b57e1e029bdf0cc9a99eb2d116e89198c6eadb72
[deliverable/binutils-gdb.git] / binutils / readelf.c
1 /* readelf.c -- display contents of an ELF format file
2 Copyright (C) 1998-2017 Free Software Foundation, Inc.
3
4 Originally developed by Eric Youngdale <eric@andante.jic.com>
5 Modifications by Nick Clifton <nickc@redhat.com>
6
7 This file is part of GNU Binutils.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
22 02110-1301, USA. */
23 \f
24 /* The difference between readelf and objdump:
25
26 Both programs are capable of displaying the contents of ELF format files,
27 so why does the binutils project have two file dumpers ?
28
29 The reason is that objdump sees an ELF file through a BFD filter of the
30 world; if BFD has a bug where, say, it disagrees about a machine constant
31 in e_flags, then the odds are good that it will remain internally
32 consistent. The linker sees it the BFD way, objdump sees it the BFD way,
33 GAS sees it the BFD way. There was need for a tool to go find out what
34 the file actually says.
35
36 This is why the readelf program does not link against the BFD library - it
37 exists as an independent program to help verify the correct working of BFD.
38
39 There is also the case that readelf can provide more information about an
40 ELF file than is provided by objdump. In particular it can display DWARF
41 debugging information which (at the moment) objdump cannot. */
42 \f
43 #include "sysdep.h"
44 #include <assert.h>
45 #include <time.h>
46 #include <zlib.h>
47 #ifdef HAVE_WCHAR_H
48 #include <wchar.h>
49 #endif
50
51 #if __GNUC__ >= 2
52 /* Define BFD64 here, even if our default architecture is 32 bit ELF
53 as this will allow us to read in and parse 64bit and 32bit ELF files.
54 Only do this if we believe that the compiler can support a 64 bit
55 data type. For now we only rely on GCC being able to do this. */
56 #define BFD64
57 #endif
58
59 #include "bfd.h"
60 #include "bucomm.h"
61 #include "elfcomm.h"
62 #include "dwarf.h"
63
64 #include "elf/common.h"
65 #include "elf/external.h"
66 #include "elf/internal.h"
67
68
69 /* Included here, before RELOC_MACROS_GEN_FUNC is defined, so that
70 we can obtain the H8 reloc numbers. We need these for the
71 get_reloc_size() function. We include h8.h again after defining
72 RELOC_MACROS_GEN_FUNC so that we get the naming function as well. */
73
74 #include "elf/h8.h"
75 #undef _ELF_H8_H
76
77 /* Undo the effects of #including reloc-macros.h. */
78
79 #undef START_RELOC_NUMBERS
80 #undef RELOC_NUMBER
81 #undef FAKE_RELOC
82 #undef EMPTY_RELOC
83 #undef END_RELOC_NUMBERS
84 #undef _RELOC_MACROS_H
85
86 /* The following headers use the elf/reloc-macros.h file to
87 automatically generate relocation recognition functions
88 such as elf_mips_reloc_type() */
89
90 #define RELOC_MACROS_GEN_FUNC
91
92 #include "elf/aarch64.h"
93 #include "elf/alpha.h"
94 #include "elf/arc.h"
95 #include "elf/arm.h"
96 #include "elf/avr.h"
97 #include "elf/bfin.h"
98 #include "elf/cr16.h"
99 #include "elf/cris.h"
100 #include "elf/crx.h"
101 #include "elf/d10v.h"
102 #include "elf/d30v.h"
103 #include "elf/dlx.h"
104 #include "elf/epiphany.h"
105 #include "elf/fr30.h"
106 #include "elf/frv.h"
107 #include "elf/ft32.h"
108 #include "elf/h8.h"
109 #include "elf/hppa.h"
110 #include "elf/i386.h"
111 #include "elf/i370.h"
112 #include "elf/i860.h"
113 #include "elf/i960.h"
114 #include "elf/ia64.h"
115 #include "elf/ip2k.h"
116 #include "elf/lm32.h"
117 #include "elf/iq2000.h"
118 #include "elf/m32c.h"
119 #include "elf/m32r.h"
120 #include "elf/m68k.h"
121 #include "elf/m68hc11.h"
122 #include "elf/mcore.h"
123 #include "elf/mep.h"
124 #include "elf/metag.h"
125 #include "elf/microblaze.h"
126 #include "elf/mips.h"
127 #include "elf/riscv.h"
128 #include "elf/mmix.h"
129 #include "elf/mn10200.h"
130 #include "elf/mn10300.h"
131 #include "elf/moxie.h"
132 #include "elf/mt.h"
133 #include "elf/msp430.h"
134 #include "elf/nds32.h"
135 #include "elf/nios2.h"
136 #include "elf/or1k.h"
137 #include "elf/pj.h"
138 #include "elf/ppc.h"
139 #include "elf/ppc64.h"
140 #include "elf/pru.h"
141 #include "elf/rl78.h"
142 #include "elf/rx.h"
143 #include "elf/s390.h"
144 #include "elf/score.h"
145 #include "elf/sh.h"
146 #include "elf/sparc.h"
147 #include "elf/spu.h"
148 #include "elf/tic6x.h"
149 #include "elf/tilegx.h"
150 #include "elf/tilepro.h"
151 #include "elf/v850.h"
152 #include "elf/vax.h"
153 #include "elf/visium.h"
154 #include "elf/wasm32.h"
155 #include "elf/x86-64.h"
156 #include "elf/xc16x.h"
157 #include "elf/xgate.h"
158 #include "elf/xstormy16.h"
159 #include "elf/xtensa.h"
160
161 #include "getopt.h"
162 #include "libiberty.h"
163 #include "safe-ctype.h"
164 #include "filenames.h"
165
166 #ifndef offsetof
167 #define offsetof(TYPE, MEMBER) ((size_t) &(((TYPE *) 0)->MEMBER))
168 #endif
169
170 typedef struct elf_section_list
171 {
172 Elf_Internal_Shdr * hdr;
173 struct elf_section_list * next;
174 } elf_section_list;
175
176 char * program_name = "readelf";
177 static unsigned long archive_file_offset;
178 static unsigned long archive_file_size;
179 static bfd_size_type current_file_size;
180 static unsigned long dynamic_addr;
181 static bfd_size_type dynamic_size;
182 static size_t dynamic_nent;
183 static char * dynamic_strings;
184 static unsigned long dynamic_strings_length;
185 static char * string_table;
186 static unsigned long string_table_length;
187 static unsigned long num_dynamic_syms;
188 static Elf_Internal_Sym * dynamic_symbols;
189 static Elf_Internal_Syminfo * dynamic_syminfo;
190 static unsigned long dynamic_syminfo_offset;
191 static unsigned int dynamic_syminfo_nent;
192 static char program_interpreter[PATH_MAX];
193 static bfd_vma dynamic_info[DT_ENCODING];
194 static bfd_vma dynamic_info_DT_GNU_HASH;
195 static bfd_vma version_info[16];
196 static Elf_Internal_Ehdr elf_header;
197 static Elf_Internal_Shdr * section_headers;
198 static Elf_Internal_Phdr * program_headers;
199 static Elf_Internal_Dyn * dynamic_section;
200 static elf_section_list * symtab_shndx_list;
201 static bfd_boolean show_name = FALSE;
202 static bfd_boolean do_dynamic = FALSE;
203 static bfd_boolean do_syms = FALSE;
204 static bfd_boolean do_dyn_syms = FALSE;
205 static bfd_boolean do_reloc = FALSE;
206 static bfd_boolean do_sections = FALSE;
207 static bfd_boolean do_section_groups = FALSE;
208 static bfd_boolean do_section_details = FALSE;
209 static bfd_boolean do_segments = FALSE;
210 static bfd_boolean do_unwind = FALSE;
211 static bfd_boolean do_using_dynamic = FALSE;
212 static bfd_boolean do_header = FALSE;
213 static bfd_boolean do_dump = FALSE;
214 static bfd_boolean do_version = FALSE;
215 static bfd_boolean do_histogram = FALSE;
216 static bfd_boolean do_debugging = FALSE;
217 static bfd_boolean do_arch = FALSE;
218 static bfd_boolean do_notes = FALSE;
219 static bfd_boolean do_archive_index = FALSE;
220 static bfd_boolean is_32bit_elf = FALSE;
221 static bfd_boolean decompress_dumps = FALSE;
222
223 struct group_list
224 {
225 struct group_list * next;
226 unsigned int section_index;
227 };
228
229 struct group
230 {
231 struct group_list * root;
232 unsigned int group_index;
233 };
234
235 static size_t group_count;
236 static struct group * section_groups;
237 static struct group ** section_headers_groups;
238
239
240 /* Flag bits indicating particular types of dump. */
241 #define HEX_DUMP (1 << 0) /* The -x command line switch. */
242 #define DISASS_DUMP (1 << 1) /* The -i command line switch. */
243 #define DEBUG_DUMP (1 << 2) /* The -w command line switch. */
244 #define STRING_DUMP (1 << 3) /* The -p command line switch. */
245 #define RELOC_DUMP (1 << 4) /* The -R command line switch. */
246
247 typedef unsigned char dump_type;
248
249 /* A linked list of the section names for which dumps were requested. */
250 struct dump_list_entry
251 {
252 char * name;
253 dump_type type;
254 struct dump_list_entry * next;
255 };
256 static struct dump_list_entry * dump_sects_byname;
257
258 /* A dynamic array of flags indicating for which sections a dump
259 has been requested via command line switches. */
260 static dump_type * cmdline_dump_sects = NULL;
261 static unsigned int num_cmdline_dump_sects = 0;
262
263 /* A dynamic array of flags indicating for which sections a dump of
264 some kind has been requested. It is reset on a per-object file
265 basis and then initialised from the cmdline_dump_sects array,
266 the results of interpreting the -w switch, and the
267 dump_sects_byname list. */
268 static dump_type * dump_sects = NULL;
269 static unsigned int num_dump_sects = 0;
270
271
272 /* How to print a vma value. */
273 typedef enum print_mode
274 {
275 HEX,
276 DEC,
277 DEC_5,
278 UNSIGNED,
279 PREFIX_HEX,
280 FULL_HEX,
281 LONG_HEX
282 }
283 print_mode;
284
285 /* Versioned symbol info. */
286 enum versioned_symbol_info
287 {
288 symbol_undefined,
289 symbol_hidden,
290 symbol_public
291 };
292
293 static const char * get_symbol_version_string
294 (FILE *, bfd_boolean, const char *, unsigned long, unsigned,
295 Elf_Internal_Sym *, enum versioned_symbol_info *, unsigned short *);
296
297 #define UNKNOWN -1
298
299 #define SECTION_NAME(X) \
300 ((X) == NULL ? _("<none>") \
301 : string_table == NULL ? _("<no-name>") \
302 : ((X)->sh_name >= string_table_length ? _("<corrupt>") \
303 : string_table + (X)->sh_name))
304
305 #define DT_VERSIONTAGIDX(tag) (DT_VERNEEDNUM - (tag)) /* Reverse order! */
306
307 #define GET_ELF_SYMBOLS(file, section, sym_count) \
308 (is_32bit_elf ? get_32bit_elf_symbols (file, section, sym_count) \
309 : get_64bit_elf_symbols (file, section, sym_count))
310
311 #define VALID_DYNAMIC_NAME(offset) ((dynamic_strings != NULL) && (offset < dynamic_strings_length))
312 /* GET_DYNAMIC_NAME asssumes that VALID_DYNAMIC_NAME has
313 already been called and verified that the string exists. */
314 #define GET_DYNAMIC_NAME(offset) (dynamic_strings + offset)
315
316 #define REMOVE_ARCH_BITS(ADDR) \
317 do \
318 { \
319 if (elf_header.e_machine == EM_ARM) \
320 (ADDR) &= ~1; \
321 } \
322 while (0)
323 \f
324 /* Retrieve NMEMB structures, each SIZE bytes long from FILE starting at OFFSET +
325 the offset of the current archive member, if we are examining an archive.
326 Put the retrieved data into VAR, if it is not NULL. Otherwise allocate a buffer
327 using malloc and fill that. In either case return the pointer to the start of
328 the retrieved data or NULL if something went wrong. If something does go wrong
329 and REASON is not NULL then emit an error message using REASON as part of the
330 context. */
331
332 static void *
333 get_data (void * var, FILE * file, unsigned long offset, bfd_size_type size,
334 bfd_size_type nmemb, const char * reason)
335 {
336 void * mvar;
337 bfd_size_type amt = size * nmemb;
338
339 if (size == 0 || nmemb == 0)
340 return NULL;
341
342 /* If the size_t type is smaller than the bfd_size_type, eg because
343 you are building a 32-bit tool on a 64-bit host, then make sure
344 that when the sizes are cast to (size_t) no information is lost. */
345 if (sizeof (size_t) < sizeof (bfd_size_type)
346 && ( (bfd_size_type) ((size_t) size) != size
347 || (bfd_size_type) ((size_t) nmemb) != nmemb))
348 {
349 if (reason)
350 error (_("Size truncation prevents reading 0x%" BFD_VMA_FMT "x"
351 " elements of size 0x%" BFD_VMA_FMT "x for %s\n"),
352 nmemb, size, reason);
353 return NULL;
354 }
355
356 /* Check for size overflow. */
357 if (amt < nmemb)
358 {
359 if (reason)
360 error (_("Size overflow prevents reading 0x%" BFD_VMA_FMT "x"
361 " elements of size 0x%" BFD_VMA_FMT "x for %s\n"),
362 nmemb, size, reason);
363 return NULL;
364 }
365
366 /* Be kind to memory chekers (eg valgrind, address sanitizer) by not
367 attempting to allocate memory when the read is bound to fail. */
368 if (amt > current_file_size
369 || offset + archive_file_offset + amt > current_file_size)
370 {
371 if (reason)
372 error (_("Reading 0x%" BFD_VMA_FMT "x"
373 " bytes extends past end of file for %s\n"),
374 amt, reason);
375 return NULL;
376 }
377
378 if (fseek (file, archive_file_offset + offset, SEEK_SET))
379 {
380 if (reason)
381 error (_("Unable to seek to 0x%lx for %s\n"),
382 archive_file_offset + offset, reason);
383 return NULL;
384 }
385
386 mvar = var;
387 if (mvar == NULL)
388 {
389 /* Check for overflow. */
390 if (nmemb < (~(bfd_size_type) 0 - 1) / size)
391 /* + 1 so that we can '\0' terminate invalid string table sections. */
392 mvar = malloc ((size_t) amt + 1);
393
394 if (mvar == NULL)
395 {
396 if (reason)
397 error (_("Out of memory allocating 0x%" BFD_VMA_FMT "x"
398 " bytes for %s\n"),
399 amt, reason);
400 return NULL;
401 }
402
403 ((char *) mvar)[amt] = '\0';
404 }
405
406 if (fread (mvar, (size_t) size, (size_t) nmemb, file) != nmemb)
407 {
408 if (reason)
409 error (_("Unable to read in 0x%" BFD_VMA_FMT "x bytes of %s\n"),
410 amt, reason);
411 if (mvar != var)
412 free (mvar);
413 return NULL;
414 }
415
416 return mvar;
417 }
418
419 /* Print a VMA value in the MODE specified.
420 Returns the number of characters displayed. */
421
422 static unsigned int
423 print_vma (bfd_vma vma, print_mode mode)
424 {
425 unsigned int nc = 0;
426
427 switch (mode)
428 {
429 case FULL_HEX:
430 nc = printf ("0x");
431 /* Fall through. */
432 case LONG_HEX:
433 #ifdef BFD64
434 if (is_32bit_elf)
435 return nc + printf ("%8.8" BFD_VMA_FMT "x", vma);
436 #endif
437 printf_vma (vma);
438 return nc + 16;
439
440 case DEC_5:
441 if (vma <= 99999)
442 return printf ("%5" BFD_VMA_FMT "d", vma);
443 /* Fall through. */
444 case PREFIX_HEX:
445 nc = printf ("0x");
446 /* Fall through. */
447 case HEX:
448 return nc + printf ("%" BFD_VMA_FMT "x", vma);
449
450 case DEC:
451 return printf ("%" BFD_VMA_FMT "d", vma);
452
453 case UNSIGNED:
454 return printf ("%" BFD_VMA_FMT "u", vma);
455
456 default:
457 /* FIXME: Report unrecognised mode ? */
458 return 0;
459 }
460 }
461
462 /* Display a symbol on stdout. Handles the display of control characters and
463 multibye characters (assuming the host environment supports them).
464
465 Display at most abs(WIDTH) characters, truncating as necessary, unless do_wide is true.
466
467 If WIDTH is negative then ensure that the output is at least (- WIDTH) characters,
468 padding as necessary.
469
470 Returns the number of emitted characters. */
471
472 static unsigned int
473 print_symbol (signed int width, const char *symbol)
474 {
475 bfd_boolean extra_padding = FALSE;
476 signed int num_printed = 0;
477 #ifdef HAVE_MBSTATE_T
478 mbstate_t state;
479 #endif
480 unsigned int width_remaining;
481
482 if (width < 0)
483 {
484 /* Keep the width positive. This also helps. */
485 width = - width;
486 extra_padding = TRUE;
487 }
488 assert (width != 0);
489
490 if (do_wide)
491 /* Set the remaining width to a very large value.
492 This simplifies the code below. */
493 width_remaining = INT_MAX;
494 else
495 width_remaining = width;
496
497 #ifdef HAVE_MBSTATE_T
498 /* Initialise the multibyte conversion state. */
499 memset (& state, 0, sizeof (state));
500 #endif
501
502 while (width_remaining)
503 {
504 size_t n;
505 const char c = *symbol++;
506
507 if (c == 0)
508 break;
509
510 /* Do not print control characters directly as they can affect terminal
511 settings. Such characters usually appear in the names generated
512 by the assembler for local labels. */
513 if (ISCNTRL (c))
514 {
515 if (width_remaining < 2)
516 break;
517
518 printf ("^%c", c + 0x40);
519 width_remaining -= 2;
520 num_printed += 2;
521 }
522 else if (ISPRINT (c))
523 {
524 putchar (c);
525 width_remaining --;
526 num_printed ++;
527 }
528 else
529 {
530 #ifdef HAVE_MBSTATE_T
531 wchar_t w;
532 #endif
533 /* Let printf do the hard work of displaying multibyte characters. */
534 printf ("%.1s", symbol - 1);
535 width_remaining --;
536 num_printed ++;
537
538 #ifdef HAVE_MBSTATE_T
539 /* Try to find out how many bytes made up the character that was
540 just printed. Advance the symbol pointer past the bytes that
541 were displayed. */
542 n = mbrtowc (& w, symbol - 1, MB_CUR_MAX, & state);
543 #else
544 n = 1;
545 #endif
546 if (n != (size_t) -1 && n != (size_t) -2 && n > 0)
547 symbol += (n - 1);
548 }
549 }
550
551 if (extra_padding && num_printed < width)
552 {
553 /* Fill in the remaining spaces. */
554 printf ("%-*s", width - num_printed, " ");
555 num_printed = width;
556 }
557
558 return num_printed;
559 }
560
561 /* Returns a pointer to a static buffer containing a printable version of
562 the given section's name. Like print_symbol, except that it does not try
563 to print multibyte characters, it just interprets them as hex values. */
564
565 static const char *
566 printable_section_name (const Elf_Internal_Shdr * sec)
567 {
568 #define MAX_PRINT_SEC_NAME_LEN 128
569 static char sec_name_buf [MAX_PRINT_SEC_NAME_LEN + 1];
570 const char * name = SECTION_NAME (sec);
571 char * buf = sec_name_buf;
572 char c;
573 unsigned int remaining = MAX_PRINT_SEC_NAME_LEN;
574
575 while ((c = * name ++) != 0)
576 {
577 if (ISCNTRL (c))
578 {
579 if (remaining < 2)
580 break;
581
582 * buf ++ = '^';
583 * buf ++ = c + 0x40;
584 remaining -= 2;
585 }
586 else if (ISPRINT (c))
587 {
588 * buf ++ = c;
589 remaining -= 1;
590 }
591 else
592 {
593 static char hex[17] = "0123456789ABCDEF";
594
595 if (remaining < 4)
596 break;
597 * buf ++ = '<';
598 * buf ++ = hex[(c & 0xf0) >> 4];
599 * buf ++ = hex[c & 0x0f];
600 * buf ++ = '>';
601 remaining -= 4;
602 }
603
604 if (remaining == 0)
605 break;
606 }
607
608 * buf = 0;
609 return sec_name_buf;
610 }
611
612 static const char *
613 printable_section_name_from_index (unsigned long ndx)
614 {
615 if (ndx >= elf_header.e_shnum)
616 return _("<corrupt>");
617
618 return printable_section_name (section_headers + ndx);
619 }
620
621 /* Return a pointer to section NAME, or NULL if no such section exists. */
622
623 static Elf_Internal_Shdr *
624 find_section (const char * name)
625 {
626 unsigned int i;
627
628 for (i = 0; i < elf_header.e_shnum; i++)
629 if (streq (SECTION_NAME (section_headers + i), name))
630 return section_headers + i;
631
632 return NULL;
633 }
634
635 /* Return a pointer to a section containing ADDR, or NULL if no such
636 section exists. */
637
638 static Elf_Internal_Shdr *
639 find_section_by_address (bfd_vma addr)
640 {
641 unsigned int i;
642
643 for (i = 0; i < elf_header.e_shnum; i++)
644 {
645 Elf_Internal_Shdr *sec = section_headers + i;
646 if (addr >= sec->sh_addr && addr < sec->sh_addr + sec->sh_size)
647 return sec;
648 }
649
650 return NULL;
651 }
652
653 static Elf_Internal_Shdr *
654 find_section_by_type (unsigned int type)
655 {
656 unsigned int i;
657
658 for (i = 0; i < elf_header.e_shnum; i++)
659 {
660 Elf_Internal_Shdr *sec = section_headers + i;
661 if (sec->sh_type == type)
662 return sec;
663 }
664
665 return NULL;
666 }
667
668 /* Return a pointer to section NAME, or NULL if no such section exists,
669 restricted to the list of sections given in SET. */
670
671 static Elf_Internal_Shdr *
672 find_section_in_set (const char * name, unsigned int * set)
673 {
674 unsigned int i;
675
676 if (set != NULL)
677 {
678 while ((i = *set++) > 0)
679 {
680 /* See PR 21156 for a reproducer. */
681 if (i >= elf_header.e_shnum)
682 continue; /* FIXME: Should we issue an error message ? */
683
684 if (streq (SECTION_NAME (section_headers + i), name))
685 return section_headers + i;
686 }
687 }
688
689 return find_section (name);
690 }
691
692 /* Read an unsigned LEB128 encoded value from DATA.
693 Set *LENGTH_RETURN to the number of bytes read. */
694
695 static inline unsigned long
696 read_uleb128 (unsigned char * data,
697 unsigned int * length_return,
698 const unsigned char * const end)
699 {
700 return read_leb128 (data, length_return, FALSE, end);
701 }
702
703 /* Return TRUE if the current file is for IA-64 machine and OpenVMS ABI.
704 This OS has so many departures from the ELF standard that we test it at
705 many places. */
706
707 static inline bfd_boolean
708 is_ia64_vms (void)
709 {
710 return elf_header.e_machine == EM_IA_64
711 && elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS;
712 }
713
714 /* Guess the relocation size commonly used by the specific machines. */
715
716 static bfd_boolean
717 guess_is_rela (unsigned int e_machine)
718 {
719 switch (e_machine)
720 {
721 /* Targets that use REL relocations. */
722 case EM_386:
723 case EM_IAMCU:
724 case EM_960:
725 case EM_ARM:
726 case EM_D10V:
727 case EM_CYGNUS_D10V:
728 case EM_DLX:
729 case EM_MIPS:
730 case EM_MIPS_RS3_LE:
731 case EM_CYGNUS_M32R:
732 case EM_SCORE:
733 case EM_XGATE:
734 return FALSE;
735
736 /* Targets that use RELA relocations. */
737 case EM_68K:
738 case EM_860:
739 case EM_AARCH64:
740 case EM_ADAPTEVA_EPIPHANY:
741 case EM_ALPHA:
742 case EM_ALTERA_NIOS2:
743 case EM_ARC:
744 case EM_ARC_COMPACT:
745 case EM_ARC_COMPACT2:
746 case EM_AVR:
747 case EM_AVR_OLD:
748 case EM_BLACKFIN:
749 case EM_CR16:
750 case EM_CRIS:
751 case EM_CRX:
752 case EM_D30V:
753 case EM_CYGNUS_D30V:
754 case EM_FR30:
755 case EM_FT32:
756 case EM_CYGNUS_FR30:
757 case EM_CYGNUS_FRV:
758 case EM_H8S:
759 case EM_H8_300:
760 case EM_H8_300H:
761 case EM_IA_64:
762 case EM_IP2K:
763 case EM_IP2K_OLD:
764 case EM_IQ2000:
765 case EM_LATTICEMICO32:
766 case EM_M32C_OLD:
767 case EM_M32C:
768 case EM_M32R:
769 case EM_MCORE:
770 case EM_CYGNUS_MEP:
771 case EM_METAG:
772 case EM_MMIX:
773 case EM_MN10200:
774 case EM_CYGNUS_MN10200:
775 case EM_MN10300:
776 case EM_CYGNUS_MN10300:
777 case EM_MOXIE:
778 case EM_MSP430:
779 case EM_MSP430_OLD:
780 case EM_MT:
781 case EM_NDS32:
782 case EM_NIOS32:
783 case EM_OR1K:
784 case EM_PPC64:
785 case EM_PPC:
786 case EM_TI_PRU:
787 case EM_RISCV:
788 case EM_RL78:
789 case EM_RX:
790 case EM_S390:
791 case EM_S390_OLD:
792 case EM_SH:
793 case EM_SPARC:
794 case EM_SPARC32PLUS:
795 case EM_SPARCV9:
796 case EM_SPU:
797 case EM_TI_C6000:
798 case EM_TILEGX:
799 case EM_TILEPRO:
800 case EM_V800:
801 case EM_V850:
802 case EM_CYGNUS_V850:
803 case EM_VAX:
804 case EM_VISIUM:
805 case EM_X86_64:
806 case EM_L1OM:
807 case EM_K1OM:
808 case EM_XSTORMY16:
809 case EM_XTENSA:
810 case EM_XTENSA_OLD:
811 case EM_MICROBLAZE:
812 case EM_MICROBLAZE_OLD:
813 case EM_WEBASSEMBLY:
814 return TRUE;
815
816 case EM_68HC05:
817 case EM_68HC08:
818 case EM_68HC11:
819 case EM_68HC16:
820 case EM_FX66:
821 case EM_ME16:
822 case EM_MMA:
823 case EM_NCPU:
824 case EM_NDR1:
825 case EM_PCP:
826 case EM_ST100:
827 case EM_ST19:
828 case EM_ST7:
829 case EM_ST9PLUS:
830 case EM_STARCORE:
831 case EM_SVX:
832 case EM_TINYJ:
833 default:
834 warn (_("Don't know about relocations on this machine architecture\n"));
835 return FALSE;
836 }
837 }
838
839 /* Load RELA type relocations from FILE at REL_OFFSET extending for REL_SIZE bytes.
840 Returns TRUE upon success, FALSE otherwise. If successful then a
841 pointer to a malloc'ed buffer containing the relocs is placed in *RELASP,
842 and the number of relocs loaded is placed in *NRELASP. It is the caller's
843 responsibility to free the allocated buffer. */
844
845 static bfd_boolean
846 slurp_rela_relocs (FILE * file,
847 unsigned long rel_offset,
848 unsigned long rel_size,
849 Elf_Internal_Rela ** relasp,
850 unsigned long * nrelasp)
851 {
852 Elf_Internal_Rela * relas;
853 size_t nrelas;
854 unsigned int i;
855
856 if (is_32bit_elf)
857 {
858 Elf32_External_Rela * erelas;
859
860 erelas = (Elf32_External_Rela *) get_data (NULL, file, rel_offset, 1,
861 rel_size, _("32-bit relocation data"));
862 if (!erelas)
863 return FALSE;
864
865 nrelas = rel_size / sizeof (Elf32_External_Rela);
866
867 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
868 sizeof (Elf_Internal_Rela));
869
870 if (relas == NULL)
871 {
872 free (erelas);
873 error (_("out of memory parsing relocs\n"));
874 return FALSE;
875 }
876
877 for (i = 0; i < nrelas; i++)
878 {
879 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
880 relas[i].r_info = BYTE_GET (erelas[i].r_info);
881 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
882 }
883
884 free (erelas);
885 }
886 else
887 {
888 Elf64_External_Rela * erelas;
889
890 erelas = (Elf64_External_Rela *) get_data (NULL, file, rel_offset, 1,
891 rel_size, _("64-bit relocation data"));
892 if (!erelas)
893 return FALSE;
894
895 nrelas = rel_size / sizeof (Elf64_External_Rela);
896
897 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
898 sizeof (Elf_Internal_Rela));
899
900 if (relas == NULL)
901 {
902 free (erelas);
903 error (_("out of memory parsing relocs\n"));
904 return FALSE;
905 }
906
907 for (i = 0; i < nrelas; i++)
908 {
909 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
910 relas[i].r_info = BYTE_GET (erelas[i].r_info);
911 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
912
913 /* The #ifdef BFD64 below is to prevent a compile time
914 warning. We know that if we do not have a 64 bit data
915 type that we will never execute this code anyway. */
916 #ifdef BFD64
917 if (elf_header.e_machine == EM_MIPS
918 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
919 {
920 /* In little-endian objects, r_info isn't really a
921 64-bit little-endian value: it has a 32-bit
922 little-endian symbol index followed by four
923 individual byte fields. Reorder INFO
924 accordingly. */
925 bfd_vma inf = relas[i].r_info;
926 inf = (((inf & 0xffffffff) << 32)
927 | ((inf >> 56) & 0xff)
928 | ((inf >> 40) & 0xff00)
929 | ((inf >> 24) & 0xff0000)
930 | ((inf >> 8) & 0xff000000));
931 relas[i].r_info = inf;
932 }
933 #endif /* BFD64 */
934 }
935
936 free (erelas);
937 }
938
939 *relasp = relas;
940 *nrelasp = nrelas;
941 return TRUE;
942 }
943
944 /* Load REL type relocations from FILE at REL_OFFSET extending for REL_SIZE bytes.
945 Returns TRUE upon success, FALSE otherwise. If successful then a
946 pointer to a malloc'ed buffer containing the relocs is placed in *RELSP,
947 and the number of relocs loaded is placed in *NRELSP. It is the caller's
948 responsibility to free the allocated buffer. */
949
950 static bfd_boolean
951 slurp_rel_relocs (FILE * file,
952 unsigned long rel_offset,
953 unsigned long rel_size,
954 Elf_Internal_Rela ** relsp,
955 unsigned long * nrelsp)
956 {
957 Elf_Internal_Rela * rels;
958 size_t nrels;
959 unsigned int i;
960
961 if (is_32bit_elf)
962 {
963 Elf32_External_Rel * erels;
964
965 erels = (Elf32_External_Rel *) get_data (NULL, file, rel_offset, 1,
966 rel_size, _("32-bit relocation data"));
967 if (!erels)
968 return FALSE;
969
970 nrels = rel_size / sizeof (Elf32_External_Rel);
971
972 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
973
974 if (rels == NULL)
975 {
976 free (erels);
977 error (_("out of memory parsing relocs\n"));
978 return FALSE;
979 }
980
981 for (i = 0; i < nrels; i++)
982 {
983 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
984 rels[i].r_info = BYTE_GET (erels[i].r_info);
985 rels[i].r_addend = 0;
986 }
987
988 free (erels);
989 }
990 else
991 {
992 Elf64_External_Rel * erels;
993
994 erels = (Elf64_External_Rel *) get_data (NULL, file, rel_offset, 1,
995 rel_size, _("64-bit relocation data"));
996 if (!erels)
997 return FALSE;
998
999 nrels = rel_size / sizeof (Elf64_External_Rel);
1000
1001 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
1002
1003 if (rels == NULL)
1004 {
1005 free (erels);
1006 error (_("out of memory parsing relocs\n"));
1007 return FALSE;
1008 }
1009
1010 for (i = 0; i < nrels; i++)
1011 {
1012 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
1013 rels[i].r_info = BYTE_GET (erels[i].r_info);
1014 rels[i].r_addend = 0;
1015
1016 /* The #ifdef BFD64 below is to prevent a compile time
1017 warning. We know that if we do not have a 64 bit data
1018 type that we will never execute this code anyway. */
1019 #ifdef BFD64
1020 if (elf_header.e_machine == EM_MIPS
1021 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
1022 {
1023 /* In little-endian objects, r_info isn't really a
1024 64-bit little-endian value: it has a 32-bit
1025 little-endian symbol index followed by four
1026 individual byte fields. Reorder INFO
1027 accordingly. */
1028 bfd_vma inf = rels[i].r_info;
1029 inf = (((inf & 0xffffffff) << 32)
1030 | ((inf >> 56) & 0xff)
1031 | ((inf >> 40) & 0xff00)
1032 | ((inf >> 24) & 0xff0000)
1033 | ((inf >> 8) & 0xff000000));
1034 rels[i].r_info = inf;
1035 }
1036 #endif /* BFD64 */
1037 }
1038
1039 free (erels);
1040 }
1041
1042 *relsp = rels;
1043 *nrelsp = nrels;
1044 return TRUE;
1045 }
1046
1047 /* Returns the reloc type extracted from the reloc info field. */
1048
1049 static unsigned int
1050 get_reloc_type (bfd_vma reloc_info)
1051 {
1052 if (is_32bit_elf)
1053 return ELF32_R_TYPE (reloc_info);
1054
1055 switch (elf_header.e_machine)
1056 {
1057 case EM_MIPS:
1058 /* Note: We assume that reloc_info has already been adjusted for us. */
1059 return ELF64_MIPS_R_TYPE (reloc_info);
1060
1061 case EM_SPARCV9:
1062 return ELF64_R_TYPE_ID (reloc_info);
1063
1064 default:
1065 return ELF64_R_TYPE (reloc_info);
1066 }
1067 }
1068
1069 /* Return the symbol index extracted from the reloc info field. */
1070
1071 static bfd_vma
1072 get_reloc_symindex (bfd_vma reloc_info)
1073 {
1074 return is_32bit_elf ? ELF32_R_SYM (reloc_info) : ELF64_R_SYM (reloc_info);
1075 }
1076
1077 static inline bfd_boolean
1078 uses_msp430x_relocs (void)
1079 {
1080 return
1081 elf_header.e_machine == EM_MSP430 /* Paranoia. */
1082 /* GCC uses osabi == ELFOSBI_STANDALONE. */
1083 && (((elf_header.e_flags & EF_MSP430_MACH) == E_MSP430_MACH_MSP430X)
1084 /* TI compiler uses ELFOSABI_NONE. */
1085 || (elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE));
1086 }
1087
1088 /* Display the contents of the relocation data found at the specified
1089 offset. */
1090
1091 static bfd_boolean
1092 dump_relocations (FILE * file,
1093 unsigned long rel_offset,
1094 unsigned long rel_size,
1095 Elf_Internal_Sym * symtab,
1096 unsigned long nsyms,
1097 char * strtab,
1098 unsigned long strtablen,
1099 int is_rela,
1100 bfd_boolean is_dynsym)
1101 {
1102 unsigned long i;
1103 Elf_Internal_Rela * rels;
1104 bfd_boolean res = TRUE;
1105
1106 if (is_rela == UNKNOWN)
1107 is_rela = guess_is_rela (elf_header.e_machine);
1108
1109 if (is_rela)
1110 {
1111 if (!slurp_rela_relocs (file, rel_offset, rel_size, &rels, &rel_size))
1112 return FALSE;
1113 }
1114 else
1115 {
1116 if (!slurp_rel_relocs (file, rel_offset, rel_size, &rels, &rel_size))
1117 return FALSE;
1118 }
1119
1120 if (is_32bit_elf)
1121 {
1122 if (is_rela)
1123 {
1124 if (do_wide)
1125 printf (_(" Offset Info Type Sym. Value Symbol's Name + Addend\n"));
1126 else
1127 printf (_(" Offset Info Type Sym.Value Sym. Name + Addend\n"));
1128 }
1129 else
1130 {
1131 if (do_wide)
1132 printf (_(" Offset Info Type Sym. Value Symbol's Name\n"));
1133 else
1134 printf (_(" Offset Info Type Sym.Value Sym. Name\n"));
1135 }
1136 }
1137 else
1138 {
1139 if (is_rela)
1140 {
1141 if (do_wide)
1142 printf (_(" Offset Info Type Symbol's Value Symbol's Name + Addend\n"));
1143 else
1144 printf (_(" Offset Info Type Sym. Value Sym. Name + Addend\n"));
1145 }
1146 else
1147 {
1148 if (do_wide)
1149 printf (_(" Offset Info Type Symbol's Value Symbol's Name\n"));
1150 else
1151 printf (_(" Offset Info Type Sym. Value Sym. Name\n"));
1152 }
1153 }
1154
1155 for (i = 0; i < rel_size; i++)
1156 {
1157 const char * rtype;
1158 bfd_vma offset;
1159 bfd_vma inf;
1160 bfd_vma symtab_index;
1161 bfd_vma type;
1162
1163 offset = rels[i].r_offset;
1164 inf = rels[i].r_info;
1165
1166 type = get_reloc_type (inf);
1167 symtab_index = get_reloc_symindex (inf);
1168
1169 if (is_32bit_elf)
1170 {
1171 printf ("%8.8lx %8.8lx ",
1172 (unsigned long) offset & 0xffffffff,
1173 (unsigned long) inf & 0xffffffff);
1174 }
1175 else
1176 {
1177 #if BFD_HOST_64BIT_LONG
1178 printf (do_wide
1179 ? "%16.16lx %16.16lx "
1180 : "%12.12lx %12.12lx ",
1181 offset, inf);
1182 #elif BFD_HOST_64BIT_LONG_LONG
1183 #ifndef __MSVCRT__
1184 printf (do_wide
1185 ? "%16.16llx %16.16llx "
1186 : "%12.12llx %12.12llx ",
1187 offset, inf);
1188 #else
1189 printf (do_wide
1190 ? "%16.16I64x %16.16I64x "
1191 : "%12.12I64x %12.12I64x ",
1192 offset, inf);
1193 #endif
1194 #else
1195 printf (do_wide
1196 ? "%8.8lx%8.8lx %8.8lx%8.8lx "
1197 : "%4.4lx%8.8lx %4.4lx%8.8lx ",
1198 _bfd_int64_high (offset),
1199 _bfd_int64_low (offset),
1200 _bfd_int64_high (inf),
1201 _bfd_int64_low (inf));
1202 #endif
1203 }
1204
1205 switch (elf_header.e_machine)
1206 {
1207 default:
1208 rtype = NULL;
1209 break;
1210
1211 case EM_AARCH64:
1212 rtype = elf_aarch64_reloc_type (type);
1213 break;
1214
1215 case EM_M32R:
1216 case EM_CYGNUS_M32R:
1217 rtype = elf_m32r_reloc_type (type);
1218 break;
1219
1220 case EM_386:
1221 case EM_IAMCU:
1222 rtype = elf_i386_reloc_type (type);
1223 break;
1224
1225 case EM_68HC11:
1226 case EM_68HC12:
1227 rtype = elf_m68hc11_reloc_type (type);
1228 break;
1229
1230 case EM_68K:
1231 rtype = elf_m68k_reloc_type (type);
1232 break;
1233
1234 case EM_960:
1235 rtype = elf_i960_reloc_type (type);
1236 break;
1237
1238 case EM_AVR:
1239 case EM_AVR_OLD:
1240 rtype = elf_avr_reloc_type (type);
1241 break;
1242
1243 case EM_OLD_SPARCV9:
1244 case EM_SPARC32PLUS:
1245 case EM_SPARCV9:
1246 case EM_SPARC:
1247 rtype = elf_sparc_reloc_type (type);
1248 break;
1249
1250 case EM_SPU:
1251 rtype = elf_spu_reloc_type (type);
1252 break;
1253
1254 case EM_V800:
1255 rtype = v800_reloc_type (type);
1256 break;
1257 case EM_V850:
1258 case EM_CYGNUS_V850:
1259 rtype = v850_reloc_type (type);
1260 break;
1261
1262 case EM_D10V:
1263 case EM_CYGNUS_D10V:
1264 rtype = elf_d10v_reloc_type (type);
1265 break;
1266
1267 case EM_D30V:
1268 case EM_CYGNUS_D30V:
1269 rtype = elf_d30v_reloc_type (type);
1270 break;
1271
1272 case EM_DLX:
1273 rtype = elf_dlx_reloc_type (type);
1274 break;
1275
1276 case EM_SH:
1277 rtype = elf_sh_reloc_type (type);
1278 break;
1279
1280 case EM_MN10300:
1281 case EM_CYGNUS_MN10300:
1282 rtype = elf_mn10300_reloc_type (type);
1283 break;
1284
1285 case EM_MN10200:
1286 case EM_CYGNUS_MN10200:
1287 rtype = elf_mn10200_reloc_type (type);
1288 break;
1289
1290 case EM_FR30:
1291 case EM_CYGNUS_FR30:
1292 rtype = elf_fr30_reloc_type (type);
1293 break;
1294
1295 case EM_CYGNUS_FRV:
1296 rtype = elf_frv_reloc_type (type);
1297 break;
1298
1299 case EM_FT32:
1300 rtype = elf_ft32_reloc_type (type);
1301 break;
1302
1303 case EM_MCORE:
1304 rtype = elf_mcore_reloc_type (type);
1305 break;
1306
1307 case EM_MMIX:
1308 rtype = elf_mmix_reloc_type (type);
1309 break;
1310
1311 case EM_MOXIE:
1312 rtype = elf_moxie_reloc_type (type);
1313 break;
1314
1315 case EM_MSP430:
1316 if (uses_msp430x_relocs ())
1317 {
1318 rtype = elf_msp430x_reloc_type (type);
1319 break;
1320 }
1321 /* Fall through. */
1322 case EM_MSP430_OLD:
1323 rtype = elf_msp430_reloc_type (type);
1324 break;
1325
1326 case EM_NDS32:
1327 rtype = elf_nds32_reloc_type (type);
1328 break;
1329
1330 case EM_PPC:
1331 rtype = elf_ppc_reloc_type (type);
1332 break;
1333
1334 case EM_PPC64:
1335 rtype = elf_ppc64_reloc_type (type);
1336 break;
1337
1338 case EM_MIPS:
1339 case EM_MIPS_RS3_LE:
1340 rtype = elf_mips_reloc_type (type);
1341 break;
1342
1343 case EM_RISCV:
1344 rtype = elf_riscv_reloc_type (type);
1345 break;
1346
1347 case EM_ALPHA:
1348 rtype = elf_alpha_reloc_type (type);
1349 break;
1350
1351 case EM_ARM:
1352 rtype = elf_arm_reloc_type (type);
1353 break;
1354
1355 case EM_ARC:
1356 case EM_ARC_COMPACT:
1357 case EM_ARC_COMPACT2:
1358 rtype = elf_arc_reloc_type (type);
1359 break;
1360
1361 case EM_PARISC:
1362 rtype = elf_hppa_reloc_type (type);
1363 break;
1364
1365 case EM_H8_300:
1366 case EM_H8_300H:
1367 case EM_H8S:
1368 rtype = elf_h8_reloc_type (type);
1369 break;
1370
1371 case EM_OR1K:
1372 rtype = elf_or1k_reloc_type (type);
1373 break;
1374
1375 case EM_PJ:
1376 case EM_PJ_OLD:
1377 rtype = elf_pj_reloc_type (type);
1378 break;
1379 case EM_IA_64:
1380 rtype = elf_ia64_reloc_type (type);
1381 break;
1382
1383 case EM_CRIS:
1384 rtype = elf_cris_reloc_type (type);
1385 break;
1386
1387 case EM_860:
1388 rtype = elf_i860_reloc_type (type);
1389 break;
1390
1391 case EM_X86_64:
1392 case EM_L1OM:
1393 case EM_K1OM:
1394 rtype = elf_x86_64_reloc_type (type);
1395 break;
1396
1397 case EM_S370:
1398 rtype = i370_reloc_type (type);
1399 break;
1400
1401 case EM_S390_OLD:
1402 case EM_S390:
1403 rtype = elf_s390_reloc_type (type);
1404 break;
1405
1406 case EM_SCORE:
1407 rtype = elf_score_reloc_type (type);
1408 break;
1409
1410 case EM_XSTORMY16:
1411 rtype = elf_xstormy16_reloc_type (type);
1412 break;
1413
1414 case EM_CRX:
1415 rtype = elf_crx_reloc_type (type);
1416 break;
1417
1418 case EM_VAX:
1419 rtype = elf_vax_reloc_type (type);
1420 break;
1421
1422 case EM_VISIUM:
1423 rtype = elf_visium_reloc_type (type);
1424 break;
1425
1426 case EM_ADAPTEVA_EPIPHANY:
1427 rtype = elf_epiphany_reloc_type (type);
1428 break;
1429
1430 case EM_IP2K:
1431 case EM_IP2K_OLD:
1432 rtype = elf_ip2k_reloc_type (type);
1433 break;
1434
1435 case EM_IQ2000:
1436 rtype = elf_iq2000_reloc_type (type);
1437 break;
1438
1439 case EM_XTENSA_OLD:
1440 case EM_XTENSA:
1441 rtype = elf_xtensa_reloc_type (type);
1442 break;
1443
1444 case EM_LATTICEMICO32:
1445 rtype = elf_lm32_reloc_type (type);
1446 break;
1447
1448 case EM_M32C_OLD:
1449 case EM_M32C:
1450 rtype = elf_m32c_reloc_type (type);
1451 break;
1452
1453 case EM_MT:
1454 rtype = elf_mt_reloc_type (type);
1455 break;
1456
1457 case EM_BLACKFIN:
1458 rtype = elf_bfin_reloc_type (type);
1459 break;
1460
1461 case EM_CYGNUS_MEP:
1462 rtype = elf_mep_reloc_type (type);
1463 break;
1464
1465 case EM_CR16:
1466 rtype = elf_cr16_reloc_type (type);
1467 break;
1468
1469 case EM_MICROBLAZE:
1470 case EM_MICROBLAZE_OLD:
1471 rtype = elf_microblaze_reloc_type (type);
1472 break;
1473
1474 case EM_RL78:
1475 rtype = elf_rl78_reloc_type (type);
1476 break;
1477
1478 case EM_RX:
1479 rtype = elf_rx_reloc_type (type);
1480 break;
1481
1482 case EM_METAG:
1483 rtype = elf_metag_reloc_type (type);
1484 break;
1485
1486 case EM_XC16X:
1487 case EM_C166:
1488 rtype = elf_xc16x_reloc_type (type);
1489 break;
1490
1491 case EM_TI_C6000:
1492 rtype = elf_tic6x_reloc_type (type);
1493 break;
1494
1495 case EM_TILEGX:
1496 rtype = elf_tilegx_reloc_type (type);
1497 break;
1498
1499 case EM_TILEPRO:
1500 rtype = elf_tilepro_reloc_type (type);
1501 break;
1502
1503 case EM_WEBASSEMBLY:
1504 rtype = elf_wasm32_reloc_type (type);
1505 break;
1506
1507 case EM_XGATE:
1508 rtype = elf_xgate_reloc_type (type);
1509 break;
1510
1511 case EM_ALTERA_NIOS2:
1512 rtype = elf_nios2_reloc_type (type);
1513 break;
1514
1515 case EM_TI_PRU:
1516 rtype = elf_pru_reloc_type (type);
1517 break;
1518 }
1519
1520 if (rtype == NULL)
1521 printf (_("unrecognized: %-7lx"), (unsigned long) type & 0xffffffff);
1522 else
1523 printf (do_wide ? "%-22.22s" : "%-17.17s", rtype);
1524
1525 if (elf_header.e_machine == EM_ALPHA
1526 && rtype != NULL
1527 && streq (rtype, "R_ALPHA_LITUSE")
1528 && is_rela)
1529 {
1530 switch (rels[i].r_addend)
1531 {
1532 case LITUSE_ALPHA_ADDR: rtype = "ADDR"; break;
1533 case LITUSE_ALPHA_BASE: rtype = "BASE"; break;
1534 case LITUSE_ALPHA_BYTOFF: rtype = "BYTOFF"; break;
1535 case LITUSE_ALPHA_JSR: rtype = "JSR"; break;
1536 case LITUSE_ALPHA_TLSGD: rtype = "TLSGD"; break;
1537 case LITUSE_ALPHA_TLSLDM: rtype = "TLSLDM"; break;
1538 case LITUSE_ALPHA_JSRDIRECT: rtype = "JSRDIRECT"; break;
1539 default: rtype = NULL;
1540 }
1541
1542 if (rtype)
1543 printf (" (%s)", rtype);
1544 else
1545 {
1546 putchar (' ');
1547 printf (_("<unknown addend: %lx>"),
1548 (unsigned long) rels[i].r_addend);
1549 res = FALSE;
1550 }
1551 }
1552 else if (symtab_index)
1553 {
1554 if (symtab == NULL || symtab_index >= nsyms)
1555 {
1556 error (_(" bad symbol index: %08lx in reloc"), (unsigned long) symtab_index);
1557 res = FALSE;
1558 }
1559 else
1560 {
1561 Elf_Internal_Sym * psym;
1562 const char * version_string;
1563 enum versioned_symbol_info sym_info;
1564 unsigned short vna_other;
1565
1566 psym = symtab + symtab_index;
1567
1568 version_string
1569 = get_symbol_version_string (file, is_dynsym,
1570 strtab, strtablen,
1571 symtab_index,
1572 psym,
1573 &sym_info,
1574 &vna_other);
1575
1576 printf (" ");
1577
1578 if (ELF_ST_TYPE (psym->st_info) == STT_GNU_IFUNC)
1579 {
1580 const char * name;
1581 unsigned int len;
1582 unsigned int width = is_32bit_elf ? 8 : 14;
1583
1584 /* Relocations against GNU_IFUNC symbols do not use the value
1585 of the symbol as the address to relocate against. Instead
1586 they invoke the function named by the symbol and use its
1587 result as the address for relocation.
1588
1589 To indicate this to the user, do not display the value of
1590 the symbol in the "Symbols's Value" field. Instead show
1591 its name followed by () as a hint that the symbol is
1592 invoked. */
1593
1594 if (strtab == NULL
1595 || psym->st_name == 0
1596 || psym->st_name >= strtablen)
1597 name = "??";
1598 else
1599 name = strtab + psym->st_name;
1600
1601 len = print_symbol (width, name);
1602 if (version_string)
1603 printf (sym_info == symbol_public ? "@@%s" : "@%s",
1604 version_string);
1605 printf ("()%-*s", len <= width ? (width + 1) - len : 1, " ");
1606 }
1607 else
1608 {
1609 print_vma (psym->st_value, LONG_HEX);
1610
1611 printf (is_32bit_elf ? " " : " ");
1612 }
1613
1614 if (psym->st_name == 0)
1615 {
1616 const char * sec_name = "<null>";
1617 char name_buf[40];
1618
1619 if (ELF_ST_TYPE (psym->st_info) == STT_SECTION)
1620 {
1621 if (psym->st_shndx < elf_header.e_shnum)
1622 sec_name = SECTION_NAME (section_headers + psym->st_shndx);
1623 else if (psym->st_shndx == SHN_ABS)
1624 sec_name = "ABS";
1625 else if (psym->st_shndx == SHN_COMMON)
1626 sec_name = "COMMON";
1627 else if ((elf_header.e_machine == EM_MIPS
1628 && psym->st_shndx == SHN_MIPS_SCOMMON)
1629 || (elf_header.e_machine == EM_TI_C6000
1630 && psym->st_shndx == SHN_TIC6X_SCOMMON))
1631 sec_name = "SCOMMON";
1632 else if (elf_header.e_machine == EM_MIPS
1633 && psym->st_shndx == SHN_MIPS_SUNDEFINED)
1634 sec_name = "SUNDEF";
1635 else if ((elf_header.e_machine == EM_X86_64
1636 || elf_header.e_machine == EM_L1OM
1637 || elf_header.e_machine == EM_K1OM)
1638 && psym->st_shndx == SHN_X86_64_LCOMMON)
1639 sec_name = "LARGE_COMMON";
1640 else if (elf_header.e_machine == EM_IA_64
1641 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX
1642 && psym->st_shndx == SHN_IA_64_ANSI_COMMON)
1643 sec_name = "ANSI_COM";
1644 else if (is_ia64_vms ()
1645 && psym->st_shndx == SHN_IA_64_VMS_SYMVEC)
1646 sec_name = "VMS_SYMVEC";
1647 else
1648 {
1649 sprintf (name_buf, "<section 0x%x>",
1650 (unsigned int) psym->st_shndx);
1651 sec_name = name_buf;
1652 }
1653 }
1654 print_symbol (22, sec_name);
1655 }
1656 else if (strtab == NULL)
1657 printf (_("<string table index: %3ld>"), psym->st_name);
1658 else if (psym->st_name >= strtablen)
1659 {
1660 error (_("<corrupt string table index: %3ld>"), psym->st_name);
1661 res = FALSE;
1662 }
1663 else
1664 {
1665 print_symbol (22, strtab + psym->st_name);
1666 if (version_string)
1667 printf (sym_info == symbol_public ? "@@%s" : "@%s",
1668 version_string);
1669 }
1670
1671 if (is_rela)
1672 {
1673 bfd_vma off = rels[i].r_addend;
1674
1675 if ((bfd_signed_vma) off < 0)
1676 printf (" - %" BFD_VMA_FMT "x", - off);
1677 else
1678 printf (" + %" BFD_VMA_FMT "x", off);
1679 }
1680 }
1681 }
1682 else if (is_rela)
1683 {
1684 bfd_vma off = rels[i].r_addend;
1685
1686 printf ("%*c", is_32bit_elf ? 12 : 20, ' ');
1687 if ((bfd_signed_vma) off < 0)
1688 printf ("-%" BFD_VMA_FMT "x", - off);
1689 else
1690 printf ("%" BFD_VMA_FMT "x", off);
1691 }
1692
1693 if (elf_header.e_machine == EM_SPARCV9
1694 && rtype != NULL
1695 && streq (rtype, "R_SPARC_OLO10"))
1696 printf (" + %lx", (unsigned long) ELF64_R_TYPE_DATA (inf));
1697
1698 putchar ('\n');
1699
1700 #ifdef BFD64
1701 if (! is_32bit_elf && elf_header.e_machine == EM_MIPS)
1702 {
1703 bfd_vma type2 = ELF64_MIPS_R_TYPE2 (inf);
1704 bfd_vma type3 = ELF64_MIPS_R_TYPE3 (inf);
1705 const char * rtype2 = elf_mips_reloc_type (type2);
1706 const char * rtype3 = elf_mips_reloc_type (type3);
1707
1708 printf (" Type2: ");
1709
1710 if (rtype2 == NULL)
1711 printf (_("unrecognized: %-7lx"),
1712 (unsigned long) type2 & 0xffffffff);
1713 else
1714 printf ("%-17.17s", rtype2);
1715
1716 printf ("\n Type3: ");
1717
1718 if (rtype3 == NULL)
1719 printf (_("unrecognized: %-7lx"),
1720 (unsigned long) type3 & 0xffffffff);
1721 else
1722 printf ("%-17.17s", rtype3);
1723
1724 putchar ('\n');
1725 }
1726 #endif /* BFD64 */
1727 }
1728
1729 free (rels);
1730
1731 return res;
1732 }
1733
1734 static const char *
1735 get_mips_dynamic_type (unsigned long type)
1736 {
1737 switch (type)
1738 {
1739 case DT_MIPS_RLD_VERSION: return "MIPS_RLD_VERSION";
1740 case DT_MIPS_TIME_STAMP: return "MIPS_TIME_STAMP";
1741 case DT_MIPS_ICHECKSUM: return "MIPS_ICHECKSUM";
1742 case DT_MIPS_IVERSION: return "MIPS_IVERSION";
1743 case DT_MIPS_FLAGS: return "MIPS_FLAGS";
1744 case DT_MIPS_BASE_ADDRESS: return "MIPS_BASE_ADDRESS";
1745 case DT_MIPS_MSYM: return "MIPS_MSYM";
1746 case DT_MIPS_CONFLICT: return "MIPS_CONFLICT";
1747 case DT_MIPS_LIBLIST: return "MIPS_LIBLIST";
1748 case DT_MIPS_LOCAL_GOTNO: return "MIPS_LOCAL_GOTNO";
1749 case DT_MIPS_CONFLICTNO: return "MIPS_CONFLICTNO";
1750 case DT_MIPS_LIBLISTNO: return "MIPS_LIBLISTNO";
1751 case DT_MIPS_SYMTABNO: return "MIPS_SYMTABNO";
1752 case DT_MIPS_UNREFEXTNO: return "MIPS_UNREFEXTNO";
1753 case DT_MIPS_GOTSYM: return "MIPS_GOTSYM";
1754 case DT_MIPS_HIPAGENO: return "MIPS_HIPAGENO";
1755 case DT_MIPS_RLD_MAP: return "MIPS_RLD_MAP";
1756 case DT_MIPS_RLD_MAP_REL: return "MIPS_RLD_MAP_REL";
1757 case DT_MIPS_DELTA_CLASS: return "MIPS_DELTA_CLASS";
1758 case DT_MIPS_DELTA_CLASS_NO: return "MIPS_DELTA_CLASS_NO";
1759 case DT_MIPS_DELTA_INSTANCE: return "MIPS_DELTA_INSTANCE";
1760 case DT_MIPS_DELTA_INSTANCE_NO: return "MIPS_DELTA_INSTANCE_NO";
1761 case DT_MIPS_DELTA_RELOC: return "MIPS_DELTA_RELOC";
1762 case DT_MIPS_DELTA_RELOC_NO: return "MIPS_DELTA_RELOC_NO";
1763 case DT_MIPS_DELTA_SYM: return "MIPS_DELTA_SYM";
1764 case DT_MIPS_DELTA_SYM_NO: return "MIPS_DELTA_SYM_NO";
1765 case DT_MIPS_DELTA_CLASSSYM: return "MIPS_DELTA_CLASSSYM";
1766 case DT_MIPS_DELTA_CLASSSYM_NO: return "MIPS_DELTA_CLASSSYM_NO";
1767 case DT_MIPS_CXX_FLAGS: return "MIPS_CXX_FLAGS";
1768 case DT_MIPS_PIXIE_INIT: return "MIPS_PIXIE_INIT";
1769 case DT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
1770 case DT_MIPS_LOCALPAGE_GOTIDX: return "MIPS_LOCALPAGE_GOTIDX";
1771 case DT_MIPS_LOCAL_GOTIDX: return "MIPS_LOCAL_GOTIDX";
1772 case DT_MIPS_HIDDEN_GOTIDX: return "MIPS_HIDDEN_GOTIDX";
1773 case DT_MIPS_PROTECTED_GOTIDX: return "MIPS_PROTECTED_GOTIDX";
1774 case DT_MIPS_OPTIONS: return "MIPS_OPTIONS";
1775 case DT_MIPS_INTERFACE: return "MIPS_INTERFACE";
1776 case DT_MIPS_DYNSTR_ALIGN: return "MIPS_DYNSTR_ALIGN";
1777 case DT_MIPS_INTERFACE_SIZE: return "MIPS_INTERFACE_SIZE";
1778 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: return "MIPS_RLD_TEXT_RESOLVE_ADDR";
1779 case DT_MIPS_PERF_SUFFIX: return "MIPS_PERF_SUFFIX";
1780 case DT_MIPS_COMPACT_SIZE: return "MIPS_COMPACT_SIZE";
1781 case DT_MIPS_GP_VALUE: return "MIPS_GP_VALUE";
1782 case DT_MIPS_AUX_DYNAMIC: return "MIPS_AUX_DYNAMIC";
1783 case DT_MIPS_PLTGOT: return "MIPS_PLTGOT";
1784 case DT_MIPS_RWPLT: return "MIPS_RWPLT";
1785 default:
1786 return NULL;
1787 }
1788 }
1789
1790 static const char *
1791 get_sparc64_dynamic_type (unsigned long type)
1792 {
1793 switch (type)
1794 {
1795 case DT_SPARC_REGISTER: return "SPARC_REGISTER";
1796 default:
1797 return NULL;
1798 }
1799 }
1800
1801 static const char *
1802 get_ppc_dynamic_type (unsigned long type)
1803 {
1804 switch (type)
1805 {
1806 case DT_PPC_GOT: return "PPC_GOT";
1807 case DT_PPC_OPT: return "PPC_OPT";
1808 default:
1809 return NULL;
1810 }
1811 }
1812
1813 static const char *
1814 get_ppc64_dynamic_type (unsigned long type)
1815 {
1816 switch (type)
1817 {
1818 case DT_PPC64_GLINK: return "PPC64_GLINK";
1819 case DT_PPC64_OPD: return "PPC64_OPD";
1820 case DT_PPC64_OPDSZ: return "PPC64_OPDSZ";
1821 case DT_PPC64_OPT: return "PPC64_OPT";
1822 default:
1823 return NULL;
1824 }
1825 }
1826
1827 static const char *
1828 get_parisc_dynamic_type (unsigned long type)
1829 {
1830 switch (type)
1831 {
1832 case DT_HP_LOAD_MAP: return "HP_LOAD_MAP";
1833 case DT_HP_DLD_FLAGS: return "HP_DLD_FLAGS";
1834 case DT_HP_DLD_HOOK: return "HP_DLD_HOOK";
1835 case DT_HP_UX10_INIT: return "HP_UX10_INIT";
1836 case DT_HP_UX10_INITSZ: return "HP_UX10_INITSZ";
1837 case DT_HP_PREINIT: return "HP_PREINIT";
1838 case DT_HP_PREINITSZ: return "HP_PREINITSZ";
1839 case DT_HP_NEEDED: return "HP_NEEDED";
1840 case DT_HP_TIME_STAMP: return "HP_TIME_STAMP";
1841 case DT_HP_CHECKSUM: return "HP_CHECKSUM";
1842 case DT_HP_GST_SIZE: return "HP_GST_SIZE";
1843 case DT_HP_GST_VERSION: return "HP_GST_VERSION";
1844 case DT_HP_GST_HASHVAL: return "HP_GST_HASHVAL";
1845 case DT_HP_EPLTREL: return "HP_GST_EPLTREL";
1846 case DT_HP_EPLTRELSZ: return "HP_GST_EPLTRELSZ";
1847 case DT_HP_FILTERED: return "HP_FILTERED";
1848 case DT_HP_FILTER_TLS: return "HP_FILTER_TLS";
1849 case DT_HP_COMPAT_FILTERED: return "HP_COMPAT_FILTERED";
1850 case DT_HP_LAZYLOAD: return "HP_LAZYLOAD";
1851 case DT_HP_BIND_NOW_COUNT: return "HP_BIND_NOW_COUNT";
1852 case DT_PLT: return "PLT";
1853 case DT_PLT_SIZE: return "PLT_SIZE";
1854 case DT_DLT: return "DLT";
1855 case DT_DLT_SIZE: return "DLT_SIZE";
1856 default:
1857 return NULL;
1858 }
1859 }
1860
1861 static const char *
1862 get_ia64_dynamic_type (unsigned long type)
1863 {
1864 switch (type)
1865 {
1866 case DT_IA_64_PLT_RESERVE: return "IA_64_PLT_RESERVE";
1867 case DT_IA_64_VMS_SUBTYPE: return "VMS_SUBTYPE";
1868 case DT_IA_64_VMS_IMGIOCNT: return "VMS_IMGIOCNT";
1869 case DT_IA_64_VMS_LNKFLAGS: return "VMS_LNKFLAGS";
1870 case DT_IA_64_VMS_VIR_MEM_BLK_SIZ: return "VMS_VIR_MEM_BLK_SIZ";
1871 case DT_IA_64_VMS_IDENT: return "VMS_IDENT";
1872 case DT_IA_64_VMS_NEEDED_IDENT: return "VMS_NEEDED_IDENT";
1873 case DT_IA_64_VMS_IMG_RELA_CNT: return "VMS_IMG_RELA_CNT";
1874 case DT_IA_64_VMS_SEG_RELA_CNT: return "VMS_SEG_RELA_CNT";
1875 case DT_IA_64_VMS_FIXUP_RELA_CNT: return "VMS_FIXUP_RELA_CNT";
1876 case DT_IA_64_VMS_FIXUP_NEEDED: return "VMS_FIXUP_NEEDED";
1877 case DT_IA_64_VMS_SYMVEC_CNT: return "VMS_SYMVEC_CNT";
1878 case DT_IA_64_VMS_XLATED: return "VMS_XLATED";
1879 case DT_IA_64_VMS_STACKSIZE: return "VMS_STACKSIZE";
1880 case DT_IA_64_VMS_UNWINDSZ: return "VMS_UNWINDSZ";
1881 case DT_IA_64_VMS_UNWIND_CODSEG: return "VMS_UNWIND_CODSEG";
1882 case DT_IA_64_VMS_UNWIND_INFOSEG: return "VMS_UNWIND_INFOSEG";
1883 case DT_IA_64_VMS_LINKTIME: return "VMS_LINKTIME";
1884 case DT_IA_64_VMS_SEG_NO: return "VMS_SEG_NO";
1885 case DT_IA_64_VMS_SYMVEC_OFFSET: return "VMS_SYMVEC_OFFSET";
1886 case DT_IA_64_VMS_SYMVEC_SEG: return "VMS_SYMVEC_SEG";
1887 case DT_IA_64_VMS_UNWIND_OFFSET: return "VMS_UNWIND_OFFSET";
1888 case DT_IA_64_VMS_UNWIND_SEG: return "VMS_UNWIND_SEG";
1889 case DT_IA_64_VMS_STRTAB_OFFSET: return "VMS_STRTAB_OFFSET";
1890 case DT_IA_64_VMS_SYSVER_OFFSET: return "VMS_SYSVER_OFFSET";
1891 case DT_IA_64_VMS_IMG_RELA_OFF: return "VMS_IMG_RELA_OFF";
1892 case DT_IA_64_VMS_SEG_RELA_OFF: return "VMS_SEG_RELA_OFF";
1893 case DT_IA_64_VMS_FIXUP_RELA_OFF: return "VMS_FIXUP_RELA_OFF";
1894 case DT_IA_64_VMS_PLTGOT_OFFSET: return "VMS_PLTGOT_OFFSET";
1895 case DT_IA_64_VMS_PLTGOT_SEG: return "VMS_PLTGOT_SEG";
1896 case DT_IA_64_VMS_FPMODE: return "VMS_FPMODE";
1897 default:
1898 return NULL;
1899 }
1900 }
1901
1902 static const char *
1903 get_solaris_section_type (unsigned long type)
1904 {
1905 switch (type)
1906 {
1907 case 0x6fffffee: return "SUNW_ancillary";
1908 case 0x6fffffef: return "SUNW_capchain";
1909 case 0x6ffffff0: return "SUNW_capinfo";
1910 case 0x6ffffff1: return "SUNW_symsort";
1911 case 0x6ffffff2: return "SUNW_tlssort";
1912 case 0x6ffffff3: return "SUNW_LDYNSYM";
1913 case 0x6ffffff4: return "SUNW_dof";
1914 case 0x6ffffff5: return "SUNW_cap";
1915 case 0x6ffffff6: return "SUNW_SIGNATURE";
1916 case 0x6ffffff7: return "SUNW_ANNOTATE";
1917 case 0x6ffffff8: return "SUNW_DEBUGSTR";
1918 case 0x6ffffff9: return "SUNW_DEBUG";
1919 case 0x6ffffffa: return "SUNW_move";
1920 case 0x6ffffffb: return "SUNW_COMDAT";
1921 case 0x6ffffffc: return "SUNW_syminfo";
1922 case 0x6ffffffd: return "SUNW_verdef";
1923 case 0x6ffffffe: return "SUNW_verneed";
1924 case 0x6fffffff: return "SUNW_versym";
1925 case 0x70000000: return "SPARC_GOTDATA";
1926 default: return NULL;
1927 }
1928 }
1929
1930 static const char *
1931 get_alpha_dynamic_type (unsigned long type)
1932 {
1933 switch (type)
1934 {
1935 case DT_ALPHA_PLTRO: return "ALPHA_PLTRO";
1936 default: return NULL;
1937 }
1938 }
1939
1940 static const char *
1941 get_score_dynamic_type (unsigned long type)
1942 {
1943 switch (type)
1944 {
1945 case DT_SCORE_BASE_ADDRESS: return "SCORE_BASE_ADDRESS";
1946 case DT_SCORE_LOCAL_GOTNO: return "SCORE_LOCAL_GOTNO";
1947 case DT_SCORE_SYMTABNO: return "SCORE_SYMTABNO";
1948 case DT_SCORE_GOTSYM: return "SCORE_GOTSYM";
1949 case DT_SCORE_UNREFEXTNO: return "SCORE_UNREFEXTNO";
1950 case DT_SCORE_HIPAGENO: return "SCORE_HIPAGENO";
1951 default: return NULL;
1952 }
1953 }
1954
1955 static const char *
1956 get_tic6x_dynamic_type (unsigned long type)
1957 {
1958 switch (type)
1959 {
1960 case DT_C6000_GSYM_OFFSET: return "C6000_GSYM_OFFSET";
1961 case DT_C6000_GSTR_OFFSET: return "C6000_GSTR_OFFSET";
1962 case DT_C6000_DSBT_BASE: return "C6000_DSBT_BASE";
1963 case DT_C6000_DSBT_SIZE: return "C6000_DSBT_SIZE";
1964 case DT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
1965 case DT_C6000_DSBT_INDEX: return "C6000_DSBT_INDEX";
1966 default: return NULL;
1967 }
1968 }
1969
1970 static const char *
1971 get_nios2_dynamic_type (unsigned long type)
1972 {
1973 switch (type)
1974 {
1975 case DT_NIOS2_GP: return "NIOS2_GP";
1976 default: return NULL;
1977 }
1978 }
1979
1980 static const char *
1981 get_solaris_dynamic_type (unsigned long type)
1982 {
1983 switch (type)
1984 {
1985 case 0x6000000d: return "SUNW_AUXILIARY";
1986 case 0x6000000e: return "SUNW_RTLDINF";
1987 case 0x6000000f: return "SUNW_FILTER";
1988 case 0x60000010: return "SUNW_CAP";
1989 case 0x60000011: return "SUNW_SYMTAB";
1990 case 0x60000012: return "SUNW_SYMSZ";
1991 case 0x60000013: return "SUNW_SORTENT";
1992 case 0x60000014: return "SUNW_SYMSORT";
1993 case 0x60000015: return "SUNW_SYMSORTSZ";
1994 case 0x60000016: return "SUNW_TLSSORT";
1995 case 0x60000017: return "SUNW_TLSSORTSZ";
1996 case 0x60000018: return "SUNW_CAPINFO";
1997 case 0x60000019: return "SUNW_STRPAD";
1998 case 0x6000001a: return "SUNW_CAPCHAIN";
1999 case 0x6000001b: return "SUNW_LDMACH";
2000 case 0x6000001d: return "SUNW_CAPCHAINENT";
2001 case 0x6000001f: return "SUNW_CAPCHAINSZ";
2002 case 0x60000021: return "SUNW_PARENT";
2003 case 0x60000023: return "SUNW_ASLR";
2004 case 0x60000025: return "SUNW_RELAX";
2005 case 0x60000029: return "SUNW_NXHEAP";
2006 case 0x6000002b: return "SUNW_NXSTACK";
2007
2008 case 0x70000001: return "SPARC_REGISTER";
2009 case 0x7ffffffd: return "AUXILIARY";
2010 case 0x7ffffffe: return "USED";
2011 case 0x7fffffff: return "FILTER";
2012
2013 default: return NULL;
2014 }
2015 }
2016
2017 static const char *
2018 get_dynamic_type (unsigned long type)
2019 {
2020 static char buff[64];
2021
2022 switch (type)
2023 {
2024 case DT_NULL: return "NULL";
2025 case DT_NEEDED: return "NEEDED";
2026 case DT_PLTRELSZ: return "PLTRELSZ";
2027 case DT_PLTGOT: return "PLTGOT";
2028 case DT_HASH: return "HASH";
2029 case DT_STRTAB: return "STRTAB";
2030 case DT_SYMTAB: return "SYMTAB";
2031 case DT_RELA: return "RELA";
2032 case DT_RELASZ: return "RELASZ";
2033 case DT_RELAENT: return "RELAENT";
2034 case DT_STRSZ: return "STRSZ";
2035 case DT_SYMENT: return "SYMENT";
2036 case DT_INIT: return "INIT";
2037 case DT_FINI: return "FINI";
2038 case DT_SONAME: return "SONAME";
2039 case DT_RPATH: return "RPATH";
2040 case DT_SYMBOLIC: return "SYMBOLIC";
2041 case DT_REL: return "REL";
2042 case DT_RELSZ: return "RELSZ";
2043 case DT_RELENT: return "RELENT";
2044 case DT_PLTREL: return "PLTREL";
2045 case DT_DEBUG: return "DEBUG";
2046 case DT_TEXTREL: return "TEXTREL";
2047 case DT_JMPREL: return "JMPREL";
2048 case DT_BIND_NOW: return "BIND_NOW";
2049 case DT_INIT_ARRAY: return "INIT_ARRAY";
2050 case DT_FINI_ARRAY: return "FINI_ARRAY";
2051 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
2052 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
2053 case DT_RUNPATH: return "RUNPATH";
2054 case DT_FLAGS: return "FLAGS";
2055
2056 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
2057 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
2058 case DT_SYMTAB_SHNDX: return "SYMTAB_SHNDX";
2059
2060 case DT_CHECKSUM: return "CHECKSUM";
2061 case DT_PLTPADSZ: return "PLTPADSZ";
2062 case DT_MOVEENT: return "MOVEENT";
2063 case DT_MOVESZ: return "MOVESZ";
2064 case DT_FEATURE: return "FEATURE";
2065 case DT_POSFLAG_1: return "POSFLAG_1";
2066 case DT_SYMINSZ: return "SYMINSZ";
2067 case DT_SYMINENT: return "SYMINENT"; /* aka VALRNGHI */
2068
2069 case DT_ADDRRNGLO: return "ADDRRNGLO";
2070 case DT_CONFIG: return "CONFIG";
2071 case DT_DEPAUDIT: return "DEPAUDIT";
2072 case DT_AUDIT: return "AUDIT";
2073 case DT_PLTPAD: return "PLTPAD";
2074 case DT_MOVETAB: return "MOVETAB";
2075 case DT_SYMINFO: return "SYMINFO"; /* aka ADDRRNGHI */
2076
2077 case DT_VERSYM: return "VERSYM";
2078
2079 case DT_TLSDESC_GOT: return "TLSDESC_GOT";
2080 case DT_TLSDESC_PLT: return "TLSDESC_PLT";
2081 case DT_RELACOUNT: return "RELACOUNT";
2082 case DT_RELCOUNT: return "RELCOUNT";
2083 case DT_FLAGS_1: return "FLAGS_1";
2084 case DT_VERDEF: return "VERDEF";
2085 case DT_VERDEFNUM: return "VERDEFNUM";
2086 case DT_VERNEED: return "VERNEED";
2087 case DT_VERNEEDNUM: return "VERNEEDNUM";
2088
2089 case DT_AUXILIARY: return "AUXILIARY";
2090 case DT_USED: return "USED";
2091 case DT_FILTER: return "FILTER";
2092
2093 case DT_GNU_PRELINKED: return "GNU_PRELINKED";
2094 case DT_GNU_CONFLICT: return "GNU_CONFLICT";
2095 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
2096 case DT_GNU_LIBLIST: return "GNU_LIBLIST";
2097 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
2098 case DT_GNU_HASH: return "GNU_HASH";
2099
2100 default:
2101 if ((type >= DT_LOPROC) && (type <= DT_HIPROC))
2102 {
2103 const char * result;
2104
2105 switch (elf_header.e_machine)
2106 {
2107 case EM_MIPS:
2108 case EM_MIPS_RS3_LE:
2109 result = get_mips_dynamic_type (type);
2110 break;
2111 case EM_SPARCV9:
2112 result = get_sparc64_dynamic_type (type);
2113 break;
2114 case EM_PPC:
2115 result = get_ppc_dynamic_type (type);
2116 break;
2117 case EM_PPC64:
2118 result = get_ppc64_dynamic_type (type);
2119 break;
2120 case EM_IA_64:
2121 result = get_ia64_dynamic_type (type);
2122 break;
2123 case EM_ALPHA:
2124 result = get_alpha_dynamic_type (type);
2125 break;
2126 case EM_SCORE:
2127 result = get_score_dynamic_type (type);
2128 break;
2129 case EM_TI_C6000:
2130 result = get_tic6x_dynamic_type (type);
2131 break;
2132 case EM_ALTERA_NIOS2:
2133 result = get_nios2_dynamic_type (type);
2134 break;
2135 default:
2136 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
2137 result = get_solaris_dynamic_type (type);
2138 else
2139 result = NULL;
2140 break;
2141 }
2142
2143 if (result != NULL)
2144 return result;
2145
2146 snprintf (buff, sizeof (buff), _("Processor Specific: %lx"), type);
2147 }
2148 else if (((type >= DT_LOOS) && (type <= DT_HIOS))
2149 || (elf_header.e_machine == EM_PARISC
2150 && (type >= OLD_DT_LOOS) && (type <= OLD_DT_HIOS)))
2151 {
2152 const char * result;
2153
2154 switch (elf_header.e_machine)
2155 {
2156 case EM_PARISC:
2157 result = get_parisc_dynamic_type (type);
2158 break;
2159 case EM_IA_64:
2160 result = get_ia64_dynamic_type (type);
2161 break;
2162 default:
2163 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
2164 result = get_solaris_dynamic_type (type);
2165 else
2166 result = NULL;
2167 break;
2168 }
2169
2170 if (result != NULL)
2171 return result;
2172
2173 snprintf (buff, sizeof (buff), _("Operating System specific: %lx"),
2174 type);
2175 }
2176 else
2177 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), type);
2178
2179 return buff;
2180 }
2181 }
2182
2183 static char *
2184 get_file_type (unsigned e_type)
2185 {
2186 static char buff[32];
2187
2188 switch (e_type)
2189 {
2190 case ET_NONE: return _("NONE (None)");
2191 case ET_REL: return _("REL (Relocatable file)");
2192 case ET_EXEC: return _("EXEC (Executable file)");
2193 case ET_DYN: return _("DYN (Shared object file)");
2194 case ET_CORE: return _("CORE (Core file)");
2195
2196 default:
2197 if ((e_type >= ET_LOPROC) && (e_type <= ET_HIPROC))
2198 snprintf (buff, sizeof (buff), _("Processor Specific: (%x)"), e_type);
2199 else if ((e_type >= ET_LOOS) && (e_type <= ET_HIOS))
2200 snprintf (buff, sizeof (buff), _("OS Specific: (%x)"), e_type);
2201 else
2202 snprintf (buff, sizeof (buff), _("<unknown>: %x"), e_type);
2203 return buff;
2204 }
2205 }
2206
2207 static char *
2208 get_machine_name (unsigned e_machine)
2209 {
2210 static char buff[64]; /* XXX */
2211
2212 switch (e_machine)
2213 {
2214 /* Please keep this switch table sorted by increasing EM_ value. */
2215 /* 0 */
2216 case EM_NONE: return _("None");
2217 case EM_M32: return "WE32100";
2218 case EM_SPARC: return "Sparc";
2219 case EM_386: return "Intel 80386";
2220 case EM_68K: return "MC68000";
2221 case EM_88K: return "MC88000";
2222 case EM_IAMCU: return "Intel MCU";
2223 case EM_860: return "Intel 80860";
2224 case EM_MIPS: return "MIPS R3000";
2225 case EM_S370: return "IBM System/370";
2226 /* 10 */
2227 case EM_MIPS_RS3_LE: return "MIPS R4000 big-endian";
2228 case EM_OLD_SPARCV9: return "Sparc v9 (old)";
2229 case EM_PARISC: return "HPPA";
2230 case EM_VPP550: return "Fujitsu VPP500";
2231 case EM_SPARC32PLUS: return "Sparc v8+" ;
2232 case EM_960: return "Intel 90860";
2233 case EM_PPC: return "PowerPC";
2234 /* 20 */
2235 case EM_PPC64: return "PowerPC64";
2236 case EM_S390_OLD:
2237 case EM_S390: return "IBM S/390";
2238 case EM_SPU: return "SPU";
2239 /* 30 */
2240 case EM_V800: return "Renesas V850 (using RH850 ABI)";
2241 case EM_FR20: return "Fujitsu FR20";
2242 case EM_RH32: return "TRW RH32";
2243 case EM_MCORE: return "MCORE";
2244 /* 40 */
2245 case EM_ARM: return "ARM";
2246 case EM_OLD_ALPHA: return "Digital Alpha (old)";
2247 case EM_SH: return "Renesas / SuperH SH";
2248 case EM_SPARCV9: return "Sparc v9";
2249 case EM_TRICORE: return "Siemens Tricore";
2250 case EM_ARC: return "ARC";
2251 case EM_H8_300: return "Renesas H8/300";
2252 case EM_H8_300H: return "Renesas H8/300H";
2253 case EM_H8S: return "Renesas H8S";
2254 case EM_H8_500: return "Renesas H8/500";
2255 /* 50 */
2256 case EM_IA_64: return "Intel IA-64";
2257 case EM_MIPS_X: return "Stanford MIPS-X";
2258 case EM_COLDFIRE: return "Motorola Coldfire";
2259 case EM_68HC12: return "Motorola MC68HC12 Microcontroller";
2260 case EM_MMA: return "Fujitsu Multimedia Accelerator";
2261 case EM_PCP: return "Siemens PCP";
2262 case EM_NCPU: return "Sony nCPU embedded RISC processor";
2263 case EM_NDR1: return "Denso NDR1 microprocesspr";
2264 case EM_STARCORE: return "Motorola Star*Core processor";
2265 case EM_ME16: return "Toyota ME16 processor";
2266 /* 60 */
2267 case EM_ST100: return "STMicroelectronics ST100 processor";
2268 case EM_TINYJ: return "Advanced Logic Corp. TinyJ embedded processor";
2269 case EM_X86_64: return "Advanced Micro Devices X86-64";
2270 case EM_PDSP: return "Sony DSP processor";
2271 case EM_PDP10: return "Digital Equipment Corp. PDP-10";
2272 case EM_PDP11: return "Digital Equipment Corp. PDP-11";
2273 case EM_FX66: return "Siemens FX66 microcontroller";
2274 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 bit microcontroller";
2275 case EM_ST7: return "STMicroelectronics ST7 8-bit microcontroller";
2276 case EM_68HC16: return "Motorola MC68HC16 Microcontroller";
2277 /* 70 */
2278 case EM_68HC11: return "Motorola MC68HC11 Microcontroller";
2279 case EM_68HC08: return "Motorola MC68HC08 Microcontroller";
2280 case EM_68HC05: return "Motorola MC68HC05 Microcontroller";
2281 case EM_SVX: return "Silicon Graphics SVx";
2282 case EM_ST19: return "STMicroelectronics ST19 8-bit microcontroller";
2283 case EM_VAX: return "Digital VAX";
2284 case EM_CRIS: return "Axis Communications 32-bit embedded processor";
2285 case EM_JAVELIN: return "Infineon Technologies 32-bit embedded cpu";
2286 case EM_FIREPATH: return "Element 14 64-bit DSP processor";
2287 case EM_ZSP: return "LSI Logic's 16-bit DSP processor";
2288 /* 80 */
2289 case EM_MMIX: return "Donald Knuth's educational 64-bit processor";
2290 case EM_HUANY: return "Harvard Universitys's machine-independent object format";
2291 case EM_PRISM: return "Vitesse Prism";
2292 case EM_AVR_OLD:
2293 case EM_AVR: return "Atmel AVR 8-bit microcontroller";
2294 case EM_CYGNUS_FR30:
2295 case EM_FR30: return "Fujitsu FR30";
2296 case EM_CYGNUS_D10V:
2297 case EM_D10V: return "d10v";
2298 case EM_CYGNUS_D30V:
2299 case EM_D30V: return "d30v";
2300 case EM_CYGNUS_V850:
2301 case EM_V850: return "Renesas V850";
2302 case EM_CYGNUS_M32R:
2303 case EM_M32R: return "Renesas M32R (formerly Mitsubishi M32r)";
2304 case EM_CYGNUS_MN10300:
2305 case EM_MN10300: return "mn10300";
2306 /* 90 */
2307 case EM_CYGNUS_MN10200:
2308 case EM_MN10200: return "mn10200";
2309 case EM_PJ: return "picoJava";
2310 case EM_OR1K: return "OpenRISC 1000";
2311 case EM_ARC_COMPACT: return "ARCompact";
2312 case EM_XTENSA_OLD:
2313 case EM_XTENSA: return "Tensilica Xtensa Processor";
2314 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor";
2315 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor";
2316 case EM_NS32K: return "National Semiconductor 32000 series";
2317 case EM_TPC: return "Tenor Network TPC processor";
2318 case EM_SNP1K: return "Trebia SNP 1000 processor";
2319 /* 100 */
2320 case EM_ST200: return "STMicroelectronics ST200 microcontroller";
2321 case EM_IP2K_OLD:
2322 case EM_IP2K: return "Ubicom IP2xxx 8-bit microcontrollers";
2323 case EM_MAX: return "MAX Processor";
2324 case EM_CR: return "National Semiconductor CompactRISC";
2325 case EM_F2MC16: return "Fujitsu F2MC16";
2326 case EM_MSP430: return "Texas Instruments msp430 microcontroller";
2327 case EM_BLACKFIN: return "Analog Devices Blackfin";
2328 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors";
2329 case EM_SEP: return "Sharp embedded microprocessor";
2330 case EM_ARCA: return "Arca RISC microprocessor";
2331 /* 110 */
2332 case EM_UNICORE: return "Unicore";
2333 case EM_EXCESS: return "eXcess 16/32/64-bit configurable embedded CPU";
2334 case EM_DXP: return "Icera Semiconductor Inc. Deep Execution Processor";
2335 case EM_ALTERA_NIOS2: return "Altera Nios II";
2336 case EM_CRX: return "National Semiconductor CRX microprocessor";
2337 case EM_XGATE: return "Motorola XGATE embedded processor";
2338 case EM_C166:
2339 case EM_XC16X: return "Infineon Technologies xc16x";
2340 case EM_M16C: return "Renesas M16C series microprocessors";
2341 case EM_DSPIC30F: return "Microchip Technology dsPIC30F Digital Signal Controller";
2342 case EM_CE: return "Freescale Communication Engine RISC core";
2343 /* 120 */
2344 case EM_M32C: return "Renesas M32c";
2345 /* 130 */
2346 case EM_TSK3000: return "Altium TSK3000 core";
2347 case EM_RS08: return "Freescale RS08 embedded processor";
2348 case EM_ECOG2: return "Cyan Technology eCOG2 microprocessor";
2349 case EM_SCORE: return "SUNPLUS S+Core";
2350 case EM_DSP24: return "New Japan Radio (NJR) 24-bit DSP Processor";
2351 case EM_VIDEOCORE3: return "Broadcom VideoCore III processor";
2352 case EM_LATTICEMICO32: return "Lattice Mico32";
2353 case EM_SE_C17: return "Seiko Epson C17 family";
2354 /* 140 */
2355 case EM_TI_C6000: return "Texas Instruments TMS320C6000 DSP family";
2356 case EM_TI_C2000: return "Texas Instruments TMS320C2000 DSP family";
2357 case EM_TI_C5500: return "Texas Instruments TMS320C55x DSP family";
2358 case EM_TI_PRU: return "TI PRU I/O processor";
2359 /* 160 */
2360 case EM_MMDSP_PLUS: return "STMicroelectronics 64bit VLIW Data Signal Processor";
2361 case EM_CYPRESS_M8C: return "Cypress M8C microprocessor";
2362 case EM_R32C: return "Renesas R32C series microprocessors";
2363 case EM_TRIMEDIA: return "NXP Semiconductors TriMedia architecture family";
2364 case EM_QDSP6: return "QUALCOMM DSP6 Processor";
2365 case EM_8051: return "Intel 8051 and variants";
2366 case EM_STXP7X: return "STMicroelectronics STxP7x family";
2367 case EM_NDS32: return "Andes Technology compact code size embedded RISC processor family";
2368 case EM_ECOG1X: return "Cyan Technology eCOG1X family";
2369 case EM_MAXQ30: return "Dallas Semiconductor MAXQ30 Core microcontrollers";
2370 /* 170 */
2371 case EM_XIMO16: return "New Japan Radio (NJR) 16-bit DSP Processor";
2372 case EM_MANIK: return "M2000 Reconfigurable RISC Microprocessor";
2373 case EM_CRAYNV2: return "Cray Inc. NV2 vector architecture";
2374 case EM_RX: return "Renesas RX";
2375 case EM_METAG: return "Imagination Technologies Meta processor architecture";
2376 case EM_MCST_ELBRUS: return "MCST Elbrus general purpose hardware architecture";
2377 case EM_ECOG16: return "Cyan Technology eCOG16 family";
2378 case EM_CR16:
2379 case EM_MICROBLAZE:
2380 case EM_MICROBLAZE_OLD: return "Xilinx MicroBlaze";
2381 case EM_ETPU: return "Freescale Extended Time Processing Unit";
2382 case EM_SLE9X: return "Infineon Technologies SLE9X core";
2383 /* 180 */
2384 case EM_L1OM: return "Intel L1OM";
2385 case EM_K1OM: return "Intel K1OM";
2386 case EM_INTEL182: return "Intel (reserved)";
2387 case EM_AARCH64: return "AArch64";
2388 case EM_ARM184: return "ARM (reserved)";
2389 case EM_AVR32: return "Atmel Corporation 32-bit microprocessor";
2390 case EM_STM8: return "STMicroeletronics STM8 8-bit microcontroller";
2391 case EM_TILE64: return "Tilera TILE64 multicore architecture family";
2392 case EM_TILEPRO: return "Tilera TILEPro multicore architecture family";
2393 /* 190 */
2394 case EM_CUDA: return "NVIDIA CUDA architecture";
2395 case EM_TILEGX: return "Tilera TILE-Gx multicore architecture family";
2396 case EM_CLOUDSHIELD: return "CloudShield architecture family";
2397 case EM_COREA_1ST: return "KIPO-KAIST Core-A 1st generation processor family";
2398 case EM_COREA_2ND: return "KIPO-KAIST Core-A 2nd generation processor family";
2399 case EM_ARC_COMPACT2: return "ARCv2";
2400 case EM_OPEN8: return "Open8 8-bit RISC soft processor core";
2401 case EM_RL78: return "Renesas RL78";
2402 case EM_VIDEOCORE5: return "Broadcom VideoCore V processor";
2403 case EM_78K0R: return "Renesas 78K0R";
2404 /* 200 */
2405 case EM_56800EX: return "Freescale 56800EX Digital Signal Controller (DSC)";
2406 case EM_BA1: return "Beyond BA1 CPU architecture";
2407 case EM_BA2: return "Beyond BA2 CPU architecture";
2408 case EM_XCORE: return "XMOS xCORE processor family";
2409 case EM_MCHP_PIC: return "Microchip 8-bit PIC(r) family";
2410 /* 210 */
2411 case EM_KM32: return "KM211 KM32 32-bit processor";
2412 case EM_KMX32: return "KM211 KMX32 32-bit processor";
2413 case EM_KMX16: return "KM211 KMX16 16-bit processor";
2414 case EM_KMX8: return "KM211 KMX8 8-bit processor";
2415 case EM_KVARC: return "KM211 KVARC processor";
2416 case EM_CDP: return "Paneve CDP architecture family";
2417 case EM_COGE: return "Cognitive Smart Memory Processor";
2418 case EM_COOL: return "Bluechip Systems CoolEngine";
2419 case EM_NORC: return "Nanoradio Optimized RISC";
2420 case EM_CSR_KALIMBA: return "CSR Kalimba architecture family";
2421 /* 220 */
2422 case EM_Z80: return "Zilog Z80";
2423 case EM_VISIUM: return "CDS VISIUMcore processor";
2424 case EM_FT32: return "FTDI Chip FT32";
2425 case EM_MOXIE: return "Moxie";
2426 case EM_AMDGPU: return "AMD GPU";
2427 case EM_RISCV: return "RISC-V";
2428 case EM_LANAI: return "Lanai 32-bit processor";
2429 case EM_BPF: return "Linux BPF";
2430
2431 /* Large numbers... */
2432 case EM_MT: return "Morpho Techologies MT processor";
2433 case EM_ALPHA: return "Alpha";
2434 case EM_WEBASSEMBLY: return "Web Assembly";
2435 case EM_DLX: return "OpenDLX";
2436 case EM_XSTORMY16: return "Sanyo XStormy16 CPU core";
2437 case EM_IQ2000: return "Vitesse IQ2000";
2438 case EM_M32C_OLD:
2439 case EM_NIOS32: return "Altera Nios";
2440 case EM_CYGNUS_MEP: return "Toshiba MeP Media Engine";
2441 case EM_ADAPTEVA_EPIPHANY: return "Adapteva EPIPHANY";
2442 case EM_CYGNUS_FRV: return "Fujitsu FR-V";
2443
2444 default:
2445 snprintf (buff, sizeof (buff), _("<unknown>: 0x%x"), e_machine);
2446 return buff;
2447 }
2448 }
2449
2450 static void
2451 decode_ARC_machine_flags (unsigned e_flags, unsigned e_machine, char buf[])
2452 {
2453 /* ARC has two machine types EM_ARC_COMPACT and EM_ARC_COMPACT2. Some
2454 other compilers don't a specific architecture type in the e_flags, and
2455 instead use EM_ARC_COMPACT for old ARC600, ARC601, and ARC700
2456 architectures, and switch to EM_ARC_COMPACT2 for newer ARCEM and ARCHS
2457 architectures.
2458
2459 Th GNU tools follows this use of EM_ARC_COMPACT and EM_ARC_COMPACT2,
2460 but also sets a specific architecture type in the e_flags field.
2461
2462 However, when decoding the flags we don't worry if we see an
2463 unexpected pairing, for example EM_ARC_COMPACT machine type, with
2464 ARCEM architecture type. */
2465
2466 switch (e_flags & EF_ARC_MACH_MSK)
2467 {
2468 /* We only expect these to occur for EM_ARC_COMPACT2. */
2469 case EF_ARC_CPU_ARCV2EM:
2470 strcat (buf, ", ARC EM");
2471 break;
2472 case EF_ARC_CPU_ARCV2HS:
2473 strcat (buf, ", ARC HS");
2474 break;
2475
2476 /* We only expect these to occur for EM_ARC_COMPACT. */
2477 case E_ARC_MACH_ARC600:
2478 strcat (buf, ", ARC600");
2479 break;
2480 case E_ARC_MACH_ARC601:
2481 strcat (buf, ", ARC601");
2482 break;
2483 case E_ARC_MACH_ARC700:
2484 strcat (buf, ", ARC700");
2485 break;
2486
2487 /* The only times we should end up here are (a) A corrupt ELF, (b) A
2488 new ELF with new architecture being read by an old version of
2489 readelf, or (c) An ELF built with non-GNU compiler that does not
2490 set the architecture in the e_flags. */
2491 default:
2492 if (e_machine == EM_ARC_COMPACT)
2493 strcat (buf, ", Unknown ARCompact");
2494 else
2495 strcat (buf, ", Unknown ARC");
2496 break;
2497 }
2498
2499 switch (e_flags & EF_ARC_OSABI_MSK)
2500 {
2501 case E_ARC_OSABI_ORIG:
2502 strcat (buf, ", (ABI:legacy)");
2503 break;
2504 case E_ARC_OSABI_V2:
2505 strcat (buf, ", (ABI:v2)");
2506 break;
2507 /* Only upstream 3.9+ kernels will support ARCv2 ISA. */
2508 case E_ARC_OSABI_V3:
2509 strcat (buf, ", v3 no-legacy-syscalls ABI");
2510 break;
2511 default:
2512 strcat (buf, ", unrecognised ARC OSABI flag");
2513 break;
2514 }
2515 }
2516
2517 static void
2518 decode_ARM_machine_flags (unsigned e_flags, char buf[])
2519 {
2520 unsigned eabi;
2521 bfd_boolean unknown = FALSE;
2522
2523 eabi = EF_ARM_EABI_VERSION (e_flags);
2524 e_flags &= ~ EF_ARM_EABIMASK;
2525
2526 /* Handle "generic" ARM flags. */
2527 if (e_flags & EF_ARM_RELEXEC)
2528 {
2529 strcat (buf, ", relocatable executable");
2530 e_flags &= ~ EF_ARM_RELEXEC;
2531 }
2532
2533 /* Now handle EABI specific flags. */
2534 switch (eabi)
2535 {
2536 default:
2537 strcat (buf, ", <unrecognized EABI>");
2538 if (e_flags)
2539 unknown = TRUE;
2540 break;
2541
2542 case EF_ARM_EABI_VER1:
2543 strcat (buf, ", Version1 EABI");
2544 while (e_flags)
2545 {
2546 unsigned flag;
2547
2548 /* Process flags one bit at a time. */
2549 flag = e_flags & - e_flags;
2550 e_flags &= ~ flag;
2551
2552 switch (flag)
2553 {
2554 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2555 strcat (buf, ", sorted symbol tables");
2556 break;
2557
2558 default:
2559 unknown = TRUE;
2560 break;
2561 }
2562 }
2563 break;
2564
2565 case EF_ARM_EABI_VER2:
2566 strcat (buf, ", Version2 EABI");
2567 while (e_flags)
2568 {
2569 unsigned flag;
2570
2571 /* Process flags one bit at a time. */
2572 flag = e_flags & - e_flags;
2573 e_flags &= ~ flag;
2574
2575 switch (flag)
2576 {
2577 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2578 strcat (buf, ", sorted symbol tables");
2579 break;
2580
2581 case EF_ARM_DYNSYMSUSESEGIDX:
2582 strcat (buf, ", dynamic symbols use segment index");
2583 break;
2584
2585 case EF_ARM_MAPSYMSFIRST:
2586 strcat (buf, ", mapping symbols precede others");
2587 break;
2588
2589 default:
2590 unknown = TRUE;
2591 break;
2592 }
2593 }
2594 break;
2595
2596 case EF_ARM_EABI_VER3:
2597 strcat (buf, ", Version3 EABI");
2598 break;
2599
2600 case EF_ARM_EABI_VER4:
2601 strcat (buf, ", Version4 EABI");
2602 while (e_flags)
2603 {
2604 unsigned flag;
2605
2606 /* Process flags one bit at a time. */
2607 flag = e_flags & - e_flags;
2608 e_flags &= ~ flag;
2609
2610 switch (flag)
2611 {
2612 case EF_ARM_BE8:
2613 strcat (buf, ", BE8");
2614 break;
2615
2616 case EF_ARM_LE8:
2617 strcat (buf, ", LE8");
2618 break;
2619
2620 default:
2621 unknown = TRUE;
2622 break;
2623 }
2624 }
2625 break;
2626
2627 case EF_ARM_EABI_VER5:
2628 strcat (buf, ", Version5 EABI");
2629 while (e_flags)
2630 {
2631 unsigned flag;
2632
2633 /* Process flags one bit at a time. */
2634 flag = e_flags & - e_flags;
2635 e_flags &= ~ flag;
2636
2637 switch (flag)
2638 {
2639 case EF_ARM_BE8:
2640 strcat (buf, ", BE8");
2641 break;
2642
2643 case EF_ARM_LE8:
2644 strcat (buf, ", LE8");
2645 break;
2646
2647 case EF_ARM_ABI_FLOAT_SOFT: /* Conflicts with EF_ARM_SOFT_FLOAT. */
2648 strcat (buf, ", soft-float ABI");
2649 break;
2650
2651 case EF_ARM_ABI_FLOAT_HARD: /* Conflicts with EF_ARM_VFP_FLOAT. */
2652 strcat (buf, ", hard-float ABI");
2653 break;
2654
2655 default:
2656 unknown = TRUE;
2657 break;
2658 }
2659 }
2660 break;
2661
2662 case EF_ARM_EABI_UNKNOWN:
2663 strcat (buf, ", GNU EABI");
2664 while (e_flags)
2665 {
2666 unsigned flag;
2667
2668 /* Process flags one bit at a time. */
2669 flag = e_flags & - e_flags;
2670 e_flags &= ~ flag;
2671
2672 switch (flag)
2673 {
2674 case EF_ARM_INTERWORK:
2675 strcat (buf, ", interworking enabled");
2676 break;
2677
2678 case EF_ARM_APCS_26:
2679 strcat (buf, ", uses APCS/26");
2680 break;
2681
2682 case EF_ARM_APCS_FLOAT:
2683 strcat (buf, ", uses APCS/float");
2684 break;
2685
2686 case EF_ARM_PIC:
2687 strcat (buf, ", position independent");
2688 break;
2689
2690 case EF_ARM_ALIGN8:
2691 strcat (buf, ", 8 bit structure alignment");
2692 break;
2693
2694 case EF_ARM_NEW_ABI:
2695 strcat (buf, ", uses new ABI");
2696 break;
2697
2698 case EF_ARM_OLD_ABI:
2699 strcat (buf, ", uses old ABI");
2700 break;
2701
2702 case EF_ARM_SOFT_FLOAT:
2703 strcat (buf, ", software FP");
2704 break;
2705
2706 case EF_ARM_VFP_FLOAT:
2707 strcat (buf, ", VFP");
2708 break;
2709
2710 case EF_ARM_MAVERICK_FLOAT:
2711 strcat (buf, ", Maverick FP");
2712 break;
2713
2714 default:
2715 unknown = TRUE;
2716 break;
2717 }
2718 }
2719 }
2720
2721 if (unknown)
2722 strcat (buf,_(", <unknown>"));
2723 }
2724
2725 static void
2726 decode_AVR_machine_flags (unsigned e_flags, char buf[], size_t size)
2727 {
2728 --size; /* Leave space for null terminator. */
2729
2730 switch (e_flags & EF_AVR_MACH)
2731 {
2732 case E_AVR_MACH_AVR1:
2733 strncat (buf, ", avr:1", size);
2734 break;
2735 case E_AVR_MACH_AVR2:
2736 strncat (buf, ", avr:2", size);
2737 break;
2738 case E_AVR_MACH_AVR25:
2739 strncat (buf, ", avr:25", size);
2740 break;
2741 case E_AVR_MACH_AVR3:
2742 strncat (buf, ", avr:3", size);
2743 break;
2744 case E_AVR_MACH_AVR31:
2745 strncat (buf, ", avr:31", size);
2746 break;
2747 case E_AVR_MACH_AVR35:
2748 strncat (buf, ", avr:35", size);
2749 break;
2750 case E_AVR_MACH_AVR4:
2751 strncat (buf, ", avr:4", size);
2752 break;
2753 case E_AVR_MACH_AVR5:
2754 strncat (buf, ", avr:5", size);
2755 break;
2756 case E_AVR_MACH_AVR51:
2757 strncat (buf, ", avr:51", size);
2758 break;
2759 case E_AVR_MACH_AVR6:
2760 strncat (buf, ", avr:6", size);
2761 break;
2762 case E_AVR_MACH_AVRTINY:
2763 strncat (buf, ", avr:100", size);
2764 break;
2765 case E_AVR_MACH_XMEGA1:
2766 strncat (buf, ", avr:101", size);
2767 break;
2768 case E_AVR_MACH_XMEGA2:
2769 strncat (buf, ", avr:102", size);
2770 break;
2771 case E_AVR_MACH_XMEGA3:
2772 strncat (buf, ", avr:103", size);
2773 break;
2774 case E_AVR_MACH_XMEGA4:
2775 strncat (buf, ", avr:104", size);
2776 break;
2777 case E_AVR_MACH_XMEGA5:
2778 strncat (buf, ", avr:105", size);
2779 break;
2780 case E_AVR_MACH_XMEGA6:
2781 strncat (buf, ", avr:106", size);
2782 break;
2783 case E_AVR_MACH_XMEGA7:
2784 strncat (buf, ", avr:107", size);
2785 break;
2786 default:
2787 strncat (buf, ", avr:<unknown>", size);
2788 break;
2789 }
2790
2791 size -= strlen (buf);
2792 if (e_flags & EF_AVR_LINKRELAX_PREPARED)
2793 strncat (buf, ", link-relax", size);
2794 }
2795
2796 static void
2797 decode_NDS32_machine_flags (unsigned e_flags, char buf[], size_t size)
2798 {
2799 unsigned abi;
2800 unsigned arch;
2801 unsigned config;
2802 unsigned version;
2803 bfd_boolean has_fpu = FALSE;
2804 unsigned int r = 0;
2805
2806 static const char *ABI_STRINGS[] =
2807 {
2808 "ABI v0", /* use r5 as return register; only used in N1213HC */
2809 "ABI v1", /* use r0 as return register */
2810 "ABI v2", /* use r0 as return register and don't reserve 24 bytes for arguments */
2811 "ABI v2fp", /* for FPU */
2812 "AABI",
2813 "ABI2 FP+"
2814 };
2815 static const char *VER_STRINGS[] =
2816 {
2817 "Andes ELF V1.3 or older",
2818 "Andes ELF V1.3.1",
2819 "Andes ELF V1.4"
2820 };
2821 static const char *ARCH_STRINGS[] =
2822 {
2823 "",
2824 "Andes Star v1.0",
2825 "Andes Star v2.0",
2826 "Andes Star v3.0",
2827 "Andes Star v3.0m"
2828 };
2829
2830 abi = EF_NDS_ABI & e_flags;
2831 arch = EF_NDS_ARCH & e_flags;
2832 config = EF_NDS_INST & e_flags;
2833 version = EF_NDS32_ELF_VERSION & e_flags;
2834
2835 memset (buf, 0, size);
2836
2837 switch (abi)
2838 {
2839 case E_NDS_ABI_V0:
2840 case E_NDS_ABI_V1:
2841 case E_NDS_ABI_V2:
2842 case E_NDS_ABI_V2FP:
2843 case E_NDS_ABI_AABI:
2844 case E_NDS_ABI_V2FP_PLUS:
2845 /* In case there are holes in the array. */
2846 r += snprintf (buf + r, size - r, ", %s", ABI_STRINGS[abi >> EF_NDS_ABI_SHIFT]);
2847 break;
2848
2849 default:
2850 r += snprintf (buf + r, size - r, ", <unrecognized ABI>");
2851 break;
2852 }
2853
2854 switch (version)
2855 {
2856 case E_NDS32_ELF_VER_1_2:
2857 case E_NDS32_ELF_VER_1_3:
2858 case E_NDS32_ELF_VER_1_4:
2859 r += snprintf (buf + r, size - r, ", %s", VER_STRINGS[version >> EF_NDS32_ELF_VERSION_SHIFT]);
2860 break;
2861
2862 default:
2863 r += snprintf (buf + r, size - r, ", <unrecognized ELF version number>");
2864 break;
2865 }
2866
2867 if (E_NDS_ABI_V0 == abi)
2868 {
2869 /* OLD ABI; only used in N1213HC, has performance extension 1. */
2870 r += snprintf (buf + r, size - r, ", Andes Star v1.0, N1213HC, MAC, PERF1");
2871 if (arch == E_NDS_ARCH_STAR_V1_0)
2872 r += snprintf (buf + r, size -r, ", 16b"); /* has 16-bit instructions */
2873 return;
2874 }
2875
2876 switch (arch)
2877 {
2878 case E_NDS_ARCH_STAR_V1_0:
2879 case E_NDS_ARCH_STAR_V2_0:
2880 case E_NDS_ARCH_STAR_V3_0:
2881 case E_NDS_ARCH_STAR_V3_M:
2882 r += snprintf (buf + r, size - r, ", %s", ARCH_STRINGS[arch >> EF_NDS_ARCH_SHIFT]);
2883 break;
2884
2885 default:
2886 r += snprintf (buf + r, size - r, ", <unrecognized architecture>");
2887 /* ARCH version determines how the e_flags are interpreted.
2888 If it is unknown, we cannot proceed. */
2889 return;
2890 }
2891
2892 /* Newer ABI; Now handle architecture specific flags. */
2893 if (arch == E_NDS_ARCH_STAR_V1_0)
2894 {
2895 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2896 r += snprintf (buf + r, size -r, ", MFUSR_PC");
2897
2898 if (!(config & E_NDS32_HAS_NO_MAC_INST))
2899 r += snprintf (buf + r, size -r, ", MAC");
2900
2901 if (config & E_NDS32_HAS_DIV_INST)
2902 r += snprintf (buf + r, size -r, ", DIV");
2903
2904 if (config & E_NDS32_HAS_16BIT_INST)
2905 r += snprintf (buf + r, size -r, ", 16b");
2906 }
2907 else
2908 {
2909 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2910 {
2911 if (version <= E_NDS32_ELF_VER_1_3)
2912 r += snprintf (buf + r, size -r, ", [B8]");
2913 else
2914 r += snprintf (buf + r, size -r, ", EX9");
2915 }
2916
2917 if (config & E_NDS32_HAS_MAC_DX_INST)
2918 r += snprintf (buf + r, size -r, ", MAC_DX");
2919
2920 if (config & E_NDS32_HAS_DIV_DX_INST)
2921 r += snprintf (buf + r, size -r, ", DIV_DX");
2922
2923 if (config & E_NDS32_HAS_16BIT_INST)
2924 {
2925 if (version <= E_NDS32_ELF_VER_1_3)
2926 r += snprintf (buf + r, size -r, ", 16b");
2927 else
2928 r += snprintf (buf + r, size -r, ", IFC");
2929 }
2930 }
2931
2932 if (config & E_NDS32_HAS_EXT_INST)
2933 r += snprintf (buf + r, size -r, ", PERF1");
2934
2935 if (config & E_NDS32_HAS_EXT2_INST)
2936 r += snprintf (buf + r, size -r, ", PERF2");
2937
2938 if (config & E_NDS32_HAS_FPU_INST)
2939 {
2940 has_fpu = TRUE;
2941 r += snprintf (buf + r, size -r, ", FPU_SP");
2942 }
2943
2944 if (config & E_NDS32_HAS_FPU_DP_INST)
2945 {
2946 has_fpu = TRUE;
2947 r += snprintf (buf + r, size -r, ", FPU_DP");
2948 }
2949
2950 if (config & E_NDS32_HAS_FPU_MAC_INST)
2951 {
2952 has_fpu = TRUE;
2953 r += snprintf (buf + r, size -r, ", FPU_MAC");
2954 }
2955
2956 if (has_fpu)
2957 {
2958 switch ((config & E_NDS32_FPU_REG_CONF) >> E_NDS32_FPU_REG_CONF_SHIFT)
2959 {
2960 case E_NDS32_FPU_REG_8SP_4DP:
2961 r += snprintf (buf + r, size -r, ", FPU_REG:8/4");
2962 break;
2963 case E_NDS32_FPU_REG_16SP_8DP:
2964 r += snprintf (buf + r, size -r, ", FPU_REG:16/8");
2965 break;
2966 case E_NDS32_FPU_REG_32SP_16DP:
2967 r += snprintf (buf + r, size -r, ", FPU_REG:32/16");
2968 break;
2969 case E_NDS32_FPU_REG_32SP_32DP:
2970 r += snprintf (buf + r, size -r, ", FPU_REG:32/32");
2971 break;
2972 }
2973 }
2974
2975 if (config & E_NDS32_HAS_AUDIO_INST)
2976 r += snprintf (buf + r, size -r, ", AUDIO");
2977
2978 if (config & E_NDS32_HAS_STRING_INST)
2979 r += snprintf (buf + r, size -r, ", STR");
2980
2981 if (config & E_NDS32_HAS_REDUCED_REGS)
2982 r += snprintf (buf + r, size -r, ", 16REG");
2983
2984 if (config & E_NDS32_HAS_VIDEO_INST)
2985 {
2986 if (version <= E_NDS32_ELF_VER_1_3)
2987 r += snprintf (buf + r, size -r, ", VIDEO");
2988 else
2989 r += snprintf (buf + r, size -r, ", SATURATION");
2990 }
2991
2992 if (config & E_NDS32_HAS_ENCRIPT_INST)
2993 r += snprintf (buf + r, size -r, ", ENCRP");
2994
2995 if (config & E_NDS32_HAS_L2C_INST)
2996 r += snprintf (buf + r, size -r, ", L2C");
2997 }
2998
2999 static char *
3000 get_machine_flags (unsigned e_flags, unsigned e_machine)
3001 {
3002 static char buf[1024];
3003
3004 buf[0] = '\0';
3005
3006 if (e_flags)
3007 {
3008 switch (e_machine)
3009 {
3010 default:
3011 break;
3012
3013 case EM_ARC_COMPACT2:
3014 case EM_ARC_COMPACT:
3015 decode_ARC_machine_flags (e_flags, e_machine, buf);
3016 break;
3017
3018 case EM_ARM:
3019 decode_ARM_machine_flags (e_flags, buf);
3020 break;
3021
3022 case EM_AVR:
3023 decode_AVR_machine_flags (e_flags, buf, sizeof buf);
3024 break;
3025
3026 case EM_BLACKFIN:
3027 if (e_flags & EF_BFIN_PIC)
3028 strcat (buf, ", PIC");
3029
3030 if (e_flags & EF_BFIN_FDPIC)
3031 strcat (buf, ", FDPIC");
3032
3033 if (e_flags & EF_BFIN_CODE_IN_L1)
3034 strcat (buf, ", code in L1");
3035
3036 if (e_flags & EF_BFIN_DATA_IN_L1)
3037 strcat (buf, ", data in L1");
3038
3039 break;
3040
3041 case EM_CYGNUS_FRV:
3042 switch (e_flags & EF_FRV_CPU_MASK)
3043 {
3044 case EF_FRV_CPU_GENERIC:
3045 break;
3046
3047 default:
3048 strcat (buf, ", fr???");
3049 break;
3050
3051 case EF_FRV_CPU_FR300:
3052 strcat (buf, ", fr300");
3053 break;
3054
3055 case EF_FRV_CPU_FR400:
3056 strcat (buf, ", fr400");
3057 break;
3058 case EF_FRV_CPU_FR405:
3059 strcat (buf, ", fr405");
3060 break;
3061
3062 case EF_FRV_CPU_FR450:
3063 strcat (buf, ", fr450");
3064 break;
3065
3066 case EF_FRV_CPU_FR500:
3067 strcat (buf, ", fr500");
3068 break;
3069 case EF_FRV_CPU_FR550:
3070 strcat (buf, ", fr550");
3071 break;
3072
3073 case EF_FRV_CPU_SIMPLE:
3074 strcat (buf, ", simple");
3075 break;
3076 case EF_FRV_CPU_TOMCAT:
3077 strcat (buf, ", tomcat");
3078 break;
3079 }
3080 break;
3081
3082 case EM_68K:
3083 if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
3084 strcat (buf, ", m68000");
3085 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
3086 strcat (buf, ", cpu32");
3087 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
3088 strcat (buf, ", fido_a");
3089 else
3090 {
3091 char const * isa = _("unknown");
3092 char const * mac = _("unknown mac");
3093 char const * additional = NULL;
3094
3095 switch (e_flags & EF_M68K_CF_ISA_MASK)
3096 {
3097 case EF_M68K_CF_ISA_A_NODIV:
3098 isa = "A";
3099 additional = ", nodiv";
3100 break;
3101 case EF_M68K_CF_ISA_A:
3102 isa = "A";
3103 break;
3104 case EF_M68K_CF_ISA_A_PLUS:
3105 isa = "A+";
3106 break;
3107 case EF_M68K_CF_ISA_B_NOUSP:
3108 isa = "B";
3109 additional = ", nousp";
3110 break;
3111 case EF_M68K_CF_ISA_B:
3112 isa = "B";
3113 break;
3114 case EF_M68K_CF_ISA_C:
3115 isa = "C";
3116 break;
3117 case EF_M68K_CF_ISA_C_NODIV:
3118 isa = "C";
3119 additional = ", nodiv";
3120 break;
3121 }
3122 strcat (buf, ", cf, isa ");
3123 strcat (buf, isa);
3124 if (additional)
3125 strcat (buf, additional);
3126 if (e_flags & EF_M68K_CF_FLOAT)
3127 strcat (buf, ", float");
3128 switch (e_flags & EF_M68K_CF_MAC_MASK)
3129 {
3130 case 0:
3131 mac = NULL;
3132 break;
3133 case EF_M68K_CF_MAC:
3134 mac = "mac";
3135 break;
3136 case EF_M68K_CF_EMAC:
3137 mac = "emac";
3138 break;
3139 case EF_M68K_CF_EMAC_B:
3140 mac = "emac_b";
3141 break;
3142 }
3143 if (mac)
3144 {
3145 strcat (buf, ", ");
3146 strcat (buf, mac);
3147 }
3148 }
3149 break;
3150
3151 case EM_CYGNUS_MEP:
3152 switch (e_flags & EF_MEP_CPU_MASK)
3153 {
3154 case EF_MEP_CPU_MEP: strcat (buf, ", generic MeP"); break;
3155 case EF_MEP_CPU_C2: strcat (buf, ", MeP C2"); break;
3156 case EF_MEP_CPU_C3: strcat (buf, ", MeP C3"); break;
3157 case EF_MEP_CPU_C4: strcat (buf, ", MeP C4"); break;
3158 case EF_MEP_CPU_C5: strcat (buf, ", MeP C5"); break;
3159 case EF_MEP_CPU_H1: strcat (buf, ", MeP H1"); break;
3160 default: strcat (buf, _(", <unknown MeP cpu type>")); break;
3161 }
3162
3163 switch (e_flags & EF_MEP_COP_MASK)
3164 {
3165 case EF_MEP_COP_NONE: break;
3166 case EF_MEP_COP_AVC: strcat (buf, ", AVC coprocessor"); break;
3167 case EF_MEP_COP_AVC2: strcat (buf, ", AVC2 coprocessor"); break;
3168 case EF_MEP_COP_FMAX: strcat (buf, ", FMAX coprocessor"); break;
3169 case EF_MEP_COP_IVC2: strcat (buf, ", IVC2 coprocessor"); break;
3170 default: strcat (buf, _("<unknown MeP copro type>")); break;
3171 }
3172
3173 if (e_flags & EF_MEP_LIBRARY)
3174 strcat (buf, ", Built for Library");
3175
3176 if (e_flags & EF_MEP_INDEX_MASK)
3177 sprintf (buf + strlen (buf), ", Configuration Index: %#x",
3178 e_flags & EF_MEP_INDEX_MASK);
3179
3180 if (e_flags & ~ EF_MEP_ALL_FLAGS)
3181 sprintf (buf + strlen (buf), _(", unknown flags bits: %#x"),
3182 e_flags & ~ EF_MEP_ALL_FLAGS);
3183 break;
3184
3185 case EM_PPC:
3186 if (e_flags & EF_PPC_EMB)
3187 strcat (buf, ", emb");
3188
3189 if (e_flags & EF_PPC_RELOCATABLE)
3190 strcat (buf, _(", relocatable"));
3191
3192 if (e_flags & EF_PPC_RELOCATABLE_LIB)
3193 strcat (buf, _(", relocatable-lib"));
3194 break;
3195
3196 case EM_PPC64:
3197 if (e_flags & EF_PPC64_ABI)
3198 {
3199 char abi[] = ", abiv0";
3200
3201 abi[6] += e_flags & EF_PPC64_ABI;
3202 strcat (buf, abi);
3203 }
3204 break;
3205
3206 case EM_V800:
3207 if ((e_flags & EF_RH850_ABI) == EF_RH850_ABI)
3208 strcat (buf, ", RH850 ABI");
3209
3210 if (e_flags & EF_V800_850E3)
3211 strcat (buf, ", V3 architecture");
3212
3213 if ((e_flags & (EF_RH850_FPU_DOUBLE | EF_RH850_FPU_SINGLE)) == 0)
3214 strcat (buf, ", FPU not used");
3215
3216 if ((e_flags & (EF_RH850_REGMODE22 | EF_RH850_REGMODE32)) == 0)
3217 strcat (buf, ", regmode: COMMON");
3218
3219 if ((e_flags & (EF_RH850_GP_FIX | EF_RH850_GP_NOFIX)) == 0)
3220 strcat (buf, ", r4 not used");
3221
3222 if ((e_flags & (EF_RH850_EP_FIX | EF_RH850_EP_NOFIX)) == 0)
3223 strcat (buf, ", r30 not used");
3224
3225 if ((e_flags & (EF_RH850_TP_FIX | EF_RH850_TP_NOFIX)) == 0)
3226 strcat (buf, ", r5 not used");
3227
3228 if ((e_flags & (EF_RH850_REG2_RESERVE | EF_RH850_REG2_NORESERVE)) == 0)
3229 strcat (buf, ", r2 not used");
3230
3231 for (e_flags &= 0xFFFF; e_flags; e_flags &= ~ (e_flags & - e_flags))
3232 {
3233 switch (e_flags & - e_flags)
3234 {
3235 case EF_RH850_FPU_DOUBLE: strcat (buf, ", double precision FPU"); break;
3236 case EF_RH850_FPU_SINGLE: strcat (buf, ", single precision FPU"); break;
3237 case EF_RH850_REGMODE22: strcat (buf, ", regmode:22"); break;
3238 case EF_RH850_REGMODE32: strcat (buf, ", regmode:23"); break;
3239 case EF_RH850_GP_FIX: strcat (buf, ", r4 fixed"); break;
3240 case EF_RH850_GP_NOFIX: strcat (buf, ", r4 free"); break;
3241 case EF_RH850_EP_FIX: strcat (buf, ", r30 fixed"); break;
3242 case EF_RH850_EP_NOFIX: strcat (buf, ", r30 free"); break;
3243 case EF_RH850_TP_FIX: strcat (buf, ", r5 fixed"); break;
3244 case EF_RH850_TP_NOFIX: strcat (buf, ", r5 free"); break;
3245 case EF_RH850_REG2_RESERVE: strcat (buf, ", r2 fixed"); break;
3246 case EF_RH850_REG2_NORESERVE: strcat (buf, ", r2 free"); break;
3247 default: break;
3248 }
3249 }
3250 break;
3251
3252 case EM_V850:
3253 case EM_CYGNUS_V850:
3254 switch (e_flags & EF_V850_ARCH)
3255 {
3256 case E_V850E3V5_ARCH:
3257 strcat (buf, ", v850e3v5");
3258 break;
3259 case E_V850E2V3_ARCH:
3260 strcat (buf, ", v850e2v3");
3261 break;
3262 case E_V850E2_ARCH:
3263 strcat (buf, ", v850e2");
3264 break;
3265 case E_V850E1_ARCH:
3266 strcat (buf, ", v850e1");
3267 break;
3268 case E_V850E_ARCH:
3269 strcat (buf, ", v850e");
3270 break;
3271 case E_V850_ARCH:
3272 strcat (buf, ", v850");
3273 break;
3274 default:
3275 strcat (buf, _(", unknown v850 architecture variant"));
3276 break;
3277 }
3278 break;
3279
3280 case EM_M32R:
3281 case EM_CYGNUS_M32R:
3282 if ((e_flags & EF_M32R_ARCH) == E_M32R_ARCH)
3283 strcat (buf, ", m32r");
3284 break;
3285
3286 case EM_MIPS:
3287 case EM_MIPS_RS3_LE:
3288 if (e_flags & EF_MIPS_NOREORDER)
3289 strcat (buf, ", noreorder");
3290
3291 if (e_flags & EF_MIPS_PIC)
3292 strcat (buf, ", pic");
3293
3294 if (e_flags & EF_MIPS_CPIC)
3295 strcat (buf, ", cpic");
3296
3297 if (e_flags & EF_MIPS_UCODE)
3298 strcat (buf, ", ugen_reserved");
3299
3300 if (e_flags & EF_MIPS_ABI2)
3301 strcat (buf, ", abi2");
3302
3303 if (e_flags & EF_MIPS_OPTIONS_FIRST)
3304 strcat (buf, ", odk first");
3305
3306 if (e_flags & EF_MIPS_32BITMODE)
3307 strcat (buf, ", 32bitmode");
3308
3309 if (e_flags & EF_MIPS_NAN2008)
3310 strcat (buf, ", nan2008");
3311
3312 if (e_flags & EF_MIPS_FP64)
3313 strcat (buf, ", fp64");
3314
3315 switch ((e_flags & EF_MIPS_MACH))
3316 {
3317 case E_MIPS_MACH_3900: strcat (buf, ", 3900"); break;
3318 case E_MIPS_MACH_4010: strcat (buf, ", 4010"); break;
3319 case E_MIPS_MACH_4100: strcat (buf, ", 4100"); break;
3320 case E_MIPS_MACH_4111: strcat (buf, ", 4111"); break;
3321 case E_MIPS_MACH_4120: strcat (buf, ", 4120"); break;
3322 case E_MIPS_MACH_4650: strcat (buf, ", 4650"); break;
3323 case E_MIPS_MACH_5400: strcat (buf, ", 5400"); break;
3324 case E_MIPS_MACH_5500: strcat (buf, ", 5500"); break;
3325 case E_MIPS_MACH_SB1: strcat (buf, ", sb1"); break;
3326 case E_MIPS_MACH_9000: strcat (buf, ", 9000"); break;
3327 case E_MIPS_MACH_LS2E: strcat (buf, ", loongson-2e"); break;
3328 case E_MIPS_MACH_LS2F: strcat (buf, ", loongson-2f"); break;
3329 case E_MIPS_MACH_LS3A: strcat (buf, ", loongson-3a"); break;
3330 case E_MIPS_MACH_OCTEON: strcat (buf, ", octeon"); break;
3331 case E_MIPS_MACH_OCTEON2: strcat (buf, ", octeon2"); break;
3332 case E_MIPS_MACH_OCTEON3: strcat (buf, ", octeon3"); break;
3333 case E_MIPS_MACH_XLR: strcat (buf, ", xlr"); break;
3334 case 0:
3335 /* We simply ignore the field in this case to avoid confusion:
3336 MIPS ELF does not specify EF_MIPS_MACH, it is a GNU
3337 extension. */
3338 break;
3339 default: strcat (buf, _(", unknown CPU")); break;
3340 }
3341
3342 switch ((e_flags & EF_MIPS_ABI))
3343 {
3344 case E_MIPS_ABI_O32: strcat (buf, ", o32"); break;
3345 case E_MIPS_ABI_O64: strcat (buf, ", o64"); break;
3346 case E_MIPS_ABI_EABI32: strcat (buf, ", eabi32"); break;
3347 case E_MIPS_ABI_EABI64: strcat (buf, ", eabi64"); break;
3348 case 0:
3349 /* We simply ignore the field in this case to avoid confusion:
3350 MIPS ELF does not specify EF_MIPS_ABI, it is a GNU extension.
3351 This means it is likely to be an o32 file, but not for
3352 sure. */
3353 break;
3354 default: strcat (buf, _(", unknown ABI")); break;
3355 }
3356
3357 if (e_flags & EF_MIPS_ARCH_ASE_MDMX)
3358 strcat (buf, ", mdmx");
3359
3360 if (e_flags & EF_MIPS_ARCH_ASE_M16)
3361 strcat (buf, ", mips16");
3362
3363 if (e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
3364 strcat (buf, ", micromips");
3365
3366 switch ((e_flags & EF_MIPS_ARCH))
3367 {
3368 case E_MIPS_ARCH_1: strcat (buf, ", mips1"); break;
3369 case E_MIPS_ARCH_2: strcat (buf, ", mips2"); break;
3370 case E_MIPS_ARCH_3: strcat (buf, ", mips3"); break;
3371 case E_MIPS_ARCH_4: strcat (buf, ", mips4"); break;
3372 case E_MIPS_ARCH_5: strcat (buf, ", mips5"); break;
3373 case E_MIPS_ARCH_32: strcat (buf, ", mips32"); break;
3374 case E_MIPS_ARCH_32R2: strcat (buf, ", mips32r2"); break;
3375 case E_MIPS_ARCH_32R6: strcat (buf, ", mips32r6"); break;
3376 case E_MIPS_ARCH_64: strcat (buf, ", mips64"); break;
3377 case E_MIPS_ARCH_64R2: strcat (buf, ", mips64r2"); break;
3378 case E_MIPS_ARCH_64R6: strcat (buf, ", mips64r6"); break;
3379 default: strcat (buf, _(", unknown ISA")); break;
3380 }
3381 break;
3382
3383 case EM_NDS32:
3384 decode_NDS32_machine_flags (e_flags, buf, sizeof buf);
3385 break;
3386
3387 case EM_RISCV:
3388 if (e_flags & EF_RISCV_RVC)
3389 strcat (buf, ", RVC");
3390
3391 switch (e_flags & EF_RISCV_FLOAT_ABI)
3392 {
3393 case EF_RISCV_FLOAT_ABI_SOFT:
3394 strcat (buf, ", soft-float ABI");
3395 break;
3396
3397 case EF_RISCV_FLOAT_ABI_SINGLE:
3398 strcat (buf, ", single-float ABI");
3399 break;
3400
3401 case EF_RISCV_FLOAT_ABI_DOUBLE:
3402 strcat (buf, ", double-float ABI");
3403 break;
3404
3405 case EF_RISCV_FLOAT_ABI_QUAD:
3406 strcat (buf, ", quad-float ABI");
3407 break;
3408 }
3409 break;
3410
3411 case EM_SH:
3412 switch ((e_flags & EF_SH_MACH_MASK))
3413 {
3414 case EF_SH1: strcat (buf, ", sh1"); break;
3415 case EF_SH2: strcat (buf, ", sh2"); break;
3416 case EF_SH3: strcat (buf, ", sh3"); break;
3417 case EF_SH_DSP: strcat (buf, ", sh-dsp"); break;
3418 case EF_SH3_DSP: strcat (buf, ", sh3-dsp"); break;
3419 case EF_SH4AL_DSP: strcat (buf, ", sh4al-dsp"); break;
3420 case EF_SH3E: strcat (buf, ", sh3e"); break;
3421 case EF_SH4: strcat (buf, ", sh4"); break;
3422 case EF_SH5: strcat (buf, ", sh5"); break;
3423 case EF_SH2E: strcat (buf, ", sh2e"); break;
3424 case EF_SH4A: strcat (buf, ", sh4a"); break;
3425 case EF_SH2A: strcat (buf, ", sh2a"); break;
3426 case EF_SH4_NOFPU: strcat (buf, ", sh4-nofpu"); break;
3427 case EF_SH4A_NOFPU: strcat (buf, ", sh4a-nofpu"); break;
3428 case EF_SH2A_NOFPU: strcat (buf, ", sh2a-nofpu"); break;
3429 case EF_SH3_NOMMU: strcat (buf, ", sh3-nommu"); break;
3430 case EF_SH4_NOMMU_NOFPU: strcat (buf, ", sh4-nommu-nofpu"); break;
3431 case EF_SH2A_SH4_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh4-nommu-nofpu"); break;
3432 case EF_SH2A_SH3_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh3-nommu"); break;
3433 case EF_SH2A_SH4: strcat (buf, ", sh2a-or-sh4"); break;
3434 case EF_SH2A_SH3E: strcat (buf, ", sh2a-or-sh3e"); break;
3435 default: strcat (buf, _(", unknown ISA")); break;
3436 }
3437
3438 if (e_flags & EF_SH_PIC)
3439 strcat (buf, ", pic");
3440
3441 if (e_flags & EF_SH_FDPIC)
3442 strcat (buf, ", fdpic");
3443 break;
3444
3445 case EM_OR1K:
3446 if (e_flags & EF_OR1K_NODELAY)
3447 strcat (buf, ", no delay");
3448 break;
3449
3450 case EM_SPARCV9:
3451 if (e_flags & EF_SPARC_32PLUS)
3452 strcat (buf, ", v8+");
3453
3454 if (e_flags & EF_SPARC_SUN_US1)
3455 strcat (buf, ", ultrasparcI");
3456
3457 if (e_flags & EF_SPARC_SUN_US3)
3458 strcat (buf, ", ultrasparcIII");
3459
3460 if (e_flags & EF_SPARC_HAL_R1)
3461 strcat (buf, ", halr1");
3462
3463 if (e_flags & EF_SPARC_LEDATA)
3464 strcat (buf, ", ledata");
3465
3466 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_TSO)
3467 strcat (buf, ", tso");
3468
3469 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_PSO)
3470 strcat (buf, ", pso");
3471
3472 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_RMO)
3473 strcat (buf, ", rmo");
3474 break;
3475
3476 case EM_PARISC:
3477 switch (e_flags & EF_PARISC_ARCH)
3478 {
3479 case EFA_PARISC_1_0:
3480 strcpy (buf, ", PA-RISC 1.0");
3481 break;
3482 case EFA_PARISC_1_1:
3483 strcpy (buf, ", PA-RISC 1.1");
3484 break;
3485 case EFA_PARISC_2_0:
3486 strcpy (buf, ", PA-RISC 2.0");
3487 break;
3488 default:
3489 break;
3490 }
3491 if (e_flags & EF_PARISC_TRAPNIL)
3492 strcat (buf, ", trapnil");
3493 if (e_flags & EF_PARISC_EXT)
3494 strcat (buf, ", ext");
3495 if (e_flags & EF_PARISC_LSB)
3496 strcat (buf, ", lsb");
3497 if (e_flags & EF_PARISC_WIDE)
3498 strcat (buf, ", wide");
3499 if (e_flags & EF_PARISC_NO_KABP)
3500 strcat (buf, ", no kabp");
3501 if (e_flags & EF_PARISC_LAZYSWAP)
3502 strcat (buf, ", lazyswap");
3503 break;
3504
3505 case EM_PJ:
3506 case EM_PJ_OLD:
3507 if ((e_flags & EF_PICOJAVA_NEWCALLS) == EF_PICOJAVA_NEWCALLS)
3508 strcat (buf, ", new calling convention");
3509
3510 if ((e_flags & EF_PICOJAVA_GNUCALLS) == EF_PICOJAVA_GNUCALLS)
3511 strcat (buf, ", gnu calling convention");
3512 break;
3513
3514 case EM_IA_64:
3515 if ((e_flags & EF_IA_64_ABI64))
3516 strcat (buf, ", 64-bit");
3517 else
3518 strcat (buf, ", 32-bit");
3519 if ((e_flags & EF_IA_64_REDUCEDFP))
3520 strcat (buf, ", reduced fp model");
3521 if ((e_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
3522 strcat (buf, ", no function descriptors, constant gp");
3523 else if ((e_flags & EF_IA_64_CONS_GP))
3524 strcat (buf, ", constant gp");
3525 if ((e_flags & EF_IA_64_ABSOLUTE))
3526 strcat (buf, ", absolute");
3527 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
3528 {
3529 if ((e_flags & EF_IA_64_VMS_LINKAGES))
3530 strcat (buf, ", vms_linkages");
3531 switch ((e_flags & EF_IA_64_VMS_COMCOD))
3532 {
3533 case EF_IA_64_VMS_COMCOD_SUCCESS:
3534 break;
3535 case EF_IA_64_VMS_COMCOD_WARNING:
3536 strcat (buf, ", warning");
3537 break;
3538 case EF_IA_64_VMS_COMCOD_ERROR:
3539 strcat (buf, ", error");
3540 break;
3541 case EF_IA_64_VMS_COMCOD_ABORT:
3542 strcat (buf, ", abort");
3543 break;
3544 default:
3545 warn (_("Unrecognised IA64 VMS Command Code: %x\n"),
3546 e_flags & EF_IA_64_VMS_COMCOD);
3547 strcat (buf, ", <unknown>");
3548 }
3549 }
3550 break;
3551
3552 case EM_VAX:
3553 if ((e_flags & EF_VAX_NONPIC))
3554 strcat (buf, ", non-PIC");
3555 if ((e_flags & EF_VAX_DFLOAT))
3556 strcat (buf, ", D-Float");
3557 if ((e_flags & EF_VAX_GFLOAT))
3558 strcat (buf, ", G-Float");
3559 break;
3560
3561 case EM_VISIUM:
3562 if (e_flags & EF_VISIUM_ARCH_MCM)
3563 strcat (buf, ", mcm");
3564 else if (e_flags & EF_VISIUM_ARCH_MCM24)
3565 strcat (buf, ", mcm24");
3566 if (e_flags & EF_VISIUM_ARCH_GR6)
3567 strcat (buf, ", gr6");
3568 break;
3569
3570 case EM_RL78:
3571 switch (e_flags & E_FLAG_RL78_CPU_MASK)
3572 {
3573 case E_FLAG_RL78_ANY_CPU: break;
3574 case E_FLAG_RL78_G10: strcat (buf, ", G10"); break;
3575 case E_FLAG_RL78_G13: strcat (buf, ", G13"); break;
3576 case E_FLAG_RL78_G14: strcat (buf, ", G14"); break;
3577 }
3578 if (e_flags & E_FLAG_RL78_64BIT_DOUBLES)
3579 strcat (buf, ", 64-bit doubles");
3580 break;
3581
3582 case EM_RX:
3583 if (e_flags & E_FLAG_RX_64BIT_DOUBLES)
3584 strcat (buf, ", 64-bit doubles");
3585 if (e_flags & E_FLAG_RX_DSP)
3586 strcat (buf, ", dsp");
3587 if (e_flags & E_FLAG_RX_PID)
3588 strcat (buf, ", pid");
3589 if (e_flags & E_FLAG_RX_ABI)
3590 strcat (buf, ", RX ABI");
3591 if (e_flags & E_FLAG_RX_SINSNS_SET)
3592 strcat (buf, e_flags & E_FLAG_RX_SINSNS_YES
3593 ? ", uses String instructions" : ", bans String instructions");
3594 if (e_flags & E_FLAG_RX_V2)
3595 strcat (buf, ", V2");
3596 break;
3597
3598 case EM_S390:
3599 if (e_flags & EF_S390_HIGH_GPRS)
3600 strcat (buf, ", highgprs");
3601 break;
3602
3603 case EM_TI_C6000:
3604 if ((e_flags & EF_C6000_REL))
3605 strcat (buf, ", relocatable module");
3606 break;
3607
3608 case EM_MSP430:
3609 strcat (buf, _(": architecture variant: "));
3610 switch (e_flags & EF_MSP430_MACH)
3611 {
3612 case E_MSP430_MACH_MSP430x11: strcat (buf, "MSP430x11"); break;
3613 case E_MSP430_MACH_MSP430x11x1 : strcat (buf, "MSP430x11x1 "); break;
3614 case E_MSP430_MACH_MSP430x12: strcat (buf, "MSP430x12"); break;
3615 case E_MSP430_MACH_MSP430x13: strcat (buf, "MSP430x13"); break;
3616 case E_MSP430_MACH_MSP430x14: strcat (buf, "MSP430x14"); break;
3617 case E_MSP430_MACH_MSP430x15: strcat (buf, "MSP430x15"); break;
3618 case E_MSP430_MACH_MSP430x16: strcat (buf, "MSP430x16"); break;
3619 case E_MSP430_MACH_MSP430x31: strcat (buf, "MSP430x31"); break;
3620 case E_MSP430_MACH_MSP430x32: strcat (buf, "MSP430x32"); break;
3621 case E_MSP430_MACH_MSP430x33: strcat (buf, "MSP430x33"); break;
3622 case E_MSP430_MACH_MSP430x41: strcat (buf, "MSP430x41"); break;
3623 case E_MSP430_MACH_MSP430x42: strcat (buf, "MSP430x42"); break;
3624 case E_MSP430_MACH_MSP430x43: strcat (buf, "MSP430x43"); break;
3625 case E_MSP430_MACH_MSP430x44: strcat (buf, "MSP430x44"); break;
3626 case E_MSP430_MACH_MSP430X : strcat (buf, "MSP430X"); break;
3627 default:
3628 strcat (buf, _(": unknown")); break;
3629 }
3630
3631 if (e_flags & ~ EF_MSP430_MACH)
3632 strcat (buf, _(": unknown extra flag bits also present"));
3633 }
3634 }
3635
3636 return buf;
3637 }
3638
3639 static const char *
3640 get_osabi_name (unsigned int osabi)
3641 {
3642 static char buff[32];
3643
3644 switch (osabi)
3645 {
3646 case ELFOSABI_NONE: return "UNIX - System V";
3647 case ELFOSABI_HPUX: return "UNIX - HP-UX";
3648 case ELFOSABI_NETBSD: return "UNIX - NetBSD";
3649 case ELFOSABI_GNU: return "UNIX - GNU";
3650 case ELFOSABI_SOLARIS: return "UNIX - Solaris";
3651 case ELFOSABI_AIX: return "UNIX - AIX";
3652 case ELFOSABI_IRIX: return "UNIX - IRIX";
3653 case ELFOSABI_FREEBSD: return "UNIX - FreeBSD";
3654 case ELFOSABI_TRU64: return "UNIX - TRU64";
3655 case ELFOSABI_MODESTO: return "Novell - Modesto";
3656 case ELFOSABI_OPENBSD: return "UNIX - OpenBSD";
3657 case ELFOSABI_OPENVMS: return "VMS - OpenVMS";
3658 case ELFOSABI_NSK: return "HP - Non-Stop Kernel";
3659 case ELFOSABI_AROS: return "AROS";
3660 case ELFOSABI_FENIXOS: return "FenixOS";
3661 case ELFOSABI_CLOUDABI: return "Nuxi CloudABI";
3662 case ELFOSABI_OPENVOS: return "Stratus Technologies OpenVOS";
3663 default:
3664 if (osabi >= 64)
3665 switch (elf_header.e_machine)
3666 {
3667 case EM_ARM:
3668 switch (osabi)
3669 {
3670 case ELFOSABI_ARM: return "ARM";
3671 default:
3672 break;
3673 }
3674 break;
3675
3676 case EM_MSP430:
3677 case EM_MSP430_OLD:
3678 case EM_VISIUM:
3679 switch (osabi)
3680 {
3681 case ELFOSABI_STANDALONE: return _("Standalone App");
3682 default:
3683 break;
3684 }
3685 break;
3686
3687 case EM_TI_C6000:
3688 switch (osabi)
3689 {
3690 case ELFOSABI_C6000_ELFABI: return _("Bare-metal C6000");
3691 case ELFOSABI_C6000_LINUX: return "Linux C6000";
3692 default:
3693 break;
3694 }
3695 break;
3696
3697 default:
3698 break;
3699 }
3700 snprintf (buff, sizeof (buff), _("<unknown: %x>"), osabi);
3701 return buff;
3702 }
3703 }
3704
3705 static const char *
3706 get_aarch64_segment_type (unsigned long type)
3707 {
3708 switch (type)
3709 {
3710 case PT_AARCH64_ARCHEXT: return "AARCH64_ARCHEXT";
3711 default: return NULL;
3712 }
3713 }
3714
3715 static const char *
3716 get_arm_segment_type (unsigned long type)
3717 {
3718 switch (type)
3719 {
3720 case PT_ARM_EXIDX: return "EXIDX";
3721 default: return NULL;
3722 }
3723 }
3724
3725 static const char *
3726 get_mips_segment_type (unsigned long type)
3727 {
3728 switch (type)
3729 {
3730 case PT_MIPS_REGINFO: return "REGINFO";
3731 case PT_MIPS_RTPROC: return "RTPROC";
3732 case PT_MIPS_OPTIONS: return "OPTIONS";
3733 case PT_MIPS_ABIFLAGS: return "ABIFLAGS";
3734 default: return NULL;
3735 }
3736 }
3737
3738 static const char *
3739 get_parisc_segment_type (unsigned long type)
3740 {
3741 switch (type)
3742 {
3743 case PT_HP_TLS: return "HP_TLS";
3744 case PT_HP_CORE_NONE: return "HP_CORE_NONE";
3745 case PT_HP_CORE_VERSION: return "HP_CORE_VERSION";
3746 case PT_HP_CORE_KERNEL: return "HP_CORE_KERNEL";
3747 case PT_HP_CORE_COMM: return "HP_CORE_COMM";
3748 case PT_HP_CORE_PROC: return "HP_CORE_PROC";
3749 case PT_HP_CORE_LOADABLE: return "HP_CORE_LOADABLE";
3750 case PT_HP_CORE_STACK: return "HP_CORE_STACK";
3751 case PT_HP_CORE_SHM: return "HP_CORE_SHM";
3752 case PT_HP_CORE_MMF: return "HP_CORE_MMF";
3753 case PT_HP_PARALLEL: return "HP_PARALLEL";
3754 case PT_HP_FASTBIND: return "HP_FASTBIND";
3755 case PT_HP_OPT_ANNOT: return "HP_OPT_ANNOT";
3756 case PT_HP_HSL_ANNOT: return "HP_HSL_ANNOT";
3757 case PT_HP_STACK: return "HP_STACK";
3758 case PT_HP_CORE_UTSNAME: return "HP_CORE_UTSNAME";
3759 case PT_PARISC_ARCHEXT: return "PARISC_ARCHEXT";
3760 case PT_PARISC_UNWIND: return "PARISC_UNWIND";
3761 case PT_PARISC_WEAKORDER: return "PARISC_WEAKORDER";
3762 default: return NULL;
3763 }
3764 }
3765
3766 static const char *
3767 get_ia64_segment_type (unsigned long type)
3768 {
3769 switch (type)
3770 {
3771 case PT_IA_64_ARCHEXT: return "IA_64_ARCHEXT";
3772 case PT_IA_64_UNWIND: return "IA_64_UNWIND";
3773 case PT_HP_TLS: return "HP_TLS";
3774 case PT_IA_64_HP_OPT_ANOT: return "HP_OPT_ANNOT";
3775 case PT_IA_64_HP_HSL_ANOT: return "HP_HSL_ANNOT";
3776 case PT_IA_64_HP_STACK: return "HP_STACK";
3777 default: return NULL;
3778 }
3779 }
3780
3781 static const char *
3782 get_tic6x_segment_type (unsigned long type)
3783 {
3784 switch (type)
3785 {
3786 case PT_C6000_PHATTR: return "C6000_PHATTR";
3787 default: return NULL;
3788 }
3789 }
3790
3791 static const char *
3792 get_solaris_segment_type (unsigned long type)
3793 {
3794 switch (type)
3795 {
3796 case 0x6464e550: return "PT_SUNW_UNWIND";
3797 case 0x6474e550: return "PT_SUNW_EH_FRAME";
3798 case 0x6ffffff7: return "PT_LOSUNW";
3799 case 0x6ffffffa: return "PT_SUNWBSS";
3800 case 0x6ffffffb: return "PT_SUNWSTACK";
3801 case 0x6ffffffc: return "PT_SUNWDTRACE";
3802 case 0x6ffffffd: return "PT_SUNWCAP";
3803 case 0x6fffffff: return "PT_HISUNW";
3804 default: return NULL;
3805 }
3806 }
3807
3808 static const char *
3809 get_segment_type (unsigned long p_type)
3810 {
3811 static char buff[32];
3812
3813 switch (p_type)
3814 {
3815 case PT_NULL: return "NULL";
3816 case PT_LOAD: return "LOAD";
3817 case PT_DYNAMIC: return "DYNAMIC";
3818 case PT_INTERP: return "INTERP";
3819 case PT_NOTE: return "NOTE";
3820 case PT_SHLIB: return "SHLIB";
3821 case PT_PHDR: return "PHDR";
3822 case PT_TLS: return "TLS";
3823 case PT_GNU_EH_FRAME: return "GNU_EH_FRAME";
3824 case PT_GNU_STACK: return "GNU_STACK";
3825 case PT_GNU_RELRO: return "GNU_RELRO";
3826
3827 default:
3828 if (p_type >= PT_GNU_MBIND_LO && p_type <= PT_GNU_MBIND_HI)
3829 {
3830 sprintf (buff, "GNU_MBIND+%#lx",
3831 p_type - PT_GNU_MBIND_LO);
3832 }
3833 else if ((p_type >= PT_LOPROC) && (p_type <= PT_HIPROC))
3834 {
3835 const char * result;
3836
3837 switch (elf_header.e_machine)
3838 {
3839 case EM_AARCH64:
3840 result = get_aarch64_segment_type (p_type);
3841 break;
3842 case EM_ARM:
3843 result = get_arm_segment_type (p_type);
3844 break;
3845 case EM_MIPS:
3846 case EM_MIPS_RS3_LE:
3847 result = get_mips_segment_type (p_type);
3848 break;
3849 case EM_PARISC:
3850 result = get_parisc_segment_type (p_type);
3851 break;
3852 case EM_IA_64:
3853 result = get_ia64_segment_type (p_type);
3854 break;
3855 case EM_TI_C6000:
3856 result = get_tic6x_segment_type (p_type);
3857 break;
3858 default:
3859 result = NULL;
3860 break;
3861 }
3862
3863 if (result != NULL)
3864 return result;
3865
3866 sprintf (buff, "LOPROC+%#lx", p_type - PT_LOPROC);
3867 }
3868 else if ((p_type >= PT_LOOS) && (p_type <= PT_HIOS))
3869 {
3870 const char * result;
3871
3872 switch (elf_header.e_machine)
3873 {
3874 case EM_PARISC:
3875 result = get_parisc_segment_type (p_type);
3876 break;
3877 case EM_IA_64:
3878 result = get_ia64_segment_type (p_type);
3879 break;
3880 default:
3881 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
3882 result = get_solaris_segment_type (p_type);
3883 else
3884 result = NULL;
3885 break;
3886 }
3887
3888 if (result != NULL)
3889 return result;
3890
3891 sprintf (buff, "LOOS+%#lx", p_type - PT_LOOS);
3892 }
3893 else
3894 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), p_type);
3895
3896 return buff;
3897 }
3898 }
3899
3900 static const char *
3901 get_mips_section_type_name (unsigned int sh_type)
3902 {
3903 switch (sh_type)
3904 {
3905 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
3906 case SHT_MIPS_MSYM: return "MIPS_MSYM";
3907 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
3908 case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
3909 case SHT_MIPS_UCODE: return "MIPS_UCODE";
3910 case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
3911 case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
3912 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
3913 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
3914 case SHT_MIPS_RELD: return "MIPS_RELD";
3915 case SHT_MIPS_IFACE: return "MIPS_IFACE";
3916 case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
3917 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
3918 case SHT_MIPS_SHDR: return "MIPS_SHDR";
3919 case SHT_MIPS_FDESC: return "MIPS_FDESC";
3920 case SHT_MIPS_EXTSYM: return "MIPS_EXTSYM";
3921 case SHT_MIPS_DENSE: return "MIPS_DENSE";
3922 case SHT_MIPS_PDESC: return "MIPS_PDESC";
3923 case SHT_MIPS_LOCSYM: return "MIPS_LOCSYM";
3924 case SHT_MIPS_AUXSYM: return "MIPS_AUXSYM";
3925 case SHT_MIPS_OPTSYM: return "MIPS_OPTSYM";
3926 case SHT_MIPS_LOCSTR: return "MIPS_LOCSTR";
3927 case SHT_MIPS_LINE: return "MIPS_LINE";
3928 case SHT_MIPS_RFDESC: return "MIPS_RFDESC";
3929 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
3930 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
3931 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
3932 case SHT_MIPS_DWARF: return "MIPS_DWARF";
3933 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
3934 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
3935 case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
3936 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
3937 case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
3938 case SHT_MIPS_XLATE: return "MIPS_XLATE";
3939 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
3940 case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
3941 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
3942 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
3943 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
3944 case SHT_MIPS_ABIFLAGS: return "MIPS_ABIFLAGS";
3945 default:
3946 break;
3947 }
3948 return NULL;
3949 }
3950
3951 static const char *
3952 get_parisc_section_type_name (unsigned int sh_type)
3953 {
3954 switch (sh_type)
3955 {
3956 case SHT_PARISC_EXT: return "PARISC_EXT";
3957 case SHT_PARISC_UNWIND: return "PARISC_UNWIND";
3958 case SHT_PARISC_DOC: return "PARISC_DOC";
3959 case SHT_PARISC_ANNOT: return "PARISC_ANNOT";
3960 case SHT_PARISC_SYMEXTN: return "PARISC_SYMEXTN";
3961 case SHT_PARISC_STUBS: return "PARISC_STUBS";
3962 case SHT_PARISC_DLKM: return "PARISC_DLKM";
3963 default: return NULL;
3964 }
3965 }
3966
3967 static const char *
3968 get_ia64_section_type_name (unsigned int sh_type)
3969 {
3970 /* If the top 8 bits are 0x78 the next 8 are the os/abi ID. */
3971 if ((sh_type & 0xFF000000) == SHT_IA_64_LOPSREG)
3972 return get_osabi_name ((sh_type & 0x00FF0000) >> 16);
3973
3974 switch (sh_type)
3975 {
3976 case SHT_IA_64_EXT: return "IA_64_EXT";
3977 case SHT_IA_64_UNWIND: return "IA_64_UNWIND";
3978 case SHT_IA_64_PRIORITY_INIT: return "IA_64_PRIORITY_INIT";
3979 case SHT_IA_64_VMS_TRACE: return "VMS_TRACE";
3980 case SHT_IA_64_VMS_TIE_SIGNATURES: return "VMS_TIE_SIGNATURES";
3981 case SHT_IA_64_VMS_DEBUG: return "VMS_DEBUG";
3982 case SHT_IA_64_VMS_DEBUG_STR: return "VMS_DEBUG_STR";
3983 case SHT_IA_64_VMS_LINKAGES: return "VMS_LINKAGES";
3984 case SHT_IA_64_VMS_SYMBOL_VECTOR: return "VMS_SYMBOL_VECTOR";
3985 case SHT_IA_64_VMS_FIXUP: return "VMS_FIXUP";
3986 default:
3987 break;
3988 }
3989 return NULL;
3990 }
3991
3992 static const char *
3993 get_x86_64_section_type_name (unsigned int sh_type)
3994 {
3995 switch (sh_type)
3996 {
3997 case SHT_X86_64_UNWIND: return "X86_64_UNWIND";
3998 default: return NULL;
3999 }
4000 }
4001
4002 static const char *
4003 get_aarch64_section_type_name (unsigned int sh_type)
4004 {
4005 switch (sh_type)
4006 {
4007 case SHT_AARCH64_ATTRIBUTES: return "AARCH64_ATTRIBUTES";
4008 default: return NULL;
4009 }
4010 }
4011
4012 static const char *
4013 get_arm_section_type_name (unsigned int sh_type)
4014 {
4015 switch (sh_type)
4016 {
4017 case SHT_ARM_EXIDX: return "ARM_EXIDX";
4018 case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP";
4019 case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES";
4020 case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY";
4021 case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION";
4022 default: return NULL;
4023 }
4024 }
4025
4026 static const char *
4027 get_tic6x_section_type_name (unsigned int sh_type)
4028 {
4029 switch (sh_type)
4030 {
4031 case SHT_C6000_UNWIND: return "C6000_UNWIND";
4032 case SHT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
4033 case SHT_C6000_ATTRIBUTES: return "C6000_ATTRIBUTES";
4034 case SHT_TI_ICODE: return "TI_ICODE";
4035 case SHT_TI_XREF: return "TI_XREF";
4036 case SHT_TI_HANDLER: return "TI_HANDLER";
4037 case SHT_TI_INITINFO: return "TI_INITINFO";
4038 case SHT_TI_PHATTRS: return "TI_PHATTRS";
4039 default: return NULL;
4040 }
4041 }
4042
4043 static const char *
4044 get_msp430x_section_type_name (unsigned int sh_type)
4045 {
4046 switch (sh_type)
4047 {
4048 case SHT_MSP430_SEC_FLAGS: return "MSP430_SEC_FLAGS";
4049 case SHT_MSP430_SYM_ALIASES: return "MSP430_SYM_ALIASES";
4050 case SHT_MSP430_ATTRIBUTES: return "MSP430_ATTRIBUTES";
4051 default: return NULL;
4052 }
4053 }
4054
4055 static const char *
4056 get_v850_section_type_name (unsigned int sh_type)
4057 {
4058 switch (sh_type)
4059 {
4060 case SHT_V850_SCOMMON: return "V850 Small Common";
4061 case SHT_V850_TCOMMON: return "V850 Tiny Common";
4062 case SHT_V850_ZCOMMON: return "V850 Zero Common";
4063 case SHT_RENESAS_IOP: return "RENESAS IOP";
4064 case SHT_RENESAS_INFO: return "RENESAS INFO";
4065 default: return NULL;
4066 }
4067 }
4068
4069 static const char *
4070 get_section_type_name (unsigned int sh_type)
4071 {
4072 static char buff[32];
4073 const char * result;
4074
4075 switch (sh_type)
4076 {
4077 case SHT_NULL: return "NULL";
4078 case SHT_PROGBITS: return "PROGBITS";
4079 case SHT_SYMTAB: return "SYMTAB";
4080 case SHT_STRTAB: return "STRTAB";
4081 case SHT_RELA: return "RELA";
4082 case SHT_HASH: return "HASH";
4083 case SHT_DYNAMIC: return "DYNAMIC";
4084 case SHT_NOTE: return "NOTE";
4085 case SHT_NOBITS: return "NOBITS";
4086 case SHT_REL: return "REL";
4087 case SHT_SHLIB: return "SHLIB";
4088 case SHT_DYNSYM: return "DYNSYM";
4089 case SHT_INIT_ARRAY: return "INIT_ARRAY";
4090 case SHT_FINI_ARRAY: return "FINI_ARRAY";
4091 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
4092 case SHT_GNU_HASH: return "GNU_HASH";
4093 case SHT_GROUP: return "GROUP";
4094 case SHT_SYMTAB_SHNDX: return "SYMTAB SECTION INDICIES";
4095 case SHT_GNU_verdef: return "VERDEF";
4096 case SHT_GNU_verneed: return "VERNEED";
4097 case SHT_GNU_versym: return "VERSYM";
4098 case 0x6ffffff0: return "VERSYM";
4099 case 0x6ffffffc: return "VERDEF";
4100 case 0x7ffffffd: return "AUXILIARY";
4101 case 0x7fffffff: return "FILTER";
4102 case SHT_GNU_LIBLIST: return "GNU_LIBLIST";
4103
4104 default:
4105 if ((sh_type >= SHT_LOPROC) && (sh_type <= SHT_HIPROC))
4106 {
4107 switch (elf_header.e_machine)
4108 {
4109 case EM_MIPS:
4110 case EM_MIPS_RS3_LE:
4111 result = get_mips_section_type_name (sh_type);
4112 break;
4113 case EM_PARISC:
4114 result = get_parisc_section_type_name (sh_type);
4115 break;
4116 case EM_IA_64:
4117 result = get_ia64_section_type_name (sh_type);
4118 break;
4119 case EM_X86_64:
4120 case EM_L1OM:
4121 case EM_K1OM:
4122 result = get_x86_64_section_type_name (sh_type);
4123 break;
4124 case EM_AARCH64:
4125 result = get_aarch64_section_type_name (sh_type);
4126 break;
4127 case EM_ARM:
4128 result = get_arm_section_type_name (sh_type);
4129 break;
4130 case EM_TI_C6000:
4131 result = get_tic6x_section_type_name (sh_type);
4132 break;
4133 case EM_MSP430:
4134 result = get_msp430x_section_type_name (sh_type);
4135 break;
4136 case EM_V800:
4137 case EM_V850:
4138 case EM_CYGNUS_V850:
4139 result = get_v850_section_type_name (sh_type);
4140 break;
4141 default:
4142 result = NULL;
4143 break;
4144 }
4145
4146 if (result != NULL)
4147 return result;
4148
4149 sprintf (buff, "LOPROC+%#x", sh_type - SHT_LOPROC);
4150 }
4151 else if ((sh_type >= SHT_LOOS) && (sh_type <= SHT_HIOS))
4152 {
4153 switch (elf_header.e_machine)
4154 {
4155 case EM_IA_64:
4156 result = get_ia64_section_type_name (sh_type);
4157 break;
4158 default:
4159 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
4160 result = get_solaris_section_type (sh_type);
4161 else
4162 {
4163 switch (sh_type)
4164 {
4165 case SHT_GNU_INCREMENTAL_INPUTS: result = "GNU_INCREMENTAL_INPUTS"; break;
4166 case SHT_GNU_ATTRIBUTES: result = "GNU_ATTRIBUTES"; break;
4167 case SHT_GNU_HASH: result = "GNU_HASH"; break;
4168 case SHT_GNU_LIBLIST: result = "GNU_LIBLIST"; break;
4169 default:
4170 result = NULL;
4171 break;
4172 }
4173 }
4174 break;
4175 }
4176
4177 if (result != NULL)
4178 return result;
4179
4180 sprintf (buff, "LOOS+%#x", sh_type - SHT_LOOS);
4181 }
4182 else if ((sh_type >= SHT_LOUSER) && (sh_type <= SHT_HIUSER))
4183 {
4184 switch (elf_header.e_machine)
4185 {
4186 case EM_V800:
4187 case EM_V850:
4188 case EM_CYGNUS_V850:
4189 result = get_v850_section_type_name (sh_type);
4190 break;
4191 default:
4192 result = NULL;
4193 break;
4194 }
4195
4196 if (result != NULL)
4197 return result;
4198
4199 sprintf (buff, "LOUSER+%#x", sh_type - SHT_LOUSER);
4200 }
4201 else
4202 /* This message is probably going to be displayed in a 15
4203 character wide field, so put the hex value first. */
4204 snprintf (buff, sizeof (buff), _("%08x: <unknown>"), sh_type);
4205
4206 return buff;
4207 }
4208 }
4209
4210 #define OPTION_DEBUG_DUMP 512
4211 #define OPTION_DYN_SYMS 513
4212 #define OPTION_DWARF_DEPTH 514
4213 #define OPTION_DWARF_START 515
4214 #define OPTION_DWARF_CHECK 516
4215
4216 static struct option options[] =
4217 {
4218 {"all", no_argument, 0, 'a'},
4219 {"file-header", no_argument, 0, 'h'},
4220 {"program-headers", no_argument, 0, 'l'},
4221 {"headers", no_argument, 0, 'e'},
4222 {"histogram", no_argument, 0, 'I'},
4223 {"segments", no_argument, 0, 'l'},
4224 {"sections", no_argument, 0, 'S'},
4225 {"section-headers", no_argument, 0, 'S'},
4226 {"section-groups", no_argument, 0, 'g'},
4227 {"section-details", no_argument, 0, 't'},
4228 {"full-section-name",no_argument, 0, 'N'},
4229 {"symbols", no_argument, 0, 's'},
4230 {"syms", no_argument, 0, 's'},
4231 {"dyn-syms", no_argument, 0, OPTION_DYN_SYMS},
4232 {"relocs", no_argument, 0, 'r'},
4233 {"notes", no_argument, 0, 'n'},
4234 {"dynamic", no_argument, 0, 'd'},
4235 {"arch-specific", no_argument, 0, 'A'},
4236 {"version-info", no_argument, 0, 'V'},
4237 {"use-dynamic", no_argument, 0, 'D'},
4238 {"unwind", no_argument, 0, 'u'},
4239 {"archive-index", no_argument, 0, 'c'},
4240 {"hex-dump", required_argument, 0, 'x'},
4241 {"relocated-dump", required_argument, 0, 'R'},
4242 {"string-dump", required_argument, 0, 'p'},
4243 {"decompress", no_argument, 0, 'z'},
4244 #ifdef SUPPORT_DISASSEMBLY
4245 {"instruction-dump", required_argument, 0, 'i'},
4246 #endif
4247 {"debug-dump", optional_argument, 0, OPTION_DEBUG_DUMP},
4248
4249 {"dwarf-depth", required_argument, 0, OPTION_DWARF_DEPTH},
4250 {"dwarf-start", required_argument, 0, OPTION_DWARF_START},
4251 {"dwarf-check", no_argument, 0, OPTION_DWARF_CHECK},
4252
4253 {"version", no_argument, 0, 'v'},
4254 {"wide", no_argument, 0, 'W'},
4255 {"help", no_argument, 0, 'H'},
4256 {0, no_argument, 0, 0}
4257 };
4258
4259 static void
4260 usage (FILE * stream)
4261 {
4262 fprintf (stream, _("Usage: readelf <option(s)> elf-file(s)\n"));
4263 fprintf (stream, _(" Display information about the contents of ELF format files\n"));
4264 fprintf (stream, _(" Options are:\n\
4265 -a --all Equivalent to: -h -l -S -s -r -d -V -A -I\n\
4266 -h --file-header Display the ELF file header\n\
4267 -l --program-headers Display the program headers\n\
4268 --segments An alias for --program-headers\n\
4269 -S --section-headers Display the sections' header\n\
4270 --sections An alias for --section-headers\n\
4271 -g --section-groups Display the section groups\n\
4272 -t --section-details Display the section details\n\
4273 -e --headers Equivalent to: -h -l -S\n\
4274 -s --syms Display the symbol table\n\
4275 --symbols An alias for --syms\n\
4276 --dyn-syms Display the dynamic symbol table\n\
4277 -n --notes Display the core notes (if present)\n\
4278 -r --relocs Display the relocations (if present)\n\
4279 -u --unwind Display the unwind info (if present)\n\
4280 -d --dynamic Display the dynamic section (if present)\n\
4281 -V --version-info Display the version sections (if present)\n\
4282 -A --arch-specific Display architecture specific information (if any)\n\
4283 -c --archive-index Display the symbol/file index in an archive\n\
4284 -D --use-dynamic Use the dynamic section info when displaying symbols\n\
4285 -x --hex-dump=<number|name>\n\
4286 Dump the contents of section <number|name> as bytes\n\
4287 -p --string-dump=<number|name>\n\
4288 Dump the contents of section <number|name> as strings\n\
4289 -R --relocated-dump=<number|name>\n\
4290 Dump the contents of section <number|name> as relocated bytes\n\
4291 -z --decompress Decompress section before dumping it\n\
4292 -w[lLiaprmfFsoRt] or\n\
4293 --debug-dump[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,\n\
4294 =frames-interp,=str,=loc,=Ranges,=pubtypes,\n\
4295 =gdb_index,=trace_info,=trace_abbrev,=trace_aranges,\n\
4296 =addr,=cu_index]\n\
4297 Display the contents of DWARF2 debug sections\n"));
4298 fprintf (stream, _("\
4299 --dwarf-depth=N Do not display DIEs at depth N or greater\n\
4300 --dwarf-start=N Display DIEs starting with N, at the same depth\n\
4301 or deeper\n"));
4302 #ifdef SUPPORT_DISASSEMBLY
4303 fprintf (stream, _("\
4304 -i --instruction-dump=<number|name>\n\
4305 Disassemble the contents of section <number|name>\n"));
4306 #endif
4307 fprintf (stream, _("\
4308 -I --histogram Display histogram of bucket list lengths\n\
4309 -W --wide Allow output width to exceed 80 characters\n\
4310 @<file> Read options from <file>\n\
4311 -H --help Display this information\n\
4312 -v --version Display the version number of readelf\n"));
4313
4314 if (REPORT_BUGS_TO[0] && stream == stdout)
4315 fprintf (stdout, _("Report bugs to %s\n"), REPORT_BUGS_TO);
4316
4317 exit (stream == stdout ? 0 : 1);
4318 }
4319
4320 /* Record the fact that the user wants the contents of section number
4321 SECTION to be displayed using the method(s) encoded as flags bits
4322 in TYPE. Note, TYPE can be zero if we are creating the array for
4323 the first time. */
4324
4325 static void
4326 request_dump_bynumber (unsigned int section, dump_type type)
4327 {
4328 if (section >= num_dump_sects)
4329 {
4330 dump_type * new_dump_sects;
4331
4332 new_dump_sects = (dump_type *) calloc (section + 1,
4333 sizeof (* dump_sects));
4334
4335 if (new_dump_sects == NULL)
4336 error (_("Out of memory allocating dump request table.\n"));
4337 else
4338 {
4339 if (dump_sects)
4340 {
4341 /* Copy current flag settings. */
4342 memcpy (new_dump_sects, dump_sects, num_dump_sects * sizeof (* dump_sects));
4343
4344 free (dump_sects);
4345 }
4346
4347 dump_sects = new_dump_sects;
4348 num_dump_sects = section + 1;
4349 }
4350 }
4351
4352 if (dump_sects)
4353 dump_sects[section] |= type;
4354
4355 return;
4356 }
4357
4358 /* Request a dump by section name. */
4359
4360 static void
4361 request_dump_byname (const char * section, dump_type type)
4362 {
4363 struct dump_list_entry * new_request;
4364
4365 new_request = (struct dump_list_entry *)
4366 malloc (sizeof (struct dump_list_entry));
4367 if (!new_request)
4368 error (_("Out of memory allocating dump request table.\n"));
4369
4370 new_request->name = strdup (section);
4371 if (!new_request->name)
4372 error (_("Out of memory allocating dump request table.\n"));
4373
4374 new_request->type = type;
4375
4376 new_request->next = dump_sects_byname;
4377 dump_sects_byname = new_request;
4378 }
4379
4380 static inline void
4381 request_dump (dump_type type)
4382 {
4383 int section;
4384 char * cp;
4385
4386 do_dump++;
4387 section = strtoul (optarg, & cp, 0);
4388
4389 if (! *cp && section >= 0)
4390 request_dump_bynumber (section, type);
4391 else
4392 request_dump_byname (optarg, type);
4393 }
4394
4395
4396 static void
4397 parse_args (int argc, char ** argv)
4398 {
4399 int c;
4400
4401 if (argc < 2)
4402 usage (stderr);
4403
4404 while ((c = getopt_long
4405 (argc, argv, "ADHINR:SVWacdeghi:lnp:rstuvw::x:z", options, NULL)) != EOF)
4406 {
4407 switch (c)
4408 {
4409 case 0:
4410 /* Long options. */
4411 break;
4412 case 'H':
4413 usage (stdout);
4414 break;
4415
4416 case 'a':
4417 do_syms = TRUE;
4418 do_reloc = TRUE;
4419 do_unwind = TRUE;
4420 do_dynamic = TRUE;
4421 do_header = TRUE;
4422 do_sections = TRUE;
4423 do_section_groups = TRUE;
4424 do_segments = TRUE;
4425 do_version = TRUE;
4426 do_histogram = TRUE;
4427 do_arch = TRUE;
4428 do_notes = TRUE;
4429 break;
4430 case 'g':
4431 do_section_groups = TRUE;
4432 break;
4433 case 't':
4434 case 'N':
4435 do_sections = TRUE;
4436 do_section_details = TRUE;
4437 break;
4438 case 'e':
4439 do_header = TRUE;
4440 do_sections = TRUE;
4441 do_segments = TRUE;
4442 break;
4443 case 'A':
4444 do_arch = TRUE;
4445 break;
4446 case 'D':
4447 do_using_dynamic = TRUE;
4448 break;
4449 case 'r':
4450 do_reloc = TRUE;
4451 break;
4452 case 'u':
4453 do_unwind = TRUE;
4454 break;
4455 case 'h':
4456 do_header = TRUE;
4457 break;
4458 case 'l':
4459 do_segments = TRUE;
4460 break;
4461 case 's':
4462 do_syms = TRUE;
4463 break;
4464 case 'S':
4465 do_sections = TRUE;
4466 break;
4467 case 'd':
4468 do_dynamic = TRUE;
4469 break;
4470 case 'I':
4471 do_histogram = TRUE;
4472 break;
4473 case 'n':
4474 do_notes = TRUE;
4475 break;
4476 case 'c':
4477 do_archive_index = TRUE;
4478 break;
4479 case 'x':
4480 request_dump (HEX_DUMP);
4481 break;
4482 case 'p':
4483 request_dump (STRING_DUMP);
4484 break;
4485 case 'R':
4486 request_dump (RELOC_DUMP);
4487 break;
4488 case 'z':
4489 decompress_dumps = TRUE;
4490 break;
4491 case 'w':
4492 do_dump = TRUE;
4493 if (optarg == 0)
4494 {
4495 do_debugging = TRUE;
4496 dwarf_select_sections_all ();
4497 }
4498 else
4499 {
4500 do_debugging = FALSE;
4501 dwarf_select_sections_by_letters (optarg);
4502 }
4503 break;
4504 case OPTION_DEBUG_DUMP:
4505 do_dump = TRUE;
4506 if (optarg == 0)
4507 do_debugging = TRUE;
4508 else
4509 {
4510 do_debugging = FALSE;
4511 dwarf_select_sections_by_names (optarg);
4512 }
4513 break;
4514 case OPTION_DWARF_DEPTH:
4515 {
4516 char *cp;
4517
4518 dwarf_cutoff_level = strtoul (optarg, & cp, 0);
4519 }
4520 break;
4521 case OPTION_DWARF_START:
4522 {
4523 char *cp;
4524
4525 dwarf_start_die = strtoul (optarg, & cp, 0);
4526 }
4527 break;
4528 case OPTION_DWARF_CHECK:
4529 dwarf_check = TRUE;
4530 break;
4531 case OPTION_DYN_SYMS:
4532 do_dyn_syms = TRUE;
4533 break;
4534 #ifdef SUPPORT_DISASSEMBLY
4535 case 'i':
4536 request_dump (DISASS_DUMP);
4537 break;
4538 #endif
4539 case 'v':
4540 print_version (program_name);
4541 break;
4542 case 'V':
4543 do_version = TRUE;
4544 break;
4545 case 'W':
4546 do_wide = TRUE;
4547 break;
4548 default:
4549 /* xgettext:c-format */
4550 error (_("Invalid option '-%c'\n"), c);
4551 /* Fall through. */
4552 case '?':
4553 usage (stderr);
4554 }
4555 }
4556
4557 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
4558 && !do_segments && !do_header && !do_dump && !do_version
4559 && !do_histogram && !do_debugging && !do_arch && !do_notes
4560 && !do_section_groups && !do_archive_index
4561 && !do_dyn_syms)
4562 usage (stderr);
4563 }
4564
4565 static const char *
4566 get_elf_class (unsigned int elf_class)
4567 {
4568 static char buff[32];
4569
4570 switch (elf_class)
4571 {
4572 case ELFCLASSNONE: return _("none");
4573 case ELFCLASS32: return "ELF32";
4574 case ELFCLASS64: return "ELF64";
4575 default:
4576 snprintf (buff, sizeof (buff), _("<unknown: %x>"), elf_class);
4577 return buff;
4578 }
4579 }
4580
4581 static const char *
4582 get_data_encoding (unsigned int encoding)
4583 {
4584 static char buff[32];
4585
4586 switch (encoding)
4587 {
4588 case ELFDATANONE: return _("none");
4589 case ELFDATA2LSB: return _("2's complement, little endian");
4590 case ELFDATA2MSB: return _("2's complement, big endian");
4591 default:
4592 snprintf (buff, sizeof (buff), _("<unknown: %x>"), encoding);
4593 return buff;
4594 }
4595 }
4596
4597 /* Decode the data held in 'elf_header'. */
4598
4599 static bfd_boolean
4600 process_file_header (void)
4601 {
4602 if ( elf_header.e_ident[EI_MAG0] != ELFMAG0
4603 || elf_header.e_ident[EI_MAG1] != ELFMAG1
4604 || elf_header.e_ident[EI_MAG2] != ELFMAG2
4605 || elf_header.e_ident[EI_MAG3] != ELFMAG3)
4606 {
4607 error
4608 (_("Not an ELF file - it has the wrong magic bytes at the start\n"));
4609 return FALSE;
4610 }
4611
4612 init_dwarf_regnames (elf_header.e_machine);
4613
4614 if (do_header)
4615 {
4616 unsigned i;
4617
4618 printf (_("ELF Header:\n"));
4619 printf (_(" Magic: "));
4620 for (i = 0; i < EI_NIDENT; i++)
4621 printf ("%2.2x ", elf_header.e_ident[i]);
4622 printf ("\n");
4623 printf (_(" Class: %s\n"),
4624 get_elf_class (elf_header.e_ident[EI_CLASS]));
4625 printf (_(" Data: %s\n"),
4626 get_data_encoding (elf_header.e_ident[EI_DATA]));
4627 printf (_(" Version: %d %s\n"),
4628 elf_header.e_ident[EI_VERSION],
4629 (elf_header.e_ident[EI_VERSION] == EV_CURRENT
4630 ? "(current)"
4631 : (elf_header.e_ident[EI_VERSION] != EV_NONE
4632 ? _("<unknown: %lx>")
4633 : "")));
4634 printf (_(" OS/ABI: %s\n"),
4635 get_osabi_name (elf_header.e_ident[EI_OSABI]));
4636 printf (_(" ABI Version: %d\n"),
4637 elf_header.e_ident[EI_ABIVERSION]);
4638 printf (_(" Type: %s\n"),
4639 get_file_type (elf_header.e_type));
4640 printf (_(" Machine: %s\n"),
4641 get_machine_name (elf_header.e_machine));
4642 printf (_(" Version: 0x%lx\n"),
4643 (unsigned long) elf_header.e_version);
4644
4645 printf (_(" Entry point address: "));
4646 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4647 printf (_("\n Start of program headers: "));
4648 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4649 printf (_(" (bytes into file)\n Start of section headers: "));
4650 print_vma ((bfd_vma) elf_header.e_shoff, DEC);
4651 printf (_(" (bytes into file)\n"));
4652
4653 printf (_(" Flags: 0x%lx%s\n"),
4654 (unsigned long) elf_header.e_flags,
4655 get_machine_flags (elf_header.e_flags, elf_header.e_machine));
4656 printf (_(" Size of this header: %ld (bytes)\n"),
4657 (long) elf_header.e_ehsize);
4658 printf (_(" Size of program headers: %ld (bytes)\n"),
4659 (long) elf_header.e_phentsize);
4660 printf (_(" Number of program headers: %ld"),
4661 (long) elf_header.e_phnum);
4662 if (section_headers != NULL
4663 && elf_header.e_phnum == PN_XNUM
4664 && section_headers[0].sh_info != 0)
4665 printf (" (%ld)", (long) section_headers[0].sh_info);
4666 putc ('\n', stdout);
4667 printf (_(" Size of section headers: %ld (bytes)\n"),
4668 (long) elf_header.e_shentsize);
4669 printf (_(" Number of section headers: %ld"),
4670 (long) elf_header.e_shnum);
4671 if (section_headers != NULL && elf_header.e_shnum == SHN_UNDEF)
4672 printf (" (%ld)", (long) section_headers[0].sh_size);
4673 putc ('\n', stdout);
4674 printf (_(" Section header string table index: %ld"),
4675 (long) elf_header.e_shstrndx);
4676 if (section_headers != NULL
4677 && elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4678 printf (" (%u)", section_headers[0].sh_link);
4679 else if (elf_header.e_shstrndx != SHN_UNDEF
4680 && elf_header.e_shstrndx >= elf_header.e_shnum)
4681 printf (_(" <corrupt: out of range>"));
4682 putc ('\n', stdout);
4683 }
4684
4685 if (section_headers != NULL)
4686 {
4687 if (elf_header.e_phnum == PN_XNUM
4688 && section_headers[0].sh_info != 0)
4689 elf_header.e_phnum = section_headers[0].sh_info;
4690 if (elf_header.e_shnum == SHN_UNDEF)
4691 elf_header.e_shnum = section_headers[0].sh_size;
4692 if (elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4693 elf_header.e_shstrndx = section_headers[0].sh_link;
4694 else if (elf_header.e_shstrndx >= elf_header.e_shnum)
4695 elf_header.e_shstrndx = SHN_UNDEF;
4696 free (section_headers);
4697 section_headers = NULL;
4698 }
4699
4700 return TRUE;
4701 }
4702
4703 static bfd_boolean
4704 get_32bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4705 {
4706 Elf32_External_Phdr * phdrs;
4707 Elf32_External_Phdr * external;
4708 Elf_Internal_Phdr * internal;
4709 unsigned int i;
4710 unsigned int size = elf_header.e_phentsize;
4711 unsigned int num = elf_header.e_phnum;
4712
4713 /* PR binutils/17531: Cope with unexpected section header sizes. */
4714 if (size == 0 || num == 0)
4715 return FALSE;
4716 if (size < sizeof * phdrs)
4717 {
4718 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
4719 return FALSE;
4720 }
4721 if (size > sizeof * phdrs)
4722 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
4723
4724 phdrs = (Elf32_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4725 size, num, _("program headers"));
4726 if (phdrs == NULL)
4727 return FALSE;
4728
4729 for (i = 0, internal = pheaders, external = phdrs;
4730 i < elf_header.e_phnum;
4731 i++, internal++, external++)
4732 {
4733 internal->p_type = BYTE_GET (external->p_type);
4734 internal->p_offset = BYTE_GET (external->p_offset);
4735 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4736 internal->p_paddr = BYTE_GET (external->p_paddr);
4737 internal->p_filesz = BYTE_GET (external->p_filesz);
4738 internal->p_memsz = BYTE_GET (external->p_memsz);
4739 internal->p_flags = BYTE_GET (external->p_flags);
4740 internal->p_align = BYTE_GET (external->p_align);
4741 }
4742
4743 free (phdrs);
4744 return TRUE;
4745 }
4746
4747 static bfd_boolean
4748 get_64bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4749 {
4750 Elf64_External_Phdr * phdrs;
4751 Elf64_External_Phdr * external;
4752 Elf_Internal_Phdr * internal;
4753 unsigned int i;
4754 unsigned int size = elf_header.e_phentsize;
4755 unsigned int num = elf_header.e_phnum;
4756
4757 /* PR binutils/17531: Cope with unexpected section header sizes. */
4758 if (size == 0 || num == 0)
4759 return FALSE;
4760 if (size < sizeof * phdrs)
4761 {
4762 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
4763 return FALSE;
4764 }
4765 if (size > sizeof * phdrs)
4766 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
4767
4768 phdrs = (Elf64_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4769 size, num, _("program headers"));
4770 if (!phdrs)
4771 return FALSE;
4772
4773 for (i = 0, internal = pheaders, external = phdrs;
4774 i < elf_header.e_phnum;
4775 i++, internal++, external++)
4776 {
4777 internal->p_type = BYTE_GET (external->p_type);
4778 internal->p_flags = BYTE_GET (external->p_flags);
4779 internal->p_offset = BYTE_GET (external->p_offset);
4780 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4781 internal->p_paddr = BYTE_GET (external->p_paddr);
4782 internal->p_filesz = BYTE_GET (external->p_filesz);
4783 internal->p_memsz = BYTE_GET (external->p_memsz);
4784 internal->p_align = BYTE_GET (external->p_align);
4785 }
4786
4787 free (phdrs);
4788 return TRUE;
4789 }
4790
4791 /* Returns TRUE if the program headers were read into `program_headers'. */
4792
4793 static bfd_boolean
4794 get_program_headers (FILE * file)
4795 {
4796 Elf_Internal_Phdr * phdrs;
4797
4798 /* Check cache of prior read. */
4799 if (program_headers != NULL)
4800 return TRUE;
4801
4802 /* Be kind to memory checkers by looking for
4803 e_phnum values which we know must be invalid. */
4804 if (elf_header.e_phnum
4805 * (is_32bit_elf ? sizeof (Elf32_External_Phdr) : sizeof (Elf64_External_Phdr))
4806 >= current_file_size)
4807 {
4808 error (_("Too many program headers - %#x - the file is not that big\n"),
4809 elf_header.e_phnum);
4810 return FALSE;
4811 }
4812
4813 phdrs = (Elf_Internal_Phdr *) cmalloc (elf_header.e_phnum,
4814 sizeof (Elf_Internal_Phdr));
4815 if (phdrs == NULL)
4816 {
4817 error (_("Out of memory reading %u program headers\n"),
4818 elf_header.e_phnum);
4819 return FALSE;
4820 }
4821
4822 if (is_32bit_elf
4823 ? get_32bit_program_headers (file, phdrs)
4824 : get_64bit_program_headers (file, phdrs))
4825 {
4826 program_headers = phdrs;
4827 return TRUE;
4828 }
4829
4830 free (phdrs);
4831 return FALSE;
4832 }
4833
4834 /* Returns TRUE if the program headers were loaded. */
4835
4836 static bfd_boolean
4837 process_program_headers (FILE * file)
4838 {
4839 Elf_Internal_Phdr * segment;
4840 unsigned int i;
4841 Elf_Internal_Phdr * previous_load = NULL;
4842
4843 if (elf_header.e_phnum == 0)
4844 {
4845 /* PR binutils/12467. */
4846 if (elf_header.e_phoff != 0)
4847 {
4848 warn (_("possibly corrupt ELF header - it has a non-zero program"
4849 " header offset, but no program headers\n"));
4850 return FALSE;
4851 }
4852 else if (do_segments)
4853 printf (_("\nThere are no program headers in this file.\n"));
4854 return TRUE;
4855 }
4856
4857 if (do_segments && !do_header)
4858 {
4859 printf (_("\nElf file type is %s\n"), get_file_type (elf_header.e_type));
4860 printf (_("Entry point "));
4861 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4862 printf (_("\nThere are %d program headers, starting at offset "),
4863 elf_header.e_phnum);
4864 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4865 printf ("\n");
4866 }
4867
4868 if (! get_program_headers (file))
4869 return TRUE;
4870
4871 if (do_segments)
4872 {
4873 if (elf_header.e_phnum > 1)
4874 printf (_("\nProgram Headers:\n"));
4875 else
4876 printf (_("\nProgram Headers:\n"));
4877
4878 if (is_32bit_elf)
4879 printf
4880 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4881 else if (do_wide)
4882 printf
4883 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4884 else
4885 {
4886 printf
4887 (_(" Type Offset VirtAddr PhysAddr\n"));
4888 printf
4889 (_(" FileSiz MemSiz Flags Align\n"));
4890 }
4891 }
4892
4893 dynamic_addr = 0;
4894 dynamic_size = 0;
4895
4896 for (i = 0, segment = program_headers;
4897 i < elf_header.e_phnum;
4898 i++, segment++)
4899 {
4900 if (do_segments)
4901 {
4902 printf (" %-14.14s ", get_segment_type (segment->p_type));
4903
4904 if (is_32bit_elf)
4905 {
4906 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4907 printf ("0x%8.8lx ", (unsigned long) segment->p_vaddr);
4908 printf ("0x%8.8lx ", (unsigned long) segment->p_paddr);
4909 printf ("0x%5.5lx ", (unsigned long) segment->p_filesz);
4910 printf ("0x%5.5lx ", (unsigned long) segment->p_memsz);
4911 printf ("%c%c%c ",
4912 (segment->p_flags & PF_R ? 'R' : ' '),
4913 (segment->p_flags & PF_W ? 'W' : ' '),
4914 (segment->p_flags & PF_X ? 'E' : ' '));
4915 printf ("%#lx", (unsigned long) segment->p_align);
4916 }
4917 else if (do_wide)
4918 {
4919 if ((unsigned long) segment->p_offset == segment->p_offset)
4920 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4921 else
4922 {
4923 print_vma (segment->p_offset, FULL_HEX);
4924 putchar (' ');
4925 }
4926
4927 print_vma (segment->p_vaddr, FULL_HEX);
4928 putchar (' ');
4929 print_vma (segment->p_paddr, FULL_HEX);
4930 putchar (' ');
4931
4932 if ((unsigned long) segment->p_filesz == segment->p_filesz)
4933 printf ("0x%6.6lx ", (unsigned long) segment->p_filesz);
4934 else
4935 {
4936 print_vma (segment->p_filesz, FULL_HEX);
4937 putchar (' ');
4938 }
4939
4940 if ((unsigned long) segment->p_memsz == segment->p_memsz)
4941 printf ("0x%6.6lx", (unsigned long) segment->p_memsz);
4942 else
4943 {
4944 print_vma (segment->p_memsz, FULL_HEX);
4945 }
4946
4947 printf (" %c%c%c ",
4948 (segment->p_flags & PF_R ? 'R' : ' '),
4949 (segment->p_flags & PF_W ? 'W' : ' '),
4950 (segment->p_flags & PF_X ? 'E' : ' '));
4951
4952 if ((unsigned long) segment->p_align == segment->p_align)
4953 printf ("%#lx", (unsigned long) segment->p_align);
4954 else
4955 {
4956 print_vma (segment->p_align, PREFIX_HEX);
4957 }
4958 }
4959 else
4960 {
4961 print_vma (segment->p_offset, FULL_HEX);
4962 putchar (' ');
4963 print_vma (segment->p_vaddr, FULL_HEX);
4964 putchar (' ');
4965 print_vma (segment->p_paddr, FULL_HEX);
4966 printf ("\n ");
4967 print_vma (segment->p_filesz, FULL_HEX);
4968 putchar (' ');
4969 print_vma (segment->p_memsz, FULL_HEX);
4970 printf (" %c%c%c ",
4971 (segment->p_flags & PF_R ? 'R' : ' '),
4972 (segment->p_flags & PF_W ? 'W' : ' '),
4973 (segment->p_flags & PF_X ? 'E' : ' '));
4974 print_vma (segment->p_align, PREFIX_HEX);
4975 }
4976
4977 putc ('\n', stdout);
4978 }
4979
4980 switch (segment->p_type)
4981 {
4982 case PT_LOAD:
4983 #if 0 /* Do not warn about out of order PT_LOAD segments. Although officially
4984 required by the ELF standard, several programs, including the Linux
4985 kernel, make use of non-ordered segments. */
4986 if (previous_load
4987 && previous_load->p_vaddr > segment->p_vaddr)
4988 error (_("LOAD segments must be sorted in order of increasing VirtAddr\n"));
4989 #endif
4990 if (segment->p_memsz < segment->p_filesz)
4991 error (_("the segment's file size is larger than its memory size\n"));
4992 previous_load = segment;
4993 break;
4994
4995 case PT_PHDR:
4996 /* PR 20815 - Verify that the program header is loaded into memory. */
4997 if (i > 0 && previous_load != NULL)
4998 error (_("the PHDR segment must occur before any LOAD segment\n"));
4999 if (elf_header.e_machine != EM_PARISC)
5000 {
5001 unsigned int j;
5002
5003 for (j = 1; j < elf_header.e_phnum; j++)
5004 if (program_headers[j].p_vaddr <= segment->p_vaddr
5005 && (program_headers[j].p_vaddr + program_headers[j].p_memsz)
5006 >= (segment->p_vaddr + segment->p_filesz))
5007 break;
5008 if (j == elf_header.e_phnum)
5009 error (_("the PHDR segment is not covered by a LOAD segment\n"));
5010 }
5011 break;
5012
5013 case PT_DYNAMIC:
5014 if (dynamic_addr)
5015 error (_("more than one dynamic segment\n"));
5016
5017 /* By default, assume that the .dynamic section is the first
5018 section in the DYNAMIC segment. */
5019 dynamic_addr = segment->p_offset;
5020 dynamic_size = segment->p_filesz;
5021
5022 /* Try to locate the .dynamic section. If there is
5023 a section header table, we can easily locate it. */
5024 if (section_headers != NULL)
5025 {
5026 Elf_Internal_Shdr * sec;
5027
5028 sec = find_section (".dynamic");
5029 if (sec == NULL || sec->sh_size == 0)
5030 {
5031 /* A corresponding .dynamic section is expected, but on
5032 IA-64/OpenVMS it is OK for it to be missing. */
5033 if (!is_ia64_vms ())
5034 error (_("no .dynamic section in the dynamic segment\n"));
5035 break;
5036 }
5037
5038 if (sec->sh_type == SHT_NOBITS)
5039 {
5040 dynamic_size = 0;
5041 break;
5042 }
5043
5044 dynamic_addr = sec->sh_offset;
5045 dynamic_size = sec->sh_size;
5046
5047 if (dynamic_addr < segment->p_offset
5048 || dynamic_addr > segment->p_offset + segment->p_filesz)
5049 warn (_("the .dynamic section is not contained"
5050 " within the dynamic segment\n"));
5051 else if (dynamic_addr > segment->p_offset)
5052 warn (_("the .dynamic section is not the first section"
5053 " in the dynamic segment.\n"));
5054 }
5055
5056 /* PR binutils/17512: Avoid corrupt dynamic section info in the
5057 segment. Check this after matching against the section headers
5058 so we don't warn on debuginfo file (which have NOBITS .dynamic
5059 sections). */
5060 if (dynamic_addr + dynamic_size >= current_file_size)
5061 {
5062 error (_("the dynamic segment offset + size exceeds the size of the file\n"));
5063 dynamic_addr = dynamic_size = 0;
5064 }
5065 break;
5066
5067 case PT_INTERP:
5068 if (fseek (file, archive_file_offset + (long) segment->p_offset,
5069 SEEK_SET))
5070 error (_("Unable to find program interpreter name\n"));
5071 else
5072 {
5073 char fmt [32];
5074 int ret = snprintf (fmt, sizeof (fmt), "%%%ds", PATH_MAX - 1);
5075
5076 if (ret >= (int) sizeof (fmt) || ret < 0)
5077 error (_("Internal error: failed to create format string to display program interpreter\n"));
5078
5079 program_interpreter[0] = 0;
5080 if (fscanf (file, fmt, program_interpreter) <= 0)
5081 error (_("Unable to read program interpreter name\n"));
5082
5083 if (do_segments)
5084 printf (_(" [Requesting program interpreter: %s]\n"),
5085 program_interpreter);
5086 }
5087 break;
5088 }
5089 }
5090
5091 if (do_segments && section_headers != NULL && string_table != NULL)
5092 {
5093 printf (_("\n Section to Segment mapping:\n"));
5094 printf (_(" Segment Sections...\n"));
5095
5096 for (i = 0; i < elf_header.e_phnum; i++)
5097 {
5098 unsigned int j;
5099 Elf_Internal_Shdr * section;
5100
5101 segment = program_headers + i;
5102 section = section_headers + 1;
5103
5104 printf (" %2.2d ", i);
5105
5106 for (j = 1; j < elf_header.e_shnum; j++, section++)
5107 {
5108 if (!ELF_TBSS_SPECIAL (section, segment)
5109 && ELF_SECTION_IN_SEGMENT_STRICT (section, segment))
5110 printf ("%s ", printable_section_name (section));
5111 }
5112
5113 putc ('\n',stdout);
5114 }
5115 }
5116
5117 return TRUE;
5118 }
5119
5120
5121 /* Find the file offset corresponding to VMA by using the program headers. */
5122
5123 static long
5124 offset_from_vma (FILE * file, bfd_vma vma, bfd_size_type size)
5125 {
5126 Elf_Internal_Phdr * seg;
5127
5128 if (! get_program_headers (file))
5129 {
5130 warn (_("Cannot interpret virtual addresses without program headers.\n"));
5131 return (long) vma;
5132 }
5133
5134 for (seg = program_headers;
5135 seg < program_headers + elf_header.e_phnum;
5136 ++seg)
5137 {
5138 if (seg->p_type != PT_LOAD)
5139 continue;
5140
5141 if (vma >= (seg->p_vaddr & -seg->p_align)
5142 && vma + size <= seg->p_vaddr + seg->p_filesz)
5143 return vma - seg->p_vaddr + seg->p_offset;
5144 }
5145
5146 warn (_("Virtual address 0x%lx not located in any PT_LOAD segment.\n"),
5147 (unsigned long) vma);
5148 return (long) vma;
5149 }
5150
5151
5152 /* Allocate memory and load the sections headers into the global pointer
5153 SECTION_HEADERS. If PROBE is true, this is just a probe and we do not
5154 generate any error messages if the load fails. */
5155
5156 static bfd_boolean
5157 get_32bit_section_headers (FILE * file, bfd_boolean probe)
5158 {
5159 Elf32_External_Shdr * shdrs;
5160 Elf_Internal_Shdr * internal;
5161 unsigned int i;
5162 unsigned int size = elf_header.e_shentsize;
5163 unsigned int num = probe ? 1 : elf_header.e_shnum;
5164
5165 /* PR binutils/17531: Cope with unexpected section header sizes. */
5166 if (size == 0 || num == 0)
5167 return FALSE;
5168 if (size < sizeof * shdrs)
5169 {
5170 if (! probe)
5171 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
5172 return FALSE;
5173 }
5174 if (!probe && size > sizeof * shdrs)
5175 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
5176
5177 shdrs = (Elf32_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
5178 size, num,
5179 probe ? NULL : _("section headers"));
5180 if (shdrs == NULL)
5181 return FALSE;
5182
5183 if (section_headers != NULL)
5184 free (section_headers);
5185 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
5186 sizeof (Elf_Internal_Shdr));
5187 if (section_headers == NULL)
5188 {
5189 if (!probe)
5190 error (_("Out of memory reading %u section headers\n"), num);
5191 return FALSE;
5192 }
5193
5194 for (i = 0, internal = section_headers;
5195 i < num;
5196 i++, internal++)
5197 {
5198 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
5199 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
5200 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
5201 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
5202 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
5203 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
5204 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
5205 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
5206 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
5207 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
5208 if (!probe && internal->sh_link > num)
5209 warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
5210 if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
5211 warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
5212 }
5213
5214 free (shdrs);
5215 return TRUE;
5216 }
5217
5218 static bfd_boolean
5219 get_64bit_section_headers (FILE * file, bfd_boolean probe)
5220 {
5221 Elf64_External_Shdr * shdrs;
5222 Elf_Internal_Shdr * internal;
5223 unsigned int i;
5224 unsigned int size = elf_header.e_shentsize;
5225 unsigned int num = probe ? 1 : elf_header.e_shnum;
5226
5227 /* PR binutils/17531: Cope with unexpected section header sizes. */
5228 if (size == 0 || num == 0)
5229 return FALSE;
5230 if (size < sizeof * shdrs)
5231 {
5232 if (! probe)
5233 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
5234 return FALSE;
5235 }
5236 if (! probe && size > sizeof * shdrs)
5237 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
5238
5239 shdrs = (Elf64_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
5240 size, num,
5241 probe ? NULL : _("section headers"));
5242 if (shdrs == NULL)
5243 return FALSE;
5244
5245 if (section_headers != NULL)
5246 free (section_headers);
5247 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
5248 sizeof (Elf_Internal_Shdr));
5249 if (section_headers == NULL)
5250 {
5251 if (! probe)
5252 error (_("Out of memory reading %u section headers\n"), num);
5253 return FALSE;
5254 }
5255
5256 for (i = 0, internal = section_headers;
5257 i < num;
5258 i++, internal++)
5259 {
5260 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
5261 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
5262 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
5263 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
5264 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
5265 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
5266 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
5267 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
5268 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
5269 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
5270 if (!probe && internal->sh_link > num)
5271 warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
5272 if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
5273 warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
5274 }
5275
5276 free (shdrs);
5277 return TRUE;
5278 }
5279
5280 static Elf_Internal_Sym *
5281 get_32bit_elf_symbols (FILE * file,
5282 Elf_Internal_Shdr * section,
5283 unsigned long * num_syms_return)
5284 {
5285 unsigned long number = 0;
5286 Elf32_External_Sym * esyms = NULL;
5287 Elf_External_Sym_Shndx * shndx = NULL;
5288 Elf_Internal_Sym * isyms = NULL;
5289 Elf_Internal_Sym * psym;
5290 unsigned int j;
5291
5292 if (section->sh_size == 0)
5293 {
5294 if (num_syms_return != NULL)
5295 * num_syms_return = 0;
5296 return NULL;
5297 }
5298
5299 /* Run some sanity checks first. */
5300 if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
5301 {
5302 error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
5303 printable_section_name (section), (unsigned long) section->sh_entsize);
5304 goto exit_point;
5305 }
5306
5307 if (section->sh_size > current_file_size)
5308 {
5309 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
5310 printable_section_name (section), (unsigned long) section->sh_size);
5311 goto exit_point;
5312 }
5313
5314 number = section->sh_size / section->sh_entsize;
5315
5316 if (number * sizeof (Elf32_External_Sym) > section->sh_size + 1)
5317 {
5318 error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
5319 (unsigned long) section->sh_size,
5320 printable_section_name (section),
5321 (unsigned long) section->sh_entsize);
5322 goto exit_point;
5323 }
5324
5325 esyms = (Elf32_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
5326 section->sh_size, _("symbols"));
5327 if (esyms == NULL)
5328 goto exit_point;
5329
5330 {
5331 elf_section_list * entry;
5332
5333 shndx = NULL;
5334 for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
5335 if (entry->hdr->sh_link == (unsigned long) (section - section_headers))
5336 {
5337 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
5338 entry->hdr->sh_offset,
5339 1, entry->hdr->sh_size,
5340 _("symbol table section indicies"));
5341 if (shndx == NULL)
5342 goto exit_point;
5343 /* PR17531: file: heap-buffer-overflow */
5344 else if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
5345 {
5346 error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
5347 printable_section_name (entry->hdr),
5348 (unsigned long) entry->hdr->sh_size,
5349 (unsigned long) section->sh_size);
5350 goto exit_point;
5351 }
5352 }
5353 }
5354
5355 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
5356
5357 if (isyms == NULL)
5358 {
5359 error (_("Out of memory reading %lu symbols\n"),
5360 (unsigned long) number);
5361 goto exit_point;
5362 }
5363
5364 for (j = 0, psym = isyms; j < number; j++, psym++)
5365 {
5366 psym->st_name = BYTE_GET (esyms[j].st_name);
5367 psym->st_value = BYTE_GET (esyms[j].st_value);
5368 psym->st_size = BYTE_GET (esyms[j].st_size);
5369 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
5370 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
5371 psym->st_shndx
5372 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
5373 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
5374 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
5375 psym->st_info = BYTE_GET (esyms[j].st_info);
5376 psym->st_other = BYTE_GET (esyms[j].st_other);
5377 }
5378
5379 exit_point:
5380 if (shndx != NULL)
5381 free (shndx);
5382 if (esyms != NULL)
5383 free (esyms);
5384
5385 if (num_syms_return != NULL)
5386 * num_syms_return = isyms == NULL ? 0 : number;
5387
5388 return isyms;
5389 }
5390
5391 static Elf_Internal_Sym *
5392 get_64bit_elf_symbols (FILE * file,
5393 Elf_Internal_Shdr * section,
5394 unsigned long * num_syms_return)
5395 {
5396 unsigned long number = 0;
5397 Elf64_External_Sym * esyms = NULL;
5398 Elf_External_Sym_Shndx * shndx = NULL;
5399 Elf_Internal_Sym * isyms = NULL;
5400 Elf_Internal_Sym * psym;
5401 unsigned int j;
5402
5403 if (section->sh_size == 0)
5404 {
5405 if (num_syms_return != NULL)
5406 * num_syms_return = 0;
5407 return NULL;
5408 }
5409
5410 /* Run some sanity checks first. */
5411 if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
5412 {
5413 error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
5414 printable_section_name (section),
5415 (unsigned long) section->sh_entsize);
5416 goto exit_point;
5417 }
5418
5419 if (section->sh_size > current_file_size)
5420 {
5421 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
5422 printable_section_name (section),
5423 (unsigned long) section->sh_size);
5424 goto exit_point;
5425 }
5426
5427 number = section->sh_size / section->sh_entsize;
5428
5429 if (number * sizeof (Elf64_External_Sym) > section->sh_size + 1)
5430 {
5431 error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
5432 (unsigned long) section->sh_size,
5433 printable_section_name (section),
5434 (unsigned long) section->sh_entsize);
5435 goto exit_point;
5436 }
5437
5438 esyms = (Elf64_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
5439 section->sh_size, _("symbols"));
5440 if (!esyms)
5441 goto exit_point;
5442
5443 {
5444 elf_section_list * entry;
5445
5446 shndx = NULL;
5447 for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
5448 if (entry->hdr->sh_link == (unsigned long) (section - section_headers))
5449 {
5450 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
5451 entry->hdr->sh_offset,
5452 1, entry->hdr->sh_size,
5453 _("symbol table section indicies"));
5454 if (shndx == NULL)
5455 goto exit_point;
5456 /* PR17531: file: heap-buffer-overflow */
5457 else if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
5458 {
5459 error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
5460 printable_section_name (entry->hdr),
5461 (unsigned long) entry->hdr->sh_size,
5462 (unsigned long) section->sh_size);
5463 goto exit_point;
5464 }
5465 }
5466 }
5467
5468 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
5469
5470 if (isyms == NULL)
5471 {
5472 error (_("Out of memory reading %lu symbols\n"),
5473 (unsigned long) number);
5474 goto exit_point;
5475 }
5476
5477 for (j = 0, psym = isyms; j < number; j++, psym++)
5478 {
5479 psym->st_name = BYTE_GET (esyms[j].st_name);
5480 psym->st_info = BYTE_GET (esyms[j].st_info);
5481 psym->st_other = BYTE_GET (esyms[j].st_other);
5482 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
5483
5484 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
5485 psym->st_shndx
5486 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
5487 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
5488 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
5489
5490 psym->st_value = BYTE_GET (esyms[j].st_value);
5491 psym->st_size = BYTE_GET (esyms[j].st_size);
5492 }
5493
5494 exit_point:
5495 if (shndx != NULL)
5496 free (shndx);
5497 if (esyms != NULL)
5498 free (esyms);
5499
5500 if (num_syms_return != NULL)
5501 * num_syms_return = isyms == NULL ? 0 : number;
5502
5503 return isyms;
5504 }
5505
5506 static const char *
5507 get_elf_section_flags (bfd_vma sh_flags)
5508 {
5509 static char buff[1024];
5510 char * p = buff;
5511 unsigned int field_size = is_32bit_elf ? 8 : 16;
5512 signed int sindex;
5513 unsigned int size = sizeof (buff) - (field_size + 4 + 1);
5514 bfd_vma os_flags = 0;
5515 bfd_vma proc_flags = 0;
5516 bfd_vma unknown_flags = 0;
5517 static const struct
5518 {
5519 const char * str;
5520 unsigned int len;
5521 }
5522 flags [] =
5523 {
5524 /* 0 */ { STRING_COMMA_LEN ("WRITE") },
5525 /* 1 */ { STRING_COMMA_LEN ("ALLOC") },
5526 /* 2 */ { STRING_COMMA_LEN ("EXEC") },
5527 /* 3 */ { STRING_COMMA_LEN ("MERGE") },
5528 /* 4 */ { STRING_COMMA_LEN ("STRINGS") },
5529 /* 5 */ { STRING_COMMA_LEN ("INFO LINK") },
5530 /* 6 */ { STRING_COMMA_LEN ("LINK ORDER") },
5531 /* 7 */ { STRING_COMMA_LEN ("OS NONCONF") },
5532 /* 8 */ { STRING_COMMA_LEN ("GROUP") },
5533 /* 9 */ { STRING_COMMA_LEN ("TLS") },
5534 /* IA-64 specific. */
5535 /* 10 */ { STRING_COMMA_LEN ("SHORT") },
5536 /* 11 */ { STRING_COMMA_LEN ("NORECOV") },
5537 /* IA-64 OpenVMS specific. */
5538 /* 12 */ { STRING_COMMA_LEN ("VMS_GLOBAL") },
5539 /* 13 */ { STRING_COMMA_LEN ("VMS_OVERLAID") },
5540 /* 14 */ { STRING_COMMA_LEN ("VMS_SHARED") },
5541 /* 15 */ { STRING_COMMA_LEN ("VMS_VECTOR") },
5542 /* 16 */ { STRING_COMMA_LEN ("VMS_ALLOC_64BIT") },
5543 /* 17 */ { STRING_COMMA_LEN ("VMS_PROTECTED") },
5544 /* Generic. */
5545 /* 18 */ { STRING_COMMA_LEN ("EXCLUDE") },
5546 /* SPARC specific. */
5547 /* 19 */ { STRING_COMMA_LEN ("ORDERED") },
5548 /* 20 */ { STRING_COMMA_LEN ("COMPRESSED") },
5549 /* ARM specific. */
5550 /* 21 */ { STRING_COMMA_LEN ("ENTRYSECT") },
5551 /* 22 */ { STRING_COMMA_LEN ("ARM_PURECODE") },
5552 /* 23 */ { STRING_COMMA_LEN ("COMDEF") },
5553 /* GNU specific. */
5554 /* 24 */ { STRING_COMMA_LEN ("GNU_MBIND") },
5555 };
5556
5557 if (do_section_details)
5558 {
5559 sprintf (buff, "[%*.*lx]: ",
5560 field_size, field_size, (unsigned long) sh_flags);
5561 p += field_size + 4;
5562 }
5563
5564 while (sh_flags)
5565 {
5566 bfd_vma flag;
5567
5568 flag = sh_flags & - sh_flags;
5569 sh_flags &= ~ flag;
5570
5571 if (do_section_details)
5572 {
5573 switch (flag)
5574 {
5575 case SHF_WRITE: sindex = 0; break;
5576 case SHF_ALLOC: sindex = 1; break;
5577 case SHF_EXECINSTR: sindex = 2; break;
5578 case SHF_MERGE: sindex = 3; break;
5579 case SHF_STRINGS: sindex = 4; break;
5580 case SHF_INFO_LINK: sindex = 5; break;
5581 case SHF_LINK_ORDER: sindex = 6; break;
5582 case SHF_OS_NONCONFORMING: sindex = 7; break;
5583 case SHF_GROUP: sindex = 8; break;
5584 case SHF_TLS: sindex = 9; break;
5585 case SHF_EXCLUDE: sindex = 18; break;
5586 case SHF_COMPRESSED: sindex = 20; break;
5587 case SHF_GNU_MBIND: sindex = 24; break;
5588
5589 default:
5590 sindex = -1;
5591 switch (elf_header.e_machine)
5592 {
5593 case EM_IA_64:
5594 if (flag == SHF_IA_64_SHORT)
5595 sindex = 10;
5596 else if (flag == SHF_IA_64_NORECOV)
5597 sindex = 11;
5598 #ifdef BFD64
5599 else if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
5600 switch (flag)
5601 {
5602 case SHF_IA_64_VMS_GLOBAL: sindex = 12; break;
5603 case SHF_IA_64_VMS_OVERLAID: sindex = 13; break;
5604 case SHF_IA_64_VMS_SHARED: sindex = 14; break;
5605 case SHF_IA_64_VMS_VECTOR: sindex = 15; break;
5606 case SHF_IA_64_VMS_ALLOC_64BIT: sindex = 16; break;
5607 case SHF_IA_64_VMS_PROTECTED: sindex = 17; break;
5608 default: break;
5609 }
5610 #endif
5611 break;
5612
5613 case EM_386:
5614 case EM_IAMCU:
5615 case EM_X86_64:
5616 case EM_L1OM:
5617 case EM_K1OM:
5618 case EM_OLD_SPARCV9:
5619 case EM_SPARC32PLUS:
5620 case EM_SPARCV9:
5621 case EM_SPARC:
5622 if (flag == SHF_ORDERED)
5623 sindex = 19;
5624 break;
5625
5626 case EM_ARM:
5627 switch (flag)
5628 {
5629 case SHF_ENTRYSECT: sindex = 21; break;
5630 case SHF_ARM_PURECODE: sindex = 22; break;
5631 case SHF_COMDEF: sindex = 23; break;
5632 default: break;
5633 }
5634 break;
5635
5636 default:
5637 break;
5638 }
5639 }
5640
5641 if (sindex != -1)
5642 {
5643 if (p != buff + field_size + 4)
5644 {
5645 if (size < (10 + 2))
5646 {
5647 warn (_("Internal error: not enough buffer room for section flag info"));
5648 return _("<unknown>");
5649 }
5650 size -= 2;
5651 *p++ = ',';
5652 *p++ = ' ';
5653 }
5654
5655 size -= flags [sindex].len;
5656 p = stpcpy (p, flags [sindex].str);
5657 }
5658 else if (flag & SHF_MASKOS)
5659 os_flags |= flag;
5660 else if (flag & SHF_MASKPROC)
5661 proc_flags |= flag;
5662 else
5663 unknown_flags |= flag;
5664 }
5665 else
5666 {
5667 switch (flag)
5668 {
5669 case SHF_WRITE: *p = 'W'; break;
5670 case SHF_ALLOC: *p = 'A'; break;
5671 case SHF_EXECINSTR: *p = 'X'; break;
5672 case SHF_MERGE: *p = 'M'; break;
5673 case SHF_STRINGS: *p = 'S'; break;
5674 case SHF_INFO_LINK: *p = 'I'; break;
5675 case SHF_LINK_ORDER: *p = 'L'; break;
5676 case SHF_OS_NONCONFORMING: *p = 'O'; break;
5677 case SHF_GROUP: *p = 'G'; break;
5678 case SHF_TLS: *p = 'T'; break;
5679 case SHF_EXCLUDE: *p = 'E'; break;
5680 case SHF_COMPRESSED: *p = 'C'; break;
5681 case SHF_GNU_MBIND: *p = 'D'; break;
5682
5683 default:
5684 if ((elf_header.e_machine == EM_X86_64
5685 || elf_header.e_machine == EM_L1OM
5686 || elf_header.e_machine == EM_K1OM)
5687 && flag == SHF_X86_64_LARGE)
5688 *p = 'l';
5689 else if (elf_header.e_machine == EM_ARM
5690 && flag == SHF_ARM_PURECODE)
5691 *p = 'y';
5692 else if (flag & SHF_MASKOS)
5693 {
5694 *p = 'o';
5695 sh_flags &= ~ SHF_MASKOS;
5696 }
5697 else if (flag & SHF_MASKPROC)
5698 {
5699 *p = 'p';
5700 sh_flags &= ~ SHF_MASKPROC;
5701 }
5702 else
5703 *p = 'x';
5704 break;
5705 }
5706 p++;
5707 }
5708 }
5709
5710 if (do_section_details)
5711 {
5712 if (os_flags)
5713 {
5714 size -= 5 + field_size;
5715 if (p != buff + field_size + 4)
5716 {
5717 if (size < (2 + 1))
5718 {
5719 warn (_("Internal error: not enough buffer room for section flag info"));
5720 return _("<unknown>");
5721 }
5722 size -= 2;
5723 *p++ = ',';
5724 *p++ = ' ';
5725 }
5726 sprintf (p, "OS (%*.*lx)", field_size, field_size,
5727 (unsigned long) os_flags);
5728 p += 5 + field_size;
5729 }
5730 if (proc_flags)
5731 {
5732 size -= 7 + field_size;
5733 if (p != buff + field_size + 4)
5734 {
5735 if (size < (2 + 1))
5736 {
5737 warn (_("Internal error: not enough buffer room for section flag info"));
5738 return _("<unknown>");
5739 }
5740 size -= 2;
5741 *p++ = ',';
5742 *p++ = ' ';
5743 }
5744 sprintf (p, "PROC (%*.*lx)", field_size, field_size,
5745 (unsigned long) proc_flags);
5746 p += 7 + field_size;
5747 }
5748 if (unknown_flags)
5749 {
5750 size -= 10 + field_size;
5751 if (p != buff + field_size + 4)
5752 {
5753 if (size < (2 + 1))
5754 {
5755 warn (_("Internal error: not enough buffer room for section flag info"));
5756 return _("<unknown>");
5757 }
5758 size -= 2;
5759 *p++ = ',';
5760 *p++ = ' ';
5761 }
5762 sprintf (p, _("UNKNOWN (%*.*lx)"), field_size, field_size,
5763 (unsigned long) unknown_flags);
5764 p += 10 + field_size;
5765 }
5766 }
5767
5768 *p = '\0';
5769 return buff;
5770 }
5771
5772 static unsigned int
5773 get_compression_header (Elf_Internal_Chdr *chdr, unsigned char *buf, bfd_size_type size)
5774 {
5775 if (is_32bit_elf)
5776 {
5777 Elf32_External_Chdr *echdr = (Elf32_External_Chdr *) buf;
5778
5779 if (size < sizeof (* echdr))
5780 {
5781 error (_("Compressed section is too small even for a compression header\n"));
5782 return 0;
5783 }
5784
5785 chdr->ch_type = BYTE_GET (echdr->ch_type);
5786 chdr->ch_size = BYTE_GET (echdr->ch_size);
5787 chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
5788 return sizeof (*echdr);
5789 }
5790 else
5791 {
5792 Elf64_External_Chdr *echdr = (Elf64_External_Chdr *) buf;
5793
5794 if (size < sizeof (* echdr))
5795 {
5796 error (_("Compressed section is too small even for a compression header\n"));
5797 return 0;
5798 }
5799
5800 chdr->ch_type = BYTE_GET (echdr->ch_type);
5801 chdr->ch_size = BYTE_GET (echdr->ch_size);
5802 chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
5803 return sizeof (*echdr);
5804 }
5805 }
5806
5807 static bfd_boolean
5808 process_section_headers (FILE * file)
5809 {
5810 Elf_Internal_Shdr * section;
5811 unsigned int i;
5812
5813 section_headers = NULL;
5814
5815 if (elf_header.e_shnum == 0)
5816 {
5817 /* PR binutils/12467. */
5818 if (elf_header.e_shoff != 0)
5819 {
5820 warn (_("possibly corrupt ELF file header - it has a non-zero"
5821 " section header offset, but no section headers\n"));
5822 return FALSE;
5823 }
5824 else if (do_sections)
5825 printf (_("\nThere are no sections in this file.\n"));
5826
5827 return TRUE;
5828 }
5829
5830 if (do_sections && !do_header)
5831 printf (_("There are %d section headers, starting at offset 0x%lx:\n"),
5832 elf_header.e_shnum, (unsigned long) elf_header.e_shoff);
5833
5834 if (is_32bit_elf)
5835 {
5836 if (! get_32bit_section_headers (file, FALSE))
5837 return FALSE;
5838 }
5839 else
5840 {
5841 if (! get_64bit_section_headers (file, FALSE))
5842 return FALSE;
5843 }
5844
5845 /* Read in the string table, so that we have names to display. */
5846 if (elf_header.e_shstrndx != SHN_UNDEF
5847 && elf_header.e_shstrndx < elf_header.e_shnum)
5848 {
5849 section = section_headers + elf_header.e_shstrndx;
5850
5851 if (section->sh_size != 0)
5852 {
5853 string_table = (char *) get_data (NULL, file, section->sh_offset,
5854 1, section->sh_size,
5855 _("string table"));
5856
5857 string_table_length = string_table != NULL ? section->sh_size : 0;
5858 }
5859 }
5860
5861 /* Scan the sections for the dynamic symbol table
5862 and dynamic string table and debug sections. */
5863 dynamic_symbols = NULL;
5864 dynamic_strings = NULL;
5865 dynamic_syminfo = NULL;
5866 symtab_shndx_list = NULL;
5867
5868 eh_addr_size = is_32bit_elf ? 4 : 8;
5869 switch (elf_header.e_machine)
5870 {
5871 case EM_MIPS:
5872 case EM_MIPS_RS3_LE:
5873 /* The 64-bit MIPS EABI uses a combination of 32-bit ELF and 64-bit
5874 FDE addresses. However, the ABI also has a semi-official ILP32
5875 variant for which the normal FDE address size rules apply.
5876
5877 GCC 4.0 marks EABI64 objects with a dummy .gcc_compiled_longXX
5878 section, where XX is the size of longs in bits. Unfortunately,
5879 earlier compilers provided no way of distinguishing ILP32 objects
5880 from LP64 objects, so if there's any doubt, we should assume that
5881 the official LP64 form is being used. */
5882 if ((elf_header.e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64
5883 && find_section (".gcc_compiled_long32") == NULL)
5884 eh_addr_size = 8;
5885 break;
5886
5887 case EM_H8_300:
5888 case EM_H8_300H:
5889 switch (elf_header.e_flags & EF_H8_MACH)
5890 {
5891 case E_H8_MACH_H8300:
5892 case E_H8_MACH_H8300HN:
5893 case E_H8_MACH_H8300SN:
5894 case E_H8_MACH_H8300SXN:
5895 eh_addr_size = 2;
5896 break;
5897 case E_H8_MACH_H8300H:
5898 case E_H8_MACH_H8300S:
5899 case E_H8_MACH_H8300SX:
5900 eh_addr_size = 4;
5901 break;
5902 }
5903 break;
5904
5905 case EM_M32C_OLD:
5906 case EM_M32C:
5907 switch (elf_header.e_flags & EF_M32C_CPU_MASK)
5908 {
5909 case EF_M32C_CPU_M16C:
5910 eh_addr_size = 2;
5911 break;
5912 }
5913 break;
5914 }
5915
5916 #define CHECK_ENTSIZE_VALUES(section, i, size32, size64) \
5917 do \
5918 { \
5919 bfd_size_type expected_entsize = is_32bit_elf ? size32 : size64; \
5920 if (section->sh_entsize != expected_entsize) \
5921 { \
5922 char buf[40]; \
5923 sprintf_vma (buf, section->sh_entsize); \
5924 /* Note: coded this way so that there is a single string for \
5925 translation. */ \
5926 error (_("Section %d has invalid sh_entsize of %s\n"), i, buf); \
5927 error (_("(Using the expected size of %u for the rest of this dump)\n"), \
5928 (unsigned) expected_entsize); \
5929 section->sh_entsize = expected_entsize; \
5930 } \
5931 } \
5932 while (0)
5933
5934 #define CHECK_ENTSIZE(section, i, type) \
5935 CHECK_ENTSIZE_VALUES (section, i, sizeof (Elf32_External_##type), \
5936 sizeof (Elf64_External_##type))
5937
5938 for (i = 0, section = section_headers;
5939 i < elf_header.e_shnum;
5940 i++, section++)
5941 {
5942 char * name = SECTION_NAME (section);
5943
5944 if (section->sh_type == SHT_DYNSYM)
5945 {
5946 if (dynamic_symbols != NULL)
5947 {
5948 error (_("File contains multiple dynamic symbol tables\n"));
5949 continue;
5950 }
5951
5952 CHECK_ENTSIZE (section, i, Sym);
5953 dynamic_symbols = GET_ELF_SYMBOLS (file, section, & num_dynamic_syms);
5954 }
5955 else if (section->sh_type == SHT_STRTAB
5956 && streq (name, ".dynstr"))
5957 {
5958 if (dynamic_strings != NULL)
5959 {
5960 error (_("File contains multiple dynamic string tables\n"));
5961 continue;
5962 }
5963
5964 dynamic_strings = (char *) get_data (NULL, file, section->sh_offset,
5965 1, section->sh_size,
5966 _("dynamic strings"));
5967 dynamic_strings_length = dynamic_strings == NULL ? 0 : section->sh_size;
5968 }
5969 else if (section->sh_type == SHT_SYMTAB_SHNDX)
5970 {
5971 elf_section_list * entry = xmalloc (sizeof * entry);
5972 entry->hdr = section;
5973 entry->next = symtab_shndx_list;
5974 symtab_shndx_list = entry;
5975 }
5976 else if (section->sh_type == SHT_SYMTAB)
5977 CHECK_ENTSIZE (section, i, Sym);
5978 else if (section->sh_type == SHT_GROUP)
5979 CHECK_ENTSIZE_VALUES (section, i, GRP_ENTRY_SIZE, GRP_ENTRY_SIZE);
5980 else if (section->sh_type == SHT_REL)
5981 CHECK_ENTSIZE (section, i, Rel);
5982 else if (section->sh_type == SHT_RELA)
5983 CHECK_ENTSIZE (section, i, Rela);
5984 else if ((do_debugging || do_debug_info || do_debug_abbrevs
5985 || do_debug_lines || do_debug_pubnames || do_debug_pubtypes
5986 || do_debug_aranges || do_debug_frames || do_debug_macinfo
5987 || do_debug_str || do_debug_loc || do_debug_ranges
5988 || do_debug_addr || do_debug_cu_index)
5989 && (const_strneq (name, ".debug_")
5990 || const_strneq (name, ".zdebug_")))
5991 {
5992 if (name[1] == 'z')
5993 name += sizeof (".zdebug_") - 1;
5994 else
5995 name += sizeof (".debug_") - 1;
5996
5997 if (do_debugging
5998 || (do_debug_info && const_strneq (name, "info"))
5999 || (do_debug_info && const_strneq (name, "types"))
6000 || (do_debug_abbrevs && const_strneq (name, "abbrev"))
6001 || (do_debug_lines && strcmp (name, "line") == 0)
6002 || (do_debug_lines && const_strneq (name, "line."))
6003 || (do_debug_pubnames && const_strneq (name, "pubnames"))
6004 || (do_debug_pubtypes && const_strneq (name, "pubtypes"))
6005 || (do_debug_pubnames && const_strneq (name, "gnu_pubnames"))
6006 || (do_debug_pubtypes && const_strneq (name, "gnu_pubtypes"))
6007 || (do_debug_aranges && const_strneq (name, "aranges"))
6008 || (do_debug_ranges && const_strneq (name, "ranges"))
6009 || (do_debug_ranges && const_strneq (name, "rnglists"))
6010 || (do_debug_frames && const_strneq (name, "frame"))
6011 || (do_debug_macinfo && const_strneq (name, "macinfo"))
6012 || (do_debug_macinfo && const_strneq (name, "macro"))
6013 || (do_debug_str && const_strneq (name, "str"))
6014 || (do_debug_loc && const_strneq (name, "loc"))
6015 || (do_debug_loc && const_strneq (name, "loclists"))
6016 || (do_debug_addr && const_strneq (name, "addr"))
6017 || (do_debug_cu_index && const_strneq (name, "cu_index"))
6018 || (do_debug_cu_index && const_strneq (name, "tu_index"))
6019 )
6020 request_dump_bynumber (i, DEBUG_DUMP);
6021 }
6022 /* Linkonce section to be combined with .debug_info at link time. */
6023 else if ((do_debugging || do_debug_info)
6024 && const_strneq (name, ".gnu.linkonce.wi."))
6025 request_dump_bynumber (i, DEBUG_DUMP);
6026 else if (do_debug_frames && streq (name, ".eh_frame"))
6027 request_dump_bynumber (i, DEBUG_DUMP);
6028 else if (do_gdb_index && streq (name, ".gdb_index"))
6029 request_dump_bynumber (i, DEBUG_DUMP);
6030 /* Trace sections for Itanium VMS. */
6031 else if ((do_debugging || do_trace_info || do_trace_abbrevs
6032 || do_trace_aranges)
6033 && const_strneq (name, ".trace_"))
6034 {
6035 name += sizeof (".trace_") - 1;
6036
6037 if (do_debugging
6038 || (do_trace_info && streq (name, "info"))
6039 || (do_trace_abbrevs && streq (name, "abbrev"))
6040 || (do_trace_aranges && streq (name, "aranges"))
6041 )
6042 request_dump_bynumber (i, DEBUG_DUMP);
6043 }
6044 }
6045
6046 if (! do_sections)
6047 return TRUE;
6048
6049 if (elf_header.e_shnum > 1)
6050 printf (_("\nSection Headers:\n"));
6051 else
6052 printf (_("\nSection Header:\n"));
6053
6054 if (is_32bit_elf)
6055 {
6056 if (do_section_details)
6057 {
6058 printf (_(" [Nr] Name\n"));
6059 printf (_(" Type Addr Off Size ES Lk Inf Al\n"));
6060 }
6061 else
6062 printf
6063 (_(" [Nr] Name Type Addr Off Size ES Flg Lk Inf Al\n"));
6064 }
6065 else if (do_wide)
6066 {
6067 if (do_section_details)
6068 {
6069 printf (_(" [Nr] Name\n"));
6070 printf (_(" Type Address Off Size ES Lk Inf Al\n"));
6071 }
6072 else
6073 printf
6074 (_(" [Nr] Name Type Address Off Size ES Flg Lk Inf Al\n"));
6075 }
6076 else
6077 {
6078 if (do_section_details)
6079 {
6080 printf (_(" [Nr] Name\n"));
6081 printf (_(" Type Address Offset Link\n"));
6082 printf (_(" Size EntSize Info Align\n"));
6083 }
6084 else
6085 {
6086 printf (_(" [Nr] Name Type Address Offset\n"));
6087 printf (_(" Size EntSize Flags Link Info Align\n"));
6088 }
6089 }
6090
6091 if (do_section_details)
6092 printf (_(" Flags\n"));
6093
6094 for (i = 0, section = section_headers;
6095 i < elf_header.e_shnum;
6096 i++, section++)
6097 {
6098 /* Run some sanity checks on the section header. */
6099
6100 /* Check the sh_link field. */
6101 switch (section->sh_type)
6102 {
6103 case SHT_SYMTAB_SHNDX:
6104 case SHT_GROUP:
6105 case SHT_HASH:
6106 case SHT_GNU_HASH:
6107 case SHT_GNU_versym:
6108 case SHT_REL:
6109 case SHT_RELA:
6110 if (section->sh_link < 1
6111 || section->sh_link >= elf_header.e_shnum
6112 || (section_headers[section->sh_link].sh_type != SHT_SYMTAB
6113 && section_headers[section->sh_link].sh_type != SHT_DYNSYM))
6114 warn (_("[%2u]: Link field (%u) should index a symtab section.\n"),
6115 i, section->sh_link);
6116 break;
6117
6118 case SHT_DYNAMIC:
6119 case SHT_SYMTAB:
6120 case SHT_DYNSYM:
6121 case SHT_GNU_verneed:
6122 case SHT_GNU_verdef:
6123 case SHT_GNU_LIBLIST:
6124 if (section->sh_link < 1
6125 || section->sh_link >= elf_header.e_shnum
6126 || section_headers[section->sh_link].sh_type != SHT_STRTAB)
6127 warn (_("[%2u]: Link field (%u) should index a string section.\n"),
6128 i, section->sh_link);
6129 break;
6130
6131 case SHT_INIT_ARRAY:
6132 case SHT_FINI_ARRAY:
6133 case SHT_PREINIT_ARRAY:
6134 if (section->sh_type < SHT_LOOS && section->sh_link != 0)
6135 warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
6136 i, section->sh_link);
6137 break;
6138
6139 default:
6140 /* FIXME: Add support for target specific section types. */
6141 #if 0 /* Currently we do not check other section types as there are too
6142 many special cases. Stab sections for example have a type
6143 of SHT_PROGBITS but an sh_link field that links to the .stabstr
6144 section. */
6145 if (section->sh_type < SHT_LOOS && section->sh_link != 0)
6146 warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
6147 i, section->sh_link);
6148 #endif
6149 break;
6150 }
6151
6152 /* Check the sh_info field. */
6153 switch (section->sh_type)
6154 {
6155 case SHT_REL:
6156 case SHT_RELA:
6157 if (section->sh_info < 1
6158 || section->sh_info >= elf_header.e_shnum
6159 || (section_headers[section->sh_info].sh_type != SHT_PROGBITS
6160 && section_headers[section->sh_info].sh_type != SHT_NOBITS
6161 && section_headers[section->sh_info].sh_type != SHT_NOTE
6162 && section_headers[section->sh_info].sh_type != SHT_INIT_ARRAY
6163 /* FIXME: Are other section types valid ? */
6164 && section_headers[section->sh_info].sh_type < SHT_LOOS))
6165 {
6166 if (section->sh_info == 0
6167 && (streq (SECTION_NAME (section), ".rel.dyn")
6168 || streq (SECTION_NAME (section), ".rela.dyn")))
6169 /* The .rel.dyn and .rela.dyn sections have an sh_info field
6170 of zero. The relocations in these sections may apply
6171 to many different sections. */
6172 ;
6173 else
6174 warn (_("[%2u]: Info field (%u) should index a relocatable section.\n"),
6175 i, section->sh_info);
6176 }
6177 break;
6178
6179 case SHT_DYNAMIC:
6180 case SHT_HASH:
6181 case SHT_SYMTAB_SHNDX:
6182 case SHT_INIT_ARRAY:
6183 case SHT_FINI_ARRAY:
6184 case SHT_PREINIT_ARRAY:
6185 if (section->sh_info != 0)
6186 warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
6187 i, section->sh_info);
6188 break;
6189
6190 case SHT_GROUP:
6191 case SHT_SYMTAB:
6192 case SHT_DYNSYM:
6193 /* A symbol index - we assume that it is valid. */
6194 break;
6195
6196 default:
6197 /* FIXME: Add support for target specific section types. */
6198 if (section->sh_type == SHT_NOBITS)
6199 /* NOBITS section headers with non-zero sh_info fields can be
6200 created when a binary is stripped of everything but its debug
6201 information. The stripped sections have their headers
6202 preserved but their types set to SHT_NOBITS. So do not check
6203 this type of section. */
6204 ;
6205 else if (section->sh_flags & SHF_INFO_LINK)
6206 {
6207 if (section->sh_info < 1 || section->sh_info >= elf_header.e_shnum)
6208 warn (_("[%2u]: Expected link to another section in info field"), i);
6209 }
6210 else if (section->sh_type < SHT_LOOS
6211 && (section->sh_flags & SHF_GNU_MBIND) == 0
6212 && section->sh_info != 0)
6213 warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
6214 i, section->sh_info);
6215 break;
6216 }
6217
6218 /* Check the sh_size field. */
6219 if (section->sh_size > current_file_size
6220 && section->sh_type != SHT_NOBITS
6221 && section->sh_type != SHT_NULL
6222 && section->sh_type < SHT_LOOS)
6223 warn (_("Size of section %u is larger than the entire file!\n"), i);
6224
6225 printf (" [%2u] ", i);
6226 if (do_section_details)
6227 printf ("%s\n ", printable_section_name (section));
6228 else
6229 print_symbol (-17, SECTION_NAME (section));
6230
6231 printf (do_wide ? " %-15s " : " %-15.15s ",
6232 get_section_type_name (section->sh_type));
6233
6234 if (is_32bit_elf)
6235 {
6236 const char * link_too_big = NULL;
6237
6238 print_vma (section->sh_addr, LONG_HEX);
6239
6240 printf ( " %6.6lx %6.6lx %2.2lx",
6241 (unsigned long) section->sh_offset,
6242 (unsigned long) section->sh_size,
6243 (unsigned long) section->sh_entsize);
6244
6245 if (do_section_details)
6246 fputs (" ", stdout);
6247 else
6248 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6249
6250 if (section->sh_link >= elf_header.e_shnum)
6251 {
6252 link_too_big = "";
6253 /* The sh_link value is out of range. Normally this indicates
6254 an error but it can have special values in Solaris binaries. */
6255 switch (elf_header.e_machine)
6256 {
6257 case EM_386:
6258 case EM_IAMCU:
6259 case EM_X86_64:
6260 case EM_L1OM:
6261 case EM_K1OM:
6262 case EM_OLD_SPARCV9:
6263 case EM_SPARC32PLUS:
6264 case EM_SPARCV9:
6265 case EM_SPARC:
6266 if (section->sh_link == (SHN_BEFORE & 0xffff))
6267 link_too_big = "BEFORE";
6268 else if (section->sh_link == (SHN_AFTER & 0xffff))
6269 link_too_big = "AFTER";
6270 break;
6271 default:
6272 break;
6273 }
6274 }
6275
6276 if (do_section_details)
6277 {
6278 if (link_too_big != NULL && * link_too_big)
6279 printf ("<%s> ", link_too_big);
6280 else
6281 printf ("%2u ", section->sh_link);
6282 printf ("%3u %2lu\n", section->sh_info,
6283 (unsigned long) section->sh_addralign);
6284 }
6285 else
6286 printf ("%2u %3u %2lu\n",
6287 section->sh_link,
6288 section->sh_info,
6289 (unsigned long) section->sh_addralign);
6290
6291 if (link_too_big && ! * link_too_big)
6292 warn (_("section %u: sh_link value of %u is larger than the number of sections\n"),
6293 i, section->sh_link);
6294 }
6295 else if (do_wide)
6296 {
6297 print_vma (section->sh_addr, LONG_HEX);
6298
6299 if ((long) section->sh_offset == section->sh_offset)
6300 printf (" %6.6lx", (unsigned long) section->sh_offset);
6301 else
6302 {
6303 putchar (' ');
6304 print_vma (section->sh_offset, LONG_HEX);
6305 }
6306
6307 if ((unsigned long) section->sh_size == section->sh_size)
6308 printf (" %6.6lx", (unsigned long) section->sh_size);
6309 else
6310 {
6311 putchar (' ');
6312 print_vma (section->sh_size, LONG_HEX);
6313 }
6314
6315 if ((unsigned long) section->sh_entsize == section->sh_entsize)
6316 printf (" %2.2lx", (unsigned long) section->sh_entsize);
6317 else
6318 {
6319 putchar (' ');
6320 print_vma (section->sh_entsize, LONG_HEX);
6321 }
6322
6323 if (do_section_details)
6324 fputs (" ", stdout);
6325 else
6326 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6327
6328 printf ("%2u %3u ", section->sh_link, section->sh_info);
6329
6330 if ((unsigned long) section->sh_addralign == section->sh_addralign)
6331 printf ("%2lu\n", (unsigned long) section->sh_addralign);
6332 else
6333 {
6334 print_vma (section->sh_addralign, DEC);
6335 putchar ('\n');
6336 }
6337 }
6338 else if (do_section_details)
6339 {
6340 printf (" %-15.15s ",
6341 get_section_type_name (section->sh_type));
6342 print_vma (section->sh_addr, LONG_HEX);
6343 if ((long) section->sh_offset == section->sh_offset)
6344 printf (" %16.16lx", (unsigned long) section->sh_offset);
6345 else
6346 {
6347 printf (" ");
6348 print_vma (section->sh_offset, LONG_HEX);
6349 }
6350 printf (" %u\n ", section->sh_link);
6351 print_vma (section->sh_size, LONG_HEX);
6352 putchar (' ');
6353 print_vma (section->sh_entsize, LONG_HEX);
6354
6355 printf (" %-16u %lu\n",
6356 section->sh_info,
6357 (unsigned long) section->sh_addralign);
6358 }
6359 else
6360 {
6361 putchar (' ');
6362 print_vma (section->sh_addr, LONG_HEX);
6363 if ((long) section->sh_offset == section->sh_offset)
6364 printf (" %8.8lx", (unsigned long) section->sh_offset);
6365 else
6366 {
6367 printf (" ");
6368 print_vma (section->sh_offset, LONG_HEX);
6369 }
6370 printf ("\n ");
6371 print_vma (section->sh_size, LONG_HEX);
6372 printf (" ");
6373 print_vma (section->sh_entsize, LONG_HEX);
6374
6375 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6376
6377 printf (" %2u %3u %lu\n",
6378 section->sh_link,
6379 section->sh_info,
6380 (unsigned long) section->sh_addralign);
6381 }
6382
6383 if (do_section_details)
6384 {
6385 printf (" %s\n", get_elf_section_flags (section->sh_flags));
6386 if ((section->sh_flags & SHF_COMPRESSED) != 0)
6387 {
6388 /* Minimum section size is 12 bytes for 32-bit compression
6389 header + 12 bytes for compressed data header. */
6390 unsigned char buf[24];
6391
6392 assert (sizeof (buf) >= sizeof (Elf64_External_Chdr));
6393 if (get_data (&buf, (FILE *) file, section->sh_offset, 1,
6394 sizeof (buf), _("compression header")))
6395 {
6396 Elf_Internal_Chdr chdr;
6397
6398 (void) get_compression_header (&chdr, buf, sizeof (buf));
6399
6400 if (chdr.ch_type == ELFCOMPRESS_ZLIB)
6401 printf (" ZLIB, ");
6402 else
6403 printf (_(" [<unknown>: 0x%x], "),
6404 chdr.ch_type);
6405 print_vma (chdr.ch_size, LONG_HEX);
6406 printf (", %lu\n", (unsigned long) chdr.ch_addralign);
6407 }
6408 }
6409 }
6410 }
6411
6412 if (!do_section_details)
6413 {
6414 /* The ordering of the letters shown here matches the ordering of the
6415 corresponding SHF_xxx values, and hence the order in which these
6416 letters will be displayed to the user. */
6417 printf (_("Key to Flags:\n\
6418 W (write), A (alloc), X (execute), M (merge), S (strings), I (info),\n\
6419 L (link order), O (extra OS processing required), G (group), T (TLS),\n\
6420 C (compressed), x (unknown), o (OS specific), E (exclude),\n "));
6421 if (elf_header.e_machine == EM_X86_64
6422 || elf_header.e_machine == EM_L1OM
6423 || elf_header.e_machine == EM_K1OM)
6424 printf (_("l (large), "));
6425 else if (elf_header.e_machine == EM_ARM)
6426 printf (_("y (purecode), "));
6427 printf ("p (processor specific)\n");
6428 }
6429
6430 return TRUE;
6431 }
6432
6433 static const char *
6434 get_group_flags (unsigned int flags)
6435 {
6436 static char buff[128];
6437
6438 if (flags == 0)
6439 return "";
6440 else if (flags == GRP_COMDAT)
6441 return "COMDAT ";
6442
6443 snprintf (buff, 14, _("[0x%x: "), flags);
6444
6445 flags &= ~ GRP_COMDAT;
6446 if (flags & GRP_MASKOS)
6447 {
6448 strcat (buff, "<OS specific>");
6449 flags &= ~ GRP_MASKOS;
6450 }
6451
6452 if (flags & GRP_MASKPROC)
6453 {
6454 strcat (buff, "<PROC specific>");
6455 flags &= ~ GRP_MASKPROC;
6456 }
6457
6458 if (flags)
6459 strcat (buff, "<unknown>");
6460
6461 strcat (buff, "]");
6462 return buff;
6463 }
6464
6465 static bfd_boolean
6466 process_section_groups (FILE * file)
6467 {
6468 Elf_Internal_Shdr * section;
6469 unsigned int i;
6470 struct group * group;
6471 Elf_Internal_Shdr * symtab_sec;
6472 Elf_Internal_Shdr * strtab_sec;
6473 Elf_Internal_Sym * symtab;
6474 unsigned long num_syms;
6475 char * strtab;
6476 size_t strtab_size;
6477
6478 /* Don't process section groups unless needed. */
6479 if (!do_unwind && !do_section_groups)
6480 return TRUE;
6481
6482 if (elf_header.e_shnum == 0)
6483 {
6484 if (do_section_groups)
6485 printf (_("\nThere are no sections to group in this file.\n"));
6486
6487 return TRUE;
6488 }
6489
6490 if (section_headers == NULL)
6491 {
6492 error (_("Section headers are not available!\n"));
6493 /* PR 13622: This can happen with a corrupt ELF header. */
6494 return FALSE;
6495 }
6496
6497 section_headers_groups = (struct group **) calloc (elf_header.e_shnum,
6498 sizeof (struct group *));
6499
6500 if (section_headers_groups == NULL)
6501 {
6502 error (_("Out of memory reading %u section group headers\n"),
6503 elf_header.e_shnum);
6504 return FALSE;
6505 }
6506
6507 /* Scan the sections for the group section. */
6508 group_count = 0;
6509 for (i = 0, section = section_headers;
6510 i < elf_header.e_shnum;
6511 i++, section++)
6512 if (section->sh_type == SHT_GROUP)
6513 group_count++;
6514
6515 if (group_count == 0)
6516 {
6517 if (do_section_groups)
6518 printf (_("\nThere are no section groups in this file.\n"));
6519
6520 return TRUE;
6521 }
6522
6523 section_groups = (struct group *) calloc (group_count, sizeof (struct group));
6524
6525 if (section_groups == NULL)
6526 {
6527 error (_("Out of memory reading %lu groups\n"),
6528 (unsigned long) group_count);
6529 return FALSE;
6530 }
6531
6532 symtab_sec = NULL;
6533 strtab_sec = NULL;
6534 symtab = NULL;
6535 num_syms = 0;
6536 strtab = NULL;
6537 strtab_size = 0;
6538 for (i = 0, section = section_headers, group = section_groups;
6539 i < elf_header.e_shnum;
6540 i++, section++)
6541 {
6542 if (section->sh_type == SHT_GROUP)
6543 {
6544 const char * name = printable_section_name (section);
6545 const char * group_name;
6546 unsigned char * start;
6547 unsigned char * indices;
6548 unsigned int entry, j, size;
6549 Elf_Internal_Shdr * sec;
6550 Elf_Internal_Sym * sym;
6551
6552 /* Get the symbol table. */
6553 if (section->sh_link >= elf_header.e_shnum
6554 || ((sec = section_headers + section->sh_link)->sh_type
6555 != SHT_SYMTAB))
6556 {
6557 error (_("Bad sh_link in group section `%s'\n"), name);
6558 continue;
6559 }
6560
6561 if (symtab_sec != sec)
6562 {
6563 symtab_sec = sec;
6564 if (symtab)
6565 free (symtab);
6566 symtab = GET_ELF_SYMBOLS (file, symtab_sec, & num_syms);
6567 }
6568
6569 if (symtab == NULL)
6570 {
6571 error (_("Corrupt header in group section `%s'\n"), name);
6572 continue;
6573 }
6574
6575 if (section->sh_info >= num_syms)
6576 {
6577 error (_("Bad sh_info in group section `%s'\n"), name);
6578 continue;
6579 }
6580
6581 sym = symtab + section->sh_info;
6582
6583 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6584 {
6585 if (sym->st_shndx == 0
6586 || sym->st_shndx >= elf_header.e_shnum)
6587 {
6588 error (_("Bad sh_info in group section `%s'\n"), name);
6589 continue;
6590 }
6591
6592 group_name = SECTION_NAME (section_headers + sym->st_shndx);
6593 strtab_sec = NULL;
6594 if (strtab)
6595 free (strtab);
6596 strtab = NULL;
6597 strtab_size = 0;
6598 }
6599 else
6600 {
6601 /* Get the string table. */
6602 if (symtab_sec->sh_link >= elf_header.e_shnum)
6603 {
6604 strtab_sec = NULL;
6605 if (strtab)
6606 free (strtab);
6607 strtab = NULL;
6608 strtab_size = 0;
6609 }
6610 else if (strtab_sec
6611 != (sec = section_headers + symtab_sec->sh_link))
6612 {
6613 strtab_sec = sec;
6614 if (strtab)
6615 free (strtab);
6616
6617 strtab = (char *) get_data (NULL, file, strtab_sec->sh_offset,
6618 1, strtab_sec->sh_size,
6619 _("string table"));
6620 strtab_size = strtab != NULL ? strtab_sec->sh_size : 0;
6621 }
6622 group_name = sym->st_name < strtab_size
6623 ? strtab + sym->st_name : _("<corrupt>");
6624 }
6625
6626 /* PR 17531: file: loop. */
6627 if (section->sh_entsize > section->sh_size)
6628 {
6629 error (_("Section %s has sh_entsize (0x%lx) which is larger than its size (0x%lx)\n"),
6630 printable_section_name (section),
6631 (unsigned long) section->sh_entsize,
6632 (unsigned long) section->sh_size);
6633 break;
6634 }
6635
6636 start = (unsigned char *) get_data (NULL, file, section->sh_offset,
6637 1, section->sh_size,
6638 _("section data"));
6639 if (start == NULL)
6640 continue;
6641
6642 indices = start;
6643 size = (section->sh_size / section->sh_entsize) - 1;
6644 entry = byte_get (indices, 4);
6645 indices += 4;
6646
6647 if (do_section_groups)
6648 {
6649 printf (_("\n%sgroup section [%5u] `%s' [%s] contains %u sections:\n"),
6650 get_group_flags (entry), i, name, group_name, size);
6651
6652 printf (_(" [Index] Name\n"));
6653 }
6654
6655 group->group_index = i;
6656
6657 for (j = 0; j < size; j++)
6658 {
6659 struct group_list * g;
6660
6661 entry = byte_get (indices, 4);
6662 indices += 4;
6663
6664 if (entry >= elf_header.e_shnum)
6665 {
6666 static unsigned num_group_errors = 0;
6667
6668 if (num_group_errors ++ < 10)
6669 {
6670 error (_("section [%5u] in group section [%5u] > maximum section [%5u]\n"),
6671 entry, i, elf_header.e_shnum - 1);
6672 if (num_group_errors == 10)
6673 warn (_("Futher error messages about overlarge group section indicies suppressed\n"));
6674 }
6675 continue;
6676 }
6677
6678 if (section_headers_groups [entry] != NULL)
6679 {
6680 if (entry)
6681 {
6682 static unsigned num_errs = 0;
6683
6684 if (num_errs ++ < 10)
6685 {
6686 error (_("section [%5u] in group section [%5u] already in group section [%5u]\n"),
6687 entry, i,
6688 section_headers_groups [entry]->group_index);
6689 if (num_errs == 10)
6690 warn (_("Further error messages about already contained group sections suppressed\n"));
6691 }
6692 continue;
6693 }
6694 else
6695 {
6696 /* Intel C/C++ compiler may put section 0 in a
6697 section group. We just warn it the first time
6698 and ignore it afterwards. */
6699 static bfd_boolean warned = FALSE;
6700 if (!warned)
6701 {
6702 error (_("section 0 in group section [%5u]\n"),
6703 section_headers_groups [entry]->group_index);
6704 warned = TRUE;
6705 }
6706 }
6707 }
6708
6709 section_headers_groups [entry] = group;
6710
6711 if (do_section_groups)
6712 {
6713 sec = section_headers + entry;
6714 printf (" [%5u] %s\n", entry, printable_section_name (sec));
6715 }
6716
6717 g = (struct group_list *) xmalloc (sizeof (struct group_list));
6718 g->section_index = entry;
6719 g->next = group->root;
6720 group->root = g;
6721 }
6722
6723 if (start)
6724 free (start);
6725
6726 group++;
6727 }
6728 }
6729
6730 if (symtab)
6731 free (symtab);
6732 if (strtab)
6733 free (strtab);
6734 return TRUE;
6735 }
6736
6737 /* Data used to display dynamic fixups. */
6738
6739 struct ia64_vms_dynfixup
6740 {
6741 bfd_vma needed_ident; /* Library ident number. */
6742 bfd_vma needed; /* Index in the dstrtab of the library name. */
6743 bfd_vma fixup_needed; /* Index of the library. */
6744 bfd_vma fixup_rela_cnt; /* Number of fixups. */
6745 bfd_vma fixup_rela_off; /* Fixups offset in the dynamic segment. */
6746 };
6747
6748 /* Data used to display dynamic relocations. */
6749
6750 struct ia64_vms_dynimgrela
6751 {
6752 bfd_vma img_rela_cnt; /* Number of relocations. */
6753 bfd_vma img_rela_off; /* Reloc offset in the dynamic segment. */
6754 };
6755
6756 /* Display IA-64 OpenVMS dynamic fixups (used to dynamically link a shared
6757 library). */
6758
6759 static bfd_boolean
6760 dump_ia64_vms_dynamic_fixups (FILE * file,
6761 struct ia64_vms_dynfixup * fixup,
6762 const char * strtab,
6763 unsigned int strtab_sz)
6764 {
6765 Elf64_External_VMS_IMAGE_FIXUP * imfs;
6766 long i;
6767 const char * lib_name;
6768
6769 imfs = get_data (NULL, file, dynamic_addr + fixup->fixup_rela_off,
6770 1, fixup->fixup_rela_cnt * sizeof (*imfs),
6771 _("dynamic section image fixups"));
6772 if (!imfs)
6773 return FALSE;
6774
6775 if (fixup->needed < strtab_sz)
6776 lib_name = strtab + fixup->needed;
6777 else
6778 {
6779 warn (_("corrupt library name index of 0x%lx found in dynamic entry"),
6780 (unsigned long) fixup->needed);
6781 lib_name = "???";
6782 }
6783 printf (_("\nImage fixups for needed library #%d: %s - ident: %lx\n"),
6784 (int) fixup->fixup_needed, lib_name, (long) fixup->needed_ident);
6785 printf
6786 (_("Seg Offset Type SymVec DataType\n"));
6787
6788 for (i = 0; i < (long) fixup->fixup_rela_cnt; i++)
6789 {
6790 unsigned int type;
6791 const char *rtype;
6792
6793 printf ("%3u ", (unsigned) BYTE_GET (imfs [i].fixup_seg));
6794 printf_vma ((bfd_vma) BYTE_GET (imfs [i].fixup_offset));
6795 type = BYTE_GET (imfs [i].type);
6796 rtype = elf_ia64_reloc_type (type);
6797 if (rtype == NULL)
6798 printf (" 0x%08x ", type);
6799 else
6800 printf (" %-32s ", rtype);
6801 printf ("%6u ", (unsigned) BYTE_GET (imfs [i].symvec_index));
6802 printf ("0x%08x\n", (unsigned) BYTE_GET (imfs [i].data_type));
6803 }
6804
6805 free (imfs);
6806 return TRUE;
6807 }
6808
6809 /* Display IA-64 OpenVMS dynamic relocations (used to relocate an image). */
6810
6811 static bfd_boolean
6812 dump_ia64_vms_dynamic_relocs (FILE *file, struct ia64_vms_dynimgrela *imgrela)
6813 {
6814 Elf64_External_VMS_IMAGE_RELA *imrs;
6815 long i;
6816
6817 imrs = get_data (NULL, file, dynamic_addr + imgrela->img_rela_off,
6818 1, imgrela->img_rela_cnt * sizeof (*imrs),
6819 _("dynamic section image relocations"));
6820 if (!imrs)
6821 return FALSE;
6822
6823 printf (_("\nImage relocs\n"));
6824 printf
6825 (_("Seg Offset Type Addend Seg Sym Off\n"));
6826
6827 for (i = 0; i < (long) imgrela->img_rela_cnt; i++)
6828 {
6829 unsigned int type;
6830 const char *rtype;
6831
6832 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].rela_seg));
6833 printf ("%08" BFD_VMA_FMT "x ",
6834 (bfd_vma) BYTE_GET (imrs [i].rela_offset));
6835 type = BYTE_GET (imrs [i].type);
6836 rtype = elf_ia64_reloc_type (type);
6837 if (rtype == NULL)
6838 printf ("0x%08x ", type);
6839 else
6840 printf ("%-31s ", rtype);
6841 print_vma (BYTE_GET (imrs [i].addend), FULL_HEX);
6842 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].sym_seg));
6843 printf ("%08" BFD_VMA_FMT "x\n",
6844 (bfd_vma) BYTE_GET (imrs [i].sym_offset));
6845 }
6846
6847 free (imrs);
6848 return TRUE;
6849 }
6850
6851 /* Display IA-64 OpenVMS dynamic relocations and fixups. */
6852
6853 static bfd_boolean
6854 process_ia64_vms_dynamic_relocs (FILE *file)
6855 {
6856 struct ia64_vms_dynfixup fixup;
6857 struct ia64_vms_dynimgrela imgrela;
6858 Elf_Internal_Dyn *entry;
6859 bfd_vma strtab_off = 0;
6860 bfd_vma strtab_sz = 0;
6861 char *strtab = NULL;
6862 bfd_boolean res = TRUE;
6863
6864 memset (&fixup, 0, sizeof (fixup));
6865 memset (&imgrela, 0, sizeof (imgrela));
6866
6867 /* Note: the order of the entries is specified by the OpenVMS specs. */
6868 for (entry = dynamic_section;
6869 entry < dynamic_section + dynamic_nent;
6870 entry++)
6871 {
6872 switch (entry->d_tag)
6873 {
6874 case DT_IA_64_VMS_STRTAB_OFFSET:
6875 strtab_off = entry->d_un.d_val;
6876 break;
6877 case DT_STRSZ:
6878 strtab_sz = entry->d_un.d_val;
6879 if (strtab == NULL)
6880 strtab = get_data (NULL, file, dynamic_addr + strtab_off,
6881 1, strtab_sz, _("dynamic string section"));
6882 break;
6883
6884 case DT_IA_64_VMS_NEEDED_IDENT:
6885 fixup.needed_ident = entry->d_un.d_val;
6886 break;
6887 case DT_NEEDED:
6888 fixup.needed = entry->d_un.d_val;
6889 break;
6890 case DT_IA_64_VMS_FIXUP_NEEDED:
6891 fixup.fixup_needed = entry->d_un.d_val;
6892 break;
6893 case DT_IA_64_VMS_FIXUP_RELA_CNT:
6894 fixup.fixup_rela_cnt = entry->d_un.d_val;
6895 break;
6896 case DT_IA_64_VMS_FIXUP_RELA_OFF:
6897 fixup.fixup_rela_off = entry->d_un.d_val;
6898 if (! dump_ia64_vms_dynamic_fixups (file, &fixup, strtab, strtab_sz))
6899 res = FALSE;
6900 break;
6901 case DT_IA_64_VMS_IMG_RELA_CNT:
6902 imgrela.img_rela_cnt = entry->d_un.d_val;
6903 break;
6904 case DT_IA_64_VMS_IMG_RELA_OFF:
6905 imgrela.img_rela_off = entry->d_un.d_val;
6906 if (! dump_ia64_vms_dynamic_relocs (file, &imgrela))
6907 res = FALSE;
6908 break;
6909
6910 default:
6911 break;
6912 }
6913 }
6914
6915 if (strtab != NULL)
6916 free (strtab);
6917
6918 return res;
6919 }
6920
6921 static struct
6922 {
6923 const char * name;
6924 int reloc;
6925 int size;
6926 int rela;
6927 }
6928 dynamic_relocations [] =
6929 {
6930 { "REL", DT_REL, DT_RELSZ, FALSE },
6931 { "RELA", DT_RELA, DT_RELASZ, TRUE },
6932 { "PLT", DT_JMPREL, DT_PLTRELSZ, UNKNOWN }
6933 };
6934
6935 /* Process the reloc section. */
6936
6937 static bfd_boolean
6938 process_relocs (FILE * file)
6939 {
6940 unsigned long rel_size;
6941 unsigned long rel_offset;
6942
6943 if (!do_reloc)
6944 return TRUE;
6945
6946 if (do_using_dynamic)
6947 {
6948 int is_rela;
6949 const char * name;
6950 bfd_boolean has_dynamic_reloc;
6951 unsigned int i;
6952
6953 has_dynamic_reloc = FALSE;
6954
6955 for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
6956 {
6957 is_rela = dynamic_relocations [i].rela;
6958 name = dynamic_relocations [i].name;
6959 rel_size = dynamic_info [dynamic_relocations [i].size];
6960 rel_offset = dynamic_info [dynamic_relocations [i].reloc];
6961
6962 if (rel_size)
6963 has_dynamic_reloc = TRUE;
6964
6965 if (is_rela == UNKNOWN)
6966 {
6967 if (dynamic_relocations [i].reloc == DT_JMPREL)
6968 switch (dynamic_info[DT_PLTREL])
6969 {
6970 case DT_REL:
6971 is_rela = FALSE;
6972 break;
6973 case DT_RELA:
6974 is_rela = TRUE;
6975 break;
6976 }
6977 }
6978
6979 if (rel_size)
6980 {
6981 printf
6982 (_("\n'%s' relocation section at offset 0x%lx contains %ld bytes:\n"),
6983 name, rel_offset, rel_size);
6984
6985 dump_relocations (file,
6986 offset_from_vma (file, rel_offset, rel_size),
6987 rel_size,
6988 dynamic_symbols, num_dynamic_syms,
6989 dynamic_strings, dynamic_strings_length,
6990 is_rela, TRUE /* is_dynamic */);
6991 }
6992 }
6993
6994 if (is_ia64_vms ())
6995 if (process_ia64_vms_dynamic_relocs (file))
6996 has_dynamic_reloc = TRUE;
6997
6998 if (! has_dynamic_reloc)
6999 printf (_("\nThere are no dynamic relocations in this file.\n"));
7000 }
7001 else
7002 {
7003 Elf_Internal_Shdr * section;
7004 unsigned long i;
7005 bfd_boolean found = FALSE;
7006
7007 for (i = 0, section = section_headers;
7008 i < elf_header.e_shnum;
7009 i++, section++)
7010 {
7011 if ( section->sh_type != SHT_RELA
7012 && section->sh_type != SHT_REL)
7013 continue;
7014
7015 rel_offset = section->sh_offset;
7016 rel_size = section->sh_size;
7017
7018 if (rel_size)
7019 {
7020 Elf_Internal_Shdr * strsec;
7021 int is_rela;
7022
7023 printf (_("\nRelocation section "));
7024
7025 if (string_table == NULL)
7026 printf ("%d", section->sh_name);
7027 else
7028 printf ("'%s'", printable_section_name (section));
7029
7030 printf (_(" at offset 0x%lx contains %lu entries:\n"),
7031 rel_offset, (unsigned long) (rel_size / section->sh_entsize));
7032
7033 is_rela = section->sh_type == SHT_RELA;
7034
7035 if (section->sh_link != 0
7036 && section->sh_link < elf_header.e_shnum)
7037 {
7038 Elf_Internal_Shdr * symsec;
7039 Elf_Internal_Sym * symtab;
7040 unsigned long nsyms;
7041 unsigned long strtablen = 0;
7042 char * strtab = NULL;
7043
7044 symsec = section_headers + section->sh_link;
7045 if (symsec->sh_type != SHT_SYMTAB
7046 && symsec->sh_type != SHT_DYNSYM)
7047 continue;
7048
7049 symtab = GET_ELF_SYMBOLS (file, symsec, & nsyms);
7050
7051 if (symtab == NULL)
7052 continue;
7053
7054 if (symsec->sh_link != 0
7055 && symsec->sh_link < elf_header.e_shnum)
7056 {
7057 strsec = section_headers + symsec->sh_link;
7058
7059 strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7060 1, strsec->sh_size,
7061 _("string table"));
7062 strtablen = strtab == NULL ? 0 : strsec->sh_size;
7063 }
7064
7065 dump_relocations (file, rel_offset, rel_size,
7066 symtab, nsyms, strtab, strtablen,
7067 is_rela,
7068 symsec->sh_type == SHT_DYNSYM);
7069 if (strtab)
7070 free (strtab);
7071 free (symtab);
7072 }
7073 else
7074 dump_relocations (file, rel_offset, rel_size,
7075 NULL, 0, NULL, 0, is_rela,
7076 FALSE /* is_dynamic */);
7077
7078 found = TRUE;
7079 }
7080 }
7081
7082 if (! found)
7083 printf (_("\nThere are no relocations in this file.\n"));
7084 }
7085
7086 return TRUE;
7087 }
7088
7089 /* An absolute address consists of a section and an offset. If the
7090 section is NULL, the offset itself is the address, otherwise, the
7091 address equals to LOAD_ADDRESS(section) + offset. */
7092
7093 struct absaddr
7094 {
7095 unsigned short section;
7096 bfd_vma offset;
7097 };
7098
7099 #define ABSADDR(a) \
7100 ((a).section \
7101 ? section_headers [(a).section].sh_addr + (a).offset \
7102 : (a).offset)
7103
7104 /* Find the nearest symbol at or below ADDR. Returns the symbol
7105 name, if found, and the offset from the symbol to ADDR. */
7106
7107 static void
7108 find_symbol_for_address (Elf_Internal_Sym * symtab,
7109 unsigned long nsyms,
7110 const char * strtab,
7111 unsigned long strtab_size,
7112 struct absaddr addr,
7113 const char ** symname,
7114 bfd_vma * offset)
7115 {
7116 bfd_vma dist = 0x100000;
7117 Elf_Internal_Sym * sym;
7118 Elf_Internal_Sym * beg;
7119 Elf_Internal_Sym * end;
7120 Elf_Internal_Sym * best = NULL;
7121
7122 REMOVE_ARCH_BITS (addr.offset);
7123 beg = symtab;
7124 end = symtab + nsyms;
7125
7126 while (beg < end)
7127 {
7128 bfd_vma value;
7129
7130 sym = beg + (end - beg) / 2;
7131
7132 value = sym->st_value;
7133 REMOVE_ARCH_BITS (value);
7134
7135 if (sym->st_name != 0
7136 && (addr.section == SHN_UNDEF || addr.section == sym->st_shndx)
7137 && addr.offset >= value
7138 && addr.offset - value < dist)
7139 {
7140 best = sym;
7141 dist = addr.offset - value;
7142 if (!dist)
7143 break;
7144 }
7145
7146 if (addr.offset < value)
7147 end = sym;
7148 else
7149 beg = sym + 1;
7150 }
7151
7152 if (best)
7153 {
7154 *symname = (best->st_name >= strtab_size
7155 ? _("<corrupt>") : strtab + best->st_name);
7156 *offset = dist;
7157 return;
7158 }
7159
7160 *symname = NULL;
7161 *offset = addr.offset;
7162 }
7163
7164 static /* signed */ int
7165 symcmp (const void *p, const void *q)
7166 {
7167 Elf_Internal_Sym *sp = (Elf_Internal_Sym *) p;
7168 Elf_Internal_Sym *sq = (Elf_Internal_Sym *) q;
7169
7170 return sp->st_value > sq->st_value ? 1 : (sp->st_value < sq->st_value ? -1 : 0);
7171 }
7172
7173 /* Process the unwind section. */
7174
7175 #include "unwind-ia64.h"
7176
7177 struct ia64_unw_table_entry
7178 {
7179 struct absaddr start;
7180 struct absaddr end;
7181 struct absaddr info;
7182 };
7183
7184 struct ia64_unw_aux_info
7185 {
7186 struct ia64_unw_table_entry * table; /* Unwind table. */
7187 unsigned long table_len; /* Length of unwind table. */
7188 unsigned char * info; /* Unwind info. */
7189 unsigned long info_size; /* Size of unwind info. */
7190 bfd_vma info_addr; /* Starting address of unwind info. */
7191 bfd_vma seg_base; /* Starting address of segment. */
7192 Elf_Internal_Sym * symtab; /* The symbol table. */
7193 unsigned long nsyms; /* Number of symbols. */
7194 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7195 unsigned long nfuns; /* Number of entries in funtab. */
7196 char * strtab; /* The string table. */
7197 unsigned long strtab_size; /* Size of string table. */
7198 };
7199
7200 static bfd_boolean
7201 dump_ia64_unwind (struct ia64_unw_aux_info * aux)
7202 {
7203 struct ia64_unw_table_entry * tp;
7204 unsigned long j, nfuns;
7205 int in_body;
7206 bfd_boolean res = TRUE;
7207
7208 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
7209 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
7210 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
7211 aux->funtab[nfuns++] = aux->symtab[j];
7212 aux->nfuns = nfuns;
7213 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
7214
7215 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
7216 {
7217 bfd_vma stamp;
7218 bfd_vma offset;
7219 const unsigned char * dp;
7220 const unsigned char * head;
7221 const unsigned char * end;
7222 const char * procname;
7223
7224 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7225 aux->strtab_size, tp->start, &procname, &offset);
7226
7227 fputs ("\n<", stdout);
7228
7229 if (procname)
7230 {
7231 fputs (procname, stdout);
7232
7233 if (offset)
7234 printf ("+%lx", (unsigned long) offset);
7235 }
7236
7237 fputs (">: [", stdout);
7238 print_vma (tp->start.offset, PREFIX_HEX);
7239 fputc ('-', stdout);
7240 print_vma (tp->end.offset, PREFIX_HEX);
7241 printf ("], info at +0x%lx\n",
7242 (unsigned long) (tp->info.offset - aux->seg_base));
7243
7244 /* PR 17531: file: 86232b32. */
7245 if (aux->info == NULL)
7246 continue;
7247
7248 /* PR 17531: file: 0997b4d1. */
7249 if ((ABSADDR (tp->info) - aux->info_addr) >= aux->info_size)
7250 {
7251 warn (_("Invalid offset %lx in table entry %ld\n"),
7252 (long) tp->info.offset, (long) (tp - aux->table));
7253 res = FALSE;
7254 continue;
7255 }
7256
7257 head = aux->info + (ABSADDR (tp->info) - aux->info_addr);
7258 stamp = byte_get ((unsigned char *) head, sizeof (stamp));
7259
7260 printf (" v%u, flags=0x%lx (%s%s), len=%lu bytes\n",
7261 (unsigned) UNW_VER (stamp),
7262 (unsigned long) ((stamp & UNW_FLAG_MASK) >> 32),
7263 UNW_FLAG_EHANDLER (stamp) ? " ehandler" : "",
7264 UNW_FLAG_UHANDLER (stamp) ? " uhandler" : "",
7265 (unsigned long) (eh_addr_size * UNW_LENGTH (stamp)));
7266
7267 if (UNW_VER (stamp) != 1)
7268 {
7269 printf (_("\tUnknown version.\n"));
7270 continue;
7271 }
7272
7273 in_body = 0;
7274 end = head + 8 + eh_addr_size * UNW_LENGTH (stamp);
7275 /* PR 17531: file: 16ceda89. */
7276 if (end > aux->info + aux->info_size)
7277 end = aux->info + aux->info_size;
7278 for (dp = head + 8; dp < end;)
7279 dp = unw_decode (dp, in_body, & in_body, end);
7280 }
7281
7282 free (aux->funtab);
7283
7284 return res;
7285 }
7286
7287 static bfd_boolean
7288 slurp_ia64_unwind_table (FILE * file,
7289 struct ia64_unw_aux_info * aux,
7290 Elf_Internal_Shdr * sec)
7291 {
7292 unsigned long size, nrelas, i;
7293 Elf_Internal_Phdr * seg;
7294 struct ia64_unw_table_entry * tep;
7295 Elf_Internal_Shdr * relsec;
7296 Elf_Internal_Rela * rela;
7297 Elf_Internal_Rela * rp;
7298 unsigned char * table;
7299 unsigned char * tp;
7300 Elf_Internal_Sym * sym;
7301 const char * relname;
7302
7303 aux->table_len = 0;
7304
7305 /* First, find the starting address of the segment that includes
7306 this section: */
7307
7308 if (elf_header.e_phnum)
7309 {
7310 if (! get_program_headers (file))
7311 return FALSE;
7312
7313 for (seg = program_headers;
7314 seg < program_headers + elf_header.e_phnum;
7315 ++seg)
7316 {
7317 if (seg->p_type != PT_LOAD)
7318 continue;
7319
7320 if (sec->sh_addr >= seg->p_vaddr
7321 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
7322 {
7323 aux->seg_base = seg->p_vaddr;
7324 break;
7325 }
7326 }
7327 }
7328
7329 /* Second, build the unwind table from the contents of the unwind section: */
7330 size = sec->sh_size;
7331 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
7332 _("unwind table"));
7333 if (!table)
7334 return FALSE;
7335
7336 aux->table_len = size / (3 * eh_addr_size);
7337 aux->table = (struct ia64_unw_table_entry *)
7338 xcmalloc (aux->table_len, sizeof (aux->table[0]));
7339 tep = aux->table;
7340
7341 for (tp = table; tp <= table + size - (3 * eh_addr_size); ++tep)
7342 {
7343 tep->start.section = SHN_UNDEF;
7344 tep->end.section = SHN_UNDEF;
7345 tep->info.section = SHN_UNDEF;
7346 tep->start.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7347 tep->end.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7348 tep->info.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7349 tep->start.offset += aux->seg_base;
7350 tep->end.offset += aux->seg_base;
7351 tep->info.offset += aux->seg_base;
7352 }
7353 free (table);
7354
7355 /* Third, apply any relocations to the unwind table: */
7356 for (relsec = section_headers;
7357 relsec < section_headers + elf_header.e_shnum;
7358 ++relsec)
7359 {
7360 if (relsec->sh_type != SHT_RELA
7361 || relsec->sh_info >= elf_header.e_shnum
7362 || section_headers + relsec->sh_info != sec)
7363 continue;
7364
7365 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
7366 & rela, & nrelas))
7367 {
7368 free (aux->table);
7369 aux->table = NULL;
7370 aux->table_len = 0;
7371 return FALSE;
7372 }
7373
7374 for (rp = rela; rp < rela + nrelas; ++rp)
7375 {
7376 relname = elf_ia64_reloc_type (get_reloc_type (rp->r_info));
7377 sym = aux->symtab + get_reloc_symindex (rp->r_info);
7378
7379 /* PR 17531: file: 9fa67536. */
7380 if (relname == NULL)
7381 {
7382 warn (_("Skipping unknown relocation type: %u\n"), get_reloc_type (rp->r_info));
7383 continue;
7384 }
7385
7386 if (! const_strneq (relname, "R_IA64_SEGREL"))
7387 {
7388 warn (_("Skipping unexpected relocation type: %s\n"), relname);
7389 continue;
7390 }
7391
7392 i = rp->r_offset / (3 * eh_addr_size);
7393
7394 /* PR 17531: file: 5bc8d9bf. */
7395 if (i >= aux->table_len)
7396 {
7397 warn (_("Skipping reloc with overlarge offset: %lx\n"), i);
7398 continue;
7399 }
7400
7401 switch (rp->r_offset / eh_addr_size % 3)
7402 {
7403 case 0:
7404 aux->table[i].start.section = sym->st_shndx;
7405 aux->table[i].start.offset = rp->r_addend + sym->st_value;
7406 break;
7407 case 1:
7408 aux->table[i].end.section = sym->st_shndx;
7409 aux->table[i].end.offset = rp->r_addend + sym->st_value;
7410 break;
7411 case 2:
7412 aux->table[i].info.section = sym->st_shndx;
7413 aux->table[i].info.offset = rp->r_addend + sym->st_value;
7414 break;
7415 default:
7416 break;
7417 }
7418 }
7419
7420 free (rela);
7421 }
7422
7423 return TRUE;
7424 }
7425
7426 static bfd_boolean
7427 ia64_process_unwind (FILE * file)
7428 {
7429 Elf_Internal_Shdr * sec;
7430 Elf_Internal_Shdr * unwsec = NULL;
7431 Elf_Internal_Shdr * strsec;
7432 unsigned long i, unwcount = 0, unwstart = 0;
7433 struct ia64_unw_aux_info aux;
7434 bfd_boolean res = TRUE;
7435
7436 memset (& aux, 0, sizeof (aux));
7437
7438 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7439 {
7440 if (sec->sh_type == SHT_SYMTAB
7441 && sec->sh_link < elf_header.e_shnum)
7442 {
7443 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7444
7445 strsec = section_headers + sec->sh_link;
7446 if (aux.strtab != NULL)
7447 {
7448 error (_("Multiple auxillary string tables encountered\n"));
7449 free (aux.strtab);
7450 res = FALSE;
7451 }
7452 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7453 1, strsec->sh_size,
7454 _("string table"));
7455 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7456 }
7457 else if (sec->sh_type == SHT_IA_64_UNWIND)
7458 unwcount++;
7459 }
7460
7461 if (!unwcount)
7462 printf (_("\nThere are no unwind sections in this file.\n"));
7463
7464 while (unwcount-- > 0)
7465 {
7466 char * suffix;
7467 size_t len, len2;
7468
7469 for (i = unwstart, sec = section_headers + unwstart, unwsec = NULL;
7470 i < elf_header.e_shnum; ++i, ++sec)
7471 if (sec->sh_type == SHT_IA_64_UNWIND)
7472 {
7473 unwsec = sec;
7474 break;
7475 }
7476 /* We have already counted the number of SHT_IA64_UNWIND
7477 sections so the loop above should never fail. */
7478 assert (unwsec != NULL);
7479
7480 unwstart = i + 1;
7481 len = sizeof (ELF_STRING_ia64_unwind_once) - 1;
7482
7483 if ((unwsec->sh_flags & SHF_GROUP) != 0)
7484 {
7485 /* We need to find which section group it is in. */
7486 struct group_list * g;
7487
7488 if (section_headers_groups == NULL
7489 || section_headers_groups [i] == NULL)
7490 i = elf_header.e_shnum;
7491 else
7492 {
7493 g = section_headers_groups [i]->root;
7494
7495 for (; g != NULL; g = g->next)
7496 {
7497 sec = section_headers + g->section_index;
7498
7499 if (streq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info))
7500 break;
7501 }
7502
7503 if (g == NULL)
7504 i = elf_header.e_shnum;
7505 }
7506 }
7507 else if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind_once, len))
7508 {
7509 /* .gnu.linkonce.ia64unw.FOO -> .gnu.linkonce.ia64unwi.FOO. */
7510 len2 = sizeof (ELF_STRING_ia64_unwind_info_once) - 1;
7511 suffix = SECTION_NAME (unwsec) + len;
7512 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
7513 ++i, ++sec)
7514 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info_once, len2)
7515 && streq (SECTION_NAME (sec) + len2, suffix))
7516 break;
7517 }
7518 else
7519 {
7520 /* .IA_64.unwindFOO -> .IA_64.unwind_infoFOO
7521 .IA_64.unwind or BAR -> .IA_64.unwind_info. */
7522 len = sizeof (ELF_STRING_ia64_unwind) - 1;
7523 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
7524 suffix = "";
7525 if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind, len))
7526 suffix = SECTION_NAME (unwsec) + len;
7527 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
7528 ++i, ++sec)
7529 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info, len2)
7530 && streq (SECTION_NAME (sec) + len2, suffix))
7531 break;
7532 }
7533
7534 if (i == elf_header.e_shnum)
7535 {
7536 printf (_("\nCould not find unwind info section for "));
7537
7538 if (string_table == NULL)
7539 printf ("%d", unwsec->sh_name);
7540 else
7541 printf ("'%s'", printable_section_name (unwsec));
7542 }
7543 else
7544 {
7545 aux.info_addr = sec->sh_addr;
7546 aux.info = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1,
7547 sec->sh_size,
7548 _("unwind info"));
7549 aux.info_size = aux.info == NULL ? 0 : sec->sh_size;
7550
7551 printf (_("\nUnwind section "));
7552
7553 if (string_table == NULL)
7554 printf ("%d", unwsec->sh_name);
7555 else
7556 printf ("'%s'", printable_section_name (unwsec));
7557
7558 printf (_(" at offset 0x%lx contains %lu entries:\n"),
7559 (unsigned long) unwsec->sh_offset,
7560 (unsigned long) (unwsec->sh_size / (3 * eh_addr_size)));
7561
7562 if (slurp_ia64_unwind_table (file, & aux, unwsec)
7563 && aux.table_len > 0)
7564 dump_ia64_unwind (& aux);
7565
7566 if (aux.table)
7567 free ((char *) aux.table);
7568 if (aux.info)
7569 free ((char *) aux.info);
7570 aux.table = NULL;
7571 aux.info = NULL;
7572 }
7573 }
7574
7575 if (aux.symtab)
7576 free (aux.symtab);
7577 if (aux.strtab)
7578 free ((char *) aux.strtab);
7579
7580 return res;
7581 }
7582
7583 struct hppa_unw_table_entry
7584 {
7585 struct absaddr start;
7586 struct absaddr end;
7587 unsigned int Cannot_unwind:1; /* 0 */
7588 unsigned int Millicode:1; /* 1 */
7589 unsigned int Millicode_save_sr0:1; /* 2 */
7590 unsigned int Region_description:2; /* 3..4 */
7591 unsigned int reserved1:1; /* 5 */
7592 unsigned int Entry_SR:1; /* 6 */
7593 unsigned int Entry_FR:4; /* Number saved 7..10 */
7594 unsigned int Entry_GR:5; /* Number saved 11..15 */
7595 unsigned int Args_stored:1; /* 16 */
7596 unsigned int Variable_Frame:1; /* 17 */
7597 unsigned int Separate_Package_Body:1; /* 18 */
7598 unsigned int Frame_Extension_Millicode:1; /* 19 */
7599 unsigned int Stack_Overflow_Check:1; /* 20 */
7600 unsigned int Two_Instruction_SP_Increment:1; /* 21 */
7601 unsigned int Ada_Region:1; /* 22 */
7602 unsigned int cxx_info:1; /* 23 */
7603 unsigned int cxx_try_catch:1; /* 24 */
7604 unsigned int sched_entry_seq:1; /* 25 */
7605 unsigned int reserved2:1; /* 26 */
7606 unsigned int Save_SP:1; /* 27 */
7607 unsigned int Save_RP:1; /* 28 */
7608 unsigned int Save_MRP_in_frame:1; /* 29 */
7609 unsigned int extn_ptr_defined:1; /* 30 */
7610 unsigned int Cleanup_defined:1; /* 31 */
7611
7612 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
7613 unsigned int HP_UX_interrupt_marker:1; /* 1 */
7614 unsigned int Large_frame:1; /* 2 */
7615 unsigned int Pseudo_SP_Set:1; /* 3 */
7616 unsigned int reserved4:1; /* 4 */
7617 unsigned int Total_frame_size:27; /* 5..31 */
7618 };
7619
7620 struct hppa_unw_aux_info
7621 {
7622 struct hppa_unw_table_entry * table; /* Unwind table. */
7623 unsigned long table_len; /* Length of unwind table. */
7624 bfd_vma seg_base; /* Starting address of segment. */
7625 Elf_Internal_Sym * symtab; /* The symbol table. */
7626 unsigned long nsyms; /* Number of symbols. */
7627 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7628 unsigned long nfuns; /* Number of entries in funtab. */
7629 char * strtab; /* The string table. */
7630 unsigned long strtab_size; /* Size of string table. */
7631 };
7632
7633 static bfd_boolean
7634 dump_hppa_unwind (struct hppa_unw_aux_info * aux)
7635 {
7636 struct hppa_unw_table_entry * tp;
7637 unsigned long j, nfuns;
7638 bfd_boolean res = TRUE;
7639
7640 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
7641 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
7642 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
7643 aux->funtab[nfuns++] = aux->symtab[j];
7644 aux->nfuns = nfuns;
7645 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
7646
7647 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
7648 {
7649 bfd_vma offset;
7650 const char * procname;
7651
7652 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7653 aux->strtab_size, tp->start, &procname,
7654 &offset);
7655
7656 fputs ("\n<", stdout);
7657
7658 if (procname)
7659 {
7660 fputs (procname, stdout);
7661
7662 if (offset)
7663 printf ("+%lx", (unsigned long) offset);
7664 }
7665
7666 fputs (">: [", stdout);
7667 print_vma (tp->start.offset, PREFIX_HEX);
7668 fputc ('-', stdout);
7669 print_vma (tp->end.offset, PREFIX_HEX);
7670 printf ("]\n\t");
7671
7672 #define PF(_m) if (tp->_m) printf (#_m " ");
7673 #define PV(_m) if (tp->_m) printf (#_m "=%d ", tp->_m);
7674 PF(Cannot_unwind);
7675 PF(Millicode);
7676 PF(Millicode_save_sr0);
7677 /* PV(Region_description); */
7678 PF(Entry_SR);
7679 PV(Entry_FR);
7680 PV(Entry_GR);
7681 PF(Args_stored);
7682 PF(Variable_Frame);
7683 PF(Separate_Package_Body);
7684 PF(Frame_Extension_Millicode);
7685 PF(Stack_Overflow_Check);
7686 PF(Two_Instruction_SP_Increment);
7687 PF(Ada_Region);
7688 PF(cxx_info);
7689 PF(cxx_try_catch);
7690 PF(sched_entry_seq);
7691 PF(Save_SP);
7692 PF(Save_RP);
7693 PF(Save_MRP_in_frame);
7694 PF(extn_ptr_defined);
7695 PF(Cleanup_defined);
7696 PF(MPE_XL_interrupt_marker);
7697 PF(HP_UX_interrupt_marker);
7698 PF(Large_frame);
7699 PF(Pseudo_SP_Set);
7700 PV(Total_frame_size);
7701 #undef PF
7702 #undef PV
7703 }
7704
7705 printf ("\n");
7706
7707 free (aux->funtab);
7708
7709 return res;
7710 }
7711
7712 static bfd_boolean
7713 slurp_hppa_unwind_table (FILE * file,
7714 struct hppa_unw_aux_info * aux,
7715 Elf_Internal_Shdr * sec)
7716 {
7717 unsigned long size, unw_ent_size, nentries, nrelas, i;
7718 Elf_Internal_Phdr * seg;
7719 struct hppa_unw_table_entry * tep;
7720 Elf_Internal_Shdr * relsec;
7721 Elf_Internal_Rela * rela;
7722 Elf_Internal_Rela * rp;
7723 unsigned char * table;
7724 unsigned char * tp;
7725 Elf_Internal_Sym * sym;
7726 const char * relname;
7727
7728 /* First, find the starting address of the segment that includes
7729 this section. */
7730 if (elf_header.e_phnum)
7731 {
7732 if (! get_program_headers (file))
7733 return FALSE;
7734
7735 for (seg = program_headers;
7736 seg < program_headers + elf_header.e_phnum;
7737 ++seg)
7738 {
7739 if (seg->p_type != PT_LOAD)
7740 continue;
7741
7742 if (sec->sh_addr >= seg->p_vaddr
7743 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
7744 {
7745 aux->seg_base = seg->p_vaddr;
7746 break;
7747 }
7748 }
7749 }
7750
7751 /* Second, build the unwind table from the contents of the unwind
7752 section. */
7753 size = sec->sh_size;
7754 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
7755 _("unwind table"));
7756 if (!table)
7757 return FALSE;
7758
7759 unw_ent_size = 16;
7760 nentries = size / unw_ent_size;
7761 size = unw_ent_size * nentries;
7762
7763 tep = aux->table = (struct hppa_unw_table_entry *)
7764 xcmalloc (nentries, sizeof (aux->table[0]));
7765
7766 for (tp = table; tp < table + size; tp += unw_ent_size, ++tep)
7767 {
7768 unsigned int tmp1, tmp2;
7769
7770 tep->start.section = SHN_UNDEF;
7771 tep->end.section = SHN_UNDEF;
7772
7773 tep->start.offset = byte_get ((unsigned char *) tp + 0, 4);
7774 tep->end.offset = byte_get ((unsigned char *) tp + 4, 4);
7775 tmp1 = byte_get ((unsigned char *) tp + 8, 4);
7776 tmp2 = byte_get ((unsigned char *) tp + 12, 4);
7777
7778 tep->start.offset += aux->seg_base;
7779 tep->end.offset += aux->seg_base;
7780
7781 tep->Cannot_unwind = (tmp1 >> 31) & 0x1;
7782 tep->Millicode = (tmp1 >> 30) & 0x1;
7783 tep->Millicode_save_sr0 = (tmp1 >> 29) & 0x1;
7784 tep->Region_description = (tmp1 >> 27) & 0x3;
7785 tep->reserved1 = (tmp1 >> 26) & 0x1;
7786 tep->Entry_SR = (tmp1 >> 25) & 0x1;
7787 tep->Entry_FR = (tmp1 >> 21) & 0xf;
7788 tep->Entry_GR = (tmp1 >> 16) & 0x1f;
7789 tep->Args_stored = (tmp1 >> 15) & 0x1;
7790 tep->Variable_Frame = (tmp1 >> 14) & 0x1;
7791 tep->Separate_Package_Body = (tmp1 >> 13) & 0x1;
7792 tep->Frame_Extension_Millicode = (tmp1 >> 12) & 0x1;
7793 tep->Stack_Overflow_Check = (tmp1 >> 11) & 0x1;
7794 tep->Two_Instruction_SP_Increment = (tmp1 >> 10) & 0x1;
7795 tep->Ada_Region = (tmp1 >> 9) & 0x1;
7796 tep->cxx_info = (tmp1 >> 8) & 0x1;
7797 tep->cxx_try_catch = (tmp1 >> 7) & 0x1;
7798 tep->sched_entry_seq = (tmp1 >> 6) & 0x1;
7799 tep->reserved2 = (tmp1 >> 5) & 0x1;
7800 tep->Save_SP = (tmp1 >> 4) & 0x1;
7801 tep->Save_RP = (tmp1 >> 3) & 0x1;
7802 tep->Save_MRP_in_frame = (tmp1 >> 2) & 0x1;
7803 tep->extn_ptr_defined = (tmp1 >> 1) & 0x1;
7804 tep->Cleanup_defined = tmp1 & 0x1;
7805
7806 tep->MPE_XL_interrupt_marker = (tmp2 >> 31) & 0x1;
7807 tep->HP_UX_interrupt_marker = (tmp2 >> 30) & 0x1;
7808 tep->Large_frame = (tmp2 >> 29) & 0x1;
7809 tep->Pseudo_SP_Set = (tmp2 >> 28) & 0x1;
7810 tep->reserved4 = (tmp2 >> 27) & 0x1;
7811 tep->Total_frame_size = tmp2 & 0x7ffffff;
7812 }
7813 free (table);
7814
7815 /* Third, apply any relocations to the unwind table. */
7816 for (relsec = section_headers;
7817 relsec < section_headers + elf_header.e_shnum;
7818 ++relsec)
7819 {
7820 if (relsec->sh_type != SHT_RELA
7821 || relsec->sh_info >= elf_header.e_shnum
7822 || section_headers + relsec->sh_info != sec)
7823 continue;
7824
7825 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
7826 & rela, & nrelas))
7827 return FALSE;
7828
7829 for (rp = rela; rp < rela + nrelas; ++rp)
7830 {
7831 relname = elf_hppa_reloc_type (get_reloc_type (rp->r_info));
7832 sym = aux->symtab + get_reloc_symindex (rp->r_info);
7833
7834 /* R_PARISC_SEGREL32 or R_PARISC_SEGREL64. */
7835 if (! const_strneq (relname, "R_PARISC_SEGREL"))
7836 {
7837 warn (_("Skipping unexpected relocation type %s\n"), relname);
7838 continue;
7839 }
7840
7841 i = rp->r_offset / unw_ent_size;
7842
7843 switch ((rp->r_offset % unw_ent_size) / eh_addr_size)
7844 {
7845 case 0:
7846 aux->table[i].start.section = sym->st_shndx;
7847 aux->table[i].start.offset = sym->st_value + rp->r_addend;
7848 break;
7849 case 1:
7850 aux->table[i].end.section = sym->st_shndx;
7851 aux->table[i].end.offset = sym->st_value + rp->r_addend;
7852 break;
7853 default:
7854 break;
7855 }
7856 }
7857
7858 free (rela);
7859 }
7860
7861 aux->table_len = nentries;
7862
7863 return TRUE;
7864 }
7865
7866 static bfd_boolean
7867 hppa_process_unwind (FILE * file)
7868 {
7869 struct hppa_unw_aux_info aux;
7870 Elf_Internal_Shdr * unwsec = NULL;
7871 Elf_Internal_Shdr * strsec;
7872 Elf_Internal_Shdr * sec;
7873 unsigned long i;
7874 bfd_boolean res = TRUE;
7875
7876 if (string_table == NULL)
7877 return FALSE;
7878
7879 memset (& aux, 0, sizeof (aux));
7880
7881 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7882 {
7883 if (sec->sh_type == SHT_SYMTAB
7884 && sec->sh_link < elf_header.e_shnum)
7885 {
7886 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7887
7888 strsec = section_headers + sec->sh_link;
7889 if (aux.strtab != NULL)
7890 {
7891 error (_("Multiple auxillary string tables encountered\n"));
7892 free (aux.strtab);
7893 res = FALSE;
7894 }
7895 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7896 1, strsec->sh_size,
7897 _("string table"));
7898 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7899 }
7900 else if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
7901 unwsec = sec;
7902 }
7903
7904 if (!unwsec)
7905 printf (_("\nThere are no unwind sections in this file.\n"));
7906
7907 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7908 {
7909 if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
7910 {
7911 printf (_("\nUnwind section '%s' at offset 0x%lx contains %lu entries:\n"),
7912 printable_section_name (sec),
7913 (unsigned long) sec->sh_offset,
7914 (unsigned long) (sec->sh_size / (2 * eh_addr_size + 8)));
7915
7916 if (! slurp_hppa_unwind_table (file, &aux, sec))
7917 res = FALSE;
7918
7919 if (aux.table_len > 0)
7920 {
7921 if (! dump_hppa_unwind (&aux))
7922 res = FALSE;
7923 }
7924
7925 if (aux.table)
7926 free ((char *) aux.table);
7927 aux.table = NULL;
7928 }
7929 }
7930
7931 if (aux.symtab)
7932 free (aux.symtab);
7933 if (aux.strtab)
7934 free ((char *) aux.strtab);
7935
7936 return res;
7937 }
7938
7939 struct arm_section
7940 {
7941 unsigned char * data; /* The unwind data. */
7942 Elf_Internal_Shdr * sec; /* The cached unwind section header. */
7943 Elf_Internal_Rela * rela; /* The cached relocations for this section. */
7944 unsigned long nrelas; /* The number of relocations. */
7945 unsigned int rel_type; /* REL or RELA ? */
7946 Elf_Internal_Rela * next_rela; /* Cyclic pointer to the next reloc to process. */
7947 };
7948
7949 struct arm_unw_aux_info
7950 {
7951 FILE * file; /* The file containing the unwind sections. */
7952 Elf_Internal_Sym * symtab; /* The file's symbol table. */
7953 unsigned long nsyms; /* Number of symbols. */
7954 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7955 unsigned long nfuns; /* Number of these symbols. */
7956 char * strtab; /* The file's string table. */
7957 unsigned long strtab_size; /* Size of string table. */
7958 };
7959
7960 static const char *
7961 arm_print_vma_and_name (struct arm_unw_aux_info *aux,
7962 bfd_vma fn, struct absaddr addr)
7963 {
7964 const char *procname;
7965 bfd_vma sym_offset;
7966
7967 if (addr.section == SHN_UNDEF)
7968 addr.offset = fn;
7969
7970 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7971 aux->strtab_size, addr, &procname,
7972 &sym_offset);
7973
7974 print_vma (fn, PREFIX_HEX);
7975
7976 if (procname)
7977 {
7978 fputs (" <", stdout);
7979 fputs (procname, stdout);
7980
7981 if (sym_offset)
7982 printf ("+0x%lx", (unsigned long) sym_offset);
7983 fputc ('>', stdout);
7984 }
7985
7986 return procname;
7987 }
7988
7989 static void
7990 arm_free_section (struct arm_section *arm_sec)
7991 {
7992 if (arm_sec->data != NULL)
7993 free (arm_sec->data);
7994
7995 if (arm_sec->rela != NULL)
7996 free (arm_sec->rela);
7997 }
7998
7999 /* 1) If SEC does not match the one cached in ARM_SEC, then free the current
8000 cached section and install SEC instead.
8001 2) Locate the 32-bit word at WORD_OFFSET in unwind section SEC
8002 and return its valued in * WORDP, relocating if necessary.
8003 3) Update the NEXT_RELA field in ARM_SEC and store the section index and
8004 relocation's offset in ADDR.
8005 4) If SYM_NAME is non-NULL and a relocation was applied, record the offset
8006 into the string table of the symbol associated with the reloc. If no
8007 reloc was applied store -1 there.
8008 5) Return TRUE upon success, FALSE otherwise. */
8009
8010 static bfd_boolean
8011 get_unwind_section_word (struct arm_unw_aux_info * aux,
8012 struct arm_section * arm_sec,
8013 Elf_Internal_Shdr * sec,
8014 bfd_vma word_offset,
8015 unsigned int * wordp,
8016 struct absaddr * addr,
8017 bfd_vma * sym_name)
8018 {
8019 Elf_Internal_Rela *rp;
8020 Elf_Internal_Sym *sym;
8021 const char * relname;
8022 unsigned int word;
8023 bfd_boolean wrapped;
8024
8025 if (sec == NULL || arm_sec == NULL)
8026 return FALSE;
8027
8028 addr->section = SHN_UNDEF;
8029 addr->offset = 0;
8030
8031 if (sym_name != NULL)
8032 *sym_name = (bfd_vma) -1;
8033
8034 /* If necessary, update the section cache. */
8035 if (sec != arm_sec->sec)
8036 {
8037 Elf_Internal_Shdr *relsec;
8038
8039 arm_free_section (arm_sec);
8040
8041 arm_sec->sec = sec;
8042 arm_sec->data = get_data (NULL, aux->file, sec->sh_offset, 1,
8043 sec->sh_size, _("unwind data"));
8044 arm_sec->rela = NULL;
8045 arm_sec->nrelas = 0;
8046
8047 for (relsec = section_headers;
8048 relsec < section_headers + elf_header.e_shnum;
8049 ++relsec)
8050 {
8051 if (relsec->sh_info >= elf_header.e_shnum
8052 || section_headers + relsec->sh_info != sec
8053 /* PR 15745: Check the section type as well. */
8054 || (relsec->sh_type != SHT_REL
8055 && relsec->sh_type != SHT_RELA))
8056 continue;
8057
8058 arm_sec->rel_type = relsec->sh_type;
8059 if (relsec->sh_type == SHT_REL)
8060 {
8061 if (!slurp_rel_relocs (aux->file, relsec->sh_offset,
8062 relsec->sh_size,
8063 & arm_sec->rela, & arm_sec->nrelas))
8064 return FALSE;
8065 }
8066 else /* relsec->sh_type == SHT_RELA */
8067 {
8068 if (!slurp_rela_relocs (aux->file, relsec->sh_offset,
8069 relsec->sh_size,
8070 & arm_sec->rela, & arm_sec->nrelas))
8071 return FALSE;
8072 }
8073 break;
8074 }
8075
8076 arm_sec->next_rela = arm_sec->rela;
8077 }
8078
8079 /* If there is no unwind data we can do nothing. */
8080 if (arm_sec->data == NULL)
8081 return FALSE;
8082
8083 /* If the offset is invalid then fail. */
8084 if (/* PR 21343 *//* PR 18879 */
8085 sec->sh_size < 4
8086 || word_offset > (sec->sh_size - 4)
8087 || ((bfd_signed_vma) word_offset) < 0)
8088 return FALSE;
8089
8090 /* Get the word at the required offset. */
8091 word = byte_get (arm_sec->data + word_offset, 4);
8092
8093 /* PR 17531: file: id:000001,src:001266+003044,op:splice,rep:128. */
8094 if (arm_sec->rela == NULL)
8095 {
8096 * wordp = word;
8097 return TRUE;
8098 }
8099
8100 /* Look through the relocs to find the one that applies to the provided offset. */
8101 wrapped = FALSE;
8102 for (rp = arm_sec->next_rela; rp != arm_sec->rela + arm_sec->nrelas; rp++)
8103 {
8104 bfd_vma prelval, offset;
8105
8106 if (rp->r_offset > word_offset && !wrapped)
8107 {
8108 rp = arm_sec->rela;
8109 wrapped = TRUE;
8110 }
8111 if (rp->r_offset > word_offset)
8112 break;
8113
8114 if (rp->r_offset & 3)
8115 {
8116 warn (_("Skipping unexpected relocation at offset 0x%lx\n"),
8117 (unsigned long) rp->r_offset);
8118 continue;
8119 }
8120
8121 if (rp->r_offset < word_offset)
8122 continue;
8123
8124 /* PR 17531: file: 027-161405-0.004 */
8125 if (aux->symtab == NULL)
8126 continue;
8127
8128 if (arm_sec->rel_type == SHT_REL)
8129 {
8130 offset = word & 0x7fffffff;
8131 if (offset & 0x40000000)
8132 offset |= ~ (bfd_vma) 0x7fffffff;
8133 }
8134 else if (arm_sec->rel_type == SHT_RELA)
8135 offset = rp->r_addend;
8136 else
8137 {
8138 error (_("Unknown section relocation type %d encountered\n"),
8139 arm_sec->rel_type);
8140 break;
8141 }
8142
8143 /* PR 17531 file: 027-1241568-0.004. */
8144 if (ELF32_R_SYM (rp->r_info) >= aux->nsyms)
8145 {
8146 error (_("Bad symbol index in unwind relocation (%lu > %lu)\n"),
8147 (unsigned long) ELF32_R_SYM (rp->r_info), aux->nsyms);
8148 break;
8149 }
8150
8151 sym = aux->symtab + ELF32_R_SYM (rp->r_info);
8152 offset += sym->st_value;
8153 prelval = offset - (arm_sec->sec->sh_addr + rp->r_offset);
8154
8155 /* Check that we are processing the expected reloc type. */
8156 if (elf_header.e_machine == EM_ARM)
8157 {
8158 relname = elf_arm_reloc_type (ELF32_R_TYPE (rp->r_info));
8159 if (relname == NULL)
8160 {
8161 warn (_("Skipping unknown ARM relocation type: %d\n"),
8162 (int) ELF32_R_TYPE (rp->r_info));
8163 continue;
8164 }
8165
8166 if (streq (relname, "R_ARM_NONE"))
8167 continue;
8168
8169 if (! streq (relname, "R_ARM_PREL31"))
8170 {
8171 warn (_("Skipping unexpected ARM relocation type %s\n"), relname);
8172 continue;
8173 }
8174 }
8175 else if (elf_header.e_machine == EM_TI_C6000)
8176 {
8177 relname = elf_tic6x_reloc_type (ELF32_R_TYPE (rp->r_info));
8178 if (relname == NULL)
8179 {
8180 warn (_("Skipping unknown C6000 relocation type: %d\n"),
8181 (int) ELF32_R_TYPE (rp->r_info));
8182 continue;
8183 }
8184
8185 if (streq (relname, "R_C6000_NONE"))
8186 continue;
8187
8188 if (! streq (relname, "R_C6000_PREL31"))
8189 {
8190 warn (_("Skipping unexpected C6000 relocation type %s\n"), relname);
8191 continue;
8192 }
8193
8194 prelval >>= 1;
8195 }
8196 else
8197 {
8198 /* This function currently only supports ARM and TI unwinders. */
8199 warn (_("Only TI and ARM unwinders are currently supported\n"));
8200 break;
8201 }
8202
8203 word = (word & ~ (bfd_vma) 0x7fffffff) | (prelval & 0x7fffffff);
8204 addr->section = sym->st_shndx;
8205 addr->offset = offset;
8206
8207 if (sym_name)
8208 * sym_name = sym->st_name;
8209 break;
8210 }
8211
8212 *wordp = word;
8213 arm_sec->next_rela = rp;
8214
8215 return TRUE;
8216 }
8217
8218 static const char *tic6x_unwind_regnames[16] =
8219 {
8220 "A15", "B15", "B14", "B13", "B12", "B11", "B10", "B3",
8221 "A14", "A13", "A12", "A11", "A10",
8222 "[invalid reg 13]", "[invalid reg 14]", "[invalid reg 15]"
8223 };
8224
8225 static void
8226 decode_tic6x_unwind_regmask (unsigned int mask)
8227 {
8228 int i;
8229
8230 for (i = 12; mask; mask >>= 1, i--)
8231 {
8232 if (mask & 1)
8233 {
8234 fputs (tic6x_unwind_regnames[i], stdout);
8235 if (mask > 1)
8236 fputs (", ", stdout);
8237 }
8238 }
8239 }
8240
8241 #define ADVANCE \
8242 if (remaining == 0 && more_words) \
8243 { \
8244 data_offset += 4; \
8245 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, \
8246 data_offset, & word, & addr, NULL)) \
8247 return FALSE; \
8248 remaining = 4; \
8249 more_words--; \
8250 } \
8251
8252 #define GET_OP(OP) \
8253 ADVANCE; \
8254 if (remaining) \
8255 { \
8256 remaining--; \
8257 (OP) = word >> 24; \
8258 word <<= 8; \
8259 } \
8260 else \
8261 { \
8262 printf (_("[Truncated opcode]\n")); \
8263 return FALSE; \
8264 } \
8265 printf ("0x%02x ", OP)
8266
8267 static bfd_boolean
8268 decode_arm_unwind_bytecode (struct arm_unw_aux_info * aux,
8269 unsigned int word,
8270 unsigned int remaining,
8271 unsigned int more_words,
8272 bfd_vma data_offset,
8273 Elf_Internal_Shdr * data_sec,
8274 struct arm_section * data_arm_sec)
8275 {
8276 struct absaddr addr;
8277 bfd_boolean res = TRUE;
8278
8279 /* Decode the unwinding instructions. */
8280 while (1)
8281 {
8282 unsigned int op, op2;
8283
8284 ADVANCE;
8285 if (remaining == 0)
8286 break;
8287 remaining--;
8288 op = word >> 24;
8289 word <<= 8;
8290
8291 printf (" 0x%02x ", op);
8292
8293 if ((op & 0xc0) == 0x00)
8294 {
8295 int offset = ((op & 0x3f) << 2) + 4;
8296
8297 printf (" vsp = vsp + %d", offset);
8298 }
8299 else if ((op & 0xc0) == 0x40)
8300 {
8301 int offset = ((op & 0x3f) << 2) + 4;
8302
8303 printf (" vsp = vsp - %d", offset);
8304 }
8305 else if ((op & 0xf0) == 0x80)
8306 {
8307 GET_OP (op2);
8308 if (op == 0x80 && op2 == 0)
8309 printf (_("Refuse to unwind"));
8310 else
8311 {
8312 unsigned int mask = ((op & 0x0f) << 8) | op2;
8313 bfd_boolean first = TRUE;
8314 int i;
8315
8316 printf ("pop {");
8317 for (i = 0; i < 12; i++)
8318 if (mask & (1 << i))
8319 {
8320 if (first)
8321 first = FALSE;
8322 else
8323 printf (", ");
8324 printf ("r%d", 4 + i);
8325 }
8326 printf ("}");
8327 }
8328 }
8329 else if ((op & 0xf0) == 0x90)
8330 {
8331 if (op == 0x9d || op == 0x9f)
8332 printf (_(" [Reserved]"));
8333 else
8334 printf (" vsp = r%d", op & 0x0f);
8335 }
8336 else if ((op & 0xf0) == 0xa0)
8337 {
8338 int end = 4 + (op & 0x07);
8339 bfd_boolean first = TRUE;
8340 int i;
8341
8342 printf (" pop {");
8343 for (i = 4; i <= end; i++)
8344 {
8345 if (first)
8346 first = FALSE;
8347 else
8348 printf (", ");
8349 printf ("r%d", i);
8350 }
8351 if (op & 0x08)
8352 {
8353 if (!first)
8354 printf (", ");
8355 printf ("r14");
8356 }
8357 printf ("}");
8358 }
8359 else if (op == 0xb0)
8360 printf (_(" finish"));
8361 else if (op == 0xb1)
8362 {
8363 GET_OP (op2);
8364 if (op2 == 0 || (op2 & 0xf0) != 0)
8365 printf (_("[Spare]"));
8366 else
8367 {
8368 unsigned int mask = op2 & 0x0f;
8369 bfd_boolean first = TRUE;
8370 int i;
8371
8372 printf ("pop {");
8373 for (i = 0; i < 12; i++)
8374 if (mask & (1 << i))
8375 {
8376 if (first)
8377 first = FALSE;
8378 else
8379 printf (", ");
8380 printf ("r%d", i);
8381 }
8382 printf ("}");
8383 }
8384 }
8385 else if (op == 0xb2)
8386 {
8387 unsigned char buf[9];
8388 unsigned int i, len;
8389 unsigned long offset;
8390
8391 for (i = 0; i < sizeof (buf); i++)
8392 {
8393 GET_OP (buf[i]);
8394 if ((buf[i] & 0x80) == 0)
8395 break;
8396 }
8397 if (i == sizeof (buf))
8398 {
8399 error (_("corrupt change to vsp"));
8400 res = FALSE;
8401 }
8402 else
8403 {
8404 offset = read_uleb128 (buf, &len, buf + i + 1);
8405 assert (len == i + 1);
8406 offset = offset * 4 + 0x204;
8407 printf ("vsp = vsp + %ld", offset);
8408 }
8409 }
8410 else if (op == 0xb3 || op == 0xc8 || op == 0xc9)
8411 {
8412 unsigned int first, last;
8413
8414 GET_OP (op2);
8415 first = op2 >> 4;
8416 last = op2 & 0x0f;
8417 if (op == 0xc8)
8418 first = first + 16;
8419 printf ("pop {D%d", first);
8420 if (last)
8421 printf ("-D%d", first + last);
8422 printf ("}");
8423 }
8424 else if ((op & 0xf8) == 0xb8 || (op & 0xf8) == 0xd0)
8425 {
8426 unsigned int count = op & 0x07;
8427
8428 printf ("pop {D8");
8429 if (count)
8430 printf ("-D%d", 8 + count);
8431 printf ("}");
8432 }
8433 else if (op >= 0xc0 && op <= 0xc5)
8434 {
8435 unsigned int count = op & 0x07;
8436
8437 printf (" pop {wR10");
8438 if (count)
8439 printf ("-wR%d", 10 + count);
8440 printf ("}");
8441 }
8442 else if (op == 0xc6)
8443 {
8444 unsigned int first, last;
8445
8446 GET_OP (op2);
8447 first = op2 >> 4;
8448 last = op2 & 0x0f;
8449 printf ("pop {wR%d", first);
8450 if (last)
8451 printf ("-wR%d", first + last);
8452 printf ("}");
8453 }
8454 else if (op == 0xc7)
8455 {
8456 GET_OP (op2);
8457 if (op2 == 0 || (op2 & 0xf0) != 0)
8458 printf (_("[Spare]"));
8459 else
8460 {
8461 unsigned int mask = op2 & 0x0f;
8462 bfd_boolean first = TRUE;
8463 int i;
8464
8465 printf ("pop {");
8466 for (i = 0; i < 4; i++)
8467 if (mask & (1 << i))
8468 {
8469 if (first)
8470 first = FALSE;
8471 else
8472 printf (", ");
8473 printf ("wCGR%d", i);
8474 }
8475 printf ("}");
8476 }
8477 }
8478 else
8479 {
8480 printf (_(" [unsupported opcode]"));
8481 res = FALSE;
8482 }
8483
8484 printf ("\n");
8485 }
8486
8487 return res;
8488 }
8489
8490 static bfd_boolean
8491 decode_tic6x_unwind_bytecode (struct arm_unw_aux_info * aux,
8492 unsigned int word,
8493 unsigned int remaining,
8494 unsigned int more_words,
8495 bfd_vma data_offset,
8496 Elf_Internal_Shdr * data_sec,
8497 struct arm_section * data_arm_sec)
8498 {
8499 struct absaddr addr;
8500
8501 /* Decode the unwinding instructions. */
8502 while (1)
8503 {
8504 unsigned int op, op2;
8505
8506 ADVANCE;
8507 if (remaining == 0)
8508 break;
8509 remaining--;
8510 op = word >> 24;
8511 word <<= 8;
8512
8513 printf (" 0x%02x ", op);
8514
8515 if ((op & 0xc0) == 0x00)
8516 {
8517 int offset = ((op & 0x3f) << 3) + 8;
8518 printf (" sp = sp + %d", offset);
8519 }
8520 else if ((op & 0xc0) == 0x80)
8521 {
8522 GET_OP (op2);
8523 if (op == 0x80 && op2 == 0)
8524 printf (_("Refuse to unwind"));
8525 else
8526 {
8527 unsigned int mask = ((op & 0x1f) << 8) | op2;
8528 if (op & 0x20)
8529 printf ("pop compact {");
8530 else
8531 printf ("pop {");
8532
8533 decode_tic6x_unwind_regmask (mask);
8534 printf("}");
8535 }
8536 }
8537 else if ((op & 0xf0) == 0xc0)
8538 {
8539 unsigned int reg;
8540 unsigned int nregs;
8541 unsigned int i;
8542 const char *name;
8543 struct
8544 {
8545 unsigned int offset;
8546 unsigned int reg;
8547 } regpos[16];
8548
8549 /* Scan entire instruction first so that GET_OP output is not
8550 interleaved with disassembly. */
8551 nregs = 0;
8552 for (i = 0; nregs < (op & 0xf); i++)
8553 {
8554 GET_OP (op2);
8555 reg = op2 >> 4;
8556 if (reg != 0xf)
8557 {
8558 regpos[nregs].offset = i * 2;
8559 regpos[nregs].reg = reg;
8560 nregs++;
8561 }
8562
8563 reg = op2 & 0xf;
8564 if (reg != 0xf)
8565 {
8566 regpos[nregs].offset = i * 2 + 1;
8567 regpos[nregs].reg = reg;
8568 nregs++;
8569 }
8570 }
8571
8572 printf (_("pop frame {"));
8573 reg = nregs - 1;
8574 for (i = i * 2; i > 0; i--)
8575 {
8576 if (regpos[reg].offset == i - 1)
8577 {
8578 name = tic6x_unwind_regnames[regpos[reg].reg];
8579 if (reg > 0)
8580 reg--;
8581 }
8582 else
8583 name = _("[pad]");
8584
8585 fputs (name, stdout);
8586 if (i > 1)
8587 printf (", ");
8588 }
8589
8590 printf ("}");
8591 }
8592 else if (op == 0xd0)
8593 printf (" MOV FP, SP");
8594 else if (op == 0xd1)
8595 printf (" __c6xabi_pop_rts");
8596 else if (op == 0xd2)
8597 {
8598 unsigned char buf[9];
8599 unsigned int i, len;
8600 unsigned long offset;
8601
8602 for (i = 0; i < sizeof (buf); i++)
8603 {
8604 GET_OP (buf[i]);
8605 if ((buf[i] & 0x80) == 0)
8606 break;
8607 }
8608 /* PR 17531: file: id:000001,src:001906+004739,op:splice,rep:2. */
8609 if (i == sizeof (buf))
8610 {
8611 warn (_("Corrupt stack pointer adjustment detected\n"));
8612 return FALSE;
8613 }
8614
8615 offset = read_uleb128 (buf, &len, buf + i + 1);
8616 assert (len == i + 1);
8617 offset = offset * 8 + 0x408;
8618 printf (_("sp = sp + %ld"), offset);
8619 }
8620 else if ((op & 0xf0) == 0xe0)
8621 {
8622 if ((op & 0x0f) == 7)
8623 printf (" RETURN");
8624 else
8625 printf (" MV %s, B3", tic6x_unwind_regnames[op & 0x0f]);
8626 }
8627 else
8628 {
8629 printf (_(" [unsupported opcode]"));
8630 }
8631 putchar ('\n');
8632 }
8633
8634 return TRUE;
8635 }
8636
8637 static bfd_vma
8638 arm_expand_prel31 (bfd_vma word, bfd_vma where)
8639 {
8640 bfd_vma offset;
8641
8642 offset = word & 0x7fffffff;
8643 if (offset & 0x40000000)
8644 offset |= ~ (bfd_vma) 0x7fffffff;
8645
8646 if (elf_header.e_machine == EM_TI_C6000)
8647 offset <<= 1;
8648
8649 return offset + where;
8650 }
8651
8652 static bfd_boolean
8653 decode_arm_unwind (struct arm_unw_aux_info * aux,
8654 unsigned int word,
8655 unsigned int remaining,
8656 bfd_vma data_offset,
8657 Elf_Internal_Shdr * data_sec,
8658 struct arm_section * data_arm_sec)
8659 {
8660 int per_index;
8661 unsigned int more_words = 0;
8662 struct absaddr addr;
8663 bfd_vma sym_name = (bfd_vma) -1;
8664 bfd_boolean res = FALSE;
8665
8666 if (remaining == 0)
8667 {
8668 /* Fetch the first word.
8669 Note - when decoding an object file the address extracted
8670 here will always be 0. So we also pass in the sym_name
8671 parameter so that we can find the symbol associated with
8672 the personality routine. */
8673 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, data_offset,
8674 & word, & addr, & sym_name))
8675 return FALSE;
8676
8677 remaining = 4;
8678 }
8679
8680 if ((word & 0x80000000) == 0)
8681 {
8682 /* Expand prel31 for personality routine. */
8683 bfd_vma fn;
8684 const char *procname;
8685
8686 fn = arm_expand_prel31 (word, data_sec->sh_addr + data_offset);
8687 printf (_(" Personality routine: "));
8688 if (fn == 0
8689 && addr.section == SHN_UNDEF && addr.offset == 0
8690 && sym_name != (bfd_vma) -1 && sym_name < aux->strtab_size)
8691 {
8692 procname = aux->strtab + sym_name;
8693 print_vma (fn, PREFIX_HEX);
8694 if (procname)
8695 {
8696 fputs (" <", stdout);
8697 fputs (procname, stdout);
8698 fputc ('>', stdout);
8699 }
8700 }
8701 else
8702 procname = arm_print_vma_and_name (aux, fn, addr);
8703 fputc ('\n', stdout);
8704
8705 /* The GCC personality routines use the standard compact
8706 encoding, starting with one byte giving the number of
8707 words. */
8708 if (procname != NULL
8709 && (const_strneq (procname, "__gcc_personality_v0")
8710 || const_strneq (procname, "__gxx_personality_v0")
8711 || const_strneq (procname, "__gcj_personality_v0")
8712 || const_strneq (procname, "__gnu_objc_personality_v0")))
8713 {
8714 remaining = 0;
8715 more_words = 1;
8716 ADVANCE;
8717 if (!remaining)
8718 {
8719 printf (_(" [Truncated data]\n"));
8720 return FALSE;
8721 }
8722 more_words = word >> 24;
8723 word <<= 8;
8724 remaining--;
8725 per_index = -1;
8726 }
8727 else
8728 return TRUE;
8729 }
8730 else
8731 {
8732 /* ARM EHABI Section 6.3:
8733
8734 An exception-handling table entry for the compact model looks like:
8735
8736 31 30-28 27-24 23-0
8737 -- ----- ----- ----
8738 1 0 index Data for personalityRoutine[index] */
8739
8740 if (elf_header.e_machine == EM_ARM
8741 && (word & 0x70000000))
8742 {
8743 warn (_("Corrupt ARM compact model table entry: %x \n"), word);
8744 res = FALSE;
8745 }
8746
8747 per_index = (word >> 24) & 0x7f;
8748 printf (_(" Compact model index: %d\n"), per_index);
8749 if (per_index == 0)
8750 {
8751 more_words = 0;
8752 word <<= 8;
8753 remaining--;
8754 }
8755 else if (per_index < 3)
8756 {
8757 more_words = (word >> 16) & 0xff;
8758 word <<= 16;
8759 remaining -= 2;
8760 }
8761 }
8762
8763 switch (elf_header.e_machine)
8764 {
8765 case EM_ARM:
8766 if (per_index < 3)
8767 {
8768 if (! decode_arm_unwind_bytecode (aux, word, remaining, more_words,
8769 data_offset, data_sec, data_arm_sec))
8770 res = FALSE;
8771 }
8772 else
8773 {
8774 warn (_("Unknown ARM compact model index encountered\n"));
8775 printf (_(" [reserved]\n"));
8776 res = FALSE;
8777 }
8778 break;
8779
8780 case EM_TI_C6000:
8781 if (per_index < 3)
8782 {
8783 if (! decode_tic6x_unwind_bytecode (aux, word, remaining, more_words,
8784 data_offset, data_sec, data_arm_sec))
8785 res = FALSE;
8786 }
8787 else if (per_index < 5)
8788 {
8789 if (((word >> 17) & 0x7f) == 0x7f)
8790 printf (_(" Restore stack from frame pointer\n"));
8791 else
8792 printf (_(" Stack increment %d\n"), (word >> 14) & 0x1fc);
8793 printf (_(" Registers restored: "));
8794 if (per_index == 4)
8795 printf (" (compact) ");
8796 decode_tic6x_unwind_regmask ((word >> 4) & 0x1fff);
8797 putchar ('\n');
8798 printf (_(" Return register: %s\n"),
8799 tic6x_unwind_regnames[word & 0xf]);
8800 }
8801 else
8802 printf (_(" [reserved (%d)]\n"), per_index);
8803 break;
8804
8805 default:
8806 error (_("Unsupported architecture type %d encountered when decoding unwind table\n"),
8807 elf_header.e_machine);
8808 res = FALSE;
8809 }
8810
8811 /* Decode the descriptors. Not implemented. */
8812
8813 return res;
8814 }
8815
8816 static bfd_boolean
8817 dump_arm_unwind (struct arm_unw_aux_info *aux, Elf_Internal_Shdr *exidx_sec)
8818 {
8819 struct arm_section exidx_arm_sec, extab_arm_sec;
8820 unsigned int i, exidx_len;
8821 unsigned long j, nfuns;
8822 bfd_boolean res = TRUE;
8823
8824 memset (&exidx_arm_sec, 0, sizeof (exidx_arm_sec));
8825 memset (&extab_arm_sec, 0, sizeof (extab_arm_sec));
8826 exidx_len = exidx_sec->sh_size / 8;
8827
8828 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
8829 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
8830 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
8831 aux->funtab[nfuns++] = aux->symtab[j];
8832 aux->nfuns = nfuns;
8833 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
8834
8835 for (i = 0; i < exidx_len; i++)
8836 {
8837 unsigned int exidx_fn, exidx_entry;
8838 struct absaddr fn_addr, entry_addr;
8839 bfd_vma fn;
8840
8841 fputc ('\n', stdout);
8842
8843 if (! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
8844 8 * i, & exidx_fn, & fn_addr, NULL)
8845 || ! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
8846 8 * i + 4, & exidx_entry, & entry_addr, NULL))
8847 {
8848 free (aux->funtab);
8849 arm_free_section (& exidx_arm_sec);
8850 arm_free_section (& extab_arm_sec);
8851 return FALSE;
8852 }
8853
8854 /* ARM EHABI, Section 5:
8855 An index table entry consists of 2 words.
8856 The first word contains a prel31 offset to the start of a function, with bit 31 clear. */
8857 if (exidx_fn & 0x80000000)
8858 {
8859 warn (_("corrupt index table entry: %x\n"), exidx_fn);
8860 res = FALSE;
8861 }
8862
8863 fn = arm_expand_prel31 (exidx_fn, exidx_sec->sh_addr + 8 * i);
8864
8865 arm_print_vma_and_name (aux, fn, fn_addr);
8866 fputs (": ", stdout);
8867
8868 if (exidx_entry == 1)
8869 {
8870 print_vma (exidx_entry, PREFIX_HEX);
8871 fputs (" [cantunwind]\n", stdout);
8872 }
8873 else if (exidx_entry & 0x80000000)
8874 {
8875 print_vma (exidx_entry, PREFIX_HEX);
8876 fputc ('\n', stdout);
8877 decode_arm_unwind (aux, exidx_entry, 4, 0, NULL, NULL);
8878 }
8879 else
8880 {
8881 bfd_vma table, table_offset = 0;
8882 Elf_Internal_Shdr *table_sec;
8883
8884 fputs ("@", stdout);
8885 table = arm_expand_prel31 (exidx_entry, exidx_sec->sh_addr + 8 * i + 4);
8886 print_vma (table, PREFIX_HEX);
8887 printf ("\n");
8888
8889 /* Locate the matching .ARM.extab. */
8890 if (entry_addr.section != SHN_UNDEF
8891 && entry_addr.section < elf_header.e_shnum)
8892 {
8893 table_sec = section_headers + entry_addr.section;
8894 table_offset = entry_addr.offset;
8895 /* PR 18879 */
8896 if (table_offset > table_sec->sh_size
8897 || ((bfd_signed_vma) table_offset) < 0)
8898 {
8899 warn (_("Unwind entry contains corrupt offset (0x%lx) into section %s\n"),
8900 (unsigned long) table_offset,
8901 printable_section_name (table_sec));
8902 res = FALSE;
8903 continue;
8904 }
8905 }
8906 else
8907 {
8908 table_sec = find_section_by_address (table);
8909 if (table_sec != NULL)
8910 table_offset = table - table_sec->sh_addr;
8911 }
8912
8913 if (table_sec == NULL)
8914 {
8915 warn (_("Could not locate .ARM.extab section containing 0x%lx.\n"),
8916 (unsigned long) table);
8917 res = FALSE;
8918 continue;
8919 }
8920
8921 if (! decode_arm_unwind (aux, 0, 0, table_offset, table_sec,
8922 &extab_arm_sec))
8923 res = FALSE;
8924 }
8925 }
8926
8927 printf ("\n");
8928
8929 free (aux->funtab);
8930 arm_free_section (&exidx_arm_sec);
8931 arm_free_section (&extab_arm_sec);
8932
8933 return res;
8934 }
8935
8936 /* Used for both ARM and C6X unwinding tables. */
8937
8938 static bfd_boolean
8939 arm_process_unwind (FILE *file)
8940 {
8941 struct arm_unw_aux_info aux;
8942 Elf_Internal_Shdr *unwsec = NULL;
8943 Elf_Internal_Shdr *strsec;
8944 Elf_Internal_Shdr *sec;
8945 unsigned long i;
8946 unsigned int sec_type;
8947 bfd_boolean res = TRUE;
8948
8949 switch (elf_header.e_machine)
8950 {
8951 case EM_ARM:
8952 sec_type = SHT_ARM_EXIDX;
8953 break;
8954
8955 case EM_TI_C6000:
8956 sec_type = SHT_C6000_UNWIND;
8957 break;
8958
8959 default:
8960 error (_("Unsupported architecture type %d encountered when processing unwind table\n"),
8961 elf_header.e_machine);
8962 return FALSE;
8963 }
8964
8965 if (string_table == NULL)
8966 return FALSE;
8967
8968 memset (& aux, 0, sizeof (aux));
8969 aux.file = file;
8970
8971 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
8972 {
8973 if (sec->sh_type == SHT_SYMTAB && sec->sh_link < elf_header.e_shnum)
8974 {
8975 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
8976
8977 strsec = section_headers + sec->sh_link;
8978
8979 /* PR binutils/17531 file: 011-12666-0.004. */
8980 if (aux.strtab != NULL)
8981 {
8982 error (_("Multiple string tables found in file.\n"));
8983 free (aux.strtab);
8984 res = FALSE;
8985 }
8986 aux.strtab = get_data (NULL, file, strsec->sh_offset,
8987 1, strsec->sh_size, _("string table"));
8988 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
8989 }
8990 else if (sec->sh_type == sec_type)
8991 unwsec = sec;
8992 }
8993
8994 if (unwsec == NULL)
8995 printf (_("\nThere are no unwind sections in this file.\n"));
8996 else
8997 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
8998 {
8999 if (sec->sh_type == sec_type)
9000 {
9001 printf (_("\nUnwind table index '%s' at offset 0x%lx contains %lu entries:\n"),
9002 printable_section_name (sec),
9003 (unsigned long) sec->sh_offset,
9004 (unsigned long) (sec->sh_size / (2 * eh_addr_size)));
9005
9006 if (! dump_arm_unwind (&aux, sec))
9007 res = FALSE;
9008 }
9009 }
9010
9011 if (aux.symtab)
9012 free (aux.symtab);
9013 if (aux.strtab)
9014 free ((char *) aux.strtab);
9015
9016 return res;
9017 }
9018
9019 static bfd_boolean
9020 process_unwind (FILE * file)
9021 {
9022 struct unwind_handler
9023 {
9024 unsigned int machtype;
9025 bfd_boolean (* handler)(FILE *);
9026 } handlers[] =
9027 {
9028 { EM_ARM, arm_process_unwind },
9029 { EM_IA_64, ia64_process_unwind },
9030 { EM_PARISC, hppa_process_unwind },
9031 { EM_TI_C6000, arm_process_unwind },
9032 { 0, NULL }
9033 };
9034 int i;
9035
9036 if (!do_unwind)
9037 return TRUE;
9038
9039 for (i = 0; handlers[i].handler != NULL; i++)
9040 if (elf_header.e_machine == handlers[i].machtype)
9041 return handlers[i].handler (file);
9042
9043 printf (_("\nThe decoding of unwind sections for machine type %s is not currently supported.\n"),
9044 get_machine_name (elf_header.e_machine));
9045 return TRUE;
9046 }
9047
9048 static void
9049 dynamic_section_mips_val (Elf_Internal_Dyn * entry)
9050 {
9051 switch (entry->d_tag)
9052 {
9053 case DT_MIPS_FLAGS:
9054 if (entry->d_un.d_val == 0)
9055 printf (_("NONE"));
9056 else
9057 {
9058 static const char * opts[] =
9059 {
9060 "QUICKSTART", "NOTPOT", "NO_LIBRARY_REPLACEMENT",
9061 "NO_MOVE", "SGI_ONLY", "GUARANTEE_INIT", "DELTA_C_PLUS_PLUS",
9062 "GUARANTEE_START_INIT", "PIXIE", "DEFAULT_DELAY_LOAD",
9063 "REQUICKSTART", "REQUICKSTARTED", "CORD", "NO_UNRES_UNDEF",
9064 "RLD_ORDER_SAFE"
9065 };
9066 unsigned int cnt;
9067 bfd_boolean first = TRUE;
9068
9069 for (cnt = 0; cnt < ARRAY_SIZE (opts); ++cnt)
9070 if (entry->d_un.d_val & (1 << cnt))
9071 {
9072 printf ("%s%s", first ? "" : " ", opts[cnt]);
9073 first = FALSE;
9074 }
9075 }
9076 break;
9077
9078 case DT_MIPS_IVERSION:
9079 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9080 printf (_("Interface Version: %s"), GET_DYNAMIC_NAME (entry->d_un.d_val));
9081 else
9082 {
9083 char buf[40];
9084 sprintf_vma (buf, entry->d_un.d_ptr);
9085 /* Note: coded this way so that there is a single string for translation. */
9086 printf (_("<corrupt: %s>"), buf);
9087 }
9088 break;
9089
9090 case DT_MIPS_TIME_STAMP:
9091 {
9092 char timebuf[128];
9093 struct tm * tmp;
9094 time_t atime = entry->d_un.d_val;
9095
9096 tmp = gmtime (&atime);
9097 /* PR 17531: file: 6accc532. */
9098 if (tmp == NULL)
9099 snprintf (timebuf, sizeof (timebuf), _("<corrupt>"));
9100 else
9101 snprintf (timebuf, sizeof (timebuf), "%04u-%02u-%02uT%02u:%02u:%02u",
9102 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
9103 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
9104 printf (_("Time Stamp: %s"), timebuf);
9105 }
9106 break;
9107
9108 case DT_MIPS_RLD_VERSION:
9109 case DT_MIPS_LOCAL_GOTNO:
9110 case DT_MIPS_CONFLICTNO:
9111 case DT_MIPS_LIBLISTNO:
9112 case DT_MIPS_SYMTABNO:
9113 case DT_MIPS_UNREFEXTNO:
9114 case DT_MIPS_HIPAGENO:
9115 case DT_MIPS_DELTA_CLASS_NO:
9116 case DT_MIPS_DELTA_INSTANCE_NO:
9117 case DT_MIPS_DELTA_RELOC_NO:
9118 case DT_MIPS_DELTA_SYM_NO:
9119 case DT_MIPS_DELTA_CLASSSYM_NO:
9120 case DT_MIPS_COMPACT_SIZE:
9121 print_vma (entry->d_un.d_val, DEC);
9122 break;
9123
9124 default:
9125 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9126 }
9127 putchar ('\n');
9128 }
9129
9130 static void
9131 dynamic_section_parisc_val (Elf_Internal_Dyn * entry)
9132 {
9133 switch (entry->d_tag)
9134 {
9135 case DT_HP_DLD_FLAGS:
9136 {
9137 static struct
9138 {
9139 long int bit;
9140 const char * str;
9141 }
9142 flags[] =
9143 {
9144 { DT_HP_DEBUG_PRIVATE, "HP_DEBUG_PRIVATE" },
9145 { DT_HP_DEBUG_CALLBACK, "HP_DEBUG_CALLBACK" },
9146 { DT_HP_DEBUG_CALLBACK_BOR, "HP_DEBUG_CALLBACK_BOR" },
9147 { DT_HP_NO_ENVVAR, "HP_NO_ENVVAR" },
9148 { DT_HP_BIND_NOW, "HP_BIND_NOW" },
9149 { DT_HP_BIND_NONFATAL, "HP_BIND_NONFATAL" },
9150 { DT_HP_BIND_VERBOSE, "HP_BIND_VERBOSE" },
9151 { DT_HP_BIND_RESTRICTED, "HP_BIND_RESTRICTED" },
9152 { DT_HP_BIND_SYMBOLIC, "HP_BIND_SYMBOLIC" },
9153 { DT_HP_RPATH_FIRST, "HP_RPATH_FIRST" },
9154 { DT_HP_BIND_DEPTH_FIRST, "HP_BIND_DEPTH_FIRST" },
9155 { DT_HP_GST, "HP_GST" },
9156 { DT_HP_SHLIB_FIXED, "HP_SHLIB_FIXED" },
9157 { DT_HP_MERGE_SHLIB_SEG, "HP_MERGE_SHLIB_SEG" },
9158 { DT_HP_NODELETE, "HP_NODELETE" },
9159 { DT_HP_GROUP, "HP_GROUP" },
9160 { DT_HP_PROTECT_LINKAGE_TABLE, "HP_PROTECT_LINKAGE_TABLE" }
9161 };
9162 bfd_boolean first = TRUE;
9163 size_t cnt;
9164 bfd_vma val = entry->d_un.d_val;
9165
9166 for (cnt = 0; cnt < ARRAY_SIZE (flags); ++cnt)
9167 if (val & flags[cnt].bit)
9168 {
9169 if (! first)
9170 putchar (' ');
9171 fputs (flags[cnt].str, stdout);
9172 first = FALSE;
9173 val ^= flags[cnt].bit;
9174 }
9175
9176 if (val != 0 || first)
9177 {
9178 if (! first)
9179 putchar (' ');
9180 print_vma (val, HEX);
9181 }
9182 }
9183 break;
9184
9185 default:
9186 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9187 break;
9188 }
9189 putchar ('\n');
9190 }
9191
9192 #ifdef BFD64
9193
9194 /* VMS vs Unix time offset and factor. */
9195
9196 #define VMS_EPOCH_OFFSET 35067168000000000LL
9197 #define VMS_GRANULARITY_FACTOR 10000000
9198
9199 /* Display a VMS time in a human readable format. */
9200
9201 static void
9202 print_vms_time (bfd_int64_t vmstime)
9203 {
9204 struct tm *tm;
9205 time_t unxtime;
9206
9207 unxtime = (vmstime - VMS_EPOCH_OFFSET) / VMS_GRANULARITY_FACTOR;
9208 tm = gmtime (&unxtime);
9209 printf ("%04u-%02u-%02uT%02u:%02u:%02u",
9210 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
9211 tm->tm_hour, tm->tm_min, tm->tm_sec);
9212 }
9213 #endif /* BFD64 */
9214
9215 static void
9216 dynamic_section_ia64_val (Elf_Internal_Dyn * entry)
9217 {
9218 switch (entry->d_tag)
9219 {
9220 case DT_IA_64_PLT_RESERVE:
9221 /* First 3 slots reserved. */
9222 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9223 printf (" -- ");
9224 print_vma (entry->d_un.d_ptr + (3 * 8), PREFIX_HEX);
9225 break;
9226
9227 case DT_IA_64_VMS_LINKTIME:
9228 #ifdef BFD64
9229 print_vms_time (entry->d_un.d_val);
9230 #endif
9231 break;
9232
9233 case DT_IA_64_VMS_LNKFLAGS:
9234 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9235 if (entry->d_un.d_val & VMS_LF_CALL_DEBUG)
9236 printf (" CALL_DEBUG");
9237 if (entry->d_un.d_val & VMS_LF_NOP0BUFS)
9238 printf (" NOP0BUFS");
9239 if (entry->d_un.d_val & VMS_LF_P0IMAGE)
9240 printf (" P0IMAGE");
9241 if (entry->d_un.d_val & VMS_LF_MKTHREADS)
9242 printf (" MKTHREADS");
9243 if (entry->d_un.d_val & VMS_LF_UPCALLS)
9244 printf (" UPCALLS");
9245 if (entry->d_un.d_val & VMS_LF_IMGSTA)
9246 printf (" IMGSTA");
9247 if (entry->d_un.d_val & VMS_LF_INITIALIZE)
9248 printf (" INITIALIZE");
9249 if (entry->d_un.d_val & VMS_LF_MAIN)
9250 printf (" MAIN");
9251 if (entry->d_un.d_val & VMS_LF_EXE_INIT)
9252 printf (" EXE_INIT");
9253 if (entry->d_un.d_val & VMS_LF_TBK_IN_IMG)
9254 printf (" TBK_IN_IMG");
9255 if (entry->d_un.d_val & VMS_LF_DBG_IN_IMG)
9256 printf (" DBG_IN_IMG");
9257 if (entry->d_un.d_val & VMS_LF_TBK_IN_DSF)
9258 printf (" TBK_IN_DSF");
9259 if (entry->d_un.d_val & VMS_LF_DBG_IN_DSF)
9260 printf (" DBG_IN_DSF");
9261 if (entry->d_un.d_val & VMS_LF_SIGNATURES)
9262 printf (" SIGNATURES");
9263 if (entry->d_un.d_val & VMS_LF_REL_SEG_OFF)
9264 printf (" REL_SEG_OFF");
9265 break;
9266
9267 default:
9268 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9269 break;
9270 }
9271 putchar ('\n');
9272 }
9273
9274 static bfd_boolean
9275 get_32bit_dynamic_section (FILE * file)
9276 {
9277 Elf32_External_Dyn * edyn;
9278 Elf32_External_Dyn * ext;
9279 Elf_Internal_Dyn * entry;
9280
9281 edyn = (Elf32_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
9282 dynamic_size, _("dynamic section"));
9283 if (!edyn)
9284 return FALSE;
9285
9286 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
9287 might not have the luxury of section headers. Look for the DT_NULL
9288 terminator to determine the number of entries. */
9289 for (ext = edyn, dynamic_nent = 0;
9290 (char *) (ext + 1) <= (char *) edyn + dynamic_size;
9291 ext++)
9292 {
9293 dynamic_nent++;
9294 if (BYTE_GET (ext->d_tag) == DT_NULL)
9295 break;
9296 }
9297
9298 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
9299 sizeof (* entry));
9300 if (dynamic_section == NULL)
9301 {
9302 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9303 (unsigned long) dynamic_nent);
9304 free (edyn);
9305 return FALSE;
9306 }
9307
9308 for (ext = edyn, entry = dynamic_section;
9309 entry < dynamic_section + dynamic_nent;
9310 ext++, entry++)
9311 {
9312 entry->d_tag = BYTE_GET (ext->d_tag);
9313 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
9314 }
9315
9316 free (edyn);
9317
9318 return TRUE;
9319 }
9320
9321 static bfd_boolean
9322 get_64bit_dynamic_section (FILE * file)
9323 {
9324 Elf64_External_Dyn * edyn;
9325 Elf64_External_Dyn * ext;
9326 Elf_Internal_Dyn * entry;
9327
9328 /* Read in the data. */
9329 edyn = (Elf64_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
9330 dynamic_size, _("dynamic section"));
9331 if (!edyn)
9332 return FALSE;
9333
9334 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
9335 might not have the luxury of section headers. Look for the DT_NULL
9336 terminator to determine the number of entries. */
9337 for (ext = edyn, dynamic_nent = 0;
9338 /* PR 17533 file: 033-67080-0.004 - do not read past end of buffer. */
9339 (char *) (ext + 1) <= (char *) edyn + dynamic_size;
9340 ext++)
9341 {
9342 dynamic_nent++;
9343 if (BYTE_GET (ext->d_tag) == DT_NULL)
9344 break;
9345 }
9346
9347 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
9348 sizeof (* entry));
9349 if (dynamic_section == NULL)
9350 {
9351 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9352 (unsigned long) dynamic_nent);
9353 free (edyn);
9354 return FALSE;
9355 }
9356
9357 /* Convert from external to internal formats. */
9358 for (ext = edyn, entry = dynamic_section;
9359 entry < dynamic_section + dynamic_nent;
9360 ext++, entry++)
9361 {
9362 entry->d_tag = BYTE_GET (ext->d_tag);
9363 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
9364 }
9365
9366 free (edyn);
9367
9368 return TRUE;
9369 }
9370
9371 static void
9372 print_dynamic_flags (bfd_vma flags)
9373 {
9374 bfd_boolean first = TRUE;
9375
9376 while (flags)
9377 {
9378 bfd_vma flag;
9379
9380 flag = flags & - flags;
9381 flags &= ~ flag;
9382
9383 if (first)
9384 first = FALSE;
9385 else
9386 putc (' ', stdout);
9387
9388 switch (flag)
9389 {
9390 case DF_ORIGIN: fputs ("ORIGIN", stdout); break;
9391 case DF_SYMBOLIC: fputs ("SYMBOLIC", stdout); break;
9392 case DF_TEXTREL: fputs ("TEXTREL", stdout); break;
9393 case DF_BIND_NOW: fputs ("BIND_NOW", stdout); break;
9394 case DF_STATIC_TLS: fputs ("STATIC_TLS", stdout); break;
9395 default: fputs (_("unknown"), stdout); break;
9396 }
9397 }
9398 puts ("");
9399 }
9400
9401 /* Parse and display the contents of the dynamic section. */
9402
9403 static bfd_boolean
9404 process_dynamic_section (FILE * file)
9405 {
9406 Elf_Internal_Dyn * entry;
9407
9408 if (dynamic_size == 0)
9409 {
9410 if (do_dynamic)
9411 printf (_("\nThere is no dynamic section in this file.\n"));
9412
9413 return TRUE;
9414 }
9415
9416 if (is_32bit_elf)
9417 {
9418 if (! get_32bit_dynamic_section (file))
9419 return FALSE;
9420 }
9421 else
9422 {
9423 if (! get_64bit_dynamic_section (file))
9424 return FALSE;
9425 }
9426
9427 /* Find the appropriate symbol table. */
9428 if (dynamic_symbols == NULL)
9429 {
9430 for (entry = dynamic_section;
9431 entry < dynamic_section + dynamic_nent;
9432 ++entry)
9433 {
9434 Elf_Internal_Shdr section;
9435
9436 if (entry->d_tag != DT_SYMTAB)
9437 continue;
9438
9439 dynamic_info[DT_SYMTAB] = entry->d_un.d_val;
9440
9441 /* Since we do not know how big the symbol table is,
9442 we default to reading in the entire file (!) and
9443 processing that. This is overkill, I know, but it
9444 should work. */
9445 section.sh_offset = offset_from_vma (file, entry->d_un.d_val, 0);
9446 if ((bfd_size_type) section.sh_offset > current_file_size)
9447 {
9448 /* See PR 21379 for a reproducer. */
9449 error (_("Invalid DT_SYMTAB entry: %lx"), (long) section.sh_offset);
9450 return FALSE;
9451 }
9452
9453 if (archive_file_offset != 0)
9454 section.sh_size = archive_file_size - section.sh_offset;
9455 else
9456 {
9457 if (fseek (file, 0, SEEK_END))
9458 error (_("Unable to seek to end of file!\n"));
9459
9460 section.sh_size = ftell (file) - section.sh_offset;
9461 }
9462
9463 if (is_32bit_elf)
9464 section.sh_entsize = sizeof (Elf32_External_Sym);
9465 else
9466 section.sh_entsize = sizeof (Elf64_External_Sym);
9467 section.sh_name = string_table_length;
9468
9469 dynamic_symbols = GET_ELF_SYMBOLS (file, &section, & num_dynamic_syms);
9470 if (num_dynamic_syms < 1)
9471 {
9472 error (_("Unable to determine the number of symbols to load\n"));
9473 continue;
9474 }
9475 }
9476 }
9477
9478 /* Similarly find a string table. */
9479 if (dynamic_strings == NULL)
9480 {
9481 for (entry = dynamic_section;
9482 entry < dynamic_section + dynamic_nent;
9483 ++entry)
9484 {
9485 unsigned long offset;
9486 long str_tab_len;
9487
9488 if (entry->d_tag != DT_STRTAB)
9489 continue;
9490
9491 dynamic_info[DT_STRTAB] = entry->d_un.d_val;
9492
9493 /* Since we do not know how big the string table is,
9494 we default to reading in the entire file (!) and
9495 processing that. This is overkill, I know, but it
9496 should work. */
9497
9498 offset = offset_from_vma (file, entry->d_un.d_val, 0);
9499
9500 if (archive_file_offset != 0)
9501 str_tab_len = archive_file_size - offset;
9502 else
9503 {
9504 if (fseek (file, 0, SEEK_END))
9505 error (_("Unable to seek to end of file\n"));
9506 str_tab_len = ftell (file) - offset;
9507 }
9508
9509 if (str_tab_len < 1)
9510 {
9511 error
9512 (_("Unable to determine the length of the dynamic string table\n"));
9513 continue;
9514 }
9515
9516 dynamic_strings = (char *) get_data (NULL, file, offset, 1,
9517 str_tab_len,
9518 _("dynamic string table"));
9519 dynamic_strings_length = dynamic_strings == NULL ? 0 : str_tab_len;
9520 break;
9521 }
9522 }
9523
9524 /* And find the syminfo section if available. */
9525 if (dynamic_syminfo == NULL)
9526 {
9527 unsigned long syminsz = 0;
9528
9529 for (entry = dynamic_section;
9530 entry < dynamic_section + dynamic_nent;
9531 ++entry)
9532 {
9533 if (entry->d_tag == DT_SYMINENT)
9534 {
9535 /* Note: these braces are necessary to avoid a syntax
9536 error from the SunOS4 C compiler. */
9537 /* PR binutils/17531: A corrupt file can trigger this test.
9538 So do not use an assert, instead generate an error message. */
9539 if (sizeof (Elf_External_Syminfo) != entry->d_un.d_val)
9540 error (_("Bad value (%d) for SYMINENT entry\n"),
9541 (int) entry->d_un.d_val);
9542 }
9543 else if (entry->d_tag == DT_SYMINSZ)
9544 syminsz = entry->d_un.d_val;
9545 else if (entry->d_tag == DT_SYMINFO)
9546 dynamic_syminfo_offset = offset_from_vma (file, entry->d_un.d_val,
9547 syminsz);
9548 }
9549
9550 if (dynamic_syminfo_offset != 0 && syminsz != 0)
9551 {
9552 Elf_External_Syminfo * extsyminfo;
9553 Elf_External_Syminfo * extsym;
9554 Elf_Internal_Syminfo * syminfo;
9555
9556 /* There is a syminfo section. Read the data. */
9557 extsyminfo = (Elf_External_Syminfo *)
9558 get_data (NULL, file, dynamic_syminfo_offset, 1, syminsz,
9559 _("symbol information"));
9560 if (!extsyminfo)
9561 return FALSE;
9562
9563 dynamic_syminfo = (Elf_Internal_Syminfo *) malloc (syminsz);
9564 if (dynamic_syminfo == NULL)
9565 {
9566 error (_("Out of memory allocating %lu byte for dynamic symbol info\n"),
9567 (unsigned long) syminsz);
9568 return FALSE;
9569 }
9570
9571 dynamic_syminfo_nent = syminsz / sizeof (Elf_External_Syminfo);
9572 for (syminfo = dynamic_syminfo, extsym = extsyminfo;
9573 syminfo < dynamic_syminfo + dynamic_syminfo_nent;
9574 ++syminfo, ++extsym)
9575 {
9576 syminfo->si_boundto = BYTE_GET (extsym->si_boundto);
9577 syminfo->si_flags = BYTE_GET (extsym->si_flags);
9578 }
9579
9580 free (extsyminfo);
9581 }
9582 }
9583
9584 if (do_dynamic && dynamic_addr)
9585 printf (_("\nDynamic section at offset 0x%lx contains %lu entries:\n"),
9586 dynamic_addr, (unsigned long) dynamic_nent);
9587 if (do_dynamic)
9588 printf (_(" Tag Type Name/Value\n"));
9589
9590 for (entry = dynamic_section;
9591 entry < dynamic_section + dynamic_nent;
9592 entry++)
9593 {
9594 if (do_dynamic)
9595 {
9596 const char * dtype;
9597
9598 putchar (' ');
9599 print_vma (entry->d_tag, FULL_HEX);
9600 dtype = get_dynamic_type (entry->d_tag);
9601 printf (" (%s)%*s", dtype,
9602 ((is_32bit_elf ? 27 : 19) - (int) strlen (dtype)), " ");
9603 }
9604
9605 switch (entry->d_tag)
9606 {
9607 case DT_FLAGS:
9608 if (do_dynamic)
9609 print_dynamic_flags (entry->d_un.d_val);
9610 break;
9611
9612 case DT_AUXILIARY:
9613 case DT_FILTER:
9614 case DT_CONFIG:
9615 case DT_DEPAUDIT:
9616 case DT_AUDIT:
9617 if (do_dynamic)
9618 {
9619 switch (entry->d_tag)
9620 {
9621 case DT_AUXILIARY:
9622 printf (_("Auxiliary library"));
9623 break;
9624
9625 case DT_FILTER:
9626 printf (_("Filter library"));
9627 break;
9628
9629 case DT_CONFIG:
9630 printf (_("Configuration file"));
9631 break;
9632
9633 case DT_DEPAUDIT:
9634 printf (_("Dependency audit library"));
9635 break;
9636
9637 case DT_AUDIT:
9638 printf (_("Audit library"));
9639 break;
9640 }
9641
9642 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9643 printf (": [%s]\n", GET_DYNAMIC_NAME (entry->d_un.d_val));
9644 else
9645 {
9646 printf (": ");
9647 print_vma (entry->d_un.d_val, PREFIX_HEX);
9648 putchar ('\n');
9649 }
9650 }
9651 break;
9652
9653 case DT_FEATURE:
9654 if (do_dynamic)
9655 {
9656 printf (_("Flags:"));
9657
9658 if (entry->d_un.d_val == 0)
9659 printf (_(" None\n"));
9660 else
9661 {
9662 unsigned long int val = entry->d_un.d_val;
9663
9664 if (val & DTF_1_PARINIT)
9665 {
9666 printf (" PARINIT");
9667 val ^= DTF_1_PARINIT;
9668 }
9669 if (val & DTF_1_CONFEXP)
9670 {
9671 printf (" CONFEXP");
9672 val ^= DTF_1_CONFEXP;
9673 }
9674 if (val != 0)
9675 printf (" %lx", val);
9676 puts ("");
9677 }
9678 }
9679 break;
9680
9681 case DT_POSFLAG_1:
9682 if (do_dynamic)
9683 {
9684 printf (_("Flags:"));
9685
9686 if (entry->d_un.d_val == 0)
9687 printf (_(" None\n"));
9688 else
9689 {
9690 unsigned long int val = entry->d_un.d_val;
9691
9692 if (val & DF_P1_LAZYLOAD)
9693 {
9694 printf (" LAZYLOAD");
9695 val ^= DF_P1_LAZYLOAD;
9696 }
9697 if (val & DF_P1_GROUPPERM)
9698 {
9699 printf (" GROUPPERM");
9700 val ^= DF_P1_GROUPPERM;
9701 }
9702 if (val != 0)
9703 printf (" %lx", val);
9704 puts ("");
9705 }
9706 }
9707 break;
9708
9709 case DT_FLAGS_1:
9710 if (do_dynamic)
9711 {
9712 printf (_("Flags:"));
9713 if (entry->d_un.d_val == 0)
9714 printf (_(" None\n"));
9715 else
9716 {
9717 unsigned long int val = entry->d_un.d_val;
9718
9719 if (val & DF_1_NOW)
9720 {
9721 printf (" NOW");
9722 val ^= DF_1_NOW;
9723 }
9724 if (val & DF_1_GLOBAL)
9725 {
9726 printf (" GLOBAL");
9727 val ^= DF_1_GLOBAL;
9728 }
9729 if (val & DF_1_GROUP)
9730 {
9731 printf (" GROUP");
9732 val ^= DF_1_GROUP;
9733 }
9734 if (val & DF_1_NODELETE)
9735 {
9736 printf (" NODELETE");
9737 val ^= DF_1_NODELETE;
9738 }
9739 if (val & DF_1_LOADFLTR)
9740 {
9741 printf (" LOADFLTR");
9742 val ^= DF_1_LOADFLTR;
9743 }
9744 if (val & DF_1_INITFIRST)
9745 {
9746 printf (" INITFIRST");
9747 val ^= DF_1_INITFIRST;
9748 }
9749 if (val & DF_1_NOOPEN)
9750 {
9751 printf (" NOOPEN");
9752 val ^= DF_1_NOOPEN;
9753 }
9754 if (val & DF_1_ORIGIN)
9755 {
9756 printf (" ORIGIN");
9757 val ^= DF_1_ORIGIN;
9758 }
9759 if (val & DF_1_DIRECT)
9760 {
9761 printf (" DIRECT");
9762 val ^= DF_1_DIRECT;
9763 }
9764 if (val & DF_1_TRANS)
9765 {
9766 printf (" TRANS");
9767 val ^= DF_1_TRANS;
9768 }
9769 if (val & DF_1_INTERPOSE)
9770 {
9771 printf (" INTERPOSE");
9772 val ^= DF_1_INTERPOSE;
9773 }
9774 if (val & DF_1_NODEFLIB)
9775 {
9776 printf (" NODEFLIB");
9777 val ^= DF_1_NODEFLIB;
9778 }
9779 if (val & DF_1_NODUMP)
9780 {
9781 printf (" NODUMP");
9782 val ^= DF_1_NODUMP;
9783 }
9784 if (val & DF_1_CONFALT)
9785 {
9786 printf (" CONFALT");
9787 val ^= DF_1_CONFALT;
9788 }
9789 if (val & DF_1_ENDFILTEE)
9790 {
9791 printf (" ENDFILTEE");
9792 val ^= DF_1_ENDFILTEE;
9793 }
9794 if (val & DF_1_DISPRELDNE)
9795 {
9796 printf (" DISPRELDNE");
9797 val ^= DF_1_DISPRELDNE;
9798 }
9799 if (val & DF_1_DISPRELPND)
9800 {
9801 printf (" DISPRELPND");
9802 val ^= DF_1_DISPRELPND;
9803 }
9804 if (val & DF_1_NODIRECT)
9805 {
9806 printf (" NODIRECT");
9807 val ^= DF_1_NODIRECT;
9808 }
9809 if (val & DF_1_IGNMULDEF)
9810 {
9811 printf (" IGNMULDEF");
9812 val ^= DF_1_IGNMULDEF;
9813 }
9814 if (val & DF_1_NOKSYMS)
9815 {
9816 printf (" NOKSYMS");
9817 val ^= DF_1_NOKSYMS;
9818 }
9819 if (val & DF_1_NOHDR)
9820 {
9821 printf (" NOHDR");
9822 val ^= DF_1_NOHDR;
9823 }
9824 if (val & DF_1_EDITED)
9825 {
9826 printf (" EDITED");
9827 val ^= DF_1_EDITED;
9828 }
9829 if (val & DF_1_NORELOC)
9830 {
9831 printf (" NORELOC");
9832 val ^= DF_1_NORELOC;
9833 }
9834 if (val & DF_1_SYMINTPOSE)
9835 {
9836 printf (" SYMINTPOSE");
9837 val ^= DF_1_SYMINTPOSE;
9838 }
9839 if (val & DF_1_GLOBAUDIT)
9840 {
9841 printf (" GLOBAUDIT");
9842 val ^= DF_1_GLOBAUDIT;
9843 }
9844 if (val & DF_1_SINGLETON)
9845 {
9846 printf (" SINGLETON");
9847 val ^= DF_1_SINGLETON;
9848 }
9849 if (val & DF_1_STUB)
9850 {
9851 printf (" STUB");
9852 val ^= DF_1_STUB;
9853 }
9854 if (val & DF_1_PIE)
9855 {
9856 printf (" PIE");
9857 val ^= DF_1_PIE;
9858 }
9859 if (val != 0)
9860 printf (" %lx", val);
9861 puts ("");
9862 }
9863 }
9864 break;
9865
9866 case DT_PLTREL:
9867 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9868 if (do_dynamic)
9869 puts (get_dynamic_type (entry->d_un.d_val));
9870 break;
9871
9872 case DT_NULL :
9873 case DT_NEEDED :
9874 case DT_PLTGOT :
9875 case DT_HASH :
9876 case DT_STRTAB :
9877 case DT_SYMTAB :
9878 case DT_RELA :
9879 case DT_INIT :
9880 case DT_FINI :
9881 case DT_SONAME :
9882 case DT_RPATH :
9883 case DT_SYMBOLIC:
9884 case DT_REL :
9885 case DT_DEBUG :
9886 case DT_TEXTREL :
9887 case DT_JMPREL :
9888 case DT_RUNPATH :
9889 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9890
9891 if (do_dynamic)
9892 {
9893 char * name;
9894
9895 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9896 name = GET_DYNAMIC_NAME (entry->d_un.d_val);
9897 else
9898 name = NULL;
9899
9900 if (name)
9901 {
9902 switch (entry->d_tag)
9903 {
9904 case DT_NEEDED:
9905 printf (_("Shared library: [%s]"), name);
9906
9907 if (streq (name, program_interpreter))
9908 printf (_(" program interpreter"));
9909 break;
9910
9911 case DT_SONAME:
9912 printf (_("Library soname: [%s]"), name);
9913 break;
9914
9915 case DT_RPATH:
9916 printf (_("Library rpath: [%s]"), name);
9917 break;
9918
9919 case DT_RUNPATH:
9920 printf (_("Library runpath: [%s]"), name);
9921 break;
9922
9923 default:
9924 print_vma (entry->d_un.d_val, PREFIX_HEX);
9925 break;
9926 }
9927 }
9928 else
9929 print_vma (entry->d_un.d_val, PREFIX_HEX);
9930
9931 putchar ('\n');
9932 }
9933 break;
9934
9935 case DT_PLTRELSZ:
9936 case DT_RELASZ :
9937 case DT_STRSZ :
9938 case DT_RELSZ :
9939 case DT_RELAENT :
9940 case DT_SYMENT :
9941 case DT_RELENT :
9942 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9943 /* Fall through. */
9944 case DT_PLTPADSZ:
9945 case DT_MOVEENT :
9946 case DT_MOVESZ :
9947 case DT_INIT_ARRAYSZ:
9948 case DT_FINI_ARRAYSZ:
9949 case DT_GNU_CONFLICTSZ:
9950 case DT_GNU_LIBLISTSZ:
9951 if (do_dynamic)
9952 {
9953 print_vma (entry->d_un.d_val, UNSIGNED);
9954 printf (_(" (bytes)\n"));
9955 }
9956 break;
9957
9958 case DT_VERDEFNUM:
9959 case DT_VERNEEDNUM:
9960 case DT_RELACOUNT:
9961 case DT_RELCOUNT:
9962 if (do_dynamic)
9963 {
9964 print_vma (entry->d_un.d_val, UNSIGNED);
9965 putchar ('\n');
9966 }
9967 break;
9968
9969 case DT_SYMINSZ:
9970 case DT_SYMINENT:
9971 case DT_SYMINFO:
9972 case DT_USED:
9973 case DT_INIT_ARRAY:
9974 case DT_FINI_ARRAY:
9975 if (do_dynamic)
9976 {
9977 if (entry->d_tag == DT_USED
9978 && VALID_DYNAMIC_NAME (entry->d_un.d_val))
9979 {
9980 char * name = GET_DYNAMIC_NAME (entry->d_un.d_val);
9981
9982 if (*name)
9983 {
9984 printf (_("Not needed object: [%s]\n"), name);
9985 break;
9986 }
9987 }
9988
9989 print_vma (entry->d_un.d_val, PREFIX_HEX);
9990 putchar ('\n');
9991 }
9992 break;
9993
9994 case DT_BIND_NOW:
9995 /* The value of this entry is ignored. */
9996 if (do_dynamic)
9997 putchar ('\n');
9998 break;
9999
10000 case DT_GNU_PRELINKED:
10001 if (do_dynamic)
10002 {
10003 struct tm * tmp;
10004 time_t atime = entry->d_un.d_val;
10005
10006 tmp = gmtime (&atime);
10007 /* PR 17533 file: 041-1244816-0.004. */
10008 if (tmp == NULL)
10009 printf (_("<corrupt time val: %lx"),
10010 (unsigned long) atime);
10011 else
10012 printf ("%04u-%02u-%02uT%02u:%02u:%02u\n",
10013 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
10014 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
10015
10016 }
10017 break;
10018
10019 case DT_GNU_HASH:
10020 dynamic_info_DT_GNU_HASH = entry->d_un.d_val;
10021 if (do_dynamic)
10022 {
10023 print_vma (entry->d_un.d_val, PREFIX_HEX);
10024 putchar ('\n');
10025 }
10026 break;
10027
10028 default:
10029 if ((entry->d_tag >= DT_VERSYM) && (entry->d_tag <= DT_VERNEEDNUM))
10030 version_info[DT_VERSIONTAGIDX (entry->d_tag)] =
10031 entry->d_un.d_val;
10032
10033 if (do_dynamic)
10034 {
10035 switch (elf_header.e_machine)
10036 {
10037 case EM_MIPS:
10038 case EM_MIPS_RS3_LE:
10039 dynamic_section_mips_val (entry);
10040 break;
10041 case EM_PARISC:
10042 dynamic_section_parisc_val (entry);
10043 break;
10044 case EM_IA_64:
10045 dynamic_section_ia64_val (entry);
10046 break;
10047 default:
10048 print_vma (entry->d_un.d_val, PREFIX_HEX);
10049 putchar ('\n');
10050 }
10051 }
10052 break;
10053 }
10054 }
10055
10056 return TRUE;
10057 }
10058
10059 static char *
10060 get_ver_flags (unsigned int flags)
10061 {
10062 static char buff[32];
10063
10064 buff[0] = 0;
10065
10066 if (flags == 0)
10067 return _("none");
10068
10069 if (flags & VER_FLG_BASE)
10070 strcat (buff, "BASE");
10071
10072 if (flags & VER_FLG_WEAK)
10073 {
10074 if (flags & VER_FLG_BASE)
10075 strcat (buff, " | ");
10076
10077 strcat (buff, "WEAK");
10078 }
10079
10080 if (flags & VER_FLG_INFO)
10081 {
10082 if (flags & (VER_FLG_BASE|VER_FLG_WEAK))
10083 strcat (buff, " | ");
10084
10085 strcat (buff, "INFO");
10086 }
10087
10088 if (flags & ~(VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
10089 {
10090 if (flags & (VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
10091 strcat (buff, " | ");
10092
10093 strcat (buff, _("<unknown>"));
10094 }
10095
10096 return buff;
10097 }
10098
10099 /* Display the contents of the version sections. */
10100
10101 static bfd_boolean
10102 process_version_sections (FILE * file)
10103 {
10104 Elf_Internal_Shdr * section;
10105 unsigned i;
10106 bfd_boolean found = FALSE;
10107
10108 if (! do_version)
10109 return TRUE;
10110
10111 for (i = 0, section = section_headers;
10112 i < elf_header.e_shnum;
10113 i++, section++)
10114 {
10115 switch (section->sh_type)
10116 {
10117 case SHT_GNU_verdef:
10118 {
10119 Elf_External_Verdef * edefs;
10120 unsigned int idx;
10121 unsigned int cnt;
10122 unsigned int end;
10123 char * endbuf;
10124
10125 found = TRUE;
10126
10127 printf (_("\nVersion definition section '%s' contains %u entries:\n"),
10128 printable_section_name (section),
10129 section->sh_info);
10130
10131 printf (_(" Addr: 0x"));
10132 printf_vma (section->sh_addr);
10133 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10134 (unsigned long) section->sh_offset, section->sh_link,
10135 printable_section_name_from_index (section->sh_link));
10136
10137 edefs = (Elf_External_Verdef *)
10138 get_data (NULL, file, section->sh_offset, 1,section->sh_size,
10139 _("version definition section"));
10140 if (!edefs)
10141 break;
10142 endbuf = (char *) edefs + section->sh_size;
10143
10144 /* PR 17531: file: id:000001,src:000172+005151,op:splice,rep:2. */
10145 end = (section->sh_info < section->sh_size
10146 ? section->sh_info : section->sh_size);
10147 for (idx = cnt = 0; cnt < end; ++cnt)
10148 {
10149 char * vstart;
10150 Elf_External_Verdef * edef;
10151 Elf_Internal_Verdef ent;
10152 Elf_External_Verdaux * eaux;
10153 Elf_Internal_Verdaux aux;
10154 unsigned int isum;
10155 int j;
10156
10157 /* Check for very large indices. */
10158 if (idx > (size_t) (endbuf - (char *) edefs))
10159 break;
10160
10161 vstart = ((char *) edefs) + idx;
10162 if (vstart + sizeof (*edef) > endbuf)
10163 break;
10164
10165 edef = (Elf_External_Verdef *) vstart;
10166
10167 ent.vd_version = BYTE_GET (edef->vd_version);
10168 ent.vd_flags = BYTE_GET (edef->vd_flags);
10169 ent.vd_ndx = BYTE_GET (edef->vd_ndx);
10170 ent.vd_cnt = BYTE_GET (edef->vd_cnt);
10171 ent.vd_hash = BYTE_GET (edef->vd_hash);
10172 ent.vd_aux = BYTE_GET (edef->vd_aux);
10173 ent.vd_next = BYTE_GET (edef->vd_next);
10174
10175 printf (_(" %#06x: Rev: %d Flags: %s"),
10176 idx, ent.vd_version, get_ver_flags (ent.vd_flags));
10177
10178 printf (_(" Index: %d Cnt: %d "),
10179 ent.vd_ndx, ent.vd_cnt);
10180
10181 /* Check for overflow. */
10182 if (ent.vd_aux + sizeof (* eaux) > (size_t) (endbuf - vstart))
10183 break;
10184
10185 vstart += ent.vd_aux;
10186
10187 eaux = (Elf_External_Verdaux *) vstart;
10188
10189 aux.vda_name = BYTE_GET (eaux->vda_name);
10190 aux.vda_next = BYTE_GET (eaux->vda_next);
10191
10192 if (VALID_DYNAMIC_NAME (aux.vda_name))
10193 printf (_("Name: %s\n"), GET_DYNAMIC_NAME (aux.vda_name));
10194 else
10195 printf (_("Name index: %ld\n"), aux.vda_name);
10196
10197 isum = idx + ent.vd_aux;
10198
10199 for (j = 1; j < ent.vd_cnt; j++)
10200 {
10201 /* Check for overflow. */
10202 if (aux.vda_next > (size_t) (endbuf - vstart))
10203 break;
10204
10205 isum += aux.vda_next;
10206 vstart += aux.vda_next;
10207
10208 eaux = (Elf_External_Verdaux *) vstart;
10209 if (vstart + sizeof (*eaux) > endbuf)
10210 break;
10211
10212 aux.vda_name = BYTE_GET (eaux->vda_name);
10213 aux.vda_next = BYTE_GET (eaux->vda_next);
10214
10215 if (VALID_DYNAMIC_NAME (aux.vda_name))
10216 printf (_(" %#06x: Parent %d: %s\n"),
10217 isum, j, GET_DYNAMIC_NAME (aux.vda_name));
10218 else
10219 printf (_(" %#06x: Parent %d, name index: %ld\n"),
10220 isum, j, aux.vda_name);
10221 }
10222
10223 if (j < ent.vd_cnt)
10224 printf (_(" Version def aux past end of section\n"));
10225
10226 /* PR 17531:
10227 file: id:000001,src:000172+005151,op:splice,rep:2. */
10228 if (idx + ent.vd_next < idx)
10229 break;
10230
10231 idx += ent.vd_next;
10232 }
10233
10234 if (cnt < section->sh_info)
10235 printf (_(" Version definition past end of section\n"));
10236
10237 free (edefs);
10238 }
10239 break;
10240
10241 case SHT_GNU_verneed:
10242 {
10243 Elf_External_Verneed * eneed;
10244 unsigned int idx;
10245 unsigned int cnt;
10246 char * endbuf;
10247
10248 found = TRUE;
10249
10250 printf (_("\nVersion needs section '%s' contains %u entries:\n"),
10251 printable_section_name (section), section->sh_info);
10252
10253 printf (_(" Addr: 0x"));
10254 printf_vma (section->sh_addr);
10255 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10256 (unsigned long) section->sh_offset, section->sh_link,
10257 printable_section_name_from_index (section->sh_link));
10258
10259 eneed = (Elf_External_Verneed *) get_data (NULL, file,
10260 section->sh_offset, 1,
10261 section->sh_size,
10262 _("Version Needs section"));
10263 if (!eneed)
10264 break;
10265 endbuf = (char *) eneed + section->sh_size;
10266
10267 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
10268 {
10269 Elf_External_Verneed * entry;
10270 Elf_Internal_Verneed ent;
10271 unsigned int isum;
10272 int j;
10273 char * vstart;
10274
10275 if (idx > (size_t) (endbuf - (char *) eneed))
10276 break;
10277
10278 vstart = ((char *) eneed) + idx;
10279 if (vstart + sizeof (*entry) > endbuf)
10280 break;
10281
10282 entry = (Elf_External_Verneed *) vstart;
10283
10284 ent.vn_version = BYTE_GET (entry->vn_version);
10285 ent.vn_cnt = BYTE_GET (entry->vn_cnt);
10286 ent.vn_file = BYTE_GET (entry->vn_file);
10287 ent.vn_aux = BYTE_GET (entry->vn_aux);
10288 ent.vn_next = BYTE_GET (entry->vn_next);
10289
10290 printf (_(" %#06x: Version: %d"), idx, ent.vn_version);
10291
10292 if (VALID_DYNAMIC_NAME (ent.vn_file))
10293 printf (_(" File: %s"), GET_DYNAMIC_NAME (ent.vn_file));
10294 else
10295 printf (_(" File: %lx"), ent.vn_file);
10296
10297 printf (_(" Cnt: %d\n"), ent.vn_cnt);
10298
10299 /* Check for overflow. */
10300 if (ent.vn_aux > (size_t) (endbuf - vstart))
10301 break;
10302 vstart += ent.vn_aux;
10303
10304 for (j = 0, isum = idx + ent.vn_aux; j < ent.vn_cnt; ++j)
10305 {
10306 Elf_External_Vernaux * eaux;
10307 Elf_Internal_Vernaux aux;
10308
10309 if (vstart + sizeof (*eaux) > endbuf)
10310 break;
10311 eaux = (Elf_External_Vernaux *) vstart;
10312
10313 aux.vna_hash = BYTE_GET (eaux->vna_hash);
10314 aux.vna_flags = BYTE_GET (eaux->vna_flags);
10315 aux.vna_other = BYTE_GET (eaux->vna_other);
10316 aux.vna_name = BYTE_GET (eaux->vna_name);
10317 aux.vna_next = BYTE_GET (eaux->vna_next);
10318
10319 if (VALID_DYNAMIC_NAME (aux.vna_name))
10320 printf (_(" %#06x: Name: %s"),
10321 isum, GET_DYNAMIC_NAME (aux.vna_name));
10322 else
10323 printf (_(" %#06x: Name index: %lx"),
10324 isum, aux.vna_name);
10325
10326 printf (_(" Flags: %s Version: %d\n"),
10327 get_ver_flags (aux.vna_flags), aux.vna_other);
10328
10329 /* Check for overflow. */
10330 if (aux.vna_next > (size_t) (endbuf - vstart)
10331 || (aux.vna_next == 0 && j < ent.vn_cnt - 1))
10332 {
10333 warn (_("Invalid vna_next field of %lx\n"),
10334 aux.vna_next);
10335 j = ent.vn_cnt;
10336 break;
10337 }
10338 isum += aux.vna_next;
10339 vstart += aux.vna_next;
10340 }
10341
10342 if (j < ent.vn_cnt)
10343 warn (_("Missing Version Needs auxillary information\n"));
10344
10345 if (ent.vn_next == 0 && cnt < section->sh_info - 1)
10346 {
10347 warn (_("Corrupt Version Needs structure - offset to next structure is zero with entries still left to be processed\n"));
10348 cnt = section->sh_info;
10349 break;
10350 }
10351 idx += ent.vn_next;
10352 }
10353
10354 if (cnt < section->sh_info)
10355 warn (_("Missing Version Needs information\n"));
10356
10357 free (eneed);
10358 }
10359 break;
10360
10361 case SHT_GNU_versym:
10362 {
10363 Elf_Internal_Shdr * link_section;
10364 size_t total;
10365 unsigned int cnt;
10366 unsigned char * edata;
10367 unsigned short * data;
10368 char * strtab;
10369 Elf_Internal_Sym * symbols;
10370 Elf_Internal_Shdr * string_sec;
10371 unsigned long num_syms;
10372 long off;
10373
10374 if (section->sh_link >= elf_header.e_shnum)
10375 break;
10376
10377 link_section = section_headers + section->sh_link;
10378 total = section->sh_size / sizeof (Elf_External_Versym);
10379
10380 if (link_section->sh_link >= elf_header.e_shnum)
10381 break;
10382
10383 found = TRUE;
10384
10385 symbols = GET_ELF_SYMBOLS (file, link_section, & num_syms);
10386 if (symbols == NULL)
10387 break;
10388
10389 string_sec = section_headers + link_section->sh_link;
10390
10391 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
10392 string_sec->sh_size,
10393 _("version string table"));
10394 if (!strtab)
10395 {
10396 free (symbols);
10397 break;
10398 }
10399
10400 printf (_("\nVersion symbols section '%s' contains %lu entries:\n"),
10401 printable_section_name (section), (unsigned long) total);
10402
10403 printf (_(" Addr: "));
10404 printf_vma (section->sh_addr);
10405 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10406 (unsigned long) section->sh_offset, section->sh_link,
10407 printable_section_name (link_section));
10408
10409 off = offset_from_vma (file,
10410 version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
10411 total * sizeof (short));
10412 edata = (unsigned char *) get_data (NULL, file, off, total,
10413 sizeof (short),
10414 _("version symbol data"));
10415 if (!edata)
10416 {
10417 free (strtab);
10418 free (symbols);
10419 break;
10420 }
10421
10422 data = (short unsigned int *) cmalloc (total, sizeof (short));
10423
10424 for (cnt = total; cnt --;)
10425 data[cnt] = byte_get (edata + cnt * sizeof (short),
10426 sizeof (short));
10427
10428 free (edata);
10429
10430 for (cnt = 0; cnt < total; cnt += 4)
10431 {
10432 int j, nn;
10433 char *name;
10434 char *invalid = _("*invalid*");
10435
10436 printf (" %03x:", cnt);
10437
10438 for (j = 0; (j < 4) && (cnt + j) < total; ++j)
10439 switch (data[cnt + j])
10440 {
10441 case 0:
10442 fputs (_(" 0 (*local*) "), stdout);
10443 break;
10444
10445 case 1:
10446 fputs (_(" 1 (*global*) "), stdout);
10447 break;
10448
10449 default:
10450 nn = printf ("%4x%c", data[cnt + j] & VERSYM_VERSION,
10451 data[cnt + j] & VERSYM_HIDDEN ? 'h' : ' ');
10452
10453 /* If this index value is greater than the size of the symbols
10454 array, break to avoid an out-of-bounds read. */
10455 if ((unsigned long)(cnt + j) >= num_syms)
10456 {
10457 warn (_("invalid index into symbol array\n"));
10458 break;
10459 }
10460
10461 name = NULL;
10462 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
10463 {
10464 Elf_Internal_Verneed ivn;
10465 unsigned long offset;
10466
10467 offset = offset_from_vma
10468 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
10469 sizeof (Elf_External_Verneed));
10470
10471 do
10472 {
10473 Elf_Internal_Vernaux ivna;
10474 Elf_External_Verneed evn;
10475 Elf_External_Vernaux evna;
10476 unsigned long a_off;
10477
10478 if (get_data (&evn, file, offset, sizeof (evn), 1,
10479 _("version need")) == NULL)
10480 break;
10481
10482 ivn.vn_aux = BYTE_GET (evn.vn_aux);
10483 ivn.vn_next = BYTE_GET (evn.vn_next);
10484
10485 a_off = offset + ivn.vn_aux;
10486
10487 do
10488 {
10489 if (get_data (&evna, file, a_off, sizeof (evna),
10490 1, _("version need aux (2)")) == NULL)
10491 {
10492 ivna.vna_next = 0;
10493 ivna.vna_other = 0;
10494 }
10495 else
10496 {
10497 ivna.vna_next = BYTE_GET (evna.vna_next);
10498 ivna.vna_other = BYTE_GET (evna.vna_other);
10499 }
10500
10501 a_off += ivna.vna_next;
10502 }
10503 while (ivna.vna_other != data[cnt + j]
10504 && ivna.vna_next != 0);
10505
10506 if (ivna.vna_other == data[cnt + j])
10507 {
10508 ivna.vna_name = BYTE_GET (evna.vna_name);
10509
10510 if (ivna.vna_name >= string_sec->sh_size)
10511 name = invalid;
10512 else
10513 name = strtab + ivna.vna_name;
10514 break;
10515 }
10516
10517 offset += ivn.vn_next;
10518 }
10519 while (ivn.vn_next);
10520 }
10521
10522 if (data[cnt + j] != 0x8001
10523 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
10524 {
10525 Elf_Internal_Verdef ivd;
10526 Elf_External_Verdef evd;
10527 unsigned long offset;
10528
10529 offset = offset_from_vma
10530 (file, version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
10531 sizeof evd);
10532
10533 do
10534 {
10535 if (get_data (&evd, file, offset, sizeof (evd), 1,
10536 _("version def")) == NULL)
10537 {
10538 ivd.vd_next = 0;
10539 /* PR 17531: file: 046-1082287-0.004. */
10540 ivd.vd_ndx = (data[cnt + j] & VERSYM_VERSION) + 1;
10541 break;
10542 }
10543 else
10544 {
10545 ivd.vd_next = BYTE_GET (evd.vd_next);
10546 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
10547 }
10548
10549 offset += ivd.vd_next;
10550 }
10551 while (ivd.vd_ndx != (data[cnt + j] & VERSYM_VERSION)
10552 && ivd.vd_next != 0);
10553
10554 if (ivd.vd_ndx == (data[cnt + j] & VERSYM_VERSION))
10555 {
10556 Elf_External_Verdaux evda;
10557 Elf_Internal_Verdaux ivda;
10558
10559 ivd.vd_aux = BYTE_GET (evd.vd_aux);
10560
10561 if (get_data (&evda, file,
10562 offset - ivd.vd_next + ivd.vd_aux,
10563 sizeof (evda), 1,
10564 _("version def aux")) == NULL)
10565 break;
10566
10567 ivda.vda_name = BYTE_GET (evda.vda_name);
10568
10569 if (ivda.vda_name >= string_sec->sh_size)
10570 name = invalid;
10571 else if (name != NULL && name != invalid)
10572 name = _("*both*");
10573 else
10574 name = strtab + ivda.vda_name;
10575 }
10576 }
10577 if (name != NULL)
10578 nn += printf ("(%s%-*s",
10579 name,
10580 12 - (int) strlen (name),
10581 ")");
10582
10583 if (nn < 18)
10584 printf ("%*c", 18 - nn, ' ');
10585 }
10586
10587 putchar ('\n');
10588 }
10589
10590 free (data);
10591 free (strtab);
10592 free (symbols);
10593 }
10594 break;
10595
10596 default:
10597 break;
10598 }
10599 }
10600
10601 if (! found)
10602 printf (_("\nNo version information found in this file.\n"));
10603
10604 return TRUE;
10605 }
10606
10607 static const char *
10608 get_symbol_binding (unsigned int binding)
10609 {
10610 static char buff[32];
10611
10612 switch (binding)
10613 {
10614 case STB_LOCAL: return "LOCAL";
10615 case STB_GLOBAL: return "GLOBAL";
10616 case STB_WEAK: return "WEAK";
10617 default:
10618 if (binding >= STB_LOPROC && binding <= STB_HIPROC)
10619 snprintf (buff, sizeof (buff), _("<processor specific>: %d"),
10620 binding);
10621 else if (binding >= STB_LOOS && binding <= STB_HIOS)
10622 {
10623 if (binding == STB_GNU_UNIQUE
10624 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
10625 /* GNU is still using the default value 0. */
10626 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
10627 return "UNIQUE";
10628 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), binding);
10629 }
10630 else
10631 snprintf (buff, sizeof (buff), _("<unknown>: %d"), binding);
10632 return buff;
10633 }
10634 }
10635
10636 static const char *
10637 get_symbol_type (unsigned int type)
10638 {
10639 static char buff[32];
10640
10641 switch (type)
10642 {
10643 case STT_NOTYPE: return "NOTYPE";
10644 case STT_OBJECT: return "OBJECT";
10645 case STT_FUNC: return "FUNC";
10646 case STT_SECTION: return "SECTION";
10647 case STT_FILE: return "FILE";
10648 case STT_COMMON: return "COMMON";
10649 case STT_TLS: return "TLS";
10650 case STT_RELC: return "RELC";
10651 case STT_SRELC: return "SRELC";
10652 default:
10653 if (type >= STT_LOPROC && type <= STT_HIPROC)
10654 {
10655 if (elf_header.e_machine == EM_ARM && type == STT_ARM_TFUNC)
10656 return "THUMB_FUNC";
10657
10658 if (elf_header.e_machine == EM_SPARCV9 && type == STT_REGISTER)
10659 return "REGISTER";
10660
10661 if (elf_header.e_machine == EM_PARISC && type == STT_PARISC_MILLI)
10662 return "PARISC_MILLI";
10663
10664 snprintf (buff, sizeof (buff), _("<processor specific>: %d"), type);
10665 }
10666 else if (type >= STT_LOOS && type <= STT_HIOS)
10667 {
10668 if (elf_header.e_machine == EM_PARISC)
10669 {
10670 if (type == STT_HP_OPAQUE)
10671 return "HP_OPAQUE";
10672 if (type == STT_HP_STUB)
10673 return "HP_STUB";
10674 }
10675
10676 if (type == STT_GNU_IFUNC
10677 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
10678 || elf_header.e_ident[EI_OSABI] == ELFOSABI_FREEBSD
10679 /* GNU is still using the default value 0. */
10680 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
10681 return "IFUNC";
10682
10683 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), type);
10684 }
10685 else
10686 snprintf (buff, sizeof (buff), _("<unknown>: %d"), type);
10687 return buff;
10688 }
10689 }
10690
10691 static const char *
10692 get_symbol_visibility (unsigned int visibility)
10693 {
10694 switch (visibility)
10695 {
10696 case STV_DEFAULT: return "DEFAULT";
10697 case STV_INTERNAL: return "INTERNAL";
10698 case STV_HIDDEN: return "HIDDEN";
10699 case STV_PROTECTED: return "PROTECTED";
10700 default:
10701 error (_("Unrecognized visibility value: %u"), visibility);
10702 return _("<unknown>");
10703 }
10704 }
10705
10706 static const char *
10707 get_solaris_symbol_visibility (unsigned int visibility)
10708 {
10709 switch (visibility)
10710 {
10711 case 4: return "EXPORTED";
10712 case 5: return "SINGLETON";
10713 case 6: return "ELIMINATE";
10714 default: return get_symbol_visibility (visibility);
10715 }
10716 }
10717
10718 static const char *
10719 get_mips_symbol_other (unsigned int other)
10720 {
10721 switch (other)
10722 {
10723 case STO_OPTIONAL: return "OPTIONAL";
10724 case STO_MIPS_PLT: return "MIPS PLT";
10725 case STO_MIPS_PIC: return "MIPS PIC";
10726 case STO_MICROMIPS: return "MICROMIPS";
10727 case STO_MICROMIPS | STO_MIPS_PIC: return "MICROMIPS, MIPS PIC";
10728 case STO_MIPS16: return "MIPS16";
10729 default: return NULL;
10730 }
10731 }
10732
10733 static const char *
10734 get_ia64_symbol_other (unsigned int other)
10735 {
10736 if (is_ia64_vms ())
10737 {
10738 static char res[32];
10739
10740 res[0] = 0;
10741
10742 /* Function types is for images and .STB files only. */
10743 switch (elf_header.e_type)
10744 {
10745 case ET_DYN:
10746 case ET_EXEC:
10747 switch (VMS_ST_FUNC_TYPE (other))
10748 {
10749 case VMS_SFT_CODE_ADDR:
10750 strcat (res, " CA");
10751 break;
10752 case VMS_SFT_SYMV_IDX:
10753 strcat (res, " VEC");
10754 break;
10755 case VMS_SFT_FD:
10756 strcat (res, " FD");
10757 break;
10758 case VMS_SFT_RESERVE:
10759 strcat (res, " RSV");
10760 break;
10761 default:
10762 warn (_("Unrecognized IA64 VMS ST Function type: %d\n"),
10763 VMS_ST_FUNC_TYPE (other));
10764 strcat (res, " <unknown>");
10765 break;
10766 }
10767 break;
10768 default:
10769 break;
10770 }
10771 switch (VMS_ST_LINKAGE (other))
10772 {
10773 case VMS_STL_IGNORE:
10774 strcat (res, " IGN");
10775 break;
10776 case VMS_STL_RESERVE:
10777 strcat (res, " RSV");
10778 break;
10779 case VMS_STL_STD:
10780 strcat (res, " STD");
10781 break;
10782 case VMS_STL_LNK:
10783 strcat (res, " LNK");
10784 break;
10785 default:
10786 warn (_("Unrecognized IA64 VMS ST Linkage: %d\n"),
10787 VMS_ST_LINKAGE (other));
10788 strcat (res, " <unknown>");
10789 break;
10790 }
10791
10792 if (res[0] != 0)
10793 return res + 1;
10794 else
10795 return res;
10796 }
10797 return NULL;
10798 }
10799
10800 static const char *
10801 get_ppc64_symbol_other (unsigned int other)
10802 {
10803 if (PPC64_LOCAL_ENTRY_OFFSET (other) != 0)
10804 {
10805 static char buf[32];
10806 snprintf (buf, sizeof buf, _("<localentry>: %d"),
10807 PPC64_LOCAL_ENTRY_OFFSET (other));
10808 return buf;
10809 }
10810 return NULL;
10811 }
10812
10813 static const char *
10814 get_symbol_other (unsigned int other)
10815 {
10816 const char * result = NULL;
10817 static char buff [32];
10818
10819 if (other == 0)
10820 return "";
10821
10822 switch (elf_header.e_machine)
10823 {
10824 case EM_MIPS:
10825 result = get_mips_symbol_other (other);
10826 break;
10827 case EM_IA_64:
10828 result = get_ia64_symbol_other (other);
10829 break;
10830 case EM_PPC64:
10831 result = get_ppc64_symbol_other (other);
10832 break;
10833 default:
10834 result = NULL;
10835 break;
10836 }
10837
10838 if (result)
10839 return result;
10840
10841 snprintf (buff, sizeof buff, _("<other>: %x"), other);
10842 return buff;
10843 }
10844
10845 static const char *
10846 get_symbol_index_type (unsigned int type)
10847 {
10848 static char buff[32];
10849
10850 switch (type)
10851 {
10852 case SHN_UNDEF: return "UND";
10853 case SHN_ABS: return "ABS";
10854 case SHN_COMMON: return "COM";
10855 default:
10856 if (type == SHN_IA_64_ANSI_COMMON
10857 && elf_header.e_machine == EM_IA_64
10858 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX)
10859 return "ANSI_COM";
10860 else if ((elf_header.e_machine == EM_X86_64
10861 || elf_header.e_machine == EM_L1OM
10862 || elf_header.e_machine == EM_K1OM)
10863 && type == SHN_X86_64_LCOMMON)
10864 return "LARGE_COM";
10865 else if ((type == SHN_MIPS_SCOMMON
10866 && elf_header.e_machine == EM_MIPS)
10867 || (type == SHN_TIC6X_SCOMMON
10868 && elf_header.e_machine == EM_TI_C6000))
10869 return "SCOM";
10870 else if (type == SHN_MIPS_SUNDEFINED
10871 && elf_header.e_machine == EM_MIPS)
10872 return "SUND";
10873 else if (type >= SHN_LOPROC && type <= SHN_HIPROC)
10874 sprintf (buff, "PRC[0x%04x]", type & 0xffff);
10875 else if (type >= SHN_LOOS && type <= SHN_HIOS)
10876 sprintf (buff, "OS [0x%04x]", type & 0xffff);
10877 else if (type >= SHN_LORESERVE)
10878 sprintf (buff, "RSV[0x%04x]", type & 0xffff);
10879 else if (type >= elf_header.e_shnum)
10880 sprintf (buff, _("bad section index[%3d]"), type);
10881 else
10882 sprintf (buff, "%3d", type);
10883 break;
10884 }
10885
10886 return buff;
10887 }
10888
10889 static bfd_vma *
10890 get_dynamic_data (FILE * file, bfd_size_type number, unsigned int ent_size)
10891 {
10892 unsigned char * e_data;
10893 bfd_vma * i_data;
10894
10895 /* If the size_t type is smaller than the bfd_size_type, eg because
10896 you are building a 32-bit tool on a 64-bit host, then make sure
10897 that when (number) is cast to (size_t) no information is lost. */
10898 if (sizeof (size_t) < sizeof (bfd_size_type)
10899 && (bfd_size_type) ((size_t) number) != number)
10900 {
10901 error (_("Size truncation prevents reading %" BFD_VMA_FMT "u"
10902 " elements of size %u\n"),
10903 number, ent_size);
10904 return NULL;
10905 }
10906
10907 /* Be kind to memory chekers (eg valgrind, address sanitizer) by not
10908 attempting to allocate memory when the read is bound to fail. */
10909 if (ent_size * number > current_file_size)
10910 {
10911 error (_("Invalid number of dynamic entries: %" BFD_VMA_FMT "u\n"),
10912 number);
10913 return NULL;
10914 }
10915
10916 e_data = (unsigned char *) cmalloc ((size_t) number, ent_size);
10917 if (e_data == NULL)
10918 {
10919 error (_("Out of memory reading %" BFD_VMA_FMT "u dynamic entries\n"),
10920 number);
10921 return NULL;
10922 }
10923
10924 if (fread (e_data, ent_size, (size_t) number, file) != number)
10925 {
10926 error (_("Unable to read in %" BFD_VMA_FMT "u bytes of dynamic data\n"),
10927 number * ent_size);
10928 free (e_data);
10929 return NULL;
10930 }
10931
10932 i_data = (bfd_vma *) cmalloc ((size_t) number, sizeof (*i_data));
10933 if (i_data == NULL)
10934 {
10935 error (_("Out of memory allocating space for %" BFD_VMA_FMT "u"
10936 " dynamic entries\n"),
10937 number);
10938 free (e_data);
10939 return NULL;
10940 }
10941
10942 while (number--)
10943 i_data[number] = byte_get (e_data + number * ent_size, ent_size);
10944
10945 free (e_data);
10946
10947 return i_data;
10948 }
10949
10950 static void
10951 print_dynamic_symbol (bfd_vma si, unsigned long hn)
10952 {
10953 Elf_Internal_Sym * psym;
10954 int n;
10955
10956 n = print_vma (si, DEC_5);
10957 if (n < 5)
10958 fputs (&" "[n], stdout);
10959 printf (" %3lu: ", hn);
10960
10961 if (dynamic_symbols == NULL || si >= num_dynamic_syms)
10962 {
10963 printf (_("<No info available for dynamic symbol number %lu>\n"),
10964 (unsigned long) si);
10965 return;
10966 }
10967
10968 psym = dynamic_symbols + si;
10969 print_vma (psym->st_value, LONG_HEX);
10970 putchar (' ');
10971 print_vma (psym->st_size, DEC_5);
10972
10973 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
10974 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
10975
10976 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
10977 printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
10978 else
10979 {
10980 unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
10981
10982 printf (" %-7s", get_symbol_visibility (vis));
10983 /* Check to see if any other bits in the st_other field are set.
10984 Note - displaying this information disrupts the layout of the
10985 table being generated, but for the moment this case is very
10986 rare. */
10987 if (psym->st_other ^ vis)
10988 printf (" [%s] ", get_symbol_other (psym->st_other ^ vis));
10989 }
10990
10991 printf (" %3.3s ", get_symbol_index_type (psym->st_shndx));
10992 if (VALID_DYNAMIC_NAME (psym->st_name))
10993 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
10994 else
10995 printf (_(" <corrupt: %14ld>"), psym->st_name);
10996 putchar ('\n');
10997 }
10998
10999 static const char *
11000 get_symbol_version_string (FILE * file,
11001 bfd_boolean is_dynsym,
11002 const char * strtab,
11003 unsigned long int strtab_size,
11004 unsigned int si,
11005 Elf_Internal_Sym * psym,
11006 enum versioned_symbol_info * sym_info,
11007 unsigned short * vna_other)
11008 {
11009 unsigned char data[2];
11010 unsigned short vers_data;
11011 unsigned long offset;
11012
11013 if (!is_dynsym
11014 || version_info[DT_VERSIONTAGIDX (DT_VERSYM)] == 0)
11015 return NULL;
11016
11017 offset = offset_from_vma (file, version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
11018 sizeof data + si * sizeof (vers_data));
11019
11020 if (get_data (&data, file, offset + si * sizeof (vers_data),
11021 sizeof (data), 1, _("version data")) == NULL)
11022 return NULL;
11023
11024 vers_data = byte_get (data, 2);
11025
11026 if ((vers_data & VERSYM_HIDDEN) == 0 && vers_data <= 1)
11027 return NULL;
11028
11029 /* Usually we'd only see verdef for defined symbols, and verneed for
11030 undefined symbols. However, symbols defined by the linker in
11031 .dynbss for variables copied from a shared library in order to
11032 avoid text relocations are defined yet have verneed. We could
11033 use a heuristic to detect the special case, for example, check
11034 for verneed first on symbols defined in SHT_NOBITS sections, but
11035 it is simpler and more reliable to just look for both verdef and
11036 verneed. .dynbss might not be mapped to a SHT_NOBITS section. */
11037
11038 if (psym->st_shndx != SHN_UNDEF
11039 && vers_data != 0x8001
11040 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
11041 {
11042 Elf_Internal_Verdef ivd;
11043 Elf_Internal_Verdaux ivda;
11044 Elf_External_Verdaux evda;
11045 unsigned long off;
11046
11047 off = offset_from_vma (file,
11048 version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
11049 sizeof (Elf_External_Verdef));
11050
11051 do
11052 {
11053 Elf_External_Verdef evd;
11054
11055 if (get_data (&evd, file, off, sizeof (evd), 1,
11056 _("version def")) == NULL)
11057 {
11058 ivd.vd_ndx = 0;
11059 ivd.vd_aux = 0;
11060 ivd.vd_next = 0;
11061 }
11062 else
11063 {
11064 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
11065 ivd.vd_aux = BYTE_GET (evd.vd_aux);
11066 ivd.vd_next = BYTE_GET (evd.vd_next);
11067 }
11068
11069 off += ivd.vd_next;
11070 }
11071 while (ivd.vd_ndx != (vers_data & VERSYM_VERSION) && ivd.vd_next != 0);
11072
11073 if (ivd.vd_ndx == (vers_data & VERSYM_VERSION))
11074 {
11075 off -= ivd.vd_next;
11076 off += ivd.vd_aux;
11077
11078 if (get_data (&evda, file, off, sizeof (evda), 1,
11079 _("version def aux")) != NULL)
11080 {
11081 ivda.vda_name = BYTE_GET (evda.vda_name);
11082
11083 if (psym->st_name != ivda.vda_name)
11084 {
11085 *sym_info = ((vers_data & VERSYM_HIDDEN) != 0
11086 ? symbol_hidden : symbol_public);
11087 return (ivda.vda_name < strtab_size
11088 ? strtab + ivda.vda_name : _("<corrupt>"));
11089 }
11090 }
11091 }
11092 }
11093
11094 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
11095 {
11096 Elf_External_Verneed evn;
11097 Elf_Internal_Verneed ivn;
11098 Elf_Internal_Vernaux ivna;
11099
11100 offset = offset_from_vma (file,
11101 version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
11102 sizeof evn);
11103 do
11104 {
11105 unsigned long vna_off;
11106
11107 if (get_data (&evn, file, offset, sizeof (evn), 1,
11108 _("version need")) == NULL)
11109 {
11110 ivna.vna_next = 0;
11111 ivna.vna_other = 0;
11112 ivna.vna_name = 0;
11113 break;
11114 }
11115
11116 ivn.vn_aux = BYTE_GET (evn.vn_aux);
11117 ivn.vn_next = BYTE_GET (evn.vn_next);
11118
11119 vna_off = offset + ivn.vn_aux;
11120
11121 do
11122 {
11123 Elf_External_Vernaux evna;
11124
11125 if (get_data (&evna, file, vna_off, sizeof (evna), 1,
11126 _("version need aux (3)")) == NULL)
11127 {
11128 ivna.vna_next = 0;
11129 ivna.vna_other = 0;
11130 ivna.vna_name = 0;
11131 }
11132 else
11133 {
11134 ivna.vna_other = BYTE_GET (evna.vna_other);
11135 ivna.vna_next = BYTE_GET (evna.vna_next);
11136 ivna.vna_name = BYTE_GET (evna.vna_name);
11137 }
11138
11139 vna_off += ivna.vna_next;
11140 }
11141 while (ivna.vna_other != vers_data && ivna.vna_next != 0);
11142
11143 if (ivna.vna_other == vers_data)
11144 break;
11145
11146 offset += ivn.vn_next;
11147 }
11148 while (ivn.vn_next != 0);
11149
11150 if (ivna.vna_other == vers_data)
11151 {
11152 *sym_info = symbol_undefined;
11153 *vna_other = ivna.vna_other;
11154 return (ivna.vna_name < strtab_size
11155 ? strtab + ivna.vna_name : _("<corrupt>"));
11156 }
11157 }
11158 return NULL;
11159 }
11160
11161 /* Dump the symbol table. */
11162 static bfd_boolean
11163 process_symbol_table (FILE * file)
11164 {
11165 Elf_Internal_Shdr * section;
11166 bfd_size_type nbuckets = 0;
11167 bfd_size_type nchains = 0;
11168 bfd_vma * buckets = NULL;
11169 bfd_vma * chains = NULL;
11170 bfd_vma ngnubuckets = 0;
11171 bfd_vma * gnubuckets = NULL;
11172 bfd_vma * gnuchains = NULL;
11173 bfd_vma gnusymidx = 0;
11174 bfd_size_type ngnuchains = 0;
11175
11176 if (!do_syms && !do_dyn_syms && !do_histogram)
11177 return TRUE;
11178
11179 if (dynamic_info[DT_HASH]
11180 && (do_histogram
11181 || (do_using_dynamic
11182 && !do_dyn_syms
11183 && dynamic_strings != NULL)))
11184 {
11185 unsigned char nb[8];
11186 unsigned char nc[8];
11187 unsigned int hash_ent_size = 4;
11188
11189 if ((elf_header.e_machine == EM_ALPHA
11190 || elf_header.e_machine == EM_S390
11191 || elf_header.e_machine == EM_S390_OLD)
11192 && elf_header.e_ident[EI_CLASS] == ELFCLASS64)
11193 hash_ent_size = 8;
11194
11195 if (fseek (file,
11196 (archive_file_offset
11197 + offset_from_vma (file, dynamic_info[DT_HASH],
11198 sizeof nb + sizeof nc)),
11199 SEEK_SET))
11200 {
11201 error (_("Unable to seek to start of dynamic information\n"));
11202 goto no_hash;
11203 }
11204
11205 if (fread (nb, hash_ent_size, 1, file) != 1)
11206 {
11207 error (_("Failed to read in number of buckets\n"));
11208 goto no_hash;
11209 }
11210
11211 if (fread (nc, hash_ent_size, 1, file) != 1)
11212 {
11213 error (_("Failed to read in number of chains\n"));
11214 goto no_hash;
11215 }
11216
11217 nbuckets = byte_get (nb, hash_ent_size);
11218 nchains = byte_get (nc, hash_ent_size);
11219
11220 buckets = get_dynamic_data (file, nbuckets, hash_ent_size);
11221 chains = get_dynamic_data (file, nchains, hash_ent_size);
11222
11223 no_hash:
11224 if (buckets == NULL || chains == NULL)
11225 {
11226 if (do_using_dynamic)
11227 return FALSE;
11228 free (buckets);
11229 free (chains);
11230 buckets = NULL;
11231 chains = NULL;
11232 nbuckets = 0;
11233 nchains = 0;
11234 }
11235 }
11236
11237 if (dynamic_info_DT_GNU_HASH
11238 && (do_histogram
11239 || (do_using_dynamic
11240 && !do_dyn_syms
11241 && dynamic_strings != NULL)))
11242 {
11243 unsigned char nb[16];
11244 bfd_vma i, maxchain = 0xffffffff, bitmaskwords;
11245 bfd_vma buckets_vma;
11246
11247 if (fseek (file,
11248 (archive_file_offset
11249 + offset_from_vma (file, dynamic_info_DT_GNU_HASH,
11250 sizeof nb)),
11251 SEEK_SET))
11252 {
11253 error (_("Unable to seek to start of dynamic information\n"));
11254 goto no_gnu_hash;
11255 }
11256
11257 if (fread (nb, 16, 1, file) != 1)
11258 {
11259 error (_("Failed to read in number of buckets\n"));
11260 goto no_gnu_hash;
11261 }
11262
11263 ngnubuckets = byte_get (nb, 4);
11264 gnusymidx = byte_get (nb + 4, 4);
11265 bitmaskwords = byte_get (nb + 8, 4);
11266 buckets_vma = dynamic_info_DT_GNU_HASH + 16;
11267 if (is_32bit_elf)
11268 buckets_vma += bitmaskwords * 4;
11269 else
11270 buckets_vma += bitmaskwords * 8;
11271
11272 if (fseek (file,
11273 (archive_file_offset
11274 + offset_from_vma (file, buckets_vma, 4)),
11275 SEEK_SET))
11276 {
11277 error (_("Unable to seek to start of dynamic information\n"));
11278 goto no_gnu_hash;
11279 }
11280
11281 gnubuckets = get_dynamic_data (file, ngnubuckets, 4);
11282
11283 if (gnubuckets == NULL)
11284 goto no_gnu_hash;
11285
11286 for (i = 0; i < ngnubuckets; i++)
11287 if (gnubuckets[i] != 0)
11288 {
11289 if (gnubuckets[i] < gnusymidx)
11290 return FALSE;
11291
11292 if (maxchain == 0xffffffff || gnubuckets[i] > maxchain)
11293 maxchain = gnubuckets[i];
11294 }
11295
11296 if (maxchain == 0xffffffff)
11297 goto no_gnu_hash;
11298
11299 maxchain -= gnusymidx;
11300
11301 if (fseek (file,
11302 (archive_file_offset
11303 + offset_from_vma (file, buckets_vma
11304 + 4 * (ngnubuckets + maxchain), 4)),
11305 SEEK_SET))
11306 {
11307 error (_("Unable to seek to start of dynamic information\n"));
11308 goto no_gnu_hash;
11309 }
11310
11311 do
11312 {
11313 if (fread (nb, 4, 1, file) != 1)
11314 {
11315 error (_("Failed to determine last chain length\n"));
11316 goto no_gnu_hash;
11317 }
11318
11319 if (maxchain + 1 == 0)
11320 goto no_gnu_hash;
11321
11322 ++maxchain;
11323 }
11324 while ((byte_get (nb, 4) & 1) == 0);
11325
11326 if (fseek (file,
11327 (archive_file_offset
11328 + offset_from_vma (file, buckets_vma + 4 * ngnubuckets, 4)),
11329 SEEK_SET))
11330 {
11331 error (_("Unable to seek to start of dynamic information\n"));
11332 goto no_gnu_hash;
11333 }
11334
11335 gnuchains = get_dynamic_data (file, maxchain, 4);
11336 ngnuchains = maxchain;
11337
11338 no_gnu_hash:
11339 if (gnuchains == NULL)
11340 {
11341 free (gnubuckets);
11342 gnubuckets = NULL;
11343 ngnubuckets = 0;
11344 if (do_using_dynamic)
11345 return FALSE;
11346 }
11347 }
11348
11349 if ((dynamic_info[DT_HASH] || dynamic_info_DT_GNU_HASH)
11350 && do_syms
11351 && do_using_dynamic
11352 && dynamic_strings != NULL
11353 && dynamic_symbols != NULL)
11354 {
11355 unsigned long hn;
11356
11357 if (dynamic_info[DT_HASH])
11358 {
11359 bfd_vma si;
11360
11361 printf (_("\nSymbol table for image:\n"));
11362 if (is_32bit_elf)
11363 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11364 else
11365 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11366
11367 for (hn = 0; hn < nbuckets; hn++)
11368 {
11369 if (! buckets[hn])
11370 continue;
11371
11372 for (si = buckets[hn]; si < nchains && si > 0; si = chains[si])
11373 print_dynamic_symbol (si, hn);
11374 }
11375 }
11376
11377 if (dynamic_info_DT_GNU_HASH)
11378 {
11379 printf (_("\nSymbol table of `.gnu.hash' for image:\n"));
11380 if (is_32bit_elf)
11381 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11382 else
11383 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11384
11385 for (hn = 0; hn < ngnubuckets; ++hn)
11386 if (gnubuckets[hn] != 0)
11387 {
11388 bfd_vma si = gnubuckets[hn];
11389 bfd_vma off = si - gnusymidx;
11390
11391 do
11392 {
11393 print_dynamic_symbol (si, hn);
11394 si++;
11395 }
11396 while (off < ngnuchains && (gnuchains[off++] & 1) == 0);
11397 }
11398 }
11399 }
11400 else if ((do_dyn_syms || (do_syms && !do_using_dynamic))
11401 && section_headers != NULL)
11402 {
11403 unsigned int i;
11404
11405 for (i = 0, section = section_headers;
11406 i < elf_header.e_shnum;
11407 i++, section++)
11408 {
11409 unsigned int si;
11410 char * strtab = NULL;
11411 unsigned long int strtab_size = 0;
11412 Elf_Internal_Sym * symtab;
11413 Elf_Internal_Sym * psym;
11414 unsigned long num_syms;
11415
11416 if ((section->sh_type != SHT_SYMTAB
11417 && section->sh_type != SHT_DYNSYM)
11418 || (!do_syms
11419 && section->sh_type == SHT_SYMTAB))
11420 continue;
11421
11422 if (section->sh_entsize == 0)
11423 {
11424 printf (_("\nSymbol table '%s' has a sh_entsize of zero!\n"),
11425 printable_section_name (section));
11426 continue;
11427 }
11428
11429 printf (_("\nSymbol table '%s' contains %lu entries:\n"),
11430 printable_section_name (section),
11431 (unsigned long) (section->sh_size / section->sh_entsize));
11432
11433 if (is_32bit_elf)
11434 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
11435 else
11436 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
11437
11438 symtab = GET_ELF_SYMBOLS (file, section, & num_syms);
11439 if (symtab == NULL)
11440 continue;
11441
11442 if (section->sh_link == elf_header.e_shstrndx)
11443 {
11444 strtab = string_table;
11445 strtab_size = string_table_length;
11446 }
11447 else if (section->sh_link < elf_header.e_shnum)
11448 {
11449 Elf_Internal_Shdr * string_sec;
11450
11451 string_sec = section_headers + section->sh_link;
11452
11453 strtab = (char *) get_data (NULL, file, string_sec->sh_offset,
11454 1, string_sec->sh_size,
11455 _("string table"));
11456 strtab_size = strtab != NULL ? string_sec->sh_size : 0;
11457 }
11458
11459 for (si = 0, psym = symtab; si < num_syms; si++, psym++)
11460 {
11461 const char *version_string;
11462 enum versioned_symbol_info sym_info;
11463 unsigned short vna_other;
11464
11465 printf ("%6d: ", si);
11466 print_vma (psym->st_value, LONG_HEX);
11467 putchar (' ');
11468 print_vma (psym->st_size, DEC_5);
11469 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
11470 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
11471 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
11472 printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
11473 else
11474 {
11475 unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
11476
11477 printf (" %-7s", get_symbol_visibility (vis));
11478 /* Check to see if any other bits in the st_other field are set.
11479 Note - displaying this information disrupts the layout of the
11480 table being generated, but for the moment this case is very rare. */
11481 if (psym->st_other ^ vis)
11482 printf (" [%s] ", get_symbol_other (psym->st_other ^ vis));
11483 }
11484 printf (" %4s ", get_symbol_index_type (psym->st_shndx));
11485 print_symbol (25, psym->st_name < strtab_size
11486 ? strtab + psym->st_name : _("<corrupt>"));
11487
11488 version_string
11489 = get_symbol_version_string (file,
11490 section->sh_type == SHT_DYNSYM,
11491 strtab, strtab_size, si,
11492 psym, &sym_info, &vna_other);
11493 if (version_string)
11494 {
11495 if (sym_info == symbol_undefined)
11496 printf ("@%s (%d)", version_string, vna_other);
11497 else
11498 printf (sym_info == symbol_hidden ? "@%s" : "@@%s",
11499 version_string);
11500 }
11501
11502 putchar ('\n');
11503
11504 if (ELF_ST_BIND (psym->st_info) == STB_LOCAL
11505 && si >= section->sh_info
11506 /* Irix 5 and 6 MIPS binaries are known to ignore this requirement. */
11507 && elf_header.e_machine != EM_MIPS
11508 /* Solaris binaries have been found to violate this requirement as
11509 well. Not sure if this is a bug or an ABI requirement. */
11510 && elf_header.e_ident[EI_OSABI] != ELFOSABI_SOLARIS)
11511 warn (_("local symbol %u found at index >= %s's sh_info value of %u\n"),
11512 si, printable_section_name (section), section->sh_info);
11513 }
11514
11515 free (symtab);
11516 if (strtab != string_table)
11517 free (strtab);
11518 }
11519 }
11520 else if (do_syms)
11521 printf
11522 (_("\nDynamic symbol information is not available for displaying symbols.\n"));
11523
11524 if (do_histogram && buckets != NULL)
11525 {
11526 unsigned long * lengths;
11527 unsigned long * counts;
11528 unsigned long hn;
11529 bfd_vma si;
11530 unsigned long maxlength = 0;
11531 unsigned long nzero_counts = 0;
11532 unsigned long nsyms = 0;
11533 unsigned long chained;
11534
11535 printf (_("\nHistogram for bucket list length (total of %lu buckets):\n"),
11536 (unsigned long) nbuckets);
11537
11538 lengths = (unsigned long *) calloc (nbuckets, sizeof (*lengths));
11539 if (lengths == NULL)
11540 {
11541 error (_("Out of memory allocating space for histogram buckets\n"));
11542 return FALSE;
11543 }
11544
11545 printf (_(" Length Number %% of total Coverage\n"));
11546 for (hn = 0; hn < nbuckets; ++hn)
11547 {
11548 for (si = buckets[hn], chained = 0;
11549 si > 0 && si < nchains && si < nbuckets && chained <= nchains;
11550 si = chains[si], ++chained)
11551 {
11552 ++nsyms;
11553 if (maxlength < ++lengths[hn])
11554 ++maxlength;
11555 }
11556
11557 /* PR binutils/17531: A corrupt binary could contain broken
11558 histogram data. Do not go into an infinite loop trying
11559 to process it. */
11560 if (chained > nchains)
11561 {
11562 error (_("histogram chain is corrupt\n"));
11563 break;
11564 }
11565 }
11566
11567 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
11568 if (counts == NULL)
11569 {
11570 free (lengths);
11571 error (_("Out of memory allocating space for histogram counts\n"));
11572 return FALSE;
11573 }
11574
11575 for (hn = 0; hn < nbuckets; ++hn)
11576 ++counts[lengths[hn]];
11577
11578 if (nbuckets > 0)
11579 {
11580 unsigned long i;
11581 printf (" 0 %-10lu (%5.1f%%)\n",
11582 counts[0], (counts[0] * 100.0) / nbuckets);
11583 for (i = 1; i <= maxlength; ++i)
11584 {
11585 nzero_counts += counts[i] * i;
11586 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
11587 i, counts[i], (counts[i] * 100.0) / nbuckets,
11588 (nzero_counts * 100.0) / nsyms);
11589 }
11590 }
11591
11592 free (counts);
11593 free (lengths);
11594 }
11595
11596 if (buckets != NULL)
11597 {
11598 free (buckets);
11599 free (chains);
11600 }
11601
11602 if (do_histogram && gnubuckets != NULL)
11603 {
11604 unsigned long * lengths;
11605 unsigned long * counts;
11606 unsigned long hn;
11607 unsigned long maxlength = 0;
11608 unsigned long nzero_counts = 0;
11609 unsigned long nsyms = 0;
11610
11611 printf (_("\nHistogram for `.gnu.hash' bucket list length (total of %lu buckets):\n"),
11612 (unsigned long) ngnubuckets);
11613
11614 lengths = (unsigned long *) calloc (ngnubuckets, sizeof (*lengths));
11615 if (lengths == NULL)
11616 {
11617 error (_("Out of memory allocating space for gnu histogram buckets\n"));
11618 return FALSE;
11619 }
11620
11621 printf (_(" Length Number %% of total Coverage\n"));
11622
11623 for (hn = 0; hn < ngnubuckets; ++hn)
11624 if (gnubuckets[hn] != 0)
11625 {
11626 bfd_vma off, length = 1;
11627
11628 for (off = gnubuckets[hn] - gnusymidx;
11629 /* PR 17531 file: 010-77222-0.004. */
11630 off < ngnuchains && (gnuchains[off] & 1) == 0;
11631 ++off)
11632 ++length;
11633 lengths[hn] = length;
11634 if (length > maxlength)
11635 maxlength = length;
11636 nsyms += length;
11637 }
11638
11639 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
11640 if (counts == NULL)
11641 {
11642 free (lengths);
11643 error (_("Out of memory allocating space for gnu histogram counts\n"));
11644 return FALSE;
11645 }
11646
11647 for (hn = 0; hn < ngnubuckets; ++hn)
11648 ++counts[lengths[hn]];
11649
11650 if (ngnubuckets > 0)
11651 {
11652 unsigned long j;
11653 printf (" 0 %-10lu (%5.1f%%)\n",
11654 counts[0], (counts[0] * 100.0) / ngnubuckets);
11655 for (j = 1; j <= maxlength; ++j)
11656 {
11657 nzero_counts += counts[j] * j;
11658 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
11659 j, counts[j], (counts[j] * 100.0) / ngnubuckets,
11660 (nzero_counts * 100.0) / nsyms);
11661 }
11662 }
11663
11664 free (counts);
11665 free (lengths);
11666 free (gnubuckets);
11667 free (gnuchains);
11668 }
11669
11670 return TRUE;
11671 }
11672
11673 static bfd_boolean
11674 process_syminfo (FILE * file ATTRIBUTE_UNUSED)
11675 {
11676 unsigned int i;
11677
11678 if (dynamic_syminfo == NULL
11679 || !do_dynamic)
11680 /* No syminfo, this is ok. */
11681 return TRUE;
11682
11683 /* There better should be a dynamic symbol section. */
11684 if (dynamic_symbols == NULL || dynamic_strings == NULL)
11685 return FALSE;
11686
11687 if (dynamic_addr)
11688 printf (_("\nDynamic info segment at offset 0x%lx contains %d entries:\n"),
11689 dynamic_syminfo_offset, dynamic_syminfo_nent);
11690
11691 printf (_(" Num: Name BoundTo Flags\n"));
11692 for (i = 0; i < dynamic_syminfo_nent; ++i)
11693 {
11694 unsigned short int flags = dynamic_syminfo[i].si_flags;
11695
11696 printf ("%4d: ", i);
11697 if (i >= num_dynamic_syms)
11698 printf (_("<corrupt index>"));
11699 else if (VALID_DYNAMIC_NAME (dynamic_symbols[i].st_name))
11700 print_symbol (30, GET_DYNAMIC_NAME (dynamic_symbols[i].st_name));
11701 else
11702 printf (_("<corrupt: %19ld>"), dynamic_symbols[i].st_name);
11703 putchar (' ');
11704
11705 switch (dynamic_syminfo[i].si_boundto)
11706 {
11707 case SYMINFO_BT_SELF:
11708 fputs ("SELF ", stdout);
11709 break;
11710 case SYMINFO_BT_PARENT:
11711 fputs ("PARENT ", stdout);
11712 break;
11713 default:
11714 if (dynamic_syminfo[i].si_boundto > 0
11715 && dynamic_syminfo[i].si_boundto < dynamic_nent
11716 && VALID_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val))
11717 {
11718 print_symbol (10, GET_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val));
11719 putchar (' ' );
11720 }
11721 else
11722 printf ("%-10d ", dynamic_syminfo[i].si_boundto);
11723 break;
11724 }
11725
11726 if (flags & SYMINFO_FLG_DIRECT)
11727 printf (" DIRECT");
11728 if (flags & SYMINFO_FLG_PASSTHRU)
11729 printf (" PASSTHRU");
11730 if (flags & SYMINFO_FLG_COPY)
11731 printf (" COPY");
11732 if (flags & SYMINFO_FLG_LAZYLOAD)
11733 printf (" LAZYLOAD");
11734
11735 puts ("");
11736 }
11737
11738 return TRUE;
11739 }
11740
11741 #define IN_RANGE(START,END,ADDR,OFF) \
11742 (((ADDR) >= (START)) && ((ADDR) + (OFF) < (END)))
11743
11744 /* Check to see if the given reloc needs to be handled in a target specific
11745 manner. If so then process the reloc and return TRUE otherwise return
11746 FALSE.
11747
11748 If called with reloc == NULL, then this is a signal that reloc processing
11749 for the current section has finished, and any saved state should be
11750 discarded. */
11751
11752 static bfd_boolean
11753 target_specific_reloc_handling (Elf_Internal_Rela * reloc,
11754 unsigned char * start,
11755 unsigned char * end,
11756 Elf_Internal_Sym * symtab,
11757 unsigned long num_syms)
11758 {
11759 unsigned int reloc_type = 0;
11760 unsigned long sym_index = 0;
11761
11762 if (reloc)
11763 {
11764 reloc_type = get_reloc_type (reloc->r_info);
11765 sym_index = get_reloc_symindex (reloc->r_info);
11766 }
11767
11768 switch (elf_header.e_machine)
11769 {
11770 case EM_MSP430:
11771 case EM_MSP430_OLD:
11772 {
11773 static Elf_Internal_Sym * saved_sym = NULL;
11774
11775 if (reloc == NULL)
11776 {
11777 saved_sym = NULL;
11778 return TRUE;
11779 }
11780
11781 switch (reloc_type)
11782 {
11783 case 10: /* R_MSP430_SYM_DIFF */
11784 if (uses_msp430x_relocs ())
11785 break;
11786 /* Fall through. */
11787 case 21: /* R_MSP430X_SYM_DIFF */
11788 /* PR 21139. */
11789 if (sym_index >= num_syms)
11790 error (_("MSP430 SYM_DIFF reloc contains invalid symbol index %lu\n"),
11791 sym_index);
11792 else
11793 saved_sym = symtab + sym_index;
11794 return TRUE;
11795
11796 case 1: /* R_MSP430_32 or R_MSP430_ABS32 */
11797 case 3: /* R_MSP430_16 or R_MSP430_ABS8 */
11798 goto handle_sym_diff;
11799
11800 case 5: /* R_MSP430_16_BYTE */
11801 case 9: /* R_MSP430_8 */
11802 if (uses_msp430x_relocs ())
11803 break;
11804 goto handle_sym_diff;
11805
11806 case 2: /* R_MSP430_ABS16 */
11807 case 15: /* R_MSP430X_ABS16 */
11808 if (! uses_msp430x_relocs ())
11809 break;
11810 goto handle_sym_diff;
11811
11812 handle_sym_diff:
11813 if (saved_sym != NULL)
11814 {
11815 int reloc_size = reloc_type == 1 ? 4 : 2;
11816 bfd_vma value;
11817
11818 if (sym_index >= num_syms)
11819 error (_("MSP430 reloc contains invalid symbol index %lu\n"),
11820 sym_index);
11821 else
11822 {
11823 value = reloc->r_addend + (symtab[sym_index].st_value
11824 - saved_sym->st_value);
11825
11826 if (IN_RANGE (start, end, start + reloc->r_offset, reloc_size))
11827 byte_put (start + reloc->r_offset, value, reloc_size);
11828 else
11829 /* PR 21137 */
11830 error (_("MSP430 sym diff reloc contains invalid offset: 0x%lx\n"),
11831 (long) reloc->r_offset);
11832 }
11833
11834 saved_sym = NULL;
11835 return TRUE;
11836 }
11837 break;
11838
11839 default:
11840 if (saved_sym != NULL)
11841 error (_("Unhandled MSP430 reloc type found after SYM_DIFF reloc\n"));
11842 break;
11843 }
11844 break;
11845 }
11846
11847 case EM_MN10300:
11848 case EM_CYGNUS_MN10300:
11849 {
11850 static Elf_Internal_Sym * saved_sym = NULL;
11851
11852 if (reloc == NULL)
11853 {
11854 saved_sym = NULL;
11855 return TRUE;
11856 }
11857
11858 switch (reloc_type)
11859 {
11860 case 34: /* R_MN10300_ALIGN */
11861 return TRUE;
11862 case 33: /* R_MN10300_SYM_DIFF */
11863 if (sym_index >= num_syms)
11864 error (_("MN10300_SYM_DIFF reloc contains invalid symbol index %lu\n"),
11865 sym_index);
11866 else
11867 saved_sym = symtab + sym_index;
11868 return TRUE;
11869
11870 case 1: /* R_MN10300_32 */
11871 case 2: /* R_MN10300_16 */
11872 if (saved_sym != NULL)
11873 {
11874 int reloc_size = reloc_type == 1 ? 4 : 2;
11875 bfd_vma value;
11876
11877 if (sym_index >= num_syms)
11878 error (_("MN10300 reloc contains invalid symbol index %lu\n"),
11879 sym_index);
11880 else
11881 {
11882 value = reloc->r_addend + (symtab[sym_index].st_value
11883 - saved_sym->st_value);
11884
11885 if (IN_RANGE (start, end, start + reloc->r_offset, reloc_size))
11886 byte_put (start + reloc->r_offset, value, reloc_size);
11887 else
11888 error (_("MN10300 sym diff reloc contains invalid offset: 0x%lx\n"),
11889 (long) reloc->r_offset);
11890 }
11891
11892 saved_sym = NULL;
11893 return TRUE;
11894 }
11895 break;
11896 default:
11897 if (saved_sym != NULL)
11898 error (_("Unhandled MN10300 reloc type found after SYM_DIFF reloc\n"));
11899 break;
11900 }
11901 break;
11902 }
11903
11904 case EM_RL78:
11905 {
11906 static bfd_vma saved_sym1 = 0;
11907 static bfd_vma saved_sym2 = 0;
11908 static bfd_vma value;
11909
11910 if (reloc == NULL)
11911 {
11912 saved_sym1 = saved_sym2 = 0;
11913 return TRUE;
11914 }
11915
11916 switch (reloc_type)
11917 {
11918 case 0x80: /* R_RL78_SYM. */
11919 saved_sym1 = saved_sym2;
11920 if (sym_index >= num_syms)
11921 error (_("RL78_SYM reloc contains invalid symbol index %lu\n"),
11922 sym_index);
11923 else
11924 {
11925 saved_sym2 = symtab[sym_index].st_value;
11926 saved_sym2 += reloc->r_addend;
11927 }
11928 return TRUE;
11929
11930 case 0x83: /* R_RL78_OPsub. */
11931 value = saved_sym1 - saved_sym2;
11932 saved_sym2 = saved_sym1 = 0;
11933 return TRUE;
11934 break;
11935
11936 case 0x41: /* R_RL78_ABS32. */
11937 if (IN_RANGE (start, end, start + reloc->r_offset, 4))
11938 byte_put (start + reloc->r_offset, value, 4);
11939 else
11940 error (_("RL78 sym diff reloc contains invalid offset: 0x%lx\n"),
11941 (long) reloc->r_offset);
11942 value = 0;
11943 return TRUE;
11944
11945 case 0x43: /* R_RL78_ABS16. */
11946 if (IN_RANGE (start, end, start + reloc->r_offset, 2))
11947 byte_put (start + reloc->r_offset, value, 2);
11948 else
11949 error (_("RL78 sym diff reloc contains invalid offset: 0x%lx\n"),
11950 (long) reloc->r_offset);
11951 value = 0;
11952 return TRUE;
11953
11954 default:
11955 break;
11956 }
11957 break;
11958 }
11959 }
11960
11961 return FALSE;
11962 }
11963
11964 /* Returns TRUE iff RELOC_TYPE is a 32-bit absolute RELA relocation used in
11965 DWARF debug sections. This is a target specific test. Note - we do not
11966 go through the whole including-target-headers-multiple-times route, (as
11967 we have already done with <elf/h8.h>) because this would become very
11968 messy and even then this function would have to contain target specific
11969 information (the names of the relocs instead of their numeric values).
11970 FIXME: This is not the correct way to solve this problem. The proper way
11971 is to have target specific reloc sizing and typing functions created by
11972 the reloc-macros.h header, in the same way that it already creates the
11973 reloc naming functions. */
11974
11975 static bfd_boolean
11976 is_32bit_abs_reloc (unsigned int reloc_type)
11977 {
11978 /* Please keep this table alpha-sorted for ease of visual lookup. */
11979 switch (elf_header.e_machine)
11980 {
11981 case EM_386:
11982 case EM_IAMCU:
11983 return reloc_type == 1; /* R_386_32. */
11984 case EM_68K:
11985 return reloc_type == 1; /* R_68K_32. */
11986 case EM_860:
11987 return reloc_type == 1; /* R_860_32. */
11988 case EM_960:
11989 return reloc_type == 2; /* R_960_32. */
11990 case EM_AARCH64:
11991 return (reloc_type == 258
11992 || reloc_type == 1); /* R_AARCH64_ABS32 || R_AARCH64_P32_ABS32 */
11993 case EM_ADAPTEVA_EPIPHANY:
11994 return reloc_type == 3;
11995 case EM_ALPHA:
11996 return reloc_type == 1; /* R_ALPHA_REFLONG. */
11997 case EM_ARC:
11998 return reloc_type == 1; /* R_ARC_32. */
11999 case EM_ARC_COMPACT:
12000 case EM_ARC_COMPACT2:
12001 return reloc_type == 4; /* R_ARC_32. */
12002 case EM_ARM:
12003 return reloc_type == 2; /* R_ARM_ABS32 */
12004 case EM_AVR_OLD:
12005 case EM_AVR:
12006 return reloc_type == 1;
12007 case EM_BLACKFIN:
12008 return reloc_type == 0x12; /* R_byte4_data. */
12009 case EM_CRIS:
12010 return reloc_type == 3; /* R_CRIS_32. */
12011 case EM_CR16:
12012 return reloc_type == 3; /* R_CR16_NUM32. */
12013 case EM_CRX:
12014 return reloc_type == 15; /* R_CRX_NUM32. */
12015 case EM_CYGNUS_FRV:
12016 return reloc_type == 1;
12017 case EM_CYGNUS_D10V:
12018 case EM_D10V:
12019 return reloc_type == 6; /* R_D10V_32. */
12020 case EM_CYGNUS_D30V:
12021 case EM_D30V:
12022 return reloc_type == 12; /* R_D30V_32_NORMAL. */
12023 case EM_DLX:
12024 return reloc_type == 3; /* R_DLX_RELOC_32. */
12025 case EM_CYGNUS_FR30:
12026 case EM_FR30:
12027 return reloc_type == 3; /* R_FR30_32. */
12028 case EM_FT32:
12029 return reloc_type == 1; /* R_FT32_32. */
12030 case EM_H8S:
12031 case EM_H8_300:
12032 case EM_H8_300H:
12033 return reloc_type == 1; /* R_H8_DIR32. */
12034 case EM_IA_64:
12035 return reloc_type == 0x65 /* R_IA64_SECREL32LSB. */
12036 || reloc_type == 0x25; /* R_IA64_DIR32LSB. */
12037 case EM_IP2K_OLD:
12038 case EM_IP2K:
12039 return reloc_type == 2; /* R_IP2K_32. */
12040 case EM_IQ2000:
12041 return reloc_type == 2; /* R_IQ2000_32. */
12042 case EM_LATTICEMICO32:
12043 return reloc_type == 3; /* R_LM32_32. */
12044 case EM_M32C_OLD:
12045 case EM_M32C:
12046 return reloc_type == 3; /* R_M32C_32. */
12047 case EM_M32R:
12048 return reloc_type == 34; /* R_M32R_32_RELA. */
12049 case EM_68HC11:
12050 case EM_68HC12:
12051 return reloc_type == 6; /* R_M68HC11_32. */
12052 case EM_MCORE:
12053 return reloc_type == 1; /* R_MCORE_ADDR32. */
12054 case EM_CYGNUS_MEP:
12055 return reloc_type == 4; /* R_MEP_32. */
12056 case EM_METAG:
12057 return reloc_type == 2; /* R_METAG_ADDR32. */
12058 case EM_MICROBLAZE:
12059 return reloc_type == 1; /* R_MICROBLAZE_32. */
12060 case EM_MIPS:
12061 return reloc_type == 2; /* R_MIPS_32. */
12062 case EM_MMIX:
12063 return reloc_type == 4; /* R_MMIX_32. */
12064 case EM_CYGNUS_MN10200:
12065 case EM_MN10200:
12066 return reloc_type == 1; /* R_MN10200_32. */
12067 case EM_CYGNUS_MN10300:
12068 case EM_MN10300:
12069 return reloc_type == 1; /* R_MN10300_32. */
12070 case EM_MOXIE:
12071 return reloc_type == 1; /* R_MOXIE_32. */
12072 case EM_MSP430_OLD:
12073 case EM_MSP430:
12074 return reloc_type == 1; /* R_MSP430_32 or R_MSP320_ABS32. */
12075 case EM_MT:
12076 return reloc_type == 2; /* R_MT_32. */
12077 case EM_NDS32:
12078 return reloc_type == 20; /* R_NDS32_RELA. */
12079 case EM_ALTERA_NIOS2:
12080 return reloc_type == 12; /* R_NIOS2_BFD_RELOC_32. */
12081 case EM_NIOS32:
12082 return reloc_type == 1; /* R_NIOS_32. */
12083 case EM_OR1K:
12084 return reloc_type == 1; /* R_OR1K_32. */
12085 case EM_PARISC:
12086 return (reloc_type == 1 /* R_PARISC_DIR32. */
12087 || reloc_type == 41); /* R_PARISC_SECREL32. */
12088 case EM_PJ:
12089 case EM_PJ_OLD:
12090 return reloc_type == 1; /* R_PJ_DATA_DIR32. */
12091 case EM_PPC64:
12092 return reloc_type == 1; /* R_PPC64_ADDR32. */
12093 case EM_PPC:
12094 return reloc_type == 1; /* R_PPC_ADDR32. */
12095 case EM_TI_PRU:
12096 return reloc_type == 11; /* R_PRU_BFD_RELOC_32. */
12097 case EM_RISCV:
12098 return reloc_type == 1; /* R_RISCV_32. */
12099 case EM_RL78:
12100 return reloc_type == 1; /* R_RL78_DIR32. */
12101 case EM_RX:
12102 return reloc_type == 1; /* R_RX_DIR32. */
12103 case EM_S370:
12104 return reloc_type == 1; /* R_I370_ADDR31. */
12105 case EM_S390_OLD:
12106 case EM_S390:
12107 return reloc_type == 4; /* R_S390_32. */
12108 case EM_SCORE:
12109 return reloc_type == 8; /* R_SCORE_ABS32. */
12110 case EM_SH:
12111 return reloc_type == 1; /* R_SH_DIR32. */
12112 case EM_SPARC32PLUS:
12113 case EM_SPARCV9:
12114 case EM_SPARC:
12115 return reloc_type == 3 /* R_SPARC_32. */
12116 || reloc_type == 23; /* R_SPARC_UA32. */
12117 case EM_SPU:
12118 return reloc_type == 6; /* R_SPU_ADDR32 */
12119 case EM_TI_C6000:
12120 return reloc_type == 1; /* R_C6000_ABS32. */
12121 case EM_TILEGX:
12122 return reloc_type == 2; /* R_TILEGX_32. */
12123 case EM_TILEPRO:
12124 return reloc_type == 1; /* R_TILEPRO_32. */
12125 case EM_CYGNUS_V850:
12126 case EM_V850:
12127 return reloc_type == 6; /* R_V850_ABS32. */
12128 case EM_V800:
12129 return reloc_type == 0x33; /* R_V810_WORD. */
12130 case EM_VAX:
12131 return reloc_type == 1; /* R_VAX_32. */
12132 case EM_VISIUM:
12133 return reloc_type == 3; /* R_VISIUM_32. */
12134 case EM_WEBASSEMBLY:
12135 return reloc_type == 1; /* R_WASM32_32. */
12136 case EM_X86_64:
12137 case EM_L1OM:
12138 case EM_K1OM:
12139 return reloc_type == 10; /* R_X86_64_32. */
12140 case EM_XC16X:
12141 case EM_C166:
12142 return reloc_type == 3; /* R_XC16C_ABS_32. */
12143 case EM_XGATE:
12144 return reloc_type == 4; /* R_XGATE_32. */
12145 case EM_XSTORMY16:
12146 return reloc_type == 1; /* R_XSTROMY16_32. */
12147 case EM_XTENSA_OLD:
12148 case EM_XTENSA:
12149 return reloc_type == 1; /* R_XTENSA_32. */
12150 default:
12151 {
12152 static unsigned int prev_warn = 0;
12153
12154 /* Avoid repeating the same warning multiple times. */
12155 if (prev_warn != elf_header.e_machine)
12156 error (_("Missing knowledge of 32-bit reloc types used in DWARF sections of machine number %d\n"),
12157 elf_header.e_machine);
12158 prev_warn = elf_header.e_machine;
12159 return FALSE;
12160 }
12161 }
12162 }
12163
12164 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12165 a 32-bit pc-relative RELA relocation used in DWARF debug sections. */
12166
12167 static bfd_boolean
12168 is_32bit_pcrel_reloc (unsigned int reloc_type)
12169 {
12170 switch (elf_header.e_machine)
12171 /* Please keep this table alpha-sorted for ease of visual lookup. */
12172 {
12173 case EM_386:
12174 case EM_IAMCU:
12175 return reloc_type == 2; /* R_386_PC32. */
12176 case EM_68K:
12177 return reloc_type == 4; /* R_68K_PC32. */
12178 case EM_AARCH64:
12179 return reloc_type == 261; /* R_AARCH64_PREL32 */
12180 case EM_ADAPTEVA_EPIPHANY:
12181 return reloc_type == 6;
12182 case EM_ALPHA:
12183 return reloc_type == 10; /* R_ALPHA_SREL32. */
12184 case EM_ARC_COMPACT:
12185 case EM_ARC_COMPACT2:
12186 return reloc_type == 49; /* R_ARC_32_PCREL. */
12187 case EM_ARM:
12188 return reloc_type == 3; /* R_ARM_REL32 */
12189 case EM_AVR_OLD:
12190 case EM_AVR:
12191 return reloc_type == 36; /* R_AVR_32_PCREL. */
12192 case EM_MICROBLAZE:
12193 return reloc_type == 2; /* R_MICROBLAZE_32_PCREL. */
12194 case EM_OR1K:
12195 return reloc_type == 9; /* R_OR1K_32_PCREL. */
12196 case EM_PARISC:
12197 return reloc_type == 9; /* R_PARISC_PCREL32. */
12198 case EM_PPC:
12199 return reloc_type == 26; /* R_PPC_REL32. */
12200 case EM_PPC64:
12201 return reloc_type == 26; /* R_PPC64_REL32. */
12202 case EM_S390_OLD:
12203 case EM_S390:
12204 return reloc_type == 5; /* R_390_PC32. */
12205 case EM_SH:
12206 return reloc_type == 2; /* R_SH_REL32. */
12207 case EM_SPARC32PLUS:
12208 case EM_SPARCV9:
12209 case EM_SPARC:
12210 return reloc_type == 6; /* R_SPARC_DISP32. */
12211 case EM_SPU:
12212 return reloc_type == 13; /* R_SPU_REL32. */
12213 case EM_TILEGX:
12214 return reloc_type == 6; /* R_TILEGX_32_PCREL. */
12215 case EM_TILEPRO:
12216 return reloc_type == 4; /* R_TILEPRO_32_PCREL. */
12217 case EM_VISIUM:
12218 return reloc_type == 6; /* R_VISIUM_32_PCREL */
12219 case EM_X86_64:
12220 case EM_L1OM:
12221 case EM_K1OM:
12222 return reloc_type == 2; /* R_X86_64_PC32. */
12223 case EM_XTENSA_OLD:
12224 case EM_XTENSA:
12225 return reloc_type == 14; /* R_XTENSA_32_PCREL. */
12226 default:
12227 /* Do not abort or issue an error message here. Not all targets use
12228 pc-relative 32-bit relocs in their DWARF debug information and we
12229 have already tested for target coverage in is_32bit_abs_reloc. A
12230 more helpful warning message will be generated by apply_relocations
12231 anyway, so just return. */
12232 return FALSE;
12233 }
12234 }
12235
12236 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12237 a 64-bit absolute RELA relocation used in DWARF debug sections. */
12238
12239 static bfd_boolean
12240 is_64bit_abs_reloc (unsigned int reloc_type)
12241 {
12242 switch (elf_header.e_machine)
12243 {
12244 case EM_AARCH64:
12245 return reloc_type == 257; /* R_AARCH64_ABS64. */
12246 case EM_ALPHA:
12247 return reloc_type == 2; /* R_ALPHA_REFQUAD. */
12248 case EM_IA_64:
12249 return reloc_type == 0x27; /* R_IA64_DIR64LSB. */
12250 case EM_PARISC:
12251 return reloc_type == 80; /* R_PARISC_DIR64. */
12252 case EM_PPC64:
12253 return reloc_type == 38; /* R_PPC64_ADDR64. */
12254 case EM_RISCV:
12255 return reloc_type == 2; /* R_RISCV_64. */
12256 case EM_SPARC32PLUS:
12257 case EM_SPARCV9:
12258 case EM_SPARC:
12259 return reloc_type == 54; /* R_SPARC_UA64. */
12260 case EM_X86_64:
12261 case EM_L1OM:
12262 case EM_K1OM:
12263 return reloc_type == 1; /* R_X86_64_64. */
12264 case EM_S390_OLD:
12265 case EM_S390:
12266 return reloc_type == 22; /* R_S390_64. */
12267 case EM_TILEGX:
12268 return reloc_type == 1; /* R_TILEGX_64. */
12269 case EM_MIPS:
12270 return reloc_type == 18; /* R_MIPS_64. */
12271 default:
12272 return FALSE;
12273 }
12274 }
12275
12276 /* Like is_32bit_pcrel_reloc except that it returns TRUE iff RELOC_TYPE is
12277 a 64-bit pc-relative RELA relocation used in DWARF debug sections. */
12278
12279 static bfd_boolean
12280 is_64bit_pcrel_reloc (unsigned int reloc_type)
12281 {
12282 switch (elf_header.e_machine)
12283 {
12284 case EM_AARCH64:
12285 return reloc_type == 260; /* R_AARCH64_PREL64. */
12286 case EM_ALPHA:
12287 return reloc_type == 11; /* R_ALPHA_SREL64. */
12288 case EM_IA_64:
12289 return reloc_type == 0x4f; /* R_IA64_PCREL64LSB. */
12290 case EM_PARISC:
12291 return reloc_type == 72; /* R_PARISC_PCREL64. */
12292 case EM_PPC64:
12293 return reloc_type == 44; /* R_PPC64_REL64. */
12294 case EM_SPARC32PLUS:
12295 case EM_SPARCV9:
12296 case EM_SPARC:
12297 return reloc_type == 46; /* R_SPARC_DISP64. */
12298 case EM_X86_64:
12299 case EM_L1OM:
12300 case EM_K1OM:
12301 return reloc_type == 24; /* R_X86_64_PC64. */
12302 case EM_S390_OLD:
12303 case EM_S390:
12304 return reloc_type == 23; /* R_S390_PC64. */
12305 case EM_TILEGX:
12306 return reloc_type == 5; /* R_TILEGX_64_PCREL. */
12307 default:
12308 return FALSE;
12309 }
12310 }
12311
12312 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12313 a 24-bit absolute RELA relocation used in DWARF debug sections. */
12314
12315 static bfd_boolean
12316 is_24bit_abs_reloc (unsigned int reloc_type)
12317 {
12318 switch (elf_header.e_machine)
12319 {
12320 case EM_CYGNUS_MN10200:
12321 case EM_MN10200:
12322 return reloc_type == 4; /* R_MN10200_24. */
12323 case EM_FT32:
12324 return reloc_type == 5; /* R_FT32_20. */
12325 default:
12326 return FALSE;
12327 }
12328 }
12329
12330 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12331 a 16-bit absolute RELA relocation used in DWARF debug sections. */
12332
12333 static bfd_boolean
12334 is_16bit_abs_reloc (unsigned int reloc_type)
12335 {
12336 /* Please keep this table alpha-sorted for ease of visual lookup. */
12337 switch (elf_header.e_machine)
12338 {
12339 case EM_ARC:
12340 case EM_ARC_COMPACT:
12341 case EM_ARC_COMPACT2:
12342 return reloc_type == 2; /* R_ARC_16. */
12343 case EM_ADAPTEVA_EPIPHANY:
12344 return reloc_type == 5;
12345 case EM_AVR_OLD:
12346 case EM_AVR:
12347 return reloc_type == 4; /* R_AVR_16. */
12348 case EM_CYGNUS_D10V:
12349 case EM_D10V:
12350 return reloc_type == 3; /* R_D10V_16. */
12351 case EM_H8S:
12352 case EM_H8_300:
12353 case EM_H8_300H:
12354 return reloc_type == R_H8_DIR16;
12355 case EM_IP2K_OLD:
12356 case EM_IP2K:
12357 return reloc_type == 1; /* R_IP2K_16. */
12358 case EM_M32C_OLD:
12359 case EM_M32C:
12360 return reloc_type == 1; /* R_M32C_16 */
12361 case EM_CYGNUS_MN10200:
12362 case EM_MN10200:
12363 return reloc_type == 2; /* R_MN10200_16. */
12364 case EM_CYGNUS_MN10300:
12365 case EM_MN10300:
12366 return reloc_type == 2; /* R_MN10300_16. */
12367 case EM_MSP430:
12368 if (uses_msp430x_relocs ())
12369 return reloc_type == 2; /* R_MSP430_ABS16. */
12370 /* Fall through. */
12371 case EM_MSP430_OLD:
12372 return reloc_type == 5; /* R_MSP430_16_BYTE. */
12373 case EM_NDS32:
12374 return reloc_type == 19; /* R_NDS32_RELA. */
12375 case EM_ALTERA_NIOS2:
12376 return reloc_type == 13; /* R_NIOS2_BFD_RELOC_16. */
12377 case EM_NIOS32:
12378 return reloc_type == 9; /* R_NIOS_16. */
12379 case EM_OR1K:
12380 return reloc_type == 2; /* R_OR1K_16. */
12381 case EM_TI_PRU:
12382 return reloc_type == 8; /* R_PRU_BFD_RELOC_16. */
12383 case EM_TI_C6000:
12384 return reloc_type == 2; /* R_C6000_ABS16. */
12385 case EM_VISIUM:
12386 return reloc_type == 2; /* R_VISIUM_16. */
12387 case EM_XC16X:
12388 case EM_C166:
12389 return reloc_type == 2; /* R_XC16C_ABS_16. */
12390 case EM_XGATE:
12391 return reloc_type == 3; /* R_XGATE_16. */
12392 default:
12393 return FALSE;
12394 }
12395 }
12396
12397 /* Returns TRUE iff RELOC_TYPE is a NONE relocation used for discarded
12398 relocation entries (possibly formerly used for SHT_GROUP sections). */
12399
12400 static bfd_boolean
12401 is_none_reloc (unsigned int reloc_type)
12402 {
12403 switch (elf_header.e_machine)
12404 {
12405 case EM_386: /* R_386_NONE. */
12406 case EM_68K: /* R_68K_NONE. */
12407 case EM_ADAPTEVA_EPIPHANY:
12408 case EM_ALPHA: /* R_ALPHA_NONE. */
12409 case EM_ALTERA_NIOS2: /* R_NIOS2_NONE. */
12410 case EM_ARC: /* R_ARC_NONE. */
12411 case EM_ARC_COMPACT2: /* R_ARC_NONE. */
12412 case EM_ARC_COMPACT: /* R_ARC_NONE. */
12413 case EM_ARM: /* R_ARM_NONE. */
12414 case EM_C166: /* R_XC16X_NONE. */
12415 case EM_CRIS: /* R_CRIS_NONE. */
12416 case EM_FT32: /* R_FT32_NONE. */
12417 case EM_IA_64: /* R_IA64_NONE. */
12418 case EM_K1OM: /* R_X86_64_NONE. */
12419 case EM_L1OM: /* R_X86_64_NONE. */
12420 case EM_M32R: /* R_M32R_NONE. */
12421 case EM_MIPS: /* R_MIPS_NONE. */
12422 case EM_MN10300: /* R_MN10300_NONE. */
12423 case EM_MOXIE: /* R_MOXIE_NONE. */
12424 case EM_NIOS32: /* R_NIOS_NONE. */
12425 case EM_OR1K: /* R_OR1K_NONE. */
12426 case EM_PARISC: /* R_PARISC_NONE. */
12427 case EM_PPC64: /* R_PPC64_NONE. */
12428 case EM_PPC: /* R_PPC_NONE. */
12429 case EM_RISCV: /* R_RISCV_NONE. */
12430 case EM_S390: /* R_390_NONE. */
12431 case EM_S390_OLD:
12432 case EM_SH: /* R_SH_NONE. */
12433 case EM_SPARC32PLUS:
12434 case EM_SPARC: /* R_SPARC_NONE. */
12435 case EM_SPARCV9:
12436 case EM_TILEGX: /* R_TILEGX_NONE. */
12437 case EM_TILEPRO: /* R_TILEPRO_NONE. */
12438 case EM_TI_C6000:/* R_C6000_NONE. */
12439 case EM_X86_64: /* R_X86_64_NONE. */
12440 case EM_XC16X:
12441 case EM_WEBASSEMBLY: /* R_WASM32_NONE. */
12442 return reloc_type == 0;
12443
12444 case EM_AARCH64:
12445 return reloc_type == 0 || reloc_type == 256;
12446 case EM_AVR_OLD:
12447 case EM_AVR:
12448 return (reloc_type == 0 /* R_AVR_NONE. */
12449 || reloc_type == 30 /* R_AVR_DIFF8. */
12450 || reloc_type == 31 /* R_AVR_DIFF16. */
12451 || reloc_type == 32 /* R_AVR_DIFF32. */);
12452 case EM_METAG:
12453 return reloc_type == 3; /* R_METAG_NONE. */
12454 case EM_NDS32:
12455 return (reloc_type == 0 /* R_XTENSA_NONE. */
12456 || reloc_type == 204 /* R_NDS32_DIFF8. */
12457 || reloc_type == 205 /* R_NDS32_DIFF16. */
12458 || reloc_type == 206 /* R_NDS32_DIFF32. */
12459 || reloc_type == 207 /* R_NDS32_ULEB128. */);
12460 case EM_TI_PRU:
12461 return (reloc_type == 0 /* R_PRU_NONE. */
12462 || reloc_type == 65 /* R_PRU_DIFF8. */
12463 || reloc_type == 66 /* R_PRU_DIFF16. */
12464 || reloc_type == 67 /* R_PRU_DIFF32. */);
12465 case EM_XTENSA_OLD:
12466 case EM_XTENSA:
12467 return (reloc_type == 0 /* R_XTENSA_NONE. */
12468 || reloc_type == 17 /* R_XTENSA_DIFF8. */
12469 || reloc_type == 18 /* R_XTENSA_DIFF16. */
12470 || reloc_type == 19 /* R_XTENSA_DIFF32. */);
12471 }
12472 return FALSE;
12473 }
12474
12475 /* Returns TRUE if there is a relocation against
12476 section NAME at OFFSET bytes. */
12477
12478 bfd_boolean
12479 reloc_at (struct dwarf_section * dsec, dwarf_vma offset)
12480 {
12481 Elf_Internal_Rela * relocs;
12482 Elf_Internal_Rela * rp;
12483
12484 if (dsec == NULL || dsec->reloc_info == NULL)
12485 return FALSE;
12486
12487 relocs = (Elf_Internal_Rela *) dsec->reloc_info;
12488
12489 for (rp = relocs; rp < relocs + dsec->num_relocs; ++rp)
12490 if (rp->r_offset == offset)
12491 return TRUE;
12492
12493 return FALSE;
12494 }
12495
12496 /* Apply relocations to a section.
12497 Returns TRUE upon success, FALSE otherwise.
12498 If RELOCS_RETURN is non-NULL then it is set to point to the loaded relocs.
12499 It is then the caller's responsibility to free them. NUM_RELOCS_RETURN
12500 will be set to the number of relocs loaded.
12501
12502 Note: So far support has been added only for those relocations
12503 which can be found in debug sections. FIXME: Add support for
12504 more relocations ? */
12505
12506 static bfd_boolean
12507 apply_relocations (void * file,
12508 const Elf_Internal_Shdr * section,
12509 unsigned char * start,
12510 bfd_size_type size,
12511 void ** relocs_return,
12512 unsigned long * num_relocs_return)
12513 {
12514 Elf_Internal_Shdr * relsec;
12515 unsigned char * end = start + size;
12516 bfd_boolean res = TRUE;
12517
12518 if (relocs_return != NULL)
12519 {
12520 * (Elf_Internal_Rela **) relocs_return = NULL;
12521 * num_relocs_return = 0;
12522 }
12523
12524 if (elf_header.e_type != ET_REL)
12525 /* No relocs to apply. */
12526 return TRUE;
12527
12528 /* Find the reloc section associated with the section. */
12529 for (relsec = section_headers;
12530 relsec < section_headers + elf_header.e_shnum;
12531 ++relsec)
12532 {
12533 bfd_boolean is_rela;
12534 unsigned long num_relocs;
12535 Elf_Internal_Rela * relocs;
12536 Elf_Internal_Rela * rp;
12537 Elf_Internal_Shdr * symsec;
12538 Elf_Internal_Sym * symtab;
12539 unsigned long num_syms;
12540 Elf_Internal_Sym * sym;
12541
12542 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
12543 || relsec->sh_info >= elf_header.e_shnum
12544 || section_headers + relsec->sh_info != section
12545 || relsec->sh_size == 0
12546 || relsec->sh_link >= elf_header.e_shnum)
12547 continue;
12548
12549 is_rela = relsec->sh_type == SHT_RELA;
12550
12551 if (is_rela)
12552 {
12553 if (!slurp_rela_relocs ((FILE *) file, relsec->sh_offset,
12554 relsec->sh_size, & relocs, & num_relocs))
12555 return FALSE;
12556 }
12557 else
12558 {
12559 if (!slurp_rel_relocs ((FILE *) file, relsec->sh_offset,
12560 relsec->sh_size, & relocs, & num_relocs))
12561 return FALSE;
12562 }
12563
12564 /* SH uses RELA but uses in place value instead of the addend field. */
12565 if (elf_header.e_machine == EM_SH)
12566 is_rela = FALSE;
12567
12568 symsec = section_headers + relsec->sh_link;
12569 if (symsec->sh_type != SHT_SYMTAB
12570 && symsec->sh_type != SHT_DYNSYM)
12571 return FALSE;
12572 symtab = GET_ELF_SYMBOLS ((FILE *) file, symsec, & num_syms);
12573
12574 for (rp = relocs; rp < relocs + num_relocs; ++rp)
12575 {
12576 bfd_vma addend;
12577 unsigned int reloc_type;
12578 unsigned int reloc_size;
12579 unsigned char * rloc;
12580 unsigned long sym_index;
12581
12582 reloc_type = get_reloc_type (rp->r_info);
12583
12584 if (target_specific_reloc_handling (rp, start, end, symtab, num_syms))
12585 continue;
12586 else if (is_none_reloc (reloc_type))
12587 continue;
12588 else if (is_32bit_abs_reloc (reloc_type)
12589 || is_32bit_pcrel_reloc (reloc_type))
12590 reloc_size = 4;
12591 else if (is_64bit_abs_reloc (reloc_type)
12592 || is_64bit_pcrel_reloc (reloc_type))
12593 reloc_size = 8;
12594 else if (is_24bit_abs_reloc (reloc_type))
12595 reloc_size = 3;
12596 else if (is_16bit_abs_reloc (reloc_type))
12597 reloc_size = 2;
12598 else
12599 {
12600 static unsigned int prev_reloc = 0;
12601 if (reloc_type != prev_reloc)
12602 warn (_("unable to apply unsupported reloc type %d to section %s\n"),
12603 reloc_type, printable_section_name (section));
12604 prev_reloc = reloc_type;
12605 res = FALSE;
12606 continue;
12607 }
12608
12609 rloc = start + rp->r_offset;
12610 if ((rloc + reloc_size) > end || (rloc < start))
12611 {
12612 warn (_("skipping invalid relocation offset 0x%lx in section %s\n"),
12613 (unsigned long) rp->r_offset,
12614 printable_section_name (section));
12615 res = FALSE;
12616 continue;
12617 }
12618
12619 sym_index = (unsigned long) get_reloc_symindex (rp->r_info);
12620 if (sym_index >= num_syms)
12621 {
12622 warn (_("skipping invalid relocation symbol index 0x%lx in section %s\n"),
12623 sym_index, printable_section_name (section));
12624 res = FALSE;
12625 continue;
12626 }
12627 sym = symtab + sym_index;
12628
12629 /* If the reloc has a symbol associated with it,
12630 make sure that it is of an appropriate type.
12631
12632 Relocations against symbols without type can happen.
12633 Gcc -feliminate-dwarf2-dups may generate symbols
12634 without type for debug info.
12635
12636 Icc generates relocations against function symbols
12637 instead of local labels.
12638
12639 Relocations against object symbols can happen, eg when
12640 referencing a global array. For an example of this see
12641 the _clz.o binary in libgcc.a. */
12642 if (sym != symtab
12643 && ELF_ST_TYPE (sym->st_info) != STT_COMMON
12644 && ELF_ST_TYPE (sym->st_info) > STT_SECTION)
12645 {
12646 warn (_("skipping unexpected symbol type %s in %ld'th relocation in section %s\n"),
12647 get_symbol_type (ELF_ST_TYPE (sym->st_info)),
12648 (long int)(rp - relocs),
12649 printable_section_name (relsec));
12650 res = FALSE;
12651 continue;
12652 }
12653
12654 addend = 0;
12655 if (is_rela)
12656 addend += rp->r_addend;
12657 /* R_XTENSA_32, R_PJ_DATA_DIR32 and R_D30V_32_NORMAL are
12658 partial_inplace. */
12659 if (!is_rela
12660 || (elf_header.e_machine == EM_XTENSA
12661 && reloc_type == 1)
12662 || ((elf_header.e_machine == EM_PJ
12663 || elf_header.e_machine == EM_PJ_OLD)
12664 && reloc_type == 1)
12665 || ((elf_header.e_machine == EM_D30V
12666 || elf_header.e_machine == EM_CYGNUS_D30V)
12667 && reloc_type == 12))
12668 addend += byte_get (rloc, reloc_size);
12669
12670 if (is_32bit_pcrel_reloc (reloc_type)
12671 || is_64bit_pcrel_reloc (reloc_type))
12672 {
12673 /* On HPPA, all pc-relative relocations are biased by 8. */
12674 if (elf_header.e_machine == EM_PARISC)
12675 addend -= 8;
12676 byte_put (rloc, (addend + sym->st_value) - rp->r_offset,
12677 reloc_size);
12678 }
12679 else
12680 byte_put (rloc, addend + sym->st_value, reloc_size);
12681 }
12682
12683 free (symtab);
12684 /* Let the target specific reloc processing code know that
12685 we have finished with these relocs. */
12686 target_specific_reloc_handling (NULL, NULL, NULL, NULL, 0);
12687
12688 if (relocs_return)
12689 {
12690 * (Elf_Internal_Rela **) relocs_return = relocs;
12691 * num_relocs_return = num_relocs;
12692 }
12693 else
12694 free (relocs);
12695
12696 break;
12697 }
12698
12699 return res;
12700 }
12701
12702 #ifdef SUPPORT_DISASSEMBLY
12703 static bfd_boolean
12704 disassemble_section (Elf_Internal_Shdr * section, FILE * file)
12705 {
12706 printf (_("\nAssembly dump of section %s\n"), printable_section_name (section));
12707
12708 /* FIXME: XXX -- to be done --- XXX */
12709
12710 return TRUE;
12711 }
12712 #endif
12713
12714 /* Reads in the contents of SECTION from FILE, returning a pointer
12715 to a malloc'ed buffer or NULL if something went wrong. */
12716
12717 static char *
12718 get_section_contents (Elf_Internal_Shdr * section, FILE * file)
12719 {
12720 bfd_size_type num_bytes;
12721
12722 num_bytes = section->sh_size;
12723
12724 if (num_bytes == 0 || section->sh_type == SHT_NOBITS)
12725 {
12726 printf (_("\nSection '%s' has no data to dump.\n"),
12727 printable_section_name (section));
12728 return NULL;
12729 }
12730
12731 return (char *) get_data (NULL, file, section->sh_offset, 1, num_bytes,
12732 _("section contents"));
12733 }
12734
12735 /* Uncompresses a section that was compressed using zlib, in place. */
12736
12737 static bfd_boolean
12738 uncompress_section_contents (unsigned char **buffer,
12739 dwarf_size_type uncompressed_size,
12740 dwarf_size_type *size)
12741 {
12742 dwarf_size_type compressed_size = *size;
12743 unsigned char * compressed_buffer = *buffer;
12744 unsigned char * uncompressed_buffer;
12745 z_stream strm;
12746 int rc;
12747
12748 /* It is possible the section consists of several compressed
12749 buffers concatenated together, so we uncompress in a loop. */
12750 /* PR 18313: The state field in the z_stream structure is supposed
12751 to be invisible to the user (ie us), but some compilers will
12752 still complain about it being used without initialisation. So
12753 we first zero the entire z_stream structure and then set the fields
12754 that we need. */
12755 memset (& strm, 0, sizeof strm);
12756 strm.avail_in = compressed_size;
12757 strm.next_in = (Bytef *) compressed_buffer;
12758 strm.avail_out = uncompressed_size;
12759 uncompressed_buffer = (unsigned char *) xmalloc (uncompressed_size);
12760
12761 rc = inflateInit (& strm);
12762 while (strm.avail_in > 0)
12763 {
12764 if (rc != Z_OK)
12765 goto fail;
12766 strm.next_out = ((Bytef *) uncompressed_buffer
12767 + (uncompressed_size - strm.avail_out));
12768 rc = inflate (&strm, Z_FINISH);
12769 if (rc != Z_STREAM_END)
12770 goto fail;
12771 rc = inflateReset (& strm);
12772 }
12773 rc = inflateEnd (& strm);
12774 if (rc != Z_OK
12775 || strm.avail_out != 0)
12776 goto fail;
12777
12778 *buffer = uncompressed_buffer;
12779 *size = uncompressed_size;
12780 return TRUE;
12781
12782 fail:
12783 free (uncompressed_buffer);
12784 /* Indicate decompression failure. */
12785 *buffer = NULL;
12786 return FALSE;
12787 }
12788
12789 static bfd_boolean
12790 dump_section_as_strings (Elf_Internal_Shdr * section, FILE * file)
12791 {
12792 Elf_Internal_Shdr * relsec;
12793 bfd_size_type num_bytes;
12794 unsigned char * data;
12795 unsigned char * end;
12796 unsigned char * real_start;
12797 unsigned char * start;
12798 bfd_boolean some_strings_shown;
12799
12800 real_start = start = (unsigned char *) get_section_contents (section,
12801 file);
12802 if (start == NULL)
12803 return FALSE;
12804 num_bytes = section->sh_size;
12805
12806 printf (_("\nString dump of section '%s':\n"), printable_section_name (section));
12807
12808 if (decompress_dumps)
12809 {
12810 dwarf_size_type new_size = num_bytes;
12811 dwarf_size_type uncompressed_size = 0;
12812
12813 if ((section->sh_flags & SHF_COMPRESSED) != 0)
12814 {
12815 Elf_Internal_Chdr chdr;
12816 unsigned int compression_header_size
12817 = get_compression_header (& chdr, (unsigned char *) start,
12818 num_bytes);
12819
12820 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
12821 {
12822 warn (_("section '%s' has unsupported compress type: %d\n"),
12823 printable_section_name (section), chdr.ch_type);
12824 return FALSE;
12825 }
12826 else if (chdr.ch_addralign != section->sh_addralign)
12827 {
12828 warn (_("compressed section '%s' is corrupted\n"),
12829 printable_section_name (section));
12830 return FALSE;
12831 }
12832 uncompressed_size = chdr.ch_size;
12833 start += compression_header_size;
12834 new_size -= compression_header_size;
12835 }
12836 else if (new_size > 12 && streq ((char *) start, "ZLIB"))
12837 {
12838 /* Read the zlib header. In this case, it should be "ZLIB"
12839 followed by the uncompressed section size, 8 bytes in
12840 big-endian order. */
12841 uncompressed_size = start[4]; uncompressed_size <<= 8;
12842 uncompressed_size += start[5]; uncompressed_size <<= 8;
12843 uncompressed_size += start[6]; uncompressed_size <<= 8;
12844 uncompressed_size += start[7]; uncompressed_size <<= 8;
12845 uncompressed_size += start[8]; uncompressed_size <<= 8;
12846 uncompressed_size += start[9]; uncompressed_size <<= 8;
12847 uncompressed_size += start[10]; uncompressed_size <<= 8;
12848 uncompressed_size += start[11];
12849 start += 12;
12850 new_size -= 12;
12851 }
12852
12853 if (uncompressed_size)
12854 {
12855 if (uncompress_section_contents (& start,
12856 uncompressed_size, & new_size))
12857 num_bytes = new_size;
12858 else
12859 {
12860 error (_("Unable to decompress section %s\n"),
12861 printable_section_name (section));
12862 return FALSE;
12863 }
12864 }
12865 else
12866 start = real_start;
12867 }
12868
12869 /* If the section being dumped has relocations against it the user might
12870 be expecting these relocations to have been applied. Check for this
12871 case and issue a warning message in order to avoid confusion.
12872 FIXME: Maybe we ought to have an option that dumps a section with
12873 relocs applied ? */
12874 for (relsec = section_headers;
12875 relsec < section_headers + elf_header.e_shnum;
12876 ++relsec)
12877 {
12878 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
12879 || relsec->sh_info >= elf_header.e_shnum
12880 || section_headers + relsec->sh_info != section
12881 || relsec->sh_size == 0
12882 || relsec->sh_link >= elf_header.e_shnum)
12883 continue;
12884
12885 printf (_(" Note: This section has relocations against it, but these have NOT been applied to this dump.\n"));
12886 break;
12887 }
12888
12889 data = start;
12890 end = start + num_bytes;
12891 some_strings_shown = FALSE;
12892
12893 while (data < end)
12894 {
12895 while (!ISPRINT (* data))
12896 if (++ data >= end)
12897 break;
12898
12899 if (data < end)
12900 {
12901 size_t maxlen = end - data;
12902
12903 #ifndef __MSVCRT__
12904 /* PR 11128: Use two separate invocations in order to work
12905 around bugs in the Solaris 8 implementation of printf. */
12906 printf (" [%6tx] ", data - start);
12907 #else
12908 printf (" [%6Ix] ", (size_t) (data - start));
12909 #endif
12910 if (maxlen > 0)
12911 {
12912 print_symbol ((int) maxlen, (const char *) data);
12913 putchar ('\n');
12914 data += strnlen ((const char *) data, maxlen);
12915 }
12916 else
12917 {
12918 printf (_("<corrupt>\n"));
12919 data = end;
12920 }
12921 some_strings_shown = TRUE;
12922 }
12923 }
12924
12925 if (! some_strings_shown)
12926 printf (_(" No strings found in this section."));
12927
12928 free (real_start);
12929
12930 putchar ('\n');
12931 return TRUE;
12932 }
12933
12934 static bfd_boolean
12935 dump_section_as_bytes (Elf_Internal_Shdr * section,
12936 FILE * file,
12937 bfd_boolean relocate)
12938 {
12939 Elf_Internal_Shdr * relsec;
12940 bfd_size_type bytes;
12941 bfd_size_type section_size;
12942 bfd_vma addr;
12943 unsigned char * data;
12944 unsigned char * real_start;
12945 unsigned char * start;
12946
12947 real_start = start = (unsigned char *) get_section_contents (section, file);
12948 if (start == NULL)
12949 return FALSE;
12950
12951 section_size = section->sh_size;
12952
12953 printf (_("\nHex dump of section '%s':\n"), printable_section_name (section));
12954
12955 if (decompress_dumps)
12956 {
12957 dwarf_size_type new_size = section_size;
12958 dwarf_size_type uncompressed_size = 0;
12959
12960 if ((section->sh_flags & SHF_COMPRESSED) != 0)
12961 {
12962 Elf_Internal_Chdr chdr;
12963 unsigned int compression_header_size
12964 = get_compression_header (& chdr, start, section_size);
12965
12966 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
12967 {
12968 warn (_("section '%s' has unsupported compress type: %d\n"),
12969 printable_section_name (section), chdr.ch_type);
12970 return FALSE;
12971 }
12972 else if (chdr.ch_addralign != section->sh_addralign)
12973 {
12974 warn (_("compressed section '%s' is corrupted\n"),
12975 printable_section_name (section));
12976 return FALSE;
12977 }
12978 uncompressed_size = chdr.ch_size;
12979 start += compression_header_size;
12980 new_size -= compression_header_size;
12981 }
12982 else if (new_size > 12 && streq ((char *) start, "ZLIB"))
12983 {
12984 /* Read the zlib header. In this case, it should be "ZLIB"
12985 followed by the uncompressed section size, 8 bytes in
12986 big-endian order. */
12987 uncompressed_size = start[4]; uncompressed_size <<= 8;
12988 uncompressed_size += start[5]; uncompressed_size <<= 8;
12989 uncompressed_size += start[6]; uncompressed_size <<= 8;
12990 uncompressed_size += start[7]; uncompressed_size <<= 8;
12991 uncompressed_size += start[8]; uncompressed_size <<= 8;
12992 uncompressed_size += start[9]; uncompressed_size <<= 8;
12993 uncompressed_size += start[10]; uncompressed_size <<= 8;
12994 uncompressed_size += start[11];
12995 start += 12;
12996 new_size -= 12;
12997 }
12998
12999 if (uncompressed_size)
13000 {
13001 if (uncompress_section_contents (& start, uncompressed_size,
13002 & new_size))
13003 {
13004 section_size = new_size;
13005 }
13006 else
13007 {
13008 error (_("Unable to decompress section %s\n"),
13009 printable_section_name (section));
13010 /* FIXME: Print the section anyway ? */
13011 return FALSE;
13012 }
13013 }
13014 else
13015 start = real_start;
13016 }
13017
13018 if (relocate)
13019 {
13020 if (! apply_relocations (file, section, start, section_size, NULL, NULL))
13021 return FALSE;
13022 }
13023 else
13024 {
13025 /* If the section being dumped has relocations against it the user might
13026 be expecting these relocations to have been applied. Check for this
13027 case and issue a warning message in order to avoid confusion.
13028 FIXME: Maybe we ought to have an option that dumps a section with
13029 relocs applied ? */
13030 for (relsec = section_headers;
13031 relsec < section_headers + elf_header.e_shnum;
13032 ++relsec)
13033 {
13034 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
13035 || relsec->sh_info >= elf_header.e_shnum
13036 || section_headers + relsec->sh_info != section
13037 || relsec->sh_size == 0
13038 || relsec->sh_link >= elf_header.e_shnum)
13039 continue;
13040
13041 printf (_(" NOTE: This section has relocations against it, but these have NOT been applied to this dump.\n"));
13042 break;
13043 }
13044 }
13045
13046 addr = section->sh_addr;
13047 bytes = section_size;
13048 data = start;
13049
13050 while (bytes)
13051 {
13052 int j;
13053 int k;
13054 int lbytes;
13055
13056 lbytes = (bytes > 16 ? 16 : bytes);
13057
13058 printf (" 0x%8.8lx ", (unsigned long) addr);
13059
13060 for (j = 0; j < 16; j++)
13061 {
13062 if (j < lbytes)
13063 printf ("%2.2x", data[j]);
13064 else
13065 printf (" ");
13066
13067 if ((j & 3) == 3)
13068 printf (" ");
13069 }
13070
13071 for (j = 0; j < lbytes; j++)
13072 {
13073 k = data[j];
13074 if (k >= ' ' && k < 0x7f)
13075 printf ("%c", k);
13076 else
13077 printf (".");
13078 }
13079
13080 putchar ('\n');
13081
13082 data += lbytes;
13083 addr += lbytes;
13084 bytes -= lbytes;
13085 }
13086
13087 free (real_start);
13088
13089 putchar ('\n');
13090 return TRUE;
13091 }
13092
13093 static bfd_boolean
13094 load_specific_debug_section (enum dwarf_section_display_enum debug,
13095 const Elf_Internal_Shdr * sec, void * file)
13096 {
13097 struct dwarf_section * section = &debug_displays [debug].section;
13098 char buf [64];
13099
13100 /* If it is already loaded, do nothing. */
13101 if (section->start != NULL)
13102 return TRUE;
13103
13104 snprintf (buf, sizeof (buf), _("%s section data"), section->name);
13105 section->address = sec->sh_addr;
13106 section->user_data = NULL;
13107 section->start = (unsigned char *) get_data (NULL, (FILE *) file,
13108 sec->sh_offset, 1,
13109 sec->sh_size, buf);
13110 if (section->start == NULL)
13111 section->size = 0;
13112 else
13113 {
13114 unsigned char *start = section->start;
13115 dwarf_size_type size = sec->sh_size;
13116 dwarf_size_type uncompressed_size = 0;
13117
13118 if ((sec->sh_flags & SHF_COMPRESSED) != 0)
13119 {
13120 Elf_Internal_Chdr chdr;
13121 unsigned int compression_header_size;
13122
13123 if (size < (is_32bit_elf
13124 ? sizeof (Elf32_External_Chdr)
13125 : sizeof (Elf64_External_Chdr)))
13126 {
13127 warn (_("compressed section %s is too small to contain a compression header"),
13128 section->name);
13129 return FALSE;
13130 }
13131
13132 compression_header_size = get_compression_header (&chdr, start, size);
13133
13134 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
13135 {
13136 warn (_("section '%s' has unsupported compress type: %d\n"),
13137 section->name, chdr.ch_type);
13138 return FALSE;
13139 }
13140 else if (chdr.ch_addralign != sec->sh_addralign)
13141 {
13142 warn (_("compressed section '%s' is corrupted\n"),
13143 section->name);
13144 return FALSE;
13145 }
13146 uncompressed_size = chdr.ch_size;
13147 start += compression_header_size;
13148 size -= compression_header_size;
13149 }
13150 else if (size > 12 && streq ((char *) start, "ZLIB"))
13151 {
13152 /* Read the zlib header. In this case, it should be "ZLIB"
13153 followed by the uncompressed section size, 8 bytes in
13154 big-endian order. */
13155 uncompressed_size = start[4]; uncompressed_size <<= 8;
13156 uncompressed_size += start[5]; uncompressed_size <<= 8;
13157 uncompressed_size += start[6]; uncompressed_size <<= 8;
13158 uncompressed_size += start[7]; uncompressed_size <<= 8;
13159 uncompressed_size += start[8]; uncompressed_size <<= 8;
13160 uncompressed_size += start[9]; uncompressed_size <<= 8;
13161 uncompressed_size += start[10]; uncompressed_size <<= 8;
13162 uncompressed_size += start[11];
13163 start += 12;
13164 size -= 12;
13165 }
13166
13167 if (uncompressed_size)
13168 {
13169 if (uncompress_section_contents (&start, uncompressed_size,
13170 &size))
13171 {
13172 /* Free the compressed buffer, update the section buffer
13173 and the section size if uncompress is successful. */
13174 free (section->start);
13175 section->start = start;
13176 }
13177 else
13178 {
13179 error (_("Unable to decompress section %s\n"),
13180 printable_section_name (sec));
13181 return FALSE;
13182 }
13183 }
13184
13185 section->size = size;
13186 }
13187
13188 if (section->start == NULL)
13189 return FALSE;
13190
13191 if (debug_displays [debug].relocate)
13192 {
13193 if (! apply_relocations ((FILE *) file, sec, section->start, section->size,
13194 & section->reloc_info, & section->num_relocs))
13195 return FALSE;
13196 }
13197 else
13198 {
13199 section->reloc_info = NULL;
13200 section->num_relocs = 0;
13201 }
13202
13203 return TRUE;
13204 }
13205
13206 /* If this is not NULL, load_debug_section will only look for sections
13207 within the list of sections given here. */
13208 static unsigned int * section_subset = NULL;
13209
13210 bfd_boolean
13211 load_debug_section (enum dwarf_section_display_enum debug, void * file)
13212 {
13213 struct dwarf_section * section = &debug_displays [debug].section;
13214 Elf_Internal_Shdr * sec;
13215
13216 /* Locate the debug section. */
13217 sec = find_section_in_set (section->uncompressed_name, section_subset);
13218 if (sec != NULL)
13219 section->name = section->uncompressed_name;
13220 else
13221 {
13222 sec = find_section_in_set (section->compressed_name, section_subset);
13223 if (sec != NULL)
13224 section->name = section->compressed_name;
13225 }
13226 if (sec == NULL)
13227 return FALSE;
13228
13229 /* If we're loading from a subset of sections, and we've loaded
13230 a section matching this name before, it's likely that it's a
13231 different one. */
13232 if (section_subset != NULL)
13233 free_debug_section (debug);
13234
13235 return load_specific_debug_section (debug, sec, (FILE *) file);
13236 }
13237
13238 void
13239 free_debug_section (enum dwarf_section_display_enum debug)
13240 {
13241 struct dwarf_section * section = &debug_displays [debug].section;
13242
13243 if (section->start == NULL)
13244 return;
13245
13246 free ((char *) section->start);
13247 section->start = NULL;
13248 section->address = 0;
13249 section->size = 0;
13250 }
13251
13252 static bfd_boolean
13253 display_debug_section (int shndx, Elf_Internal_Shdr * section, FILE * file)
13254 {
13255 char * name = SECTION_NAME (section);
13256 const char * print_name = printable_section_name (section);
13257 bfd_size_type length;
13258 bfd_boolean result = TRUE;
13259 int i;
13260
13261 length = section->sh_size;
13262 if (length == 0)
13263 {
13264 printf (_("\nSection '%s' has no debugging data.\n"), print_name);
13265 return TRUE;
13266 }
13267 if (section->sh_type == SHT_NOBITS)
13268 {
13269 /* There is no point in dumping the contents of a debugging section
13270 which has the NOBITS type - the bits in the file will be random.
13271 This can happen when a file containing a .eh_frame section is
13272 stripped with the --only-keep-debug command line option. */
13273 printf (_("section '%s' has the NOBITS type - its contents are unreliable.\n"),
13274 print_name);
13275 return FALSE;
13276 }
13277
13278 if (const_strneq (name, ".gnu.linkonce.wi."))
13279 name = ".debug_info";
13280
13281 /* See if we know how to display the contents of this section. */
13282 for (i = 0; i < max; i++)
13283 if (streq (debug_displays[i].section.uncompressed_name, name)
13284 || (i == line && const_strneq (name, ".debug_line."))
13285 || streq (debug_displays[i].section.compressed_name, name))
13286 {
13287 struct dwarf_section * sec = &debug_displays [i].section;
13288 int secondary = (section != find_section (name));
13289
13290 if (secondary)
13291 free_debug_section ((enum dwarf_section_display_enum) i);
13292
13293 if (i == line && const_strneq (name, ".debug_line."))
13294 sec->name = name;
13295 else if (streq (sec->uncompressed_name, name))
13296 sec->name = sec->uncompressed_name;
13297 else
13298 sec->name = sec->compressed_name;
13299 if (load_specific_debug_section ((enum dwarf_section_display_enum) i,
13300 section, file))
13301 {
13302 /* If this debug section is part of a CU/TU set in a .dwp file,
13303 restrict load_debug_section to the sections in that set. */
13304 section_subset = find_cu_tu_set (file, shndx);
13305
13306 result &= debug_displays[i].display (sec, file);
13307
13308 section_subset = NULL;
13309
13310 if (secondary || (i != info && i != abbrev))
13311 free_debug_section ((enum dwarf_section_display_enum) i);
13312 }
13313
13314 break;
13315 }
13316
13317 if (i == max)
13318 {
13319 printf (_("Unrecognized debug section: %s\n"), print_name);
13320 result = FALSE;
13321 }
13322
13323 return result;
13324 }
13325
13326 /* Set DUMP_SECTS for all sections where dumps were requested
13327 based on section name. */
13328
13329 static void
13330 initialise_dumps_byname (void)
13331 {
13332 struct dump_list_entry * cur;
13333
13334 for (cur = dump_sects_byname; cur; cur = cur->next)
13335 {
13336 unsigned int i;
13337 bfd_boolean any = FALSE;
13338
13339 for (i = 0; i < elf_header.e_shnum; i++)
13340 if (streq (SECTION_NAME (section_headers + i), cur->name))
13341 {
13342 request_dump_bynumber (i, cur->type);
13343 any = TRUE;
13344 }
13345
13346 if (!any)
13347 warn (_("Section '%s' was not dumped because it does not exist!\n"),
13348 cur->name);
13349 }
13350 }
13351
13352 static bfd_boolean
13353 process_section_contents (FILE * file)
13354 {
13355 Elf_Internal_Shdr * section;
13356 unsigned int i;
13357 bfd_boolean res = TRUE;
13358
13359 if (! do_dump)
13360 return TRUE;
13361
13362 initialise_dumps_byname ();
13363
13364 for (i = 0, section = section_headers;
13365 i < elf_header.e_shnum && i < num_dump_sects;
13366 i++, section++)
13367 {
13368 #ifdef SUPPORT_DISASSEMBLY
13369 if (dump_sects[i] & DISASS_DUMP)
13370 disassemble_section (section, file);
13371 #endif
13372 if (dump_sects[i] & HEX_DUMP)
13373 {
13374 if (! dump_section_as_bytes (section, file, FALSE))
13375 res = FALSE;
13376 }
13377
13378 if (dump_sects[i] & RELOC_DUMP)
13379 {
13380 if (! dump_section_as_bytes (section, file, TRUE))
13381 res = FALSE;
13382 }
13383
13384 if (dump_sects[i] & STRING_DUMP)
13385 {
13386 if (! dump_section_as_strings (section, file))
13387 res = FALSE;
13388 }
13389
13390 if (dump_sects[i] & DEBUG_DUMP)
13391 {
13392 if (! display_debug_section (i, section, file))
13393 res = FALSE;
13394 }
13395 }
13396
13397 /* Check to see if the user requested a
13398 dump of a section that does not exist. */
13399 while (i < num_dump_sects)
13400 {
13401 if (dump_sects[i])
13402 {
13403 warn (_("Section %d was not dumped because it does not exist!\n"), i);
13404 res = FALSE;
13405 }
13406 i++;
13407 }
13408
13409 return res;
13410 }
13411
13412 static void
13413 process_mips_fpe_exception (int mask)
13414 {
13415 if (mask)
13416 {
13417 bfd_boolean first = TRUE;
13418
13419 if (mask & OEX_FPU_INEX)
13420 fputs ("INEX", stdout), first = FALSE;
13421 if (mask & OEX_FPU_UFLO)
13422 printf ("%sUFLO", first ? "" : "|"), first = FALSE;
13423 if (mask & OEX_FPU_OFLO)
13424 printf ("%sOFLO", first ? "" : "|"), first = FALSE;
13425 if (mask & OEX_FPU_DIV0)
13426 printf ("%sDIV0", first ? "" : "|"), first = FALSE;
13427 if (mask & OEX_FPU_INVAL)
13428 printf ("%sINVAL", first ? "" : "|");
13429 }
13430 else
13431 fputs ("0", stdout);
13432 }
13433
13434 /* Display's the value of TAG at location P. If TAG is
13435 greater than 0 it is assumed to be an unknown tag, and
13436 a message is printed to this effect. Otherwise it is
13437 assumed that a message has already been printed.
13438
13439 If the bottom bit of TAG is set it assumed to have a
13440 string value, otherwise it is assumed to have an integer
13441 value.
13442
13443 Returns an updated P pointing to the first unread byte
13444 beyond the end of TAG's value.
13445
13446 Reads at or beyond END will not be made. */
13447
13448 static unsigned char *
13449 display_tag_value (signed int tag,
13450 unsigned char * p,
13451 const unsigned char * const end)
13452 {
13453 unsigned long val;
13454
13455 if (tag > 0)
13456 printf (" Tag_unknown_%d: ", tag);
13457
13458 if (p >= end)
13459 {
13460 warn (_("<corrupt tag>\n"));
13461 }
13462 else if (tag & 1)
13463 {
13464 /* PR 17531 file: 027-19978-0.004. */
13465 size_t maxlen = (end - p) - 1;
13466
13467 putchar ('"');
13468 if (maxlen > 0)
13469 {
13470 print_symbol ((int) maxlen, (const char *) p);
13471 p += strnlen ((char *) p, maxlen) + 1;
13472 }
13473 else
13474 {
13475 printf (_("<corrupt string tag>"));
13476 p = (unsigned char *) end;
13477 }
13478 printf ("\"\n");
13479 }
13480 else
13481 {
13482 unsigned int len;
13483
13484 val = read_uleb128 (p, &len, end);
13485 p += len;
13486 printf ("%ld (0x%lx)\n", val, val);
13487 }
13488
13489 assert (p <= end);
13490 return p;
13491 }
13492
13493 /* ARM EABI attributes section. */
13494 typedef struct
13495 {
13496 unsigned int tag;
13497 const char * name;
13498 /* 0 = special, 1 = string, 2 = uleb123, > 0x80 == table lookup. */
13499 unsigned int type;
13500 const char ** table;
13501 } arm_attr_public_tag;
13502
13503 static const char * arm_attr_tag_CPU_arch[] =
13504 {"Pre-v4", "v4", "v4T", "v5T", "v5TE", "v5TEJ", "v6", "v6KZ", "v6T2",
13505 "v6K", "v7", "v6-M", "v6S-M", "v7E-M", "v8", "", "v8-M.baseline",
13506 "v8-M.mainline"};
13507 static const char * arm_attr_tag_ARM_ISA_use[] = {"No", "Yes"};
13508 static const char * arm_attr_tag_THUMB_ISA_use[] =
13509 {"No", "Thumb-1", "Thumb-2", "Yes"};
13510 static const char * arm_attr_tag_FP_arch[] =
13511 {"No", "VFPv1", "VFPv2", "VFPv3", "VFPv3-D16", "VFPv4", "VFPv4-D16",
13512 "FP for ARMv8", "FPv5/FP-D16 for ARMv8"};
13513 static const char * arm_attr_tag_WMMX_arch[] = {"No", "WMMXv1", "WMMXv2"};
13514 static const char * arm_attr_tag_Advanced_SIMD_arch[] =
13515 {"No", "NEONv1", "NEONv1 with Fused-MAC", "NEON for ARMv8",
13516 "NEON for ARMv8.1"};
13517 static const char * arm_attr_tag_PCS_config[] =
13518 {"None", "Bare platform", "Linux application", "Linux DSO", "PalmOS 2004",
13519 "PalmOS (reserved)", "SymbianOS 2004", "SymbianOS (reserved)"};
13520 static const char * arm_attr_tag_ABI_PCS_R9_use[] =
13521 {"V6", "SB", "TLS", "Unused"};
13522 static const char * arm_attr_tag_ABI_PCS_RW_data[] =
13523 {"Absolute", "PC-relative", "SB-relative", "None"};
13524 static const char * arm_attr_tag_ABI_PCS_RO_data[] =
13525 {"Absolute", "PC-relative", "None"};
13526 static const char * arm_attr_tag_ABI_PCS_GOT_use[] =
13527 {"None", "direct", "GOT-indirect"};
13528 static const char * arm_attr_tag_ABI_PCS_wchar_t[] =
13529 {"None", "??? 1", "2", "??? 3", "4"};
13530 static const char * arm_attr_tag_ABI_FP_rounding[] = {"Unused", "Needed"};
13531 static const char * arm_attr_tag_ABI_FP_denormal[] =
13532 {"Unused", "Needed", "Sign only"};
13533 static const char * arm_attr_tag_ABI_FP_exceptions[] = {"Unused", "Needed"};
13534 static const char * arm_attr_tag_ABI_FP_user_exceptions[] = {"Unused", "Needed"};
13535 static const char * arm_attr_tag_ABI_FP_number_model[] =
13536 {"Unused", "Finite", "RTABI", "IEEE 754"};
13537 static const char * arm_attr_tag_ABI_enum_size[] =
13538 {"Unused", "small", "int", "forced to int"};
13539 static const char * arm_attr_tag_ABI_HardFP_use[] =
13540 {"As Tag_FP_arch", "SP only", "Reserved", "Deprecated"};
13541 static const char * arm_attr_tag_ABI_VFP_args[] =
13542 {"AAPCS", "VFP registers", "custom", "compatible"};
13543 static const char * arm_attr_tag_ABI_WMMX_args[] =
13544 {"AAPCS", "WMMX registers", "custom"};
13545 static const char * arm_attr_tag_ABI_optimization_goals[] =
13546 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
13547 "Aggressive Size", "Prefer Debug", "Aggressive Debug"};
13548 static const char * arm_attr_tag_ABI_FP_optimization_goals[] =
13549 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
13550 "Aggressive Size", "Prefer Accuracy", "Aggressive Accuracy"};
13551 static const char * arm_attr_tag_CPU_unaligned_access[] = {"None", "v6"};
13552 static const char * arm_attr_tag_FP_HP_extension[] =
13553 {"Not Allowed", "Allowed"};
13554 static const char * arm_attr_tag_ABI_FP_16bit_format[] =
13555 {"None", "IEEE 754", "Alternative Format"};
13556 static const char * arm_attr_tag_DSP_extension[] =
13557 {"Follow architecture", "Allowed"};
13558 static const char * arm_attr_tag_MPextension_use[] =
13559 {"Not Allowed", "Allowed"};
13560 static const char * arm_attr_tag_DIV_use[] =
13561 {"Allowed in Thumb-ISA, v7-R or v7-M", "Not allowed",
13562 "Allowed in v7-A with integer division extension"};
13563 static const char * arm_attr_tag_T2EE_use[] = {"Not Allowed", "Allowed"};
13564 static const char * arm_attr_tag_Virtualization_use[] =
13565 {"Not Allowed", "TrustZone", "Virtualization Extensions",
13566 "TrustZone and Virtualization Extensions"};
13567 static const char * arm_attr_tag_MPextension_use_legacy[] =
13568 {"Not Allowed", "Allowed"};
13569
13570 #define LOOKUP(id, name) \
13571 {id, #name, 0x80 | ARRAY_SIZE(arm_attr_tag_##name), arm_attr_tag_##name}
13572 static arm_attr_public_tag arm_attr_public_tags[] =
13573 {
13574 {4, "CPU_raw_name", 1, NULL},
13575 {5, "CPU_name", 1, NULL},
13576 LOOKUP(6, CPU_arch),
13577 {7, "CPU_arch_profile", 0, NULL},
13578 LOOKUP(8, ARM_ISA_use),
13579 LOOKUP(9, THUMB_ISA_use),
13580 LOOKUP(10, FP_arch),
13581 LOOKUP(11, WMMX_arch),
13582 LOOKUP(12, Advanced_SIMD_arch),
13583 LOOKUP(13, PCS_config),
13584 LOOKUP(14, ABI_PCS_R9_use),
13585 LOOKUP(15, ABI_PCS_RW_data),
13586 LOOKUP(16, ABI_PCS_RO_data),
13587 LOOKUP(17, ABI_PCS_GOT_use),
13588 LOOKUP(18, ABI_PCS_wchar_t),
13589 LOOKUP(19, ABI_FP_rounding),
13590 LOOKUP(20, ABI_FP_denormal),
13591 LOOKUP(21, ABI_FP_exceptions),
13592 LOOKUP(22, ABI_FP_user_exceptions),
13593 LOOKUP(23, ABI_FP_number_model),
13594 {24, "ABI_align_needed", 0, NULL},
13595 {25, "ABI_align_preserved", 0, NULL},
13596 LOOKUP(26, ABI_enum_size),
13597 LOOKUP(27, ABI_HardFP_use),
13598 LOOKUP(28, ABI_VFP_args),
13599 LOOKUP(29, ABI_WMMX_args),
13600 LOOKUP(30, ABI_optimization_goals),
13601 LOOKUP(31, ABI_FP_optimization_goals),
13602 {32, "compatibility", 0, NULL},
13603 LOOKUP(34, CPU_unaligned_access),
13604 LOOKUP(36, FP_HP_extension),
13605 LOOKUP(38, ABI_FP_16bit_format),
13606 LOOKUP(42, MPextension_use),
13607 LOOKUP(44, DIV_use),
13608 LOOKUP(46, DSP_extension),
13609 {64, "nodefaults", 0, NULL},
13610 {65, "also_compatible_with", 0, NULL},
13611 LOOKUP(66, T2EE_use),
13612 {67, "conformance", 1, NULL},
13613 LOOKUP(68, Virtualization_use),
13614 LOOKUP(70, MPextension_use_legacy)
13615 };
13616 #undef LOOKUP
13617
13618 static unsigned char *
13619 display_arm_attribute (unsigned char * p,
13620 const unsigned char * const end)
13621 {
13622 unsigned int tag;
13623 unsigned int len;
13624 unsigned int val;
13625 arm_attr_public_tag * attr;
13626 unsigned i;
13627 unsigned int type;
13628
13629 tag = read_uleb128 (p, &len, end);
13630 p += len;
13631 attr = NULL;
13632 for (i = 0; i < ARRAY_SIZE (arm_attr_public_tags); i++)
13633 {
13634 if (arm_attr_public_tags[i].tag == tag)
13635 {
13636 attr = &arm_attr_public_tags[i];
13637 break;
13638 }
13639 }
13640
13641 if (attr)
13642 {
13643 printf (" Tag_%s: ", attr->name);
13644 switch (attr->type)
13645 {
13646 case 0:
13647 switch (tag)
13648 {
13649 case 7: /* Tag_CPU_arch_profile. */
13650 val = read_uleb128 (p, &len, end);
13651 p += len;
13652 switch (val)
13653 {
13654 case 0: printf (_("None\n")); break;
13655 case 'A': printf (_("Application\n")); break;
13656 case 'R': printf (_("Realtime\n")); break;
13657 case 'M': printf (_("Microcontroller\n")); break;
13658 case 'S': printf (_("Application or Realtime\n")); break;
13659 default: printf ("??? (%d)\n", val); break;
13660 }
13661 break;
13662
13663 case 24: /* Tag_align_needed. */
13664 val = read_uleb128 (p, &len, end);
13665 p += len;
13666 switch (val)
13667 {
13668 case 0: printf (_("None\n")); break;
13669 case 1: printf (_("8-byte\n")); break;
13670 case 2: printf (_("4-byte\n")); break;
13671 case 3: printf ("??? 3\n"); break;
13672 default:
13673 if (val <= 12)
13674 printf (_("8-byte and up to %d-byte extended\n"),
13675 1 << val);
13676 else
13677 printf ("??? (%d)\n", val);
13678 break;
13679 }
13680 break;
13681
13682 case 25: /* Tag_align_preserved. */
13683 val = read_uleb128 (p, &len, end);
13684 p += len;
13685 switch (val)
13686 {
13687 case 0: printf (_("None\n")); break;
13688 case 1: printf (_("8-byte, except leaf SP\n")); break;
13689 case 2: printf (_("8-byte\n")); break;
13690 case 3: printf ("??? 3\n"); break;
13691 default:
13692 if (val <= 12)
13693 printf (_("8-byte and up to %d-byte extended\n"),
13694 1 << val);
13695 else
13696 printf ("??? (%d)\n", val);
13697 break;
13698 }
13699 break;
13700
13701 case 32: /* Tag_compatibility. */
13702 {
13703 val = read_uleb128 (p, &len, end);
13704 p += len;
13705 printf (_("flag = %d, vendor = "), val);
13706 if (p < end - 1)
13707 {
13708 size_t maxlen = (end - p) - 1;
13709
13710 print_symbol ((int) maxlen, (const char *) p);
13711 p += strnlen ((char *) p, maxlen) + 1;
13712 }
13713 else
13714 {
13715 printf (_("<corrupt>"));
13716 p = (unsigned char *) end;
13717 }
13718 putchar ('\n');
13719 }
13720 break;
13721
13722 case 64: /* Tag_nodefaults. */
13723 /* PR 17531: file: 001-505008-0.01. */
13724 if (p < end)
13725 p++;
13726 printf (_("True\n"));
13727 break;
13728
13729 case 65: /* Tag_also_compatible_with. */
13730 val = read_uleb128 (p, &len, end);
13731 p += len;
13732 if (val == 6 /* Tag_CPU_arch. */)
13733 {
13734 val = read_uleb128 (p, &len, end);
13735 p += len;
13736 if ((unsigned int) val >= ARRAY_SIZE (arm_attr_tag_CPU_arch))
13737 printf ("??? (%d)\n", val);
13738 else
13739 printf ("%s\n", arm_attr_tag_CPU_arch[val]);
13740 }
13741 else
13742 printf ("???\n");
13743 while (p < end && *(p++) != '\0' /* NUL terminator. */)
13744 ;
13745 break;
13746
13747 default:
13748 printf (_("<unknown: %d>\n"), tag);
13749 break;
13750 }
13751 return p;
13752
13753 case 1:
13754 return display_tag_value (-1, p, end);
13755 case 2:
13756 return display_tag_value (0, p, end);
13757
13758 default:
13759 assert (attr->type & 0x80);
13760 val = read_uleb128 (p, &len, end);
13761 p += len;
13762 type = attr->type & 0x7f;
13763 if (val >= type)
13764 printf ("??? (%d)\n", val);
13765 else
13766 printf ("%s\n", attr->table[val]);
13767 return p;
13768 }
13769 }
13770
13771 return display_tag_value (tag, p, end);
13772 }
13773
13774 static unsigned char *
13775 display_gnu_attribute (unsigned char * p,
13776 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, unsigned int, const unsigned char * const),
13777 const unsigned char * const end)
13778 {
13779 int tag;
13780 unsigned int len;
13781 unsigned int val;
13782
13783 tag = read_uleb128 (p, &len, end);
13784 p += len;
13785
13786 /* Tag_compatibility is the only generic GNU attribute defined at
13787 present. */
13788 if (tag == 32)
13789 {
13790 val = read_uleb128 (p, &len, end);
13791 p += len;
13792
13793 printf (_("flag = %d, vendor = "), val);
13794 if (p == end)
13795 {
13796 printf (_("<corrupt>\n"));
13797 warn (_("corrupt vendor attribute\n"));
13798 }
13799 else
13800 {
13801 if (p < end - 1)
13802 {
13803 size_t maxlen = (end - p) - 1;
13804
13805 print_symbol ((int) maxlen, (const char *) p);
13806 p += strnlen ((char *) p, maxlen) + 1;
13807 }
13808 else
13809 {
13810 printf (_("<corrupt>"));
13811 p = (unsigned char *) end;
13812 }
13813 putchar ('\n');
13814 }
13815 return p;
13816 }
13817
13818 if ((tag & 2) == 0 && display_proc_gnu_attribute)
13819 return display_proc_gnu_attribute (p, tag, end);
13820
13821 return display_tag_value (tag, p, end);
13822 }
13823
13824 static unsigned char *
13825 display_power_gnu_attribute (unsigned char * p,
13826 unsigned int tag,
13827 const unsigned char * const end)
13828 {
13829 unsigned int len;
13830 unsigned int val;
13831
13832 if (tag == Tag_GNU_Power_ABI_FP)
13833 {
13834 val = read_uleb128 (p, &len, end);
13835 p += len;
13836 printf (" Tag_GNU_Power_ABI_FP: ");
13837 if (len == 0)
13838 {
13839 printf (_("<corrupt>\n"));
13840 return p;
13841 }
13842
13843 if (val > 15)
13844 printf ("(%#x), ", val);
13845
13846 switch (val & 3)
13847 {
13848 case 0:
13849 printf (_("unspecified hard/soft float, "));
13850 break;
13851 case 1:
13852 printf (_("hard float, "));
13853 break;
13854 case 2:
13855 printf (_("soft float, "));
13856 break;
13857 case 3:
13858 printf (_("single-precision hard float, "));
13859 break;
13860 }
13861
13862 switch (val & 0xC)
13863 {
13864 case 0:
13865 printf (_("unspecified long double\n"));
13866 break;
13867 case 4:
13868 printf (_("128-bit IBM long double\n"));
13869 break;
13870 case 8:
13871 printf (_("64-bit long double\n"));
13872 break;
13873 case 12:
13874 printf (_("128-bit IEEE long double\n"));
13875 break;
13876 }
13877 return p;
13878 }
13879
13880 if (tag == Tag_GNU_Power_ABI_Vector)
13881 {
13882 val = read_uleb128 (p, &len, end);
13883 p += len;
13884 printf (" Tag_GNU_Power_ABI_Vector: ");
13885 if (len == 0)
13886 {
13887 printf (_("<corrupt>\n"));
13888 return p;
13889 }
13890
13891 if (val > 3)
13892 printf ("(%#x), ", val);
13893
13894 switch (val & 3)
13895 {
13896 case 0:
13897 printf (_("unspecified\n"));
13898 break;
13899 case 1:
13900 printf (_("generic\n"));
13901 break;
13902 case 2:
13903 printf ("AltiVec\n");
13904 break;
13905 case 3:
13906 printf ("SPE\n");
13907 break;
13908 }
13909 return p;
13910 }
13911
13912 if (tag == Tag_GNU_Power_ABI_Struct_Return)
13913 {
13914 val = read_uleb128 (p, &len, end);
13915 p += len;
13916 printf (" Tag_GNU_Power_ABI_Struct_Return: ");
13917 if (len == 0)
13918 {
13919 printf (_("<corrupt>\n"));
13920 return p;
13921 }
13922
13923 if (val > 2)
13924 printf ("(%#x), ", val);
13925
13926 switch (val & 3)
13927 {
13928 case 0:
13929 printf (_("unspecified\n"));
13930 break;
13931 case 1:
13932 printf ("r3/r4\n");
13933 break;
13934 case 2:
13935 printf (_("memory\n"));
13936 break;
13937 case 3:
13938 printf ("???\n");
13939 break;
13940 }
13941 return p;
13942 }
13943
13944 return display_tag_value (tag & 1, p, end);
13945 }
13946
13947 static unsigned char *
13948 display_s390_gnu_attribute (unsigned char * p,
13949 unsigned int tag,
13950 const unsigned char * const end)
13951 {
13952 unsigned int len;
13953 int val;
13954
13955 if (tag == Tag_GNU_S390_ABI_Vector)
13956 {
13957 val = read_uleb128 (p, &len, end);
13958 p += len;
13959 printf (" Tag_GNU_S390_ABI_Vector: ");
13960
13961 switch (val)
13962 {
13963 case 0:
13964 printf (_("any\n"));
13965 break;
13966 case 1:
13967 printf (_("software\n"));
13968 break;
13969 case 2:
13970 printf (_("hardware\n"));
13971 break;
13972 default:
13973 printf ("??? (%d)\n", val);
13974 break;
13975 }
13976 return p;
13977 }
13978
13979 return display_tag_value (tag & 1, p, end);
13980 }
13981
13982 static void
13983 display_sparc_hwcaps (unsigned int mask)
13984 {
13985 if (mask)
13986 {
13987 bfd_boolean first = TRUE;
13988
13989 if (mask & ELF_SPARC_HWCAP_MUL32)
13990 fputs ("mul32", stdout), first = FALSE;
13991 if (mask & ELF_SPARC_HWCAP_DIV32)
13992 printf ("%sdiv32", first ? "" : "|"), first = FALSE;
13993 if (mask & ELF_SPARC_HWCAP_FSMULD)
13994 printf ("%sfsmuld", first ? "" : "|"), first = FALSE;
13995 if (mask & ELF_SPARC_HWCAP_V8PLUS)
13996 printf ("%sv8plus", first ? "" : "|"), first = FALSE;
13997 if (mask & ELF_SPARC_HWCAP_POPC)
13998 printf ("%spopc", first ? "" : "|"), first = FALSE;
13999 if (mask & ELF_SPARC_HWCAP_VIS)
14000 printf ("%svis", first ? "" : "|"), first = FALSE;
14001 if (mask & ELF_SPARC_HWCAP_VIS2)
14002 printf ("%svis2", first ? "" : "|"), first = FALSE;
14003 if (mask & ELF_SPARC_HWCAP_ASI_BLK_INIT)
14004 printf ("%sASIBlkInit", first ? "" : "|"), first = FALSE;
14005 if (mask & ELF_SPARC_HWCAP_FMAF)
14006 printf ("%sfmaf", first ? "" : "|"), first = FALSE;
14007 if (mask & ELF_SPARC_HWCAP_VIS3)
14008 printf ("%svis3", first ? "" : "|"), first = FALSE;
14009 if (mask & ELF_SPARC_HWCAP_HPC)
14010 printf ("%shpc", first ? "" : "|"), first = FALSE;
14011 if (mask & ELF_SPARC_HWCAP_RANDOM)
14012 printf ("%srandom", first ? "" : "|"), first = FALSE;
14013 if (mask & ELF_SPARC_HWCAP_TRANS)
14014 printf ("%strans", first ? "" : "|"), first = FALSE;
14015 if (mask & ELF_SPARC_HWCAP_FJFMAU)
14016 printf ("%sfjfmau", first ? "" : "|"), first = FALSE;
14017 if (mask & ELF_SPARC_HWCAP_IMA)
14018 printf ("%sima", first ? "" : "|"), first = FALSE;
14019 if (mask & ELF_SPARC_HWCAP_ASI_CACHE_SPARING)
14020 printf ("%scspare", first ? "" : "|"), first = FALSE;
14021 }
14022 else
14023 fputc ('0', stdout);
14024 fputc ('\n', stdout);
14025 }
14026
14027 static void
14028 display_sparc_hwcaps2 (unsigned int mask)
14029 {
14030 if (mask)
14031 {
14032 bfd_boolean first = TRUE;
14033
14034 if (mask & ELF_SPARC_HWCAP2_FJATHPLUS)
14035 fputs ("fjathplus", stdout), first = FALSE;
14036 if (mask & ELF_SPARC_HWCAP2_VIS3B)
14037 printf ("%svis3b", first ? "" : "|"), first = FALSE;
14038 if (mask & ELF_SPARC_HWCAP2_ADP)
14039 printf ("%sadp", first ? "" : "|"), first = FALSE;
14040 if (mask & ELF_SPARC_HWCAP2_SPARC5)
14041 printf ("%ssparc5", first ? "" : "|"), first = FALSE;
14042 if (mask & ELF_SPARC_HWCAP2_MWAIT)
14043 printf ("%smwait", first ? "" : "|"), first = FALSE;
14044 if (mask & ELF_SPARC_HWCAP2_XMPMUL)
14045 printf ("%sxmpmul", first ? "" : "|"), first = FALSE;
14046 if (mask & ELF_SPARC_HWCAP2_XMONT)
14047 printf ("%sxmont2", first ? "" : "|"), first = FALSE;
14048 if (mask & ELF_SPARC_HWCAP2_NSEC)
14049 printf ("%snsec", first ? "" : "|"), first = FALSE;
14050 if (mask & ELF_SPARC_HWCAP2_FJATHHPC)
14051 printf ("%sfjathhpc", first ? "" : "|"), first = FALSE;
14052 if (mask & ELF_SPARC_HWCAP2_FJDES)
14053 printf ("%sfjdes", first ? "" : "|"), first = FALSE;
14054 if (mask & ELF_SPARC_HWCAP2_FJAES)
14055 printf ("%sfjaes", first ? "" : "|"), first = FALSE;
14056 }
14057 else
14058 fputc ('0', stdout);
14059 fputc ('\n', stdout);
14060 }
14061
14062 static unsigned char *
14063 display_sparc_gnu_attribute (unsigned char * p,
14064 unsigned int tag,
14065 const unsigned char * const end)
14066 {
14067 unsigned int len;
14068 int val;
14069
14070 if (tag == Tag_GNU_Sparc_HWCAPS)
14071 {
14072 val = read_uleb128 (p, &len, end);
14073 p += len;
14074 printf (" Tag_GNU_Sparc_HWCAPS: ");
14075 display_sparc_hwcaps (val);
14076 return p;
14077 }
14078 if (tag == Tag_GNU_Sparc_HWCAPS2)
14079 {
14080 val = read_uleb128 (p, &len, end);
14081 p += len;
14082 printf (" Tag_GNU_Sparc_HWCAPS2: ");
14083 display_sparc_hwcaps2 (val);
14084 return p;
14085 }
14086
14087 return display_tag_value (tag, p, end);
14088 }
14089
14090 static void
14091 print_mips_fp_abi_value (unsigned int val)
14092 {
14093 switch (val)
14094 {
14095 case Val_GNU_MIPS_ABI_FP_ANY:
14096 printf (_("Hard or soft float\n"));
14097 break;
14098 case Val_GNU_MIPS_ABI_FP_DOUBLE:
14099 printf (_("Hard float (double precision)\n"));
14100 break;
14101 case Val_GNU_MIPS_ABI_FP_SINGLE:
14102 printf (_("Hard float (single precision)\n"));
14103 break;
14104 case Val_GNU_MIPS_ABI_FP_SOFT:
14105 printf (_("Soft float\n"));
14106 break;
14107 case Val_GNU_MIPS_ABI_FP_OLD_64:
14108 printf (_("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
14109 break;
14110 case Val_GNU_MIPS_ABI_FP_XX:
14111 printf (_("Hard float (32-bit CPU, Any FPU)\n"));
14112 break;
14113 case Val_GNU_MIPS_ABI_FP_64:
14114 printf (_("Hard float (32-bit CPU, 64-bit FPU)\n"));
14115 break;
14116 case Val_GNU_MIPS_ABI_FP_64A:
14117 printf (_("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
14118 break;
14119 case Val_GNU_MIPS_ABI_FP_NAN2008:
14120 printf (_("NaN 2008 compatibility\n"));
14121 break;
14122 default:
14123 printf ("??? (%d)\n", val);
14124 break;
14125 }
14126 }
14127
14128 static unsigned char *
14129 display_mips_gnu_attribute (unsigned char * p,
14130 unsigned int tag,
14131 const unsigned char * const end)
14132 {
14133 if (tag == Tag_GNU_MIPS_ABI_FP)
14134 {
14135 unsigned int len;
14136 unsigned int val;
14137
14138 val = read_uleb128 (p, &len, end);
14139 p += len;
14140 printf (" Tag_GNU_MIPS_ABI_FP: ");
14141
14142 print_mips_fp_abi_value (val);
14143
14144 return p;
14145 }
14146
14147 if (tag == Tag_GNU_MIPS_ABI_MSA)
14148 {
14149 unsigned int len;
14150 unsigned int val;
14151
14152 val = read_uleb128 (p, &len, end);
14153 p += len;
14154 printf (" Tag_GNU_MIPS_ABI_MSA: ");
14155
14156 switch (val)
14157 {
14158 case Val_GNU_MIPS_ABI_MSA_ANY:
14159 printf (_("Any MSA or not\n"));
14160 break;
14161 case Val_GNU_MIPS_ABI_MSA_128:
14162 printf (_("128-bit MSA\n"));
14163 break;
14164 default:
14165 printf ("??? (%d)\n", val);
14166 break;
14167 }
14168 return p;
14169 }
14170
14171 return display_tag_value (tag & 1, p, end);
14172 }
14173
14174 static unsigned char *
14175 display_tic6x_attribute (unsigned char * p,
14176 const unsigned char * const end)
14177 {
14178 unsigned int tag;
14179 unsigned int len;
14180 int val;
14181
14182 tag = read_uleb128 (p, &len, end);
14183 p += len;
14184
14185 switch (tag)
14186 {
14187 case Tag_ISA:
14188 val = read_uleb128 (p, &len, end);
14189 p += len;
14190 printf (" Tag_ISA: ");
14191
14192 switch (val)
14193 {
14194 case C6XABI_Tag_ISA_none:
14195 printf (_("None\n"));
14196 break;
14197 case C6XABI_Tag_ISA_C62X:
14198 printf ("C62x\n");
14199 break;
14200 case C6XABI_Tag_ISA_C67X:
14201 printf ("C67x\n");
14202 break;
14203 case C6XABI_Tag_ISA_C67XP:
14204 printf ("C67x+\n");
14205 break;
14206 case C6XABI_Tag_ISA_C64X:
14207 printf ("C64x\n");
14208 break;
14209 case C6XABI_Tag_ISA_C64XP:
14210 printf ("C64x+\n");
14211 break;
14212 case C6XABI_Tag_ISA_C674X:
14213 printf ("C674x\n");
14214 break;
14215 default:
14216 printf ("??? (%d)\n", val);
14217 break;
14218 }
14219 return p;
14220
14221 case Tag_ABI_wchar_t:
14222 val = read_uleb128 (p, &len, end);
14223 p += len;
14224 printf (" Tag_ABI_wchar_t: ");
14225 switch (val)
14226 {
14227 case 0:
14228 printf (_("Not used\n"));
14229 break;
14230 case 1:
14231 printf (_("2 bytes\n"));
14232 break;
14233 case 2:
14234 printf (_("4 bytes\n"));
14235 break;
14236 default:
14237 printf ("??? (%d)\n", val);
14238 break;
14239 }
14240 return p;
14241
14242 case Tag_ABI_stack_align_needed:
14243 val = read_uleb128 (p, &len, end);
14244 p += len;
14245 printf (" Tag_ABI_stack_align_needed: ");
14246 switch (val)
14247 {
14248 case 0:
14249 printf (_("8-byte\n"));
14250 break;
14251 case 1:
14252 printf (_("16-byte\n"));
14253 break;
14254 default:
14255 printf ("??? (%d)\n", val);
14256 break;
14257 }
14258 return p;
14259
14260 case Tag_ABI_stack_align_preserved:
14261 val = read_uleb128 (p, &len, end);
14262 p += len;
14263 printf (" Tag_ABI_stack_align_preserved: ");
14264 switch (val)
14265 {
14266 case 0:
14267 printf (_("8-byte\n"));
14268 break;
14269 case 1:
14270 printf (_("16-byte\n"));
14271 break;
14272 default:
14273 printf ("??? (%d)\n", val);
14274 break;
14275 }
14276 return p;
14277
14278 case Tag_ABI_DSBT:
14279 val = read_uleb128 (p, &len, end);
14280 p += len;
14281 printf (" Tag_ABI_DSBT: ");
14282 switch (val)
14283 {
14284 case 0:
14285 printf (_("DSBT addressing not used\n"));
14286 break;
14287 case 1:
14288 printf (_("DSBT addressing used\n"));
14289 break;
14290 default:
14291 printf ("??? (%d)\n", val);
14292 break;
14293 }
14294 return p;
14295
14296 case Tag_ABI_PID:
14297 val = read_uleb128 (p, &len, end);
14298 p += len;
14299 printf (" Tag_ABI_PID: ");
14300 switch (val)
14301 {
14302 case 0:
14303 printf (_("Data addressing position-dependent\n"));
14304 break;
14305 case 1:
14306 printf (_("Data addressing position-independent, GOT near DP\n"));
14307 break;
14308 case 2:
14309 printf (_("Data addressing position-independent, GOT far from DP\n"));
14310 break;
14311 default:
14312 printf ("??? (%d)\n", val);
14313 break;
14314 }
14315 return p;
14316
14317 case Tag_ABI_PIC:
14318 val = read_uleb128 (p, &len, end);
14319 p += len;
14320 printf (" Tag_ABI_PIC: ");
14321 switch (val)
14322 {
14323 case 0:
14324 printf (_("Code addressing position-dependent\n"));
14325 break;
14326 case 1:
14327 printf (_("Code addressing position-independent\n"));
14328 break;
14329 default:
14330 printf ("??? (%d)\n", val);
14331 break;
14332 }
14333 return p;
14334
14335 case Tag_ABI_array_object_alignment:
14336 val = read_uleb128 (p, &len, end);
14337 p += len;
14338 printf (" Tag_ABI_array_object_alignment: ");
14339 switch (val)
14340 {
14341 case 0:
14342 printf (_("8-byte\n"));
14343 break;
14344 case 1:
14345 printf (_("4-byte\n"));
14346 break;
14347 case 2:
14348 printf (_("16-byte\n"));
14349 break;
14350 default:
14351 printf ("??? (%d)\n", val);
14352 break;
14353 }
14354 return p;
14355
14356 case Tag_ABI_array_object_align_expected:
14357 val = read_uleb128 (p, &len, end);
14358 p += len;
14359 printf (" Tag_ABI_array_object_align_expected: ");
14360 switch (val)
14361 {
14362 case 0:
14363 printf (_("8-byte\n"));
14364 break;
14365 case 1:
14366 printf (_("4-byte\n"));
14367 break;
14368 case 2:
14369 printf (_("16-byte\n"));
14370 break;
14371 default:
14372 printf ("??? (%d)\n", val);
14373 break;
14374 }
14375 return p;
14376
14377 case Tag_ABI_compatibility:
14378 {
14379 val = read_uleb128 (p, &len, end);
14380 p += len;
14381 printf (" Tag_ABI_compatibility: ");
14382 printf (_("flag = %d, vendor = "), val);
14383 if (p < end - 1)
14384 {
14385 size_t maxlen = (end - p) - 1;
14386
14387 print_symbol ((int) maxlen, (const char *) p);
14388 p += strnlen ((char *) p, maxlen) + 1;
14389 }
14390 else
14391 {
14392 printf (_("<corrupt>"));
14393 p = (unsigned char *) end;
14394 }
14395 putchar ('\n');
14396 return p;
14397 }
14398
14399 case Tag_ABI_conformance:
14400 {
14401 printf (" Tag_ABI_conformance: \"");
14402 if (p < end - 1)
14403 {
14404 size_t maxlen = (end - p) - 1;
14405
14406 print_symbol ((int) maxlen, (const char *) p);
14407 p += strnlen ((char *) p, maxlen) + 1;
14408 }
14409 else
14410 {
14411 printf (_("<corrupt>"));
14412 p = (unsigned char *) end;
14413 }
14414 printf ("\"\n");
14415 return p;
14416 }
14417 }
14418
14419 return display_tag_value (tag, p, end);
14420 }
14421
14422 static void
14423 display_raw_attribute (unsigned char * p, unsigned char const * const end)
14424 {
14425 unsigned long addr = 0;
14426 size_t bytes = end - p;
14427
14428 assert (end > p);
14429 while (bytes)
14430 {
14431 int j;
14432 int k;
14433 int lbytes = (bytes > 16 ? 16 : bytes);
14434
14435 printf (" 0x%8.8lx ", addr);
14436
14437 for (j = 0; j < 16; j++)
14438 {
14439 if (j < lbytes)
14440 printf ("%2.2x", p[j]);
14441 else
14442 printf (" ");
14443
14444 if ((j & 3) == 3)
14445 printf (" ");
14446 }
14447
14448 for (j = 0; j < lbytes; j++)
14449 {
14450 k = p[j];
14451 if (k >= ' ' && k < 0x7f)
14452 printf ("%c", k);
14453 else
14454 printf (".");
14455 }
14456
14457 putchar ('\n');
14458
14459 p += lbytes;
14460 bytes -= lbytes;
14461 addr += lbytes;
14462 }
14463
14464 putchar ('\n');
14465 }
14466
14467 static unsigned char *
14468 display_msp430x_attribute (unsigned char * p,
14469 const unsigned char * const end)
14470 {
14471 unsigned int len;
14472 unsigned int val;
14473 unsigned int tag;
14474
14475 tag = read_uleb128 (p, & len, end);
14476 p += len;
14477
14478 switch (tag)
14479 {
14480 case OFBA_MSPABI_Tag_ISA:
14481 val = read_uleb128 (p, &len, end);
14482 p += len;
14483 printf (" Tag_ISA: ");
14484 switch (val)
14485 {
14486 case 0: printf (_("None\n")); break;
14487 case 1: printf (_("MSP430\n")); break;
14488 case 2: printf (_("MSP430X\n")); break;
14489 default: printf ("??? (%d)\n", val); break;
14490 }
14491 break;
14492
14493 case OFBA_MSPABI_Tag_Code_Model:
14494 val = read_uleb128 (p, &len, end);
14495 p += len;
14496 printf (" Tag_Code_Model: ");
14497 switch (val)
14498 {
14499 case 0: printf (_("None\n")); break;
14500 case 1: printf (_("Small\n")); break;
14501 case 2: printf (_("Large\n")); break;
14502 default: printf ("??? (%d)\n", val); break;
14503 }
14504 break;
14505
14506 case OFBA_MSPABI_Tag_Data_Model:
14507 val = read_uleb128 (p, &len, end);
14508 p += len;
14509 printf (" Tag_Data_Model: ");
14510 switch (val)
14511 {
14512 case 0: printf (_("None\n")); break;
14513 case 1: printf (_("Small\n")); break;
14514 case 2: printf (_("Large\n")); break;
14515 case 3: printf (_("Restricted Large\n")); break;
14516 default: printf ("??? (%d)\n", val); break;
14517 }
14518 break;
14519
14520 default:
14521 printf (_(" <unknown tag %d>: "), tag);
14522
14523 if (tag & 1)
14524 {
14525 putchar ('"');
14526 if (p < end - 1)
14527 {
14528 size_t maxlen = (end - p) - 1;
14529
14530 print_symbol ((int) maxlen, (const char *) p);
14531 p += strnlen ((char *) p, maxlen) + 1;
14532 }
14533 else
14534 {
14535 printf (_("<corrupt>"));
14536 p = (unsigned char *) end;
14537 }
14538 printf ("\"\n");
14539 }
14540 else
14541 {
14542 val = read_uleb128 (p, &len, end);
14543 p += len;
14544 printf ("%d (0x%x)\n", val, val);
14545 }
14546 break;
14547 }
14548
14549 assert (p <= end);
14550 return p;
14551 }
14552
14553 static bfd_boolean
14554 process_attributes (FILE * file,
14555 const char * public_name,
14556 unsigned int proc_type,
14557 unsigned char * (* display_pub_attribute) (unsigned char *, const unsigned char * const),
14558 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, unsigned int, const unsigned char * const))
14559 {
14560 Elf_Internal_Shdr * sect;
14561 unsigned i;
14562 bfd_boolean res = TRUE;
14563
14564 /* Find the section header so that we get the size. */
14565 for (i = 0, sect = section_headers;
14566 i < elf_header.e_shnum;
14567 i++, sect++)
14568 {
14569 unsigned char * contents;
14570 unsigned char * p;
14571
14572 if (sect->sh_type != proc_type && sect->sh_type != SHT_GNU_ATTRIBUTES)
14573 continue;
14574
14575 contents = (unsigned char *) get_data (NULL, file, sect->sh_offset, 1,
14576 sect->sh_size, _("attributes"));
14577 if (contents == NULL)
14578 {
14579 res = FALSE;
14580 continue;
14581 }
14582
14583 p = contents;
14584 /* The first character is the version of the attributes.
14585 Currently only version 1, (aka 'A') is recognised here. */
14586 if (*p != 'A')
14587 {
14588 printf (_("Unknown attributes version '%c'(%d) - expecting 'A'\n"), *p, *p);
14589 res = FALSE;
14590 }
14591 else
14592 {
14593 bfd_vma section_len;
14594
14595 section_len = sect->sh_size - 1;
14596 p++;
14597
14598 while (section_len > 0)
14599 {
14600 bfd_vma attr_len;
14601 unsigned int namelen;
14602 bfd_boolean public_section;
14603 bfd_boolean gnu_section;
14604
14605 if (section_len <= 4)
14606 {
14607 error (_("Tag section ends prematurely\n"));
14608 res = FALSE;
14609 break;
14610 }
14611 attr_len = byte_get (p, 4);
14612 p += 4;
14613
14614 if (attr_len > section_len)
14615 {
14616 error (_("Bad attribute length (%u > %u)\n"),
14617 (unsigned) attr_len, (unsigned) section_len);
14618 attr_len = section_len;
14619 res = FALSE;
14620 }
14621 /* PR 17531: file: 001-101425-0.004 */
14622 else if (attr_len < 5)
14623 {
14624 error (_("Attribute length of %u is too small\n"), (unsigned) attr_len);
14625 res = FALSE;
14626 break;
14627 }
14628
14629 section_len -= attr_len;
14630 attr_len -= 4;
14631
14632 namelen = strnlen ((char *) p, attr_len) + 1;
14633 if (namelen == 0 || namelen >= attr_len)
14634 {
14635 error (_("Corrupt attribute section name\n"));
14636 res = FALSE;
14637 break;
14638 }
14639
14640 printf (_("Attribute Section: "));
14641 print_symbol (INT_MAX, (const char *) p);
14642 putchar ('\n');
14643
14644 if (public_name && streq ((char *) p, public_name))
14645 public_section = TRUE;
14646 else
14647 public_section = FALSE;
14648
14649 if (streq ((char *) p, "gnu"))
14650 gnu_section = TRUE;
14651 else
14652 gnu_section = FALSE;
14653
14654 p += namelen;
14655 attr_len -= namelen;
14656
14657 while (attr_len > 0 && p < contents + sect->sh_size)
14658 {
14659 int tag;
14660 int val;
14661 bfd_vma size;
14662 unsigned char * end;
14663
14664 /* PR binutils/17531: Safe handling of corrupt files. */
14665 if (attr_len < 6)
14666 {
14667 error (_("Unused bytes at end of section\n"));
14668 res = FALSE;
14669 section_len = 0;
14670 break;
14671 }
14672
14673 tag = *(p++);
14674 size = byte_get (p, 4);
14675 if (size > attr_len)
14676 {
14677 error (_("Bad subsection length (%u > %u)\n"),
14678 (unsigned) size, (unsigned) attr_len);
14679 res = FALSE;
14680 size = attr_len;
14681 }
14682 /* PR binutils/17531: Safe handling of corrupt files. */
14683 if (size < 6)
14684 {
14685 error (_("Bad subsection length (%u < 6)\n"),
14686 (unsigned) size);
14687 res = FALSE;
14688 section_len = 0;
14689 break;
14690 }
14691
14692 attr_len -= size;
14693 end = p + size - 1;
14694 assert (end <= contents + sect->sh_size);
14695 p += 4;
14696
14697 switch (tag)
14698 {
14699 case 1:
14700 printf (_("File Attributes\n"));
14701 break;
14702 case 2:
14703 printf (_("Section Attributes:"));
14704 goto do_numlist;
14705 case 3:
14706 printf (_("Symbol Attributes:"));
14707 /* Fall through. */
14708 do_numlist:
14709 for (;;)
14710 {
14711 unsigned int j;
14712
14713 val = read_uleb128 (p, &j, end);
14714 p += j;
14715 if (val == 0)
14716 break;
14717 printf (" %d", val);
14718 }
14719 printf ("\n");
14720 break;
14721 default:
14722 printf (_("Unknown tag: %d\n"), tag);
14723 public_section = FALSE;
14724 break;
14725 }
14726
14727 if (public_section && display_pub_attribute != NULL)
14728 {
14729 while (p < end)
14730 p = display_pub_attribute (p, end);
14731 assert (p == end);
14732 }
14733 else if (gnu_section && display_proc_gnu_attribute != NULL)
14734 {
14735 while (p < end)
14736 p = display_gnu_attribute (p,
14737 display_proc_gnu_attribute,
14738 end);
14739 assert (p == end);
14740 }
14741 else if (p < end)
14742 {
14743 printf (_(" Unknown attribute:\n"));
14744 display_raw_attribute (p, end);
14745 p = end;
14746 }
14747 else
14748 attr_len = 0;
14749 }
14750 }
14751 }
14752
14753 free (contents);
14754 }
14755
14756 return res;
14757 }
14758
14759 /* DATA points to the contents of a MIPS GOT that starts at VMA PLTGOT.
14760 Print the Address, Access and Initial fields of an entry at VMA ADDR
14761 and return the VMA of the next entry, or -1 if there was a problem.
14762 Does not read from DATA_END or beyond. */
14763
14764 static bfd_vma
14765 print_mips_got_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr,
14766 unsigned char * data_end)
14767 {
14768 printf (" ");
14769 print_vma (addr, LONG_HEX);
14770 printf (" ");
14771 if (addr < pltgot + 0xfff0)
14772 printf ("%6d(gp)", (int) (addr - pltgot - 0x7ff0));
14773 else
14774 printf ("%10s", "");
14775 printf (" ");
14776 if (data == NULL)
14777 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
14778 else
14779 {
14780 bfd_vma entry;
14781 unsigned char * from = data + addr - pltgot;
14782
14783 if (from + (is_32bit_elf ? 4 : 8) > data_end)
14784 {
14785 warn (_("MIPS GOT entry extends beyond the end of available data\n"));
14786 printf ("%*s", is_32bit_elf ? 8 : 16, _("<corrupt>"));
14787 return (bfd_vma) -1;
14788 }
14789 else
14790 {
14791 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
14792 print_vma (entry, LONG_HEX);
14793 }
14794 }
14795 return addr + (is_32bit_elf ? 4 : 8);
14796 }
14797
14798 /* DATA points to the contents of a MIPS PLT GOT that starts at VMA
14799 PLTGOT. Print the Address and Initial fields of an entry at VMA
14800 ADDR and return the VMA of the next entry. */
14801
14802 static bfd_vma
14803 print_mips_pltgot_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
14804 {
14805 printf (" ");
14806 print_vma (addr, LONG_HEX);
14807 printf (" ");
14808 if (data == NULL)
14809 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
14810 else
14811 {
14812 bfd_vma entry;
14813
14814 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
14815 print_vma (entry, LONG_HEX);
14816 }
14817 return addr + (is_32bit_elf ? 4 : 8);
14818 }
14819
14820 static void
14821 print_mips_ases (unsigned int mask)
14822 {
14823 if (mask & AFL_ASE_DSP)
14824 fputs ("\n\tDSP ASE", stdout);
14825 if (mask & AFL_ASE_DSPR2)
14826 fputs ("\n\tDSP R2 ASE", stdout);
14827 if (mask & AFL_ASE_DSPR3)
14828 fputs ("\n\tDSP R3 ASE", stdout);
14829 if (mask & AFL_ASE_EVA)
14830 fputs ("\n\tEnhanced VA Scheme", stdout);
14831 if (mask & AFL_ASE_MCU)
14832 fputs ("\n\tMCU (MicroController) ASE", stdout);
14833 if (mask & AFL_ASE_MDMX)
14834 fputs ("\n\tMDMX ASE", stdout);
14835 if (mask & AFL_ASE_MIPS3D)
14836 fputs ("\n\tMIPS-3D ASE", stdout);
14837 if (mask & AFL_ASE_MT)
14838 fputs ("\n\tMT ASE", stdout);
14839 if (mask & AFL_ASE_SMARTMIPS)
14840 fputs ("\n\tSmartMIPS ASE", stdout);
14841 if (mask & AFL_ASE_VIRT)
14842 fputs ("\n\tVZ ASE", stdout);
14843 if (mask & AFL_ASE_MSA)
14844 fputs ("\n\tMSA ASE", stdout);
14845 if (mask & AFL_ASE_MIPS16)
14846 fputs ("\n\tMIPS16 ASE", stdout);
14847 if (mask & AFL_ASE_MICROMIPS)
14848 fputs ("\n\tMICROMIPS ASE", stdout);
14849 if (mask & AFL_ASE_XPA)
14850 fputs ("\n\tXPA ASE", stdout);
14851 if (mask == 0)
14852 fprintf (stdout, "\n\t%s", _("None"));
14853 else if ((mask & ~AFL_ASE_MASK) != 0)
14854 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
14855 }
14856
14857 static void
14858 print_mips_isa_ext (unsigned int isa_ext)
14859 {
14860 switch (isa_ext)
14861 {
14862 case 0:
14863 fputs (_("None"), stdout);
14864 break;
14865 case AFL_EXT_XLR:
14866 fputs ("RMI XLR", stdout);
14867 break;
14868 case AFL_EXT_OCTEON3:
14869 fputs ("Cavium Networks Octeon3", stdout);
14870 break;
14871 case AFL_EXT_OCTEON2:
14872 fputs ("Cavium Networks Octeon2", stdout);
14873 break;
14874 case AFL_EXT_OCTEONP:
14875 fputs ("Cavium Networks OcteonP", stdout);
14876 break;
14877 case AFL_EXT_LOONGSON_3A:
14878 fputs ("Loongson 3A", stdout);
14879 break;
14880 case AFL_EXT_OCTEON:
14881 fputs ("Cavium Networks Octeon", stdout);
14882 break;
14883 case AFL_EXT_5900:
14884 fputs ("Toshiba R5900", stdout);
14885 break;
14886 case AFL_EXT_4650:
14887 fputs ("MIPS R4650", stdout);
14888 break;
14889 case AFL_EXT_4010:
14890 fputs ("LSI R4010", stdout);
14891 break;
14892 case AFL_EXT_4100:
14893 fputs ("NEC VR4100", stdout);
14894 break;
14895 case AFL_EXT_3900:
14896 fputs ("Toshiba R3900", stdout);
14897 break;
14898 case AFL_EXT_10000:
14899 fputs ("MIPS R10000", stdout);
14900 break;
14901 case AFL_EXT_SB1:
14902 fputs ("Broadcom SB-1", stdout);
14903 break;
14904 case AFL_EXT_4111:
14905 fputs ("NEC VR4111/VR4181", stdout);
14906 break;
14907 case AFL_EXT_4120:
14908 fputs ("NEC VR4120", stdout);
14909 break;
14910 case AFL_EXT_5400:
14911 fputs ("NEC VR5400", stdout);
14912 break;
14913 case AFL_EXT_5500:
14914 fputs ("NEC VR5500", stdout);
14915 break;
14916 case AFL_EXT_LOONGSON_2E:
14917 fputs ("ST Microelectronics Loongson 2E", stdout);
14918 break;
14919 case AFL_EXT_LOONGSON_2F:
14920 fputs ("ST Microelectronics Loongson 2F", stdout);
14921 break;
14922 default:
14923 fprintf (stdout, "%s (%d)", _("Unknown"), isa_ext);
14924 }
14925 }
14926
14927 static signed int
14928 get_mips_reg_size (int reg_size)
14929 {
14930 return (reg_size == AFL_REG_NONE) ? 0
14931 : (reg_size == AFL_REG_32) ? 32
14932 : (reg_size == AFL_REG_64) ? 64
14933 : (reg_size == AFL_REG_128) ? 128
14934 : -1;
14935 }
14936
14937 static bfd_boolean
14938 process_mips_specific (FILE * file)
14939 {
14940 Elf_Internal_Dyn * entry;
14941 Elf_Internal_Shdr *sect = NULL;
14942 size_t liblist_offset = 0;
14943 size_t liblistno = 0;
14944 size_t conflictsno = 0;
14945 size_t options_offset = 0;
14946 size_t conflicts_offset = 0;
14947 size_t pltrelsz = 0;
14948 size_t pltrel = 0;
14949 bfd_vma pltgot = 0;
14950 bfd_vma mips_pltgot = 0;
14951 bfd_vma jmprel = 0;
14952 bfd_vma local_gotno = 0;
14953 bfd_vma gotsym = 0;
14954 bfd_vma symtabno = 0;
14955 bfd_boolean res = TRUE;
14956
14957 if (! process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
14958 display_mips_gnu_attribute))
14959 res = FALSE;
14960
14961 sect = find_section (".MIPS.abiflags");
14962
14963 if (sect != NULL)
14964 {
14965 Elf_External_ABIFlags_v0 *abiflags_ext;
14966 Elf_Internal_ABIFlags_v0 abiflags_in;
14967
14968 if (sizeof (Elf_External_ABIFlags_v0) != sect->sh_size)
14969 {
14970 error (_("Corrupt MIPS ABI Flags section.\n"));
14971 res = FALSE;
14972 }
14973 else
14974 {
14975 abiflags_ext = get_data (NULL, file, sect->sh_offset, 1,
14976 sect->sh_size, _("MIPS ABI Flags section"));
14977 if (abiflags_ext)
14978 {
14979 abiflags_in.version = BYTE_GET (abiflags_ext->version);
14980 abiflags_in.isa_level = BYTE_GET (abiflags_ext->isa_level);
14981 abiflags_in.isa_rev = BYTE_GET (abiflags_ext->isa_rev);
14982 abiflags_in.gpr_size = BYTE_GET (abiflags_ext->gpr_size);
14983 abiflags_in.cpr1_size = BYTE_GET (abiflags_ext->cpr1_size);
14984 abiflags_in.cpr2_size = BYTE_GET (abiflags_ext->cpr2_size);
14985 abiflags_in.fp_abi = BYTE_GET (abiflags_ext->fp_abi);
14986 abiflags_in.isa_ext = BYTE_GET (abiflags_ext->isa_ext);
14987 abiflags_in.ases = BYTE_GET (abiflags_ext->ases);
14988 abiflags_in.flags1 = BYTE_GET (abiflags_ext->flags1);
14989 abiflags_in.flags2 = BYTE_GET (abiflags_ext->flags2);
14990
14991 printf ("\nMIPS ABI Flags Version: %d\n", abiflags_in.version);
14992 printf ("\nISA: MIPS%d", abiflags_in.isa_level);
14993 if (abiflags_in.isa_rev > 1)
14994 printf ("r%d", abiflags_in.isa_rev);
14995 printf ("\nGPR size: %d",
14996 get_mips_reg_size (abiflags_in.gpr_size));
14997 printf ("\nCPR1 size: %d",
14998 get_mips_reg_size (abiflags_in.cpr1_size));
14999 printf ("\nCPR2 size: %d",
15000 get_mips_reg_size (abiflags_in.cpr2_size));
15001 fputs ("\nFP ABI: ", stdout);
15002 print_mips_fp_abi_value (abiflags_in.fp_abi);
15003 fputs ("ISA Extension: ", stdout);
15004 print_mips_isa_ext (abiflags_in.isa_ext);
15005 fputs ("\nASEs:", stdout);
15006 print_mips_ases (abiflags_in.ases);
15007 printf ("\nFLAGS 1: %8.8lx", abiflags_in.flags1);
15008 printf ("\nFLAGS 2: %8.8lx", abiflags_in.flags2);
15009 fputc ('\n', stdout);
15010 free (abiflags_ext);
15011 }
15012 }
15013 }
15014
15015 /* We have a lot of special sections. Thanks SGI! */
15016 if (dynamic_section == NULL)
15017 {
15018 /* No dynamic information available. See if there is static GOT. */
15019 sect = find_section (".got");
15020 if (sect != NULL)
15021 {
15022 unsigned char *data_end;
15023 unsigned char *data;
15024 bfd_vma ent, end;
15025 int addr_size;
15026
15027 pltgot = sect->sh_addr;
15028
15029 ent = pltgot;
15030 addr_size = (is_32bit_elf ? 4 : 8);
15031 end = pltgot + sect->sh_size;
15032
15033 data = (unsigned char *) get_data (NULL, file, sect->sh_offset,
15034 end - pltgot, 1,
15035 _("Global Offset Table data"));
15036 /* PR 12855: Null data is handled gracefully throughout. */
15037 data_end = data + (end - pltgot);
15038
15039 printf (_("\nStatic GOT:\n"));
15040 printf (_(" Canonical gp value: "));
15041 print_vma (ent + 0x7ff0, LONG_HEX);
15042 printf ("\n\n");
15043
15044 /* In a dynamic binary GOT[0] is reserved for the dynamic
15045 loader to store the lazy resolver pointer, however in
15046 a static binary it may well have been omitted and GOT
15047 reduced to a table of addresses.
15048 PR 21344: Check for the entry being fully available
15049 before fetching it. */
15050 if (data
15051 && data + ent - pltgot + addr_size <= data_end
15052 && byte_get (data + ent - pltgot, addr_size) == 0)
15053 {
15054 printf (_(" Reserved entries:\n"));
15055 printf (_(" %*s %10s %*s\n"),
15056 addr_size * 2, _("Address"), _("Access"),
15057 addr_size * 2, _("Value"));
15058 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15059 printf ("\n");
15060 if (ent == (bfd_vma) -1)
15061 goto sgot_print_fail;
15062
15063 /* Check for the MSB of GOT[1] being set, identifying a
15064 GNU object. This entry will be used by some runtime
15065 loaders, to store the module pointer. Otherwise this
15066 is an ordinary local entry.
15067 PR 21344: Check for the entry being fully available
15068 before fetching it. */
15069 if (data
15070 && data + ent - pltgot + addr_size <= data_end
15071 && (byte_get (data + ent - pltgot, addr_size)
15072 >> (addr_size * 8 - 1)) != 0)
15073 {
15074 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15075 printf ("\n");
15076 if (ent == (bfd_vma) -1)
15077 goto sgot_print_fail;
15078 }
15079 printf ("\n");
15080 }
15081
15082 if (ent < end)
15083 {
15084 printf (_(" Local entries:\n"));
15085 printf (" %*s %10s %*s\n",
15086 addr_size * 2, _("Address"), _("Access"),
15087 addr_size * 2, _("Value"));
15088 while (ent < end)
15089 {
15090 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15091 printf ("\n");
15092 if (ent == (bfd_vma) -1)
15093 goto sgot_print_fail;
15094 }
15095 printf ("\n");
15096 }
15097
15098 sgot_print_fail:
15099 if (data)
15100 free (data);
15101 }
15102 return res;
15103 }
15104
15105 for (entry = dynamic_section;
15106 /* PR 17531 file: 012-50589-0.004. */
15107 entry < dynamic_section + dynamic_nent && entry->d_tag != DT_NULL;
15108 ++entry)
15109 switch (entry->d_tag)
15110 {
15111 case DT_MIPS_LIBLIST:
15112 liblist_offset
15113 = offset_from_vma (file, entry->d_un.d_val,
15114 liblistno * sizeof (Elf32_External_Lib));
15115 break;
15116 case DT_MIPS_LIBLISTNO:
15117 liblistno = entry->d_un.d_val;
15118 break;
15119 case DT_MIPS_OPTIONS:
15120 options_offset = offset_from_vma (file, entry->d_un.d_val, 0);
15121 break;
15122 case DT_MIPS_CONFLICT:
15123 conflicts_offset
15124 = offset_from_vma (file, entry->d_un.d_val,
15125 conflictsno * sizeof (Elf32_External_Conflict));
15126 break;
15127 case DT_MIPS_CONFLICTNO:
15128 conflictsno = entry->d_un.d_val;
15129 break;
15130 case DT_PLTGOT:
15131 pltgot = entry->d_un.d_ptr;
15132 break;
15133 case DT_MIPS_LOCAL_GOTNO:
15134 local_gotno = entry->d_un.d_val;
15135 break;
15136 case DT_MIPS_GOTSYM:
15137 gotsym = entry->d_un.d_val;
15138 break;
15139 case DT_MIPS_SYMTABNO:
15140 symtabno = entry->d_un.d_val;
15141 break;
15142 case DT_MIPS_PLTGOT:
15143 mips_pltgot = entry->d_un.d_ptr;
15144 break;
15145 case DT_PLTREL:
15146 pltrel = entry->d_un.d_val;
15147 break;
15148 case DT_PLTRELSZ:
15149 pltrelsz = entry->d_un.d_val;
15150 break;
15151 case DT_JMPREL:
15152 jmprel = entry->d_un.d_ptr;
15153 break;
15154 default:
15155 break;
15156 }
15157
15158 if (liblist_offset != 0 && liblistno != 0 && do_dynamic)
15159 {
15160 Elf32_External_Lib * elib;
15161 size_t cnt;
15162
15163 elib = (Elf32_External_Lib *) get_data (NULL, file, liblist_offset,
15164 liblistno,
15165 sizeof (Elf32_External_Lib),
15166 _("liblist section data"));
15167 if (elib)
15168 {
15169 printf (_("\nSection '.liblist' contains %lu entries:\n"),
15170 (unsigned long) liblistno);
15171 fputs (_(" Library Time Stamp Checksum Version Flags\n"),
15172 stdout);
15173
15174 for (cnt = 0; cnt < liblistno; ++cnt)
15175 {
15176 Elf32_Lib liblist;
15177 time_t atime;
15178 char timebuf[128];
15179 struct tm * tmp;
15180
15181 liblist.l_name = BYTE_GET (elib[cnt].l_name);
15182 atime = BYTE_GET (elib[cnt].l_time_stamp);
15183 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
15184 liblist.l_version = BYTE_GET (elib[cnt].l_version);
15185 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
15186
15187 tmp = gmtime (&atime);
15188 snprintf (timebuf, sizeof (timebuf),
15189 "%04u-%02u-%02uT%02u:%02u:%02u",
15190 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
15191 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
15192
15193 printf ("%3lu: ", (unsigned long) cnt);
15194 if (VALID_DYNAMIC_NAME (liblist.l_name))
15195 print_symbol (20, GET_DYNAMIC_NAME (liblist.l_name));
15196 else
15197 printf (_("<corrupt: %9ld>"), liblist.l_name);
15198 printf (" %s %#10lx %-7ld", timebuf, liblist.l_checksum,
15199 liblist.l_version);
15200
15201 if (liblist.l_flags == 0)
15202 puts (_(" NONE"));
15203 else
15204 {
15205 static const struct
15206 {
15207 const char * name;
15208 int bit;
15209 }
15210 l_flags_vals[] =
15211 {
15212 { " EXACT_MATCH", LL_EXACT_MATCH },
15213 { " IGNORE_INT_VER", LL_IGNORE_INT_VER },
15214 { " REQUIRE_MINOR", LL_REQUIRE_MINOR },
15215 { " EXPORTS", LL_EXPORTS },
15216 { " DELAY_LOAD", LL_DELAY_LOAD },
15217 { " DELTA", LL_DELTA }
15218 };
15219 int flags = liblist.l_flags;
15220 size_t fcnt;
15221
15222 for (fcnt = 0; fcnt < ARRAY_SIZE (l_flags_vals); ++fcnt)
15223 if ((flags & l_flags_vals[fcnt].bit) != 0)
15224 {
15225 fputs (l_flags_vals[fcnt].name, stdout);
15226 flags ^= l_flags_vals[fcnt].bit;
15227 }
15228 if (flags != 0)
15229 printf (" %#x", (unsigned int) flags);
15230
15231 puts ("");
15232 }
15233 }
15234
15235 free (elib);
15236 }
15237 else
15238 res = FALSE;
15239 }
15240
15241 if (options_offset != 0)
15242 {
15243 Elf_External_Options * eopt;
15244 Elf_Internal_Options * iopt;
15245 Elf_Internal_Options * option;
15246 size_t offset;
15247 int cnt;
15248 sect = section_headers;
15249
15250 /* Find the section header so that we get the size. */
15251 sect = find_section_by_type (SHT_MIPS_OPTIONS);
15252 /* PR 17533 file: 012-277276-0.004. */
15253 if (sect == NULL)
15254 {
15255 error (_("No MIPS_OPTIONS header found\n"));
15256 return FALSE;
15257 }
15258
15259 eopt = (Elf_External_Options *) get_data (NULL, file, options_offset, 1,
15260 sect->sh_size, _("options"));
15261 if (eopt)
15262 {
15263 iopt = (Elf_Internal_Options *)
15264 cmalloc ((sect->sh_size / sizeof (eopt)), sizeof (* iopt));
15265 if (iopt == NULL)
15266 {
15267 error (_("Out of memory allocating space for MIPS options\n"));
15268 return FALSE;
15269 }
15270
15271 offset = cnt = 0;
15272 option = iopt;
15273
15274 while (offset <= sect->sh_size - sizeof (* eopt))
15275 {
15276 Elf_External_Options * eoption;
15277
15278 eoption = (Elf_External_Options *) ((char *) eopt + offset);
15279
15280 option->kind = BYTE_GET (eoption->kind);
15281 option->size = BYTE_GET (eoption->size);
15282 option->section = BYTE_GET (eoption->section);
15283 option->info = BYTE_GET (eoption->info);
15284
15285 /* PR 17531: file: ffa0fa3b. */
15286 if (option->size < sizeof (* eopt)
15287 || offset + option->size > sect->sh_size)
15288 {
15289 error (_("Invalid size (%u) for MIPS option\n"), option->size);
15290 return FALSE;
15291 }
15292 offset += option->size;
15293
15294 ++option;
15295 ++cnt;
15296 }
15297
15298 printf (_("\nSection '%s' contains %d entries:\n"),
15299 printable_section_name (sect), cnt);
15300
15301 option = iopt;
15302 offset = 0;
15303
15304 while (cnt-- > 0)
15305 {
15306 size_t len;
15307
15308 switch (option->kind)
15309 {
15310 case ODK_NULL:
15311 /* This shouldn't happen. */
15312 printf (" NULL %d %lx", option->section, option->info);
15313 break;
15314 case ODK_REGINFO:
15315 printf (" REGINFO ");
15316 if (elf_header.e_machine == EM_MIPS)
15317 {
15318 /* 32bit form. */
15319 Elf32_External_RegInfo * ereg;
15320 Elf32_RegInfo reginfo;
15321
15322 ereg = (Elf32_External_RegInfo *) (option + 1);
15323 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
15324 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
15325 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
15326 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
15327 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
15328 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
15329
15330 printf ("GPR %08lx GP 0x%lx\n",
15331 reginfo.ri_gprmask,
15332 (unsigned long) reginfo.ri_gp_value);
15333 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
15334 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
15335 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
15336 }
15337 else
15338 {
15339 /* 64 bit form. */
15340 Elf64_External_RegInfo * ereg;
15341 Elf64_Internal_RegInfo reginfo;
15342
15343 ereg = (Elf64_External_RegInfo *) (option + 1);
15344 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
15345 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
15346 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
15347 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
15348 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
15349 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
15350
15351 printf ("GPR %08lx GP 0x",
15352 reginfo.ri_gprmask);
15353 printf_vma (reginfo.ri_gp_value);
15354 printf ("\n");
15355
15356 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
15357 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
15358 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
15359 }
15360 ++option;
15361 continue;
15362 case ODK_EXCEPTIONS:
15363 fputs (" EXCEPTIONS fpe_min(", stdout);
15364 process_mips_fpe_exception (option->info & OEX_FPU_MIN);
15365 fputs (") fpe_max(", stdout);
15366 process_mips_fpe_exception ((option->info & OEX_FPU_MAX) >> 8);
15367 fputs (")", stdout);
15368
15369 if (option->info & OEX_PAGE0)
15370 fputs (" PAGE0", stdout);
15371 if (option->info & OEX_SMM)
15372 fputs (" SMM", stdout);
15373 if (option->info & OEX_FPDBUG)
15374 fputs (" FPDBUG", stdout);
15375 if (option->info & OEX_DISMISS)
15376 fputs (" DISMISS", stdout);
15377 break;
15378 case ODK_PAD:
15379 fputs (" PAD ", stdout);
15380 if (option->info & OPAD_PREFIX)
15381 fputs (" PREFIX", stdout);
15382 if (option->info & OPAD_POSTFIX)
15383 fputs (" POSTFIX", stdout);
15384 if (option->info & OPAD_SYMBOL)
15385 fputs (" SYMBOL", stdout);
15386 break;
15387 case ODK_HWPATCH:
15388 fputs (" HWPATCH ", stdout);
15389 if (option->info & OHW_R4KEOP)
15390 fputs (" R4KEOP", stdout);
15391 if (option->info & OHW_R8KPFETCH)
15392 fputs (" R8KPFETCH", stdout);
15393 if (option->info & OHW_R5KEOP)
15394 fputs (" R5KEOP", stdout);
15395 if (option->info & OHW_R5KCVTL)
15396 fputs (" R5KCVTL", stdout);
15397 break;
15398 case ODK_FILL:
15399 fputs (" FILL ", stdout);
15400 /* XXX Print content of info word? */
15401 break;
15402 case ODK_TAGS:
15403 fputs (" TAGS ", stdout);
15404 /* XXX Print content of info word? */
15405 break;
15406 case ODK_HWAND:
15407 fputs (" HWAND ", stdout);
15408 if (option->info & OHWA0_R4KEOP_CHECKED)
15409 fputs (" R4KEOP_CHECKED", stdout);
15410 if (option->info & OHWA0_R4KEOP_CLEAN)
15411 fputs (" R4KEOP_CLEAN", stdout);
15412 break;
15413 case ODK_HWOR:
15414 fputs (" HWOR ", stdout);
15415 if (option->info & OHWA0_R4KEOP_CHECKED)
15416 fputs (" R4KEOP_CHECKED", stdout);
15417 if (option->info & OHWA0_R4KEOP_CLEAN)
15418 fputs (" R4KEOP_CLEAN", stdout);
15419 break;
15420 case ODK_GP_GROUP:
15421 printf (" GP_GROUP %#06lx self-contained %#06lx",
15422 option->info & OGP_GROUP,
15423 (option->info & OGP_SELF) >> 16);
15424 break;
15425 case ODK_IDENT:
15426 printf (" IDENT %#06lx self-contained %#06lx",
15427 option->info & OGP_GROUP,
15428 (option->info & OGP_SELF) >> 16);
15429 break;
15430 default:
15431 /* This shouldn't happen. */
15432 printf (" %3d ??? %d %lx",
15433 option->kind, option->section, option->info);
15434 break;
15435 }
15436
15437 len = sizeof (* eopt);
15438 while (len < option->size)
15439 {
15440 unsigned char datum = * ((unsigned char *) eopt + offset + len);
15441
15442 if (ISPRINT (datum))
15443 printf ("%c", datum);
15444 else
15445 printf ("\\%03o", datum);
15446 len ++;
15447 }
15448 fputs ("\n", stdout);
15449
15450 offset += option->size;
15451 ++option;
15452 }
15453
15454 free (eopt);
15455 }
15456 else
15457 res = FALSE;
15458 }
15459
15460 if (conflicts_offset != 0 && conflictsno != 0)
15461 {
15462 Elf32_Conflict * iconf;
15463 size_t cnt;
15464
15465 if (dynamic_symbols == NULL)
15466 {
15467 error (_("conflict list found without a dynamic symbol table\n"));
15468 return FALSE;
15469 }
15470
15471 /* PR 21345 - print a slightly more helpful error message
15472 if we are sure that the cmalloc will fail. */
15473 if (conflictsno * sizeof (* iconf) > current_file_size)
15474 {
15475 error (_("Overlarge number of conflicts detected: %lx\n"),
15476 (long) conflictsno);
15477 return FALSE;
15478 }
15479
15480 iconf = (Elf32_Conflict *) cmalloc (conflictsno, sizeof (* iconf));
15481 if (iconf == NULL)
15482 {
15483 error (_("Out of memory allocating space for dynamic conflicts\n"));
15484 return FALSE;
15485 }
15486
15487 if (is_32bit_elf)
15488 {
15489 Elf32_External_Conflict * econf32;
15490
15491 econf32 = (Elf32_External_Conflict *)
15492 get_data (NULL, file, conflicts_offset, conflictsno,
15493 sizeof (* econf32), _("conflict"));
15494 if (!econf32)
15495 return FALSE;
15496
15497 for (cnt = 0; cnt < conflictsno; ++cnt)
15498 iconf[cnt] = BYTE_GET (econf32[cnt]);
15499
15500 free (econf32);
15501 }
15502 else
15503 {
15504 Elf64_External_Conflict * econf64;
15505
15506 econf64 = (Elf64_External_Conflict *)
15507 get_data (NULL, file, conflicts_offset, conflictsno,
15508 sizeof (* econf64), _("conflict"));
15509 if (!econf64)
15510 return FALSE;
15511
15512 for (cnt = 0; cnt < conflictsno; ++cnt)
15513 iconf[cnt] = BYTE_GET (econf64[cnt]);
15514
15515 free (econf64);
15516 }
15517
15518 printf (_("\nSection '.conflict' contains %lu entries:\n"),
15519 (unsigned long) conflictsno);
15520 puts (_(" Num: Index Value Name"));
15521
15522 for (cnt = 0; cnt < conflictsno; ++cnt)
15523 {
15524 printf ("%5lu: %8lu ", (unsigned long) cnt, iconf[cnt]);
15525
15526 if (iconf[cnt] >= num_dynamic_syms)
15527 printf (_("<corrupt symbol index>"));
15528 else
15529 {
15530 Elf_Internal_Sym * psym;
15531
15532 psym = & dynamic_symbols[iconf[cnt]];
15533 print_vma (psym->st_value, FULL_HEX);
15534 putchar (' ');
15535 if (VALID_DYNAMIC_NAME (psym->st_name))
15536 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
15537 else
15538 printf (_("<corrupt: %14ld>"), psym->st_name);
15539 }
15540 putchar ('\n');
15541 }
15542
15543 free (iconf);
15544 }
15545
15546 if (pltgot != 0 && local_gotno != 0)
15547 {
15548 bfd_vma ent, local_end, global_end;
15549 size_t i, offset;
15550 unsigned char * data;
15551 unsigned char * data_end;
15552 int addr_size;
15553
15554 ent = pltgot;
15555 addr_size = (is_32bit_elf ? 4 : 8);
15556 local_end = pltgot + local_gotno * addr_size;
15557
15558 /* PR binutils/17533 file: 012-111227-0.004 */
15559 if (symtabno < gotsym)
15560 {
15561 error (_("The GOT symbol offset (%lu) is greater than the symbol table size (%lu)\n"),
15562 (unsigned long) gotsym, (unsigned long) symtabno);
15563 return FALSE;
15564 }
15565
15566 global_end = local_end + (symtabno - gotsym) * addr_size;
15567 /* PR 17531: file: 54c91a34. */
15568 if (global_end < local_end)
15569 {
15570 error (_("Too many GOT symbols: %lu\n"), (unsigned long) symtabno);
15571 return FALSE;
15572 }
15573
15574 offset = offset_from_vma (file, pltgot, global_end - pltgot);
15575 data = (unsigned char *) get_data (NULL, file, offset,
15576 global_end - pltgot, 1,
15577 _("Global Offset Table data"));
15578 /* PR 12855: Null data is handled gracefully throughout. */
15579 data_end = data + (global_end - pltgot);
15580
15581 printf (_("\nPrimary GOT:\n"));
15582 printf (_(" Canonical gp value: "));
15583 print_vma (pltgot + 0x7ff0, LONG_HEX);
15584 printf ("\n\n");
15585
15586 printf (_(" Reserved entries:\n"));
15587 printf (_(" %*s %10s %*s Purpose\n"),
15588 addr_size * 2, _("Address"), _("Access"),
15589 addr_size * 2, _("Initial"));
15590 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15591 printf (_(" Lazy resolver\n"));
15592 if (ent == (bfd_vma) -1)
15593 goto got_print_fail;
15594
15595 /* Check for the MSB of GOT[1] being set, denoting a GNU object.
15596 This entry will be used by some runtime loaders, to store the
15597 module pointer. Otherwise this is an ordinary local entry.
15598 PR 21344: Check for the entry being fully available before
15599 fetching it. */
15600 if (data
15601 && data + ent - pltgot + addr_size <= data_end
15602 && (byte_get (data + ent - pltgot, addr_size)
15603 >> (addr_size * 8 - 1)) != 0)
15604 {
15605 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15606 printf (_(" Module pointer (GNU extension)\n"));
15607 if (ent == (bfd_vma) -1)
15608 goto got_print_fail;
15609 }
15610 printf ("\n");
15611
15612 if (ent < local_end)
15613 {
15614 printf (_(" Local entries:\n"));
15615 printf (" %*s %10s %*s\n",
15616 addr_size * 2, _("Address"), _("Access"),
15617 addr_size * 2, _("Initial"));
15618 while (ent < local_end)
15619 {
15620 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15621 printf ("\n");
15622 if (ent == (bfd_vma) -1)
15623 goto got_print_fail;
15624 }
15625 printf ("\n");
15626 }
15627
15628 if (gotsym < symtabno)
15629 {
15630 int sym_width;
15631
15632 printf (_(" Global entries:\n"));
15633 printf (" %*s %10s %*s %*s %-7s %3s %s\n",
15634 addr_size * 2, _("Address"),
15635 _("Access"),
15636 addr_size * 2, _("Initial"),
15637 addr_size * 2, _("Sym.Val."),
15638 _("Type"),
15639 /* Note for translators: "Ndx" = abbreviated form of "Index". */
15640 _("Ndx"), _("Name"));
15641
15642 sym_width = (is_32bit_elf ? 80 : 160) - 28 - addr_size * 6 - 1;
15643
15644 for (i = gotsym; i < symtabno; i++)
15645 {
15646 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15647 printf (" ");
15648
15649 if (dynamic_symbols == NULL)
15650 printf (_("<no dynamic symbols>"));
15651 else if (i < num_dynamic_syms)
15652 {
15653 Elf_Internal_Sym * psym = dynamic_symbols + i;
15654
15655 print_vma (psym->st_value, LONG_HEX);
15656 printf (" %-7s %3s ",
15657 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
15658 get_symbol_index_type (psym->st_shndx));
15659
15660 if (VALID_DYNAMIC_NAME (psym->st_name))
15661 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
15662 else
15663 printf (_("<corrupt: %14ld>"), psym->st_name);
15664 }
15665 else
15666 printf (_("<symbol index %lu exceeds number of dynamic symbols>"),
15667 (unsigned long) i);
15668
15669 printf ("\n");
15670 if (ent == (bfd_vma) -1)
15671 break;
15672 }
15673 printf ("\n");
15674 }
15675
15676 got_print_fail:
15677 if (data)
15678 free (data);
15679 }
15680
15681 if (mips_pltgot != 0 && jmprel != 0 && pltrel != 0 && pltrelsz != 0)
15682 {
15683 bfd_vma ent, end;
15684 size_t offset, rel_offset;
15685 unsigned long count, i;
15686 unsigned char * data;
15687 int addr_size, sym_width;
15688 Elf_Internal_Rela * rels;
15689
15690 rel_offset = offset_from_vma (file, jmprel, pltrelsz);
15691 if (pltrel == DT_RELA)
15692 {
15693 if (!slurp_rela_relocs (file, rel_offset, pltrelsz, &rels, &count))
15694 return FALSE;
15695 }
15696 else
15697 {
15698 if (!slurp_rel_relocs (file, rel_offset, pltrelsz, &rels, &count))
15699 return FALSE;
15700 }
15701
15702 ent = mips_pltgot;
15703 addr_size = (is_32bit_elf ? 4 : 8);
15704 end = mips_pltgot + (2 + count) * addr_size;
15705
15706 offset = offset_from_vma (file, mips_pltgot, end - mips_pltgot);
15707 data = (unsigned char *) get_data (NULL, file, offset, end - mips_pltgot,
15708 1, _("Procedure Linkage Table data"));
15709 if (data == NULL)
15710 return FALSE;
15711
15712 printf ("\nPLT GOT:\n\n");
15713 printf (_(" Reserved entries:\n"));
15714 printf (_(" %*s %*s Purpose\n"),
15715 addr_size * 2, _("Address"), addr_size * 2, _("Initial"));
15716 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15717 printf (_(" PLT lazy resolver\n"));
15718 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15719 printf (_(" Module pointer\n"));
15720 printf ("\n");
15721
15722 printf (_(" Entries:\n"));
15723 printf (" %*s %*s %*s %-7s %3s %s\n",
15724 addr_size * 2, _("Address"),
15725 addr_size * 2, _("Initial"),
15726 addr_size * 2, _("Sym.Val."), _("Type"), _("Ndx"), _("Name"));
15727 sym_width = (is_32bit_elf ? 80 : 160) - 17 - addr_size * 6 - 1;
15728 for (i = 0; i < count; i++)
15729 {
15730 unsigned long idx = get_reloc_symindex (rels[i].r_info);
15731
15732 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15733 printf (" ");
15734
15735 if (idx >= num_dynamic_syms)
15736 printf (_("<corrupt symbol index: %lu>"), idx);
15737 else
15738 {
15739 Elf_Internal_Sym * psym = dynamic_symbols + idx;
15740
15741 print_vma (psym->st_value, LONG_HEX);
15742 printf (" %-7s %3s ",
15743 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
15744 get_symbol_index_type (psym->st_shndx));
15745 if (VALID_DYNAMIC_NAME (psym->st_name))
15746 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
15747 else
15748 printf (_("<corrupt: %14ld>"), psym->st_name);
15749 }
15750 printf ("\n");
15751 }
15752 printf ("\n");
15753
15754 if (data)
15755 free (data);
15756 free (rels);
15757 }
15758
15759 return res;
15760 }
15761
15762 static bfd_boolean
15763 process_nds32_specific (FILE * file)
15764 {
15765 Elf_Internal_Shdr *sect = NULL;
15766
15767 sect = find_section (".nds32_e_flags");
15768 if (sect != NULL)
15769 {
15770 unsigned int *flag;
15771
15772 printf ("\nNDS32 elf flags section:\n");
15773 flag = get_data (NULL, file, sect->sh_offset, 1,
15774 sect->sh_size, _("NDS32 elf flags section"));
15775
15776 if (! flag)
15777 return FALSE;
15778
15779 switch ((*flag) & 0x3)
15780 {
15781 case 0:
15782 printf ("(VEC_SIZE):\tNo entry.\n");
15783 break;
15784 case 1:
15785 printf ("(VEC_SIZE):\t4 bytes\n");
15786 break;
15787 case 2:
15788 printf ("(VEC_SIZE):\t16 bytes\n");
15789 break;
15790 case 3:
15791 printf ("(VEC_SIZE):\treserved\n");
15792 break;
15793 }
15794 }
15795
15796 return TRUE;
15797 }
15798
15799 static bfd_boolean
15800 process_gnu_liblist (FILE * file)
15801 {
15802 Elf_Internal_Shdr * section;
15803 Elf_Internal_Shdr * string_sec;
15804 Elf32_External_Lib * elib;
15805 char * strtab;
15806 size_t strtab_size;
15807 size_t cnt;
15808 unsigned i;
15809 bfd_boolean res = TRUE;
15810
15811 if (! do_arch)
15812 return TRUE;
15813
15814 for (i = 0, section = section_headers;
15815 i < elf_header.e_shnum;
15816 i++, section++)
15817 {
15818 switch (section->sh_type)
15819 {
15820 case SHT_GNU_LIBLIST:
15821 if (section->sh_link >= elf_header.e_shnum)
15822 break;
15823
15824 elib = (Elf32_External_Lib *)
15825 get_data (NULL, file, section->sh_offset, 1, section->sh_size,
15826 _("liblist section data"));
15827
15828 if (elib == NULL)
15829 {
15830 res = FALSE;
15831 break;
15832 }
15833
15834 string_sec = section_headers + section->sh_link;
15835 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
15836 string_sec->sh_size,
15837 _("liblist string table"));
15838 if (strtab == NULL
15839 || section->sh_entsize != sizeof (Elf32_External_Lib))
15840 {
15841 free (elib);
15842 free (strtab);
15843 res = FALSE;
15844 break;
15845 }
15846 strtab_size = string_sec->sh_size;
15847
15848 printf (_("\nLibrary list section '%s' contains %lu entries:\n"),
15849 printable_section_name (section),
15850 (unsigned long) (section->sh_size / sizeof (Elf32_External_Lib)));
15851
15852 puts (_(" Library Time Stamp Checksum Version Flags"));
15853
15854 for (cnt = 0; cnt < section->sh_size / sizeof (Elf32_External_Lib);
15855 ++cnt)
15856 {
15857 Elf32_Lib liblist;
15858 time_t atime;
15859 char timebuf[128];
15860 struct tm * tmp;
15861
15862 liblist.l_name = BYTE_GET (elib[cnt].l_name);
15863 atime = BYTE_GET (elib[cnt].l_time_stamp);
15864 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
15865 liblist.l_version = BYTE_GET (elib[cnt].l_version);
15866 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
15867
15868 tmp = gmtime (&atime);
15869 snprintf (timebuf, sizeof (timebuf),
15870 "%04u-%02u-%02uT%02u:%02u:%02u",
15871 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
15872 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
15873
15874 printf ("%3lu: ", (unsigned long) cnt);
15875 if (do_wide)
15876 printf ("%-20s", liblist.l_name < strtab_size
15877 ? strtab + liblist.l_name : _("<corrupt>"));
15878 else
15879 printf ("%-20.20s", liblist.l_name < strtab_size
15880 ? strtab + liblist.l_name : _("<corrupt>"));
15881 printf (" %s %#010lx %-7ld %-7ld\n", timebuf, liblist.l_checksum,
15882 liblist.l_version, liblist.l_flags);
15883 }
15884
15885 free (elib);
15886 free (strtab);
15887 }
15888 }
15889
15890 return res;
15891 }
15892
15893 static const char *
15894 get_note_type (unsigned e_type)
15895 {
15896 static char buff[64];
15897
15898 if (elf_header.e_type == ET_CORE)
15899 switch (e_type)
15900 {
15901 case NT_AUXV:
15902 return _("NT_AUXV (auxiliary vector)");
15903 case NT_PRSTATUS:
15904 return _("NT_PRSTATUS (prstatus structure)");
15905 case NT_FPREGSET:
15906 return _("NT_FPREGSET (floating point registers)");
15907 case NT_PRPSINFO:
15908 return _("NT_PRPSINFO (prpsinfo structure)");
15909 case NT_TASKSTRUCT:
15910 return _("NT_TASKSTRUCT (task structure)");
15911 case NT_PRXFPREG:
15912 return _("NT_PRXFPREG (user_xfpregs structure)");
15913 case NT_PPC_VMX:
15914 return _("NT_PPC_VMX (ppc Altivec registers)");
15915 case NT_PPC_VSX:
15916 return _("NT_PPC_VSX (ppc VSX registers)");
15917 case NT_386_TLS:
15918 return _("NT_386_TLS (x86 TLS information)");
15919 case NT_386_IOPERM:
15920 return _("NT_386_IOPERM (x86 I/O permissions)");
15921 case NT_X86_XSTATE:
15922 return _("NT_X86_XSTATE (x86 XSAVE extended state)");
15923 case NT_S390_HIGH_GPRS:
15924 return _("NT_S390_HIGH_GPRS (s390 upper register halves)");
15925 case NT_S390_TIMER:
15926 return _("NT_S390_TIMER (s390 timer register)");
15927 case NT_S390_TODCMP:
15928 return _("NT_S390_TODCMP (s390 TOD comparator register)");
15929 case NT_S390_TODPREG:
15930 return _("NT_S390_TODPREG (s390 TOD programmable register)");
15931 case NT_S390_CTRS:
15932 return _("NT_S390_CTRS (s390 control registers)");
15933 case NT_S390_PREFIX:
15934 return _("NT_S390_PREFIX (s390 prefix register)");
15935 case NT_S390_LAST_BREAK:
15936 return _("NT_S390_LAST_BREAK (s390 last breaking event address)");
15937 case NT_S390_SYSTEM_CALL:
15938 return _("NT_S390_SYSTEM_CALL (s390 system call restart data)");
15939 case NT_S390_TDB:
15940 return _("NT_S390_TDB (s390 transaction diagnostic block)");
15941 case NT_S390_VXRS_LOW:
15942 return _("NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)");
15943 case NT_S390_VXRS_HIGH:
15944 return _("NT_S390_VXRS_HIGH (s390 vector registers 16-31)");
15945 case NT_ARM_VFP:
15946 return _("NT_ARM_VFP (arm VFP registers)");
15947 case NT_ARM_TLS:
15948 return _("NT_ARM_TLS (AArch TLS registers)");
15949 case NT_ARM_HW_BREAK:
15950 return _("NT_ARM_HW_BREAK (AArch hardware breakpoint registers)");
15951 case NT_ARM_HW_WATCH:
15952 return _("NT_ARM_HW_WATCH (AArch hardware watchpoint registers)");
15953 case NT_PSTATUS:
15954 return _("NT_PSTATUS (pstatus structure)");
15955 case NT_FPREGS:
15956 return _("NT_FPREGS (floating point registers)");
15957 case NT_PSINFO:
15958 return _("NT_PSINFO (psinfo structure)");
15959 case NT_LWPSTATUS:
15960 return _("NT_LWPSTATUS (lwpstatus_t structure)");
15961 case NT_LWPSINFO:
15962 return _("NT_LWPSINFO (lwpsinfo_t structure)");
15963 case NT_WIN32PSTATUS:
15964 return _("NT_WIN32PSTATUS (win32_pstatus structure)");
15965 case NT_SIGINFO:
15966 return _("NT_SIGINFO (siginfo_t data)");
15967 case NT_FILE:
15968 return _("NT_FILE (mapped files)");
15969 default:
15970 break;
15971 }
15972 else
15973 switch (e_type)
15974 {
15975 case NT_VERSION:
15976 return _("NT_VERSION (version)");
15977 case NT_ARCH:
15978 return _("NT_ARCH (architecture)");
15979 case NT_GNU_BUILD_ATTRIBUTE_OPEN:
15980 return _("NT_GNU_BUILD_ATTRIBUTE_OPEN");
15981 case NT_GNU_BUILD_ATTRIBUTE_FUNC:
15982 return _("NT_GNU_BUILD_ATTRIBUTE_FUNC");
15983 default:
15984 break;
15985 }
15986
15987 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
15988 return buff;
15989 }
15990
15991 static bfd_boolean
15992 print_core_note (Elf_Internal_Note *pnote)
15993 {
15994 unsigned int addr_size = is_32bit_elf ? 4 : 8;
15995 bfd_vma count, page_size;
15996 unsigned char *descdata, *filenames, *descend;
15997
15998 if (pnote->type != NT_FILE)
15999 return TRUE;
16000
16001 #ifndef BFD64
16002 if (!is_32bit_elf)
16003 {
16004 printf (_(" Cannot decode 64-bit note in 32-bit build\n"));
16005 /* Still "successful". */
16006 return TRUE;
16007 }
16008 #endif
16009
16010 if (pnote->descsz < 2 * addr_size)
16011 {
16012 error (_(" Malformed note - too short for header\n"));
16013 return FALSE;
16014 }
16015
16016 descdata = (unsigned char *) pnote->descdata;
16017 descend = descdata + pnote->descsz;
16018
16019 if (descdata[pnote->descsz - 1] != '\0')
16020 {
16021 error (_(" Malformed note - does not end with \\0\n"));
16022 return FALSE;
16023 }
16024
16025 count = byte_get (descdata, addr_size);
16026 descdata += addr_size;
16027
16028 page_size = byte_get (descdata, addr_size);
16029 descdata += addr_size;
16030
16031 if (pnote->descsz < 2 * addr_size + count * 3 * addr_size)
16032 {
16033 error (_(" Malformed note - too short for supplied file count\n"));
16034 return FALSE;
16035 }
16036
16037 printf (_(" Page size: "));
16038 print_vma (page_size, DEC);
16039 printf ("\n");
16040
16041 printf (_(" %*s%*s%*s\n"),
16042 (int) (2 + 2 * addr_size), _("Start"),
16043 (int) (4 + 2 * addr_size), _("End"),
16044 (int) (4 + 2 * addr_size), _("Page Offset"));
16045 filenames = descdata + count * 3 * addr_size;
16046 while (count-- > 0)
16047 {
16048 bfd_vma start, end, file_ofs;
16049
16050 if (filenames == descend)
16051 {
16052 error (_(" Malformed note - filenames end too early\n"));
16053 return FALSE;
16054 }
16055
16056 start = byte_get (descdata, addr_size);
16057 descdata += addr_size;
16058 end = byte_get (descdata, addr_size);
16059 descdata += addr_size;
16060 file_ofs = byte_get (descdata, addr_size);
16061 descdata += addr_size;
16062
16063 printf (" ");
16064 print_vma (start, FULL_HEX);
16065 printf (" ");
16066 print_vma (end, FULL_HEX);
16067 printf (" ");
16068 print_vma (file_ofs, FULL_HEX);
16069 printf ("\n %s\n", filenames);
16070
16071 filenames += 1 + strlen ((char *) filenames);
16072 }
16073
16074 return TRUE;
16075 }
16076
16077 static const char *
16078 get_gnu_elf_note_type (unsigned e_type)
16079 {
16080 /* NB/ Keep this switch statement in sync with print_gnu_note (). */
16081 switch (e_type)
16082 {
16083 case NT_GNU_ABI_TAG:
16084 return _("NT_GNU_ABI_TAG (ABI version tag)");
16085 case NT_GNU_HWCAP:
16086 return _("NT_GNU_HWCAP (DSO-supplied software HWCAP info)");
16087 case NT_GNU_BUILD_ID:
16088 return _("NT_GNU_BUILD_ID (unique build ID bitstring)");
16089 case NT_GNU_GOLD_VERSION:
16090 return _("NT_GNU_GOLD_VERSION (gold version)");
16091 case NT_GNU_PROPERTY_TYPE_0:
16092 return _("NT_GNU_PROPERTY_TYPE_0");
16093 case NT_GNU_BUILD_ATTRIBUTE_OPEN:
16094 return _("NT_GNU_BUILD_ATTRIBUTE_OPEN");
16095 case NT_GNU_BUILD_ATTRIBUTE_FUNC:
16096 return _("NT_GNU_BUILD_ATTRIBUTE_FUNC");
16097 default:
16098 {
16099 static char buff[64];
16100
16101 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16102 return buff;
16103 }
16104 }
16105 }
16106
16107 static void
16108 decode_x86_isa (unsigned int bitmask)
16109 {
16110 while (bitmask)
16111 {
16112 unsigned int bit = bitmask & (- bitmask);
16113
16114 bitmask &= ~ bit;
16115 switch (bit)
16116 {
16117 case GNU_PROPERTY_X86_ISA_1_486: printf ("i486"); break;
16118 case GNU_PROPERTY_X86_ISA_1_586: printf ("586"); break;
16119 case GNU_PROPERTY_X86_ISA_1_686: printf ("686"); break;
16120 case GNU_PROPERTY_X86_ISA_1_SSE: printf ("SSE"); break;
16121 case GNU_PROPERTY_X86_ISA_1_SSE2: printf ("SSE2"); break;
16122 case GNU_PROPERTY_X86_ISA_1_SSE3: printf ("SSE3"); break;
16123 case GNU_PROPERTY_X86_ISA_1_SSSE3: printf ("SSSE3"); break;
16124 case GNU_PROPERTY_X86_ISA_1_SSE4_1: printf ("SSE4_1"); break;
16125 case GNU_PROPERTY_X86_ISA_1_SSE4_2: printf ("SSE4_2"); break;
16126 case GNU_PROPERTY_X86_ISA_1_AVX: printf ("AVX"); break;
16127 case GNU_PROPERTY_X86_ISA_1_AVX2: printf ("AVX2"); break;
16128 case GNU_PROPERTY_X86_ISA_1_AVX512F: printf ("AVX512F"); break;
16129 case GNU_PROPERTY_X86_ISA_1_AVX512CD: printf ("AVX512CD"); break;
16130 case GNU_PROPERTY_X86_ISA_1_AVX512ER: printf ("AVX512ER"); break;
16131 case GNU_PROPERTY_X86_ISA_1_AVX512PF: printf ("AVX512PF"); break;
16132 case GNU_PROPERTY_X86_ISA_1_AVX512VL: printf ("AVX512VL"); break;
16133 case GNU_PROPERTY_X86_ISA_1_AVX512DQ: printf ("AVX512DQ"); break;
16134 case GNU_PROPERTY_X86_ISA_1_AVX512BW: printf ("AVX512BW"); break;
16135 default: printf (_("<unknown: %x>"), bit); break;
16136 }
16137 if (bitmask)
16138 printf (", ");
16139 }
16140 }
16141
16142 static void
16143 print_gnu_property_note (Elf_Internal_Note * pnote)
16144 {
16145 unsigned char * ptr = (unsigned char *) pnote->descdata;
16146 unsigned char * ptr_end = ptr + pnote->descsz;
16147 unsigned int size = is_32bit_elf ? 4 : 8;
16148
16149 printf (_(" Properties: "));
16150
16151 if (pnote->descsz < 8 || (pnote->descsz % size) != 0)
16152 {
16153 printf (_("<corrupt GNU_PROPERTY_TYPE, size = %#lx>\n"), pnote->descsz);
16154 return;
16155 }
16156
16157 while (1)
16158 {
16159 unsigned int j;
16160 unsigned int type = byte_get (ptr, 4);
16161 unsigned int datasz = byte_get (ptr + 4, 4);
16162
16163 ptr += 8;
16164
16165 if ((ptr + datasz) > ptr_end)
16166 {
16167 printf (_("<corrupt type (%#x) datasz: %#x>\n"),
16168 type, datasz);
16169 break;
16170 }
16171
16172 if (type >= GNU_PROPERTY_LOPROC && type <= GNU_PROPERTY_HIPROC)
16173 {
16174 if (elf_header.e_machine == EM_X86_64
16175 || elf_header.e_machine == EM_IAMCU
16176 || elf_header.e_machine == EM_386)
16177 {
16178 switch (type)
16179 {
16180 case GNU_PROPERTY_X86_ISA_1_USED:
16181 printf ("x86 ISA used: ");
16182 if (datasz != 4)
16183 printf (_("<corrupt length: %#x> "), datasz);
16184 else
16185 decode_x86_isa (byte_get (ptr, 4));
16186 goto next;
16187
16188 case GNU_PROPERTY_X86_ISA_1_NEEDED:
16189 printf ("x86 ISA needed: ");
16190 if (datasz != 4)
16191 printf (_("<corrupt length: %#x> "), datasz);
16192 else
16193 decode_x86_isa (byte_get (ptr, 4));
16194 goto next;
16195
16196 default:
16197 break;
16198 }
16199 }
16200 }
16201 else
16202 {
16203 switch (type)
16204 {
16205 case GNU_PROPERTY_STACK_SIZE:
16206 printf (_("stack size: "));
16207 if (datasz != size)
16208 printf (_("<corrupt length: %#x> "), datasz);
16209 else
16210 printf ("%#lx", (unsigned long) byte_get (ptr, size));
16211 goto next;
16212
16213 case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
16214 printf ("no copy on protected ");
16215 if (datasz)
16216 printf (_("<corrupt length: %#x> "), datasz);
16217 goto next;
16218
16219 default:
16220 break;
16221 }
16222 }
16223
16224 if (type < GNU_PROPERTY_LOPROC)
16225 printf (_("<unknown type %#x data: "), type);
16226 else if (type < GNU_PROPERTY_LOUSER)
16227 printf (_("<procesor-specific type %#x data: "), type);
16228 else
16229 printf (_("<application-specific type %#x data: "), type);
16230 for (j = 0; j < datasz; ++j)
16231 printf ("%02x ", ptr[j] & 0xff);
16232 printf (">");
16233
16234 next:
16235 ptr += ((datasz + (size - 1)) & ~ (size - 1));
16236 if (ptr == ptr_end)
16237 break;
16238 else
16239 {
16240 if (do_wide)
16241 printf (", ");
16242 else
16243 printf ("\n\t");
16244 }
16245
16246 if (ptr > (ptr_end - 8))
16247 {
16248 printf (_("<corrupt descsz: %#lx>\n"), pnote->descsz);
16249 break;
16250 }
16251 }
16252
16253 printf ("\n");
16254 }
16255
16256 static bfd_boolean
16257 print_gnu_note (Elf_Internal_Note *pnote)
16258 {
16259 /* NB/ Keep this switch statement in sync with get_gnu_elf_note_type (). */
16260 switch (pnote->type)
16261 {
16262 case NT_GNU_BUILD_ID:
16263 {
16264 unsigned long i;
16265
16266 printf (_(" Build ID: "));
16267 for (i = 0; i < pnote->descsz; ++i)
16268 printf ("%02x", pnote->descdata[i] & 0xff);
16269 printf ("\n");
16270 }
16271 break;
16272
16273 case NT_GNU_ABI_TAG:
16274 {
16275 unsigned long os, major, minor, subminor;
16276 const char *osname;
16277
16278 /* PR 17531: file: 030-599401-0.004. */
16279 if (pnote->descsz < 16)
16280 {
16281 printf (_(" <corrupt GNU_ABI_TAG>\n"));
16282 break;
16283 }
16284
16285 os = byte_get ((unsigned char *) pnote->descdata, 4);
16286 major = byte_get ((unsigned char *) pnote->descdata + 4, 4);
16287 minor = byte_get ((unsigned char *) pnote->descdata + 8, 4);
16288 subminor = byte_get ((unsigned char *) pnote->descdata + 12, 4);
16289
16290 switch (os)
16291 {
16292 case GNU_ABI_TAG_LINUX:
16293 osname = "Linux";
16294 break;
16295 case GNU_ABI_TAG_HURD:
16296 osname = "Hurd";
16297 break;
16298 case GNU_ABI_TAG_SOLARIS:
16299 osname = "Solaris";
16300 break;
16301 case GNU_ABI_TAG_FREEBSD:
16302 osname = "FreeBSD";
16303 break;
16304 case GNU_ABI_TAG_NETBSD:
16305 osname = "NetBSD";
16306 break;
16307 case GNU_ABI_TAG_SYLLABLE:
16308 osname = "Syllable";
16309 break;
16310 case GNU_ABI_TAG_NACL:
16311 osname = "NaCl";
16312 break;
16313 default:
16314 osname = "Unknown";
16315 break;
16316 }
16317
16318 printf (_(" OS: %s, ABI: %ld.%ld.%ld\n"), osname,
16319 major, minor, subminor);
16320 }
16321 break;
16322
16323 case NT_GNU_GOLD_VERSION:
16324 {
16325 unsigned long i;
16326
16327 printf (_(" Version: "));
16328 for (i = 0; i < pnote->descsz && pnote->descdata[i] != '\0'; ++i)
16329 printf ("%c", pnote->descdata[i]);
16330 printf ("\n");
16331 }
16332 break;
16333
16334 case NT_GNU_HWCAP:
16335 {
16336 unsigned long num_entries, mask;
16337
16338 /* Hardware capabilities information. Word 0 is the number of entries.
16339 Word 1 is a bitmask of enabled entries. The rest of the descriptor
16340 is a series of entries, where each entry is a single byte followed
16341 by a nul terminated string. The byte gives the bit number to test
16342 if enabled in the bitmask. */
16343 printf (_(" Hardware Capabilities: "));
16344 if (pnote->descsz < 8)
16345 {
16346 error (_("<corrupt GNU_HWCAP>\n"));
16347 return FALSE;
16348 }
16349 num_entries = byte_get ((unsigned char *) pnote->descdata, 4);
16350 mask = byte_get ((unsigned char *) pnote->descdata + 4, 4);
16351 printf (_("num entries: %ld, enabled mask: %lx\n"), num_entries, mask);
16352 /* FIXME: Add code to display the entries... */
16353 }
16354 break;
16355
16356 case NT_GNU_PROPERTY_TYPE_0:
16357 print_gnu_property_note (pnote);
16358 break;
16359
16360 default:
16361 /* Handle unrecognised types. An error message should have already been
16362 created by get_gnu_elf_note_type(), so all that we need to do is to
16363 display the data. */
16364 {
16365 unsigned long i;
16366
16367 printf (_(" Description data: "));
16368 for (i = 0; i < pnote->descsz; ++i)
16369 printf ("%02x ", pnote->descdata[i] & 0xff);
16370 printf ("\n");
16371 }
16372 break;
16373 }
16374
16375 return TRUE;
16376 }
16377
16378 static const char *
16379 get_v850_elf_note_type (enum v850_notes n_type)
16380 {
16381 static char buff[64];
16382
16383 switch (n_type)
16384 {
16385 case V850_NOTE_ALIGNMENT: return _("Alignment of 8-byte objects");
16386 case V850_NOTE_DATA_SIZE: return _("Sizeof double and long double");
16387 case V850_NOTE_FPU_INFO: return _("Type of FPU support needed");
16388 case V850_NOTE_SIMD_INFO: return _("Use of SIMD instructions");
16389 case V850_NOTE_CACHE_INFO: return _("Use of cache");
16390 case V850_NOTE_MMU_INFO: return _("Use of MMU");
16391 default:
16392 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), n_type);
16393 return buff;
16394 }
16395 }
16396
16397 static bfd_boolean
16398 print_v850_note (Elf_Internal_Note * pnote)
16399 {
16400 unsigned int val;
16401
16402 if (pnote->descsz != 4)
16403 return FALSE;
16404
16405 val = byte_get ((unsigned char *) pnote->descdata, pnote->descsz);
16406
16407 if (val == 0)
16408 {
16409 printf (_("not set\n"));
16410 return TRUE;
16411 }
16412
16413 switch (pnote->type)
16414 {
16415 case V850_NOTE_ALIGNMENT:
16416 switch (val)
16417 {
16418 case EF_RH850_DATA_ALIGN4: printf (_("4-byte\n")); return TRUE;
16419 case EF_RH850_DATA_ALIGN8: printf (_("8-byte\n")); return TRUE;
16420 }
16421 break;
16422
16423 case V850_NOTE_DATA_SIZE:
16424 switch (val)
16425 {
16426 case EF_RH850_DOUBLE32: printf (_("4-bytes\n")); return TRUE;
16427 case EF_RH850_DOUBLE64: printf (_("8-bytes\n")); return TRUE;
16428 }
16429 break;
16430
16431 case V850_NOTE_FPU_INFO:
16432 switch (val)
16433 {
16434 case EF_RH850_FPU20: printf (_("FPU-2.0\n")); return TRUE;
16435 case EF_RH850_FPU30: printf (_("FPU-3.0\n")); return TRUE;
16436 }
16437 break;
16438
16439 case V850_NOTE_MMU_INFO:
16440 case V850_NOTE_CACHE_INFO:
16441 case V850_NOTE_SIMD_INFO:
16442 if (val == EF_RH850_SIMD)
16443 {
16444 printf (_("yes\n"));
16445 return TRUE;
16446 }
16447 break;
16448
16449 default:
16450 /* An 'unknown note type' message will already have been displayed. */
16451 break;
16452 }
16453
16454 printf (_("unknown value: %x\n"), val);
16455 return FALSE;
16456 }
16457
16458 static bfd_boolean
16459 process_netbsd_elf_note (Elf_Internal_Note * pnote)
16460 {
16461 unsigned int version;
16462
16463 switch (pnote->type)
16464 {
16465 case NT_NETBSD_IDENT:
16466 version = byte_get ((unsigned char *) pnote->descdata, sizeof (version));
16467 if ((version / 10000) % 100)
16468 printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u%s%c)\n", pnote->descsz,
16469 version, version / 100000000, (version / 1000000) % 100,
16470 (version / 10000) % 100 > 26 ? "Z" : "",
16471 'A' + (version / 10000) % 26);
16472 else
16473 printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u.%u)\n", pnote->descsz,
16474 version, version / 100000000, (version / 1000000) % 100,
16475 (version / 100) % 100);
16476 return TRUE;
16477
16478 case NT_NETBSD_MARCH:
16479 printf (" NetBSD\t0x%08lx\tMARCH <%s>\n", pnote->descsz,
16480 pnote->descdata);
16481 return TRUE;
16482
16483 default:
16484 printf (" NetBSD\t0x%08lx\tUnknown note type: (0x%08lx)\n", pnote->descsz,
16485 pnote->type);
16486 return FALSE;
16487 }
16488 }
16489
16490 static const char *
16491 get_freebsd_elfcore_note_type (unsigned e_type)
16492 {
16493 switch (e_type)
16494 {
16495 case NT_FREEBSD_THRMISC:
16496 return _("NT_THRMISC (thrmisc structure)");
16497 case NT_FREEBSD_PROCSTAT_PROC:
16498 return _("NT_PROCSTAT_PROC (proc data)");
16499 case NT_FREEBSD_PROCSTAT_FILES:
16500 return _("NT_PROCSTAT_FILES (files data)");
16501 case NT_FREEBSD_PROCSTAT_VMMAP:
16502 return _("NT_PROCSTAT_VMMAP (vmmap data)");
16503 case NT_FREEBSD_PROCSTAT_GROUPS:
16504 return _("NT_PROCSTAT_GROUPS (groups data)");
16505 case NT_FREEBSD_PROCSTAT_UMASK:
16506 return _("NT_PROCSTAT_UMASK (umask data)");
16507 case NT_FREEBSD_PROCSTAT_RLIMIT:
16508 return _("NT_PROCSTAT_RLIMIT (rlimit data)");
16509 case NT_FREEBSD_PROCSTAT_OSREL:
16510 return _("NT_PROCSTAT_OSREL (osreldate data)");
16511 case NT_FREEBSD_PROCSTAT_PSSTRINGS:
16512 return _("NT_PROCSTAT_PSSTRINGS (ps_strings data)");
16513 case NT_FREEBSD_PROCSTAT_AUXV:
16514 return _("NT_PROCSTAT_AUXV (auxv data)");
16515 }
16516 return get_note_type (e_type);
16517 }
16518
16519 static const char *
16520 get_netbsd_elfcore_note_type (unsigned e_type)
16521 {
16522 static char buff[64];
16523
16524 if (e_type == NT_NETBSDCORE_PROCINFO)
16525 {
16526 /* NetBSD core "procinfo" structure. */
16527 return _("NetBSD procinfo structure");
16528 }
16529
16530 /* As of Jan 2002 there are no other machine-independent notes
16531 defined for NetBSD core files. If the note type is less
16532 than the start of the machine-dependent note types, we don't
16533 understand it. */
16534
16535 if (e_type < NT_NETBSDCORE_FIRSTMACH)
16536 {
16537 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16538 return buff;
16539 }
16540
16541 switch (elf_header.e_machine)
16542 {
16543 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0
16544 and PT_GETFPREGS == mach+2. */
16545
16546 case EM_OLD_ALPHA:
16547 case EM_ALPHA:
16548 case EM_SPARC:
16549 case EM_SPARC32PLUS:
16550 case EM_SPARCV9:
16551 switch (e_type)
16552 {
16553 case NT_NETBSDCORE_FIRSTMACH + 0:
16554 return _("PT_GETREGS (reg structure)");
16555 case NT_NETBSDCORE_FIRSTMACH + 2:
16556 return _("PT_GETFPREGS (fpreg structure)");
16557 default:
16558 break;
16559 }
16560 break;
16561
16562 /* On all other arch's, PT_GETREGS == mach+1 and
16563 PT_GETFPREGS == mach+3. */
16564 default:
16565 switch (e_type)
16566 {
16567 case NT_NETBSDCORE_FIRSTMACH + 1:
16568 return _("PT_GETREGS (reg structure)");
16569 case NT_NETBSDCORE_FIRSTMACH + 3:
16570 return _("PT_GETFPREGS (fpreg structure)");
16571 default:
16572 break;
16573 }
16574 }
16575
16576 snprintf (buff, sizeof (buff), "PT_FIRSTMACH+%d",
16577 e_type - NT_NETBSDCORE_FIRSTMACH);
16578 return buff;
16579 }
16580
16581 static const char *
16582 get_stapsdt_note_type (unsigned e_type)
16583 {
16584 static char buff[64];
16585
16586 switch (e_type)
16587 {
16588 case NT_STAPSDT:
16589 return _("NT_STAPSDT (SystemTap probe descriptors)");
16590
16591 default:
16592 break;
16593 }
16594
16595 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16596 return buff;
16597 }
16598
16599 static bfd_boolean
16600 print_stapsdt_note (Elf_Internal_Note *pnote)
16601 {
16602 int addr_size = is_32bit_elf ? 4 : 8;
16603 char *data = pnote->descdata;
16604 char *data_end = pnote->descdata + pnote->descsz;
16605 bfd_vma pc, base_addr, semaphore;
16606 char *provider, *probe, *arg_fmt;
16607
16608 pc = byte_get ((unsigned char *) data, addr_size);
16609 data += addr_size;
16610 base_addr = byte_get ((unsigned char *) data, addr_size);
16611 data += addr_size;
16612 semaphore = byte_get ((unsigned char *) data, addr_size);
16613 data += addr_size;
16614
16615 provider = data;
16616 data += strlen (data) + 1;
16617 probe = data;
16618 data += strlen (data) + 1;
16619 arg_fmt = data;
16620 data += strlen (data) + 1;
16621
16622 printf (_(" Provider: %s\n"), provider);
16623 printf (_(" Name: %s\n"), probe);
16624 printf (_(" Location: "));
16625 print_vma (pc, FULL_HEX);
16626 printf (_(", Base: "));
16627 print_vma (base_addr, FULL_HEX);
16628 printf (_(", Semaphore: "));
16629 print_vma (semaphore, FULL_HEX);
16630 printf ("\n");
16631 printf (_(" Arguments: %s\n"), arg_fmt);
16632
16633 return data == data_end;
16634 }
16635
16636 static const char *
16637 get_ia64_vms_note_type (unsigned e_type)
16638 {
16639 static char buff[64];
16640
16641 switch (e_type)
16642 {
16643 case NT_VMS_MHD:
16644 return _("NT_VMS_MHD (module header)");
16645 case NT_VMS_LNM:
16646 return _("NT_VMS_LNM (language name)");
16647 case NT_VMS_SRC:
16648 return _("NT_VMS_SRC (source files)");
16649 case NT_VMS_TITLE:
16650 return "NT_VMS_TITLE";
16651 case NT_VMS_EIDC:
16652 return _("NT_VMS_EIDC (consistency check)");
16653 case NT_VMS_FPMODE:
16654 return _("NT_VMS_FPMODE (FP mode)");
16655 case NT_VMS_LINKTIME:
16656 return "NT_VMS_LINKTIME";
16657 case NT_VMS_IMGNAM:
16658 return _("NT_VMS_IMGNAM (image name)");
16659 case NT_VMS_IMGID:
16660 return _("NT_VMS_IMGID (image id)");
16661 case NT_VMS_LINKID:
16662 return _("NT_VMS_LINKID (link id)");
16663 case NT_VMS_IMGBID:
16664 return _("NT_VMS_IMGBID (build id)");
16665 case NT_VMS_GSTNAM:
16666 return _("NT_VMS_GSTNAM (sym table name)");
16667 case NT_VMS_ORIG_DYN:
16668 return "NT_VMS_ORIG_DYN";
16669 case NT_VMS_PATCHTIME:
16670 return "NT_VMS_PATCHTIME";
16671 default:
16672 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16673 return buff;
16674 }
16675 }
16676
16677 static bfd_boolean
16678 print_ia64_vms_note (Elf_Internal_Note * pnote)
16679 {
16680 switch (pnote->type)
16681 {
16682 case NT_VMS_MHD:
16683 if (pnote->descsz > 36)
16684 {
16685 size_t l = strlen (pnote->descdata + 34);
16686 printf (_(" Creation date : %.17s\n"), pnote->descdata);
16687 printf (_(" Last patch date: %.17s\n"), pnote->descdata + 17);
16688 printf (_(" Module name : %s\n"), pnote->descdata + 34);
16689 printf (_(" Module version : %s\n"), pnote->descdata + 34 + l + 1);
16690 }
16691 else
16692 printf (_(" Invalid size\n"));
16693 break;
16694 case NT_VMS_LNM:
16695 printf (_(" Language: %s\n"), pnote->descdata);
16696 break;
16697 #ifdef BFD64
16698 case NT_VMS_FPMODE:
16699 printf (_(" Floating Point mode: "));
16700 printf ("0x%016" BFD_VMA_FMT "x\n",
16701 (bfd_vma) byte_get ((unsigned char *)pnote->descdata, 8));
16702 break;
16703 case NT_VMS_LINKTIME:
16704 printf (_(" Link time: "));
16705 print_vms_time
16706 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
16707 printf ("\n");
16708 break;
16709 case NT_VMS_PATCHTIME:
16710 printf (_(" Patch time: "));
16711 print_vms_time
16712 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
16713 printf ("\n");
16714 break;
16715 case NT_VMS_ORIG_DYN:
16716 printf (_(" Major id: %u, minor id: %u\n"),
16717 (unsigned) byte_get ((unsigned char *)pnote->descdata, 4),
16718 (unsigned) byte_get ((unsigned char *)pnote->descdata + 4, 4));
16719 printf (_(" Last modified : "));
16720 print_vms_time
16721 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata + 8, 8));
16722 printf (_("\n Link flags : "));
16723 printf ("0x%016" BFD_VMA_FMT "x\n",
16724 (bfd_vma) byte_get ((unsigned char *)pnote->descdata + 16, 8));
16725 printf (_(" Header flags: 0x%08x\n"),
16726 (unsigned) byte_get ((unsigned char *)pnote->descdata + 24, 4));
16727 printf (_(" Image id : %s\n"), pnote->descdata + 32);
16728 break;
16729 #endif
16730 case NT_VMS_IMGNAM:
16731 printf (_(" Image name: %s\n"), pnote->descdata);
16732 break;
16733 case NT_VMS_GSTNAM:
16734 printf (_(" Global symbol table name: %s\n"), pnote->descdata);
16735 break;
16736 case NT_VMS_IMGID:
16737 printf (_(" Image id: %s\n"), pnote->descdata);
16738 break;
16739 case NT_VMS_LINKID:
16740 printf (_(" Linker id: %s\n"), pnote->descdata);
16741 break;
16742 default:
16743 return FALSE;
16744 }
16745 return TRUE;
16746 }
16747
16748 /* Print the name of the symbol associated with a build attribute
16749 that is attached to address OFFSET. */
16750
16751 static bfd_boolean
16752 print_symbol_for_build_attribute (FILE * file,
16753 unsigned long offset,
16754 bfd_boolean is_open_attr)
16755 {
16756 static FILE * saved_file = NULL;
16757 static char * strtab;
16758 static unsigned long strtablen;
16759 static Elf_Internal_Sym * symtab;
16760 static unsigned long nsyms;
16761 Elf_Internal_Sym * saved_sym = NULL;
16762 Elf_Internal_Sym * sym;
16763
16764 if (section_headers != NULL
16765 && (saved_file == NULL || file != saved_file))
16766 {
16767 Elf_Internal_Shdr * symsec;
16768
16769 /* Load the symbol and string sections. */
16770 for (symsec = section_headers;
16771 symsec < section_headers + elf_header.e_shnum;
16772 symsec ++)
16773 {
16774 if (symsec->sh_type == SHT_SYMTAB)
16775 {
16776 symtab = GET_ELF_SYMBOLS (file, symsec, & nsyms);
16777
16778 if (symsec->sh_link < elf_header.e_shnum)
16779 {
16780 Elf_Internal_Shdr * strtab_sec = section_headers + symsec->sh_link;
16781
16782 strtab = (char *) get_data (NULL, file, strtab_sec->sh_offset,
16783 1, strtab_sec->sh_size,
16784 _("string table"));
16785 strtablen = strtab != NULL ? strtab_sec->sh_size : 0;
16786 }
16787 }
16788 }
16789 saved_file = file;
16790 }
16791
16792 if (symtab == NULL || strtab == NULL)
16793 {
16794 printf ("\n");
16795 return FALSE;
16796 }
16797
16798 /* Find a symbol whose value matches offset. */
16799 for (sym = symtab; sym < symtab + nsyms; sym ++)
16800 if (sym->st_value == offset)
16801 {
16802 if (sym->st_name >= strtablen)
16803 /* Huh ? This should not happen. */
16804 continue;
16805
16806 if (strtab[sym->st_name] == 0)
16807 continue;
16808
16809 if (is_open_attr)
16810 {
16811 /* For OPEN attributes we prefer GLOBAL over LOCAL symbols
16812 and FILE or OBJECT symbols over NOTYPE symbols. We skip
16813 FUNC symbols entirely. */
16814 switch (ELF_ST_TYPE (sym->st_info))
16815 {
16816 case STT_FILE:
16817 saved_sym = sym;
16818 /* We can stop searching now. */
16819 sym = symtab + nsyms;
16820 continue;
16821
16822 case STT_OBJECT:
16823 saved_sym = sym;
16824 continue;
16825
16826 case STT_FUNC:
16827 /* Ignore function symbols. */
16828 continue;
16829
16830 default:
16831 break;
16832 }
16833
16834 switch (ELF_ST_BIND (sym->st_info))
16835 {
16836 case STB_GLOBAL:
16837 if (saved_sym == NULL
16838 || ELF_ST_TYPE (saved_sym->st_info) != STT_OBJECT)
16839 saved_sym = sym;
16840 break;
16841
16842 case STB_LOCAL:
16843 if (saved_sym == NULL)
16844 saved_sym = sym;
16845 break;
16846
16847 default:
16848 break;
16849 }
16850 }
16851 else
16852 {
16853 if (ELF_ST_TYPE (sym->st_info) != STT_FUNC)
16854 continue;
16855
16856 saved_sym = sym;
16857 break;
16858 }
16859 }
16860
16861 printf (" (%s: %s)\n",
16862 is_open_attr ? _("file") : _("func"),
16863 saved_sym ? strtab + saved_sym->st_name : _("<no symbol found>)"));
16864 return TRUE;
16865 }
16866
16867 static bfd_boolean
16868 print_gnu_build_attribute_description (Elf_Internal_Note * pnote,
16869 FILE * file)
16870 {
16871 static unsigned long global_offset = 0;
16872 unsigned long offset;
16873 unsigned int desc_size = is_32bit_elf ? 4 : 8;
16874 bfd_boolean is_open_attr = pnote->type == NT_GNU_BUILD_ATTRIBUTE_OPEN;
16875
16876 if (pnote->descsz == 0)
16877 {
16878 if (is_open_attr)
16879 {
16880 printf (_(" Applies from offset %#lx\n"), global_offset);
16881 return TRUE;
16882 }
16883 else
16884 {
16885 printf (_(" Applies to func at %#lx"), global_offset);
16886 return print_symbol_for_build_attribute (file, global_offset, is_open_attr);
16887 }
16888 }
16889
16890 if (pnote->descsz != desc_size)
16891 {
16892 error (_(" <invalid description size: %lx>\n"), pnote->descsz);
16893 printf (_(" <invalid descsz>"));
16894 return FALSE;
16895 }
16896
16897 offset = byte_get ((unsigned char *) pnote->descdata, desc_size);
16898
16899 if (is_open_attr)
16900 {
16901 printf (_(" Applies from offset %#lx"), offset);
16902 global_offset = offset;
16903 }
16904 else
16905 {
16906 printf (_(" Applies to func at %#lx"), offset);
16907 }
16908
16909 return print_symbol_for_build_attribute (file, offset, is_open_attr);
16910 }
16911
16912 static bfd_boolean
16913 print_gnu_build_attribute_name (Elf_Internal_Note * pnote)
16914 {
16915 static const char string_expected [2] = { GNU_BUILD_ATTRIBUTE_TYPE_STRING, 0 };
16916 static const char number_expected [2] = { GNU_BUILD_ATTRIBUTE_TYPE_NUMERIC, 0 };
16917 static const char bool_expected [3] = { GNU_BUILD_ATTRIBUTE_TYPE_BOOL_TRUE, GNU_BUILD_ATTRIBUTE_TYPE_BOOL_FALSE, 0 };
16918 char name_type;
16919 char name_attribute;
16920 const char * expected_types;
16921 const char * name = pnote->namedata;
16922 const char * text;
16923 int left;
16924
16925 if (name == NULL || pnote->namesz < 2)
16926 {
16927 error (_("corrupt name field in GNU build attribute note: size = %ld\n"), pnote->namesz);
16928 print_symbol (-20, _(" <corrupt name>"));
16929 return FALSE;
16930 }
16931
16932 switch ((name_type = * name))
16933 {
16934 case GNU_BUILD_ATTRIBUTE_TYPE_NUMERIC:
16935 case GNU_BUILD_ATTRIBUTE_TYPE_STRING:
16936 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_TRUE:
16937 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_FALSE:
16938 printf ("%c", * name);
16939 break;
16940 default:
16941 error (_("unrecognised attribute type in name field: %d\n"), name_type);
16942 print_symbol (-20, _("<unknown name type>"));
16943 return FALSE;
16944 }
16945
16946 left = 19;
16947 ++ name;
16948 text = NULL;
16949
16950 switch ((name_attribute = * name))
16951 {
16952 case GNU_BUILD_ATTRIBUTE_VERSION:
16953 text = _("<version>");
16954 expected_types = string_expected;
16955 ++ name;
16956 break;
16957 case GNU_BUILD_ATTRIBUTE_STACK_PROT:
16958 text = _("<stack prot>");
16959 expected_types = "!+*";
16960 ++ name;
16961 break;
16962 case GNU_BUILD_ATTRIBUTE_RELRO:
16963 text = _("<relro>");
16964 expected_types = bool_expected;
16965 ++ name;
16966 break;
16967 case GNU_BUILD_ATTRIBUTE_STACK_SIZE:
16968 text = _("<stack size>");
16969 expected_types = number_expected;
16970 ++ name;
16971 break;
16972 case GNU_BUILD_ATTRIBUTE_TOOL:
16973 text = _("<tool>");
16974 expected_types = string_expected;
16975 ++ name;
16976 break;
16977 case GNU_BUILD_ATTRIBUTE_ABI:
16978 text = _("<ABI>");
16979 expected_types = "$*";
16980 ++ name;
16981 break;
16982 case GNU_BUILD_ATTRIBUTE_PIC:
16983 text = _("<PIC>");
16984 expected_types = number_expected;
16985 ++ name;
16986 break;
16987 case GNU_BUILD_ATTRIBUTE_SHORT_ENUM:
16988 text = _("<short enum>");
16989 expected_types = bool_expected;
16990 ++ name;
16991 break;
16992 default:
16993 if (ISPRINT (* name))
16994 {
16995 int len = strnlen (name, pnote->namesz - (name - pnote->namedata)) + 1;
16996
16997 if (len > left && ! do_wide)
16998 len = left;
16999 printf ("%.*s:", len, name);
17000 left -= len;
17001 name += len;
17002 }
17003 else
17004 {
17005 static char tmpbuf [128];
17006 error (_("unrecognised byte in name field: %d\n"), * name);
17007 sprintf (tmpbuf, _("<unknown:_%d>"), * name);
17008 text = tmpbuf;
17009 name ++;
17010 }
17011 expected_types = "*$!+";
17012 break;
17013 }
17014
17015 if (text)
17016 {
17017 printf ("%s", text);
17018 left -= strlen (text);
17019 }
17020
17021 if (strchr (expected_types, name_type) == NULL)
17022 warn (_("attribute does not have an expected type (%c)\n"), name_type);
17023
17024 if ((unsigned long)(name - pnote->namedata) > pnote->namesz)
17025 {
17026 error (_("corrupt name field: namesz: %lu but parsing gets to %ld\n"),
17027 (unsigned long) pnote->namesz,
17028 (long) (name - pnote->namedata));
17029 return FALSE;
17030 }
17031
17032 if (left < 1 && ! do_wide)
17033 return TRUE;
17034
17035 switch (name_type)
17036 {
17037 case GNU_BUILD_ATTRIBUTE_TYPE_NUMERIC:
17038 {
17039 /* The -1 is because the name field is always 0 terminated, and we
17040 want to be able to ensure that the shift in the while loop below
17041 will not overflow. */
17042 unsigned int bytes = (pnote->namesz - (name - pnote->namedata)) - 1;
17043 unsigned long long val = 0;
17044 unsigned int shift = 0;
17045 char * decoded = NULL;
17046
17047 /* PR 21378 */
17048 if (bytes > sizeof (val))
17049 {
17050 error (_("corrupt numeric name field: too many bytes in the value: %x\n"),
17051 bytes);
17052 bytes = sizeof (val);
17053 }
17054 /* We do not bother to warn if bytes == 0 as this can
17055 happen with some early versions of the gcc plugin. */
17056
17057 while (bytes --)
17058 {
17059 unsigned long byte = (* name ++) & 0xff;
17060
17061 val |= byte << shift;
17062 shift += 8;
17063 }
17064
17065 switch (name_attribute)
17066 {
17067 case GNU_BUILD_ATTRIBUTE_PIC:
17068 switch (val)
17069 {
17070 case 0: decoded = "static"; break;
17071 case 1: decoded = "pic"; break;
17072 case 2: decoded = "PIC"; break;
17073 case 3: decoded = "pie"; break;
17074 case 4: decoded = "PIE"; break;
17075 default: break;
17076 }
17077 break;
17078 case GNU_BUILD_ATTRIBUTE_STACK_PROT:
17079 switch (val)
17080 {
17081 /* Based upon the SPCT_FLAG_xxx enum values in gcc/cfgexpand.c. */
17082 case 0: decoded = "off"; break;
17083 case 1: decoded = "on"; break;
17084 case 2: decoded = "all"; break;
17085 case 3: decoded = "strong"; break;
17086 case 4: decoded = "explicit"; break;
17087 default: break;
17088 }
17089 break;
17090 default:
17091 break;
17092 }
17093
17094 if (decoded != NULL)
17095 {
17096 print_symbol (-left, decoded);
17097 left = 0;
17098 }
17099 else if (val == 0)
17100 {
17101 printf ("0x0");
17102 left -= 3;
17103 }
17104 else
17105 {
17106 if (do_wide)
17107 left -= printf ("0x%llx", val);
17108 else
17109 left -= printf ("0x%-.*llx", left, val);
17110 }
17111 }
17112 break;
17113 case GNU_BUILD_ATTRIBUTE_TYPE_STRING:
17114 left -= print_symbol (- left, name);
17115 break;
17116 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_TRUE:
17117 left -= print_symbol (- left, "true");
17118 break;
17119 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_FALSE:
17120 left -= print_symbol (- left, "false");
17121 break;
17122 }
17123
17124 if (do_wide && left > 0)
17125 printf ("%-*s", left, " ");
17126
17127 return TRUE;
17128 }
17129
17130 /* Note that by the ELF standard, the name field is already null byte
17131 terminated, and namesz includes the terminating null byte.
17132 I.E. the value of namesz for the name "FSF" is 4.
17133
17134 If the value of namesz is zero, there is no name present. */
17135
17136 static bfd_boolean
17137 process_note (Elf_Internal_Note * pnote,
17138 FILE * file)
17139 {
17140 const char * name = pnote->namesz ? pnote->namedata : "(NONE)";
17141 const char * nt;
17142
17143 if (pnote->namesz == 0)
17144 /* If there is no note name, then use the default set of
17145 note type strings. */
17146 nt = get_note_type (pnote->type);
17147
17148 else if (const_strneq (pnote->namedata, "GNU"))
17149 /* GNU-specific object file notes. */
17150 nt = get_gnu_elf_note_type (pnote->type);
17151
17152 else if (const_strneq (pnote->namedata, "FreeBSD"))
17153 /* FreeBSD-specific core file notes. */
17154 nt = get_freebsd_elfcore_note_type (pnote->type);
17155
17156 else if (const_strneq (pnote->namedata, "NetBSD-CORE"))
17157 /* NetBSD-specific core file notes. */
17158 nt = get_netbsd_elfcore_note_type (pnote->type);
17159
17160 else if (const_strneq (pnote->namedata, "NetBSD"))
17161 /* NetBSD-specific core file notes. */
17162 return process_netbsd_elf_note (pnote);
17163
17164 else if (strneq (pnote->namedata, "SPU/", 4))
17165 {
17166 /* SPU-specific core file notes. */
17167 nt = pnote->namedata + 4;
17168 name = "SPU";
17169 }
17170
17171 else if (const_strneq (pnote->namedata, "IPF/VMS"))
17172 /* VMS/ia64-specific file notes. */
17173 nt = get_ia64_vms_note_type (pnote->type);
17174
17175 else if (const_strneq (pnote->namedata, "stapsdt"))
17176 nt = get_stapsdt_note_type (pnote->type);
17177
17178 else
17179 /* Don't recognize this note name; just use the default set of
17180 note type strings. */
17181 nt = get_note_type (pnote->type);
17182
17183 printf (" ");
17184
17185 if (pnote->type == NT_GNU_BUILD_ATTRIBUTE_OPEN
17186 || pnote->type == NT_GNU_BUILD_ATTRIBUTE_FUNC)
17187 print_gnu_build_attribute_name (pnote);
17188 else
17189 print_symbol (-20, name);
17190
17191 if (do_wide)
17192 printf (" 0x%08lx\t%s\t", pnote->descsz, nt);
17193 else
17194 printf (" 0x%08lx\t%s\n", pnote->descsz, nt);
17195
17196 if (const_strneq (pnote->namedata, "IPF/VMS"))
17197 return print_ia64_vms_note (pnote);
17198 else if (const_strneq (pnote->namedata, "GNU"))
17199 return print_gnu_note (pnote);
17200 else if (const_strneq (pnote->namedata, "stapsdt"))
17201 return print_stapsdt_note (pnote);
17202 else if (const_strneq (pnote->namedata, "CORE"))
17203 return print_core_note (pnote);
17204 else if (pnote->type == NT_GNU_BUILD_ATTRIBUTE_OPEN
17205 || pnote->type == NT_GNU_BUILD_ATTRIBUTE_FUNC)
17206 return print_gnu_build_attribute_description (pnote, file);
17207
17208 if (pnote->descsz)
17209 {
17210 unsigned long i;
17211
17212 printf (_(" description data: "));
17213 for (i = 0; i < pnote->descsz; i++)
17214 printf ("%02x ", pnote->descdata[i]);
17215 }
17216
17217 if (do_wide)
17218 printf ("\n");
17219
17220 return TRUE;
17221 }
17222
17223 static bfd_boolean
17224 process_notes_at (FILE * file,
17225 Elf_Internal_Shdr * section,
17226 bfd_vma offset,
17227 bfd_vma length)
17228 {
17229 Elf_External_Note * pnotes;
17230 Elf_External_Note * external;
17231 char * end;
17232 bfd_boolean res = TRUE;
17233
17234 if (length <= 0)
17235 return FALSE;
17236
17237 if (section)
17238 {
17239 pnotes = (Elf_External_Note *) get_section_contents (section, file);
17240 if (pnotes)
17241 {
17242 if (! apply_relocations (file, section, (unsigned char *) pnotes, length, NULL, NULL))
17243 return FALSE;
17244 }
17245 }
17246 else
17247 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
17248 _("notes"));
17249 if (pnotes == NULL)
17250 return FALSE;
17251
17252 external = pnotes;
17253
17254 if (section)
17255 printf (_("\nDisplaying notes found in: %s\n"), printable_section_name (section));
17256 else
17257 printf (_("\nDisplaying notes found at file offset 0x%08lx with length 0x%08lx:\n"),
17258 (unsigned long) offset, (unsigned long) length);
17259
17260 printf (_(" %-20s %10s\tDescription\n"), _("Owner"), _("Data size"));
17261
17262 end = (char *) pnotes + length;
17263 while ((char *) external < end)
17264 {
17265 Elf_Internal_Note inote;
17266 size_t min_notesz;
17267 char *next;
17268 char * temp = NULL;
17269 size_t data_remaining = end - (char *) external;
17270
17271 if (!is_ia64_vms ())
17272 {
17273 /* PR binutils/15191
17274 Make sure that there is enough data to read. */
17275 min_notesz = offsetof (Elf_External_Note, name);
17276 if (data_remaining < min_notesz)
17277 {
17278 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
17279 (int) data_remaining);
17280 break;
17281 }
17282 inote.type = BYTE_GET (external->type);
17283 inote.namesz = BYTE_GET (external->namesz);
17284 inote.namedata = external->name;
17285 inote.descsz = BYTE_GET (external->descsz);
17286 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
17287 /* PR 17531: file: 3443835e. */
17288 if (inote.descdata < (char *) pnotes || inote.descdata > end)
17289 {
17290 warn (_("Corrupt note: name size is too big: (got: %lx, expected no more than: %lx)\n"),
17291 inote.namesz, (long)(end - inote.namedata));
17292 inote.descdata = inote.namedata;
17293 inote.namesz = 0;
17294 }
17295
17296 inote.descpos = offset + (inote.descdata - (char *) pnotes);
17297 next = inote.descdata + align_power (inote.descsz, 2);
17298 }
17299 else
17300 {
17301 Elf64_External_VMS_Note *vms_external;
17302
17303 /* PR binutils/15191
17304 Make sure that there is enough data to read. */
17305 min_notesz = offsetof (Elf64_External_VMS_Note, name);
17306 if (data_remaining < min_notesz)
17307 {
17308 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
17309 (int) data_remaining);
17310 break;
17311 }
17312
17313 vms_external = (Elf64_External_VMS_Note *) external;
17314 inote.type = BYTE_GET (vms_external->type);
17315 inote.namesz = BYTE_GET (vms_external->namesz);
17316 inote.namedata = vms_external->name;
17317 inote.descsz = BYTE_GET (vms_external->descsz);
17318 inote.descdata = inote.namedata + align_power (inote.namesz, 3);
17319 inote.descpos = offset + (inote.descdata - (char *) pnotes);
17320 next = inote.descdata + align_power (inote.descsz, 3);
17321 }
17322
17323 if (inote.descdata < (char *) external + min_notesz
17324 || next < (char *) external + min_notesz
17325 /* PR binutils/17531: file: id:000000,sig:11,src:006986,op:havoc,rep:4. */
17326 || inote.namedata + inote.namesz < inote.namedata
17327 || inote.descdata + inote.descsz < inote.descdata
17328 || data_remaining < (size_t)(next - (char *) external))
17329 {
17330 warn (_("note with invalid namesz and/or descsz found at offset 0x%lx\n"),
17331 (unsigned long) ((char *) external - (char *) pnotes));
17332 warn (_(" type: 0x%lx, namesize: 0x%08lx, descsize: 0x%08lx\n"),
17333 inote.type, inote.namesz, inote.descsz);
17334 break;
17335 }
17336
17337 external = (Elf_External_Note *) next;
17338
17339 /* Verify that name is null terminated. It appears that at least
17340 one version of Linux (RedHat 6.0) generates corefiles that don't
17341 comply with the ELF spec by failing to include the null byte in
17342 namesz. */
17343 if (inote.namedata[inote.namesz - 1] != '\0')
17344 {
17345 temp = (char *) malloc (inote.namesz + 1);
17346 if (temp == NULL)
17347 {
17348 error (_("Out of memory allocating space for inote name\n"));
17349 res = FALSE;
17350 break;
17351 }
17352
17353 memcpy (temp, inote.namedata, inote.namesz);
17354 temp[inote.namesz] = 0;
17355
17356 /* warn (_("'%s' NOTE name not properly null terminated\n"), temp); */
17357 inote.namedata = temp;
17358 }
17359
17360 if (! process_note (& inote, file))
17361 res = FALSE;
17362
17363 if (temp != NULL)
17364 {
17365 free (temp);
17366 temp = NULL;
17367 }
17368 }
17369
17370 free (pnotes);
17371
17372 return res;
17373 }
17374
17375 static bfd_boolean
17376 process_corefile_note_segments (FILE * file)
17377 {
17378 Elf_Internal_Phdr * segment;
17379 unsigned int i;
17380 bfd_boolean res = TRUE;
17381
17382 if (! get_program_headers (file))
17383 return TRUE;
17384
17385 for (i = 0, segment = program_headers;
17386 i < elf_header.e_phnum;
17387 i++, segment++)
17388 {
17389 if (segment->p_type == PT_NOTE)
17390 if (! process_notes_at (file, NULL,
17391 (bfd_vma) segment->p_offset,
17392 (bfd_vma) segment->p_filesz))
17393 res = FALSE;
17394 }
17395
17396 return res;
17397 }
17398
17399 static bfd_boolean
17400 process_v850_notes (FILE * file, bfd_vma offset, bfd_vma length)
17401 {
17402 Elf_External_Note * pnotes;
17403 Elf_External_Note * external;
17404 char * end;
17405 bfd_boolean res = TRUE;
17406
17407 if (length <= 0)
17408 return FALSE;
17409
17410 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
17411 _("v850 notes"));
17412 if (pnotes == NULL)
17413 return FALSE;
17414
17415 external = pnotes;
17416 end = (char*) pnotes + length;
17417
17418 printf (_("\nDisplaying contents of Renesas V850 notes section at offset 0x%lx with length 0x%lx:\n"),
17419 (unsigned long) offset, (unsigned long) length);
17420
17421 while ((char *) external + sizeof (Elf_External_Note) < end)
17422 {
17423 Elf_External_Note * next;
17424 Elf_Internal_Note inote;
17425
17426 inote.type = BYTE_GET (external->type);
17427 inote.namesz = BYTE_GET (external->namesz);
17428 inote.namedata = external->name;
17429 inote.descsz = BYTE_GET (external->descsz);
17430 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
17431 inote.descpos = offset + (inote.descdata - (char *) pnotes);
17432
17433 if (inote.descdata < (char *) pnotes || inote.descdata >= end)
17434 {
17435 warn (_("Corrupt note: name size is too big: %lx\n"), inote.namesz);
17436 inote.descdata = inote.namedata;
17437 inote.namesz = 0;
17438 }
17439
17440 next = (Elf_External_Note *) (inote.descdata + align_power (inote.descsz, 2));
17441
17442 if ( ((char *) next > end)
17443 || ((char *) next < (char *) pnotes))
17444 {
17445 warn (_("corrupt descsz found in note at offset 0x%lx\n"),
17446 (unsigned long) ((char *) external - (char *) pnotes));
17447 warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
17448 inote.type, inote.namesz, inote.descsz);
17449 break;
17450 }
17451
17452 external = next;
17453
17454 /* Prevent out-of-bounds indexing. */
17455 if ( inote.namedata + inote.namesz > end
17456 || inote.namedata + inote.namesz < inote.namedata)
17457 {
17458 warn (_("corrupt namesz found in note at offset 0x%lx\n"),
17459 (unsigned long) ((char *) external - (char *) pnotes));
17460 warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
17461 inote.type, inote.namesz, inote.descsz);
17462 break;
17463 }
17464
17465 printf (" %s: ", get_v850_elf_note_type (inote.type));
17466
17467 if (! print_v850_note (& inote))
17468 {
17469 res = FALSE;
17470 printf ("<corrupt sizes: namesz: %lx, descsz: %lx>\n",
17471 inote.namesz, inote.descsz);
17472 }
17473 }
17474
17475 free (pnotes);
17476
17477 return res;
17478 }
17479
17480 static bfd_boolean
17481 process_note_sections (FILE * file)
17482 {
17483 Elf_Internal_Shdr * section;
17484 unsigned long i;
17485 unsigned int n = 0;
17486 bfd_boolean res = TRUE;
17487
17488 for (i = 0, section = section_headers;
17489 i < elf_header.e_shnum && section != NULL;
17490 i++, section++)
17491 {
17492 if (section->sh_type == SHT_NOTE)
17493 {
17494 if (! process_notes_at (file, section,
17495 (bfd_vma) section->sh_offset,
17496 (bfd_vma) section->sh_size))
17497 res = FALSE;
17498 n++;
17499 }
17500
17501 if (( elf_header.e_machine == EM_V800
17502 || elf_header.e_machine == EM_V850
17503 || elf_header.e_machine == EM_CYGNUS_V850)
17504 && section->sh_type == SHT_RENESAS_INFO)
17505 {
17506 if (! process_v850_notes (file,
17507 (bfd_vma) section->sh_offset,
17508 (bfd_vma) section->sh_size))
17509 res = FALSE;
17510 n++;
17511 }
17512 }
17513
17514 if (n == 0)
17515 /* Try processing NOTE segments instead. */
17516 return process_corefile_note_segments (file);
17517
17518 return res;
17519 }
17520
17521 static bfd_boolean
17522 process_notes (FILE * file)
17523 {
17524 /* If we have not been asked to display the notes then do nothing. */
17525 if (! do_notes)
17526 return TRUE;
17527
17528 if (elf_header.e_type != ET_CORE)
17529 return process_note_sections (file);
17530
17531 /* No program headers means no NOTE segment. */
17532 if (elf_header.e_phnum > 0)
17533 return process_corefile_note_segments (file);
17534
17535 printf (_("No note segments present in the core file.\n"));
17536 return TRUE;
17537 }
17538
17539 static unsigned char *
17540 display_public_gnu_attributes (unsigned char * start,
17541 const unsigned char * const end)
17542 {
17543 printf (_(" Unknown GNU attribute: %s\n"), start);
17544
17545 start += strnlen ((char *) start, end - start);
17546 display_raw_attribute (start, end);
17547
17548 return (unsigned char *) end;
17549 }
17550
17551 static unsigned char *
17552 display_generic_attribute (unsigned char * start,
17553 unsigned int tag,
17554 const unsigned char * const end)
17555 {
17556 if (tag == 0)
17557 return (unsigned char *) end;
17558
17559 return display_tag_value (tag, start, end);
17560 }
17561
17562 static bfd_boolean
17563 process_arch_specific (FILE * file)
17564 {
17565 if (! do_arch)
17566 return TRUE;
17567
17568 switch (elf_header.e_machine)
17569 {
17570 case EM_ARM:
17571 return process_attributes (file, "aeabi", SHT_ARM_ATTRIBUTES,
17572 display_arm_attribute,
17573 display_generic_attribute);
17574
17575 case EM_MIPS:
17576 case EM_MIPS_RS3_LE:
17577 return process_mips_specific (file);
17578
17579 case EM_MSP430:
17580 return process_attributes (file, "mspabi", SHT_MSP430_ATTRIBUTES,
17581 display_msp430x_attribute,
17582 display_generic_attribute);
17583
17584 case EM_NDS32:
17585 return process_nds32_specific (file);
17586
17587 case EM_PPC:
17588 case EM_PPC64:
17589 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
17590 display_power_gnu_attribute);
17591
17592 case EM_S390:
17593 case EM_S390_OLD:
17594 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
17595 display_s390_gnu_attribute);
17596
17597 case EM_SPARC:
17598 case EM_SPARC32PLUS:
17599 case EM_SPARCV9:
17600 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
17601 display_sparc_gnu_attribute);
17602
17603 case EM_TI_C6000:
17604 return process_attributes (file, "c6xabi", SHT_C6000_ATTRIBUTES,
17605 display_tic6x_attribute,
17606 display_generic_attribute);
17607
17608 default:
17609 return process_attributes (file, "gnu", SHT_GNU_ATTRIBUTES,
17610 display_public_gnu_attributes,
17611 display_generic_attribute);
17612 }
17613 }
17614
17615 static bfd_boolean
17616 get_file_header (FILE * file)
17617 {
17618 /* Read in the identity array. */
17619 if (fread (elf_header.e_ident, EI_NIDENT, 1, file) != 1)
17620 return FALSE;
17621
17622 /* Determine how to read the rest of the header. */
17623 switch (elf_header.e_ident[EI_DATA])
17624 {
17625 default:
17626 case ELFDATANONE:
17627 case ELFDATA2LSB:
17628 byte_get = byte_get_little_endian;
17629 byte_put = byte_put_little_endian;
17630 break;
17631 case ELFDATA2MSB:
17632 byte_get = byte_get_big_endian;
17633 byte_put = byte_put_big_endian;
17634 break;
17635 }
17636
17637 /* For now we only support 32 bit and 64 bit ELF files. */
17638 is_32bit_elf = (elf_header.e_ident[EI_CLASS] != ELFCLASS64);
17639
17640 /* Read in the rest of the header. */
17641 if (is_32bit_elf)
17642 {
17643 Elf32_External_Ehdr ehdr32;
17644
17645 if (fread (ehdr32.e_type, sizeof (ehdr32) - EI_NIDENT, 1, file) != 1)
17646 return FALSE;
17647
17648 elf_header.e_type = BYTE_GET (ehdr32.e_type);
17649 elf_header.e_machine = BYTE_GET (ehdr32.e_machine);
17650 elf_header.e_version = BYTE_GET (ehdr32.e_version);
17651 elf_header.e_entry = BYTE_GET (ehdr32.e_entry);
17652 elf_header.e_phoff = BYTE_GET (ehdr32.e_phoff);
17653 elf_header.e_shoff = BYTE_GET (ehdr32.e_shoff);
17654 elf_header.e_flags = BYTE_GET (ehdr32.e_flags);
17655 elf_header.e_ehsize = BYTE_GET (ehdr32.e_ehsize);
17656 elf_header.e_phentsize = BYTE_GET (ehdr32.e_phentsize);
17657 elf_header.e_phnum = BYTE_GET (ehdr32.e_phnum);
17658 elf_header.e_shentsize = BYTE_GET (ehdr32.e_shentsize);
17659 elf_header.e_shnum = BYTE_GET (ehdr32.e_shnum);
17660 elf_header.e_shstrndx = BYTE_GET (ehdr32.e_shstrndx);
17661 }
17662 else
17663 {
17664 Elf64_External_Ehdr ehdr64;
17665
17666 /* If we have been compiled with sizeof (bfd_vma) == 4, then
17667 we will not be able to cope with the 64bit data found in
17668 64 ELF files. Detect this now and abort before we start
17669 overwriting things. */
17670 if (sizeof (bfd_vma) < 8)
17671 {
17672 error (_("This instance of readelf has been built without support for a\n\
17673 64 bit data type and so it cannot read 64 bit ELF files.\n"));
17674 return FALSE;
17675 }
17676
17677 if (fread (ehdr64.e_type, sizeof (ehdr64) - EI_NIDENT, 1, file) != 1)
17678 return FALSE;
17679
17680 elf_header.e_type = BYTE_GET (ehdr64.e_type);
17681 elf_header.e_machine = BYTE_GET (ehdr64.e_machine);
17682 elf_header.e_version = BYTE_GET (ehdr64.e_version);
17683 elf_header.e_entry = BYTE_GET (ehdr64.e_entry);
17684 elf_header.e_phoff = BYTE_GET (ehdr64.e_phoff);
17685 elf_header.e_shoff = BYTE_GET (ehdr64.e_shoff);
17686 elf_header.e_flags = BYTE_GET (ehdr64.e_flags);
17687 elf_header.e_ehsize = BYTE_GET (ehdr64.e_ehsize);
17688 elf_header.e_phentsize = BYTE_GET (ehdr64.e_phentsize);
17689 elf_header.e_phnum = BYTE_GET (ehdr64.e_phnum);
17690 elf_header.e_shentsize = BYTE_GET (ehdr64.e_shentsize);
17691 elf_header.e_shnum = BYTE_GET (ehdr64.e_shnum);
17692 elf_header.e_shstrndx = BYTE_GET (ehdr64.e_shstrndx);
17693 }
17694
17695 if (elf_header.e_shoff)
17696 {
17697 /* There may be some extensions in the first section header. Don't
17698 bomb if we can't read it. */
17699 if (is_32bit_elf)
17700 get_32bit_section_headers (file, TRUE);
17701 else
17702 get_64bit_section_headers (file, TRUE);
17703 }
17704
17705 return TRUE;
17706 }
17707
17708 /* Process one ELF object file according to the command line options.
17709 This file may actually be stored in an archive. The file is
17710 positioned at the start of the ELF object. Returns TRUE if no
17711 problems were encountered, FALSE otherwise. */
17712
17713 static bfd_boolean
17714 process_object (char * file_name, FILE * file)
17715 {
17716 unsigned int i;
17717 bfd_boolean res = TRUE;
17718
17719 if (! get_file_header (file))
17720 {
17721 error (_("%s: Failed to read file header\n"), file_name);
17722 return FALSE;
17723 }
17724
17725 /* Initialise per file variables. */
17726 for (i = ARRAY_SIZE (version_info); i--;)
17727 version_info[i] = 0;
17728
17729 for (i = ARRAY_SIZE (dynamic_info); i--;)
17730 dynamic_info[i] = 0;
17731 dynamic_info_DT_GNU_HASH = 0;
17732
17733 /* Process the file. */
17734 if (show_name)
17735 printf (_("\nFile: %s\n"), file_name);
17736
17737 /* Initialise the dump_sects array from the cmdline_dump_sects array.
17738 Note we do this even if cmdline_dump_sects is empty because we
17739 must make sure that the dump_sets array is zeroed out before each
17740 object file is processed. */
17741 if (num_dump_sects > num_cmdline_dump_sects)
17742 memset (dump_sects, 0, num_dump_sects * sizeof (* dump_sects));
17743
17744 if (num_cmdline_dump_sects > 0)
17745 {
17746 if (num_dump_sects == 0)
17747 /* A sneaky way of allocating the dump_sects array. */
17748 request_dump_bynumber (num_cmdline_dump_sects, 0);
17749
17750 assert (num_dump_sects >= num_cmdline_dump_sects);
17751 memcpy (dump_sects, cmdline_dump_sects,
17752 num_cmdline_dump_sects * sizeof (* dump_sects));
17753 }
17754
17755 if (! process_file_header ())
17756 return FALSE;
17757
17758 if (! process_section_headers (file))
17759 {
17760 /* Without loaded section headers we cannot process lots of things. */
17761 do_unwind = do_version = do_dump = do_arch = FALSE;
17762
17763 if (! do_using_dynamic)
17764 do_syms = do_dyn_syms = do_reloc = FALSE;
17765 }
17766
17767 if (! process_section_groups (file))
17768 /* Without loaded section groups we cannot process unwind. */
17769 do_unwind = FALSE;
17770
17771 if (process_program_headers (file))
17772 process_dynamic_section (file);
17773 else
17774 res = FALSE;
17775
17776 if (! process_relocs (file))
17777 res = FALSE;
17778
17779 if (! process_unwind (file))
17780 res = FALSE;
17781
17782 if (! process_symbol_table (file))
17783 res = FALSE;
17784
17785 if (! process_syminfo (file))
17786 res = FALSE;
17787
17788 if (! process_version_sections (file))
17789 res = FALSE;
17790
17791 if (! process_section_contents (file))
17792 res = FALSE;
17793
17794 if (! process_notes (file))
17795 res = FALSE;
17796
17797 if (! process_gnu_liblist (file))
17798 res = FALSE;
17799
17800 if (! process_arch_specific (file))
17801 res = FALSE;
17802
17803 if (program_headers)
17804 {
17805 free (program_headers);
17806 program_headers = NULL;
17807 }
17808
17809 if (section_headers)
17810 {
17811 free (section_headers);
17812 section_headers = NULL;
17813 }
17814
17815 if (string_table)
17816 {
17817 free (string_table);
17818 string_table = NULL;
17819 string_table_length = 0;
17820 }
17821
17822 if (dynamic_strings)
17823 {
17824 free (dynamic_strings);
17825 dynamic_strings = NULL;
17826 dynamic_strings_length = 0;
17827 }
17828
17829 if (dynamic_symbols)
17830 {
17831 free (dynamic_symbols);
17832 dynamic_symbols = NULL;
17833 num_dynamic_syms = 0;
17834 }
17835
17836 if (dynamic_syminfo)
17837 {
17838 free (dynamic_syminfo);
17839 dynamic_syminfo = NULL;
17840 }
17841
17842 if (dynamic_section)
17843 {
17844 free (dynamic_section);
17845 dynamic_section = NULL;
17846 }
17847
17848 if (section_headers_groups)
17849 {
17850 free (section_headers_groups);
17851 section_headers_groups = NULL;
17852 }
17853
17854 if (section_groups)
17855 {
17856 struct group_list * g;
17857 struct group_list * next;
17858
17859 for (i = 0; i < group_count; i++)
17860 {
17861 for (g = section_groups [i].root; g != NULL; g = next)
17862 {
17863 next = g->next;
17864 free (g);
17865 }
17866 }
17867
17868 free (section_groups);
17869 section_groups = NULL;
17870 }
17871
17872 free_debug_memory ();
17873
17874 return res;
17875 }
17876
17877 /* Process an ELF archive.
17878 On entry the file is positioned just after the ARMAG string.
17879 Returns TRUE upon success, FALSE otherwise. */
17880
17881 static bfd_boolean
17882 process_archive (char * file_name, FILE * file, bfd_boolean is_thin_archive)
17883 {
17884 struct archive_info arch;
17885 struct archive_info nested_arch;
17886 size_t got;
17887 bfd_boolean ret = TRUE;
17888
17889 show_name = TRUE;
17890
17891 /* The ARCH structure is used to hold information about this archive. */
17892 arch.file_name = NULL;
17893 arch.file = NULL;
17894 arch.index_array = NULL;
17895 arch.sym_table = NULL;
17896 arch.longnames = NULL;
17897
17898 /* The NESTED_ARCH structure is used as a single-item cache of information
17899 about a nested archive (when members of a thin archive reside within
17900 another regular archive file). */
17901 nested_arch.file_name = NULL;
17902 nested_arch.file = NULL;
17903 nested_arch.index_array = NULL;
17904 nested_arch.sym_table = NULL;
17905 nested_arch.longnames = NULL;
17906
17907 if (setup_archive (&arch, file_name, file, is_thin_archive, do_archive_index) != 0)
17908 {
17909 ret = FALSE;
17910 goto out;
17911 }
17912
17913 if (do_archive_index)
17914 {
17915 if (arch.sym_table == NULL)
17916 error (_("%s: unable to dump the index as none was found\n"), file_name);
17917 else
17918 {
17919 unsigned long i, l;
17920 unsigned long current_pos;
17921
17922 printf (_("Index of archive %s: (%lu entries, 0x%lx bytes in the symbol table)\n"),
17923 file_name, (unsigned long) arch.index_num, arch.sym_size);
17924 current_pos = ftell (file);
17925
17926 for (i = l = 0; i < arch.index_num; i++)
17927 {
17928 if ((i == 0) || ((i > 0) && (arch.index_array[i] != arch.index_array[i - 1])))
17929 {
17930 char * member_name;
17931
17932 member_name = get_archive_member_name_at (&arch, arch.index_array[i], &nested_arch);
17933
17934 if (member_name != NULL)
17935 {
17936 char * qualified_name = make_qualified_name (&arch, &nested_arch, member_name);
17937
17938 if (qualified_name != NULL)
17939 {
17940 printf (_("Contents of binary %s at offset "), qualified_name);
17941 (void) print_vma (arch.index_array[i], PREFIX_HEX);
17942 putchar ('\n');
17943 free (qualified_name);
17944 }
17945 }
17946 }
17947
17948 if (l >= arch.sym_size)
17949 {
17950 error (_("%s: end of the symbol table reached before the end of the index\n"),
17951 file_name);
17952 ret = FALSE;
17953 break;
17954 }
17955 /* PR 17531: file: 0b6630b2. */
17956 printf ("\t%.*s\n", (int) (arch.sym_size - l), arch.sym_table + l);
17957 l += strnlen (arch.sym_table + l, arch.sym_size - l) + 1;
17958 }
17959
17960 if (arch.uses_64bit_indicies)
17961 l = (l + 7) & ~ 7;
17962 else
17963 l += l & 1;
17964
17965 if (l < arch.sym_size)
17966 {
17967 error (_("%s: %ld bytes remain in the symbol table, but without corresponding entries in the index table\n"),
17968 file_name, arch.sym_size - l);
17969 ret = FALSE;
17970 }
17971
17972 if (fseek (file, current_pos, SEEK_SET) != 0)
17973 {
17974 error (_("%s: failed to seek back to start of object files in the archive\n"), file_name);
17975 ret = FALSE;
17976 goto out;
17977 }
17978 }
17979
17980 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
17981 && !do_segments && !do_header && !do_dump && !do_version
17982 && !do_histogram && !do_debugging && !do_arch && !do_notes
17983 && !do_section_groups && !do_dyn_syms)
17984 {
17985 ret = TRUE; /* Archive index only. */
17986 goto out;
17987 }
17988 }
17989
17990 while (1)
17991 {
17992 char * name;
17993 size_t namelen;
17994 char * qualified_name;
17995
17996 /* Read the next archive header. */
17997 if (fseek (file, arch.next_arhdr_offset, SEEK_SET) != 0)
17998 {
17999 error (_("%s: failed to seek to next archive header\n"), file_name);
18000 return FALSE;
18001 }
18002 got = fread (&arch.arhdr, 1, sizeof arch.arhdr, file);
18003 if (got != sizeof arch.arhdr)
18004 {
18005 if (got == 0)
18006 break;
18007 error (_("%s: failed to read archive header\n"), file_name);
18008 ret = FALSE;
18009 break;
18010 }
18011 if (memcmp (arch.arhdr.ar_fmag, ARFMAG, 2) != 0)
18012 {
18013 error (_("%s: did not find a valid archive header\n"), arch.file_name);
18014 ret = FALSE;
18015 break;
18016 }
18017
18018 arch.next_arhdr_offset += sizeof arch.arhdr;
18019
18020 archive_file_size = strtoul (arch.arhdr.ar_size, NULL, 10);
18021 if (archive_file_size & 01)
18022 ++archive_file_size;
18023
18024 name = get_archive_member_name (&arch, &nested_arch);
18025 if (name == NULL)
18026 {
18027 error (_("%s: bad archive file name\n"), file_name);
18028 ret = FALSE;
18029 break;
18030 }
18031 namelen = strlen (name);
18032
18033 qualified_name = make_qualified_name (&arch, &nested_arch, name);
18034 if (qualified_name == NULL)
18035 {
18036 error (_("%s: bad archive file name\n"), file_name);
18037 ret = FALSE;
18038 break;
18039 }
18040
18041 if (is_thin_archive && arch.nested_member_origin == 0)
18042 {
18043 /* This is a proxy for an external member of a thin archive. */
18044 FILE * member_file;
18045 char * member_file_name = adjust_relative_path (file_name, name, namelen);
18046
18047 if (member_file_name == NULL)
18048 {
18049 ret = FALSE;
18050 break;
18051 }
18052
18053 member_file = fopen (member_file_name, "rb");
18054 if (member_file == NULL)
18055 {
18056 error (_("Input file '%s' is not readable.\n"), member_file_name);
18057 free (member_file_name);
18058 ret = FALSE;
18059 break;
18060 }
18061
18062 archive_file_offset = arch.nested_member_origin;
18063
18064 if (! process_object (qualified_name, member_file))
18065 ret = FALSE;
18066
18067 fclose (member_file);
18068 free (member_file_name);
18069 }
18070 else if (is_thin_archive)
18071 {
18072 /* PR 15140: Allow for corrupt thin archives. */
18073 if (nested_arch.file == NULL)
18074 {
18075 error (_("%s: contains corrupt thin archive: %s\n"),
18076 file_name, name);
18077 ret = FALSE;
18078 break;
18079 }
18080
18081 /* This is a proxy for a member of a nested archive. */
18082 archive_file_offset = arch.nested_member_origin + sizeof arch.arhdr;
18083
18084 /* The nested archive file will have been opened and setup by
18085 get_archive_member_name. */
18086 if (fseek (nested_arch.file, archive_file_offset, SEEK_SET) != 0)
18087 {
18088 error (_("%s: failed to seek to archive member.\n"), nested_arch.file_name);
18089 ret = FALSE;
18090 break;
18091 }
18092
18093 if (! process_object (qualified_name, nested_arch.file))
18094 ret = FALSE;
18095 }
18096 else
18097 {
18098 archive_file_offset = arch.next_arhdr_offset;
18099 arch.next_arhdr_offset += archive_file_size;
18100
18101 if (! process_object (qualified_name, file))
18102 ret = FALSE;
18103 }
18104
18105 if (dump_sects != NULL)
18106 {
18107 free (dump_sects);
18108 dump_sects = NULL;
18109 num_dump_sects = 0;
18110 }
18111
18112 free (qualified_name);
18113 }
18114
18115 out:
18116 if (nested_arch.file != NULL)
18117 fclose (nested_arch.file);
18118 release_archive (&nested_arch);
18119 release_archive (&arch);
18120
18121 return ret;
18122 }
18123
18124 static bfd_boolean
18125 process_file (char * file_name)
18126 {
18127 FILE * file;
18128 struct stat statbuf;
18129 char armag[SARMAG];
18130 bfd_boolean ret = TRUE;
18131
18132 if (stat (file_name, &statbuf) < 0)
18133 {
18134 if (errno == ENOENT)
18135 error (_("'%s': No such file\n"), file_name);
18136 else
18137 error (_("Could not locate '%s'. System error message: %s\n"),
18138 file_name, strerror (errno));
18139 return FALSE;
18140 }
18141
18142 if (! S_ISREG (statbuf.st_mode))
18143 {
18144 error (_("'%s' is not an ordinary file\n"), file_name);
18145 return FALSE;
18146 }
18147
18148 file = fopen (file_name, "rb");
18149 if (file == NULL)
18150 {
18151 error (_("Input file '%s' is not readable.\n"), file_name);
18152 return FALSE;
18153 }
18154
18155 if (fread (armag, SARMAG, 1, file) != 1)
18156 {
18157 error (_("%s: Failed to read file's magic number\n"), file_name);
18158 fclose (file);
18159 return FALSE;
18160 }
18161
18162 current_file_size = (bfd_size_type) statbuf.st_size;
18163
18164 if (memcmp (armag, ARMAG, SARMAG) == 0)
18165 {
18166 if (! process_archive (file_name, file, FALSE))
18167 ret = FALSE;
18168 }
18169 else if (memcmp (armag, ARMAGT, SARMAG) == 0)
18170 {
18171 if ( ! process_archive (file_name, file, TRUE))
18172 ret = FALSE;
18173 }
18174 else
18175 {
18176 if (do_archive_index)
18177 error (_("File %s is not an archive so its index cannot be displayed.\n"),
18178 file_name);
18179
18180 rewind (file);
18181 archive_file_size = archive_file_offset = 0;
18182
18183 if (! process_object (file_name, file))
18184 ret = FALSE;
18185 }
18186
18187 fclose (file);
18188 current_file_size = 0;
18189
18190 return ret;
18191 }
18192
18193 #ifdef SUPPORT_DISASSEMBLY
18194 /* Needed by the i386 disassembler. For extra credit, someone could
18195 fix this so that we insert symbolic addresses here, esp for GOT/PLT
18196 symbols. */
18197
18198 void
18199 print_address (unsigned int addr, FILE * outfile)
18200 {
18201 fprintf (outfile,"0x%8.8x", addr);
18202 }
18203
18204 /* Needed by the i386 disassembler. */
18205 void
18206 db_task_printsym (unsigned int addr)
18207 {
18208 print_address (addr, stderr);
18209 }
18210 #endif
18211
18212 int
18213 main (int argc, char ** argv)
18214 {
18215 int err;
18216
18217 #if defined (HAVE_SETLOCALE) && defined (HAVE_LC_MESSAGES)
18218 setlocale (LC_MESSAGES, "");
18219 #endif
18220 #if defined (HAVE_SETLOCALE)
18221 setlocale (LC_CTYPE, "");
18222 #endif
18223 bindtextdomain (PACKAGE, LOCALEDIR);
18224 textdomain (PACKAGE);
18225
18226 expandargv (&argc, &argv);
18227
18228 parse_args (argc, argv);
18229
18230 if (num_dump_sects > 0)
18231 {
18232 /* Make a copy of the dump_sects array. */
18233 cmdline_dump_sects = (dump_type *)
18234 malloc (num_dump_sects * sizeof (* dump_sects));
18235 if (cmdline_dump_sects == NULL)
18236 error (_("Out of memory allocating dump request table.\n"));
18237 else
18238 {
18239 memcpy (cmdline_dump_sects, dump_sects,
18240 num_dump_sects * sizeof (* dump_sects));
18241 num_cmdline_dump_sects = num_dump_sects;
18242 }
18243 }
18244
18245 if (optind < (argc - 1))
18246 show_name = TRUE;
18247 else if (optind >= argc)
18248 {
18249 warn (_("Nothing to do.\n"));
18250 usage (stderr);
18251 }
18252
18253 err = FALSE;
18254 while (optind < argc)
18255 if (! process_file (argv[optind++]))
18256 err = TRUE;
18257
18258 if (dump_sects != NULL)
18259 free (dump_sects);
18260 if (cmdline_dump_sects != NULL)
18261 free (cmdline_dump_sects);
18262
18263 return err ? EXIT_FAILURE : EXIT_SUCCESS;
18264 }
This page took 0.429681 seconds and 4 git commands to generate.