.offset - aux->seg_base));
5905
5906 head = aux->info + (ABSADDR (tp->info) - aux->info_addr);
5907 stamp = byte_get ((unsigned char *) head, sizeof (stamp));
5908
5909 printf (" v%u, flags=0x%lx (%s%s), len=%lu bytes\n",
5910 (unsigned) UNW_VER (stamp),
5911 (unsigned long) ((stamp & UNW_FLAG_MASK) >> 32),
5912 UNW_FLAG_EHANDLER (stamp) ? " ehandler" : "",
5913 UNW_FLAG_UHANDLER (stamp) ? " uhandler" : "",
5914 (unsigned long) (eh_addr_size * UNW_LENGTH (stamp)));
5915
5916 if (UNW_VER (stamp) != 1)
5917 {
5918 printf (_("\tUnknown version.\n"));
5919 continue;
5920 }
5921
5922 in_body = 0;
5923 for (dp = head + 8; dp < head + 8 + eh_addr_size * UNW_LENGTH (stamp);)
5924 dp = unw_decode (dp, in_body, & in_body);
5925 }
5926 }
5927
5928 static int
5929 slurp_ia64_unwind_table (FILE * file,
5930 struct ia64_unw_aux_info * aux,
5931 Elf_Internal_Shdr * sec)
5932 {
5933 unsigned long size, nrelas, i;
5934 Elf_Internal_Phdr * seg;
5935 struct ia64_unw_table_entry * tep;
5936 Elf_Internal_Shdr * relsec;
5937 Elf_Internal_Rela * rela;
5938 Elf_Internal_Rela * rp;
5939 unsigned char * table;
5940 unsigned char * tp;
5941 Elf_Internal_Sym * sym;
5942 const char * relname;
5943
5944 /* First, find the starting address of the segment that includes
5945 this section: */
5946
5947 if (elf_header.e_phnum)
5948 {
5949 if (! get_program_headers (file))
5950 return 0;
5951
5952 for (seg = program_headers;
5953 seg < program_headers + elf_header.e_phnum;
5954 ++seg)
5955 {
5956 if (seg->p_type != PT_LOAD)
5957 continue;
5958
5959 if (sec->sh_addr >= seg->p_vaddr
5960 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
5961 {
5962 aux->seg_base = seg->p_vaddr;
5963 break;
5964 }
5965 }
5966 }
5967
5968 /* Second, build the unwind table from the contents of the unwind section: */
5969 size = sec->sh_size;
5970 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
5971 _("unwind table"));
5972 if (!table)
5973 return 0;
5974
5975 aux->table = (struct ia64_unw_table_entry *)
5976 xcmalloc (size / (3 * eh_addr_size), sizeof (aux->table[0]));
5977 tep = aux->table;
5978 for (tp = table; tp < table + size; ++tep)
5979 {
5980 tep->start.section = SHN_UNDEF;
5981 tep->end.section = SHN_UNDEF;
5982 tep->info.section = SHN_UNDEF;
5983 tep->start.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
5984 tep->end.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
5985 tep->info.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
5986 tep->start.offset += aux->seg_base;
5987 tep->end.offset += aux->seg_base;
5988 tep->info.offset += aux->seg_base;
5989 }
5990 free (table);
5991
5992 /* Third, apply any relocations to the unwind table: */
5993 for (relsec = section_headers;
5994 relsec < section_headers + elf_header.e_shnum;
5995 ++relsec)
5996 {
5997 if (relsec->sh_type != SHT_RELA
5998 || relsec->sh_info >= elf_header.e_shnum
5999 || section_headers + relsec->sh_info != sec)
6000 continue;
6001
6002 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
6003 & rela, & nrelas))
6004 return 0;
6005
6006 for (rp = rela; rp < rela + nrelas; ++rp)
6007 {
6008 relname = elf_ia64_reloc_type (get_reloc_type (rp->r_info));
6009 sym = aux->symtab + get_reloc_symindex (rp->r_info);
6010
6011 if (! const_strneq (relname, "R_IA64_SEGREL"))
6012 {
6013 warn (_("Skipping unexpected relocation type %s\n"), relname);
6014 continue;
6015 }
6016
6017 i = rp->r_offset / (3 * eh_addr_size);
6018
6019 switch (rp->r_offset/eh_addr_size % 3)
6020 {
6021 case 0:
6022 aux->table[i].start.section = sym->st_shndx;
6023 aux->table[i].start.offset = rp->r_addend + sym->st_value;
6024 break;
6025 case 1:
6026 aux->table[i].end.section = sym->st_shndx;
6027 aux->table[i].end.offset = rp->r_addend + sym->st_value;
6028 break;
6029 case 2:
6030 aux->table[i].info.section = sym->st_shndx;
6031 aux->table[i].info.offset = rp->r_addend + sym->st_value;
6032 break;
6033 default:
6034 break;
6035 }
6036 }
6037
6038 free (rela);
6039 }
6040
6041 aux->table_len = size / (3 * eh_addr_size);
6042 return 1;
6043 }
6044
6045 static void
6046 ia64_process_unwind (FILE * file)
6047 {
6048 Elf_Internal_Shdr * sec;
6049 Elf_Internal_Shdr * unwsec = NULL;
6050 Elf_Internal_Shdr * strsec;
6051 unsigned long i, unwcount = 0, unwstart = 0;
6052 struct ia64_unw_aux_info aux;
6053
6054 memset (& aux, 0, sizeof (aux));
6055
6056 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
6057 {
6058 if (sec->sh_type == SHT_SYMTAB
6059 && sec->sh_link < elf_header.e_shnum)
6060 {
6061 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
6062
6063 strsec = section_headers + sec->sh_link;
6064 assert (aux.strtab == NULL);
6065 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
6066 1, strsec->sh_size,
6067 _("string table"));
6068 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
6069 }
6070 else if (sec->sh_type == SHT_IA_64_UNWIND)
6071 unwcount++;
6072 }
6073
6074 if (!unwcount)
6075 printf (_("\nThere are no unwind sections in this file.\n"));
6076
6077 while (unwcount-- > 0)
6078 {
6079 char * suffix;
6080 size_t len, len2;
6081
6082 for (i = unwstart, sec = section_headers + unwstart;
6083 i < elf_header.e_shnum; ++i, ++sec)
6084 if (sec->sh_type == SHT_IA_64_UNWIND)
6085 {
6086 unwsec = sec;
6087 break;
6088 }
6089
6090 unwstart = i + 1;
6091 len = sizeof (ELF_STRING_ia64_unwind_once) - 1;
6092
6093 if ((unwsec->sh_flags & SHF_GROUP) != 0)
6094 {
6095 /* We need to find which section group it is in. */
6096 struct group_list * g = section_headers_groups [i]->root;
6097
6098 for (; g != NULL; g = g->next)
6099 {
6100 sec = section_headers + g->section_index;
6101
6102 if (streq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info))
6103 break;
6104 }
6105
6106 if (g == NULL)
6107 i = elf_header.e_shnum;
6108 }
6109 else if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind_once, len))
6110 {
6111 /* .gnu.linkonce.ia64unw.FOO -> .gnu.linkonce.ia64unwi.FOO. */
6112 len2 = sizeof (ELF_STRING_ia64_unwind_info_once) - 1;
6113 suffix = SECTION_NAME (unwsec) + len;
6114 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
6115 ++i, ++sec)
6116 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info_once, len2)
6117 && streq (SECTION_NAME (sec) + len2, suffix))
6118 break;
6119 }
6120 else
6121 {
6122 /* .IA_64.unwindFOO -> .IA_64.unwind_infoFOO
6123 .IA_64.unwind or BAR -> .IA_64.unwind_info. */
6124 len = sizeof (ELF_STRING_ia64_unwind) - 1;
6125 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
6126 suffix = "";
6127 if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind, len))
6128 suffix = SECTION_NAME (unwsec) + len;
6129 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
6130 ++i, ++sec)
6131 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info, len2)
6132 && streq (SECTION_NAME (sec) + len2, suffix))
6133 break;
6134 }
6135
6136 if (i == elf_header.e_shnum)
6137 {
6138 printf (_("\nCould not find unwind info section for "));
6139
6140 if (string_table == NULL)
6141 printf ("%d", unwsec->sh_name);
6142 else
6143 printf (_("'%s'"), SECTION_NAME (unwsec));
6144 }
6145 else
6146 {
6147 aux.info_addr = sec->sh_addr;
6148 aux.info = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1,
6149 sec->sh_size,
6150 _("unwind info"));
6151 aux.info_size = aux.info == NULL ? 0 : sec->sh_size;
6152
6153 printf (_("\nUnwind section "));
6154
6155 if (string_table == NULL)
6156 printf ("%d", unwsec->sh_name);
6157 else
6158 printf (_("'%s'"), SECTION_NAME (unwsec));
6159
6160 printf (_(" at offset 0x%lx contains %lu entries:\n"),
6161 (unsigned long) unwsec->sh_offset,
6162 (unsigned long) (unwsec->sh_size / (3 * eh_addr_size)));
6163
6164 (void) slurp_ia64_unwind_table (file, & aux, unwsec);
6165
6166 if (aux.table_len > 0)
6167 dump_ia64_unwind (& aux);
6168
6169 if (aux.table)
6170 free ((char *) aux.table);
6171 if (aux.info)
6172 free ((char *) aux.info);
6173 aux.table = NULL;
6174 aux.info = NULL;
6175 }
6176 }
6177
6178 if (aux.symtab)
6179 free (aux.symtab);
6180 if (aux.strtab)
6181 free ((char *) aux.strtab);
6182 }
6183
6184 struct hppa_unw_table_entry
6185 {
6186 struct absaddr start;
6187 struct absaddr end;
6188 unsigned int Cannot_unwind:1; /* 0 */
6189 unsigned int Millicode:1; /* 1 */
6190 unsigned int Millicode_save_sr0:1; /* 2 */
6191 unsigned int Region_description:2; /* 3..4 */
6192 unsigned int reserved1:1; /* 5 */
6193 unsigned int Entry_SR:1; /* 6 */
6194 unsigned int Entry_FR:4; /* number saved */ /* 7..10 */
6195 unsigned int Entry_GR:5; /* number saved */ /* 11..15 */
6196 unsigned int Args_stored:1; /* 16 */
6197 unsigned int Variable_Frame:1; /* 17 */
6198 unsigned int Separate_Package_Body:1; /* 18 */
6199 unsigned int Frame_Extension_Millicode:1; /* 19 */
6200 unsigned int Stack_Overflow_Check:1; /* 20 */
6201 unsigned int Two_Instruction_SP_Increment:1; /* 21 */
6202 unsigned int Ada_Region:1; /* 22 */
6203 unsigned int cxx_info:1; /* 23 */
6204 unsigned int cxx_try_catch:1; /* 24 */
6205 unsigned int sched_entry_seq:1; /* 25 */
6206 unsigned int reserved2:1; /* 26 */
6207 unsigned int Save_SP:1; /* 27 */
6208 unsigned int Save_RP:1; /* 28 */
6209 unsigned int Save_MRP_in_frame:1; /* 29 */
6210 unsigned int extn_ptr_defined:1; /* 30 */
6211 unsigned int Cleanup_defined:1; /* 31 */
6212
6213 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
6214 unsigned int HP_UX_interrupt_marker:1; /* 1 */
6215 unsigned int Large_frame:1; /* 2 */
6216 unsigned int Pseudo_SP_Set:1; /* 3 */
6217 unsigned int reserved4:1; /* 4 */
6218 unsigned int Total_frame_size:27; /* 5..31 */
6219 };
6220
6221 struct hppa_unw_aux_info
6222 {
6223 struct hppa_unw_table_entry *table; /* Unwind table. */
6224 unsigned long table_len; /* Length of unwind table. */
6225 bfd_vma seg_base; /* Starting address of segment. */
6226 Elf_Internal_Sym * symtab; /* The symbol table. */
6227 unsigned long nsyms; /* Number of symbols. */
6228 char * strtab; /* The string table. */
6229 unsigned long strtab_size; /* Size of string table. */
6230 };
6231
6232 static void
6233 dump_hppa_unwind (struct hppa_unw_aux_info * aux)
6234 {
6235 struct hppa_unw_table_entry * tp;
6236
6237 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
6238 {
6239 bfd_vma offset;
6240 const char * procname;
6241
6242 find_symbol_for_address (aux->symtab, aux->nsyms, aux->strtab,
6243 aux->strtab_size, tp->start, &procname,
6244 &offset);
6245
6246 fputs ("\n<", stdout);
6247
6248 if (procname)
6249 {
6250 fputs (procname, stdout);
6251
6252 if (offset)
6253 printf ("+%lx", (unsigned long) offset);
6254 }
6255
6256 fputs (">: [", stdout);
6257 print_vma (tp->start.offset, PREFIX_HEX);
6258 fputc ('-', stdout);
6259 print_vma (tp->end.offset, PREFIX_HEX);
6260 printf ("]\n\t");
6261
6262 #define PF(_m) if (tp->_m) printf (#_m " ");
6263 #define PV(_m) if (tp->_m) printf (#_m "=%d ", tp->_m);
6264 PF(Cannot_unwind);
6265 PF(Millicode);
6266 PF(Millicode_save_sr0);
6267 /* PV(Region_description); */
6268 PF(Entry_SR);
6269 PV(Entry_FR);
6270 PV(Entry_GR);
6271 PF(Args_stored);
6272 PF(Variable_Frame);
6273 PF(Separate_Package_Body);
6274 PF(Frame_Extension_Millicode);
6275 PF(Stack_Overflow_Check);
6276 PF(Two_Instruction_SP_Increment);
6277 PF(Ada_Region);
6278 PF(cxx_info);
6279 PF(cxx_try_catch);
6280 PF(sched_entry_seq);
6281 PF(Save_SP);
6282 PF(Save_RP);
6283 PF(Save_MRP_in_frame);
6284 PF(extn_ptr_defined);
6285 PF(Cleanup_defined);
6286 PF(MPE_XL_interrupt_marker);
6287 PF(HP_UX_interrupt_marker);
6288 PF(Large_frame);
6289 PF(Pseudo_SP_Set);
6290 PV(Total_frame_size);
6291 #undef PF
6292 #undef PV
6293 }
6294
6295 printf ("\n");
6296 }
6297
6298 static int
6299 slurp_hppa_unwind_table (FILE * file,
6300 struct hppa_unw_aux_info * aux,
6301 Elf_Internal_Shdr * sec)
6302 {
6303 unsigned long size, unw_ent_size, nentries, nrelas, i;
6304 Elf_Internal_Phdr * seg;
6305 struct hppa_unw_table_entry * tep;
6306 Elf_Internal_Shdr * relsec;
6307 Elf_Internal_Rela * rela;
6308 Elf_Internal_Rela * rp;
6309 unsigned char * table;
6310 unsigned char * tp;
6311 Elf_Internal_Sym * sym;
6312 const char * relname;
6313
6314 /* First, find the starting address of the segment that includes
6315 this section. */
6316
6317 if (elf_header.e_phnum)
6318 {
6319 if (! get_program_headers (file))
6320 return 0;
6321
6322 for (seg = program_headers;
6323 seg < program_headers + elf_header.e_phnum;
6324 ++seg)
6325 {
6326 if (seg->p_type != PT_LOAD)
6327 continue;
6328
6329 if (sec->sh_addr >= seg->p_vaddr
6330 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
6331 {
6332 aux->seg_base = seg->p_vaddr;
6333 break;
6334 }
6335 }
6336 }
6337
6338 /* Second, build the unwind table from the contents of the unwind
6339 section. */
6340 size = sec->sh_size;
6341 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
6342 _("unwind table"));
6343 if (!table)
6344 return 0;
6345
6346 unw_ent_size = 16;
6347 nentries = size / unw_ent_size;
6348 size = unw_ent_size * nentries;
6349
6350 tep = aux->table = (struct hppa_unw_table_entry *)
6351 xcmalloc (nentries, sizeof (aux->table[0]));
6352
6353 for (tp = table; tp < table + size; tp += unw_ent_size, ++tep)
6354 {
6355 unsigned int tmp1, tmp2;
6356
6357 tep->start.section = SHN_UNDEF;
6358 tep->end.section = SHN_UNDEF;
6359
6360 tep->start.offset = byte_get ((unsigned char *) tp + 0, 4);
6361 tep->end.offset = byte_get ((unsigned char *) tp + 4, 4);
6362 tmp1 = byte_get ((unsigned char *) tp + 8, 4);
6363 tmp2 = byte_get ((unsigned char *) tp + 12, 4);
6364
6365 tep->start.offset += aux->seg_base;
6366 tep->end.offset += aux->seg_base;
6367
6368 tep->Cannot_unwind = (tmp1 >> 31) & 0x1;
6369 tep->Millicode = (tmp1 >> 30) & 0x1;
6370 tep->Millicode_save_sr0 = (tmp1 >> 29) & 0x1;
6371 tep->Region_description = (tmp1 >> 27) & 0x3;
6372 tep->reserved1 = (tmp1 >> 26) & 0x1;
6373 tep->Entry_SR = (tmp1 >> 25) & 0x1;
6374 tep->Entry_FR = (tmp1 >> 21) & 0xf;
6375 tep->Entry_GR = (tmp1 >> 16) & 0x1f;
6376 tep->Args_stored = (tmp1 >> 15) & 0x1;
6377 tep->Variable_Frame = (tmp1 >> 14) & 0x1;
6378 tep->Separate_Package_Body = (tmp1 >> 13) & 0x1;
6379 tep->Frame_Extension_Millicode = (tmp1 >> 12) & 0x1;
6380 tep->Stack_Overflow_Check = (tmp1 >> 11) & 0x1;
6381 tep->Two_Instruction_SP_Increment = (tmp1 >> 10) & 0x1;
6382 tep->Ada_Region = (tmp1 >> 9) & 0x1;
6383 tep->cxx_info = (tmp1 >> 8) & 0x1;
6384 tep->cxx_try_catch = (tmp1 >> 7) & 0x1;
6385 tep->sched_entry_seq = (tmp1 >> 6) & 0x1;
6386 tep->reserved2 = (tmp1 >> 5) & 0x1;
6387 tep->Save_SP = (tmp1 >> 4) & 0x1;
6388 tep->Save_RP = (tmp1 >> 3) & 0x1;
6389 tep->Save_MRP_in_frame = (tmp1 >> 2) & 0x1;
6390 tep->extn_ptr_defined = (tmp1 >> 1) & 0x1;
6391 tep->Cleanup_defined = tmp1 & 0x1;
6392
6393 tep->MPE_XL_interrupt_marker = (tmp2 >> 31) & 0x1;
6394 tep->HP_UX_interrupt_marker = (tmp2 >> 30) & 0x1;
6395 tep->Large_frame = (tmp2 >> 29) & 0x1;
6396 tep->Pseudo_SP_Set = (tmp2 >> 28) & 0x1;
6397 tep->reserved4 = (tmp2 >> 27) & 0x1;
6398 tep->Total_frame_size = tmp2 & 0x7ffffff;
6399 }
6400 free (table);
6401
6402 /* Third, apply any relocations to the unwind table. */
6403 for (relsec = section_headers;
6404 relsec < section_headers + elf_header.e_shnum;
6405 ++relsec)
6406 {
6407 if (relsec->sh_type != SHT_RELA
6408 || relsec->sh_info >= elf_header.e_shnum
6409 || section_headers + relsec->sh_info != sec)
6410 continue;
6411
6412 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
6413 & rela, & nrelas))
6414 return 0;
6415
6416 for (rp = rela; rp < rela + nrelas; ++rp)
6417 {
6418 relname = elf_hppa_reloc_type (get_reloc_type (rp->r_info));
6419 sym = aux->symtab + get_reloc_symindex (rp->r_info);
6420
6421 /* R_PARISC_SEGREL32 or R_PARISC_SEGREL64. */
6422 if (! const_strneq (relname, "R_PARISC_SEGREL"))
6423 {
6424 warn (_("Skipping unexpected relocation type %s\n"), relname);
6425 continue;
6426 }
6427
6428 i = rp->r_offset / unw_ent_size;
6429
6430 switch ((rp->r_offset % unw_ent_size) / eh_addr_size)
6431 {
6432 case 0:
6433 aux->table[i].start.section = sym->st_shndx;
6434 aux->table[i].start.offset = sym->st_value + rp->r_addend;
6435 break;
6436 case 1:
6437 aux->table[i].end.section = sym->st_shndx;
6438 aux->table[i].end.offset = sym->st_value + rp->r_addend;
6439 break;
6440 default:
6441 break;
6442 }
6443 }
6444
6445 free (rela);
6446 }
6447
6448 aux->table_len = nentries;
6449
6450 return 1;
6451 }
6452
6453 static void
6454 hppa_process_unwind (FILE * file)
6455 {
6456 struct hppa_unw_aux_info aux;
6457 Elf_Internal_Shdr * unwsec = NULL;
6458 Elf_Internal_Shdr * strsec;
6459 Elf_Internal_Shdr * sec;
6460 unsigned long i;
6461
6462 if (string_table == NULL)
6463 return;
6464
6465 memset (& aux, 0, sizeof (aux));
6466
6467 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
6468 {
6469 if (sec->sh_type == SHT_SYMTAB
6470 && sec->sh_link < elf_header.e_shnum)
6471 {
6472 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
6473
6474 strsec = section_headers + sec->sh_link;
6475 assert (aux.strtab == NULL);
6476 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
6477 1, strsec->sh_size,
6478 _("string table"));
6479 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
6480 }
6481 else if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
6482 unwsec = sec;
6483 }
6484
6485 if (!unwsec)
6486 printf (_("\nThere are no unwind sections in this file.\n"));
6487
6488 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
6489 {
6490 if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
6491 {
6492 printf (_("\nUnwind section "));
6493 printf (_("'%s'"), SECTION_NAME (sec));
6494
6495 printf (_(" at offset 0x%lx contains %lu entries:\n"),
6496 (unsigned long) sec->sh_offset,
6497 (unsigned long) (sec->sh_size / (2 * eh_addr_size + 8)));
6498
6499 slurp_hppa_unwind_table (file, &aux, sec);
6500 if (aux.table_len > 0)
6501 dump_hppa_unwind (&aux);
6502
6503 if (aux.table)
6504 free ((char *) aux.table);
6505 aux.table = NULL;
6506 }
6507 }
6508
6509 if (aux.symtab)
6510 free (aux.symtab);
6511 if (aux.strtab)
6512 free ((char *) aux.strtab);
6513 }
6514
6515 struct arm_section
6516 {
6517 unsigned char * data; /* The unwind data. */
6518 Elf_Internal_Shdr * sec; /* The cached unwind section header. */
6519 Elf_Internal_Rela * rela; /* The cached relocations for this section. */
6520 unsigned long nrelas; /* The number of relocations. */
6521 unsigned int rel_type; /* REL or RELA ? */
6522 Elf_Internal_Rela * next_rela; /* Cyclic pointer to the next reloc to process. */
6523 };
6524
6525 struct arm_unw_aux_info
6526 {
6527 FILE * file; /* The file containing the unwind sections. */
6528 Elf_Internal_Sym * symtab; /* The file's symbol table. */
6529 unsigned long nsyms; /* Number of symbols. */
6530 char * strtab; /* The file's string table. */
6531 unsigned long strtab_size; /* Size of string table. */
6532 };
6533
6534 static const char *
6535 arm_print_vma_and_name (struct arm_unw_aux_info *aux,
6536 bfd_vma fn, struct absaddr addr)
6537 {
6538 const char *procname;
6539 bfd_vma sym_offset;
6540
6541 if (addr.section == SHN_UNDEF)
6542 addr.offset = fn;
6543
6544 find_symbol_for_address (aux->symtab, aux->nsyms, aux->strtab,
6545 aux->strtab_size, addr, &procname,
6546 &sym_offset);
6547
6548 print_vma (fn, PREFIX_HEX);
6549
6550 if (procname)
6551 {
6552 fputs (" <", stdout);
6553 fputs (procname, stdout);
6554
6555 if (sym_offset)
6556 printf ("+0x%lx", (unsigned long) sym_offset);
6557 fputc ('>', stdout);
6558 }
6559
6560 return procname;
6561 }
6562
6563 static void
6564 arm_free_section (struct arm_section *arm_sec)
6565 {
6566 if (arm_sec->data != NULL)
6567 free (arm_sec->data);
6568
6569 if (arm_sec->rela != NULL)
6570 free (arm_sec->rela);
6571 }
6572
6573 /* 1) If SEC does not match the one cached in ARM_SEC, then free the current
6574 cached section and install SEC instead.
6575 2) Locate the 32-bit word at WORD_OFFSET in unwind section SEC
6576 and return its valued in * WORDP, relocating if necessary.
6577 3) Update the NEXT_RELA field in ARM_SEC and store the section index and
6578 relocation's offset in ADDR.
6579 4) If SYM_NAME is non-NULL and a relocation was applied, record the offset
6580 into the string table of the symbol associated with the reloc. If no
6581 reloc was applied store -1 there.
6582 5) Return TRUE upon success, FALSE otherwise. */
6583
6584 static bfd_boolean
6585 get_unwind_section_word (struct arm_unw_aux_info * aux,
6586 struct arm_section * arm_sec,
6587 Elf_Internal_Shdr * sec,
6588 bfd_vma word_offset,
6589 unsigned int * wordp,
6590 struct absaddr * addr,
6591 bfd_vma * sym_name)
6592 {
6593 Elf_Internal_Rela *rp;
6594 Elf_Internal_Sym *sym;
6595 const char * relname;
6596 unsigned int word;
6597 bfd_boolean wrapped;
6598
6599 addr->section = SHN_UNDEF;
6600 addr->offset = 0;
6601
6602 if (sym_name != NULL)
6603 *sym_name = (bfd_vma) -1;
6604
6605 /* If necessary, update the section cache. */
6606 if (sec != arm_sec->sec)
6607 {
6608 Elf_Internal_Shdr *relsec;
6609
6610 arm_free_section (arm_sec);
6611
6612 arm_sec->sec = sec;
6613 arm_sec->data = get_data (NULL, aux->file, sec->sh_offset, 1,
6614 sec->sh_size, _("unwind data"));
6615 arm_sec->rela = NULL;
6616 arm_sec->nrelas = 0;
6617
6618 for (relsec = section_headers;
6619 relsec < section_headers + elf_header.e_shnum;
6620 ++relsec)
6621 {
6622 if (relsec->sh_info >= elf_header.e_shnum
6623 || section_headers + relsec->sh_info != sec)
6624 continue;
6625
6626 arm_sec->rel_type = relsec->sh_type;
6627 if (relsec->sh_type == SHT_REL)
6628 {
6629 if (!slurp_rel_relocs (aux->file, relsec->sh_offset,
6630 relsec->sh_size,
6631 & arm_sec->rela, & arm_sec->nrelas))
6632 return FALSE;
6633 break;
6634 }
6635 else if (relsec->sh_type == SHT_RELA)
6636 {
6637 if (!slurp_rela_relocs (aux->file, relsec->sh_offset,
6638 relsec->sh_size,
6639 & arm_sec->rela, & arm_sec->nrelas))
6640 return FALSE;
6641 break;
6642 }
6643 else
6644 warn (_("unexpected relocation type (%d) for section %d"),
6645 relsec->sh_type, relsec->sh_info);
6646 }
6647
6648 arm_sec->next_rela = arm_sec->rela;
6649 }
6650
6651 /* If there is no unwind data we can do nothing. */
6652 if (arm_sec->data == NULL)
6653 return FALSE;
6654
6655 /* Get the word at the required offset. */
6656 word = byte_get (arm_sec->data + word_offset, 4);
6657
6658 /* Look through the relocs to find the one that applies to the provided offset. */
6659 wrapped = FALSE;
6660 for (rp = arm_sec->next_rela; rp != arm_sec->rela + arm_sec->nrelas; rp++)
6661 {
6662 bfd_vma prelval, offset;
6663
6664 if (rp->r_offset > word_offset && !wrapped)
6665 {
6666 rp = arm_sec->rela;
6667 wrapped = TRUE;
6668 }
6669 if (rp->r_offset > word_offset)
6670 break;
6671
6672 if (rp->r_offset & 3)
6673 {
6674 warn (_("Skipping unexpected relocation at offset 0x%lx\n"),
6675 (unsigned long) rp->r_offset);
6676 continue;
6677 }
6678
6679 if (rp->r_offset < word_offset)
6680 continue;
6681
6682 sym = aux->symtab + ELF32_R_SYM (rp->r_info);
6683
6684 if (arm_sec->rel_type == SHT_REL)
6685 {
6686 offset = word & 0x7fffffff;
6687 if (offset & 0x40000000)
6688 offset |= ~ (bfd_vma) 0x7fffffff;
6689 }
6690 else if (arm_sec->rel_type == SHT_RELA)
6691 offset = rp->r_addend;
6692 else
6693 abort ();
6694
6695 offset += sym->st_value;
6696 prelval = offset - (arm_sec->sec->sh_addr + rp->r_offset);
6697
6698 /* Check that we are processing the expected reloc type. */
6699 if (elf_header.e_machine == EM_ARM)
6700 {
6701 relname = elf_arm_reloc_type (ELF32_R_TYPE (rp->r_info));
6702
6703 if (streq (relname, "R_ARM_NONE"))
6704 continue;
6705
6706 if (! streq (relname, "R_ARM_PREL31"))
6707 {
6708 warn (_("Skipping unexpected relocation type %s\n"), relname);
6709 continue;
6710 }
6711 }
6712 else if (elf_header.e_machine == EM_TI_C6000)
6713 {
6714 relname = elf_tic6x_reloc_type (ELF32_R_TYPE (rp->r_info));
6715
6716 if (streq (relname, "R_C6000_NONE"))
6717 continue;
6718
6719 if (! streq (relname, "R_C6000_PREL31"))
6720 {
6721 warn (_("Skipping unexpected relocation type %s\n"), relname);
6722 continue;
6723 }
6724
6725 prelval >>= 1;
6726 }
6727 else
6728 /* This function currently only supports ARM and TI unwinders. */
6729 abort ();
6730
6731 word = (word & ~ (bfd_vma) 0x7fffffff) | (prelval & 0x7fffffff);
6732 addr->section = sym->st_shndx;
6733 addr->offset = offset;
6734 if (sym_name)
6735 * sym_name = sym->st_name;
6736 break;
6737 }
6738
6739 *wordp = word;
6740 arm_sec->next_rela = rp;
6741
6742 return TRUE;
6743 }
6744
6745 static const char *tic6x_unwind_regnames[16] =
6746 {
6747 "A15", "B15", "B14", "B13", "B12", "B11", "B10", "B3",
6748 "A14", "A13", "A12", "A11", "A10",
6749 "[invalid reg 13]", "[invalid reg 14]", "[invalid reg 15]"
6750 };
6751
6752 static void
6753 decode_tic6x_unwind_regmask (unsigned int mask)
6754 {
6755 int i;
6756
6757 for (i = 12; mask; mask >>= 1, i--)
6758 {
6759 if (mask & 1)
6760 {
6761 fputs (tic6x_unwind_regnames[i], stdout);
6762 if (mask > 1)
6763 fputs (", ", stdout);
6764 }
6765 }
6766 }
6767
6768 #define ADVANCE \
6769 if (remaining == 0 && more_words) \
6770 { \
6771 data_offset += 4; \
6772 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, \
6773 data_offset, & word, & addr, NULL)) \
6774 return; \
6775 remaining = 4; \
6776 more_words--; \
6777 } \
6778
6779 #define GET_OP(OP) \
6780 ADVANCE; \
6781 if (remaining) \
6782 { \
6783 remaining--; \
6784 (OP) = word >> 24; \
6785 word <<= 8; \
6786 } \
6787 else \
6788 { \
6789 printf (_("[Truncated opcode]\n")); \
6790 return; \
6791 } \
6792 printf ("0x%02x ", OP)
6793
6794 static void
6795 decode_arm_unwind_bytecode (struct arm_unw_aux_info *aux,
6796 unsigned int word, unsigned int remaining,
6797 unsigned int more_words,
6798 bfd_vma data_offset, Elf_Internal_Shdr *data_sec,
6799 struct arm_section *data_arm_sec)
6800 {
6801 struct absaddr addr;
6802
6803 /* Decode the unwinding instructions. */
6804 while (1)
6805 {
6806 unsigned int op, op2;
6807
6808 ADVANCE;
6809 if (remaining == 0)
6810 break;
6811 remaining--;
6812 op = word >> 24;
6813 word <<= 8;
6814
6815 printf (" 0x%02x ", op);
6816
6817 if ((op & 0xc0) == 0x00)
6818 {
6819 int offset = ((op & 0x3f) << 2) + 4;
6820
6821 printf (" vsp = vsp + %d", offset);
6822 }
6823 else if ((op & 0xc0) == 0x40)
6824 {
6825 int offset = ((op & 0x3f) << 2) + 4;
6826
6827 printf (" vsp = vsp - %d", offset);
6828 }
6829 else if ((op & 0xf0) == 0x80)
6830 {
6831 GET_OP (op2);
6832 if (op == 0x80 && op2 == 0)
6833 printf (_("Refuse to unwind"));
6834 else
6835 {
6836 unsigned int mask = ((op & 0x0f) << 8) | op2;
6837 int first = 1;
6838 int i;
6839
6840 printf ("pop {");
6841 for (i = 0; i < 12; i++)
6842 if (mask & (1 << i))
6843 {
6844 if (first)
6845 first = 0;
6846 else
6847 printf (", ");
6848 printf ("r%d", 4 + i);
6849 }
6850 printf ("}");
6851 }
6852 }
6853 else if ((op & 0xf0) == 0x90)
6854 {
6855 if (op == 0x9d || op == 0x9f)
6856 printf (_(" [Reserved]"));
6857 else
6858 printf (" vsp = r%d", op & 0x0f);
6859 }
6860 else if ((op & 0xf0) == 0xa0)
6861 {
6862 int end = 4 + (op & 0x07);
6863 int first = 1;
6864 int i;
6865
6866 printf (" pop {");
6867 for (i = 4; i <= end; i++)
6868 {
6869 if (first)
6870 first = 0;
6871 else
6872 printf (", ");
6873 printf ("r%d", i);
6874 }
6875 if (op & 0x08)
6876 {
6877 if (!first)
6878 printf (", ");
6879 printf ("r14");
6880 }
6881 printf ("}");
6882 }
6883 else if (op == 0xb0)
6884 printf (_(" finish"));
6885 else if (op == 0xb1)
6886 {
6887 GET_OP (op2);
6888 if (op2 == 0 || (op2 & 0xf0) != 0)
6889 printf (_("[Spare]"));
6890 else
6891 {
6892 unsigned int mask = op2 & 0x0f;
6893 int first = 1;
6894 int i;
6895
6896 printf ("pop {");
6897 for (i = 0; i < 12; i++)
6898 if (mask & (1 << i))
6899 {
6900 if (first)
6901 first = 0;
6902 else
6903 printf (", ");
6904 printf ("r%d", i);
6905 }
6906 printf ("}");
6907 }
6908 }
6909 else if (op == 0xb2)
6910 {
6911 unsigned char buf[9];
6912 unsigned int i, len;
6913 unsigned long offset;
6914
6915 for (i = 0; i < sizeof (buf); i++)
6916 {
6917 GET_OP (buf[i]);
6918 if ((buf[i] & 0x80) == 0)
6919 break;
6920 }
6921 assert (i < sizeof (buf));
6922 offset = read_uleb128 (buf, &len, buf + i + 1);
6923 assert (len == i + 1);
6924 offset = offset * 4 + 0x204;
6925 printf ("vsp = vsp + %ld", offset);
6926 }
6927 else if (op == 0xb3 || op == 0xc8 || op == 0xc9)
6928 {
6929 unsigned int first, last;
6930
6931 GET_OP (op2);
6932 first = op2 >> 4;
6933 last = op2 & 0x0f;
6934 if (op == 0xc8)
6935 first = first + 16;
6936 printf ("pop {D%d", first);
6937 if (last)
6938 printf ("-D%d", first + last);
6939 printf ("}");
6940 }
6941 else if ((op & 0xf8) == 0xb8 || (op & 0xf8) == 0xd0)
6942 {
6943 unsigned int count = op & 0x07;
6944
6945 printf ("pop {D8");
6946 if (count)
6947 printf ("-D%d", 8 + count);
6948 printf ("}");
6949 }
6950 else if (op >= 0xc0 && op <= 0xc5)
6951 {
6952 unsigned int count = op & 0x07;
6953
6954 printf (" pop {wR10");
6955 if (count)
6956 printf ("-wR%d", 10 + count);
6957 printf ("}");
6958 }
6959 else if (op == 0xc6)
6960 {
6961 unsigned int first, last;
6962
6963 GET_OP (op2);
6964 first = op2 >> 4;
6965 last = op2 & 0x0f;
6966 printf ("pop {wR%d", first);
6967 if (last)
6968 printf ("-wR%d", first + last);
6969 printf ("}");
6970 }
6971 else if (op == 0xc7)
6972 {
6973 GET_OP (op2);
6974 if (op2 == 0 || (op2 & 0xf0) != 0)
6975 printf (_("[Spare]"));
6976 else
6977 {
6978 unsigned int mask = op2 & 0x0f;
6979 int first = 1;
6980 int i;
6981
6982 printf ("pop {");
6983 for (i = 0; i < 4; i++)
6984 if (mask & (1 << i))
6985 {
6986 if (first)
6987 first = 0;
6988 else
6989 printf (", ");
6990 printf ("wCGR%d", i);
6991 }
6992 printf ("}");
6993 }
6994 }
6995 else
6996 printf (_(" [unsupported opcode]"));
6997 printf ("\n");
6998 }
6999 }
7000
7001 static void
7002 decode_tic6x_unwind_bytecode (struct arm_unw_aux_info *aux,
7003 unsigned int word, unsigned int remaining,
7004 unsigned int more_words,
7005 bfd_vma data_offset, Elf_Internal_Shdr *data_sec,
7006 struct arm_section *data_arm_sec)
7007 {
7008 struct absaddr addr;
7009
7010 /* Decode the unwinding instructions. */
7011 while (1)
7012 {
7013 unsigned int op, op2;
7014
7015 ADVANCE;
7016 if (remaining == 0)
7017 break;
7018 remaining--;
7019 op = word >> 24;
7020 word <<= 8;
7021
7022 printf (" 0x%02x ", op);
7023
7024 if ((op & 0xc0) == 0x00)
7025 {
7026 int offset = ((op & 0x3f) << 3) + 8;
7027 printf (" sp = sp + %d", offset);
7028 }
7029 else if ((op & 0xc0) == 0x80)
7030 {
7031 GET_OP (op2);
7032 if (op == 0x80 && op2 == 0)
7033 printf (_("Refuse to unwind"));
7034 else
7035 {
7036 unsigned int mask = ((op & 0x1f) << 8) | op2;
7037 if (op & 0x20)
7038 printf ("pop compact {");
7039 else
7040 printf ("pop {");
7041
7042 decode_tic6x_unwind_regmask (mask);
7043 printf("}");
7044 }
7045 }
7046 else if ((op & 0xf0) == 0xc0)
7047 {
7048 unsigned int reg;
7049 unsigned int nregs;
7050 unsigned int i;
7051 const char *name;
7052 struct
7053 {
7054 unsigned int offset;
7055 unsigned int reg;
7056 } regpos[16];
7057
7058 /* Scan entire instruction first so that GET_OP output is not
7059 interleaved with disassembly. */
7060 nregs = 0;
7061 for (i = 0; nregs < (op & 0xf); i++)
7062 {
7063 GET_OP (op2);
7064 reg = op2 >> 4;
7065 if (reg != 0xf)
7066 {
7067 regpos[nregs].offset = i * 2;
7068 regpos[nregs].reg = reg;
7069 nregs++;
7070 }
7071
7072 reg = op2 & 0xf;
7073 if (reg != 0xf)
7074 {
7075 regpos[nregs].offset = i * 2 + 1;
7076 regpos[nregs].reg = reg;
7077 nregs++;
7078 }
7079 }
7080
7081 printf (_("pop frame {"));
7082 reg = nregs - 1;
7083 for (i = i * 2; i > 0; i--)
7084 {
7085 if (regpos[reg].offset == i - 1)
7086 {
7087 name = tic6x_unwind_regnames[regpos[reg].reg];
7088 if (reg > 0)
7089 reg--;
7090 }
7091 else
7092 name = _("[pad]");
7093
7094 fputs (name, stdout);
7095 if (i > 1)
7096 printf (", ");
7097 }
7098
7099 printf ("}");
7100 }
7101 else if (op == 0xd0)
7102 printf (" MOV FP, SP");
7103 else if (op == 0xd1)
7104 printf (" __c6xabi_pop_rts");
7105 else if (op == 0xd2)
7106 {
7107 unsigned char buf[9];
7108 unsigned int i, len;
7109 unsigned long offset;
7110
7111 for (i = 0; i < sizeof (buf); i++)
7112 {
7113 GET_OP (buf[i]);
7114 if ((buf[i] & 0x80) == 0)
7115 break;
7116 }
7117 assert (i < sizeof (buf));
7118 offset = read_uleb128 (buf, &len, buf + i + 1);
7119 assert (len == i + 1);
7120 offset = offset * 8 + 0x408;
7121 printf (_("sp = sp + %ld"), offset);
7122 }
7123 else if ((op & 0xf0) == 0xe0)
7124 {
7125 if ((op & 0x0f) == 7)
7126 printf (" RETURN");
7127 else
7128 printf (" MV %s, B3", tic6x_unwind_regnames[op & 0x0f]);
7129 }
7130 else
7131 {
7132 printf (_(" [unsupported opcode]"));
7133 }
7134 putchar ('\n');
7135 }
7136 }
7137
7138 static bfd_vma
7139 arm_expand_prel31 (bfd_vma word, bfd_vma where)
7140 {
7141 bfd_vma offset;
7142
7143 offset = word & 0x7fffffff;
7144 if (offset & 0x40000000)
7145 offset |= ~ (bfd_vma) 0x7fffffff;
7146
7147 if (elf_header.e_machine == EM_TI_C6000)
7148 offset <<= 1;
7149
7150 return offset + where;
7151 }
7152
7153 static void
7154 decode_arm_unwind (struct arm_unw_aux_info * aux,
7155 unsigned int word,
7156 unsigned int remaining,
7157 bfd_vma data_offset,
7158 Elf_Internal_Shdr * data_sec,
7159 struct arm_section * data_arm_sec)
7160 {
7161 int per_index;
7162 unsigned int more_words = 0;
7163 struct absaddr addr;
7164 bfd_vma sym_name = (bfd_vma) -1;
7165
7166 if (remaining == 0)
7167 {
7168 /* Fetch the first word.
7169 Note - when decoding an object file the address extracted
7170 here will always be 0. So we also pass in the sym_name
7171 parameter so that we can find the symbol associated with
7172 the personality routine. */
7173 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, data_offset,
7174 & word, & addr, & sym_name))
7175 return;
7176
7177 remaining = 4;
7178 }
7179
7180 if ((word & 0x80000000) == 0)
7181 {
7182 /* Expand prel31 for personality routine. */
7183 bfd_vma fn;
7184 const char *procname;
7185
7186 fn = arm_expand_prel31 (word, data_sec->sh_addr + data_offset);
7187 printf (_(" Personality routine: "));
7188 if (fn == 0
7189 && addr.section == SHN_UNDEF && addr.offset == 0
7190 && sym_name != (bfd_vma) -1 && sym_name < aux->strtab_size)
7191 {
7192 procname = aux->strtab + sym_name;
7193 print_vma (fn, PREFIX_HEX);
7194 if (procname)
7195 {
7196 fputs (" <", stdout);
7197 fputs (procname, stdout);
7198 fputc ('>', stdout);
7199 }
7200 }
7201 else
7202 procname = arm_print_vma_and_name (aux, fn, addr);
7203 fputc ('\n', stdout);
7204
7205 /* The GCC personality routines use the standard compact
7206 encoding, starting with one byte giving the number of
7207 words. */
7208 if (procname != NULL
7209 && (const_strneq (procname, "__gcc_personality_v0")
7210 || const_strneq (procname, "__gxx_personality_v0")
7211 || const_strneq (procname, "__gcj_personality_v0")
7212 || const_strneq (procname, "__gnu_objc_personality_v0")))
7213 {
7214 remaining = 0;
7215 more_words = 1;
7216 ADVANCE;
7217 if (!remaining)
7218 {
7219 printf (_(" [Truncated data]\n"));
7220 return;
7221 }
7222 more_words = word >> 24;
7223 word <<= 8;
7224 remaining--;
7225 per_index = -1;
7226 }
7227 else
7228 return;
7229 }
7230 else
7231 {
7232 /* ARM EHABI Section 6.3:
7233
7234 An exception-handling table entry for the compact model looks like:
7235
7236 31 30-28 27-24 23-0
7237 -- ----- ----- ----
7238 1 0 index Data for personalityRoutine[index] */
7239
7240 if (elf_header.e_machine == EM_ARM
7241 && (word & 0x70000000))
7242 warn (_("Corrupt ARM compact model table entry: %x \n"), word);
7243
7244 per_index = (word >> 24) & 0x7f;
7245 printf (_(" Compact model index: %d\n"), per_index);
7246 if (per_index == 0)
7247 {
7248 more_words = 0;
7249 word <<= 8;
7250 remaining--;
7251 }
7252 else if (per_index < 3)
7253 {
7254 more_words = (word >> 16) & 0xff;
7255 word <<= 16;
7256 remaining -= 2;
7257 }
7258 }
7259
7260 switch (elf_header.e_machine)
7261 {
7262 case EM_ARM:
7263 if (per_index < 3)
7264 {
7265 decode_arm_unwind_bytecode (aux, word, remaining, more_words,
7266 data_offset, data_sec, data_arm_sec);
7267 }
7268 else
7269 {
7270 warn (_("Unknown ARM compact model index encountered\n"));
7271 printf (_(" [reserved]\n"));
7272 }
7273 break;
7274
7275 case EM_TI_C6000:
7276 if (per_index < 3)
7277 {
7278 decode_tic6x_unwind_bytecode (aux, word, remaining, more_words,
7279 data_offset, data_sec, data_arm_sec);
7280 }
7281 else if (per_index < 5)
7282 {
7283 if (((word >> 17) & 0x7f) == 0x7f)
7284 printf (_(" Restore stack from frame pointer\n"));
7285 else
7286 printf (_(" Stack increment %d\n"), (word >> 14) & 0x1fc);
7287 printf (_(" Registers restored: "));
7288 if (per_index == 4)
7289 printf (" (compact) ");
7290 decode_tic6x_unwind_regmask ((word >> 4) & 0x1fff);
7291 putchar ('\n');
7292 printf (_(" Return register: %s\n"),
7293 tic6x_unwind_regnames[word & 0xf]);
7294 }
7295 else
7296 printf (_(" [reserved (%d)]\n"), per_index);
7297 break;
7298
7299 default:
7300 error (_("Unsupported architecture type %d encountered when decoding unwind table"),
7301 elf_header.e_machine);
7302 }
7303
7304 /* Decode the descriptors. Not implemented. */
7305 }
7306
7307 static void
7308 dump_arm_unwind (struct arm_unw_aux_info *aux, Elf_Internal_Shdr *exidx_sec)
7309 {
7310 struct arm_section exidx_arm_sec, extab_arm_sec;
7311 unsigned int i, exidx_len;
7312
7313 memset (&exidx_arm_sec, 0, sizeof (exidx_arm_sec));
7314 memset (&extab_arm_sec, 0, sizeof (extab_arm_sec));
7315 exidx_len = exidx_sec->sh_size / 8;
7316
7317 for (i = 0; i < exidx_len; i++)
7318 {
7319 unsigned int exidx_fn, exidx_entry;
7320 struct absaddr fn_addr, entry_addr;
7321 bfd_vma fn;
7322
7323 fputc ('\n', stdout);
7324
7325 if (! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
7326 8 * i, & exidx_fn, & fn_addr, NULL)
7327 || ! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
7328 8 * i + 4, & exidx_entry, & entry_addr, NULL))
7329 {
7330 arm_free_section (& exidx_arm_sec);
7331 arm_free_section (& extab_arm_sec);
7332 return;
7333 }
7334
7335 /* ARM EHABI, Section 5:
7336 An index table entry consists of 2 words.
7337 The first word contains a prel31 offset to the start of a function, with bit 31 clear. */
7338 if (exidx_fn & 0x80000000)
7339 warn (_("corrupt index table entry: %x\n"), exidx_fn);
7340
7341 fn = arm_expand_prel31 (exidx_fn, exidx_sec->sh_addr + 8 * i);
7342
7343 arm_print_vma_and_name (aux, fn, fn_addr);
7344 fputs (": ", stdout);
7345
7346 if (exidx_entry == 1)
7347 {
7348 print_vma (exidx_entry, PREFIX_HEX);
7349 fputs (" [cantunwind]\n", stdout);
7350 }
7351 else if (exidx_entry & 0x80000000)
7352 {
7353 print_vma (exidx_entry, PREFIX_HEX);
7354 fputc ('\n', stdout);
7355 decode_arm_unwind (aux, exidx_entry, 4, 0, NULL, NULL);
7356 }
7357 else
7358 {
7359 bfd_vma table, table_offset = 0;
7360 Elf_Internal_Shdr *table_sec;
7361
7362 fputs ("@", stdout);
7363 table = arm_expand_prel31 (exidx_entry, exidx_sec->sh_addr + 8 * i + 4);
7364 print_vma (table, PREFIX_HEX);
7365 printf ("\n");
7366
7367 /* Locate the matching .ARM.extab. */
7368 if (entry_addr.section != SHN_UNDEF
7369 && entry_addr.section < elf_header.e_shnum)
7370 {
7371 table_sec = section_headers + entry_addr.section;
7372 table_offset = entry_addr.offset;
7373 }
7374 else
7375 {
7376 table_sec = find_section_by_address (table);
7377 if (table_sec != NULL)
7378 table_offset = table - table_sec->sh_addr;
7379 }
7380 if (table_sec == NULL)
7381 {
7382 warn (_("Could not locate .ARM.extab section containing 0x%lx.\n"),
7383 (unsigned long) table);
7384 continue;
7385 }
7386 decode_arm_unwind (aux, 0, 0, table_offset, table_sec,
7387 &extab_arm_sec);
7388 }
7389 }
7390
7391 printf ("\n");
7392
7393 arm_free_section (&exidx_arm_sec);
7394 arm_free_section (&extab_arm_sec);
7395 }
7396
7397 /* Used for both ARM and C6X unwinding tables. */
7398
7399 static void
7400 arm_process_unwind (FILE *file)
7401 {
7402 struct arm_unw_aux_info aux;
7403 Elf_Internal_Shdr *unwsec = NULL;
7404 Elf_Internal_Shdr *strsec;
7405 Elf_Internal_Shdr *sec;
7406 unsigned long i;
7407 unsigned int sec_type;
7408
7409 switch (elf_header.e_machine)
7410 {
7411 case EM_ARM:
7412 sec_type = SHT_ARM_EXIDX;
7413 break;
7414
7415 case EM_TI_C6000:
7416 sec_type = SHT_C6000_UNWIND;
7417 break;
7418
7419 default:
7420 error (_("Unsupported architecture type %d encountered when processing unwind table"),
7421 elf_header.e_machine);
7422 return;
7423 }
7424
7425 if (string_table == NULL)
7426 return;
7427
7428 memset (& aux, 0, sizeof (aux));
7429 aux.file = file;
7430
7431 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7432 {
7433 if (sec->sh_type == SHT_SYMTAB && sec->sh_link < elf_header.e_shnum)
7434 {
7435 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7436
7437 strsec = section_headers + sec->sh_link;
7438 assert (aux.strtab == NULL);
7439 aux.strtab = get_data (NULL, file, strsec->sh_offset,
7440 1, strsec->sh_size, _("string table"));
7441 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7442 }
7443 else if (sec->sh_type == sec_type)
7444 unwsec = sec;
7445 }
7446
7447 if (unwsec == NULL)
7448 printf (_("\nThere are no unwind sections in this file.\n"));
7449 else
7450 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7451 {
7452 if (sec->sh_type == sec_type)
7453 {
7454 printf (_("\nUnwind table index '%s' at offset 0x%lx contains %lu entries:\n"),
7455 SECTION_NAME (sec),
7456 (unsigned long) sec->sh_offset,
7457 (unsigned long) (sec->sh_size / (2 * eh_addr_size)));
7458
7459 dump_arm_unwind (&aux, sec);
7460 }
7461 }
7462
7463 if (aux.symtab)
7464 free (aux.symtab);
7465 if (aux.strtab)
7466 free ((char *) aux.strtab);
7467 }
7468
7469 static void
7470 process_unwind (FILE * file)
7471 {
7472 struct unwind_handler
7473 {
7474 int machtype;
7475 void (* handler)(FILE *);
7476 } handlers[] =
7477 {
7478 { EM_ARM, arm_process_unwind },
7479 { EM_IA_64, ia64_process_unwind },
7480 { EM_PARISC, hppa_process_unwind },
7481 { EM_TI_C6000, arm_process_unwind },
7482 { 0, 0 }
7483 };
7484 int i;
7485
7486 if (!do_unwind)
7487 return;
7488
7489 for (i = 0; handlers[i].handler != NULL; i++)
7490 if (elf_header.e_machine == handlers[i].machtype)
7491 return handlers[i].handler (file);
7492
7493 printf (_("\nThe decoding of unwind sections for machine type %s is not currently supported.\n"),
7494 get_machine_name (elf_header.e_machine));
7495 }
7496
7497 static void
7498 dynamic_section_mips_val (Elf_Internal_Dyn * entry)
7499 {
7500 switch (entry->d_tag)
7501 {
7502 case DT_MIPS_FLAGS:
7503 if (entry->d_un.d_val == 0)
7504 printf (_("NONE"));
7505 else
7506 {
7507 static const char * opts[] =
7508 {
7509 "QUICKSTART", "NOTPOT", "NO_LIBRARY_REPLACEMENT",
7510 "NO_MOVE", "SGI_ONLY", "GUARANTEE_INIT", "DELTA_C_PLUS_PLUS",
7511 "GUARANTEE_START_INIT", "PIXIE", "DEFAULT_DELAY_LOAD",
7512 "REQUICKSTART", "REQUICKSTARTED", "CORD", "NO_UNRES_UNDEF",
7513 "RLD_ORDER_SAFE"
7514 };
7515 unsigned int cnt;
7516 int first = 1;
7517
7518 for (cnt = 0; cnt < ARRAY_SIZE (opts); ++cnt)
7519 if (entry->d_un.d_val & (1 << cnt))
7520 {
7521 printf ("%s%s", first ? "" : " ", opts[cnt]);
7522 first = 0;
7523 }
7524 }
7525 break;
7526
7527 case DT_MIPS_IVERSION:
7528 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
7529 printf (_("Interface Version: %s"), GET_DYNAMIC_NAME (entry->d_un.d_val));
7530 else
7531 printf (_("<corrupt: %" BFD_VMA_FMT "d>"), entry->d_un.d_ptr);
7532 break;
7533
7534 case DT_MIPS_TIME_STAMP:
7535 {
7536 char timebuf[20];
7537 struct tm * tmp;
7538
7539 time_t atime = entry->d_un.d_val;
7540 tmp = gmtime (&atime);
7541 snprintf (timebuf, sizeof (timebuf), "%04u-%02u-%02uT%02u:%02u:%02u",
7542 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
7543 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
7544 printf (_("Time Stamp: %s"), timebuf);
7545 }
7546 break;
7547
7548 case DT_MIPS_RLD_VERSION:
7549 case DT_MIPS_LOCAL_GOTNO:
7550 case DT_MIPS_CONFLICTNO:
7551 case DT_MIPS_LIBLISTNO:
7552 case DT_MIPS_SYMTABNO:
7553 case DT_MIPS_UNREFEXTNO:
7554 case DT_MIPS_HIPAGENO:
7555 case DT_MIPS_DELTA_CLASS_NO:
7556 case DT_MIPS_DELTA_INSTANCE_NO:
7557 case DT_MIPS_DELTA_RELOC_NO:
7558 case DT_MIPS_DELTA_SYM_NO:
7559 case DT_MIPS_DELTA_CLASSSYM_NO:
7560 case DT_MIPS_COMPACT_SIZE:
7561 print_vma (entry->d_un.d_ptr, DEC);
7562 break;
7563
7564 default:
7565 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7566 }
7567 putchar ('\n');
7568 }
7569
7570 static void
7571 dynamic_section_parisc_val (Elf_Internal_Dyn * entry)
7572 {
7573 switch (entry->d_tag)
7574 {
7575 case DT_HP_DLD_FLAGS:
7576 {
7577 static struct
7578 {
7579 long int bit;
7580 const char * str;
7581 }
7582 flags[] =
7583 {
7584 { DT_HP_DEBUG_PRIVATE, "HP_DEBUG_PRIVATE" },
7585 { DT_HP_DEBUG_CALLBACK, "HP_DEBUG_CALLBACK" },
7586 { DT_HP_DEBUG_CALLBACK_BOR, "HP_DEBUG_CALLBACK_BOR" },
7587 { DT_HP_NO_ENVVAR, "HP_NO_ENVVAR" },
7588 { DT_HP_BIND_NOW, "HP_BIND_NOW" },
7589 { DT_HP_BIND_NONFATAL, "HP_BIND_NONFATAL" },
7590 { DT_HP_BIND_VERBOSE, "HP_BIND_VERBOSE" },
7591 { DT_HP_BIND_RESTRICTED, "HP_BIND_RESTRICTED" },
7592 { DT_HP_BIND_SYMBOLIC, "HP_BIND_SYMBOLIC" },
7593 { DT_HP_RPATH_FIRST, "HP_RPATH_FIRST" },
7594 { DT_HP_BIND_DEPTH_FIRST, "HP_BIND_DEPTH_FIRST" },
7595 { DT_HP_GST, "HP_GST" },
7596 { DT_HP_SHLIB_FIXED, "HP_SHLIB_FIXED" },
7597 { DT_HP_MERGE_SHLIB_SEG, "HP_MERGE_SHLIB_SEG" },
7598 { DT_HP_NODELETE, "HP_NODELETE" },
7599 { DT_HP_GROUP, "HP_GROUP" },
7600 { DT_HP_PROTECT_LINKAGE_TABLE, "HP_PROTECT_LINKAGE_TABLE" }
7601 };
7602 int first = 1;
7603 size_t cnt;
7604 bfd_vma val = entry->d_un.d_val;
7605
7606 for (cnt = 0; cnt < ARRAY_SIZE (flags); ++cnt)
7607 if (val & flags[cnt].bit)
7608 {
7609 if (! first)
7610 putchar (' ');
7611 fputs (flags[cnt].str, stdout);
7612 first = 0;
7613 val ^= flags[cnt].bit;
7614 }
7615
7616 if (val != 0 || first)
7617 {
7618 if (! first)
7619 putchar (' ');
7620 print_vma (val, HEX);
7621 }
7622 }
7623 break;
7624
7625 default:
7626 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7627 break;
7628 }
7629 putchar ('\n');
7630 }
7631
7632 #ifdef BFD64
7633
7634 /* VMS vs Unix time offset and factor. */
7635
7636 #define VMS_EPOCH_OFFSET 35067168000000000LL
7637 #define VMS_GRANULARITY_FACTOR 10000000
7638
7639 /* Display a VMS time in a human readable format. */
7640
7641 static void
7642 print_vms_time (bfd_int64_t vmstime)
7643 {
7644 struct tm *tm;
7645 time_t unxtime;
7646
7647 unxtime = (vmstime - VMS_EPOCH_OFFSET) / VMS_GRANULARITY_FACTOR;
7648 tm = gmtime (&unxtime);
7649 printf ("%04u-%02u-%02uT%02u:%02u:%02u",
7650 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
7651 tm->tm_hour, tm->tm_min, tm->tm_sec);
7652 }
7653 #endif /* BFD64 */
7654
7655 static void
7656 dynamic_section_ia64_val (Elf_Internal_Dyn * entry)
7657 {
7658 switch (entry->d_tag)
7659 {
7660 case DT_IA_64_PLT_RESERVE:
7661 /* First 3 slots reserved. */
7662 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7663 printf (" -- ");
7664 print_vma (entry->d_un.d_ptr + (3 * 8), PREFIX_HEX);
7665 break;
7666
7667 case DT_IA_64_VMS_LINKTIME:
7668 #ifdef BFD64
7669 print_vms_time (entry->d_un.d_val);
7670 #endif
7671 break;
7672
7673 case DT_IA_64_VMS_LNKFLAGS:
7674 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7675 if (entry->d_un.d_val & VMS_LF_CALL_DEBUG)
7676 printf (" CALL_DEBUG");
7677 if (entry->d_un.d_val & VMS_LF_NOP0BUFS)
7678 printf (" NOP0BUFS");
7679 if (entry->d_un.d_val & VMS_LF_P0IMAGE)
7680 printf (" P0IMAGE");
7681 if (entry->d_un.d_val & VMS_LF_MKTHREADS)
7682 printf (" MKTHREADS");
7683 if (entry->d_un.d_val & VMS_LF_UPCALLS)
7684 printf (" UPCALLS");
7685 if (entry->d_un.d_val & VMS_LF_IMGSTA)
7686 printf (" IMGSTA");
7687 if (entry->d_un.d_val & VMS_LF_INITIALIZE)
7688 printf (" INITIALIZE");
7689 if (entry->d_un.d_val & VMS_LF_MAIN)
7690 printf (" MAIN");
7691 if (entry->d_un.d_val & VMS_LF_EXE_INIT)
7692 printf (" EXE_INIT");
7693 if (entry->d_un.d_val & VMS_LF_TBK_IN_IMG)
7694 printf (" TBK_IN_IMG");
7695 if (entry->d_un.d_val & VMS_LF_DBG_IN_IMG)
7696 printf (" DBG_IN_IMG");
7697 if (entry->d_un.d_val & VMS_LF_TBK_IN_DSF)
7698 printf (" TBK_IN_DSF");
7699 if (entry->d_un.d_val & VMS_LF_DBG_IN_DSF)
7700 printf (" DBG_IN_DSF");
7701 if (entry->d_un.d_val & VMS_LF_SIGNATURES)
7702 printf (" SIGNATURES");
7703 if (entry->d_un.d_val & VMS_LF_REL_SEG_OFF)
7704 printf (" REL_SEG_OFF");
7705 break;
7706
7707 default:
7708 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7709 break;
7710 }
7711 putchar ('\n');
7712 }
7713
7714 static int
7715 get_32bit_dynamic_section (FILE * file)
7716 {
7717 Elf32_External_Dyn * edyn;
7718 Elf32_External_Dyn * ext;
7719 Elf_Internal_Dyn * entry;
7720
7721 edyn = (Elf32_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
7722 dynamic_size, _("dynamic section"));
7723 if (!edyn)
7724 return 0;
7725
7726 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
7727 might not have the luxury of section headers. Look for the DT_NULL
7728 terminator to determine the number of entries. */
7729 for (ext = edyn, dynamic_nent = 0;
7730 (char *) ext < (char *) edyn + dynamic_size;
7731 ext++)
7732 {
7733 dynamic_nent++;
7734 if (BYTE_GET (ext->d_tag) == DT_NULL)
7735 break;
7736 }
7737
7738 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
7739 sizeof (* entry));
7740 if (dynamic_section == NULL)
7741 {
7742 error (_("Out of memory\n"));
7743 free (edyn);
7744 return 0;
7745 }
7746
7747 for (ext = edyn, entry = dynamic_section;
7748 entry < dynamic_section + dynamic_nent;
7749 ext++, entry++)
7750 {
7751 entry->d_tag = BYTE_GET (ext->d_tag);
7752 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
7753 }
7754
7755 free (edyn);
7756
7757 return 1;
7758 }
7759
7760 static int
7761 get_64bit_dynamic_section (FILE * file)
7762 {
7763 Elf64_External_Dyn * edyn;
7764 Elf64_External_Dyn * ext;
7765 Elf_Internal_Dyn * entry;
7766
7767 edyn = (Elf64_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
7768 dynamic_size, _("dynamic section"));
7769 if (!edyn)
7770 return 0;
7771
7772 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
7773 might not have the luxury of section headers. Look for the DT_NULL
7774 terminator to determine the number of entries. */
7775 for (ext = edyn, dynamic_nent = 0;
7776 (char *) ext < (char *) edyn + dynamic_size;
7777 ext++)
7778 {
7779 dynamic_nent++;
7780 if (BYTE_GET (ext->d_tag) == DT_NULL)
7781 break;
7782 }
7783
7784 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
7785 sizeof (* entry));
7786 if (dynamic_section == NULL)
7787 {
7788 error (_("Out of memory\n"));
7789 free (edyn);
7790 return 0;
7791 }
7792
7793 for (ext = edyn, entry = dynamic_section;
7794 entry < dynamic_section + dynamic_nent;
7795 ext++, entry++)
7796 {
7797 entry->d_tag = BYTE_GET (ext->d_tag);
7798 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
7799 }
7800
7801 free (edyn);
7802
7803 return 1;
7804 }
7805
7806 static void
7807 print_dynamic_flags (bfd_vma flags)
7808 {
7809 int first = 1;
7810
7811 while (flags)
7812 {
7813 bfd_vma flag;
7814
7815 flag = flags & - flags;
7816 flags &= ~ flag;
7817
7818 if (first)
7819 first = 0;
7820 else
7821 putc (' ', stdout);
7822
7823 switch (flag)
7824 {
7825 case DF_ORIGIN: fputs ("ORIGIN", stdout); break;
7826 case DF_SYMBOLIC: fputs ("SYMBOLIC", stdout); break;
7827 case DF_TEXTREL: fputs ("TEXTREL", stdout); break;
7828 case DF_BIND_NOW: fputs ("BIND_NOW", stdout); break;
7829 case DF_STATIC_TLS: fputs ("STATIC_TLS", stdout); break;
7830 default: fputs (_("unknown"), stdout); break;
7831 }
7832 }
7833 puts ("");
7834 }
7835
7836 /* Parse and display the contents of the dynamic section. */
7837
7838 static int
7839 process_dynamic_section (FILE * file)
7840 {
7841 Elf_Internal_Dyn * entry;
7842
7843 if (dynamic_size == 0)
7844 {
7845 if (do_dynamic)
7846 printf (_("\nThere is no dynamic section in this file.\n"));
7847
7848 return 1;
7849 }
7850
7851 if (is_32bit_elf)
7852 {
7853 if (! get_32bit_dynamic_section (file))
7854 return 0;
7855 }
7856 else if (! get_64bit_dynamic_section (file))
7857 return 0;
7858
7859 /* Find the appropriate symbol table. */
7860 if (dynamic_symbols == NULL)
7861 {
7862 for (entry = dynamic_section;
7863 entry < dynamic_section + dynamic_nent;
7864 ++entry)
7865 {
7866 Elf_Internal_Shdr section;
7867
7868 if (entry->d_tag != DT_SYMTAB)
7869 continue;
7870
7871 dynamic_info[DT_SYMTAB] = entry->d_un.d_val;
7872
7873 /* Since we do not know how big the symbol table is,
7874 we default to reading in the entire file (!) and
7875 processing that. This is overkill, I know, but it
7876 should work. */
7877 section.sh_offset = offset_from_vma (file, entry->d_un.d_val, 0);
7878
7879 if (archive_file_offset != 0)
7880 section.sh_size = archive_file_size - section.sh_offset;
7881 else
7882 {
7883 if (fseek (file, 0, SEEK_END))
7884 error (_("Unable to seek to end of file!\n"));
7885
7886 section.sh_size = ftell (file) - section.sh_offset;
7887 }
7888
7889 if (is_32bit_elf)
7890 section.sh_entsize = sizeof (Elf32_External_Sym);
7891 else
7892 section.sh_entsize = sizeof (Elf64_External_Sym);
7893
7894 dynamic_symbols = GET_ELF_SYMBOLS (file, &section, & num_dynamic_syms);
7895 if (num_dynamic_syms < 1)
7896 {
7897 error (_("Unable to determine the number of symbols to load\n"));
7898 continue;
7899 }
7900 }
7901 }
7902
7903 /* Similarly find a string table. */
7904 if (dynamic_strings == NULL)
7905 {
7906 for (entry = dynamic_section;
7907 entry < dynamic_section + dynamic_nent;
7908 ++entry)
7909 {
7910 unsigned long offset;
7911 long str_tab_len;
7912
7913 if (entry->d_tag != DT_STRTAB)
7914 continue;
7915
7916 dynamic_info[DT_STRTAB] = entry->d_un.d_val;
7917
7918 /* Since we do not know how big the string table is,
7919 we default to reading in the entire file (!) and
7920 processing that. This is overkill, I know, but it
7921 should work. */
7922
7923 offset = offset_from_vma (file, entry->d_un.d_val, 0);
7924
7925 if (archive_file_offset != 0)
7926 str_tab_len = archive_file_size - offset;
7927 else
7928 {
7929 if (fseek (file, 0, SEEK_END))
7930 error (_("Unable to seek to end of file\n"));
7931 str_tab_len = ftell (file) - offset;
7932 }
7933
7934 if (str_tab_len < 1)
7935 {
7936 error
7937 (_("Unable to determine the length of the dynamic string table\n"));
7938 continue;
7939 }
7940
7941 dynamic_strings = (char *) get_data (NULL, file, offset, 1,
7942 str_tab_len,
7943 _("dynamic string table"));
7944 dynamic_strings_length = dynamic_strings == NULL ? 0 : str_tab_len;
7945 break;
7946 }
7947 }
7948
7949 /* And find the syminfo section if available. */
7950 if (dynamic_syminfo == NULL)
7951 {
7952 unsigned long syminsz = 0;
7953
7954 for (entry = dynamic_section;
7955 entry < dynamic_section + dynamic_nent;
7956 ++entry)
7957 {
7958 if (entry->d_tag == DT_SYMINENT)
7959 {
7960 /* Note: these braces are necessary to avoid a syntax
7961 error from the SunOS4 C compiler. */
7962 assert (sizeof (Elf_External_Syminfo) == entry->d_un.d_val);
7963 }
7964 else if (entry->d_tag == DT_SYMINSZ)
7965 syminsz = entry->d_un.d_val;
7966 else if (entry->d_tag == DT_SYMINFO)
7967 dynamic_syminfo_offset = offset_from_vma (file, entry->d_un.d_val,
7968 syminsz);
7969 }
7970
7971 if (dynamic_syminfo_offset != 0 && syminsz != 0)
7972 {
7973 Elf_External_Syminfo * extsyminfo;
7974 Elf_External_Syminfo * extsym;
7975 Elf_Internal_Syminfo * syminfo;
7976
7977 /* There is a syminfo section. Read the data. */
7978 extsyminfo = (Elf_External_Syminfo *)
7979 get_data (NULL, file, dynamic_syminfo_offset, 1, syminsz,
7980 _("symbol information"));
7981 if (!extsyminfo)
7982 return 0;
7983
7984 dynamic_syminfo = (Elf_Internal_Syminfo *) malloc (syminsz);
7985 if (dynamic_syminfo == NULL)
7986 {
7987 error (_("Out of memory\n"));
7988 return 0;
7989 }
7990
7991 dynamic_syminfo_nent = syminsz / sizeof (Elf_External_Syminfo);
7992 for (syminfo = dynamic_syminfo, extsym = extsyminfo;
7993 syminfo < dynamic_syminfo + dynamic_syminfo_nent;
7994 ++syminfo, ++extsym)
7995 {
7996 syminfo->si_boundto = BYTE_GET (extsym->si_boundto);
7997 syminfo->si_flags = BYTE_GET (extsym->si_flags);
7998 }
7999
8000 free (extsyminfo);
8001 }
8002 }
8003
8004 if (do_dynamic && dynamic_addr)
8005 printf (_("\nDynamic section at offset 0x%lx contains %u entries:\n"),
8006 dynamic_addr, dynamic_nent);
8007 if (do_dynamic)
8008 printf (_(" Tag Type Name/Value\n"));
8009
8010 for (entry = dynamic_section;
8011 entry < dynamic_section + dynamic_nent;
8012 entry++)
8013 {
8014 if (do_dynamic)
8015 {
8016 const char * dtype;
8017
8018 putchar (' ');
8019 print_vma (entry->d_tag, FULL_HEX);
8020 dtype = get_dynamic_type (entry->d_tag);
8021 printf (" (%s)%*s", dtype,
8022 ((is_32bit_elf ? 27 : 19)
8023 - (int) strlen (dtype)),
8024 " ");
8025 }
8026
8027 switch (entry->d_tag)
8028 {
8029 case DT_FLAGS:
8030 if (do_dynamic)
8031 print_dynamic_flags (entry->d_un.d_val);
8032 break;
8033
8034 case DT_AUXILIARY:
8035 case DT_FILTER:
8036 case DT_CONFIG:
8037 case DT_DEPAUDIT:
8038 case DT_AUDIT:
8039 if (do_dynamic)
8040 {
8041 switch (entry->d_tag)
8042 {
8043 case DT_AUXILIARY:
8044 printf (_("Auxiliary library"));
8045 break;
8046
8047 case DT_FILTER:
8048 printf (_("Filter library"));
8049 break;
8050
8051 case DT_CONFIG:
8052 printf (_("Configuration file"));
8053 break;
8054
8055 case DT_DEPAUDIT:
8056 printf (_("Dependency audit library"));
8057 break;
8058
8059 case DT_AUDIT:
8060 printf (_("Audit library"));
8061 break;
8062 }
8063
8064 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
8065 printf (": [%s]\n", GET_DYNAMIC_NAME (entry->d_un.d_val));
8066 else
8067 {
8068 printf (": ");
8069 print_vma (entry->d_un.d_val, PREFIX_HEX);
8070 putchar ('\n');
8071 }
8072 }
8073 break;
8074
8075 case DT_FEATURE:
8076 if (do_dynamic)
8077 {
8078 printf (_("Flags:"));
8079
8080 if (entry->d_un.d_val == 0)
8081 printf (_(" None\n"));
8082 else
8083 {
8084 unsigned long int val = entry->d_un.d_val;
8085
8086 if (val & DTF_1_PARINIT)
8087 {
8088 printf (" PARINIT");
8089 val ^= DTF_1_PARINIT;
8090 }
8091 if (val & DTF_1_CONFEXP)
8092 {
8093 printf (" CONFEXP");
8094 val ^= DTF_1_CONFEXP;
8095 }
8096 if (val != 0)
8097 printf (" %lx", val);
8098 puts ("");
8099 }
8100 }
8101 break;
8102
8103 case DT_POSFLAG_1:
8104 if (do_dynamic)
8105 {
8106 printf (_("Flags:"));
8107
8108 if (entry->d_un.d_val == 0)
8109 printf (_(" None\n"));
8110 else
8111 {
8112 unsigned long int val = entry->d_un.d_val;
8113
8114 if (val & DF_P1_LAZYLOAD)
8115 {
8116 printf (" LAZYLOAD");
8117 val ^= DF_P1_LAZYLOAD;
8118 }
8119 if (val & DF_P1_GROUPPERM)
8120 {
8121 printf (" GROUPPERM");
8122 val ^= DF_P1_GROUPPERM;
8123 }
8124 if (val != 0)
8125 printf (" %lx", val);
8126 puts ("");
8127 }
8128 }
8129 break;
8130
8131 case DT_FLAGS_1:
8132 if (do_dynamic)
8133 {
8134 printf (_("Flags:"));
8135 if (entry->d_un.d_val == 0)
8136 printf (_(" None\n"));
8137 else
8138 {
8139 unsigned long int val = entry->d_un.d_val;
8140
8141 if (val & DF_1_NOW)
8142 {
8143 printf (" NOW");
8144 val ^= DF_1_NOW;
8145 }
8146 if (val & DF_1_GLOBAL)
8147 {
8148 printf (" GLOBAL");
8149 val ^= DF_1_GLOBAL;
8150 }
8151 if (val & DF_1_GROUP)
8152 {
8153 printf (" GROUP");
8154 val ^= DF_1_GROUP;
8155 }
8156 if (val & DF_1_NODELETE)
8157 {
8158 printf (" NODELETE");
8159 val ^= DF_1_NODELETE;
8160 }
8161 if (val & DF_1_LOADFLTR)
8162 {
8163 printf (" LOADFLTR");
8164 val ^= DF_1_LOADFLTR;
8165 }
8166 if (val & DF_1_INITFIRST)
8167 {
8168 printf (" INITFIRST");
8169 val ^= DF_1_INITFIRST;
8170 }
8171 if (val & DF_1_NOOPEN)
8172 {
8173 printf (" NOOPEN");
8174 val ^= DF_1_NOOPEN;
8175 }
8176 if (val & DF_1_ORIGIN)
8177 {
8178 printf (" ORIGIN");
8179 val ^= DF_1_ORIGIN;
8180 }
8181 if (val & DF_1_DIRECT)
8182 {
8183 printf (" DIRECT");
8184 val ^= DF_1_DIRECT;
8185 }
8186 if (val & DF_1_TRANS)
8187 {
8188 printf (" TRANS");
8189 val ^= DF_1_TRANS;
8190 }
8191 if (val & DF_1_INTERPOSE)
8192 {
8193 printf (" INTERPOSE");
8194 val ^= DF_1_INTERPOSE;
8195 }
8196 if (val & DF_1_NODEFLIB)
8197 {
8198 printf (" NODEFLIB");
8199 val ^= DF_1_NODEFLIB;
8200 }
8201 if (val & DF_1_NODUMP)
8202 {
8203 printf (" NODUMP");
8204 val ^= DF_1_NODUMP;
8205 }
8206 if (val & DF_1_CONFALT)
8207 {
8208 printf (" CONFALT");
8209 val ^= DF_1_CONFALT;
8210 }
8211 if (val & DF_1_ENDFILTEE)
8212 {
8213 printf (" ENDFILTEE");
8214 val ^= DF_1_ENDFILTEE;
8215 }
8216 if (val & DF_1_DISPRELDNE)
8217 {
8218 printf (" DISPRELDNE");
8219 val ^= DF_1_DISPRELDNE;
8220 }
8221 if (val & DF_1_DISPRELPND)
8222 {
8223 printf (" DISPRELPND");
8224 val ^= DF_1_DISPRELPND;
8225 }
8226 if (val & DF_1_NODIRECT)
8227 {
8228 printf (" NODIRECT");
8229 val ^= DF_1_NODIRECT;
8230 }
8231 if (val & DF_1_IGNMULDEF)
8232 {
8233 printf (" IGNMULDEF");
8234 val ^= DF_1_IGNMULDEF;
8235 }
8236 if (val & DF_1_NOKSYMS)
8237 {
8238 printf (" NOKSYMS");
8239 val ^= DF_1_NOKSYMS;
8240 }
8241 if (val & DF_1_NOHDR)
8242 {
8243 printf (" NOHDR");
8244 val ^= DF_1_NOHDR;
8245 }
8246 if (val & DF_1_EDITED)
8247 {
8248 printf (" EDITED");
8249 val ^= DF_1_EDITED;
8250 }
8251 if (val & DF_1_NORELOC)
8252 {
8253 printf (" NORELOC");
8254 val ^= DF_1_NORELOC;
8255 }
8256 if (val & DF_1_SYMINTPOSE)
8257 {
8258 printf (" SYMINTPOSE");
8259 val ^= DF_1_SYMINTPOSE;
8260 }
8261 if (val & DF_1_GLOBAUDIT)
8262 {
8263 printf (" GLOBAUDIT");
8264 val ^= DF_1_GLOBAUDIT;
8265 }
8266 if (val & DF_1_SINGLETON)
8267 {
8268 printf (" SINGLETON");
8269 val ^= DF_1_SINGLETON;
8270 }
8271 if (val != 0)
8272 printf (" %lx", val);
8273 puts ("");
8274 }
8275 }
8276 break;
8277
8278 case DT_PLTREL:
8279 dynamic_info[entry->d_tag] = entry->d_un.d_val;
8280 if (do_dynamic)
8281 puts (get_dynamic_type (entry->d_un.d_val));
8282 break;
8283
8284 case DT_NULL :
8285 case DT_NEEDED :
8286 case DT_PLTGOT :
8287 case DT_HASH :
8288 case DT_STRTAB :
8289 case DT_SYMTAB :
8290 case DT_RELA :
8291 case DT_INIT :
8292 case DT_FINI :
8293 case DT_SONAME :
8294 case DT_RPATH :
8295 case DT_SYMBOLIC:
8296 case DT_REL :
8297 case DT_DEBUG :
8298 case DT_TEXTREL :
8299 case DT_JMPREL :
8300 case DT_RUNPATH :
8301 dynamic_info[entry->d_tag] = entry->d_un.d_val;
8302
8303 if (do_dynamic)
8304 {
8305 char * name;
8306
8307 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
8308 name = GET_DYNAMIC_NAME (entry->d_un.d_val);
8309 else
8310 name = NULL;
8311
8312 if (name)
8313 {
8314 switch (entry->d_tag)
8315 {
8316 case DT_NEEDED:
8317 printf (_("Shared library: [%s]"), name);
8318
8319 if (streq (name, program_interpreter))
8320 printf (_(" program interpreter"));
8321 break;
8322
8323 case DT_SONAME:
8324 printf (_("Library soname: [%s]"), name);
8325 break;
8326
8327 case DT_RPATH:
8328 printf (_("Library rpath: [%s]"), name);
8329 break;
8330
8331 case DT_RUNPATH:
8332 printf (_("Library runpath: [%s]"), name);
8333 break;
8334
8335 default:
8336 print_vma (entry->d_un.d_val, PREFIX_HEX);
8337 break;
8338 }
8339 }
8340 else
8341 print_vma (entry->d_un.d_val, PREFIX_HEX);
8342
8343 putchar ('\n');
8344 }
8345 break;
8346
8347 case DT_PLTRELSZ:
8348 case DT_RELASZ :
8349 case DT_STRSZ :
8350 case DT_RELSZ :
8351 case DT_RELAENT :
8352 case DT_SYMENT :
8353 case DT_RELENT :
8354 dynamic_info[entry->d_tag] = entry->d_un.d_val;
8355 case DT_PLTPADSZ:
8356 case DT_MOVEENT :
8357 case DT_MOVESZ :
8358 case DT_INIT_ARRAYSZ:
8359 case DT_FINI_ARRAYSZ:
8360 case DT_GNU_CONFLICTSZ:
8361 case DT_GNU_LIBLISTSZ:
8362 if (do_dynamic)
8363 {
8364 print_vma (entry->d_un.d_val, UNSIGNED);
8365 printf (_(" (bytes)\n"));
8366 }
8367 break;
8368
8369 case DT_VERDEFNUM:
8370 case DT_VERNEEDNUM:
8371 case DT_RELACOUNT:
8372 case DT_RELCOUNT:
8373 if (do_dynamic)
8374 {
8375 print_vma (entry->d_un.d_val, UNSIGNED);
8376 putchar ('\n');
8377 }
8378 break;
8379
8380 case DT_SYMINSZ:
8381 case DT_SYMINENT:
8382 case DT_SYMINFO:
8383 case DT_USED:
8384 case DT_INIT_ARRAY:
8385 case DT_FINI_ARRAY:
8386 if (do_dynamic)
8387 {
8388 if (entry->d_tag == DT_USED
8389 && VALID_DYNAMIC_NAME (entry->d_un.d_val))
8390 {
8391 char * name = GET_DYNAMIC_NAME (entry->d_un.d_val);
8392
8393 if (*name)
8394 {
8395 printf (_("Not needed object: [%s]\n"), name);
8396 break;
8397 }
8398 }
8399
8400 print_vma (entry->d_un.d_val, PREFIX_HEX);
8401 putchar ('\n');
8402 }
8403 break;
8404
8405 case DT_BIND_NOW:
8406 /* The value of this entry is ignored. */
8407 if (do_dynamic)
8408 putchar ('\n');
8409 break;
8410
8411 case DT_GNU_PRELINKED:
8412 if (do_dynamic)
8413 {
8414 struct tm * tmp;
8415 time_t atime = entry->d_un.d_val;
8416
8417 tmp = gmtime (&atime);
8418 printf ("%04u-%02u-%02uT%02u:%02u:%02u\n",
8419 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
8420 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
8421
8422 }
8423 break;
8424
8425 case DT_GNU_HASH:
8426 dynamic_info_DT_GNU_HASH = entry->d_un.d_val;
8427 if (do_dynamic)
8428 {
8429 print_vma (entry->d_un.d_val, PREFIX_HEX);
8430 putchar ('\n');
8431 }
8432 break;
8433
8434 default:
8435 if ((entry->d_tag >= DT_VERSYM) && (entry->d_tag <= DT_VERNEEDNUM))
8436 version_info[DT_VERSIONTAGIDX (entry->d_tag)] =
8437 entry->d_un.d_val;
8438
8439 if (do_dynamic)
8440 {
8441 switch (elf_header.e_machine)
8442 {
8443 case EM_MIPS:
8444 case EM_MIPS_RS3_LE:
8445 dynamic_section_mips_val (entry);
8446 break;
8447 case EM_PARISC:
8448 dynamic_section_parisc_val (entry);
8449 break;
8450 case EM_IA_64:
8451 dynamic_section_ia64_val (entry);
8452 break;
8453 default:
8454 print_vma (entry->d_un.d_val, PREFIX_HEX);
8455 putchar ('\n');
8456 }
8457 }
8458 break;
8459 }
8460 }
8461
8462 return 1;
8463 }
8464
8465 static char *
8466 get_ver_flags (unsigned int flags)
8467 {
8468 static char buff[32];
8469
8470 buff[0] = 0;
8471
8472 if (flags == 0)
8473 return _("none");
8474
8475 if (flags & VER_FLG_BASE)
8476 strcat (buff, "BASE ");
8477
8478 if (flags & VER_FLG_WEAK)
8479 {
8480 if (flags & VER_FLG_BASE)
8481 strcat (buff, "| ");
8482
8483 strcat (buff, "WEAK ");
8484 }
8485
8486 if (flags & VER_FLG_INFO)
8487 {
8488 if (flags & (VER_FLG_BASE|VER_FLG_WEAK))
8489 strcat (buff, "| ");
8490
8491 strcat (buff, "INFO ");
8492 }
8493
8494 if (flags & ~(VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
8495 strcat (buff, _("| <unknown>"));
8496
8497 return buff;
8498 }
8499
8500 /* Display the contents of the version sections. */
8501
8502 static int
8503 process_version_sections (FILE * file)
8504 {
8505 Elf_Internal_Shdr * section;
8506 unsigned i;
8507 int found = 0;
8508
8509 if (! do_version)
8510 return 1;
8511
8512 for (i = 0, section = section_headers;
8513 i < elf_header.e_shnum;
8514 i++, section++)
8515 {
8516 switch (section->sh_type)
8517 {
8518 case SHT_GNU_verdef:
8519 {
8520 Elf_External_Verdef * edefs;
8521 unsigned int idx;
8522 unsigned int cnt;
8523 char * endbuf;
8524
8525 found = 1;
8526
8527 printf
8528 (_("\nVersion definition section '%s' contains %u entries:\n"),
8529 SECTION_NAME (section), section->sh_info);
8530
8531 printf (_(" Addr: 0x"));
8532 printf_vma (section->sh_addr);
8533 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
8534 (unsigned long) section->sh_offset, section->sh_link,
8535 section->sh_link < elf_header.e_shnum
8536 ? SECTION_NAME (section_headers + section->sh_link)
8537 : _("<corrupt>"));
8538
8539 edefs = (Elf_External_Verdef *)
8540 get_data (NULL, file, section->sh_offset, 1,section->sh_size,
8541 _("version definition section"));
8542 if (!edefs)
8543 break;
8544 endbuf = (char *) edefs + section->sh_size;
8545
8546 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
8547 {
8548 char * vstart;
8549 Elf_External_Verdef * edef;
8550 Elf_Internal_Verdef ent;
8551 Elf_External_Verdaux * eaux;
8552 Elf_Internal_Verdaux aux;
8553 int j;
8554 int isum;
8555
8556 /* Check for very large indicies. */
8557 if (idx > (size_t) (endbuf - (char *) edefs))
8558 break;
8559
8560 vstart = ((char *) edefs) + idx;
8561 if (vstart + sizeof (*edef) > endbuf)
8562 break;
8563
8564 edef = (Elf_External_Verdef *) vstart;
8565
8566 ent.vd_version = BYTE_GET (edef->vd_version);
8567 ent.vd_flags = BYTE_GET (edef->vd_flags);
8568 ent.vd_ndx = BYTE_GET (edef->vd_ndx);
8569 ent.vd_cnt = BYTE_GET (edef->vd_cnt);
8570 ent.vd_hash = BYTE_GET (edef->vd_hash);
8571 ent.vd_aux = BYTE_GET (edef->vd_aux);
8572 ent.vd_next = BYTE_GET (edef->vd_next);
8573
8574 printf (_(" %#06x: Rev: %d Flags: %s"),
8575 idx, ent.vd_version, get_ver_flags (ent.vd_flags));
8576
8577 printf (_(" Index: %d Cnt: %d "),
8578 ent.vd_ndx, ent.vd_cnt);
8579
8580 /* Check for overflow. */
8581 if (ent.vd_aux > (size_t) (endbuf - vstart))
8582 break;
8583
8584 vstart += ent.vd_aux;
8585
8586 eaux = (Elf_External_Verdaux *) vstart;
8587
8588 aux.vda_name = BYTE_GET (eaux->vda_name);
8589 aux.vda_next = BYTE_GET (eaux->vda_next);
8590
8591 if (VALID_DYNAMIC_NAME (aux.vda_name))
8592 printf (_("Name: %s\n"), GET_DYNAMIC_NAME (aux.vda_name));
8593 else
8594 printf (_("Name index: %ld\n"), aux.vda_name);
8595
8596 isum = idx + ent.vd_aux;
8597
8598 for (j = 1; j < ent.vd_cnt; j++)
8599 {
8600 /* Check for overflow. */
8601 if (aux.vda_next > (size_t) (endbuf - vstart))
8602 break;
8603
8604 isum += aux.vda_next;
8605 vstart += aux.vda_next;
8606
8607 eaux = (Elf_External_Verdaux *) vstart;
8608 if (vstart + sizeof (*eaux) > endbuf)
8609 break;
8610
8611 aux.vda_name = BYTE_GET (eaux->vda_name);
8612 aux.vda_next = BYTE_GET (eaux->vda_next);
8613
8614 if (VALID_DYNAMIC_NAME (aux.vda_name))
8615 printf (_(" %#06x: Parent %d: %s\n"),
8616 isum, j, GET_DYNAMIC_NAME (aux.vda_name));
8617 else
8618 printf (_(" %#06x: Parent %d, name index: %ld\n"),
8619 isum, j, aux.vda_name);
8620 }
8621
8622 if (j < ent.vd_cnt)
8623 printf (_(" Version def aux past end of section\n"));
8624
8625 idx += ent.vd_next;
8626 }
8627
8628 if (cnt < section->sh_info)
8629 printf (_(" Version definition past end of section\n"));
8630
8631 free (edefs);
8632 }
8633 break;
8634
8635 case SHT_GNU_verneed:
8636 {
8637 Elf_External_Verneed * eneed;
8638 unsigned int idx;
8639 unsigned int cnt;
8640 char * endbuf;
8641
8642 found = 1;
8643
8644 printf (_("\nVersion needs section '%s' contains %u entries:\n"),
8645 SECTION_NAME (section), section->sh_info);
8646
8647 printf (_(" Addr: 0x"));
8648 printf_vma (section->sh_addr);
8649 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
8650 (unsigned long) section->sh_offset, section->sh_link,
8651 section->sh_link < elf_header.e_shnum
8652 ? SECTION_NAME (section_headers + section->sh_link)
8653 : _("<corrupt>"));
8654
8655 eneed = (Elf_External_Verneed *) get_data (NULL, file,
8656 section->sh_offset, 1,
8657 section->sh_size,
8658 _("Version Needs section"));
8659 if (!eneed)
8660 break;
8661 endbuf = (char *) eneed + section->sh_size;
8662
8663 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
8664 {
8665 Elf_External_Verneed * entry;
8666 Elf_Internal_Verneed ent;
8667 int j;
8668 int isum;
8669 char * vstart;
8670
8671 if (idx > (size_t) (endbuf - (char *) eneed))
8672 break;
8673
8674 vstart = ((char *) eneed) + idx;
8675 if (vstart + sizeof (*entry) > endbuf)
8676 break;
8677
8678 entry = (Elf_External_Verneed *) vstart;
8679
8680 ent.vn_version = BYTE_GET (entry->vn_version);
8681 ent.vn_cnt = BYTE_GET (entry->vn_cnt);
8682 ent.vn_file = BYTE_GET (entry->vn_file);
8683 ent.vn_aux = BYTE_GET (entry->vn_aux);
8684 ent.vn_next = BYTE_GET (entry->vn_next);
8685
8686 printf (_(" %#06x: Version: %d"), idx, ent.vn_version);
8687
8688 if (VALID_DYNAMIC_NAME (ent.vn_file))
8689 printf (_(" File: %s"), GET_DYNAMIC_NAME (ent.vn_file));
8690 else
8691 printf (_(" File: %lx"), ent.vn_file);
8692
8693 printf (_(" Cnt: %d\n"), ent.vn_cnt);
8694
8695 /* Check for overflow. */
8696 if (ent.vn_aux > (size_t) (endbuf - vstart))
8697 break;
8698
8699 vstart += ent.vn_aux;
8700
8701 for (j = 0, isum = idx + ent.vn_aux; j < ent.vn_cnt; ++j)
8702 {
8703 Elf_External_Vernaux * eaux;
8704 Elf_Internal_Vernaux aux;
8705
8706 if (vstart + sizeof (*eaux) > endbuf)
8707 break;
8708 eaux = (Elf_External_Vernaux *) vstart;
8709
8710 aux.vna_hash = BYTE_GET (eaux->vna_hash);
8711 aux.vna_flags = BYTE_GET (eaux->vna_flags);
8712 aux.vna_other = BYTE_GET (eaux->vna_other);
8713 aux.vna_name = BYTE_GET (eaux->vna_name);
8714 aux.vna_next = BYTE_GET (eaux->vna_next);
8715
8716 if (VALID_DYNAMIC_NAME (aux.vna_name))
8717 printf (_(" %#06x: Name: %s"),
8718 isum, GET_DYNAMIC_NAME (aux.vna_name));
8719 else
8720 printf (_(" %#06x: Name index: %lx"),
8721 isum, aux.vna_name);
8722
8723 printf (_(" Flags: %s Version: %d\n"),
8724 get_ver_flags (aux.vna_flags), aux.vna_other);
8725
8726 /* Check for overflow. */
8727 if (aux.vna_next > (size_t) (endbuf - vstart))
8728 break;
8729
8730 isum += aux.vna_next;
8731 vstart += aux.vna_next;
8732 }
8733
8734 if (j < ent.vn_cnt)
8735 warn (_("Missing Version Needs auxillary information\n"));
8736
8737 idx += ent.vn_next;
8738 }
8739
8740 if (cnt < section->sh_info)
8741 warn (_("Missing Version Needs information\n"));
8742
8743 free (eneed);
8744 }
8745 break;
8746
8747 case SHT_GNU_versym:
8748 {
8749 Elf_Internal_Shdr * link_section;
8750 int total;
8751 int cnt;
8752 unsigned char * edata;
8753 unsigned short * data;
8754 char * strtab;
8755 Elf_Internal_Sym * symbols;
8756 Elf_Internal_Shdr * string_sec;
8757 unsigned long num_syms;
8758 long off;
8759
8760 if (section->sh_link >= elf_header.e_shnum)
8761 break;
8762
8763 link_section = section_headers + section->sh_link;
8764 total = section->sh_size / sizeof (Elf_External_Versym);
8765
8766 if (link_section->sh_link >= elf_header.e_shnum)
8767 break;
8768
8769 found = 1;
8770
8771 symbols = GET_ELF_SYMBOLS (file, link_section, & num_syms);
8772 if (symbols == NULL)
8773 break;
8774
8775 string_sec = section_headers + link_section->sh_link;
8776
8777 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
8778 string_sec->sh_size,
8779 _("version string table"));
8780 if (!strtab)
8781 {
8782 free (symbols);
8783 break;
8784 }
8785
8786 printf (_("\nVersion symbols section '%s' contains %d entries:\n"),
8787 SECTION_NAME (section), total);
8788
8789 printf (_(" Addr: "));
8790 printf_vma (section->sh_addr);
8791 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
8792 (unsigned long) section->sh_offset, section->sh_link,
8793 SECTION_NAME (link_section));
8794
8795 off = offset_from_vma (file,
8796 version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
8797 total * sizeof (short));
8798 edata = (unsigned char *) get_data (NULL, file, off, total,
8799 sizeof (short),
8800 _("version symbol data"));
8801 if (!edata)
8802 {
8803 free (strtab);
8804 free (symbols);
8805 break;
8806 }
8807
8808 data = (short unsigned int *) cmalloc (total, sizeof (short));
8809
8810 for (cnt = total; cnt --;)
8811 data[cnt] = byte_get (edata + cnt * sizeof (short),
8812 sizeof (short));
8813
8814 free (edata);
8815
8816 for (cnt = 0; cnt < total; cnt += 4)
8817 {
8818 int j, nn;
8819 int check_def, check_need;
8820 char * name;
8821
8822 printf (" %03x:", cnt);
8823
8824 for (j = 0; (j < 4) && (cnt + j) < total; ++j)
8825 switch (data[cnt + j])
8826 {
8827 case 0:
8828 fputs (_(" 0 (*local*) "), stdout);
8829 break;
8830
8831 case 1:
8832 fputs (_(" 1 (*global*) "), stdout);
8833 break;
8834
8835 default:
8836 nn = printf ("%4x%c", data[cnt + j] & VERSYM_VERSION,
8837 data[cnt + j] & VERSYM_HIDDEN ? 'h' : ' ');
8838
8839 /* If this index value is greater than the size of the symbols
8840 array, break to avoid an out-of-bounds read. */
8841 if ((unsigned long)(cnt + j) >= num_syms)
8842 {
8843 warn (_("invalid index into symbol array\n"));
8844 break;
8845 }
8846
8847 check_def = 1;
8848 check_need = 1;
8849 if (symbols[cnt + j].st_shndx >= elf_header.e_shnum
8850 || section_headers[symbols[cnt + j].st_shndx].sh_type
8851 != SHT_NOBITS)
8852 {
8853 if (symbols[cnt + j].st_shndx == SHN_UNDEF)
8854 check_def = 0;
8855 else
8856 check_need = 0;
8857 }
8858
8859 if (check_need
8860 && version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
8861 {
8862 Elf_Internal_Verneed ivn;
8863 unsigned long offset;
8864
8865 offset = offset_from_vma
8866 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
8867 sizeof (Elf_External_Verneed));
8868
8869 do
8870 {
8871 Elf_Internal_Vernaux ivna;
8872 Elf_External_Verneed evn;
8873 Elf_External_Vernaux evna;
8874 unsigned long a_off;
8875
8876 if (get_data (&evn, file, offset, sizeof (evn), 1,
8877 _("version need")) == NULL)
8878 break;
8879
8880 ivn.vn_aux = BYTE_GET (evn.vn_aux);
8881 ivn.vn_next = BYTE_GET (evn.vn_next);
8882
8883 a_off = offset + ivn.vn_aux;
8884
8885 do
8886 {
8887 if (get_data (&evna, file, a_off, sizeof (evna),
8888 1, _("version need aux (2)")) == NULL)
8889 {
8890 ivna.vna_next = 0;
8891 ivna.vna_other = 0;
8892 }
8893 else
8894 {
8895 ivna.vna_next = BYTE_GET (evna.vna_next);
8896 ivna.vna_other = BYTE_GET (evna.vna_other);
8897 }
8898
8899 a_off += ivna.vna_next;
8900 }
8901 while (ivna.vna_other != data[cnt + j]
8902 && ivna.vna_next != 0);
8903
8904 if (ivna.vna_other == data[cnt + j])
8905 {
8906 ivna.vna_name = BYTE_GET (evna.vna_name);
8907
8908 if (ivna.vna_name >= string_sec->sh_size)
8909 name = _("*invalid*");
8910 else
8911 name = strtab + ivna.vna_name;
8912 nn += printf ("(%s%-*s",
8913 name,
8914 12 - (int) strlen (name),
8915 ")");
8916 check_def = 0;
8917 break;
8918 }
8919
8920 offset += ivn.vn_next;
8921 }
8922 while (ivn.vn_next);
8923 }
8924
8925 if (check_def && data[cnt + j] != 0x8001
8926 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
8927 {
8928 Elf_Internal_Verdef ivd;
8929 Elf_External_Verdef evd;
8930 unsigned long offset;
8931
8932 offset = offset_from_vma
8933 (file, version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
8934 sizeof evd);
8935
8936 do
8937 {
8938 if (get_data (&evd, file, offset, sizeof (evd), 1,
8939 _("version def")) == NULL)
8940 {
8941 ivd.vd_next = 0;
8942 ivd.vd_ndx = 0;
8943 }
8944 else
8945 {
8946 ivd.vd_next = BYTE_GET (evd.vd_next);
8947 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
8948 }
8949
8950 offset += ivd.vd_next;
8951 }
8952 while (ivd.vd_ndx != (data[cnt + j] & VERSYM_VERSION)
8953 && ivd.vd_next != 0);
8954
8955 if (ivd.vd_ndx == (data[cnt + j] & VERSYM_VERSION))
8956 {
8957 Elf_External_Verdaux evda;
8958 Elf_Internal_Verdaux ivda;
8959
8960 ivd.vd_aux = BYTE_GET (evd.vd_aux);
8961
8962 if (get_data (&evda, file,
8963 offset - ivd.vd_next + ivd.vd_aux,
8964 sizeof (evda), 1,
8965 _("version def aux")) == NULL)
8966 break;
8967
8968 ivda.vda_name = BYTE_GET (evda.vda_name);
8969
8970 if (ivda.vda_name >= string_sec->sh_size)
8971 name = _("*invalid*");
8972 else
8973 name = strtab + ivda.vda_name;
8974 nn += printf ("(%s%-*s",
8975 name,
8976 12 - (int) strlen (name),
8977 ")");
8978 }
8979 }
8980
8981 if (nn < 18)
8982 printf ("%*c", 18 - nn, ' ');
8983 }
8984
8985 putchar ('\n');
8986 }
8987
8988 free (data);
8989 free (strtab);
8990 free (symbols);
8991 }
8992 break;
8993
8994 default:
8995 break;
8996 }
8997 }
8998
8999 if (! found)
9000 printf (_("\nNo version information found in this file.\n"));
9001
9002 return 1;
9003 }
9004
9005 static const char *
9006 get_symbol_binding (unsigned int binding)
9007 {
9008 static char buff[32];
9009
9010 switch (binding)
9011 {
9012 case STB_LOCAL: return "LOCAL";
9013 case STB_GLOBAL: return "GLOBAL";
9014 case STB_WEAK: return "WEAK";
9015 default:
9016 if (binding >= STB_LOPROC && binding <= STB_HIPROC)
9017 snprintf (buff, sizeof (buff), _("<processor specific>: %d"),
9018 binding);
9019 else if (binding >= STB_LOOS && binding <= STB_HIOS)
9020 {
9021 if (binding == STB_GNU_UNIQUE
9022 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
9023 /* GNU is still using the default value 0. */
9024 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
9025 return "UNIQUE";
9026 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), binding);
9027 }
9028 else
9029 snprintf (buff, sizeof (buff), _("<unknown>: %d"), binding);
9030 return buff;
9031 }
9032 }
9033
9034 static const char *
9035 get_symbol_type (unsigned int type)
9036 {
9037 static char buff[32];
9038
9039 switch (type)
9040 {
9041 case STT_NOTYPE: return "NOTYPE";
9042 case STT_OBJECT: return "OBJECT";
9043 case STT_FUNC: return "FUNC";
9044 case STT_SECTION: return "SECTION";
9045 case STT_FILE: return "FILE";
9046 case STT_COMMON: return "COMMON";
9047 case STT_TLS: return "TLS";
9048 case STT_RELC: return "RELC";
9049 case STT_SRELC: return "SRELC";
9050 default:
9051 if (type >= STT_LOPROC && type <= STT_HIPROC)
9052 {
9053 if (elf_header.e_machine == EM_ARM)
9054 {
9055 if (type == STT_ARM_TFUNC)
9056 return "THUMB_FUNC";
9057 if (type == STT_ARM_16BIT)
9058 return "THUMB_LABEL";
9059 }
9060
9061 if (elf_header.e_machine == EM_SPARCV9 && type == STT_REGISTER)
9062 return "REGISTER";
9063
9064 if (elf_header.e_machine == EM_PARISC && type == STT_PARISC_MILLI)
9065 return "PARISC_MILLI";
9066
9067 snprintf (buff, sizeof (buff), _("<processor specific>: %d"), type);
9068 }
9069 else if (type >= STT_LOOS && type <= STT_HIOS)
9070 {
9071 if (elf_header.e_machine == EM_PARISC)
9072 {
9073 if (type == STT_HP_OPAQUE)
9074 return "HP_OPAQUE";
9075 if (type == STT_HP_STUB)
9076 return "HP_STUB";
9077 }
9078
9079 if (type == STT_GNU_IFUNC
9080 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
9081 || elf_header.e_ident[EI_OSABI] == ELFOSABI_FREEBSD
9082 /* GNU is still using the default value 0. */
9083 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
9084 return "IFUNC";
9085
9086 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), type);
9087 }
9088 else
9089 snprintf (buff, sizeof (buff), _("<unknown>: %d"), type);
9090 return buff;
9091 }
9092 }
9093
9094 static const char *
9095 get_symbol_visibility (unsigned int visibility)
9096 {
9097 switch (visibility)
9098 {
9099 case STV_DEFAULT: return "DEFAULT";
9100 case STV_INTERNAL: return "INTERNAL";
9101 case STV_HIDDEN: return "HIDDEN";
9102 case STV_PROTECTED: return "PROTECTED";
9103 default: abort ();
9104 }
9105 }
9106
9107 static const char *
9108 get_mips_symbol_other (unsigned int other)
9109 {
9110 switch (other)
9111 {
9112 case STO_OPTIONAL:
9113 return "OPTIONAL";
9114 case STO_MIPS_PLT:
9115 return "MIPS PLT";
9116 case STO_MIPS_PIC:
9117 return "MIPS PIC";
9118 case STO_MICROMIPS:
9119 return "MICROMIPS";
9120 case STO_MICROMIPS | STO_MIPS_PIC:
9121 return "MICROMIPS, MIPS PIC";
9122 case STO_MIPS16:
9123 return "MIPS16";
9124 default:
9125 return NULL;
9126 }
9127 }
9128
9129 static const char *
9130 get_ia64_symbol_other (unsigned int other)
9131 {
9132 if (is_ia64_vms ())
9133 {
9134 static char res[32];
9135
9136 res[0] = 0;
9137
9138 /* Function types is for images and .STB files only. */
9139 switch (elf_header.e_type)
9140 {
9141 case ET_DYN:
9142 case ET_EXEC:
9143 switch (VMS_ST_FUNC_TYPE (other))
9144 {
9145 case VMS_SFT_CODE_ADDR:
9146 strcat (res, " CA");
9147 break;
9148 case VMS_SFT_SYMV_IDX:
9149 strcat (res, " VEC");
9150 break;
9151 case VMS_SFT_FD:
9152 strcat (res, " FD");
9153 break;
9154 case VMS_SFT_RESERVE:
9155 strcat (res, " RSV");
9156 break;
9157 default:
9158 abort ();
9159 }
9160 break;
9161 default:
9162 break;
9163 }
9164 switch (VMS_ST_LINKAGE (other))
9165 {
9166 case VMS_STL_IGNORE:
9167 strcat (res, " IGN");
9168 break;
9169 case VMS_STL_RESERVE:
9170 strcat (res, " RSV");
9171 break;
9172 case VMS_STL_STD:
9173 strcat (res, " STD");
9174 break;
9175 case VMS_STL_LNK:
9176 strcat (res, " LNK");
9177 break;
9178 default:
9179 abort ();
9180 }
9181
9182 if (res[0] != 0)
9183 return res + 1;
9184 else
9185 return res;
9186 }
9187 return NULL;
9188 }
9189
9190 static const char *
9191 get_symbol_other (unsigned int other)
9192 {
9193 const char * result = NULL;
9194 static char buff [32];
9195
9196 if (other == 0)
9197 return "";
9198
9199 switch (elf_header.e_machine)
9200 {
9201 case EM_MIPS:
9202 result = get_mips_symbol_other (other);
9203 break;
9204 case EM_IA_64:
9205 result = get_ia64_symbol_other (other);
9206 break;
9207 default:
9208 break;
9209 }
9210
9211 if (result)
9212 return result;
9213
9214 snprintf (buff, sizeof buff, _("<other>: %x"), other);
9215 return buff;
9216 }
9217
9218 static const char *
9219 get_symbol_index_type (unsigned int type)
9220 {
9221 static char buff[32];
9222
9223 switch (type)
9224 {
9225 case SHN_UNDEF: return "UND";
9226 case SHN_ABS: return "ABS";
9227 case SHN_COMMON: return "COM";
9228 default:
9229 if (type == SHN_IA_64_ANSI_COMMON
9230 && elf_header.e_machine == EM_IA_64
9231 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX)
9232 return "ANSI_COM";
9233 else if ((elf_header.e_machine == EM_X86_64
9234 || elf_header.e_machine == EM_L1OM
9235 || elf_header.e_machine == EM_K1OM)
9236 && type == SHN_X86_64_LCOMMON)
9237 return "LARGE_COM";
9238 else if ((type == SHN_MIPS_SCOMMON
9239 && elf_header.e_machine == EM_MIPS)
9240 || (type == SHN_TIC6X_SCOMMON
9241 && elf_header.e_machine == EM_TI_C6000))
9242 return "SCOM";
9243 else if (type == SHN_MIPS_SUNDEFINED
9244 && elf_header.e_machine == EM_MIPS)
9245 return "SUND";
9246 else if (type >= SHN_LOPROC && type <= SHN_HIPROC)
9247 sprintf (buff, "PRC[0x%04x]", type & 0xffff);
9248 else if (type >= SHN_LOOS && type <= SHN_HIOS)
9249 sprintf (buff, "OS [0x%04x]", type & 0xffff);
9250 else if (type >= SHN_LORESERVE)
9251 sprintf (buff, "RSV[0x%04x]", type & 0xffff);
9252 else if (type >= elf_header.e_shnum)
9253 sprintf (buff, "bad section index[%3d]", type);
9254 else
9255 sprintf (buff, "%3d", type);
9256 break;
9257 }
9258
9259 return buff;
9260 }
9261
9262 static bfd_vma *
9263 get_dynamic_data (FILE * file, unsigned int number, unsigned int ent_size)
9264 {
9265 unsigned char * e_data;
9266 bfd_vma * i_data;
9267
9268 e_data = (unsigned char *) cmalloc (number, ent_size);
9269
9270 if (e_data == NULL)
9271 {
9272 error (_("Out of memory\n"));
9273 return NULL;
9274 }
9275
9276 if (fread (e_data, ent_size, number, file) != number)
9277 {
9278 error (_("Unable to read in dynamic data\n"));
9279 return NULL;
9280 }
9281
9282 i_data = (bfd_vma *) cmalloc (number, sizeof (*i_data));
9283
9284 if (i_data == NULL)
9285 {
9286 error (_("Out of memory\n"));
9287 free (e_data);
9288 return NULL;
9289 }
9290
9291 while (number--)
9292 i_data[number] = byte_get (e_data + number * ent_size, ent_size);
9293
9294 free (e_data);
9295
9296 return i_data;
9297 }
9298
9299 static void
9300 print_dynamic_symbol (bfd_vma si, unsigned long hn)
9301 {
9302 Elf_Internal_Sym * psym;
9303 int n;
9304
9305 psym = dynamic_symbols + si;
9306
9307 n = print_vma (si, DEC_5);
9308 if (n < 5)
9309 fputs (" " + n, stdout);
9310 printf (" %3lu: ", hn);
9311 print_vma (psym->st_value, LONG_HEX);
9312 putchar (' ');
9313 print_vma (psym->st_size, DEC_5);
9314
9315 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
9316 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
9317 printf (" %-7s", get_symbol_visibility (ELF_ST_VISIBILITY (psym->st_other)));
9318 /* Check to see if any other bits in the st_other field are set.
9319 Note - displaying this information disrupts the layout of the
9320 table being generated, but for the moment this case is very
9321 rare. */
9322 if (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other))
9323 printf (" [%s] ", get_symbol_other (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other)));
9324 printf (" %3.3s ", get_symbol_index_type (psym->st_shndx));
9325 if (VALID_DYNAMIC_NAME (psym->st_name))
9326 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
9327 else
9328 printf (_(" <corrupt: %14ld>"), psym->st_name);
9329 putchar ('\n');
9330 }
9331
9332 /* Dump the symbol table. */
9333 static int
9334 process_symbol_table (FILE * file)
9335 {
9336 Elf_Internal_Shdr * section;
9337 bfd_vma nbuckets = 0;
9338 bfd_vma nchains = 0;
9339 bfd_vma * buckets = NULL;
9340 bfd_vma * chains = NULL;
9341 bfd_vma ngnubuckets = 0;
9342 bfd_vma * gnubuckets = NULL;
9343 bfd_vma * gnuchains = NULL;
9344 bfd_vma gnusymidx = 0;
9345
9346 if (!do_syms && !do_dyn_syms && !do_histogram)
9347 return 1;
9348
9349 if (dynamic_info[DT_HASH]
9350 && (do_histogram
9351 || (do_using_dynamic
9352 && !do_dyn_syms
9353 && dynamic_strings != NULL)))
9354 {
9355 unsigned char nb[8];
9356 unsigned char nc[8];
9357 int hash_ent_size = 4;
9358
9359 if ((elf_header.e_machine == EM_ALPHA
9360 || elf_header.e_machine == EM_S390
9361 || elf_header.e_machine == EM_S390_OLD)
9362 && elf_header.e_ident[EI_CLASS] == ELFCLASS64)
9363 hash_ent_size = 8;
9364
9365 if (fseek (file,
9366 (archive_file_offset
9367 + offset_from_vma (file, dynamic_info[DT_HASH],
9368 sizeof nb + sizeof nc)),
9369 SEEK_SET))
9370 {
9371 error (_("Unable to seek to start of dynamic information\n"));
9372 goto no_hash;
9373 }
9374
9375 if (fread (nb, hash_ent_size, 1, file) != 1)
9376 {
9377 error (_("Failed to read in number of buckets\n"));
9378 goto no_hash;
9379 }
9380
9381 if (fread (nc, hash_ent_size, 1, file) != 1)
9382 {
9383 error (_("Failed to read in number of chains\n"));
9384 goto no_hash;
9385 }
9386
9387 nbuckets = byte_get (nb, hash_ent_size);
9388 nchains = byte_get (nc, hash_ent_size);
9389
9390 buckets = get_dynamic_data (file, nbuckets, hash_ent_size);
9391 chains = get_dynamic_data (file, nchains, hash_ent_size);
9392
9393 no_hash:
9394 if (buckets == NULL || chains == NULL)
9395 {
9396 if (do_using_dynamic)
9397 return 0;
9398 free (buckets);
9399 free (chains);
9400 buckets = NULL;
9401 chains = NULL;
9402 nbuckets = 0;
9403 nchains = 0;
9404 }
9405 }
9406
9407 if (dynamic_info_DT_GNU_HASH
9408 && (do_histogram
9409 || (do_using_dynamic
9410 && !do_dyn_syms
9411 && dynamic_strings != NULL)))
9412 {
9413 unsigned char nb[16];
9414 bfd_vma i, maxchain = 0xffffffff, bitmaskwords;
9415 bfd_vma buckets_vma;
9416
9417 if (fseek (file,
9418 (archive_file_offset
9419 + offset_from_vma (file, dynamic_info_DT_GNU_HASH,
9420 sizeof nb)),
9421 SEEK_SET))
9422 {
9423 error (_("Unable to seek to start of dynamic information\n"));
9424 goto no_gnu_hash;
9425 }
9426
9427 if (fread (nb, 16, 1, file) != 1)
9428 {
9429 error (_("Failed to read in number of buckets\n"));
9430 goto no_gnu_hash;
9431 }
9432
9433 ngnubuckets = byte_get (nb, 4);
9434 gnusymidx = byte_get (nb + 4, 4);
9435 bitmaskwords = byte_get (nb + 8, 4);
9436 buckets_vma = dynamic_info_DT_GNU_HASH + 16;
9437 if (is_32bit_elf)
9438 buckets_vma += bitmaskwords * 4;
9439 else
9440 buckets_vma += bitmaskwords * 8;
9441
9442 if (fseek (file,
9443 (archive_file_offset
9444 + offset_from_vma (file, buckets_vma, 4)),
9445 SEEK_SET))
9446 {
9447 error (_("Unable to seek to start of dynamic information\n"));
9448 goto no_gnu_hash;
9449 }
9450
9451 gnubuckets = get_dynamic_data (file, ngnubuckets, 4);
9452
9453 if (gnubuckets == NULL)
9454 goto no_gnu_hash;
9455
9456 for (i = 0; i < ngnubuckets; i++)
9457 if (gnubuckets[i] != 0)
9458 {
9459 if (gnubuckets[i] < gnusymidx)
9460 return 0;
9461
9462 if (maxchain == 0xffffffff || gnubuckets[i] > maxchain)
9463 maxchain = gnubuckets[i];
9464 }
9465
9466 if (maxchain == 0xffffffff)
9467 goto no_gnu_hash;
9468
9469 maxchain -= gnusymidx;
9470
9471 if (fseek (file,
9472 (archive_file_offset
9473 + offset_from_vma (file, buckets_vma
9474 + 4 * (ngnubuckets + maxchain), 4)),
9475 SEEK_SET))
9476 {
9477 error (_("Unable to seek to start of dynamic information\n"));
9478 goto no_gnu_hash;
9479 }
9480
9481 do
9482 {
9483 if (fread (nb, 4, 1, file) != 1)
9484 {
9485 error (_("Failed to determine last chain length\n"));
9486 goto no_gnu_hash;
9487 }
9488
9489 if (maxchain + 1 == 0)
9490 goto no_gnu_hash;
9491
9492 ++maxchain;
9493 }
9494 while ((byte_get (nb, 4) & 1) == 0);
9495
9496 if (fseek (file,
9497 (archive_file_offset
9498 + offset_from_vma (file, buckets_vma + 4 * ngnubuckets, 4)),
9499 SEEK_SET))
9500 {
9501 error (_("Unable to seek to start of dynamic information\n"));
9502 goto no_gnu_hash;
9503 }
9504
9505 gnuchains = get_dynamic_data (file, maxchain, 4);
9506
9507 no_gnu_hash:
9508 if (gnuchains == NULL)
9509 {
9510 free (gnubuckets);
9511 gnubuckets = NULL;
9512 ngnubuckets = 0;
9513 if (do_using_dynamic)
9514 return 0;
9515 }
9516 }
9517
9518 if ((dynamic_info[DT_HASH] || dynamic_info_DT_GNU_HASH)
9519 && do_syms
9520 && do_using_dynamic
9521 && dynamic_strings != NULL)
9522 {
9523 unsigned long hn;
9524
9525 if (dynamic_info[DT_HASH])
9526 {
9527 bfd_vma si;
9528
9529 printf (_("\nSymbol table for image:\n"));
9530 if (is_32bit_elf)
9531 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9532 else
9533 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9534
9535 for (hn = 0; hn < nbuckets; hn++)
9536 {
9537 if (! buckets[hn])
9538 continue;
9539
9540 for (si = buckets[hn]; si < nchains && si > 0; si = chains[si])
9541 print_dynamic_symbol (si, hn);
9542 }
9543 }
9544
9545 if (dynamic_info_DT_GNU_HASH)
9546 {
9547 printf (_("\nSymbol table of `.gnu.hash' for image:\n"));
9548 if (is_32bit_elf)
9549 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9550 else
9551 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9552
9553 for (hn = 0; hn < ngnubuckets; ++hn)
9554 if (gnubuckets[hn] != 0)
9555 {
9556 bfd_vma si = gnubuckets[hn];
9557 bfd_vma off = si - gnusymidx;
9558
9559 do
9560 {
9561 print_dynamic_symbol (si, hn);
9562 si++;
9563 }
9564 while ((gnuchains[off++] & 1) == 0);
9565 }
9566 }
9567 }
9568 else if (do_dyn_syms || (do_syms && !do_using_dynamic))
9569 {
9570 unsigned int i;
9571
9572 for (i = 0, section = section_headers;
9573 i < elf_header.e_shnum;
9574 i++, section++)
9575 {
9576 unsigned int si;
9577 char * strtab = NULL;
9578 unsigned long int strtab_size = 0;
9579 Elf_Internal_Sym * symtab;
9580 Elf_Internal_Sym * psym;
9581 unsigned long num_syms;
9582
9583 if ((section->sh_type != SHT_SYMTAB
9584 && section->sh_type != SHT_DYNSYM)
9585 || (!do_syms
9586 && section->sh_type == SHT_SYMTAB))
9587 continue;
9588
9589 if (section->sh_entsize == 0)
9590 {
9591 printf (_("\nSymbol table '%s' has a sh_entsize of zero!\n"),
9592 SECTION_NAME (section));
9593 continue;
9594 }
9595
9596 printf (_("\nSymbol table '%s' contains %lu entries:\n"),
9597 SECTION_NAME (section),
9598 (unsigned long) (section->sh_size / section->sh_entsize));
9599
9600 if (is_32bit_elf)
9601 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
9602 else
9603 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
9604
9605 symtab = GET_ELF_SYMBOLS (file, section, & num_syms);
9606 if (symtab == NULL)
9607 continue;
9608
9609 if (section->sh_link == elf_header.e_shstrndx)
9610 {
9611 strtab = string_table;
9612 strtab_size = string_table_length;
9613 }
9614 else if (section->sh_link < elf_header.e_shnum)
9615 {
9616 Elf_Internal_Shdr * string_sec;
9617
9618 string_sec = section_headers + section->sh_link;
9619
9620 strtab = (char *) get_data (NULL, file, string_sec->sh_offset,
9621 1, string_sec->sh_size,
9622 _("string table"));
9623 strtab_size = strtab != NULL ? string_sec->sh_size : 0;
9624 }
9625
9626 for (si = 0, psym = symtab; si < num_syms; si++, psym++)
9627 {
9628 printf ("%6d: ", si);
9629 print_vma (psym->st_value, LONG_HEX);
9630 putchar (' ');
9631 print_vma (psym->st_size, DEC_5);
9632 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
9633 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
9634 printf (" %-7s", get_symbol_visibility (ELF_ST_VISIBILITY (psym->st_other)));
9635 /* Check to see if any other bits in the st_other field are set.
9636 Note - displaying this information disrupts the layout of the
9637 table being generated, but for the moment this case is very rare. */
9638 if (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other))
9639 printf (" [%s] ", get_symbol_other (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other)));
9640 printf (" %4s ", get_symbol_index_type (psym->st_shndx));
9641 print_symbol (25, psym->st_name < strtab_size
9642 ? strtab + psym->st_name : _("<corrupt>"));
9643
9644 if (section->sh_type == SHT_DYNSYM
9645 && version_info[DT_VERSIONTAGIDX (DT_VERSYM)] != 0)
9646 {
9647 unsigned char data[2];
9648 unsigned short vers_data;
9649 unsigned long offset;
9650 int is_nobits;
9651 int check_def;
9652
9653 offset = offset_from_vma
9654 (file, version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
9655 sizeof data + si * sizeof (vers_data));
9656
9657 if (get_data (&data, file, offset + si * sizeof (vers_data),
9658 sizeof (data), 1, _("version data")) == NULL)
9659 break;
9660
9661 vers_data = byte_get (data, 2);
9662
9663 is_nobits = (psym->st_shndx < elf_header.e_shnum
9664 && section_headers[psym->st_shndx].sh_type
9665 == SHT_NOBITS);
9666
9667 check_def = (psym->st_shndx != SHN_UNDEF);
9668
9669 if ((vers_data & VERSYM_HIDDEN) || vers_data > 1)
9670 {
9671 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)]
9672 && (is_nobits || ! check_def))
9673 {
9674 Elf_External_Verneed evn;
9675 Elf_Internal_Verneed ivn;
9676 Elf_Internal_Vernaux ivna;
9677
9678 /* We must test both. */
9679 offset = offset_from_vma
9680 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
9681 sizeof evn);
9682
9683 do
9684 {
9685 unsigned long vna_off;
9686
9687 if (get_data (&evn, file, offset, sizeof (evn), 1,
9688 _("version need")) == NULL)
9689 {
9690 ivna.vna_next = 0;
9691 ivna.vna_other = 0;
9692 ivna.vna_name = 0;
9693 break;
9694 }
9695
9696 ivn.vn_aux = BYTE_GET (evn.vn_aux);
9697 ivn.vn_next = BYTE_GET (evn.vn_next);
9698
9699 vna_off = offset + ivn.vn_aux;
9700
9701 do
9702 {
9703 Elf_External_Vernaux evna;
9704
9705 if (get_data (&evna, file, vna_off,
9706 sizeof (evna), 1,
9707 _("version need aux (3)")) == NULL)
9708 {
9709 ivna.vna_next = 0;
9710 ivna.vna_other = 0;
9711 ivna.vna_name = 0;
9712 }
9713 else
9714 {
9715 ivna.vna_other = BYTE_GET (evna.vna_other);
9716 ivna.vna_next = BYTE_GET (evna.vna_next);
9717 ivna.vna_name = BYTE_GET (evna.vna_name);
9718 }
9719
9720 vna_off += ivna.vna_next;
9721 }
9722 while (ivna.vna_other != vers_data
9723 && ivna.vna_next != 0);
9724
9725 if (ivna.vna_other == vers_data)
9726 break;
9727
9728 offset += ivn.vn_next;
9729 }
9730 while (ivn.vn_next != 0);
9731
9732 if (ivna.vna_other == vers_data)
9733 {
9734 printf ("@%s (%d)",
9735 ivna.vna_name < strtab_size
9736 ? strtab + ivna.vna_name : _("<corrupt>"),
9737 ivna.vna_other);
9738 check_def = 0;
9739 }
9740 else if (! is_nobits)
9741 error (_("bad dynamic symbol\n"));
9742 else
9743 check_def = 1;
9744 }
9745
9746 if (check_def)
9747 {
9748 if (vers_data != 0x8001
9749 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
9750 {
9751 Elf_Internal_Verdef ivd;
9752 Elf_Internal_Verdaux ivda;
9753 Elf_External_Verdaux evda;
9754 unsigned long off;
9755
9756 off = offset_from_vma
9757 (file,
9758 version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
9759 sizeof (Elf_External_Verdef));
9760
9761 do
9762 {
9763 Elf_External_Verdef evd;
9764
9765 if (get_data (&evd, file, off, sizeof (evd),
9766 1, _("version def")) == NULL)
9767 {
9768 ivd.vd_ndx = 0;
9769 ivd.vd_aux = 0;
9770 ivd.vd_next = 0;
9771 }
9772 else
9773 {
9774 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
9775 ivd.vd_aux = BYTE_GET (evd.vd_aux);
9776 ivd.vd_next = BYTE_GET (evd.vd_next);
9777 }
9778
9779 off += ivd.vd_next;
9780 }
9781 while (ivd.vd_ndx != (vers_data & VERSYM_VERSION)
9782 && ivd.vd_next != 0);
9783
9784 off -= ivd.vd_next;
9785 off += ivd.vd_aux;
9786
9787 if (get_data (&evda, file, off, sizeof (evda),
9788 1, _("version def aux")) == NULL)
9789 break;
9790
9791 ivda.vda_name = BYTE_GET (evda.vda_name);
9792
9793 if (psym->st_name != ivda.vda_name)
9794 printf ((vers_data & VERSYM_HIDDEN)
9795 ? "@%s" : "@@%s",
9796 ivda.vda_name < strtab_size
9797 ? strtab + ivda.vda_name : _("<corrupt>"));
9798 }
9799 }
9800 }
9801 }
9802
9803 putchar ('\n');
9804 }
9805
9806 free (symtab);
9807 if (strtab != string_table)
9808 free (strtab);
9809 }
9810 }
9811 else if (do_syms)
9812 printf
9813 (_("\nDynamic symbol information is not available for displaying symbols.\n"));
9814
9815 if (do_histogram && buckets != NULL)
9816 {
9817 unsigned long * lengths;
9818 unsigned long * counts;
9819 unsigned long hn;
9820 bfd_vma si;
9821 unsigned long maxlength = 0;
9822 unsigned long nzero_counts = 0;
9823 unsigned long nsyms = 0;
9824
9825 printf (_("\nHistogram for bucket list length (total of %lu buckets):\n"),
9826 (unsigned long) nbuckets);
9827 printf (_(" Length Number %% of total Coverage\n"));
9828
9829 lengths = (unsigned long *) calloc (nbuckets, sizeof (*lengths));
9830 if (lengths == NULL)
9831 {
9832 error (_("Out of memory\n"));
9833 return 0;
9834 }
9835 for (hn = 0; hn < nbuckets; ++hn)
9836 {
9837 for (si = buckets[hn]; si > 0 && si < nchains; si = chains[si])
9838 {
9839 ++nsyms;
9840 if (maxlength < ++lengths[hn])
9841 ++maxlength;
9842 }
9843 }
9844
9845 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
9846 if (counts == NULL)
9847 {
9848 error (_("Out of memory\n"));
9849 return 0;
9850 }
9851
9852 for (hn = 0; hn < nbuckets; ++hn)
9853 ++counts[lengths[hn]];
9854
9855 if (nbuckets > 0)
9856 {
9857 unsigned long i;
9858 printf (" 0 %-10lu (%5.1f%%)\n",
9859 counts[0], (counts[0] * 100.0) / nbuckets);
9860 for (i = 1; i <= maxlength; ++i)
9861 {
9862 nzero_counts += counts[i] * i;
9863 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
9864 i, counts[i], (counts[i] * 100.0) / nbuckets,
9865 (nzero_counts * 100.0) / nsyms);
9866 }
9867 }
9868
9869 free (counts);
9870 free (lengths);
9871 }
9872
9873 if (buckets != NULL)
9874 {
9875 free (buckets);
9876 free (chains);
9877 }
9878
9879 if (do_histogram && gnubuckets != NULL)
9880 {
9881 unsigned long * lengths;
9882 unsigned long * counts;
9883 unsigned long hn;
9884 unsigned long maxlength = 0;
9885 unsigned long nzero_counts = 0;
9886 unsigned long nsyms = 0;
9887
9888 lengths = (unsigned long *) calloc (ngnubuckets, sizeof (*lengths));
9889 if (lengths == NULL)
9890 {
9891 error (_("Out of memory\n"));
9892 return 0;
9893 }
9894
9895 printf (_("\nHistogram for `.gnu.hash' bucket list length (total of %lu buckets):\n"),
9896 (unsigned long) ngnubuckets);
9897 printf (_(" Length Number %% of total Coverage\n"));
9898
9899 for (hn = 0; hn < ngnubuckets; ++hn)
9900 if (gnubuckets[hn] != 0)
9901 {
9902 bfd_vma off, length = 1;
9903
9904 for (off = gnubuckets[hn] - gnusymidx;
9905 (gnuchains[off] & 1) == 0; ++off)
9906 ++length;
9907 lengths[hn] = length;
9908 if (length > maxlength)
9909 maxlength = length;
9910 nsyms += length;
9911 }
9912
9913 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
9914 if (counts == NULL)
9915 {
9916 error (_("Out of memory\n"));
9917 return 0;
9918 }
9919
9920 for (hn = 0; hn < ngnubuckets; ++hn)
9921 ++counts[lengths[hn]];
9922
9923 if (ngnubuckets > 0)
9924 {
9925 unsigned long j;
9926 printf (" 0 %-10lu (%5.1f%%)\n",
9927 counts[0], (counts[0] * 100.0) / ngnubuckets);
9928 for (j = 1; j <= maxlength; ++j)
9929 {
9930 nzero_counts += counts[j] * j;
9931 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
9932 j, counts[j], (counts[j] * 100.0) / ngnubuckets,
9933 (nzero_counts * 100.0) / nsyms);
9934 }
9935 }
9936
9937 free (counts);
9938 free (lengths);
9939 free (gnubuckets);
9940 free (gnuchains);
9941 }
9942
9943 return 1;
9944 }
9945
9946 static int
9947 process_syminfo (FILE * file ATTRIBUTE_UNUSED)
9948 {
9949 unsigned int i;
9950
9951 if (dynamic_syminfo == NULL
9952 || !do_dynamic)
9953 /* No syminfo, this is ok. */
9954 return 1;
9955
9956 /* There better should be a dynamic symbol section. */
9957 if (dynamic_symbols == NULL || dynamic_strings == NULL)
9958 return 0;
9959
9960 if (dynamic_addr)
9961 printf (_("\nDynamic info segment at offset 0x%lx contains %d entries:\n"),
9962 dynamic_syminfo_offset, dynamic_syminfo_nent);
9963
9964 printf (_(" Num: Name BoundTo Flags\n"));
9965 for (i = 0; i < dynamic_syminfo_nent; ++i)
9966 {
9967 unsigned short int flags = dynamic_syminfo[i].si_flags;
9968
9969 printf ("%4d: ", i);
9970 if (VALID_DYNAMIC_NAME (dynamic_symbols[i].st_name))
9971 print_symbol (30, GET_DYNAMIC_NAME (dynamic_symbols[i].st_name));
9972 else
9973 printf (_("<corrupt: %19ld>"), dynamic_symbols[i].st_name);
9974 putchar (' ');
9975
9976 switch (dynamic_syminfo[i].si_boundto)
9977 {
9978 case SYMINFO_BT_SELF:
9979 fputs ("SELF ", stdout);
9980 break;
9981 case SYMINFO_BT_PARENT:
9982 fputs ("PARENT ", stdout);
9983 break;
9984 default:
9985 if (dynamic_syminfo[i].si_boundto > 0
9986 && dynamic_syminfo[i].si_boundto < dynamic_nent
9987 && VALID_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val))
9988 {
9989 print_symbol (10, GET_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val));
9990 putchar (' ' );
9991 }
9992 else
9993 printf ("%-10d ", dynamic_syminfo[i].si_boundto);
9994 break;
9995 }
9996
9997 if (flags & SYMINFO_FLG_DIRECT)
9998 printf (" DIRECT");
9999 if (flags & SYMINFO_FLG_PASSTHRU)
10000 printf (" PASSTHRU");
10001 if (flags & SYMINFO_FLG_COPY)
10002 printf (" COPY");
10003 if (flags & SYMINFO_FLG_LAZYLOAD)
10004 printf (" LAZYLOAD");
10005
10006 puts ("");
10007 }
10008
10009 return 1;
10010 }
10011
10012 /* Check to see if the given reloc needs to be handled in a target specific
10013 manner. If so then process the reloc and return TRUE otherwise return
10014 FALSE. */
10015
10016 static bfd_boolean
10017 target_specific_reloc_handling (Elf_Internal_Rela * reloc,
10018 unsigned char * start,
10019 Elf_Internal_Sym * symtab)
10020 {
10021 unsigned int reloc_type = get_reloc_type (reloc->r_info);
10022
10023 switch (elf_header.e_machine)
10024 {
10025 case EM_MSP430:
10026 case EM_MSP430_OLD:
10027 {
10028 static Elf_Internal_Sym * saved_sym = NULL;
10029
10030 switch (reloc_type)
10031 {
10032 case 10: /* R_MSP430_SYM_DIFF */
10033 if (uses_msp430x_relocs ())
10034 break;
10035 case 21: /* R_MSP430X_SYM_DIFF */
10036 saved_sym = symtab + get_reloc_symindex (reloc->r_info);
10037 return TRUE;
10038
10039 case 1: /* R_MSP430_32 or R_MSP430_ABS32 */
10040 case 3: /* R_MSP430_16 or R_MSP430_ABS8 */
10041 goto handle_sym_diff;
10042
10043 case 5: /* R_MSP430_16_BYTE */
10044 case 9: /* R_MSP430_8 */
10045 if (uses_msp430x_relocs ())
10046 break;
10047 goto handle_sym_diff;
10048
10049 case 2: /* R_MSP430_ABS16 */
10050 case 15: /* R_MSP430X_ABS16 */
10051 if (! uses_msp430x_relocs ())
10052 break;
10053 goto handle_sym_diff;
10054
10055 handle_sym_diff:
10056 if (saved_sym != NULL)
10057 {
10058 bfd_vma value;
10059
10060 value = reloc->r_addend
10061 + (symtab[get_reloc_symindex (reloc->r_info)].st_value
10062 - saved_sym->st_value);
10063
10064 byte_put (start + reloc->r_offset, value, reloc_type == 1 ? 4 : 2);
10065
10066 saved_sym = NULL;
10067 return TRUE;
10068 }
10069 break;
10070
10071 default:
10072 if (saved_sym != NULL)
10073 error (_("Unhandled MSP430 reloc type found after SYM_DIFF reloc"));
10074 break;
10075 }
10076 break;
10077 }
10078
10079 case EM_MN10300:
10080 case EM_CYGNUS_MN10300:
10081 {
10082 static Elf_Internal_Sym * saved_sym = NULL;
10083
10084 switch (reloc_type)
10085 {
10086 case 34: /* R_MN10300_ALIGN */
10087 return TRUE;
10088 case 33: /* R_MN10300_SYM_DIFF */
10089 saved_sym = symtab + get_reloc_symindex (reloc->r_info);
10090 return TRUE;
10091 case 1: /* R_MN10300_32 */
10092 case 2: /* R_MN10300_16 */
10093 if (saved_sym != NULL)
10094 {
10095 bfd_vma value;
10096
10097 value = reloc->r_addend
10098 + (symtab[get_reloc_symindex (reloc->r_info)].st_value
10099 - saved_sym->st_value);
10100
10101 byte_put (start + reloc->r_offset, value, reloc_type == 1 ? 4 : 2);
10102
10103 saved_sym = NULL;
10104 return TRUE;
10105 }
10106 break;
10107 default:
10108 if (saved_sym != NULL)
10109 error (_("Unhandled MN10300 reloc type found after SYM_DIFF reloc"));
10110 break;
10111 }
10112 break;
10113 }
10114 }
10115
10116 return FALSE;
10117 }
10118
10119 /* Returns TRUE iff RELOC_TYPE is a 32-bit absolute RELA relocation used in
10120 DWARF debug sections. This is a target specific test. Note - we do not
10121 go through the whole including-target-headers-multiple-times route, (as
10122 we have already done with <elf/h8.h>) because this would become very
10123 messy and even then this function would have to contain target specific
10124 information (the names of the relocs instead of their numeric values).
10125 FIXME: This is not the correct way to solve this problem. The proper way
10126 is to have target specific reloc sizing and typing functions created by
10127 the reloc-macros.h header, in the same way that it already creates the
10128 reloc naming functions. */
10129
10130 static bfd_boolean
10131 is_32bit_abs_reloc (unsigned int reloc_type)
10132 {
10133 switch (elf_header.e_machine)
10134 {
10135 case EM_386:
10136 case EM_486:
10137 return reloc_type == 1; /* R_386_32. */
10138 case EM_68K:
10139 return reloc_type == 1; /* R_68K_32. */
10140 case EM_860:
10141 return reloc_type == 1; /* R_860_32. */
10142 case EM_960:
10143 return reloc_type == 2; /* R_960_32. */
10144 case EM_AARCH64:
10145 return reloc_type == 258; /* R_AARCH64_ABS32 */
10146 case EM_ALPHA:
10147 return reloc_type == 1; /* R_ALPHA_REFLONG. */
10148 case EM_ARC:
10149 return reloc_type == 1; /* R_ARC_32. */
10150 case EM_ARM:
10151 return reloc_type == 2; /* R_ARM_ABS32 */
10152 case EM_AVR_OLD:
10153 case EM_AVR:
10154 return reloc_type == 1;
10155 case EM_ADAPTEVA_EPIPHANY:
10156 return reloc_type == 3;
10157 case EM_BLACKFIN:
10158 return reloc_type == 0x12; /* R_byte4_data. */
10159 case EM_CRIS:
10160 return reloc_type == 3; /* R_CRIS_32. */
10161 case EM_CR16:
10162 return reloc_type == 3; /* R_CR16_NUM32. */
10163 case EM_CRX:
10164 return reloc_type == 15; /* R_CRX_NUM32. */
10165 case EM_CYGNUS_FRV:
10166 return reloc_type == 1;
10167 case EM_CYGNUS_D10V:
10168 case EM_D10V:
10169 return reloc_type == 6; /* R_D10V_32. */
10170 case EM_CYGNUS_D30V:
10171 case EM_D30V:
10172 return reloc_type == 12; /* R_D30V_32_NORMAL. */
10173 case EM_DLX:
10174 return reloc_type == 3; /* R_DLX_RELOC_32. */
10175 case EM_CYGNUS_FR30:
10176 case EM_FR30:
10177 return reloc_type == 3; /* R_FR30_32. */
10178 case EM_H8S:
10179 case EM_H8_300:
10180 case EM_H8_300H:
10181 return reloc_type == 1; /* R_H8_DIR32. */
10182 case EM_IA_64:
10183 return reloc_type == 0x65; /* R_IA64_SECREL32LSB. */
10184 case EM_IP2K_OLD:
10185 case EM_IP2K:
10186 return reloc_type == 2; /* R_IP2K_32. */
10187 case EM_IQ2000:
10188 return reloc_type == 2; /* R_IQ2000_32. */
10189 case EM_LATTICEMICO32:
10190 return reloc_type == 3; /* R_LM32_32. */
10191 case EM_M32C_OLD:
10192 case EM_M32C:
10193 return reloc_type == 3; /* R_M32C_32. */
10194 case EM_M32R:
10195 return reloc_type == 34; /* R_M32R_32_RELA. */
10196 case EM_MCORE:
10197 return reloc_type == 1; /* R_MCORE_ADDR32. */
10198 case EM_CYGNUS_MEP:
10199 return reloc_type == 4; /* R_MEP_32. */
10200 case EM_METAG:
10201 return reloc_type == 2; /* R_METAG_ADDR32. */
10202 case EM_MICROBLAZE:
10203 return reloc_type == 1; /* R_MICROBLAZE_32. */
10204 case EM_MIPS:
10205 return reloc_type == 2; /* R_MIPS_32. */
10206 case EM_MMIX:
10207 return reloc_type == 4; /* R_MMIX_32. */
10208 case EM_CYGNUS_MN10200:
10209 case EM_MN10200:
10210 return reloc_type == 1; /* R_MN10200_32. */
10211 case EM_CYGNUS_MN10300:
10212 case EM_MN10300:
10213 return reloc_type == 1; /* R_MN10300_32. */
10214 case EM_MOXIE:
10215 return reloc_type == 1; /* R_MOXIE_32. */
10216 case EM_MSP430_OLD:
10217 case EM_MSP430:
10218 return reloc_type == 1; /* R_MSP430_32 or R_MSP320_ABS32. */
10219 case EM_MT:
10220 return reloc_type == 2; /* R_MT_32. */
10221 case EM_ALTERA_NIOS2:
10222 return reloc_type == 12; /* R_NIOS2_BFD_RELOC_32. */
10223 case EM_NIOS32:
10224 return reloc_type == 1; /* R_NIOS_32. */
10225 case EM_OPENRISC:
10226 case EM_OR32:
10227 return reloc_type == 1; /* R_OR32_32. */
10228 case EM_PARISC:
10229 return (reloc_type == 1 /* R_PARISC_DIR32. */
10230 || reloc_type == 41); /* R_PARISC_SECREL32. */
10231 case EM_PJ:
10232 case EM_PJ_OLD:
10233 return reloc_type == 1; /* R_PJ_DATA_DIR32. */
10234 case EM_PPC64:
10235 return reloc_type == 1; /* R_PPC64_ADDR32. */
10236 case EM_PPC:
10237 return reloc_type == 1; /* R_PPC_ADDR32. */
10238 case EM_RL78:
10239 return reloc_type == 1; /* R_RL78_DIR32. */
10240 case EM_RX:
10241 return reloc_type == 1; /* R_RX_DIR32. */
10242 case EM_S370:
10243 return reloc_type == 1; /* R_I370_ADDR31. */
10244 case EM_S390_OLD:
10245 case EM_S390:
10246 return reloc_type == 4; /* R_S390_32. */
10247 case EM_SCORE:
10248 return reloc_type == 8; /* R_SCORE_ABS32. */
10249 case EM_SH:
10250 return reloc_type == 1; /* R_SH_DIR32. */
10251 case EM_SPARC32PLUS:
10252 case EM_SPARCV9:
10253 case EM_SPARC:
10254 return reloc_type == 3 /* R_SPARC_32. */
10255 || reloc_type == 23; /* R_SPARC_UA32. */
10256 case EM_SPU:
10257 return reloc_type == 6; /* R_SPU_ADDR32 */
10258 case EM_TI_C6000:
10259 return reloc_type == 1; /* R_C6000_ABS32. */
10260 case EM_TILEGX:
10261 return reloc_type == 2; /* R_TILEGX_32. */
10262 case EM_TILEPRO:
10263 return reloc_type == 1; /* R_TILEPRO_32. */
10264 case EM_CYGNUS_V850:
10265 case EM_V850:
10266 return reloc_type == 6; /* R_V850_ABS32. */
10267 case EM_V800:
10268 return reloc_type == 0x33; /* R_V810_WORD. */
10269 case EM_VAX:
10270 return reloc_type == 1; /* R_VAX_32. */
10271 case EM_X86_64:
10272 case EM_L1OM:
10273 case EM_K1OM:
10274 return reloc_type == 10; /* R_X86_64_32. */
10275 case EM_XC16X:
10276 case EM_C166:
10277 return reloc_type == 3; /* R_XC16C_ABS_32. */
10278 case EM_XGATE:
10279 return reloc_type == 4; /* R_XGATE_32. */
10280 case EM_XSTORMY16:
10281 return reloc_type == 1; /* R_XSTROMY16_32. */
10282 case EM_XTENSA_OLD:
10283 case EM_XTENSA:
10284 return reloc_type == 1; /* R_XTENSA_32. */
10285 default:
10286 error (_("Missing knowledge of 32-bit reloc types used in DWARF sections of machine number %d\n"),
10287 elf_header.e_machine);
10288 abort ();
10289 }
10290 }
10291
10292 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
10293 a 32-bit pc-relative RELA relocation used in DWARF debug sections. */
10294
10295 static bfd_boolean
10296 is_32bit_pcrel_reloc (unsigned int reloc_type)
10297 {
10298 switch (elf_header.e_machine)
10299 {
10300 case EM_386:
10301 case EM_486:
10302 return reloc_type == 2; /* R_386_PC32. */
10303 case EM_68K:
10304 return reloc_type == 4; /* R_68K_PC32. */
10305 case EM_AARCH64:
10306 return reloc_type == 261; /* R_AARCH64_PREL32 */
10307 case EM_ADAPTEVA_EPIPHANY:
10308 return reloc_type == 6;
10309 case EM_ALPHA:
10310 return reloc_type == 10; /* R_ALPHA_SREL32. */
10311 case EM_ARM:
10312 return reloc_type == 3; /* R_ARM_REL32 */
10313 case EM_MICROBLAZE:
10314 return reloc_type == 2; /* R_MICROBLAZE_32_PCREL. */
10315 case EM_PARISC:
10316 return reloc_type == 9; /* R_PARISC_PCREL32. */
10317 case EM_PPC:
10318 return reloc_type == 26; /* R_PPC_REL32. */
10319 case EM_PPC64:
10320 return reloc_type == 26; /* R_PPC64_REL32. */
10321 case EM_S390_OLD:
10322 case EM_S390:
10323 return reloc_type == 5; /* R_390_PC32. */
10324 case EM_SH:
10325 return reloc_type == 2; /* R_SH_REL32. */
10326 case EM_SPARC32PLUS:
10327 case EM_SPARCV9:
10328 case EM_SPARC:
10329 return reloc_type == 6; /* R_SPARC_DISP32. */
10330 case EM_SPU:
10331 return reloc_type == 13; /* R_SPU_REL32. */
10332 case EM_TILEGX:
10333 return reloc_type == 6; /* R_TILEGX_32_PCREL. */
10334 case EM_TILEPRO:
10335 return reloc_type == 4; /* R_TILEPRO_32_PCREL. */
10336 case EM_X86_64:
10337 case EM_L1OM:
10338 case EM_K1OM:
10339 return reloc_type == 2; /* R_X86_64_PC32. */
10340 case EM_XTENSA_OLD:
10341 case EM_XTENSA:
10342 return reloc_type == 14; /* R_XTENSA_32_PCREL. */
10343 default:
10344 /* Do not abort or issue an error message here. Not all targets use
10345 pc-relative 32-bit relocs in their DWARF debug information and we
10346 have already tested for target coverage in is_32bit_abs_reloc. A
10347 more helpful warning message will be generated by apply_relocations
10348 anyway, so just return. */
10349 return FALSE;
10350 }
10351 }
10352
10353 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
10354 a 64-bit absolute RELA relocation used in DWARF debug sections. */
10355
10356 static bfd_boolean
10357 is_64bit_abs_reloc (unsigned int reloc_type)
10358 {
10359 switch (elf_header.e_machine)
10360 {
10361 case EM_AARCH64:
10362 return reloc_type == 257; /* R_AARCH64_ABS64. */
10363 case EM_ALPHA:
10364 return reloc_type == 2; /* R_ALPHA_REFQUAD. */
10365 case EM_IA_64:
10366 return reloc_type == 0x27; /* R_IA64_DIR64LSB. */
10367 case EM_PARISC:
10368 return reloc_type == 80; /* R_PARISC_DIR64. */
10369 case EM_PPC64:
10370 return reloc_type == 38; /* R_PPC64_ADDR64. */
10371 case EM_SPARC32PLUS:
10372 case EM_SPARCV9:
10373 case EM_SPARC:
10374 return reloc_type == 54; /* R_SPARC_UA64. */
10375 case EM_X86_64:
10376 case EM_L1OM:
10377 case EM_K1OM:
10378 return reloc_type == 1; /* R_X86_64_64. */
10379 case EM_S390_OLD:
10380 case EM_S390:
10381 return reloc_type == 22; /* R_S390_64. */
10382 case EM_TILEGX:
10383 return reloc_type == 1; /* R_TILEGX_64. */
10384 case EM_MIPS:
10385 return reloc_type == 18; /* R_MIPS_64. */
10386 default:
10387 return FALSE;
10388 }
10389 }
10390
10391 /* Like is_32bit_pcrel_reloc except that it returns TRUE iff RELOC_TYPE is
10392 a 64-bit pc-relative RELA relocation used in DWARF debug sections. */
10393
10394 static bfd_boolean
10395 is_64bit_pcrel_reloc (unsigned int reloc_type)
10396 {
10397 switch (elf_header.e_machine)
10398 {
10399 case EM_AARCH64:
10400 return reloc_type == 260; /* R_AARCH64_PREL64. */
10401 case EM_ALPHA:
10402 return reloc_type == 11; /* R_ALPHA_SREL64. */
10403 case EM_IA_64:
10404 return reloc_type == 0x4f; /* R_IA64_PCREL64LSB. */
10405 case EM_PARISC:
10406 return reloc_type == 72; /* R_PARISC_PCREL64. */
10407 case EM_PPC64:
10408 return reloc_type == 44; /* R_PPC64_REL64. */
10409 case EM_SPARC32PLUS:
10410 case EM_SPARCV9:
10411 case EM_SPARC:
10412 return reloc_type == 46; /* R_SPARC_DISP64. */
10413 case EM_X86_64:
10414 case EM_L1OM:
10415 case EM_K1OM:
10416 return reloc_type == 24; /* R_X86_64_PC64. */
10417 case EM_S390_OLD:
10418 case EM_S390:
10419 return reloc_type == 23; /* R_S390_PC64. */
10420 case EM_TILEGX:
10421 return reloc_type == 5; /* R_TILEGX_64_PCREL. */
10422 default:
10423 return FALSE;
10424 }
10425 }
10426
10427 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
10428 a 24-bit absolute RELA relocation used in DWARF debug sections. */
10429
10430 static bfd_boolean
10431 is_24bit_abs_reloc (unsigned int reloc_type)
10432 {
10433 switch (elf_header.e_machine)
10434 {
10435 case EM_CYGNUS_MN10200:
10436 case EM_MN10200:
10437 return reloc_type == 4; /* R_MN10200_24. */
10438 default:
10439 return FALSE;
10440 }
10441 }
10442
10443 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
10444 a 16-bit absolute RELA relocation used in DWARF debug sections. */
10445
10446 static bfd_boolean
10447 is_16bit_abs_reloc (unsigned int reloc_type)
10448 {
10449 switch (elf_header.e_machine)
10450 {
10451 case EM_AVR_OLD:
10452 case EM_AVR:
10453 return reloc_type == 4; /* R_AVR_16. */
10454 case EM_ADAPTEVA_EPIPHANY:
10455 return reloc_type == 5;
10456 case EM_CYGNUS_D10V:
10457 case EM_D10V:
10458 return reloc_type == 3; /* R_D10V_16. */
10459 case EM_H8S:
10460 case EM_H8_300:
10461 case EM_H8_300H:
10462 return reloc_type == R_H8_DIR16;
10463 case EM_IP2K_OLD:
10464 case EM_IP2K:
10465 return reloc_type == 1; /* R_IP2K_16. */
10466 case EM_M32C_OLD:
10467 case EM_M32C:
10468 return reloc_type == 1; /* R_M32C_16 */
10469 case EM_MSP430:
10470 if (uses_msp430x_relocs ())
10471 return reloc_type == 2; /* R_MSP430_ABS16. */
10472 case EM_MSP430_OLD:
10473 return reloc_type == 5; /* R_MSP430_16_BYTE. */
10474 case EM_ALTERA_NIOS2:
10475 return reloc_type == 13; /* R_NIOS2_BFD_RELOC_16. */
10476 case EM_NIOS32:
10477 return reloc_type == 9; /* R_NIOS_16. */
10478 case EM_TI_C6000:
10479 return reloc_type == 2; /* R_C6000_ABS16. */
10480 case EM_XC16X:
10481 case EM_C166:
10482 return reloc_type == 2; /* R_XC16C_ABS_16. */
10483 case EM_CYGNUS_MN10200:
10484 case EM_MN10200:
10485 return reloc_type == 2; /* R_MN10200_16. */
10486 case EM_CYGNUS_MN10300:
10487 case EM_MN10300:
10488 return reloc_type == 2; /* R_MN10300_16. */
10489 case EM_XGATE:
10490 return reloc_type == 3; /* R_XGATE_16. */
10491 default:
10492 return FALSE;
10493 }
10494 }
10495
10496 /* Returns TRUE iff RELOC_TYPE is a NONE relocation used for discarded
10497 relocation entries (possibly formerly used for SHT_GROUP sections). */
10498
10499 static bfd_boolean
10500 is_none_reloc (unsigned int reloc_type)
10501 {
10502 switch (elf_header.e_machine)
10503 {
10504 case EM_68K: /* R_68K_NONE. */
10505 case EM_386: /* R_386_NONE. */
10506 case EM_SPARC32PLUS:
10507 case EM_SPARCV9:
10508 case EM_SPARC: /* R_SPARC_NONE. */
10509 case EM_MIPS: /* R_MIPS_NONE. */
10510 case EM_PARISC: /* R_PARISC_NONE. */
10511 case EM_ALPHA: /* R_ALPHA_NONE. */
10512 case EM_ADAPTEVA_EPIPHANY:
10513 case EM_PPC: /* R_PPC_NONE. */
10514 case EM_PPC64: /* R_PPC64_NONE. */
10515 case EM_ARM: /* R_ARM_NONE. */
10516 case EM_IA_64: /* R_IA64_NONE. */
10517 case EM_SH: /* R_SH_NONE. */
10518 case EM_S390_OLD:
10519 case EM_S390: /* R_390_NONE. */
10520 case EM_CRIS: /* R_CRIS_NONE. */
10521 case EM_X86_64: /* R_X86_64_NONE. */
10522 case EM_L1OM: /* R_X86_64_NONE. */
10523 case EM_K1OM: /* R_X86_64_NONE. */
10524 case EM_MN10300: /* R_MN10300_NONE. */
10525 case EM_MOXIE: /* R_MOXIE_NONE. */
10526 case EM_M32R: /* R_M32R_NONE. */
10527 case EM_TI_C6000:/* R_C6000_NONE. */
10528 case EM_TILEGX: /* R_TILEGX_NONE. */
10529 case EM_TILEPRO: /* R_TILEPRO_NONE. */
10530 case EM_XC16X:
10531 case EM_C166: /* R_XC16X_NONE. */
10532 case EM_ALTERA_NIOS2: /* R_NIOS2_NONE. */
10533 case EM_NIOS32: /* R_NIOS_NONE. */
10534 return reloc_type == 0;
10535 case EM_AARCH64:
10536 return reloc_type == 0 || reloc_type == 256;
10537 case EM_XTENSA_OLD:
10538 case EM_XTENSA:
10539 return (reloc_type == 0 /* R_XTENSA_NONE. */
10540 || reloc_type == 17 /* R_XTENSA_DIFF8. */
10541 || reloc_type == 18 /* R_XTENSA_DIFF16. */
10542 || reloc_type == 19 /* R_XTENSA_DIFF32. */);
10543 case EM_METAG:
10544 return reloc_type == 3; /* R_METAG_NONE. */
10545 }
10546 return FALSE;
10547 }
10548
10549 /* Apply relocations to a section.
10550 Note: So far support has been added only for those relocations
10551 which can be found in debug sections.
10552 FIXME: Add support for more relocations ? */
10553
10554 static void
10555 apply_relocations (void * file,
10556 Elf_Internal_Shdr * section,
10557 unsigned char * start)
10558 {
10559 Elf_Internal_Shdr * relsec;
10560 unsigned char * end = start + section->sh_size;
10561
10562 if (elf_header.e_type != ET_REL)
10563 return;
10564
10565 /* Find the reloc section associated with the section. */
10566 for (relsec = section_headers;
10567 relsec < section_headers + elf_header.e_shnum;
10568 ++relsec)
10569 {
10570 bfd_boolean is_rela;
10571 unsigned long num_relocs;
10572 Elf_Internal_Rela * relocs;
10573 Elf_Internal_Rela * rp;
10574 Elf_Internal_Shdr * symsec;
10575 Elf_Internal_Sym * symtab;
10576 unsigned long num_syms;
10577 Elf_Internal_Sym * sym;
10578
10579 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
10580 || relsec->sh_info >= elf_header.e_shnum
10581 || section_headers + relsec->sh_info != section
10582 || relsec->sh_size == 0
10583 || relsec->sh_link >= elf_header.e_shnum)
10584 continue;
10585
10586 is_rela = relsec->sh_type == SHT_RELA;
10587
10588 if (is_rela)
10589 {
10590 if (!slurp_rela_relocs ((FILE *) file, relsec->sh_offset,
10591 relsec->sh_size, & relocs, & num_relocs))
10592 return;
10593 }
10594 else
10595 {
10596 if (!slurp_rel_relocs ((FILE *) file, relsec->sh_offset,
10597 relsec->sh_size, & relocs, & num_relocs))
10598 return;
10599 }
10600
10601 /* SH uses RELA but uses in place value instead of the addend field. */
10602 if (elf_header.e_machine == EM_SH)
10603 is_rela = FALSE;
10604
10605 symsec = section_headers + relsec->sh_link;
10606 symtab = GET_ELF_SYMBOLS ((FILE *) file, symsec, & num_syms);
10607
10608 for (rp = relocs; rp < relocs + num_relocs; ++rp)
10609 {
10610 bfd_vma addend;
10611 unsigned int reloc_type;
10612 unsigned int reloc_size;
10613 unsigned char * rloc;
10614 unsigned long sym_index;
10615
10616 reloc_type = get_reloc_type (rp->r_info);
10617
10618 if (target_specific_reloc_handling (rp, start, symtab))
10619 continue;
10620 else if (is_none_reloc (reloc_type))
10621 continue;
10622 else if (is_32bit_abs_reloc (reloc_type)
10623 || is_32bit_pcrel_reloc (reloc_type))
10624 reloc_size = 4;
10625 else if (is_64bit_abs_reloc (reloc_type)
10626 || is_64bit_pcrel_reloc (reloc_type))
10627 reloc_size = 8;
10628 else if (is_24bit_abs_reloc (reloc_type))
10629 reloc_size = 3;
10630 else if (is_16bit_abs_reloc (reloc_type))
10631 reloc_size = 2;
10632 else
10633 {
10634 warn (_("unable to apply unsupported reloc type %d to section %s\n"),
10635 reloc_type, SECTION_NAME (section));
10636 continue;
10637 }
10638
10639 rloc = start + rp->r_offset;
10640 if ((rloc + reloc_size) > end || (rloc < start))
10641 {
10642 warn (_("skipping invalid relocation offset 0x%lx in section %s\n"),
10643 (unsigned long) rp->r_offset,
10644 SECTION_NAME (section));
10645 continue;
10646 }
10647
10648 sym_index = (unsigned long) get_reloc_symindex (rp->r_info);
10649 if (sym_index >= num_syms)
10650 {
10651 warn (_("skipping invalid relocation symbol index 0x%lx in section %s\n"),
10652 sym_index, SECTION_NAME (section));
10653 continue;
10654 }
10655 sym = symtab + sym_index;
10656
10657 /* If the reloc has a symbol associated with it,
10658 make sure that it is of an appropriate type.
10659
10660 Relocations against symbols without type can happen.
10661 Gcc -feliminate-dwarf2-dups may generate symbols
10662 without type for debug info.
10663
10664 Icc generates relocations against function symbols
10665 instead of local labels.
10666
10667 Relocations against object symbols can happen, eg when
10668 referencing a global array. For an example of this see
10669 the _clz.o binary in libgcc.a. */
10670 if (sym != symtab
10671 && ELF_ST_TYPE (sym->st_info) > STT_SECTION)
10672 {
10673 warn (_("skipping unexpected symbol type %s in %ld'th relocation in section %s\n"),
10674 get_symbol_type (ELF_ST_TYPE (sym->st_info)),
10675 (long int)(rp - relocs),
10676 SECTION_NAME (relsec));
10677 continue;
10678 }
10679
10680 addend = 0;
10681 if (is_rela)
10682 addend += rp->r_addend;
10683 /* R_XTENSA_32, R_PJ_DATA_DIR32 and R_D30V_32_NORMAL are
10684 partial_inplace. */
10685 if (!is_rela
10686 || (elf_header.e_machine == EM_XTENSA
10687 && reloc_type == 1)
10688 || ((elf_header.e_machine == EM_PJ
10689 || elf_header.e_machine == EM_PJ_OLD)
10690 && reloc_type == 1)
10691 || ((elf_header.e_machine == EM_D30V
10692 || elf_header.e_machine == EM_CYGNUS_D30V)
10693 && reloc_type == 12))
10694 addend += byte_get (rloc, reloc_size);
10695
10696 if (is_32bit_pcrel_reloc (reloc_type)
10697 || is_64bit_pcrel_reloc (reloc_type))
10698 {
10699 /* On HPPA, all pc-relative relocations are biased by 8. */
10700 if (elf_header.e_machine == EM_PARISC)
10701 addend -= 8;
10702 byte_put (rloc, (addend + sym->st_value) - rp->r_offset,
10703 reloc_size);
10704 }
10705 else
10706 byte_put (rloc, addend + sym->st_value, reloc_size);
10707 }
10708
10709 free (symtab);
10710 free (relocs);
10711 break;
10712 }
10713 }
10714
10715 #ifdef SUPPORT_DISASSEMBLY
10716 static int
10717 disassemble_section (Elf_Internal_Shdr * section, FILE * file)
10718 {
10719 printf (_("\nAssembly dump of section %s\n"),
10720 SECTION_NAME (section));
10721
10722 /* XXX -- to be done --- XXX */
10723
10724 return 1;
10725 }
10726 #endif
10727
10728 /* Reads in the contents of SECTION from FILE, returning a pointer
10729 to a malloc'ed buffer or NULL if something went wrong. */
10730
10731 static char *
10732 get_section_contents (Elf_Internal_Shdr * section, FILE * file)
10733 {
10734 bfd_size_type num_bytes;
10735
10736 num_bytes = section->sh_size;
10737
10738 if (num_bytes == 0 || section->sh_type == SHT_NOBITS)
10739 {
10740 printf (_("\nSection '%s' has no data to dump.\n"),
10741 SECTION_NAME (section));
10742 return NULL;
10743 }
10744
10745 return (char *) get_data (NULL, file, section->sh_offset, 1, num_bytes,
10746 _("section contents"));
10747 }
10748
10749
10750 static void
10751 dump_section_as_strings (Elf_Internal_Shdr * section, FILE * file)
10752 {
10753 Elf_Internal_Shdr * relsec;
10754 bfd_size_type num_bytes;
10755 char * data;
10756 char * end;
10757 char * start;
10758 char * name = SECTION_NAME (section);
10759 bfd_boolean some_strings_shown;
10760
10761 start = get_section_contents (section, file);
10762 if (start == NULL)
10763 return;
10764
10765 printf (_("\nString dump of section '%s':\n"), name);
10766
10767 /* If the section being dumped has relocations against it the user might
10768 be expecting these relocations to have been applied. Check for this
10769 case and issue a warning message in order to avoid confusion.
10770 FIXME: Maybe we ought to have an option that dumps a section with
10771 relocs applied ? */
10772 for (relsec = section_headers;
10773 relsec < section_headers + elf_header.e_shnum;
10774 ++relsec)
10775 {
10776 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
10777 || relsec->sh_info >= elf_header.e_shnum
10778 || section_headers + relsec->sh_info != section
10779 || relsec->sh_size == 0
10780 || relsec->sh_link >= elf_header.e_shnum)
10781 continue;
10782
10783 printf (_(" Note: This section has relocations against it, but these have NOT been applied to this dump.\n"));
10784 break;
10785 }
10786
10787 num_bytes = section->sh_size;
10788 data = start;
10789 end = start + num_bytes;
10790 some_strings_shown = FALSE;
10791
10792 while (data < end)
10793 {
10794 while (!ISPRINT (* data))
10795 if (++ data >= end)
10796 break;
10797
10798 if (data < end)
10799 {
10800 #ifndef __MSVCRT__
10801 /* PR 11128: Use two separate invocations in order to work
10802 around bugs in the Solaris 8 implementation of printf. */
10803 printf (" [%6tx] ", data - start);
10804 printf ("%s\n", data);
10805 #else
10806 printf (" [%6Ix] %s\n", (size_t) (data - start), data);
10807 #endif
10808 data += strlen (data);
10809 some_strings_shown = TRUE;
10810 }
10811 }
10812
10813 if (! some_strings_shown)
10814 printf (_(" No strings found in this section."));
10815
10816 free (start);
10817
10818 putchar ('\n');
10819 }
10820
10821 static void
10822 dump_section_as_bytes (Elf_Internal_Shdr * section,
10823 FILE * file,
10824 bfd_boolean relocate)
10825 {
10826 Elf_Internal_Shdr * relsec;
10827 bfd_size_type bytes;
10828 bfd_vma addr;
10829 unsigned char * data;
10830 unsigned char * start;
10831
10832 start = (unsigned char *) get_section_contents (section, file);
10833 if (start == NULL)
10834 return;
10835
10836 printf (_("\nHex dump of section '%s':\n"), SECTION_NAME (section));
10837
10838 if (relocate)
10839 {
10840 apply_relocations (file, section, start);
10841 }
10842 else
10843 {
10844 /* If the section being dumped has relocations against it the user might
10845 be expecting these relocations to have been applied. Check for this
10846 case and issue a warning message in order to avoid confusion.
10847 FIXME: Maybe we ought to have an option that dumps a section with
10848 relocs applied ? */
10849 for (relsec = section_headers;
10850 relsec < section_headers + elf_header.e_shnum;
10851 ++relsec)
10852 {
10853 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
10854 || relsec->sh_info >= elf_header.e_shnum
10855 || section_headers + relsec->sh_info != section
10856 || relsec->sh_size == 0
10857 || relsec->sh_link >= elf_header.e_shnum)
10858 continue;
10859
10860 printf (_(" NOTE: This section has relocations against it, but these have NOT been applied to this dump.\n"));
10861 break;
10862 }
10863 }
10864
10865 addr = section->sh_addr;
10866 bytes = section->sh_size;
10867 data = start;
10868
10869 while (bytes)
10870 {
10871 int j;
10872 int k;
10873 int lbytes;
10874
10875 lbytes = (bytes > 16 ? 16 : bytes);
10876
10877 printf (" 0x%8.8lx ", (unsigned long) addr);
10878
10879 for (j = 0; j < 16; j++)
10880 {
10881 if (j < lbytes)
10882 printf ("%2.2x", data[j]);
10883 else
10884 printf (" ");
10885
10886 if ((j & 3) == 3)
10887 printf (" ");
10888 }
10889
10890 for (j = 0; j < lbytes; j++)
10891 {
10892 k = data[j];
10893 if (k >= ' ' && k < 0x7f)
10894 printf ("%c", k);
10895 else
10896 printf (".");
10897 }
10898
10899 putchar ('\n');
10900
10901 data += lbytes;
10902 addr += lbytes;
10903 bytes -= lbytes;
10904 }
10905
10906 free (start);
10907
10908 putchar ('\n');
10909 }
10910
10911 /* Uncompresses a section that was compressed using zlib, in place. */
10912
10913 static int
10914 uncompress_section_contents (unsigned char **buffer ATTRIBUTE_UNUSED,
10915 dwarf_size_type *size ATTRIBUTE_UNUSED)
10916 {
10917 #ifndef HAVE_ZLIB_H
10918 return FALSE;
10919 #else
10920 dwarf_size_type compressed_size = *size;
10921 unsigned char * compressed_buffer = *buffer;
10922 dwarf_size_type uncompressed_size;
10923 unsigned char * uncompressed_buffer;
10924 z_stream strm;
10925 int rc;
10926 dwarf_size_type header_size = 12;
10927
10928 /* Read the zlib header. In this case, it should be "ZLIB" followed
10929 by the uncompressed section size, 8 bytes in big-endian order. */
10930 if (compressed_size < header_size
10931 || ! streq ((char *) compressed_buffer, "ZLIB"))
10932 return 0;
10933
10934 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
10935 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
10936 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
10937 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
10938 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
10939 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
10940 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
10941 uncompressed_size += compressed_buffer[11];
10942
10943 /* It is possible the section consists of several compressed
10944 buffers concatenated together, so we uncompress in a loop. */
10945 strm.zalloc = NULL;
10946 strm.zfree = NULL;
10947 strm.opaque = NULL;
10948 strm.avail_in = compressed_size - header_size;
10949 strm.next_in = (Bytef *) compressed_buffer + header_size;
10950 strm.avail_out = uncompressed_size;
10951 uncompressed_buffer = (unsigned char *) xmalloc (uncompressed_size);
10952
10953 rc = inflateInit (& strm);
10954 while (strm.avail_in > 0)
10955 {
10956 if (rc != Z_OK)
10957 goto fail;
10958 strm.next_out = ((Bytef *) uncompressed_buffer
10959 + (uncompressed_size - strm.avail_out));
10960 rc = inflate (&strm, Z_FINISH);
10961 if (rc != Z_STREAM_END)
10962 goto fail;
10963 rc = inflateReset (& strm);
10964 }
10965 rc = inflateEnd (& strm);
10966 if (rc != Z_OK
10967 || strm.avail_out != 0)
10968 goto fail;
10969
10970 free (compressed_buffer);
10971 *buffer = uncompressed_buffer;
10972 *size = uncompressed_size;
10973 return 1;
10974
10975 fail:
10976 free (uncompressed_buffer);
10977 /* Indicate decompression failure. */
10978 *buffer = NULL;
10979 return 0;
10980 #endif /* HAVE_ZLIB_H */
10981 }
10982
10983 static int
10984 load_specific_debug_section (enum dwarf_section_display_enum debug,
10985 Elf_Internal_Shdr * sec, void * file)
10986 {
10987 struct dwarf_section * section = &debug_displays [debug].section;
10988 char buf [64];
10989
10990 /* If it is already loaded, do nothing. */
10991 if (section->start != NULL)
10992 return 1;
10993
10994 snprintf (buf, sizeof (buf), _("%s section data"), section->name);
10995 section->address = sec->sh_addr;
10996 section->start = (unsigned char *) get_data (NULL, (FILE *) file,
10997 sec->sh_offset, 1,
10998 sec->sh_size, buf);
10999 if (section->start == NULL)
11000 section->size = 0;
11001 else
11002 {
11003 section->size = sec->sh_size;
11004 if (uncompress_section_contents (&section->start, &section->size))
11005 sec->sh_size = section->size;
11006 }
11007
11008 if (section->start == NULL)
11009 return 0;
11010
11011 if (debug_displays [debug].relocate)
11012 apply_relocations ((FILE *) file, sec, section->start);
11013
11014 return 1;
11015 }
11016
11017 /* If this is not NULL, load_debug_section will only look for sections
11018 within the list of sections given here. */
11019 unsigned int *section_subset = NULL;
11020
11021 int
11022 load_debug_section (enum dwarf_section_display_enum debug, void * file)
11023 {
11024 struct dwarf_section * section = &debug_displays [debug].section;
11025 Elf_Internal_Shdr * sec;
11026
11027 /* Locate the debug section. */
11028 sec = find_section_in_set (section->uncompressed_name, section_subset);
11029 if (sec != NULL)
11030 section->name = section->uncompressed_name;
11031 else
11032 {
11033 sec = find_section_in_set (section->compressed_name, section_subset);
11034 if (sec != NULL)
11035 section->name = section->compressed_name;
11036 }
11037 if (sec == NULL)
11038 return 0;
11039
11040 /* If we're loading from a subset of sections, and we've loaded
11041 a section matching this name before, it's likely that it's a
11042 different one. */
11043 if (section_subset != NULL)
11044 free_debug_section (debug);
11045
11046 return load_specific_debug_section (debug, sec, (FILE *) file);
11047 }
11048
11049 void
11050 free_debug_section (enum dwarf_section_display_enum debug)
11051 {
11052 struct dwarf_section * section = &debug_displays [debug].section;
11053
11054 if (section->start == NULL)
11055 return;
11056
11057 free ((char *) section->start);
11058 section->start = NULL;
11059 section->address = 0;
11060 section->size = 0;
11061 }
11062
11063 static int
11064 display_debug_section (int shndx, Elf_Internal_Shdr * section, FILE * file)
11065 {
11066 char * name = SECTION_NAME (section);
11067 bfd_size_type length;
11068 int result = 1;
11069 int i;
11070
11071 length = section->sh_size;
11072 if (length == 0)
11073 {
11074 printf (_("\nSection '%s' has no debugging data.\n"), name);
11075 return 0;
11076 }
11077 if (section->sh_type == SHT_NOBITS)
11078 {
11079 /* There is no point in dumping the contents of a debugging section
11080 which has the NOBITS type - the bits in the file will be random.
11081 This can happen when a file containing a .eh_frame section is
11082 stripped with the --only-keep-debug command line option. */
11083 printf (_("section '%s' has the NOBITS type - its contents are unreliable.\n"), name);
11084 return 0;
11085 }
11086
11087 if (const_strneq (name, ".gnu.linkonce.wi."))
11088 name = ".debug_info";
11089
11090 /* See if we know how to display the contents of this section. */
11091 for (i = 0; i < max; i++)
11092 if (streq (debug_displays[i].section.uncompressed_name, name)
11093 || (i == line && const_strneq (name, ".debug_line."))
11094 || streq (debug_displays[i].section.compressed_name, name))
11095 {
11096 struct dwarf_section * sec = &debug_displays [i].section;
11097 int secondary = (section != find_section (name));
11098
11099 if (secondary)
11100 free_debug_section ((enum dwarf_section_display_enum) i);
11101
11102 if (i == line && const_strneq (name, ".debug_line."))
11103 sec->name = name;
11104 else if (streq (sec->uncompressed_name, name))
11105 sec->name = sec->uncompressed_name;
11106 else
11107 sec->name = sec->compressed_name;
11108 if (load_specific_debug_section ((enum dwarf_section_display_enum) i,
11109 section, file))
11110 {
11111 /* If this debug section is part of a CU/TU set in a .dwp file,
11112 restrict load_debug_section to the sections in that set. */
11113 section_subset = find_cu_tu_set (file, shndx);
11114
11115 result &= debug_displays[i].display (sec, file);
11116
11117 section_subset = NULL;
11118
11119 if (secondary || (i != info && i != abbrev))
11120 free_debug_section ((enum dwarf_section_display_enum) i);
11121 }
11122
11123 break;
11124 }
11125
11126 if (i == max)
11127 {
11128 printf (_("Unrecognized debug section: %s\n"), name);
11129 result = 0;
11130 }
11131
11132 return result;
11133 }
11134
11135 /* Set DUMP_SECTS for all sections where dumps were requested
11136 based on section name. */
11137
11138 static void
11139 initialise_dumps_byname (void)
11140 {
11141 struct dump_list_entry * cur;
11142
11143 for (cur = dump_sects_byname; cur; cur = cur->next)
11144 {
11145 unsigned int i;
11146 int any;
11147
11148 for (i = 0, any = 0; i < elf_header.e_shnum; i++)
11149 if (streq (SECTION_NAME (section_headers + i), cur->name))
11150 {
11151 request_dump_bynumber (i, cur->type);
11152 any = 1;
11153 }
11154
11155 if (!any)
11156 warn (_("Section '%s' was not dumped because it does not exist!\n"),
11157 cur->name);
11158 }
11159 }
11160
11161 static void
11162 process_section_contents (FILE * file)
11163 {
11164 Elf_Internal_Shdr * section;
11165 unsigned int i;
11166
11167 if (! do_dump)
11168 return;
11169
11170 initialise_dumps_byname ();
11171
11172 for (i = 0, section = section_headers;
11173 i < elf_header.e_shnum && i < num_dump_sects;
11174 i++, section++)
11175 {
11176 #ifdef SUPPORT_DISASSEMBLY
11177 if (dump_sects[i] & DISASS_DUMP)
11178 disassemble_section (section, file);
11179 #endif
11180 if (dump_sects[i] & HEX_DUMP)
11181 dump_section_as_bytes (section, file, FALSE);
11182
11183 if (dump_sects[i] & RELOC_DUMP)
11184 dump_section_as_bytes (section, file, TRUE);
11185
11186 if (dump_sects[i] & STRING_DUMP)
11187 dump_section_as_strings (section, file);
11188
11189 if (dump_sects[i] & DEBUG_DUMP)
11190 display_debug_section (i, section, file);
11191 }
11192
11193 /* Check to see if the user requested a
11194 dump of a section that does not exist. */
11195 while (i++ < num_dump_sects)
11196 if (dump_sects[i])
11197 warn (_("Section %d was not dumped because it does not exist!\n"), i);
11198 }
11199
11200 static void
11201 process_mips_fpe_exception (int mask)
11202 {
11203 if (mask)
11204 {
11205 int first = 1;
11206 if (mask & OEX_FPU_INEX)
11207 fputs ("INEX", stdout), first = 0;
11208 if (mask & OEX_FPU_UFLO)
11209 printf ("%sUFLO", first ? "" : "|"), first = 0;
11210 if (mask & OEX_FPU_OFLO)
11211 printf ("%sOFLO", first ? "" : "|"), first = 0;
11212 if (mask & OEX_FPU_DIV0)
11213 printf ("%sDIV0", first ? "" : "|"), first = 0;
11214 if (mask & OEX_FPU_INVAL)
11215 printf ("%sINVAL", first ? "" : "|");
11216 }
11217 else
11218 fputs ("0", stdout);
11219 }
11220
11221 /* Display's the value of TAG at location P. If TAG is
11222 greater than 0 it is assumed to be an unknown tag, and
11223 a message is printed to this effect. Otherwise it is
11224 assumed that a message has already been printed.
11225
11226 If the bottom bit of TAG is set it assumed to have a
11227 string value, otherwise it is assumed to have an integer
11228 value.
11229
11230 Returns an updated P pointing to the first unread byte
11231 beyond the end of TAG's value.
11232
11233 Reads at or beyond END will not be made. */
11234
11235 static unsigned char *
11236 display_tag_value (int tag,
11237 unsigned char * p,
11238 const unsigned char * const end)
11239 {
11240 unsigned long val;
11241
11242 if (tag > 0)
11243 printf (" Tag_unknown_%d: ", tag);
11244
11245 if (p >= end)
11246 {
11247 warn (_("corrupt tag\n"));
11248 }
11249 else if (tag & 1)
11250 {
11251 /* FIXME: we could read beyond END here. */
11252 printf ("\"%s\"\n", p);
11253 p += strlen ((char *) p) + 1;
11254 }
11255 else
11256 {
11257 unsigned int len;
11258
11259 val = read_uleb128 (p, &len, end);
11260 p += len;
11261 printf ("%ld (0x%lx)\n", val, val);
11262 }
11263
11264 return p;
11265 }
11266
11267 /* ARM EABI attributes section. */
11268 typedef struct
11269 {
11270 int tag;
11271 const char * name;
11272 /* 0 = special, 1 = string, 2 = uleb123, > 0x80 == table lookup. */
11273 int type;
11274 const char ** table;
11275 } arm_attr_public_tag;
11276
11277 static const char * arm_attr_tag_CPU_arch[] =
11278 {"Pre-v4", "v4", "v4T", "v5T", "v5TE", "v5TEJ", "v6", "v6KZ", "v6T2",
11279 "v6K", "v7", "v6-M", "v6S-M", "v7E-M", "v8"};
11280 static const char * arm_attr_tag_ARM_ISA_use[] = {"No", "Yes"};
11281 static const char * arm_attr_tag_THUMB_ISA_use[] =
11282 {"No", "Thumb-1", "Thumb-2"};
11283 static const char * arm_attr_tag_FP_arch[] =
11284 {"No", "VFPv1", "VFPv2", "VFPv3", "VFPv3-D16", "VFPv4", "VFPv4-D16",
11285 "FP for ARMv8"};
11286 static const char * arm_attr_tag_WMMX_arch[] = {"No", "WMMXv1", "WMMXv2"};
11287 static const char * arm_attr_tag_Advanced_SIMD_arch[] =
11288 {"No", "NEONv1", "NEONv1 with Fused-MAC", "NEON for ARMv8"};
11289 static const char * arm_attr_tag_PCS_config[] =
11290 {"None", "Bare platform", "Linux application", "Linux DSO", "PalmOS 2004",
11291 "PalmOS (reserved)", "SymbianOS 2004", "SymbianOS (reserved)"};
11292 static const char * arm_attr_tag_ABI_PCS_R9_use[] =
11293 {"V6", "SB", "TLS", "Unused"};
11294 static const char * arm_attr_tag_ABI_PCS_RW_data[] =
11295 {"Absolute", "PC-relative", "SB-relative", "None"};
11296 static const char * arm_attr_tag_ABI_PCS_RO_data[] =
11297 {"Absolute", "PC-relative", "None"};
11298 static const char * arm_attr_tag_ABI_PCS_GOT_use[] =
11299 {"None", "direct", "GOT-indirect"};
11300 static const char * arm_attr_tag_ABI_PCS_wchar_t[] =
11301 {"None", "??? 1", "2", "??? 3", "4"};
11302 static const char * arm_attr_tag_ABI_FP_rounding[] = {"Unused", "Needed"};
11303 static const char * arm_attr_tag_ABI_FP_denormal[] =
11304 {"Unused", "Needed", "Sign only"};
11305 static const char * arm_attr_tag_ABI_FP_exceptions[] = {"Unused", "Needed"};
11306 static const char * arm_attr_tag_ABI_FP_user_exceptions[] = {"Unused", "Needed"};
11307 static const char * arm_attr_tag_ABI_FP_number_model[] =
11308 {"Unused", "Finite", "RTABI", "IEEE 754"};
11309 static const char * arm_attr_tag_ABI_enum_size[] =
11310 {"Unused", "small", "int", "forced to int"};
11311 static const char * arm_attr_tag_ABI_HardFP_use[] =
11312 {"As Tag_FP_arch", "SP only", "DP only", "SP and DP"};
11313 static const char * arm_attr_tag_ABI_VFP_args[] =
11314 {"AAPCS", "VFP registers", "custom"};
11315 static const char * arm_attr_tag_ABI_WMMX_args[] =
11316 {"AAPCS", "WMMX registers", "custom"};
11317 static const char * arm_attr_tag_ABI_optimization_goals[] =
11318 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
11319 "Aggressive Size", "Prefer Debug", "Aggressive Debug"};
11320 static const char * arm_attr_tag_ABI_FP_optimization_goals[] =
11321 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
11322 "Aggressive Size", "Prefer Accuracy", "Aggressive Accuracy"};
11323 static const char * arm_attr_tag_CPU_unaligned_access[] = {"None", "v6"};
11324 static const char * arm_attr_tag_FP_HP_extension[] =
11325 {"Not Allowed", "Allowed"};
11326 static const char * arm_attr_tag_ABI_FP_16bit_format[] =
11327 {"None", "IEEE 754", "Alternative Format"};
11328 static const char * arm_attr_tag_MPextension_use[] =
11329 {"Not Allowed", "Allowed"};
11330 static const char * arm_attr_tag_DIV_use[] =
11331 {"Allowed in Thumb-ISA, v7-R or v7-M", "Not allowed",
11332 "Allowed in v7-A with integer division extension"};
11333 static const char * arm_attr_tag_T2EE_use[] = {"Not Allowed", "Allowed"};
11334 static const char * arm_attr_tag_Virtualization_use[] =
11335 {"Not Allowed", "TrustZone", "Virtualization Extensions",
11336 "TrustZone and Virtualization Extensions"};
11337 static const char * arm_attr_tag_MPextension_use_legacy[] =
11338 {"Not Allowed", "Allowed"};
11339
11340 #define LOOKUP(id, name) \
11341 {id, #name, 0x80 | ARRAY_SIZE(arm_attr_tag_##name), arm_attr_tag_##name}
11342 static arm_attr_public_tag arm_attr_public_tags[] =
11343 {
11344 {4, "CPU_raw_name", 1, NULL},
11345 {5, "CPU_name", 1, NULL},
11346 LOOKUP(6, CPU_arch),
11347 {7, "CPU_arch_profile", 0, NULL},
11348 LOOKUP(8, ARM_ISA_use),
11349 LOOKUP(9, THUMB_ISA_use),
11350 LOOKUP(10, FP_arch),
11351 LOOKUP(11, WMMX_arch),
11352 LOOKUP(12, Advanced_SIMD_arch),
11353 LOOKUP(13, PCS_config),
11354 LOOKUP(14, ABI_PCS_R9_use),
11355 LOOKUP(15, ABI_PCS_RW_data),
11356 LOOKUP(16, ABI_PCS_RO_data),
11357 LOOKUP(17, ABI_PCS_GOT_use),
11358 LOOKUP(18, ABI_PCS_wchar_t),
11359 LOOKUP(19, ABI_FP_rounding),
11360 LOOKUP(20, ABI_FP_denormal),
11361 LOOKUP(21, ABI_FP_exceptions),
11362 LOOKUP(22, ABI_FP_user_exceptions),
11363 LOOKUP(23, ABI_FP_number_model),
11364 {24, "ABI_align_needed", 0, NULL},
11365 {25, "ABI_align_preserved", 0, NULL},
11366 LOOKUP(26, ABI_enum_size),
11367 LOOKUP(27, ABI_HardFP_use),
11368 LOOKUP(28, ABI_VFP_args),
11369 LOOKUP(29, ABI_WMMX_args),
11370 LOOKUP(30, ABI_optimization_goals),
11371 LOOKUP(31, ABI_FP_optimization_goals),
11372 {32, "compatibility", 0, NULL},
11373 LOOKUP(34, CPU_unaligned_access),
11374 LOOKUP(36, FP_HP_extension),
11375 LOOKUP(38, ABI_FP_16bit_format),
11376 LOOKUP(42, MPextension_use),
11377 LOOKUP(44, DIV_use),
11378 {64, "nodefaults", 0, NULL},
11379 {65, "also_compatible_with", 0, NULL},
11380 LOOKUP(66, T2EE_use),
11381 {67, "conformance", 1, NULL},
11382 LOOKUP(68, Virtualization_use),
11383 LOOKUP(70, MPextension_use_legacy)
11384 };
11385 #undef LOOKUP
11386
11387 static unsigned char *
11388 display_arm_attribute (unsigned char * p,
11389 const unsigned char * const end)
11390 {
11391 int tag;
11392 unsigned int len;
11393 int val;
11394 arm_attr_public_tag * attr;
11395 unsigned i;
11396 int type;
11397
11398 tag = read_uleb128 (p, &len, end);
11399 p += len;
11400 attr = NULL;
11401 for (i = 0; i < ARRAY_SIZE (arm_attr_public_tags); i++)
11402 {
11403 if (arm_attr_public_tags[i].tag == tag)
11404 {
11405 attr = &arm_attr_public_tags[i];
11406 break;
11407 }
11408 }
11409
11410 if (attr)
11411 {
11412 printf (" Tag_%s: ", attr->name);
11413 switch (attr->type)
11414 {
11415 case 0:
11416 switch (tag)
11417 {
11418 case 7: /* Tag_CPU_arch_profile. */
11419 val = read_uleb128 (p, &len, end);
11420 p += len;
11421 switch (val)
11422 {
11423 case 0: printf (_("None\n")); break;
11424 case 'A': printf (_("Application\n")); break;
11425 case 'R': printf (_("Realtime\n")); break;
11426 case 'M': printf (_("Microcontroller\n")); break;
11427 case 'S': printf (_("Application or Realtime\n")); break;
11428 default: printf ("??? (%d)\n", val); break;
11429 }
11430 break;
11431
11432 case 24: /* Tag_align_needed. */
11433 val = read_uleb128 (p, &len, end);
11434 p += len;
11435 switch (val)
11436 {
11437 case 0: printf (_("None\n")); break;
11438 case 1: printf (_("8-byte\n")); break;
11439 case 2: printf (_("4-byte\n")); break;
11440 case 3: printf ("??? 3\n"); break;
11441 default:
11442 if (val <= 12)
11443 printf (_("8-byte and up to %d-byte extended\n"),
11444 1 << val);
11445 else
11446 printf ("??? (%d)\n", val);
11447 break;
11448 }
11449 break;
11450
11451 case 25: /* Tag_align_preserved. */
11452 val = read_uleb128 (p, &len, end);
11453 p += len;
11454 switch (val)
11455 {
11456 case 0: printf (_("None\n")); break;
11457 case 1: printf (_("8-byte, except leaf SP\n")); break;
11458 case 2: printf (_("8-byte\n")); break;
11459 case 3: printf ("??? 3\n"); break;
11460 default:
11461 if (val <= 12)
11462 printf (_("8-byte and up to %d-byte extended\n"),
11463 1 << val);
11464 else
11465 printf ("??? (%d)\n", val);
11466 break;
11467 }
11468 break;
11469
11470 case 32: /* Tag_compatibility. */
11471 val = read_uleb128 (p, &len, end);
11472 p += len;
11473 printf (_("flag = %d, vendor = %s\n"), val, p);
11474 p += strlen ((char *) p) + 1;
11475 break;
11476
11477 case 64: /* Tag_nodefaults. */
11478 p++;
11479 printf (_("True\n"));
11480 break;
11481
11482 case 65: /* Tag_also_compatible_with. */
11483 val = read_uleb128 (p, &len, end);
11484 p += len;
11485 if (val == 6 /* Tag_CPU_arch. */)
11486 {
11487 val = read_uleb128 (p, &len, end);
11488 p += len;
11489 if ((unsigned int)val >= ARRAY_SIZE (arm_attr_tag_CPU_arch))
11490 printf ("??? (%d)\n", val);
11491 else
11492 printf ("%s\n", arm_attr_tag_CPU_arch[val]);
11493 }
11494 else
11495 printf ("???\n");
11496 while (*(p++) != '\0' /* NUL terminator. */);
11497 break;
11498
11499 default:
11500 abort ();
11501 }
11502 return p;
11503
11504 case 1:
11505 return display_tag_value (-1, p, end);
11506 case 2:
11507 return display_tag_value (0, p, end);
11508
11509 default:
11510 assert (attr->type & 0x80);
11511 val = read_uleb128 (p, &len, end);
11512 p += len;
11513 type = attr->type & 0x7f;
11514 if (val >= type)
11515 printf ("??? (%d)\n", val);
11516 else
11517 printf ("%s\n", attr->table[val]);
11518 return p;
11519 }
11520 }
11521
11522 return display_tag_value (tag, p, end);
11523 }
11524
11525 static unsigned char *
11526 display_gnu_attribute (unsigned char * p,
11527 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, int, const unsigned char * const),
11528 const unsigned char * const end)
11529 {
11530 int tag;
11531 unsigned int len;
11532 int val;
11533
11534 tag = read_uleb128 (p, &len, end);
11535 p += len;
11536
11537 /* Tag_compatibility is the only generic GNU attribute defined at
11538 present. */
11539 if (tag == 32)
11540 {
11541 val = read_uleb128 (p, &len, end);
11542 p += len;
11543 if (p == end)
11544 {
11545 printf (_("flag = %d, vendor = <corrupt>\n"), val);
11546 warn (_("corrupt vendor attribute\n"));
11547 }
11548 else
11549 {
11550 printf (_("flag = %d, vendor = %s\n"), val, p);
11551 p += strlen ((char *) p) + 1;
11552 }
11553 return p;
11554 }
11555
11556 if ((tag & 2) == 0 && display_proc_gnu_attribute)
11557 return display_proc_gnu_attribute (p, tag, end);
11558
11559 return display_tag_value (tag, p, end);
11560 }
11561
11562 static unsigned char *
11563 display_power_gnu_attribute (unsigned char * p,
11564 int tag,
11565 const unsigned char * const end)
11566 {
11567 unsigned int len;
11568 int val;
11569
11570 if (tag == Tag_GNU_Power_ABI_FP)
11571 {
11572 val = read_uleb128 (p, &len, end);
11573 p += len;
11574 printf (" Tag_GNU_Power_ABI_FP: ");
11575
11576 switch (val)
11577 {
11578 case 0:
11579 printf (_("Hard or soft float\n"));
11580 break;
11581 case 1:
11582 printf (_("Hard float\n"));
11583 break;
11584 case 2:
11585 printf (_("Soft float\n"));
11586 break;
11587 case 3:
11588 printf (_("Single-precision hard float\n"));
11589 break;
11590 default:
11591 printf ("??? (%d)\n", val);
11592 break;
11593 }
11594 return p;
11595 }
11596
11597 if (tag == Tag_GNU_Power_ABI_Vector)
11598 {
11599 val = read_uleb128 (p, &len, end);
11600 p += len;
11601 printf (" Tag_GNU_Power_ABI_Vector: ");
11602 switch (val)
11603 {
11604 case 0:
11605 printf (_("Any\n"));
11606 break;
11607 case 1:
11608 printf (_("Generic\n"));
11609 break;
11610 case 2:
11611 printf ("AltiVec\n");
11612 break;
11613 case 3:
11614 printf ("SPE\n");
11615 break;
11616 default:
11617 printf ("??? (%d)\n", val);
11618 break;
11619 }
11620 return p;
11621 }
11622
11623 if (tag == Tag_GNU_Power_ABI_Struct_Return)
11624 {
11625 if (p == end)
11626 {
11627 warn (_("corrupt Tag_GNU_Power_ABI_Struct_Return"));
11628 return p;
11629 }
11630
11631 val = read_uleb128 (p, &len, end);
11632 p += len;
11633 printf (" Tag_GNU_Power_ABI_Struct_Return: ");
11634 switch (val)
11635 {
11636 case 0:
11637 printf (_("Any\n"));
11638 break;
11639 case 1:
11640 printf ("r3/r4\n");
11641 break;
11642 case 2:
11643 printf (_("Memory\n"));
11644 break;
11645 default:
11646 printf ("??? (%d)\n", val);
11647 break;
11648 }
11649 return p;
11650 }
11651
11652 return display_tag_value (tag & 1, p, end);
11653 }
11654
11655 static void
11656 display_sparc_hwcaps (int mask)
11657 {
11658 if (mask)
11659 {
11660 int first = 1;
11661 if (mask & ELF_SPARC_HWCAP_MUL32)
11662 fputs ("mul32", stdout), first = 0;
11663 if (mask & ELF_SPARC_HWCAP_DIV32)
11664 printf ("%sdiv32", first ? "" : "|"), first = 0;
11665 if (mask & ELF_SPARC_HWCAP_FSMULD)
11666 printf ("%sfsmuld", first ? "" : "|"), first = 0;
11667 if (mask & ELF_SPARC_HWCAP_V8PLUS)
11668 printf ("%sv8plus", first ? "" : "|"), first = 0;
11669 if (mask & ELF_SPARC_HWCAP_POPC)
11670 printf ("%spopc", first ? "" : "|"), first = 0;
11671 if (mask & ELF_SPARC_HWCAP_VIS)
11672 printf ("%svis", first ? "" : "|"), first = 0;
11673 if (mask & ELF_SPARC_HWCAP_VIS2)
11674 printf ("%svis2", first ? "" : "|"), first = 0;
11675 if (mask & ELF_SPARC_HWCAP_ASI_BLK_INIT)
11676 printf ("%sASIBlkInit", first ? "" : "|"), first = 0;
11677 if (mask & ELF_SPARC_HWCAP_FMAF)
11678 printf ("%sfmaf", first ? "" : "|"), first = 0;
11679 if (mask & ELF_SPARC_HWCAP_VIS3)
11680 printf ("%svis3", first ? "" : "|"), first = 0;
11681 if (mask & ELF_SPARC_HWCAP_HPC)
11682 printf ("%shpc", first ? "" : "|"), first = 0;
11683 if (mask & ELF_SPARC_HWCAP_RANDOM)
11684 printf ("%srandom", first ? "" : "|"), first = 0;
11685 if (mask & ELF_SPARC_HWCAP_TRANS)
11686 printf ("%strans", first ? "" : "|"), first = 0;
11687 if (mask & ELF_SPARC_HWCAP_FJFMAU)
11688 printf ("%sfjfmau", first ? "" : "|"), first = 0;
11689 if (mask & ELF_SPARC_HWCAP_IMA)
11690 printf ("%sima", first ? "" : "|"), first = 0;
11691 if (mask & ELF_SPARC_HWCAP_ASI_CACHE_SPARING)
11692 printf ("%scspare", first ? "" : "|"), first = 0;
11693 }
11694 else
11695 fputc('0', stdout);
11696 fputc('\n', stdout);
11697 }
11698
11699 static unsigned char *
11700 display_sparc_gnu_attribute (unsigned char * p,
11701 int tag,
11702 const unsigned char * const end)
11703 {
11704 if (tag == Tag_GNU_Sparc_HWCAPS)
11705 {
11706 unsigned int len;
11707 int val;
11708
11709 val = read_uleb128 (p, &len, end);
11710 p += len;
11711 printf (" Tag_GNU_Sparc_HWCAPS: ");
11712 display_sparc_hwcaps (val);
11713 return p;
11714 }
11715
11716 return display_tag_value (tag, p, end);
11717 }
11718
11719 static unsigned char *
11720 display_mips_gnu_attribute (unsigned char * p,
11721 int tag,
11722 const unsigned char * const end)
11723 {
11724 if (tag == Tag_GNU_MIPS_ABI_FP)
11725 {
11726 unsigned int len;
11727 int val;
11728
11729 val = read_uleb128 (p, &len, end);
11730 p += len;
11731 printf (" Tag_GNU_MIPS_ABI_FP: ");
11732
11733 switch (val)
11734 {
11735 case 0:
11736 printf (_("Hard or soft float\n"));
11737 break;
11738 case 1:
11739 printf (_("Hard float (double precision)\n"));
11740 break;
11741 case 2:
11742 printf (_("Hard float (single precision)\n"));
11743 break;
11744 case 3:
11745 printf (_("Soft float\n"));
11746 break;
11747 case 4:
11748 printf (_("Hard float (MIPS32r2 64-bit FPU)\n"));
11749 break;
11750 default:
11751 printf ("??? (%d)\n", val);
11752 break;
11753 }
11754 return p;
11755 }
11756
11757 return display_tag_value (tag & 1, p, end);
11758 }
11759
11760 static unsigned char *
11761 display_tic6x_attribute (unsigned char * p,
11762 const unsigned char * const end)
11763 {
11764 int tag;
11765 unsigned int len;
11766 int val;
11767
11768 tag = read_uleb128 (p, &len, end);
11769 p += len;
11770
11771 switch (tag)
11772 {
11773 case Tag_ISA:
11774 val = read_uleb128 (p, &len, end);
11775 p += len;
11776 printf (" Tag_ISA: ");
11777
11778 switch (val)
11779 {
11780 case C6XABI_Tag_ISA_none:
11781 printf (_("None\n"));
11782 break;
11783 case C6XABI_Tag_ISA_C62X:
11784 printf ("C62x\n");
11785 break;
11786 case C6XABI_Tag_ISA_C67X:
11787 printf ("C67x\n");
11788 break;
11789 case C6XABI_Tag_ISA_C67XP:
11790 printf ("C67x+\n");
11791 break;
11792 case C6XABI_Tag_ISA_C64X:
11793 printf ("C64x\n");
11794 break;
11795 case C6XABI_Tag_ISA_C64XP:
11796 printf ("C64x+\n");
11797 break;
11798 case C6XABI_Tag_ISA_C674X:
11799 printf ("C674x\n");
11800 break;
11801 default:
11802 printf ("??? (%d)\n", val);
11803 break;
11804 }
11805 return p;
11806
11807 case Tag_ABI_wchar_t:
11808 val = read_uleb128 (p, &len, end);
11809 p += len;
11810 printf (" Tag_ABI_wchar_t: ");
11811 switch (val)
11812 {
11813 case 0:
11814 printf (_("Not used\n"));
11815 break;
11816 case 1:
11817 printf (_("2 bytes\n"));
11818 break;
11819 case 2:
11820 printf (_("4 bytes\n"));
11821 break;
11822 default:
11823 printf ("??? (%d)\n", val);
11824 break;
11825 }
11826 return p;
11827
11828 case Tag_ABI_stack_align_needed:
11829 val = read_uleb128 (p, &len, end);
11830 p += len;
11831 printf (" Tag_ABI_stack_align_needed: ");
11832 switch (val)
11833 {
11834 case 0:
11835 printf (_("8-byte\n"));
11836 break;
11837 case 1:
11838 printf (_("16-byte\n"));
11839 break;
11840 default:
11841 printf ("??? (%d)\n", val);
11842 break;
11843 }
11844 return p;
11845
11846 case Tag_ABI_stack_align_preserved:
11847 val = read_uleb128 (p, &len, end);
11848 p += len;
11849 printf (" Tag_ABI_stack_align_preserved: ");
11850 switch (val)
11851 {
11852 case 0:
11853 printf (_("8-byte\n"));
11854 break;
11855 case 1:
11856 printf (_("16-byte\n"));
11857 break;
11858 default:
11859 printf ("??? (%d)\n", val);
11860 break;
11861 }
11862 return p;
11863
11864 case Tag_ABI_DSBT:
11865 val = read_uleb128 (p, &len, end);
11866 p += len;
11867 printf (" Tag_ABI_DSBT: ");
11868 switch (val)
11869 {
11870 case 0:
11871 printf (_("DSBT addressing not used\n"));
11872 break;
11873 case 1:
11874 printf (_("DSBT addressing used\n"));
11875 break;
11876 default:
11877 printf ("??? (%d)\n", val);
11878 break;
11879 }
11880 return p;
11881
11882 case Tag_ABI_PID:
11883 val = read_uleb128 (p, &len, end);
11884 p += len;
11885 printf (" Tag_ABI_PID: ");
11886 switch (val)
11887 {
11888 case 0:
11889 printf (_("Data addressing position-dependent\n"));
11890 break;
11891 case 1:
11892 printf (_("Data addressing position-independent, GOT near DP\n"));
11893 break;
11894 case 2:
11895 printf (_("Data addressing position-independent, GOT far from DP\n"));
11896 break;
11897 default:
11898 printf ("??? (%d)\n", val);
11899 break;
11900 }
11901 return p;
11902
11903 case Tag_ABI_PIC:
11904 val = read_uleb128 (p, &len, end);
11905 p += len;
11906 printf (" Tag_ABI_PIC: ");
11907 switch (val)
11908 {
11909 case 0:
11910 printf (_("Code addressing position-dependent\n"));
11911 break;
11912 case 1:
11913 printf (_("Code addressing position-independent\n"));
11914 break;
11915 default:
11916 printf ("??? (%d)\n", val);
11917 break;
11918 }
11919 return p;
11920
11921 case Tag_ABI_array_object_alignment:
11922 val = read_uleb128 (p, &len, end);
11923 p += len;
11924 printf (" Tag_ABI_array_object_alignment: ");
11925 switch (val)
11926 {
11927 case 0:
11928 printf (_("8-byte\n"));
11929 break;
11930 case 1:
11931 printf (_("4-byte\n"));
11932 break;
11933 case 2:
11934 printf (_("16-byte\n"));
11935 break;
11936 default:
11937 printf ("??? (%d)\n", val);
11938 break;
11939 }
11940 return p;
11941
11942 case Tag_ABI_array_object_align_expected:
11943 val = read_uleb128 (p, &len, end);
11944 p += len;
11945 printf (" Tag_ABI_array_object_align_expected: ");
11946 switch (val)
11947 {
11948 case 0:
11949 printf (_("8-byte\n"));
11950 break;
11951 case 1:
11952 printf (_("4-byte\n"));
11953 break;
11954 case 2:
11955 printf (_("16-byte\n"));
11956 break;
11957 default:
11958 printf ("??? (%d)\n", val);
11959 break;
11960 }
11961 return p;
11962
11963 case Tag_ABI_compatibility:
11964 val = read_uleb128 (p, &len, end);
11965 p += len;
11966 printf (" Tag_ABI_compatibility: ");
11967 printf (_("flag = %d, vendor = %s\n"), val, p);
11968 p += strlen ((char *) p) + 1;
11969 return p;
11970
11971 case Tag_ABI_conformance:
11972 printf (" Tag_ABI_conformance: ");
11973 printf ("\"%s\"\n", p);
11974 p += strlen ((char *) p) + 1;
11975 return p;
11976 }
11977
11978 return display_tag_value (tag, p, end);
11979 }
11980
11981 static void
11982 display_raw_attribute (unsigned char * p, unsigned char * end)
11983 {
11984 unsigned long addr = 0;
11985 size_t bytes = end - p;
11986
11987 while (bytes)
11988 {
11989 int j;
11990 int k;
11991 int lbytes = (bytes > 16 ? 16 : bytes);
11992
11993 printf (" 0x%8.8lx ", addr);
11994
11995 for (j = 0; j < 16; j++)
11996 {
11997 if (j < lbytes)
11998 printf ("%2.2x", p[j]);
11999 else
12000 printf (" ");
12001
12002 if ((j & 3) == 3)
12003 printf (" ");
12004 }
12005
12006 for (j = 0; j < lbytes; j++)
12007 {
12008 k = p[j];
12009 if (k >= ' ' && k < 0x7f)
12010 printf ("%c", k);
12011 else
12012 printf (".");
12013 }
12014
12015 putchar ('\n');
12016
12017 p += lbytes;
12018 bytes -= lbytes;
12019 addr += lbytes;
12020 }
12021
12022 putchar ('\n');
12023 }
12024
12025 static unsigned char *
12026 display_msp430x_attribute (unsigned char * p,
12027 const unsigned char * const end)
12028 {
12029 unsigned int len;
12030 int val;
12031 int tag;
12032
12033 tag = read_uleb128 (p, & len, end);
12034 p += len;
12035
12036 switch (tag)
12037 {
12038 case OFBA_MSPABI_Tag_ISA:
12039 val = read_uleb128 (p, &len, end);
12040 p += len;
12041 printf (" Tag_ISA: ");
12042 switch (val)
12043 {
12044 case 0: printf (_("None\n")); break;
12045 case 1: printf (_("MSP430\n")); break;
12046 case 2: printf (_("MSP430X\n")); break;
12047 default: printf ("??? (%d)\n", val); break;
12048 }
12049 break;
12050
12051 case OFBA_MSPABI_Tag_Code_Model:
12052 val = read_uleb128 (p, &len, end);
12053 p += len;
12054 printf (" Tag_Code_Model: ");
12055 switch (val)
12056 {
12057 case 0: printf (_("None\n")); break;
12058 case 1: printf (_("Small\n")); break;
12059 case 2: printf (_("Large\n")); break;
12060 default: printf ("??? (%d)\n", val); break;
12061 }
12062 break;
12063
12064 case OFBA_MSPABI_Tag_Data_Model:
12065 val = read_uleb128 (p, &len, end);
12066 p += len;
12067 printf (" Tag_Data_Model: ");
12068 switch (val)
12069 {
12070 case 0: printf (_("None\n")); break;
12071 case 1: printf (_("Small\n")); break;
12072 case 2: printf (_("Large\n")); break;
12073 case 3: printf (_("Restricted Large\n")); break;
12074 default: printf ("??? (%d)\n", val); break;
12075 }
12076 break;
12077
12078 default:
12079 printf (_(" <unknown tag %d>: "), tag);
12080
12081 if (tag & 1)
12082 {
12083 printf ("\"%s\"\n", p);
12084 p += strlen ((char *) p) + 1;
12085 }
12086 else
12087 {
12088 val = read_uleb128 (p, &len, end);
12089 p += len;
12090 printf ("%d (0x%x)\n", val, val);
12091 }
12092 break;
12093 }
12094
12095 return p;
12096 }
12097
12098 static int
12099 process_attributes (FILE * file,
12100 const char * public_name,
12101 unsigned int proc_type,
12102 unsigned char * (* display_pub_attribute) (unsigned char *, const unsigned char * const),
12103 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, int, const unsigned char * const))
12104 {
12105 Elf_Internal_Shdr * sect;
12106 unsigned char * contents;
12107 unsigned char * p;
12108 unsigned char * end;
12109 bfd_vma section_len;
12110 bfd_vma len;
12111 unsigned i;
12112
12113 /* Find the section header so that we get the size. */
12114 for (i = 0, sect = section_headers;
12115 i < elf_header.e_shnum;
12116 i++, sect++)
12117 {
12118 if (sect->sh_type != proc_type && sect->sh_type != SHT_GNU_ATTRIBUTES)
12119 continue;
12120
12121 contents = (unsigned char *) get_data (NULL, file, sect->sh_offset, 1,
12122 sect->sh_size, _("attributes"));
12123 if (contents == NULL)
12124 continue;
12125
12126 p = contents;
12127 if (*p == 'A')
12128 {
12129 len = sect->sh_size - 1;
12130 p++;
12131
12132 while (len > 0)
12133 {
12134 int namelen;
12135 bfd_boolean public_section;
12136 bfd_boolean gnu_section;
12137
12138 section_len = byte_get (p, 4);
12139 p += 4;
12140
12141 if (section_len > len)
12142 {
12143 printf (_("ERROR: Bad section length (%d > %d)\n"),
12144 (int) section_len, (int) len);
12145 section_len = len;
12146 }
12147
12148 len -= section_len;
12149 printf (_("Attribute Section: %s\n"), p);
12150
12151 if (public_name && streq ((char *) p, public_name))
12152 public_section = TRUE;
12153 else
12154 public_section = FALSE;
12155
12156 if (streq ((char *) p, "gnu"))
12157 gnu_section = TRUE;
12158 else
12159 gnu_section = FALSE;
12160
12161 namelen = strlen ((char *) p) + 1;
12162 p += namelen;
12163 section_len -= namelen + 4;
12164
12165 while (section_len > 0)
12166 {
12167 int tag = *(p++);
12168 int val;
12169 bfd_vma size;
12170
12171 size = byte_get (p, 4);
12172 if (size > section_len)
12173 {
12174 printf (_("ERROR: Bad subsection length (%d > %d)\n"),
12175 (int) size, (int) section_len);
12176 size = section_len;
12177 }
12178
12179 section_len -= size;
12180 end = p + size - 1;
12181 p += 4;
12182
12183 switch (tag)
12184 {
12185 case 1:
12186 printf (_("File Attributes\n"));
12187 break;
12188 case 2:
12189 printf (_("Section Attributes:"));
12190 goto do_numlist;
12191 case 3:
12192 printf (_("Symbol Attributes:"));
12193 do_numlist:
12194 for (;;)
12195 {
12196 unsigned int j;
12197
12198 val = read_uleb128 (p, &j, end);
12199 p += j;
12200 if (val == 0)
12201 break;
12202 printf (" %d", val);
12203 }
12204 printf ("\n");
12205 break;
12206 default:
12207 printf (_("Unknown tag: %d\n"), tag);
12208 public_section = FALSE;
12209 break;
12210 }
12211
12212 if (public_section)
12213 {
12214 while (p < end)
12215 p = display_pub_attribute (p, end);
12216 }
12217 else if (gnu_section)
12218 {
12219 while (p < end)
12220 p = display_gnu_attribute (p,
12221 display_proc_gnu_attribute,
12222 end);
12223 }
12224 else
12225 {
12226 printf (_(" Unknown section contexts\n"));
12227 display_raw_attribute (p, end);
12228 p = end;
12229 }
12230 }
12231 }
12232 }
12233 else
12234 printf (_("Unknown format '%c'\n"), *p);
12235
12236 free (contents);
12237 }
12238 return 1;
12239 }
12240
12241 static int
12242 process_arm_specific (FILE * file)
12243 {
12244 return process_attributes (file, "aeabi", SHT_ARM_ATTRIBUTES,
12245 display_arm_attribute, NULL);
12246 }
12247
12248 static int
12249 process_power_specific (FILE * file)
12250 {
12251 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
12252 display_power_gnu_attribute);
12253 }
12254
12255 static int
12256 process_sparc_specific (FILE * file)
12257 {
12258 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
12259 display_sparc_gnu_attribute);
12260 }
12261
12262 static int
12263 process_tic6x_specific (FILE * file)
12264 {
12265 return process_attributes (file, "c6xabi", SHT_C6000_ATTRIBUTES,
12266 display_tic6x_attribute, NULL);
12267 }
12268
12269 static int
12270 process_msp430x_specific (FILE * file)
12271 {
12272 return process_attributes (file, "mspabi", SHT_MSP430_ATTRIBUTES,
12273 display_msp430x_attribute, NULL);
12274 }
12275
12276 /* DATA points to the contents of a MIPS GOT that starts at VMA PLTGOT.
12277 Print the Address, Access and Initial fields of an entry at VMA ADDR
12278 and return the VMA of the next entry. */
12279
12280 static bfd_vma
12281 print_mips_got_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
12282 {
12283 printf (" ");
12284 print_vma (addr, LONG_HEX);
12285 printf (" ");
12286 if (addr < pltgot + 0xfff0)
12287 printf ("%6d(gp)", (int) (addr - pltgot - 0x7ff0));
12288 else
12289 printf ("%10s", "");
12290 printf (" ");
12291 if (data == NULL)
12292 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
12293 else
12294 {
12295 bfd_vma entry;
12296
12297 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
12298 print_vma (entry, LONG_HEX);
12299 }
12300 return addr + (is_32bit_elf ? 4 : 8);
12301 }
12302
12303 /* DATA points to the contents of a MIPS PLT GOT that starts at VMA
12304 PLTGOT. Print the Address and Initial fields of an entry at VMA
12305 ADDR and return the VMA of the next entry. */
12306
12307 static bfd_vma
12308 print_mips_pltgot_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
12309 {
12310 printf (" ");
12311 print_vma (addr, LONG_HEX);
12312 printf (" ");
12313 if (data == NULL)
12314 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
12315 else
12316 {
12317 bfd_vma entry;
12318
12319 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
12320 print_vma (entry, LONG_HEX);
12321 }
12322 return addr + (is_32bit_elf ? 4 : 8);
12323 }
12324
12325 static int
12326 process_mips_specific (FILE * file)
12327 {
12328 Elf_Internal_Dyn * entry;
12329 size_t liblist_offset = 0;
12330 size_t liblistno = 0;
12331 size_t conflictsno = 0;
12332 size_t options_offset = 0;
12333 size_t conflicts_offset = 0;
12334 size_t pltrelsz = 0;
12335 size_t pltrel = 0;
12336 bfd_vma pltgot = 0;
12337 bfd_vma mips_pltgot = 0;
12338 bfd_vma jmprel = 0;
12339 bfd_vma local_gotno = 0;
12340 bfd_vma gotsym = 0;
12341 bfd_vma symtabno = 0;
12342
12343 process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
12344 display_mips_gnu_attribute);
12345
12346 /* We have a lot of special sections. Thanks SGI! */
12347 if (dynamic_section == NULL)
12348 /* No information available. */
12349 return 0;
12350
12351 for (entry = dynamic_section; entry->d_tag != DT_NULL; ++entry)
12352 switch (entry->d_tag)
12353 {
12354 case DT_MIPS_LIBLIST:
12355 liblist_offset
12356 = offset_from_vma (file, entry->d_un.d_val,
12357 liblistno * sizeof (Elf32_External_Lib));
12358 break;
12359 case DT_MIPS_LIBLISTNO:
12360 liblistno = entry->d_un.d_val;
12361 break;
12362 case DT_MIPS_OPTIONS:
12363 options_offset = offset_from_vma (file, entry->d_un.d_val, 0);
12364 break;
12365 case DT_MIPS_CONFLICT:
12366 conflicts_offset
12367 = offset_from_vma (file, entry->d_un.d_val,
12368 conflictsno * sizeof (Elf32_External_Conflict));
12369 break;
12370 case DT_MIPS_CONFLICTNO:
12371 conflictsno = entry->d_un.d_val;
12372 break;
12373 case DT_PLTGOT:
12374 pltgot = entry->d_un.d_ptr;
12375 break;
12376 case DT_MIPS_LOCAL_GOTNO:
12377 local_gotno = entry->d_un.d_val;
12378 break;
12379 case DT_MIPS_GOTSYM:
12380 gotsym = entry->d_un.d_val;
12381 break;
12382 case DT_MIPS_SYMTABNO:
12383 symtabno = entry->d_un.d_val;
12384 break;
12385 case DT_MIPS_PLTGOT:
12386 mips_pltgot = entry->d_un.d_ptr;
12387 break;
12388 case DT_PLTREL:
12389 pltrel = entry->d_un.d_val;
12390 break;
12391 case DT_PLTRELSZ:
12392 pltrelsz = entry->d_un.d_val;
12393 break;
12394 case DT_JMPREL:
12395 jmprel = entry->d_un.d_ptr;
12396 break;
12397 default:
12398 break;
12399 }
12400
12401 if (liblist_offset != 0 && liblistno != 0 && do_dynamic)
12402 {
12403 Elf32_External_Lib * elib;
12404 size_t cnt;
12405
12406 elib = (Elf32_External_Lib *) get_data (NULL, file, liblist_offset,
12407 liblistno,
12408 sizeof (Elf32_External_Lib),
12409 _("liblist section data"));
12410 if (elib)
12411 {
12412 printf (_("\nSection '.liblist' contains %lu entries:\n"),
12413 (unsigned long) liblistno);
12414 fputs (_(" Library Time Stamp Checksum Version Flags\n"),
12415 stdout);
12416
12417 for (cnt = 0; cnt < liblistno; ++cnt)
12418 {
12419 Elf32_Lib liblist;
12420 time_t atime;
12421 char timebuf[20];
12422 struct tm * tmp;
12423
12424 liblist.l_name = BYTE_GET (elib[cnt].l_name);
12425 atime = BYTE_GET (elib[cnt].l_time_stamp);
12426 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
12427 liblist.l_version = BYTE_GET (elib[cnt].l_version);
12428 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
12429
12430 tmp = gmtime (&atime);
12431 snprintf (timebuf, sizeof (timebuf),
12432 "%04u-%02u-%02uT%02u:%02u:%02u",
12433 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
12434 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
12435
12436 printf ("%3lu: ", (unsigned long) cnt);
12437 if (VALID_DYNAMIC_NAME (liblist.l_name))
12438 print_symbol (20, GET_DYNAMIC_NAME (liblist.l_name));
12439 else
12440 printf (_("<corrupt: %9ld>"), liblist.l_name);
12441 printf (" %s %#10lx %-7ld", timebuf, liblist.l_checksum,
12442 liblist.l_version);
12443
12444 if (liblist.l_flags == 0)
12445 puts (_(" NONE"));
12446 else
12447 {
12448 static const struct
12449 {
12450 const char * name;
12451 int bit;
12452 }
12453 l_flags_vals[] =
12454 {
12455 { " EXACT_MATCH", LL_EXACT_MATCH },
12456 { " IGNORE_INT_VER", LL_IGNORE_INT_VER },
12457 { " REQUIRE_MINOR", LL_REQUIRE_MINOR },
12458 { " EXPORTS", LL_EXPORTS },
12459 { " DELAY_LOAD", LL_DELAY_LOAD },
12460 { " DELTA", LL_DELTA }
12461 };
12462 int flags = liblist.l_flags;
12463 size_t fcnt;
12464
12465 for (fcnt = 0; fcnt < ARRAY_SIZE (l_flags_vals); ++fcnt)
12466 if ((flags & l_flags_vals[fcnt].bit) != 0)
12467 {
12468 fputs (l_flags_vals[fcnt].name, stdout);
12469 flags ^= l_flags_vals[fcnt].bit;
12470 }
12471 if (flags != 0)
12472 printf (" %#x", (unsigned int) flags);
12473
12474 puts ("");
12475 }
12476 }
12477
12478 free (elib);
12479 }
12480 }
12481
12482 if (options_offset != 0)
12483 {
12484 Elf_External_Options * eopt;
12485 Elf_Internal_Shdr * sect = section_headers;
12486 Elf_Internal_Options * iopt;
12487 Elf_Internal_Options * option;
12488 size_t offset;
12489 int cnt;
12490
12491 /* Find the section header so that we get the size. */
12492 while (sect->sh_type != SHT_MIPS_OPTIONS)
12493 ++sect;
12494
12495 eopt = (Elf_External_Options *) get_data (NULL, file, options_offset, 1,
12496 sect->sh_size, _("options"));
12497 if (eopt)
12498 {
12499 iopt = (Elf_Internal_Options *)
12500 cmalloc ((sect->sh_size / sizeof (eopt)), sizeof (* iopt));
12501 if (iopt == NULL)
12502 {
12503 error (_("Out of memory\n"));
12504 return 0;
12505 }
12506
12507 offset = cnt = 0;
12508 option = iopt;
12509
12510 while (offset < sect->sh_size)
12511 {
12512 Elf_External_Options * eoption;
12513
12514 eoption = (Elf_External_Options *) ((char *) eopt + offset);
12515
12516 option->kind = BYTE_GET (eoption->kind);
12517 option->size = BYTE_GET (eoption->size);
12518 option->section = BYTE_GET (eoption->section);
12519 option->info = BYTE_GET (eoption->info);
12520
12521 offset += option->size;
12522
12523 ++option;
12524 ++cnt;
12525 }
12526
12527 printf (_("\nSection '%s' contains %d entries:\n"),
12528 SECTION_NAME (sect), cnt);
12529
12530 option = iopt;
12531
12532 while (cnt-- > 0)
12533 {
12534 size_t len;
12535
12536 switch (option->kind)
12537 {
12538 case ODK_NULL:
12539 /* This shouldn't happen. */
12540 printf (" NULL %d %lx", option->section, option->info);
12541 break;
12542 case ODK_REGINFO:
12543 printf (" REGINFO ");
12544 if (elf_header.e_machine == EM_MIPS)
12545 {
12546 /* 32bit form. */
12547 Elf32_External_RegInfo * ereg;
12548 Elf32_RegInfo reginfo;
12549
12550 ereg = (Elf32_External_RegInfo *) (option + 1);
12551 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
12552 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
12553 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
12554 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
12555 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
12556 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
12557
12558 printf ("GPR %08lx GP 0x%lx\n",
12559 reginfo.ri_gprmask,
12560 (unsigned long) reginfo.ri_gp_value);
12561 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
12562 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
12563 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
12564 }
12565 else
12566 {
12567 /* 64 bit form. */
12568 Elf64_External_RegInfo * ereg;
12569 Elf64_Internal_RegInfo reginfo;
12570
12571 ereg = (Elf64_External_RegInfo *) (option + 1);
12572 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
12573 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
12574 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
12575 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
12576 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
12577 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
12578
12579 printf ("GPR %08lx GP 0x",
12580 reginfo.ri_gprmask);
12581 printf_vma (reginfo.ri_gp_value);
12582 printf ("\n");
12583
12584 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
12585 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
12586 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
12587 }
12588 ++option;
12589 continue;
12590 case ODK_EXCEPTIONS:
12591 fputs (" EXCEPTIONS fpe_min(", stdout);
12592 process_mips_fpe_exception (option->info & OEX_FPU_MIN);
12593 fputs (") fpe_max(", stdout);
12594 process_mips_fpe_exception ((option->info & OEX_FPU_MAX) >> 8);
12595 fputs (")", stdout);
12596
12597 if (option->info & OEX_PAGE0)
12598 fputs (" PAGE0", stdout);
12599 if (option->info & OEX_SMM)
12600 fputs (" SMM", stdout);
12601 if (option->info & OEX_FPDBUG)
12602 fputs (" FPDBUG", stdout);
12603 if (option->info & OEX_DISMISS)
12604 fputs (" DISMISS", stdout);
12605 break;
12606 case ODK_PAD:
12607 fputs (" PAD ", stdout);
12608 if (option->info & OPAD_PREFIX)
12609 fputs (" PREFIX", stdout);
12610 if (option->info & OPAD_POSTFIX)
12611 fputs (" POSTFIX", stdout);
12612 if (option->info & OPAD_SYMBOL)
12613 fputs (" SYMBOL", stdout);
12614 break;
12615 case ODK_HWPATCH:
12616 fputs (" HWPATCH ", stdout);
12617 if (option->info & OHW_R4KEOP)
12618 fputs (" R4KEOP", stdout);
12619 if (option->info & OHW_R8KPFETCH)
12620 fputs (" R8KPFETCH", stdout);
12621 if (option->info & OHW_R5KEOP)
12622 fputs (" R5KEOP", stdout);
12623 if (option->info & OHW_R5KCVTL)
12624 fputs (" R5KCVTL", stdout);
12625 break;
12626 case ODK_FILL:
12627 fputs (" FILL ", stdout);
12628 /* XXX Print content of info word? */
12629 break;
12630 case ODK_TAGS:
12631 fputs (" TAGS ", stdout);
12632 /* XXX Print content of info word? */
12633 break;
12634 case ODK_HWAND:
12635 fputs (" HWAND ", stdout);
12636 if (option->info & OHWA0_R4KEOP_CHECKED)
12637 fputs (" R4KEOP_CHECKED", stdout);
12638 if (option->info & OHWA0_R4KEOP_CLEAN)
12639 fputs (" R4KEOP_CLEAN", stdout);
12640 break;
12641 case ODK_HWOR:
12642 fputs (" HWOR ", stdout);
12643 if (option->info & OHWA0_R4KEOP_CHECKED)
12644 fputs (" R4KEOP_CHECKED", stdout);
12645 if (option->info & OHWA0_R4KEOP_CLEAN)
12646 fputs (" R4KEOP_CLEAN", stdout);
12647 break;
12648 case ODK_GP_GROUP:
12649 printf (" GP_GROUP %#06lx self-contained %#06lx",
12650 option->info & OGP_GROUP,
12651 (option->info & OGP_SELF) >> 16);
12652 break;
12653 case ODK_IDENT:
12654 printf (" IDENT %#06lx self-contained %#06lx",
12655 option->info & OGP_GROUP,
12656 (option->info & OGP_SELF) >> 16);
12657 break;
12658 default:
12659 /* This shouldn't happen. */
12660 printf (" %3d ??? %d %lx",
12661 option->kind, option->section, option->info);
12662 break;
12663 }
12664
12665 len = sizeof (* eopt);
12666 while (len < option->size)
12667 if (((char *) option)[len] >= ' '
12668 && ((char *) option)[len] < 0x7f)
12669 printf ("%c", ((char *) option)[len++]);
12670 else
12671 printf ("\\%03o", ((char *) option)[len++]);
12672
12673 fputs ("\n", stdout);
12674 ++option;
12675 }
12676
12677 free (eopt);
12678 }
12679 }
12680
12681 if (conflicts_offset != 0 && conflictsno != 0)
12682 {
12683 Elf32_Conflict * iconf;
12684 size_t cnt;
12685
12686 if (dynamic_symbols == NULL)
12687 {
12688 error (_("conflict list found without a dynamic symbol table\n"));
12689 return 0;
12690 }
12691
12692 iconf = (Elf32_Conflict *) cmalloc (conflictsno, sizeof (* iconf));
12693 if (iconf == NULL)
12694 {
12695 error (_("Out of memory\n"));
12696 return 0;
12697 }
12698
12699 if (is_32bit_elf)
12700 {
12701 Elf32_External_Conflict * econf32;
12702
12703 econf32 = (Elf32_External_Conflict *)
12704 get_data (NULL, file, conflicts_offset, conflictsno,
12705 sizeof (* econf32), _("conflict"));
12706 if (!econf32)
12707 return 0;
12708
12709 for (cnt = 0; cnt < conflictsno; ++cnt)
12710 iconf[cnt] = BYTE_GET (econf32[cnt]);
12711
12712 free (econf32);
12713 }
12714 else
12715 {
12716 Elf64_External_Conflict * econf64;
12717
12718 econf64 = (Elf64_External_Conflict *)
12719 get_data (NULL, file, conflicts_offset, conflictsno,
12720 sizeof (* econf64), _("conflict"));
12721 if (!econf64)
12722 return 0;
12723
12724 for (cnt = 0; cnt < conflictsno; ++cnt)
12725 iconf[cnt] = BYTE_GET (econf64[cnt]);
12726
12727 free (econf64);
12728 }
12729
12730 printf (_("\nSection '.conflict' contains %lu entries:\n"),
12731 (unsigned long) conflictsno);
12732 puts (_(" Num: Index Value Name"));
12733
12734 for (cnt = 0; cnt < conflictsno; ++cnt)
12735 {
12736 Elf_Internal_Sym * psym = & dynamic_symbols[iconf[cnt]];
12737
12738 printf ("%5lu: %8lu ", (unsigned long) cnt, iconf[cnt]);
12739 print_vma (psym->st_value, FULL_HEX);
12740 putchar (' ');
12741 if (VALID_DYNAMIC_NAME (psym->st_name))
12742 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
12743 else
12744 printf (_("<corrupt: %14ld>"), psym->st_name);
12745 putchar ('\n');
12746 }
12747
12748 free (iconf);
12749 }
12750
12751 if (pltgot != 0 && local_gotno != 0)
12752 {
12753 bfd_vma ent, local_end, global_end;
12754 size_t i, offset;
12755 unsigned char * data;
12756 int addr_size;
12757
12758 ent = pltgot;
12759 addr_size = (is_32bit_elf ? 4 : 8);
12760 local_end = pltgot + local_gotno * addr_size;
12761 global_end = local_end + (symtabno - gotsym) * addr_size;
12762
12763 offset = offset_from_vma (file, pltgot, global_end - pltgot);
12764 data = (unsigned char *) get_data (NULL, file, offset,
12765 global_end - pltgot, 1,
12766 _("Global Offset Table data"));
12767 if (data == NULL)
12768 return 0;
12769
12770 printf (_("\nPrimary GOT:\n"));
12771 printf (_(" Canonical gp value: "));
12772 print_vma (pltgot + 0x7ff0, LONG_HEX);
12773 printf ("\n\n");
12774
12775 printf (_(" Reserved entries:\n"));
12776 printf (_(" %*s %10s %*s Purpose\n"),
12777 addr_size * 2, _("Address"), _("Access"),
12778 addr_size * 2, _("Initial"));
12779 ent = print_mips_got_entry (data, pltgot, ent);
12780 printf (_(" Lazy resolver\n"));
12781 if (data
12782 && (byte_get (data + ent - pltgot, addr_size)
12783 >> (addr_size * 8 - 1)) != 0)
12784 {
12785 ent = print_mips_got_entry (data, pltgot, ent);
12786 printf (_(" Module pointer (GNU extension)\n"));
12787 }
12788 printf ("\n");
12789
12790 if (ent < local_end)
12791 {
12792 printf (_(" Local entries:\n"));
12793 printf (" %*s %10s %*s\n",
12794 addr_size * 2, _("Address"), _("Access"),
12795 addr_size * 2, _("Initial"));
12796 while (ent < local_end)
12797 {
12798 ent = print_mips_got_entry (data, pltgot, ent);
12799 printf ("\n");
12800 }
12801 printf ("\n");
12802 }
12803
12804 if (gotsym < symtabno)
12805 {
12806 int sym_width;
12807
12808 printf (_(" Global entries:\n"));
12809 printf (" %*s %10s %*s %*s %-7s %3s %s\n",
12810 addr_size * 2, _("Address"),
12811 _("Access"),
12812 addr_size * 2, _("Initial"),
12813 addr_size * 2, _("Sym.Val."),
12814 _("Type"),
12815 /* Note for translators: "Ndx" = abbreviated form of "Index". */
12816 _("Ndx"), _("Name"));
12817
12818 sym_width = (is_32bit_elf ? 80 : 160) - 28 - addr_size * 6 - 1;
12819 for (i = gotsym; i < symtabno; i++)
12820 {
12821 Elf_Internal_Sym * psym;
12822
12823 psym = dynamic_symbols + i;
12824 ent = print_mips_got_entry (data, pltgot, ent);
12825 printf (" ");
12826 print_vma (psym->st_value, LONG_HEX);
12827 printf (" %-7s %3s ",
12828 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
12829 get_symbol_index_type (psym->st_shndx));
12830 if (VALID_DYNAMIC_NAME (psym->st_name))
12831 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
12832 else
12833 printf (_("<corrupt: %14ld>"), psym->st_name);
12834 printf ("\n");
12835 }
12836 printf ("\n");
12837 }
12838
12839 if (data)
12840 free (data);
12841 }
12842
12843 if (mips_pltgot != 0 && jmprel != 0 && pltrel != 0 && pltrelsz != 0)
12844 {
12845 bfd_vma ent, end;
12846 size_t offset, rel_offset;
12847 unsigned long count, i;
12848 unsigned char * data;
12849 int addr_size, sym_width;
12850 Elf_Internal_Rela * rels;
12851
12852 rel_offset = offset_from_vma (file, jmprel, pltrelsz);
12853 if (pltrel == DT_RELA)
12854 {
12855 if (!slurp_rela_relocs (file, rel_offset, pltrelsz, &rels, &count))
12856 return 0;
12857 }
12858 else
12859 {
12860 if (!slurp_rel_relocs (file, rel_offset, pltrelsz, &rels, &count))
12861 return 0;
12862 }
12863
12864 ent = mips_pltgot;
12865 addr_size = (is_32bit_elf ? 4 : 8);
12866 end = mips_pltgot + (2 + count) * addr_size;
12867
12868 offset = offset_from_vma (file, mips_pltgot, end - mips_pltgot);
12869 data = (unsigned char *) get_data (NULL, file, offset, end - mips_pltgot,
12870 1, _("Procedure Linkage Table data"));
12871 if (data == NULL)
12872 return 0;
12873
12874 printf ("\nPLT GOT:\n\n");
12875 printf (_(" Reserved entries:\n"));
12876 printf (_(" %*s %*s Purpose\n"),
12877 addr_size * 2, _("Address"), addr_size * 2, _("Initial"));
12878 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
12879 printf (_(" PLT lazy resolver\n"));
12880 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
12881 printf (_(" Module pointer\n"));
12882 printf ("\n");
12883
12884 printf (_(" Entries:\n"));
12885 printf (" %*s %*s %*s %-7s %3s %s\n",
12886 addr_size * 2, _("Address"),
12887 addr_size * 2, _("Initial"),
12888 addr_size * 2, _("Sym.Val."), _("Type"), _("Ndx"), _("Name"));
12889 sym_width = (is_32bit_elf ? 80 : 160) - 17 - addr_size * 6 - 1;
12890 for (i = 0; i < count; i++)
12891 {
12892 Elf_Internal_Sym * psym;
12893
12894 psym = dynamic_symbols + get_reloc_symindex (rels[i].r_info);
12895 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
12896 printf (" ");
12897 print_vma (psym->st_value, LONG_HEX);
12898 printf (" %-7s %3s ",
12899 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
12900 get_symbol_index_type (psym->st_shndx));
12901 if (VALID_DYNAMIC_NAME (psym->st_name))
12902 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
12903 else
12904 printf (_("<corrupt: %14ld>"), psym->st_name);
12905 printf ("\n");
12906 }
12907 printf ("\n");
12908
12909 if (data)
12910 free (data);
12911 free (rels);
12912 }
12913
12914 return 1;
12915 }
12916
12917 static int
12918 process_gnu_liblist (FILE * file)
12919 {
12920 Elf_Internal_Shdr * section;
12921 Elf_Internal_Shdr * string_sec;
12922 Elf32_External_Lib * elib;
12923 char * strtab;
12924 size_t strtab_size;
12925 size_t cnt;
12926 unsigned i;
12927
12928 if (! do_arch)
12929 return 0;
12930
12931 for (i = 0, section = section_headers;
12932 i < elf_header.e_shnum;
12933 i++, section++)
12934 {
12935 switch (section->sh_type)
12936 {
12937 case SHT_GNU_LIBLIST:
12938 if (section->sh_link >= elf_header.e_shnum)
12939 break;
12940
12941 elib = (Elf32_External_Lib *)
12942 get_data (NULL, file, section->sh_offset, 1, section->sh_size,
12943 _("liblist section data"));
12944
12945 if (elib == NULL)
12946 break;
12947 string_sec = section_headers + section->sh_link;
12948
12949 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
12950 string_sec->sh_size,
12951 _("liblist string table"));
12952 if (strtab == NULL
12953 || section->sh_entsize != sizeof (Elf32_External_Lib))
12954 {
12955 free (elib);
12956 free (strtab);
12957 break;
12958 }
12959 strtab_size = string_sec->sh_size;
12960
12961 printf (_("\nLibrary list section '%s' contains %lu entries:\n"),
12962 SECTION_NAME (section),
12963 (unsigned long) (section->sh_size / sizeof (Elf32_External_Lib)));
12964
12965 puts (_(" Library Time Stamp Checksum Version Flags"));
12966
12967 for (cnt = 0; cnt < section->sh_size / sizeof (Elf32_External_Lib);
12968 ++cnt)
12969 {
12970 Elf32_Lib liblist;
12971 time_t atime;
12972 char timebuf[20];
12973 struct tm * tmp;
12974
12975 liblist.l_name = BYTE_GET (elib[cnt].l_name);
12976 atime = BYTE_GET (elib[cnt].l_time_stamp);
12977 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
12978 liblist.l_version = BYTE_GET (elib[cnt].l_version);
12979 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
12980
12981 tmp = gmtime (&atime);
12982 snprintf (timebuf, sizeof (timebuf),
12983 "%04u-%02u-%02uT%02u:%02u:%02u",
12984 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
12985 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
12986
12987 printf ("%3lu: ", (unsigned long) cnt);
12988 if (do_wide)
12989 printf ("%-20s", liblist.l_name < strtab_size
12990 ? strtab + liblist.l_name : _("<corrupt>"));
12991 else
12992 printf ("%-20.20s", liblist.l_name < strtab_size
12993 ? strtab + liblist.l_name : _("<corrupt>"));
12994 printf (" %s %#010lx %-7ld %-7ld\n", timebuf, liblist.l_checksum,
12995 liblist.l_version, liblist.l_flags);
12996 }
12997
12998 free (elib);
12999 free (strtab);
13000 }
13001 }
13002
13003 return 1;
13004 }
13005
13006 static const char *
13007 get_note_type (unsigned e_type)
13008 {
13009 static char buff[64];
13010
13011 if (elf_header.e_type == ET_CORE)
13012 switch (e_type)
13013 {
13014 case NT_AUXV:
13015 return _("NT_AUXV (auxiliary vector)");
13016 case NT_PRSTATUS:
13017 return _("NT_PRSTATUS (prstatus structure)");
13018 case NT_FPREGSET:
13019 return _("NT_FPREGSET (floating point registers)");
13020 case NT_PRPSINFO:
13021 return _("NT_PRPSINFO (prpsinfo structure)");
13022 case NT_TASKSTRUCT:
13023 return _("NT_TASKSTRUCT (task structure)");
13024 case NT_PRXFPREG:
13025 return _("NT_PRXFPREG (user_xfpregs structure)");
13026 case NT_PPC_VMX:
13027 return _("NT_PPC_VMX (ppc Altivec registers)");
13028 case NT_PPC_VSX:
13029 return _("NT_PPC_VSX (ppc VSX registers)");
13030 case NT_386_TLS:
13031 return _("NT_386_TLS (x86 TLS information)");
13032 case NT_386_IOPERM:
13033 return _("NT_386_IOPERM (x86 I/O permissions)");
13034 case NT_X86_XSTATE:
13035 return _("NT_X86_XSTATE (x86 XSAVE extended state)");
13036 case NT_S390_HIGH_GPRS:
13037 return _("NT_S390_HIGH_GPRS (s390 upper register halves)");
13038 case NT_S390_TIMER:
13039 return _("NT_S390_TIMER (s390 timer register)");
13040 case NT_S390_TODCMP:
13041 return _("NT_S390_TODCMP (s390 TOD comparator register)");
13042 case NT_S390_TODPREG:
13043 return _("NT_S390_TODPREG (s390 TOD programmable register)");
13044 case NT_S390_CTRS:
13045 return _("NT_S390_CTRS (s390 control registers)");
13046 case NT_S390_PREFIX:
13047 return _("NT_S390_PREFIX (s390 prefix register)");
13048 case NT_S390_LAST_BREAK:
13049 return _("NT_S390_LAST_BREAK (s390 last breaking event address)");
13050 case NT_S390_SYSTEM_CALL:
13051 return _("NT_S390_SYSTEM_CALL (s390 system call restart data)");
13052 case NT_S390_TDB:
13053 return _("NT_S390_TDB (s390 transaction diagnostic block)");
13054 case NT_ARM_VFP:
13055 return _("NT_ARM_VFP (arm VFP registers)");
13056 case NT_ARM_TLS:
13057 return _("NT_ARM_TLS (AArch TLS registers)");
13058 case NT_ARM_HW_BREAK:
13059 return _("NT_ARM_HW_BREAK (AArch hardware breakpoint registers)");
13060 case NT_ARM_HW_WATCH:
13061 return _("NT_ARM_HW_WATCH (AArch hardware watchpoint registers)");
13062 case NT_PSTATUS:
13063 return _("NT_PSTATUS (pstatus structure)");
13064 case NT_FPREGS:
13065 return _("NT_FPREGS (floating point registers)");
13066 case NT_PSINFO:
13067 return _("NT_PSINFO (psinfo structure)");
13068 case NT_LWPSTATUS:
13069 return _("NT_LWPSTATUS (lwpstatus_t structure)");
13070 case NT_LWPSINFO:
13071 return _("NT_LWPSINFO (lwpsinfo_t structure)");
13072 case NT_WIN32PSTATUS:
13073 return _("NT_WIN32PSTATUS (win32_pstatus structure)");
13074 case NT_SIGINFO:
13075 return _("NT_SIGINFO (siginfo_t data)");
13076 case NT_FILE:
13077 return _("NT_FILE (mapped files)");
13078 default:
13079 break;
13080 }
13081 else
13082 switch (e_type)
13083 {
13084 case NT_VERSION:
13085 return _("NT_VERSION (version)");
13086 case NT_ARCH:
13087 return _("NT_ARCH (architecture)");
13088 default:
13089 break;
13090 }
13091
13092 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
13093 return buff;
13094 }
13095
13096 static int
13097 print_core_note (Elf_Internal_Note *pnote)
13098 {
13099 unsigned int addr_size = is_32bit_elf ? 4 : 8;
13100 bfd_vma count, page_size;
13101 unsigned char *descdata, *filenames, *descend;
13102
13103 if (pnote->type != NT_FILE)
13104 return 1;
13105
13106 #ifndef BFD64
13107 if (!is_32bit_elf)
13108 {
13109 printf (_(" Cannot decode 64-bit note in 32-bit build\n"));
13110 /* Still "successful". */
13111 return 1;
13112 }
13113 #endif
13114
13115 if (pnote->descsz < 2 * addr_size)
13116 {
13117 printf (_(" Malformed note - too short for header\n"));
13118 return 0;
13119 }
13120
13121 descdata = (unsigned char *) pnote->descdata;
13122 descend = descdata + pnote->descsz;
13123
13124 if (descdata[pnote->descsz - 1] != '\0')
13125 {
13126 printf (_(" Malformed note - does not end with \\0\n"));
13127 return 0;
13128 }
13129
13130 count = byte_get (descdata, addr_size);
13131 descdata += addr_size;
13132
13133 page_size = byte_get (descdata, addr_size);
13134 descdata += addr_size;
13135
13136 if (pnote->descsz < 2 * addr_size + count * 3 * addr_size)
13137 {
13138 printf (_(" Malformed note - too short for supplied file count\n"));
13139 return 0;
13140 }
13141
13142 printf (_(" Page size: "));
13143 print_vma (page_size, DEC);
13144 printf ("\n");
13145
13146 printf (_(" %*s%*s%*s\n"),
13147 (int) (2 + 2 * addr_size), _("Start"),
13148 (int) (4 + 2 * addr_size), _("End"),
13149 (int) (4 + 2 * addr_size), _("Page Offset"));
13150 filenames = descdata + count * 3 * addr_size;
13151 while (--count > 0)
13152 {
13153 bfd_vma start, end, file_ofs;
13154
13155 if (filenames == descend)
13156 {
13157 printf (_(" Malformed note - filenames end too early\n"));
13158 return 0;
13159 }
13160
13161 start = byte_get (descdata, addr_size);
13162 descdata += addr_size;
13163 end = byte_get (descdata, addr_size);
13164 descdata += addr_size;
13165 file_ofs = byte_get (descdata, addr_size);
13166 descdata += addr_size;
13167
13168 printf (" ");
13169 print_vma (start, FULL_HEX);
13170 printf (" ");
13171 print_vma (end, FULL_HEX);
13172 printf (" ");
13173 print_vma (file_ofs, FULL_HEX);
13174 printf ("\n %s\n", filenames);
13175
13176 filenames += 1 + strlen ((char *) filenames);
13177 }
13178
13179 return 1;
13180 }
13181
13182 static const char *
13183 get_gnu_elf_note_type (unsigned e_type)
13184 {
13185 static char buff[64];
13186
13187 switch (e_type)
13188 {
13189 case NT_GNU_ABI_TAG:
13190 return _("NT_GNU_ABI_TAG (ABI version tag)");
13191 case NT_GNU_HWCAP:
13192 return _("NT_GNU_HWCAP (DSO-supplied software HWCAP info)");
13193 case NT_GNU_BUILD_ID:
13194 return _("NT_GNU_BUILD_ID (unique build ID bitstring)");
13195 case NT_GNU_GOLD_VERSION:
13196 return _("NT_GNU_GOLD_VERSION (gold version)");
13197 default:
13198 break;
13199 }
13200
13201 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
13202 return buff;
13203 }
13204
13205 static int
13206 print_gnu_note (Elf_Internal_Note *pnote)
13207 {
13208 switch (pnote->type)
13209 {
13210 case NT_GNU_BUILD_ID:
13211 {
13212 unsigned long i;
13213
13214 printf (_(" Build ID: "));
13215 for (i = 0; i < pnote->descsz; ++i)
13216 printf ("%02x", pnote->descdata[i] & 0xff);
13217 printf ("\n");
13218 }
13219 break;
13220
13221 case NT_GNU_ABI_TAG:
13222 {
13223 unsigned long os, major, minor, subminor;
13224 const char *osname;
13225
13226 os = byte_get ((unsigned char *) pnote->descdata, 4);
13227 major = byte_get ((unsigned char *) pnote->descdata + 4, 4);
13228 minor = byte_get ((unsigned char *) pnote->descdata + 8, 4);
13229 subminor = byte_get ((unsigned char *) pnote->descdata + 12, 4);
13230
13231 switch (os)
13232 {
13233 case GNU_ABI_TAG_LINUX:
13234 osname = "Linux";
13235 break;
13236 case GNU_ABI_TAG_HURD:
13237 osname = "Hurd";
13238 break;
13239 case GNU_ABI_TAG_SOLARIS:
13240 osname = "Solaris";
13241 break;
13242 case GNU_ABI_TAG_FREEBSD:
13243 osname = "FreeBSD";
13244 break;
13245 case GNU_ABI_TAG_NETBSD:
13246 osname = "NetBSD";
13247 break;
13248 default:
13249 osname = "Unknown";
13250 break;
13251 }
13252
13253 printf (_(" OS: %s, ABI: %ld.%ld.%ld\n"), osname,
13254 major, minor, subminor);
13255 }
13256 break;
13257 }
13258
13259 return 1;
13260 }
13261
13262 static const char *
13263 get_netbsd_elfcore_note_type (unsigned e_type)
13264 {
13265 static char buff[64];
13266
13267 if (e_type == NT_NETBSDCORE_PROCINFO)
13268 {
13269 /* NetBSD core "procinfo" structure. */
13270 return _("NetBSD procinfo structure");
13271 }
13272
13273 /* As of Jan 2002 there are no other machine-independent notes
13274 defined for NetBSD core files. If the note type is less
13275 than the start of the machine-dependent note types, we don't
13276 understand it. */
13277
13278 if (e_type < NT_NETBSDCORE_FIRSTMACH)
13279 {
13280 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
13281 return buff;
13282 }
13283
13284 switch (elf_header.e_machine)
13285 {
13286 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0
13287 and PT_GETFPREGS == mach+2. */
13288
13289 case EM_OLD_ALPHA:
13290 case EM_ALPHA:
13291 case EM_SPARC:
13292 case EM_SPARC32PLUS:
13293 case EM_SPARCV9:
13294 switch (e_type)
13295 {
13296 case NT_NETBSDCORE_FIRSTMACH + 0:
13297 return _("PT_GETREGS (reg structure)");
13298 case NT_NETBSDCORE_FIRSTMACH + 2:
13299 return _("PT_GETFPREGS (fpreg structure)");
13300 default:
13301 break;
13302 }
13303 break;
13304
13305 /* On all other arch's, PT_GETREGS == mach+1 and
13306 PT_GETFPREGS == mach+3. */
13307 default:
13308 switch (e_type)
13309 {
13310 case NT_NETBSDCORE_FIRSTMACH + 1:
13311 return _("PT_GETREGS (reg structure)");
13312 case NT_NETBSDCORE_FIRSTMACH + 3:
13313 return _("PT_GETFPREGS (fpreg structure)");
13314 default:
13315 break;
13316 }
13317 }
13318
13319 snprintf (buff, sizeof (buff), "PT_FIRSTMACH+%d",
13320 e_type - NT_NETBSDCORE_FIRSTMACH);
13321 return buff;
13322 }
13323
13324 static const char *
13325 get_stapsdt_note_type (unsigned e_type)
13326 {
13327 static char buff[64];
13328
13329 switch (e_type)
13330 {
13331 case NT_STAPSDT:
13332 return _("NT_STAPSDT (SystemTap probe descriptors)");
13333
13334 default:
13335 break;
13336 }
13337
13338 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
13339 return buff;
13340 }
13341
13342 static int
13343 print_stapsdt_note (Elf_Internal_Note *pnote)
13344 {
13345 int addr_size = is_32bit_elf ? 4 : 8;
13346 char *data = pnote->descdata;
13347 char *data_end = pnote->descdata + pnote->descsz;
13348 bfd_vma pc, base_addr, semaphore;
13349 char *provider, *probe, *arg_fmt;
13350
13351 pc = byte_get ((unsigned char *) data, addr_size);
13352 data += addr_size;
13353 base_addr = byte_get ((unsigned char *) data, addr_size);
13354 data += addr_size;
13355 semaphore = byte_get ((unsigned char *) data, addr_size);
13356 data += addr_size;
13357
13358 provider = data;
13359 data += strlen (data) + 1;
13360 probe = data;
13361 data += strlen (data) + 1;
13362 arg_fmt = data;
13363 data += strlen (data) + 1;
13364
13365 printf (_(" Provider: %s\n"), provider);
13366 printf (_(" Name: %s\n"), probe);
13367 printf (_(" Location: "));
13368 print_vma (pc, FULL_HEX);
13369 printf (_(", Base: "));
13370 print_vma (base_addr, FULL_HEX);
13371 printf (_(", Semaphore: "));
13372 print_vma (semaphore, FULL_HEX);
13373 printf ("\n");
13374 printf (_(" Arguments: %s\n"), arg_fmt);
13375
13376 return data == data_end;
13377 }
13378
13379 static const char *
13380 get_ia64_vms_note_type (unsigned e_type)
13381 {
13382 static char buff[64];
13383
13384 switch (e_type)
13385 {
13386 case NT_VMS_MHD:
13387 return _("NT_VMS_MHD (module header)");
13388 case NT_VMS_LNM:
13389 return _("NT_VMS_LNM (language name)");
13390 case NT_VMS_SRC:
13391 return _("NT_VMS_SRC (source files)");
13392 case NT_VMS_TITLE:
13393 return "NT_VMS_TITLE";
13394 case NT_VMS_EIDC:
13395 return _("NT_VMS_EIDC (consistency check)");
13396 case NT_VMS_FPMODE:
13397 return _("NT_VMS_FPMODE (FP mode)");
13398 case NT_VMS_LINKTIME:
13399 return "NT_VMS_LINKTIME";
13400 case NT_VMS_IMGNAM:
13401 return _("NT_VMS_IMGNAM (image name)");
13402 case NT_VMS_IMGID:
13403 return _("NT_VMS_IMGID (image id)");
13404 case NT_VMS_LINKID:
13405 return _("NT_VMS_LINKID (link id)");
13406 case NT_VMS_IMGBID:
13407 return _("NT_VMS_IMGBID (build id)");
13408 case NT_VMS_GSTNAM:
13409 return _("NT_VMS_GSTNAM (sym table name)");
13410 case NT_VMS_ORIG_DYN:
13411 return "NT_VMS_ORIG_DYN";
13412 case NT_VMS_PATCHTIME:
13413 return "NT_VMS_PATCHTIME";
13414 default:
13415 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
13416 return buff;
13417 }
13418 }
13419
13420 static int
13421 print_ia64_vms_note (Elf_Internal_Note * pnote)
13422 {
13423 switch (pnote->type)
13424 {
13425 case NT_VMS_MHD:
13426 if (pnote->descsz > 36)
13427 {
13428 size_t l = strlen (pnote->descdata + 34);
13429 printf (_(" Creation date : %.17s\n"), pnote->descdata);
13430 printf (_(" Last patch date: %.17s\n"), pnote->descdata + 17);
13431 printf (_(" Module name : %s\n"), pnote->descdata + 34);
13432 printf (_(" Module version : %s\n"), pnote->descdata + 34 + l + 1);
13433 }
13434 else
13435 printf (_(" Invalid size\n"));
13436 break;
13437 case NT_VMS_LNM:
13438 printf (_(" Language: %s\n"), pnote->descdata);
13439 break;
13440 #ifdef BFD64
13441 case NT_VMS_FPMODE:
13442 printf (_(" Floating Point mode: "));
13443 printf ("0x%016" BFD_VMA_FMT "x\n",
13444 (bfd_vma)byte_get ((unsigned char *)pnote->descdata, 8));
13445 break;
13446 case NT_VMS_LINKTIME:
13447 printf (_(" Link time: "));
13448 print_vms_time
13449 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
13450 printf ("\n");
13451 break;
13452 case NT_VMS_PATCHTIME:
13453 printf (_(" Patch time: "));
13454 print_vms_time
13455 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
13456 printf ("\n");
13457 break;
13458 case NT_VMS_ORIG_DYN:
13459 printf (_(" Major id: %u, minor id: %u\n"),
13460 (unsigned) byte_get ((unsigned char *)pnote->descdata, 4),
13461 (unsigned) byte_get ((unsigned char *)pnote->descdata + 4, 4));
13462 printf (_(" Last modified : "));
13463 print_vms_time
13464 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata + 8, 8));
13465 printf (_("\n Link flags : "));
13466 printf ("0x%016" BFD_VMA_FMT "x\n",
13467 (bfd_vma)byte_get ((unsigned char *)pnote->descdata + 16, 8));
13468 printf (_(" Header flags: 0x%08x\n"),
13469 (unsigned)byte_get ((unsigned char *)pnote->descdata + 24, 4));
13470 printf (_(" Image id : %s\n"), pnote->descdata + 32);
13471 break;
13472 #endif
13473 case NT_VMS_IMGNAM:
13474 printf (_(" Image name: %s\n"), pnote->descdata);
13475 break;
13476 case NT_VMS_GSTNAM:
13477 printf (_(" Global symbol table name: %s\n"), pnote->descdata);
13478 break;
13479 case NT_VMS_IMGID:
13480 printf (_(" Image id: %s\n"), pnote->descdata);
13481 break;
13482 case NT_VMS_LINKID:
13483 printf (_(" Linker id: %s\n"), pnote->descdata);
13484 break;
13485 default:
13486 break;
13487 }
13488 return 1;
13489 }
13490
13491 /* Note that by the ELF standard, the name field is already null byte
13492 terminated, and namesz includes the terminating null byte.
13493 I.E. the value of namesz for the name "FSF" is 4.
13494
13495 If the value of namesz is zero, there is no name present. */
13496 static int
13497 process_note (Elf_Internal_Note * pnote)
13498 {
13499 const char * name = pnote->namesz ? pnote->namedata : "(NONE)";
13500 const char * nt;
13501
13502 if (pnote->namesz == 0)
13503 /* If there is no note name, then use the default set of
13504 note type strings. */
13505 nt = get_note_type (pnote->type);
13506
13507 else if (const_strneq (pnote->namedata, "GNU"))
13508 /* GNU-specific object file notes. */
13509 nt = get_gnu_elf_note_type (pnote->type);
13510
13511 else if (const_strneq (pnote->namedata, "NetBSD-CORE"))
13512 /* NetBSD-specific core file notes. */
13513 nt = get_netbsd_elfcore_note_type (pnote->type);
13514
13515 else if (strneq (pnote->namedata, "SPU/", 4))
13516 {
13517 /* SPU-specific core file notes. */
13518 nt = pnote->namedata + 4;
13519 name = "SPU";
13520 }
13521
13522 else if (const_strneq (pnote->namedata, "IPF/VMS"))
13523 /* VMS/ia64-specific file notes. */
13524 nt = get_ia64_vms_note_type (pnote->type);
13525
13526 else if (const_strneq (pnote->namedata, "stapsdt"))
13527 nt = get_stapsdt_note_type (pnote->type);
13528
13529 else
13530 /* Don't recognize this note name; just use the default set of
13531 note type strings. */
13532 nt = get_note_type (pnote->type);
13533
13534 printf (" %-20s 0x%08lx\t%s\n", name, pnote->descsz, nt);
13535
13536 if (const_strneq (pnote->namedata, "IPF/VMS"))
13537 return print_ia64_vms_note (pnote);
13538 else if (const_strneq (pnote->namedata, "GNU"))
13539 return print_gnu_note (pnote);
13540 else if (const_strneq (pnote->namedata, "stapsdt"))
13541 return print_stapsdt_note (pnote);
13542 else if (const_strneq (pnote->namedata, "CORE"))
13543 return print_core_note (pnote);
13544 else
13545 return 1;
13546 }
13547
13548
13549 static int
13550 process_corefile_note_segment (FILE * file, bfd_vma offset, bfd_vma length)
13551 {
13552 Elf_External_Note * pnotes;
13553 Elf_External_Note * external;
13554 int res = 1;
13555
13556 if (length <= 0)
13557 return 0;
13558
13559 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
13560 _("notes"));
13561 if (pnotes == NULL)
13562 return 0;
13563
13564 external = pnotes;
13565
13566 printf (_("\nDisplaying notes found at file offset 0x%08lx with length 0x%08lx:\n"),
13567 (unsigned long) offset, (unsigned long) length);
13568 printf (_(" %-20s %10s\tDescription\n"), _("Owner"), _("Data size"));
13569
13570 while ((char *) external < (char *) pnotes + length)
13571 {
13572 Elf_Internal_Note inote;
13573 size_t min_notesz;
13574 char *next;
13575 char * temp = NULL;
13576 size_t data_remaining = ((char *) pnotes + length) - (char *) external;
13577
13578 if (!is_ia64_vms ())
13579 {
13580 /* PR binutils/15191
13581 Make sure that there is enough data to read. */
13582 min_notesz = offsetof (Elf_External_Note, name);
13583 if (data_remaining < min_notesz)
13584 {
13585 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
13586 (int) data_remaining);
13587 break;
13588 }
13589 inote.type = BYTE_GET (external->type);
13590 inote.namesz = BYTE_GET (external->namesz);
13591 inote.namedata = external->name;
13592 inote.descsz = BYTE_GET (external->descsz);
13593 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
13594 inote.descpos = offset + (inote.descdata - (char *) pnotes);
13595 next = inote.descdata + align_power (inote.descsz, 2);
13596 }
13597 else
13598 {
13599 Elf64_External_VMS_Note *vms_external;
13600
13601 /* PR binutils/15191
13602 Make sure that there is enough data to read. */
13603 min_notesz = offsetof (Elf64_External_VMS_Note, name);
13604 if (data_remaining < min_notesz)
13605 {
13606 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
13607 (int) data_remaining);
13608 break;
13609 }
13610
13611 vms_external = (Elf64_External_VMS_Note *) external;
13612 inote.type = BYTE_GET (vms_external->type);
13613 inote.namesz = BYTE_GET (vms_external->namesz);
13614 inote.namedata = vms_external->name;
13615 inote.descsz = BYTE_GET (vms_external->descsz);
13616 inote.descdata = inote.namedata + align_power (inote.namesz, 3);
13617 inote.descpos = offset + (inote.descdata - (char *) pnotes);
13618 next = inote.descdata + align_power (inote.descsz, 3);
13619 }
13620
13621 if (inote.descdata < (char *) external + min_notesz
13622 || next < (char *) external + min_notesz
13623 || data_remaining < (size_t)(next - (char *) external))
13624 {
13625 warn (_("note with invalid namesz and/or descsz found at offset 0x%lx\n"),
13626 (unsigned long) ((char *) external - (char *) pnotes));
13627 warn (_(" type: 0x%lx, namesize: 0x%08lx, descsize: 0x%08lx\n"),
13628 inote.type, inote.namesz, inote.descsz);
13629 break;
13630 }
13631
13632 external = (Elf_External_Note *) next;
13633
13634 /* Verify that name is null terminated. It appears that at least
13635 one version of Linux (RedHat 6.0) generates corefiles that don't
13636 comply with the ELF spec by failing to include the null byte in
13637 namesz. */
13638 if (inote.namedata[inote.namesz - 1] != '\0')
13639 {
13640 temp = (char *) malloc (inote.namesz + 1);
13641
13642 if (temp == NULL)
13643 {
13644 error (_("Out of memory\n"));
13645 res = 0;
13646 break;
13647 }
13648
13649 strncpy (temp, inote.namedata, inote.namesz);
13650 temp[inote.namesz] = 0;
13651
13652 /* warn (_("'%s' NOTE name not properly null terminated\n"), temp); */
13653 inote.namedata = temp;
13654 }
13655
13656 res &= process_note (& inote);
13657
13658 if (temp != NULL)
13659 {
13660 free (temp);
13661 temp = NULL;
13662 }
13663 }
13664
13665 free (pnotes);
13666
13667 return res;
13668 }
13669
13670 static int
13671 process_corefile_note_segments (FILE * file)
13672 {
13673 Elf_Internal_Phdr * segment;
13674 unsigned int i;
13675 int res = 1;
13676
13677 if (! get_program_headers (file))
13678 return 0;
13679
13680 for (i = 0, segment = program_headers;
13681 i < elf_header.e_phnum;
13682 i++, segment++)
13683 {
13684 if (segment->p_type == PT_NOTE)
13685 res &= process_corefile_note_segment (file,
13686 (bfd_vma) segment->p_offset,
13687 (bfd_vma) segment->p_filesz);
13688 }
13689
13690 return res;
13691 }
13692
13693 static int
13694 process_note_sections (FILE * file)
13695 {
13696 Elf_Internal_Shdr * section;
13697 unsigned long i;
13698 int res = 1;
13699
13700 for (i = 0, section = section_headers;
13701 i < elf_header.e_shnum && section != NULL;
13702 i++, section++)
13703 if (section->sh_type == SHT_NOTE)
13704 res &= process_corefile_note_segment (file,
13705 (bfd_vma) section->sh_offset,
13706 (bfd_vma) section->sh_size);
13707
13708 return res;
13709 }
13710
13711 static int
13712 process_notes (FILE * file)
13713 {
13714 /* If we have not been asked to display the notes then do nothing. */
13715 if (! do_notes)
13716 return 1;
13717
13718 if (elf_header.e_type != ET_CORE)
13719 return process_note_sections (file);
13720
13721 /* No program headers means no NOTE segment. */
13722 if (elf_header.e_phnum > 0)
13723 return process_corefile_note_segments (file);
13724
13725 printf (_("No note segments present in the core file.\n"));
13726 return 1;
13727 }
13728
13729 static int
13730 process_arch_specific (FILE * file)
13731 {
13732 if (! do_arch)
13733 return 1;
13734
13735 switch (elf_header.e_machine)
13736 {
13737 case EM_ARM:
13738 return process_arm_specific (file);
13739 case EM_MIPS:
13740 case EM_MIPS_RS3_LE:
13741 return process_mips_specific (file);
13742 break;
13743 case EM_PPC:
13744 return process_power_specific (file);
13745 break;
13746 case EM_SPARC:
13747 case EM_SPARC32PLUS:
13748 case EM_SPARCV9:
13749 return process_sparc_specific (file);
13750 break;
13751 case EM_TI_C6000:
13752 return process_tic6x_specific (file);
13753 break;
13754 case EM_MSP430:
13755 return process_msp430x_specific (file);
13756 default:
13757 break;
13758 }
13759 return 1;
13760 }
13761
13762 static int
13763 get_file_header (FILE * file)
13764 {
13765 /* Read in the identity array. */
13766 if (fread (elf_header.e_ident, EI_NIDENT, 1, file) != 1)
13767 return 0;
13768
13769 /* Determine how to read the rest of the header. */
13770 switch (elf_header.e_ident[EI_DATA])
13771 {
13772 default: /* fall through */
13773 case ELFDATANONE: /* fall through */
13774 case ELFDATA2LSB:
13775 byte_get = byte_get_little_endian;
13776 byte_put = byte_put_little_endian;
13777 break;
13778 case ELFDATA2MSB:
13779 byte_get = byte_get_big_endian;
13780 byte_put = byte_put_big_endian;
13781 break;
13782 }
13783
13784 /* For now we only support 32 bit and 64 bit ELF files. */
13785 is_32bit_elf = (elf_header.e_ident[EI_CLASS] != ELFCLASS64);
13786
13787 /* Read in the rest of the header. */
13788 if (is_32bit_elf)
13789 {
13790 Elf32_External_Ehdr ehdr32;
13791
13792 if (fread (ehdr32.e_type, sizeof (ehdr32) - EI_NIDENT, 1, file) != 1)
13793 return 0;
13794
13795 elf_header.e_type = BYTE_GET (ehdr32.e_type);
13796 elf_header.e_machine = BYTE_GET (ehdr32.e_machine);
13797 elf_header.e_version = BYTE_GET (ehdr32.e_version);
13798 elf_header.e_entry = BYTE_GET (ehdr32.e_entry);
13799 elf_header.e_phoff = BYTE_GET (ehdr32.e_phoff);
13800 elf_header.e_shoff = BYTE_GET (ehdr32.e_shoff);
13801 elf_header.e_flags = BYTE_GET (ehdr32.e_flags);
13802 elf_header.e_ehsize = BYTE_GET (ehdr32.e_ehsize);
13803 elf_header.e_phentsize = BYTE_GET (ehdr32.e_phentsize);
13804 elf_header.e_phnum = BYTE_GET (ehdr32.e_phnum);
13805 elf_header.e_shentsize = BYTE_GET (ehdr32.e_shentsize);
13806 elf_header.e_shnum = BYTE_GET (ehdr32.e_shnum);
13807 elf_header.e_shstrndx = BYTE_GET (ehdr32.e_shstrndx);
13808 }
13809 else
13810 {
13811 Elf64_External_Ehdr ehdr64;
13812
13813 /* If we have been compiled with sizeof (bfd_vma) == 4, then
13814 we will not be able to cope with the 64bit data found in
13815 64 ELF files. Detect this now and abort before we start
13816 overwriting things. */
13817 if (sizeof (bfd_vma) < 8)
13818 {
13819 error (_("This instance of readelf has been built without support for a\n\
13820 64 bit data type and so it cannot read 64 bit ELF files.\n"));
13821 return 0;
13822 }
13823
13824 if (fread (ehdr64.e_type, sizeof (ehdr64) - EI_NIDENT, 1, file) != 1)
13825 return 0;
13826
13827 elf_header.e_type = BYTE_GET (ehdr64.e_type);
13828 elf_header.e_machine = BYTE_GET (ehdr64.e_machine);
13829 elf_header.e_version = BYTE_GET (ehdr64.e_version);
13830 elf_header.e_entry = BYTE_GET (ehdr64.e_entry);
13831 elf_header.e_phoff = BYTE_GET (ehdr64.e_phoff);
13832 elf_header.e_shoff = BYTE_GET (ehdr64.e_shoff);
13833 elf_header.e_flags = BYTE_GET (ehdr64.e_flags);
13834 elf_header.e_ehsize = BYTE_GET (ehdr64.e_ehsize);
13835 elf_header.e_phentsize = BYTE_GET (ehdr64.e_phentsize);
13836 elf_header.e_phnum = BYTE_GET (ehdr64.e_phnum);
13837 elf_header.e_shentsize = BYTE_GET (ehdr64.e_shentsize);
13838 elf_header.e_shnum = BYTE_GET (ehdr64.e_shnum);
13839 elf_header.e_shstrndx = BYTE_GET (ehdr64.e_shstrndx);
13840 }
13841
13842 if (elf_header.e_shoff)
13843 {
13844 /* There may be some extensions in the first section header. Don't
13845 bomb if we can't read it. */
13846 if (is_32bit_elf)
13847 get_32bit_section_headers (file, 1);
13848 else
13849 get_64bit_section_headers (file, 1);
13850 }
13851
13852 return 1;
13853 }
13854
13855 /* Process one ELF object file according to the command line options.
13856 This file may actually be stored in an archive. The file is
13857 positioned at the start of the ELF object. */
13858
13859 static int
13860 process_object (char * file_name, FILE * file)
13861 {
13862 unsigned int i;
13863
13864 if (! get_file_header (file))
13865 {
13866 error (_("%s: Failed to read file header\n"), file_name);
13867 return 1;
13868 }
13869
13870 /* Initialise per file variables. */
13871 for (i = ARRAY_SIZE (version_info); i--;)
13872 version_info[i] = 0;
13873
13874 for (i = ARRAY_SIZE (dynamic_info); i--;)
13875 dynamic_info[i] = 0;
13876 dynamic_info_DT_GNU_HASH = 0;
13877
13878 /* Process the file. */
13879 if (show_name)
13880 printf (_("\nFile: %s\n"), file_name);
13881
13882 /* Initialise the dump_sects array from the cmdline_dump_sects array.
13883 Note we do this even if cmdline_dump_sects is empty because we
13884 must make sure that the dump_sets array is zeroed out before each
13885 object file is processed. */
13886 if (num_dump_sects > num_cmdline_dump_sects)
13887 memset (dump_sects, 0, num_dump_sects * sizeof (* dump_sects));
13888
13889 if (num_cmdline_dump_sects > 0)
13890 {
13891 if (num_dump_sects == 0)
13892 /* A sneaky way of allocating the dump_sects array. */
13893 request_dump_bynumber (num_cmdline_dump_sects, 0);
13894
13895 assert (num_dump_sects >= num_cmdline_dump_sects);
13896 memcpy (dump_sects, cmdline_dump_sects,
13897 num_cmdline_dump_sects * sizeof (* dump_sects));
13898 }
13899
13900 if (! process_file_header ())
13901 return 1;
13902
13903 if (! process_section_headers (file))
13904 {
13905 /* Without loaded section headers we cannot process lots of
13906 things. */
13907 do_unwind = do_version = do_dump = do_arch = 0;
13908
13909 if (! do_using_dynamic)
13910 do_syms = do_dyn_syms = do_reloc = 0;
13911 }
13912
13913 if (! process_section_groups (file))
13914 {
13915 /* Without loaded section groups we cannot process unwind. */
13916 do_unwind = 0;
13917 }
13918
13919 if (process_program_headers (file))
13920 process_dynamic_section (file);
13921
13922 process_relocs (file);
13923
13924 process_unwind (file);
13925
13926 process_symbol_table (file);
13927
13928 process_syminfo (file);
13929
13930 process_version_sections (file);
13931
13932 process_section_contents (file);
13933
13934 process_notes (file);
13935
13936 process_gnu_liblist (file);
13937
13938 process_arch_specific (file);
13939
13940 if (program_headers)
13941 {
13942 free (program_headers);
13943 program_headers = NULL;
13944 }
13945
13946 if (section_headers)
13947 {
13948 free (section_headers);
13949 section_headers = NULL;
13950 }
13951
13952 if (string_table)
13953 {
13954 free (string_table);
13955 string_table = NULL;
13956 string_table_length = 0;
13957 }
13958
13959 if (dynamic_strings)
13960 {
13961 free (dynamic_strings);
13962 dynamic_strings = NULL;
13963 dynamic_strings_length = 0;
13964 }
13965
13966 if (dynamic_symbols)
13967 {
13968 free (dynamic_symbols);
13969 dynamic_symbols = NULL;
13970 num_dynamic_syms = 0;
13971 }
13972
13973 if (dynamic_syminfo)
13974 {
13975 free (dynamic_syminfo);
13976 dynamic_syminfo = NULL;
13977 }
13978
13979 if (dynamic_section)
13980 {
13981 free (dynamic_section);
13982 dynamic_section = NULL;
13983 }
13984
13985 if (section_headers_groups)
13986 {
13987 free (section_headers_groups);
13988 section_headers_groups = NULL;
13989 }
13990
13991 if (section_groups)
13992 {
13993 struct group_list * g;
13994 struct group_list * next;
13995
13996 for (i = 0; i < group_count; i++)
13997 {
13998 for (g = section_groups [i].root; g != NULL; g = next)
13999 {
14000 next = g->next;
14001 free (g);
14002 }
14003 }
14004
14005 free (section_groups);
14006 section_groups = NULL;
14007 }
14008
14009 free_debug_memory ();
14010
14011 return 0;
14012 }
14013
14014 /* Process an ELF archive.
14015 On entry the file is positioned just after the ARMAG string. */
14016
14017 static int
14018 process_archive (char * file_name, FILE * file, bfd_boolean is_thin_archive)
14019 {
14020 struct archive_info arch;
14021 struct archive_info nested_arch;
14022 size_t got;
14023 int ret;
14024
14025 show_name = 1;
14026
14027 /* The ARCH structure is used to hold information about this archive. */
14028 arch.file_name = NULL;
14029 arch.file = NULL;
14030 arch.index_array = NULL;
14031 arch.sym_table = NULL;
14032 arch.longnames = NULL;
14033
14034 /* The NESTED_ARCH structure is used as a single-item cache of information
14035 about a nested archive (when members of a thin archive reside within
14036 another regular archive file). */
14037 nested_arch.file_name = NULL;
14038 nested_arch.file = NULL;
14039 nested_arch.index_array = NULL;
14040 nested_arch.sym_table = NULL;
14041 nested_arch.longnames = NULL;
14042
14043 if (setup_archive (&arch, file_name, file, is_thin_archive, do_archive_index) != 0)
14044 {
14045 ret = 1;
14046 goto out;
14047 }
14048
14049 if (do_archive_index)
14050 {
14051 if (arch.sym_table == NULL)
14052 error (_("%s: unable to dump the index as none was found\n"), file_name);
14053 else
14054 {
14055 unsigned int i, l;
14056 unsigned long current_pos;
14057
14058 printf (_("Index of archive %s: (%ld entries, 0x%lx bytes in the symbol table)\n"),
14059 file_name, (long) arch.index_num, arch.sym_size);
14060 current_pos = ftell (file);
14061
14062 for (i = l = 0; i < arch.index_num; i++)
14063 {
14064 if ((i == 0) || ((i > 0) && (arch.index_array[i] != arch.index_array[i - 1])))
14065 {
14066 char * member_name;
14067
14068 member_name = get_archive_member_name_at (&arch, arch.index_array[i], &nested_arch);
14069
14070 if (member_name != NULL)
14071 {
14072 char * qualified_name = make_qualified_name (&arch, &nested_arch, member_name);
14073
14074 if (qualified_name != NULL)
14075 {
14076 printf (_("Contents of binary %s at offset "), qualified_name);
14077 (void) print_vma (arch.index_array[i], PREFIX_HEX);
14078 putchar ('\n');
14079 free (qualified_name);
14080 }
14081 }
14082 }
14083
14084 if (l >= arch.sym_size)
14085 {
14086 error (_("%s: end of the symbol table reached before the end of the index\n"),
14087 file_name);
14088 break;
14089 }
14090 printf ("\t%s\n", arch.sym_table + l);
14091 l += strlen (arch.sym_table + l) + 1;
14092 }
14093
14094 if (arch.uses_64bit_indicies)
14095 l = (l + 7) & ~ 7;
14096 else
14097 l += l & 1;
14098
14099 if (l < arch.sym_size)
14100 error (_("%s: %ld bytes remain in the symbol table, but without corresponding entries in the index table\n"),
14101 file_name, arch.sym_size - l);
14102
14103 if (fseek (file, current_pos, SEEK_SET) != 0)
14104 {
14105 error (_("%s: failed to seek back to start of object files in the archive\n"), file_name);
14106 ret = 1;
14107 goto out;
14108 }
14109 }
14110
14111 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
14112 && !do_segments && !do_header && !do_dump && !do_version
14113 && !do_histogram && !do_debugging && !do_arch && !do_notes
14114 && !do_section_groups && !do_dyn_syms)
14115 {
14116 ret = 0; /* Archive index only. */
14117 goto out;
14118 }
14119 }
14120
14121 ret = 0;
14122
14123 while (1)
14124 {
14125 char * name;
14126 size_t namelen;
14127 char * qualified_name;
14128
14129 /* Read the next archive header. */
14130 if (fseek (file, arch.next_arhdr_offset, SEEK_SET) != 0)
14131 {
14132 error (_("%s: failed to seek to next archive header\n"), file_name);
14133 return 1;
14134 }
14135 got = fread (&arch.arhdr, 1, sizeof arch.arhdr, file);
14136 if (got != sizeof arch.arhdr)
14137 {
14138 if (got == 0)
14139 break;
14140 error (_("%s: failed to read archive header\n"), file_name);
14141 ret = 1;
14142 break;
14143 }
14144 if (memcmp (arch.arhdr.ar_fmag, ARFMAG, 2) != 0)
14145 {
14146 error (_("%s: did not find a valid archive header\n"), arch.file_name);
14147 ret = 1;
14148 break;
14149 }
14150
14151 arch.next_arhdr_offset += sizeof arch.arhdr;
14152
14153 archive_file_size = strtoul (arch.arhdr.ar_size, NULL, 10);
14154 if (archive_file_size & 01)
14155 ++archive_file_size;
14156
14157 name = get_archive_member_name (&arch, &nested_arch);
14158 if (name == NULL)
14159 {
14160 error (_("%s: bad archive file name\n"), file_name);
14161 ret = 1;
14162 break;
14163 }
14164 namelen = strlen (name);
14165
14166 qualified_name = make_qualified_name (&arch, &nested_arch, name);
14167 if (qualified_name == NULL)
14168 {
14169 error (_("%s: bad archive file name\n"), file_name);
14170 ret = 1;
14171 break;
14172 }
14173
14174 if (is_thin_archive && arch.nested_member_origin == 0)
14175 {
14176 /* This is a proxy for an external member of a thin archive. */
14177 FILE * member_file;
14178 char * member_file_name = adjust_relative_path (file_name, name, namelen);
14179 if (member_file_name == NULL)
14180 {
14181 ret = 1;
14182 break;
14183 }
14184
14185 member_file = fopen (member_file_name, "rb");
14186 if (member_file == NULL)
14187 {
14188 error (_("Input file '%s' is not readable.\n"), member_file_name);
14189 free (member_file_name);
14190 ret = 1;
14191 break;
14192 }
14193
14194 archive_file_offset = arch.nested_member_origin;
14195
14196 ret |= process_object (qualified_name, member_file);
14197
14198 fclose (member_file);
14199 free (member_file_name);
14200 }
14201 else if (is_thin_archive)
14202 {
14203 /* PR 15140: Allow for corrupt thin archives. */
14204 if (nested_arch.file == NULL)
14205 {
14206 error (_("%s: contains corrupt thin archive: %s\n"),
14207 file_name, name);
14208 ret = 1;
14209 break;
14210 }
14211
14212 /* This is a proxy for a member of a nested archive. */
14213 archive_file_offset = arch.nested_member_origin + sizeof arch.arhdr;
14214
14215 /* The nested archive file will have been opened and setup by
14216 get_archive_member_name. */
14217 if (fseek (nested_arch.file, archive_file_offset, SEEK_SET) != 0)
14218 {
14219 error (_("%s: failed to seek to archive member.\n"), nested_arch.file_name);
14220 ret = 1;
14221 break;
14222 }
14223
14224 ret |= process_object (qualified_name, nested_arch.file);
14225 }
14226 else
14227 {
14228 archive_file_offset = arch.next_arhdr_offset;
14229 arch.next_arhdr_offset += archive_file_size;
14230
14231 ret |= process_object (qualified_name, file);
14232 }
14233
14234 if (dump_sects != NULL)
14235 {
14236 free (dump_sects);
14237 dump_sects = NULL;
14238 num_dump_sects = 0;
14239 }
14240
14241 free (qualified_name);
14242 }
14243
14244 out:
14245 if (nested_arch.file != NULL)
14246 fclose (nested_arch.file);
14247 release_archive (&nested_arch);
14248 release_archive (&arch);
14249
14250 return ret;
14251 }
14252
14253 static int
14254 process_file (char * file_name)
14255 {
14256 FILE * file;
14257 struct stat statbuf;
14258 char armag[SARMAG];
14259 int ret;
14260
14261 if (stat (file_name, &statbuf) < 0)
14262 {
14263 if (errno == ENOENT)
14264 error (_("'%s': No such file\n"), file_name);
14265 else
14266 error (_("Could not locate '%s'. System error message: %s\n"),
14267 file_name, strerror (errno));
14268 return 1;
14269 }
14270
14271 if (! S_ISREG (statbuf.st_mode))
14272 {
14273 error (_("'%s' is not an ordinary file\n"), file_name);
14274 return 1;
14275 }
14276
14277 file = fopen (file_name, "rb");
14278 if (file == NULL)
14279 {
14280 error (_("Input file '%s' is not readable.\n"), file_name);
14281 return 1;
14282 }
14283
14284 if (fread (armag, SARMAG, 1, file) != 1)
14285 {
14286 error (_("%s: Failed to read file's magic number\n"), file_name);
14287 fclose (file);
14288 return 1;
14289 }
14290
14291 if (memcmp (armag, ARMAG, SARMAG) == 0)
14292 ret = process_archive (file_name, file, FALSE);
14293 else if (memcmp (armag, ARMAGT, SARMAG) == 0)
14294 ret = process_archive (file_name, file, TRUE);
14295 else
14296 {
14297 if (do_archive_index)
14298 error (_("File %s is not an archive so its index cannot be displayed.\n"),
14299 file_name);
14300
14301 rewind (file);
14302 archive_file_size = archive_file_offset = 0;
14303 ret = process_object (file_name, file);
14304 }
14305
14306 fclose (file);
14307
14308 return ret;
14309 }
14310
14311 #ifdef SUPPORT_DISASSEMBLY
14312 /* Needed by the i386 disassembler. For extra credit, someone could
14313 fix this so that we insert symbolic addresses here, esp for GOT/PLT
14314 symbols. */
14315
14316 void
14317 print_address (unsigned int addr, FILE * outfile)
14318 {
14319 fprintf (outfile,"0x%8.8x", addr);
14320 }
14321
14322 /* Needed by the i386 disassembler. */
14323 void
14324 db_task_printsym (unsigned int addr)
14325 {
14326 print_address (addr, stderr);
14327 }
14328 #endif
14329
14330 int
14331 main (int argc, char ** argv)
14332 {
14333 int err;
14334
14335 #if defined (HAVE_SETLOCALE) && defined (HAVE_LC_MESSAGES)
14336 setlocale (LC_MESSAGES, "");
14337 #endif
14338 #if defined (HAVE_SETLOCALE)
14339 setlocale (LC_CTYPE, "");
14340 #endif
14341 bindtextdomain (PACKAGE, LOCALEDIR);
14342 textdomain (PACKAGE);
14343
14344 expandargv (&argc, &argv);
14345
14346 parse_args (argc, argv);
14347
14348 if (num_dump_sects > 0)
14349 {
14350 /* Make a copy of the dump_sects array. */
14351 cmdline_dump_sects = (dump_type *)
14352 malloc (num_dump_sects * sizeof (* dump_sects));
14353 if (cmdline_dump_sects == NULL)
14354 error (_("Out of memory allocating dump request table.\n"));
14355 else
14356 {
14357 memcpy (cmdline_dump_sects, dump_sects,
14358 num_dump_sects * sizeof (* dump_sects));
14359 num_cmdline_dump_sects = num_dump_sects;
14360 }
14361 }
14362
14363 if (optind < (argc - 1))
14364 show_name = 1;
14365
14366 err = 0;
14367 while (optind < argc)
14368 err |= process_file (argv[optind++]);
14369
14370 if (dump_sects != NULL)
14371 free (dump_sects);
14372 if (cmdline_dump_sects != NULL)
14373 free (cmdline_dump_sects);
14374
14375 return err;
14376 }
This page took 0.35164 seconds and 4 git commands to generate.