*** empty log message ***
[deliverable/binutils-gdb.git] / binutils / readelf.c
1 /* readelf.c -- display contents of an ELF format file
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 Originally developed by Eric Youngdale <eric@andante.jic.com>
7 Modifications by Nick Clifton <nickc@redhat.com>
8
9 This file is part of GNU Binutils.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25 \f
26 /* The difference between readelf and objdump:
27
28 Both programs are capable of displaying the contents of ELF format files,
29 so why does the binutils project have two file dumpers ?
30
31 The reason is that objdump sees an ELF file through a BFD filter of the
32 world; if BFD has a bug where, say, it disagrees about a machine constant
33 in e_flags, then the odds are good that it will remain internally
34 consistent. The linker sees it the BFD way, objdump sees it the BFD way,
35 GAS sees it the BFD way. There was need for a tool to go find out what
36 the file actually says.
37
38 This is why the readelf program does not link against the BFD library - it
39 exists as an independent program to help verify the correct working of BFD.
40
41 There is also the case that readelf can provide more information about an
42 ELF file than is provided by objdump. In particular it can display DWARF
43 debugging information which (at the moment) objdump cannot. */
44 \f
45 #include "config.h"
46 #include "sysdep.h"
47 #include <assert.h>
48 #include <sys/stat.h>
49 #include <time.h>
50 #ifdef HAVE_ZLIB_H
51 #include <zlib.h>
52 #endif
53
54 #if __GNUC__ >= 2
55 /* Define BFD64 here, even if our default architecture is 32 bit ELF
56 as this will allow us to read in and parse 64bit and 32bit ELF files.
57 Only do this if we believe that the compiler can support a 64 bit
58 data type. For now we only rely on GCC being able to do this. */
59 #define BFD64
60 #endif
61
62 #include "bfd.h"
63 #include "bucomm.h"
64 #include "elfcomm.h"
65 #include "dwarf.h"
66
67 #include "elf/common.h"
68 #include "elf/external.h"
69 #include "elf/internal.h"
70
71
72 /* Included here, before RELOC_MACROS_GEN_FUNC is defined, so that
73 we can obtain the H8 reloc numbers. We need these for the
74 get_reloc_size() function. We include h8.h again after defining
75 RELOC_MACROS_GEN_FUNC so that we get the naming function as well. */
76
77 #include "elf/h8.h"
78 #undef _ELF_H8_H
79
80 /* Undo the effects of #including reloc-macros.h. */
81
82 #undef START_RELOC_NUMBERS
83 #undef RELOC_NUMBER
84 #undef FAKE_RELOC
85 #undef EMPTY_RELOC
86 #undef END_RELOC_NUMBERS
87 #undef _RELOC_MACROS_H
88
89 /* The following headers use the elf/reloc-macros.h file to
90 automatically generate relocation recognition functions
91 such as elf_mips_reloc_type() */
92
93 #define RELOC_MACROS_GEN_FUNC
94
95 #include "elf/alpha.h"
96 #include "elf/arc.h"
97 #include "elf/arm.h"
98 #include "elf/avr.h"
99 #include "elf/bfin.h"
100 #include "elf/cr16.h"
101 #include "elf/cris.h"
102 #include "elf/crx.h"
103 #include "elf/d10v.h"
104 #include "elf/d30v.h"
105 #include "elf/dlx.h"
106 #include "elf/fr30.h"
107 #include "elf/frv.h"
108 #include "elf/h8.h"
109 #include "elf/hppa.h"
110 #include "elf/i386.h"
111 #include "elf/i370.h"
112 #include "elf/i860.h"
113 #include "elf/i960.h"
114 #include "elf/ia64.h"
115 #include "elf/ip2k.h"
116 #include "elf/lm32.h"
117 #include "elf/iq2000.h"
118 #include "elf/m32c.h"
119 #include "elf/m32r.h"
120 #include "elf/m68k.h"
121 #include "elf/m68hc11.h"
122 #include "elf/mcore.h"
123 #include "elf/mep.h"
124 #include "elf/microblaze.h"
125 #include "elf/mips.h"
126 #include "elf/mmix.h"
127 #include "elf/mn10200.h"
128 #include "elf/mn10300.h"
129 #include "elf/moxie.h"
130 #include "elf/mt.h"
131 #include "elf/msp430.h"
132 #include "elf/or32.h"
133 #include "elf/pj.h"
134 #include "elf/ppc.h"
135 #include "elf/ppc64.h"
136 #include "elf/rx.h"
137 #include "elf/s390.h"
138 #include "elf/score.h"
139 #include "elf/sh.h"
140 #include "elf/sparc.h"
141 #include "elf/spu.h"
142 #include "elf/tic6x.h"
143 #include "elf/tilegx.h"
144 #include "elf/tilepro.h"
145 #include "elf/v850.h"
146 #include "elf/vax.h"
147 #include "elf/x86-64.h"
148 #include "elf/xc16x.h"
149 #include "elf/xstormy16.h"
150 #include "elf/xtensa.h"
151
152 #include "getopt.h"
153 #include "libiberty.h"
154 #include "safe-ctype.h"
155 #include "filenames.h"
156
157 char * program_name = "readelf";
158 static long archive_file_offset;
159 static unsigned long archive_file_size;
160 static unsigned long dynamic_addr;
161 static bfd_size_type dynamic_size;
162 static unsigned int dynamic_nent;
163 static char * dynamic_strings;
164 static unsigned long dynamic_strings_length;
165 static char * string_table;
166 static unsigned long string_table_length;
167 static unsigned long num_dynamic_syms;
168 static Elf_Internal_Sym * dynamic_symbols;
169 static Elf_Internal_Syminfo * dynamic_syminfo;
170 static unsigned long dynamic_syminfo_offset;
171 static unsigned int dynamic_syminfo_nent;
172 static char program_interpreter[PATH_MAX];
173 static bfd_vma dynamic_info[DT_ENCODING];
174 static bfd_vma dynamic_info_DT_GNU_HASH;
175 static bfd_vma version_info[16];
176 static Elf_Internal_Ehdr elf_header;
177 static Elf_Internal_Shdr * section_headers;
178 static Elf_Internal_Phdr * program_headers;
179 static Elf_Internal_Dyn * dynamic_section;
180 static Elf_Internal_Shdr * symtab_shndx_hdr;
181 static int show_name;
182 static int do_dynamic;
183 static int do_syms;
184 static int do_dyn_syms;
185 static int do_reloc;
186 static int do_sections;
187 static int do_section_groups;
188 static int do_section_details;
189 static int do_segments;
190 static int do_unwind;
191 static int do_using_dynamic;
192 static int do_header;
193 static int do_dump;
194 static int do_version;
195 static int do_histogram;
196 static int do_debugging;
197 static int do_arch;
198 static int do_notes;
199 static int do_archive_index;
200 static int is_32bit_elf;
201
202 struct group_list
203 {
204 struct group_list * next;
205 unsigned int section_index;
206 };
207
208 struct group
209 {
210 struct group_list * root;
211 unsigned int group_index;
212 };
213
214 static size_t group_count;
215 static struct group * section_groups;
216 static struct group ** section_headers_groups;
217
218
219 /* Flag bits indicating particular types of dump. */
220 #define HEX_DUMP (1 << 0) /* The -x command line switch. */
221 #define DISASS_DUMP (1 << 1) /* The -i command line switch. */
222 #define DEBUG_DUMP (1 << 2) /* The -w command line switch. */
223 #define STRING_DUMP (1 << 3) /* The -p command line switch. */
224 #define RELOC_DUMP (1 << 4) /* The -R command line switch. */
225
226 typedef unsigned char dump_type;
227
228 /* A linked list of the section names for which dumps were requested. */
229 struct dump_list_entry
230 {
231 char * name;
232 dump_type type;
233 struct dump_list_entry * next;
234 };
235 static struct dump_list_entry * dump_sects_byname;
236
237 /* A dynamic array of flags indicating for which sections a dump
238 has been requested via command line switches. */
239 static dump_type * cmdline_dump_sects = NULL;
240 static unsigned int num_cmdline_dump_sects = 0;
241
242 /* A dynamic array of flags indicating for which sections a dump of
243 some kind has been requested. It is reset on a per-object file
244 basis and then initialised from the cmdline_dump_sects array,
245 the results of interpreting the -w switch, and the
246 dump_sects_byname list. */
247 static dump_type * dump_sects = NULL;
248 static unsigned int num_dump_sects = 0;
249
250
251 /* How to print a vma value. */
252 typedef enum print_mode
253 {
254 HEX,
255 DEC,
256 DEC_5,
257 UNSIGNED,
258 PREFIX_HEX,
259 FULL_HEX,
260 LONG_HEX
261 }
262 print_mode;
263
264 #define UNKNOWN -1
265
266 #define SECTION_NAME(X) \
267 ((X) == NULL ? _("<none>") \
268 : string_table == NULL ? _("<no-name>") \
269 : ((X)->sh_name >= string_table_length ? _("<corrupt>") \
270 : string_table + (X)->sh_name))
271
272 #define DT_VERSIONTAGIDX(tag) (DT_VERNEEDNUM - (tag)) /* Reverse order! */
273
274 #define GET_ELF_SYMBOLS(file, section, sym_count) \
275 (is_32bit_elf ? get_32bit_elf_symbols (file, section, sym_count) \
276 : get_64bit_elf_symbols (file, section, sym_count))
277
278 #define VALID_DYNAMIC_NAME(offset) ((dynamic_strings != NULL) && (offset < dynamic_strings_length))
279 /* GET_DYNAMIC_NAME asssumes that VALID_DYNAMIC_NAME has
280 already been called and verified that the string exists. */
281 #define GET_DYNAMIC_NAME(offset) (dynamic_strings + offset)
282
283 #define REMOVE_ARCH_BITS(ADDR) \
284 do \
285 { \
286 if (elf_header.e_machine == EM_ARM) \
287 (ADDR) &= ~1; \
288 } \
289 while (0)
290 \f
291 /* Retrieve NMEMB structures, each SIZE bytes long from FILE starting at OFFSET.
292 Put the retrieved data into VAR, if it is not NULL. Otherwise allocate a buffer
293 using malloc and fill that. In either case return the pointer to the start of
294 the retrieved data or NULL if something went wrong. If something does go wrong
295 emit an error message using REASON as part of the context. */
296
297 static void *
298 get_data (void * var, FILE * file, long offset, size_t size, size_t nmemb,
299 const char * reason)
300 {
301 void * mvar;
302
303 if (size == 0 || nmemb == 0)
304 return NULL;
305
306 if (fseek (file, archive_file_offset + offset, SEEK_SET))
307 {
308 error (_("Unable to seek to 0x%lx for %s\n"),
309 (unsigned long) archive_file_offset + offset, reason);
310 return NULL;
311 }
312
313 mvar = var;
314 if (mvar == NULL)
315 {
316 /* Check for overflow. */
317 if (nmemb < (~(size_t) 0 - 1) / size)
318 /* + 1 so that we can '\0' terminate invalid string table sections. */
319 mvar = malloc (size * nmemb + 1);
320
321 if (mvar == NULL)
322 {
323 error (_("Out of memory allocating 0x%lx bytes for %s\n"),
324 (unsigned long)(size * nmemb), reason);
325 return NULL;
326 }
327
328 ((char *) mvar)[size * nmemb] = '\0';
329 }
330
331 if (fread (mvar, size, nmemb, file) != nmemb)
332 {
333 error (_("Unable to read in 0x%lx bytes of %s\n"),
334 (unsigned long)(size * nmemb), reason);
335 if (mvar != var)
336 free (mvar);
337 return NULL;
338 }
339
340 return mvar;
341 }
342
343 /* Print a VMA value. */
344
345 static int
346 print_vma (bfd_vma vma, print_mode mode)
347 {
348 int nc = 0;
349
350 switch (mode)
351 {
352 case FULL_HEX:
353 nc = printf ("0x");
354 /* Drop through. */
355
356 case LONG_HEX:
357 #ifdef BFD64
358 if (is_32bit_elf)
359 return nc + printf ("%8.8" BFD_VMA_FMT "x", vma);
360 #endif
361 printf_vma (vma);
362 return nc + 16;
363
364 case DEC_5:
365 if (vma <= 99999)
366 return printf ("%5" BFD_VMA_FMT "d", vma);
367 /* Drop through. */
368
369 case PREFIX_HEX:
370 nc = printf ("0x");
371 /* Drop through. */
372
373 case HEX:
374 return nc + printf ("%" BFD_VMA_FMT "x", vma);
375
376 case DEC:
377 return printf ("%" BFD_VMA_FMT "d", vma);
378
379 case UNSIGNED:
380 return printf ("%" BFD_VMA_FMT "u", vma);
381 }
382 return 0;
383 }
384
385 /* Display a symbol on stdout. Handles the display of non-printing characters.
386
387 If DO_WIDE is not true then format the symbol to be at most WIDTH characters,
388 truncating as necessary. If WIDTH is negative then format the string to be
389 exactly - WIDTH characters, truncating or padding as necessary.
390
391 Returns the number of emitted characters. */
392
393 static unsigned int
394 print_symbol (int width, const char *symbol)
395 {
396 const char *c;
397 bfd_boolean extra_padding = FALSE;
398 unsigned int num_printed = 0;
399
400 if (do_wide)
401 {
402 /* Set the width to a very large value. This simplifies the
403 code below. */
404 width = INT_MAX;
405 }
406 else if (width < 0)
407 {
408 /* Keep the width positive. This also helps. */
409 width = - width;
410 extra_padding = TRUE;
411 }
412
413 while (width)
414 {
415 int len;
416
417 c = symbol;
418
419 /* Look for non-printing symbols inside the symbol's name.
420 This test is triggered in particular by the names generated
421 by the assembler for local labels. */
422 while (ISPRINT (*c))
423 c++;
424
425 len = c - symbol;
426
427 if (len)
428 {
429 if (len > width)
430 len = width;
431
432 printf ("%.*s", len, symbol);
433
434 width -= len;
435 num_printed += len;
436 }
437
438 if (*c == 0 || width == 0)
439 break;
440
441 /* Now display the non-printing character, if
442 there is room left in which to dipslay it. */
443 if ((unsigned char) *c < 32)
444 {
445 if (width < 2)
446 break;
447
448 printf ("^%c", *c + 0x40);
449
450 width -= 2;
451 num_printed += 2;
452 }
453 else
454 {
455 if (width < 6)
456 break;
457
458 printf ("<0x%.2x>", (unsigned char) *c);
459
460 width -= 6;
461 num_printed += 6;
462 }
463
464 symbol = c + 1;
465 }
466
467 if (extra_padding && width > 0)
468 {
469 /* Fill in the remaining spaces. */
470 printf ("%-*s", width, " ");
471 num_printed += 2;
472 }
473
474 return num_printed;
475 }
476
477 /* Return a pointer to section NAME, or NULL if no such section exists. */
478
479 static Elf_Internal_Shdr *
480 find_section (const char * name)
481 {
482 unsigned int i;
483
484 for (i = 0; i < elf_header.e_shnum; i++)
485 if (streq (SECTION_NAME (section_headers + i), name))
486 return section_headers + i;
487
488 return NULL;
489 }
490
491 /* Return a pointer to a section containing ADDR, or NULL if no such
492 section exists. */
493
494 static Elf_Internal_Shdr *
495 find_section_by_address (bfd_vma addr)
496 {
497 unsigned int i;
498
499 for (i = 0; i < elf_header.e_shnum; i++)
500 {
501 Elf_Internal_Shdr *sec = section_headers + i;
502 if (addr >= sec->sh_addr && addr < sec->sh_addr + sec->sh_size)
503 return sec;
504 }
505
506 return NULL;
507 }
508
509 /* Read an unsigned LEB128 encoded value from p. Set *PLEN to the number of
510 bytes read. */
511
512 static unsigned long
513 read_uleb128 (unsigned char *data, unsigned int *length_return)
514 {
515 return read_leb128 (data, length_return, 0);
516 }
517
518 /* Return true if the current file is for IA-64 machine and OpenVMS ABI.
519 This OS has so many departures from the ELF standard that we test it at
520 many places. */
521
522 static inline int
523 is_ia64_vms (void)
524 {
525 return elf_header.e_machine == EM_IA_64
526 && elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS;
527 }
528
529 /* Guess the relocation size commonly used by the specific machines. */
530
531 static int
532 guess_is_rela (unsigned int e_machine)
533 {
534 switch (e_machine)
535 {
536 /* Targets that use REL relocations. */
537 case EM_386:
538 case EM_486:
539 case EM_960:
540 case EM_ARM:
541 case EM_D10V:
542 case EM_CYGNUS_D10V:
543 case EM_DLX:
544 case EM_MIPS:
545 case EM_MIPS_RS3_LE:
546 case EM_CYGNUS_M32R:
547 case EM_OPENRISC:
548 case EM_OR32:
549 case EM_SCORE:
550 return FALSE;
551
552 /* Targets that use RELA relocations. */
553 case EM_68K:
554 case EM_860:
555 case EM_ALPHA:
556 case EM_ALTERA_NIOS2:
557 case EM_AVR:
558 case EM_AVR_OLD:
559 case EM_BLACKFIN:
560 case EM_CR16:
561 case EM_CR16_OLD:
562 case EM_CRIS:
563 case EM_CRX:
564 case EM_D30V:
565 case EM_CYGNUS_D30V:
566 case EM_FR30:
567 case EM_CYGNUS_FR30:
568 case EM_CYGNUS_FRV:
569 case EM_H8S:
570 case EM_H8_300:
571 case EM_H8_300H:
572 case EM_IA_64:
573 case EM_IP2K:
574 case EM_IP2K_OLD:
575 case EM_IQ2000:
576 case EM_LATTICEMICO32:
577 case EM_M32C_OLD:
578 case EM_M32C:
579 case EM_M32R:
580 case EM_MCORE:
581 case EM_CYGNUS_MEP:
582 case EM_MMIX:
583 case EM_MN10200:
584 case EM_CYGNUS_MN10200:
585 case EM_MN10300:
586 case EM_CYGNUS_MN10300:
587 case EM_MOXIE:
588 case EM_MSP430:
589 case EM_MSP430_OLD:
590 case EM_MT:
591 case EM_NIOS32:
592 case EM_PPC64:
593 case EM_PPC:
594 case EM_RX:
595 case EM_S390:
596 case EM_S390_OLD:
597 case EM_SH:
598 case EM_SPARC:
599 case EM_SPARC32PLUS:
600 case EM_SPARCV9:
601 case EM_SPU:
602 case EM_TI_C6000:
603 case EM_TILEGX:
604 case EM_TILEPRO:
605 case EM_V850:
606 case EM_CYGNUS_V850:
607 case EM_VAX:
608 case EM_X86_64:
609 case EM_L1OM:
610 case EM_K1OM:
611 case EM_XSTORMY16:
612 case EM_XTENSA:
613 case EM_XTENSA_OLD:
614 case EM_MICROBLAZE:
615 case EM_MICROBLAZE_OLD:
616 return TRUE;
617
618 case EM_68HC05:
619 case EM_68HC08:
620 case EM_68HC11:
621 case EM_68HC16:
622 case EM_FX66:
623 case EM_ME16:
624 case EM_MMA:
625 case EM_NCPU:
626 case EM_NDR1:
627 case EM_PCP:
628 case EM_ST100:
629 case EM_ST19:
630 case EM_ST7:
631 case EM_ST9PLUS:
632 case EM_STARCORE:
633 case EM_SVX:
634 case EM_TINYJ:
635 default:
636 warn (_("Don't know about relocations on this machine architecture\n"));
637 return FALSE;
638 }
639 }
640
641 static int
642 slurp_rela_relocs (FILE * file,
643 unsigned long rel_offset,
644 unsigned long rel_size,
645 Elf_Internal_Rela ** relasp,
646 unsigned long * nrelasp)
647 {
648 Elf_Internal_Rela * relas;
649 unsigned long nrelas;
650 unsigned int i;
651
652 if (is_32bit_elf)
653 {
654 Elf32_External_Rela * erelas;
655
656 erelas = (Elf32_External_Rela *) get_data (NULL, file, rel_offset, 1,
657 rel_size, _("32-bit relocation data"));
658 if (!erelas)
659 return 0;
660
661 nrelas = rel_size / sizeof (Elf32_External_Rela);
662
663 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
664 sizeof (Elf_Internal_Rela));
665
666 if (relas == NULL)
667 {
668 free (erelas);
669 error (_("out of memory parsing relocs\n"));
670 return 0;
671 }
672
673 for (i = 0; i < nrelas; i++)
674 {
675 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
676 relas[i].r_info = BYTE_GET (erelas[i].r_info);
677 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
678 }
679
680 free (erelas);
681 }
682 else
683 {
684 Elf64_External_Rela * erelas;
685
686 erelas = (Elf64_External_Rela *) get_data (NULL, file, rel_offset, 1,
687 rel_size, _("64-bit relocation data"));
688 if (!erelas)
689 return 0;
690
691 nrelas = rel_size / sizeof (Elf64_External_Rela);
692
693 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
694 sizeof (Elf_Internal_Rela));
695
696 if (relas == NULL)
697 {
698 free (erelas);
699 error (_("out of memory parsing relocs\n"));
700 return 0;
701 }
702
703 for (i = 0; i < nrelas; i++)
704 {
705 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
706 relas[i].r_info = BYTE_GET (erelas[i].r_info);
707 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
708
709 /* The #ifdef BFD64 below is to prevent a compile time
710 warning. We know that if we do not have a 64 bit data
711 type that we will never execute this code anyway. */
712 #ifdef BFD64
713 if (elf_header.e_machine == EM_MIPS
714 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
715 {
716 /* In little-endian objects, r_info isn't really a
717 64-bit little-endian value: it has a 32-bit
718 little-endian symbol index followed by four
719 individual byte fields. Reorder INFO
720 accordingly. */
721 bfd_vma inf = relas[i].r_info;
722 inf = (((inf & 0xffffffff) << 32)
723 | ((inf >> 56) & 0xff)
724 | ((inf >> 40) & 0xff00)
725 | ((inf >> 24) & 0xff0000)
726 | ((inf >> 8) & 0xff000000));
727 relas[i].r_info = inf;
728 }
729 #endif /* BFD64 */
730 }
731
732 free (erelas);
733 }
734 *relasp = relas;
735 *nrelasp = nrelas;
736 return 1;
737 }
738
739 static int
740 slurp_rel_relocs (FILE * file,
741 unsigned long rel_offset,
742 unsigned long rel_size,
743 Elf_Internal_Rela ** relsp,
744 unsigned long * nrelsp)
745 {
746 Elf_Internal_Rela * rels;
747 unsigned long nrels;
748 unsigned int i;
749
750 if (is_32bit_elf)
751 {
752 Elf32_External_Rel * erels;
753
754 erels = (Elf32_External_Rel *) get_data (NULL, file, rel_offset, 1,
755 rel_size, _("32-bit relocation data"));
756 if (!erels)
757 return 0;
758
759 nrels = rel_size / sizeof (Elf32_External_Rel);
760
761 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
762
763 if (rels == NULL)
764 {
765 free (erels);
766 error (_("out of memory parsing relocs\n"));
767 return 0;
768 }
769
770 for (i = 0; i < nrels; i++)
771 {
772 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
773 rels[i].r_info = BYTE_GET (erels[i].r_info);
774 rels[i].r_addend = 0;
775 }
776
777 free (erels);
778 }
779 else
780 {
781 Elf64_External_Rel * erels;
782
783 erels = (Elf64_External_Rel *) get_data (NULL, file, rel_offset, 1,
784 rel_size, _("64-bit relocation data"));
785 if (!erels)
786 return 0;
787
788 nrels = rel_size / sizeof (Elf64_External_Rel);
789
790 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
791
792 if (rels == NULL)
793 {
794 free (erels);
795 error (_("out of memory parsing relocs\n"));
796 return 0;
797 }
798
799 for (i = 0; i < nrels; i++)
800 {
801 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
802 rels[i].r_info = BYTE_GET (erels[i].r_info);
803 rels[i].r_addend = 0;
804
805 /* The #ifdef BFD64 below is to prevent a compile time
806 warning. We know that if we do not have a 64 bit data
807 type that we will never execute this code anyway. */
808 #ifdef BFD64
809 if (elf_header.e_machine == EM_MIPS
810 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
811 {
812 /* In little-endian objects, r_info isn't really a
813 64-bit little-endian value: it has a 32-bit
814 little-endian symbol index followed by four
815 individual byte fields. Reorder INFO
816 accordingly. */
817 bfd_vma inf = rels[i].r_info;
818 inf = (((inf & 0xffffffff) << 32)
819 | ((inf >> 56) & 0xff)
820 | ((inf >> 40) & 0xff00)
821 | ((inf >> 24) & 0xff0000)
822 | ((inf >> 8) & 0xff000000));
823 rels[i].r_info = inf;
824 }
825 #endif /* BFD64 */
826 }
827
828 free (erels);
829 }
830 *relsp = rels;
831 *nrelsp = nrels;
832 return 1;
833 }
834
835 /* Returns the reloc type extracted from the reloc info field. */
836
837 static unsigned int
838 get_reloc_type (bfd_vma reloc_info)
839 {
840 if (is_32bit_elf)
841 return ELF32_R_TYPE (reloc_info);
842
843 switch (elf_header.e_machine)
844 {
845 case EM_MIPS:
846 /* Note: We assume that reloc_info has already been adjusted for us. */
847 return ELF64_MIPS_R_TYPE (reloc_info);
848
849 case EM_SPARCV9:
850 return ELF64_R_TYPE_ID (reloc_info);
851
852 default:
853 return ELF64_R_TYPE (reloc_info);
854 }
855 }
856
857 /* Return the symbol index extracted from the reloc info field. */
858
859 static bfd_vma
860 get_reloc_symindex (bfd_vma reloc_info)
861 {
862 return is_32bit_elf ? ELF32_R_SYM (reloc_info) : ELF64_R_SYM (reloc_info);
863 }
864
865 /* Display the contents of the relocation data found at the specified
866 offset. */
867
868 static void
869 dump_relocations (FILE * file,
870 unsigned long rel_offset,
871 unsigned long rel_size,
872 Elf_Internal_Sym * symtab,
873 unsigned long nsyms,
874 char * strtab,
875 unsigned long strtablen,
876 int is_rela)
877 {
878 unsigned int i;
879 Elf_Internal_Rela * rels;
880
881 if (is_rela == UNKNOWN)
882 is_rela = guess_is_rela (elf_header.e_machine);
883
884 if (is_rela)
885 {
886 if (!slurp_rela_relocs (file, rel_offset, rel_size, &rels, &rel_size))
887 return;
888 }
889 else
890 {
891 if (!slurp_rel_relocs (file, rel_offset, rel_size, &rels, &rel_size))
892 return;
893 }
894
895 if (is_32bit_elf)
896 {
897 if (is_rela)
898 {
899 if (do_wide)
900 printf (_(" Offset Info Type Sym. Value Symbol's Name + Addend\n"));
901 else
902 printf (_(" Offset Info Type Sym.Value Sym. Name + Addend\n"));
903 }
904 else
905 {
906 if (do_wide)
907 printf (_(" Offset Info Type Sym. Value Symbol's Name\n"));
908 else
909 printf (_(" Offset Info Type Sym.Value Sym. Name\n"));
910 }
911 }
912 else
913 {
914 if (is_rela)
915 {
916 if (do_wide)
917 printf (_(" Offset Info Type Symbol's Value Symbol's Name + Addend\n"));
918 else
919 printf (_(" Offset Info Type Sym. Value Sym. Name + Addend\n"));
920 }
921 else
922 {
923 if (do_wide)
924 printf (_(" Offset Info Type Symbol's Value Symbol's Name\n"));
925 else
926 printf (_(" Offset Info Type Sym. Value Sym. Name\n"));
927 }
928 }
929
930 for (i = 0; i < rel_size; i++)
931 {
932 const char * rtype;
933 bfd_vma offset;
934 bfd_vma inf;
935 bfd_vma symtab_index;
936 bfd_vma type;
937
938 offset = rels[i].r_offset;
939 inf = rels[i].r_info;
940
941 type = get_reloc_type (inf);
942 symtab_index = get_reloc_symindex (inf);
943
944 if (is_32bit_elf)
945 {
946 printf ("%8.8lx %8.8lx ",
947 (unsigned long) offset & 0xffffffff,
948 (unsigned long) inf & 0xffffffff);
949 }
950 else
951 {
952 #if BFD_HOST_64BIT_LONG
953 printf (do_wide
954 ? "%16.16lx %16.16lx "
955 : "%12.12lx %12.12lx ",
956 offset, inf);
957 #elif BFD_HOST_64BIT_LONG_LONG
958 #ifndef __MSVCRT__
959 printf (do_wide
960 ? "%16.16llx %16.16llx "
961 : "%12.12llx %12.12llx ",
962 offset, inf);
963 #else
964 printf (do_wide
965 ? "%16.16I64x %16.16I64x "
966 : "%12.12I64x %12.12I64x ",
967 offset, inf);
968 #endif
969 #else
970 printf (do_wide
971 ? "%8.8lx%8.8lx %8.8lx%8.8lx "
972 : "%4.4lx%8.8lx %4.4lx%8.8lx ",
973 _bfd_int64_high (offset),
974 _bfd_int64_low (offset),
975 _bfd_int64_high (inf),
976 _bfd_int64_low (inf));
977 #endif
978 }
979
980 switch (elf_header.e_machine)
981 {
982 default:
983 rtype = NULL;
984 break;
985
986 case EM_M32R:
987 case EM_CYGNUS_M32R:
988 rtype = elf_m32r_reloc_type (type);
989 break;
990
991 case EM_386:
992 case EM_486:
993 rtype = elf_i386_reloc_type (type);
994 break;
995
996 case EM_68HC11:
997 case EM_68HC12:
998 rtype = elf_m68hc11_reloc_type (type);
999 break;
1000
1001 case EM_68K:
1002 rtype = elf_m68k_reloc_type (type);
1003 break;
1004
1005 case EM_960:
1006 rtype = elf_i960_reloc_type (type);
1007 break;
1008
1009 case EM_AVR:
1010 case EM_AVR_OLD:
1011 rtype = elf_avr_reloc_type (type);
1012 break;
1013
1014 case EM_OLD_SPARCV9:
1015 case EM_SPARC32PLUS:
1016 case EM_SPARCV9:
1017 case EM_SPARC:
1018 rtype = elf_sparc_reloc_type (type);
1019 break;
1020
1021 case EM_SPU:
1022 rtype = elf_spu_reloc_type (type);
1023 break;
1024
1025 case EM_V850:
1026 case EM_CYGNUS_V850:
1027 rtype = v850_reloc_type (type);
1028 break;
1029
1030 case EM_D10V:
1031 case EM_CYGNUS_D10V:
1032 rtype = elf_d10v_reloc_type (type);
1033 break;
1034
1035 case EM_D30V:
1036 case EM_CYGNUS_D30V:
1037 rtype = elf_d30v_reloc_type (type);
1038 break;
1039
1040 case EM_DLX:
1041 rtype = elf_dlx_reloc_type (type);
1042 break;
1043
1044 case EM_SH:
1045 rtype = elf_sh_reloc_type (type);
1046 break;
1047
1048 case EM_MN10300:
1049 case EM_CYGNUS_MN10300:
1050 rtype = elf_mn10300_reloc_type (type);
1051 break;
1052
1053 case EM_MN10200:
1054 case EM_CYGNUS_MN10200:
1055 rtype = elf_mn10200_reloc_type (type);
1056 break;
1057
1058 case EM_FR30:
1059 case EM_CYGNUS_FR30:
1060 rtype = elf_fr30_reloc_type (type);
1061 break;
1062
1063 case EM_CYGNUS_FRV:
1064 rtype = elf_frv_reloc_type (type);
1065 break;
1066
1067 case EM_MCORE:
1068 rtype = elf_mcore_reloc_type (type);
1069 break;
1070
1071 case EM_MMIX:
1072 rtype = elf_mmix_reloc_type (type);
1073 break;
1074
1075 case EM_MOXIE:
1076 rtype = elf_moxie_reloc_type (type);
1077 break;
1078
1079 case EM_MSP430:
1080 case EM_MSP430_OLD:
1081 rtype = elf_msp430_reloc_type (type);
1082 break;
1083
1084 case EM_PPC:
1085 rtype = elf_ppc_reloc_type (type);
1086 break;
1087
1088 case EM_PPC64:
1089 rtype = elf_ppc64_reloc_type (type);
1090 break;
1091
1092 case EM_MIPS:
1093 case EM_MIPS_RS3_LE:
1094 rtype = elf_mips_reloc_type (type);
1095 break;
1096
1097 case EM_ALPHA:
1098 rtype = elf_alpha_reloc_type (type);
1099 break;
1100
1101 case EM_ARM:
1102 rtype = elf_arm_reloc_type (type);
1103 break;
1104
1105 case EM_ARC:
1106 rtype = elf_arc_reloc_type (type);
1107 break;
1108
1109 case EM_PARISC:
1110 rtype = elf_hppa_reloc_type (type);
1111 break;
1112
1113 case EM_H8_300:
1114 case EM_H8_300H:
1115 case EM_H8S:
1116 rtype = elf_h8_reloc_type (type);
1117 break;
1118
1119 case EM_OPENRISC:
1120 case EM_OR32:
1121 rtype = elf_or32_reloc_type (type);
1122 break;
1123
1124 case EM_PJ:
1125 case EM_PJ_OLD:
1126 rtype = elf_pj_reloc_type (type);
1127 break;
1128 case EM_IA_64:
1129 rtype = elf_ia64_reloc_type (type);
1130 break;
1131
1132 case EM_CRIS:
1133 rtype = elf_cris_reloc_type (type);
1134 break;
1135
1136 case EM_860:
1137 rtype = elf_i860_reloc_type (type);
1138 break;
1139
1140 case EM_X86_64:
1141 case EM_L1OM:
1142 case EM_K1OM:
1143 rtype = elf_x86_64_reloc_type (type);
1144 break;
1145
1146 case EM_S370:
1147 rtype = i370_reloc_type (type);
1148 break;
1149
1150 case EM_S390_OLD:
1151 case EM_S390:
1152 rtype = elf_s390_reloc_type (type);
1153 break;
1154
1155 case EM_SCORE:
1156 rtype = elf_score_reloc_type (type);
1157 break;
1158
1159 case EM_XSTORMY16:
1160 rtype = elf_xstormy16_reloc_type (type);
1161 break;
1162
1163 case EM_CRX:
1164 rtype = elf_crx_reloc_type (type);
1165 break;
1166
1167 case EM_VAX:
1168 rtype = elf_vax_reloc_type (type);
1169 break;
1170
1171 case EM_IP2K:
1172 case EM_IP2K_OLD:
1173 rtype = elf_ip2k_reloc_type (type);
1174 break;
1175
1176 case EM_IQ2000:
1177 rtype = elf_iq2000_reloc_type (type);
1178 break;
1179
1180 case EM_XTENSA_OLD:
1181 case EM_XTENSA:
1182 rtype = elf_xtensa_reloc_type (type);
1183 break;
1184
1185 case EM_LATTICEMICO32:
1186 rtype = elf_lm32_reloc_type (type);
1187 break;
1188
1189 case EM_M32C_OLD:
1190 case EM_M32C:
1191 rtype = elf_m32c_reloc_type (type);
1192 break;
1193
1194 case EM_MT:
1195 rtype = elf_mt_reloc_type (type);
1196 break;
1197
1198 case EM_BLACKFIN:
1199 rtype = elf_bfin_reloc_type (type);
1200 break;
1201
1202 case EM_CYGNUS_MEP:
1203 rtype = elf_mep_reloc_type (type);
1204 break;
1205
1206 case EM_CR16:
1207 case EM_CR16_OLD:
1208 rtype = elf_cr16_reloc_type (type);
1209 break;
1210
1211 case EM_MICROBLAZE:
1212 case EM_MICROBLAZE_OLD:
1213 rtype = elf_microblaze_reloc_type (type);
1214 break;
1215
1216 case EM_RX:
1217 rtype = elf_rx_reloc_type (type);
1218 break;
1219
1220 case EM_XC16X:
1221 case EM_C166:
1222 rtype = elf_xc16x_reloc_type (type);
1223 break;
1224
1225 case EM_TI_C6000:
1226 rtype = elf_tic6x_reloc_type (type);
1227 break;
1228
1229 case EM_TILEGX:
1230 rtype = elf_tilegx_reloc_type (type);
1231 break;
1232
1233 case EM_TILEPRO:
1234 rtype = elf_tilepro_reloc_type (type);
1235 break;
1236 }
1237
1238 if (rtype == NULL)
1239 printf (_("unrecognized: %-7lx"), (unsigned long) type & 0xffffffff);
1240 else
1241 printf (do_wide ? "%-22.22s" : "%-17.17s", rtype);
1242
1243 if (elf_header.e_machine == EM_ALPHA
1244 && rtype != NULL
1245 && streq (rtype, "R_ALPHA_LITUSE")
1246 && is_rela)
1247 {
1248 switch (rels[i].r_addend)
1249 {
1250 case LITUSE_ALPHA_ADDR: rtype = "ADDR"; break;
1251 case LITUSE_ALPHA_BASE: rtype = "BASE"; break;
1252 case LITUSE_ALPHA_BYTOFF: rtype = "BYTOFF"; break;
1253 case LITUSE_ALPHA_JSR: rtype = "JSR"; break;
1254 case LITUSE_ALPHA_TLSGD: rtype = "TLSGD"; break;
1255 case LITUSE_ALPHA_TLSLDM: rtype = "TLSLDM"; break;
1256 case LITUSE_ALPHA_JSRDIRECT: rtype = "JSRDIRECT"; break;
1257 default: rtype = NULL;
1258 }
1259 if (rtype)
1260 printf (" (%s)", rtype);
1261 else
1262 {
1263 putchar (' ');
1264 printf (_("<unknown addend: %lx>"),
1265 (unsigned long) rels[i].r_addend);
1266 }
1267 }
1268 else if (symtab_index)
1269 {
1270 if (symtab == NULL || symtab_index >= nsyms)
1271 printf (_(" bad symbol index: %08lx"), (unsigned long) symtab_index);
1272 else
1273 {
1274 Elf_Internal_Sym * psym;
1275
1276 psym = symtab + symtab_index;
1277
1278 printf (" ");
1279
1280 if (ELF_ST_TYPE (psym->st_info) == STT_GNU_IFUNC)
1281 {
1282 const char * name;
1283 unsigned int len;
1284 unsigned int width = is_32bit_elf ? 8 : 14;
1285
1286 /* Relocations against GNU_IFUNC symbols do not use the value
1287 of the symbol as the address to relocate against. Instead
1288 they invoke the function named by the symbol and use its
1289 result as the address for relocation.
1290
1291 To indicate this to the user, do not display the value of
1292 the symbol in the "Symbols's Value" field. Instead show
1293 its name followed by () as a hint that the symbol is
1294 invoked. */
1295
1296 if (strtab == NULL
1297 || psym->st_name == 0
1298 || psym->st_name >= strtablen)
1299 name = "??";
1300 else
1301 name = strtab + psym->st_name;
1302
1303 len = print_symbol (width, name);
1304 printf ("()%-*s", len <= width ? (width + 1) - len : 1, " ");
1305 }
1306 else
1307 {
1308 print_vma (psym->st_value, LONG_HEX);
1309
1310 printf (is_32bit_elf ? " " : " ");
1311 }
1312
1313 if (psym->st_name == 0)
1314 {
1315 const char * sec_name = "<null>";
1316 char name_buf[40];
1317
1318 if (ELF_ST_TYPE (psym->st_info) == STT_SECTION)
1319 {
1320 if (psym->st_shndx < elf_header.e_shnum)
1321 sec_name
1322 = SECTION_NAME (section_headers + psym->st_shndx);
1323 else if (psym->st_shndx == SHN_ABS)
1324 sec_name = "ABS";
1325 else if (psym->st_shndx == SHN_COMMON)
1326 sec_name = "COMMON";
1327 else if ((elf_header.e_machine == EM_MIPS
1328 && psym->st_shndx == SHN_MIPS_SCOMMON)
1329 || (elf_header.e_machine == EM_TI_C6000
1330 && psym->st_shndx == SHN_TIC6X_SCOMMON))
1331 sec_name = "SCOMMON";
1332 else if (elf_header.e_machine == EM_MIPS
1333 && psym->st_shndx == SHN_MIPS_SUNDEFINED)
1334 sec_name = "SUNDEF";
1335 else if ((elf_header.e_machine == EM_X86_64
1336 || elf_header.e_machine == EM_L1OM
1337 || elf_header.e_machine == EM_K1OM)
1338 && psym->st_shndx == SHN_X86_64_LCOMMON)
1339 sec_name = "LARGE_COMMON";
1340 else if (elf_header.e_machine == EM_IA_64
1341 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX
1342 && psym->st_shndx == SHN_IA_64_ANSI_COMMON)
1343 sec_name = "ANSI_COM";
1344 else if (is_ia64_vms ()
1345 && psym->st_shndx == SHN_IA_64_VMS_SYMVEC)
1346 sec_name = "VMS_SYMVEC";
1347 else
1348 {
1349 sprintf (name_buf, "<section 0x%x>",
1350 (unsigned int) psym->st_shndx);
1351 sec_name = name_buf;
1352 }
1353 }
1354 print_symbol (22, sec_name);
1355 }
1356 else if (strtab == NULL)
1357 printf (_("<string table index: %3ld>"), psym->st_name);
1358 else if (psym->st_name >= strtablen)
1359 printf (_("<corrupt string table index: %3ld>"), psym->st_name);
1360 else
1361 print_symbol (22, strtab + psym->st_name);
1362
1363 if (is_rela)
1364 {
1365 bfd_signed_vma off = rels[i].r_addend;
1366
1367 if (off < 0)
1368 printf (" - %" BFD_VMA_FMT "x", - off);
1369 else
1370 printf (" + %" BFD_VMA_FMT "x", off);
1371 }
1372 }
1373 }
1374 else if (is_rela)
1375 {
1376 printf ("%*c", is_32bit_elf ?
1377 (do_wide ? 34 : 28) : (do_wide ? 26 : 20), ' ');
1378 print_vma (rels[i].r_addend, LONG_HEX);
1379 }
1380
1381 if (elf_header.e_machine == EM_SPARCV9
1382 && rtype != NULL
1383 && streq (rtype, "R_SPARC_OLO10"))
1384 printf (" + %lx", (unsigned long) ELF64_R_TYPE_DATA (inf));
1385
1386 putchar ('\n');
1387
1388 #ifdef BFD64
1389 if (! is_32bit_elf && elf_header.e_machine == EM_MIPS)
1390 {
1391 bfd_vma type2 = ELF64_MIPS_R_TYPE2 (inf);
1392 bfd_vma type3 = ELF64_MIPS_R_TYPE3 (inf);
1393 const char * rtype2 = elf_mips_reloc_type (type2);
1394 const char * rtype3 = elf_mips_reloc_type (type3);
1395
1396 printf (" Type2: ");
1397
1398 if (rtype2 == NULL)
1399 printf (_("unrecognized: %-7lx"),
1400 (unsigned long) type2 & 0xffffffff);
1401 else
1402 printf ("%-17.17s", rtype2);
1403
1404 printf ("\n Type3: ");
1405
1406 if (rtype3 == NULL)
1407 printf (_("unrecognized: %-7lx"),
1408 (unsigned long) type3 & 0xffffffff);
1409 else
1410 printf ("%-17.17s", rtype3);
1411
1412 putchar ('\n');
1413 }
1414 #endif /* BFD64 */
1415 }
1416
1417 free (rels);
1418 }
1419
1420 static const char *
1421 get_mips_dynamic_type (unsigned long type)
1422 {
1423 switch (type)
1424 {
1425 case DT_MIPS_RLD_VERSION: return "MIPS_RLD_VERSION";
1426 case DT_MIPS_TIME_STAMP: return "MIPS_TIME_STAMP";
1427 case DT_MIPS_ICHECKSUM: return "MIPS_ICHECKSUM";
1428 case DT_MIPS_IVERSION: return "MIPS_IVERSION";
1429 case DT_MIPS_FLAGS: return "MIPS_FLAGS";
1430 case DT_MIPS_BASE_ADDRESS: return "MIPS_BASE_ADDRESS";
1431 case DT_MIPS_MSYM: return "MIPS_MSYM";
1432 case DT_MIPS_CONFLICT: return "MIPS_CONFLICT";
1433 case DT_MIPS_LIBLIST: return "MIPS_LIBLIST";
1434 case DT_MIPS_LOCAL_GOTNO: return "MIPS_LOCAL_GOTNO";
1435 case DT_MIPS_CONFLICTNO: return "MIPS_CONFLICTNO";
1436 case DT_MIPS_LIBLISTNO: return "MIPS_LIBLISTNO";
1437 case DT_MIPS_SYMTABNO: return "MIPS_SYMTABNO";
1438 case DT_MIPS_UNREFEXTNO: return "MIPS_UNREFEXTNO";
1439 case DT_MIPS_GOTSYM: return "MIPS_GOTSYM";
1440 case DT_MIPS_HIPAGENO: return "MIPS_HIPAGENO";
1441 case DT_MIPS_RLD_MAP: return "MIPS_RLD_MAP";
1442 case DT_MIPS_DELTA_CLASS: return "MIPS_DELTA_CLASS";
1443 case DT_MIPS_DELTA_CLASS_NO: return "MIPS_DELTA_CLASS_NO";
1444 case DT_MIPS_DELTA_INSTANCE: return "MIPS_DELTA_INSTANCE";
1445 case DT_MIPS_DELTA_INSTANCE_NO: return "MIPS_DELTA_INSTANCE_NO";
1446 case DT_MIPS_DELTA_RELOC: return "MIPS_DELTA_RELOC";
1447 case DT_MIPS_DELTA_RELOC_NO: return "MIPS_DELTA_RELOC_NO";
1448 case DT_MIPS_DELTA_SYM: return "MIPS_DELTA_SYM";
1449 case DT_MIPS_DELTA_SYM_NO: return "MIPS_DELTA_SYM_NO";
1450 case DT_MIPS_DELTA_CLASSSYM: return "MIPS_DELTA_CLASSSYM";
1451 case DT_MIPS_DELTA_CLASSSYM_NO: return "MIPS_DELTA_CLASSSYM_NO";
1452 case DT_MIPS_CXX_FLAGS: return "MIPS_CXX_FLAGS";
1453 case DT_MIPS_PIXIE_INIT: return "MIPS_PIXIE_INIT";
1454 case DT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
1455 case DT_MIPS_LOCALPAGE_GOTIDX: return "MIPS_LOCALPAGE_GOTIDX";
1456 case DT_MIPS_LOCAL_GOTIDX: return "MIPS_LOCAL_GOTIDX";
1457 case DT_MIPS_HIDDEN_GOTIDX: return "MIPS_HIDDEN_GOTIDX";
1458 case DT_MIPS_PROTECTED_GOTIDX: return "MIPS_PROTECTED_GOTIDX";
1459 case DT_MIPS_OPTIONS: return "MIPS_OPTIONS";
1460 case DT_MIPS_INTERFACE: return "MIPS_INTERFACE";
1461 case DT_MIPS_DYNSTR_ALIGN: return "MIPS_DYNSTR_ALIGN";
1462 case DT_MIPS_INTERFACE_SIZE: return "MIPS_INTERFACE_SIZE";
1463 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: return "MIPS_RLD_TEXT_RESOLVE_ADDR";
1464 case DT_MIPS_PERF_SUFFIX: return "MIPS_PERF_SUFFIX";
1465 case DT_MIPS_COMPACT_SIZE: return "MIPS_COMPACT_SIZE";
1466 case DT_MIPS_GP_VALUE: return "MIPS_GP_VALUE";
1467 case DT_MIPS_AUX_DYNAMIC: return "MIPS_AUX_DYNAMIC";
1468 case DT_MIPS_PLTGOT: return "MIPS_PLTGOT";
1469 case DT_MIPS_RWPLT: return "MIPS_RWPLT";
1470 default:
1471 return NULL;
1472 }
1473 }
1474
1475 static const char *
1476 get_sparc64_dynamic_type (unsigned long type)
1477 {
1478 switch (type)
1479 {
1480 case DT_SPARC_REGISTER: return "SPARC_REGISTER";
1481 default:
1482 return NULL;
1483 }
1484 }
1485
1486 static const char *
1487 get_ppc_dynamic_type (unsigned long type)
1488 {
1489 switch (type)
1490 {
1491 case DT_PPC_GOT: return "PPC_GOT";
1492 case DT_PPC_TLSOPT: return "PPC_TLSOPT";
1493 default:
1494 return NULL;
1495 }
1496 }
1497
1498 static const char *
1499 get_ppc64_dynamic_type (unsigned long type)
1500 {
1501 switch (type)
1502 {
1503 case DT_PPC64_GLINK: return "PPC64_GLINK";
1504 case DT_PPC64_OPD: return "PPC64_OPD";
1505 case DT_PPC64_OPDSZ: return "PPC64_OPDSZ";
1506 case DT_PPC64_TLSOPT: return "PPC64_TLSOPT";
1507 default:
1508 return NULL;
1509 }
1510 }
1511
1512 static const char *
1513 get_parisc_dynamic_type (unsigned long type)
1514 {
1515 switch (type)
1516 {
1517 case DT_HP_LOAD_MAP: return "HP_LOAD_MAP";
1518 case DT_HP_DLD_FLAGS: return "HP_DLD_FLAGS";
1519 case DT_HP_DLD_HOOK: return "HP_DLD_HOOK";
1520 case DT_HP_UX10_INIT: return "HP_UX10_INIT";
1521 case DT_HP_UX10_INITSZ: return "HP_UX10_INITSZ";
1522 case DT_HP_PREINIT: return "HP_PREINIT";
1523 case DT_HP_PREINITSZ: return "HP_PREINITSZ";
1524 case DT_HP_NEEDED: return "HP_NEEDED";
1525 case DT_HP_TIME_STAMP: return "HP_TIME_STAMP";
1526 case DT_HP_CHECKSUM: return "HP_CHECKSUM";
1527 case DT_HP_GST_SIZE: return "HP_GST_SIZE";
1528 case DT_HP_GST_VERSION: return "HP_GST_VERSION";
1529 case DT_HP_GST_HASHVAL: return "HP_GST_HASHVAL";
1530 case DT_HP_EPLTREL: return "HP_GST_EPLTREL";
1531 case DT_HP_EPLTRELSZ: return "HP_GST_EPLTRELSZ";
1532 case DT_HP_FILTERED: return "HP_FILTERED";
1533 case DT_HP_FILTER_TLS: return "HP_FILTER_TLS";
1534 case DT_HP_COMPAT_FILTERED: return "HP_COMPAT_FILTERED";
1535 case DT_HP_LAZYLOAD: return "HP_LAZYLOAD";
1536 case DT_HP_BIND_NOW_COUNT: return "HP_BIND_NOW_COUNT";
1537 case DT_PLT: return "PLT";
1538 case DT_PLT_SIZE: return "PLT_SIZE";
1539 case DT_DLT: return "DLT";
1540 case DT_DLT_SIZE: return "DLT_SIZE";
1541 default:
1542 return NULL;
1543 }
1544 }
1545
1546 static const char *
1547 get_ia64_dynamic_type (unsigned long type)
1548 {
1549 switch (type)
1550 {
1551 case DT_IA_64_PLT_RESERVE: return "IA_64_PLT_RESERVE";
1552 case DT_IA_64_VMS_SUBTYPE: return "VMS_SUBTYPE";
1553 case DT_IA_64_VMS_IMGIOCNT: return "VMS_IMGIOCNT";
1554 case DT_IA_64_VMS_LNKFLAGS: return "VMS_LNKFLAGS";
1555 case DT_IA_64_VMS_VIR_MEM_BLK_SIZ: return "VMS_VIR_MEM_BLK_SIZ";
1556 case DT_IA_64_VMS_IDENT: return "VMS_IDENT";
1557 case DT_IA_64_VMS_NEEDED_IDENT: return "VMS_NEEDED_IDENT";
1558 case DT_IA_64_VMS_IMG_RELA_CNT: return "VMS_IMG_RELA_CNT";
1559 case DT_IA_64_VMS_SEG_RELA_CNT: return "VMS_SEG_RELA_CNT";
1560 case DT_IA_64_VMS_FIXUP_RELA_CNT: return "VMS_FIXUP_RELA_CNT";
1561 case DT_IA_64_VMS_FIXUP_NEEDED: return "VMS_FIXUP_NEEDED";
1562 case DT_IA_64_VMS_SYMVEC_CNT: return "VMS_SYMVEC_CNT";
1563 case DT_IA_64_VMS_XLATED: return "VMS_XLATED";
1564 case DT_IA_64_VMS_STACKSIZE: return "VMS_STACKSIZE";
1565 case DT_IA_64_VMS_UNWINDSZ: return "VMS_UNWINDSZ";
1566 case DT_IA_64_VMS_UNWIND_CODSEG: return "VMS_UNWIND_CODSEG";
1567 case DT_IA_64_VMS_UNWIND_INFOSEG: return "VMS_UNWIND_INFOSEG";
1568 case DT_IA_64_VMS_LINKTIME: return "VMS_LINKTIME";
1569 case DT_IA_64_VMS_SEG_NO: return "VMS_SEG_NO";
1570 case DT_IA_64_VMS_SYMVEC_OFFSET: return "VMS_SYMVEC_OFFSET";
1571 case DT_IA_64_VMS_SYMVEC_SEG: return "VMS_SYMVEC_SEG";
1572 case DT_IA_64_VMS_UNWIND_OFFSET: return "VMS_UNWIND_OFFSET";
1573 case DT_IA_64_VMS_UNWIND_SEG: return "VMS_UNWIND_SEG";
1574 case DT_IA_64_VMS_STRTAB_OFFSET: return "VMS_STRTAB_OFFSET";
1575 case DT_IA_64_VMS_SYSVER_OFFSET: return "VMS_SYSVER_OFFSET";
1576 case DT_IA_64_VMS_IMG_RELA_OFF: return "VMS_IMG_RELA_OFF";
1577 case DT_IA_64_VMS_SEG_RELA_OFF: return "VMS_SEG_RELA_OFF";
1578 case DT_IA_64_VMS_FIXUP_RELA_OFF: return "VMS_FIXUP_RELA_OFF";
1579 case DT_IA_64_VMS_PLTGOT_OFFSET: return "VMS_PLTGOT_OFFSET";
1580 case DT_IA_64_VMS_PLTGOT_SEG: return "VMS_PLTGOT_SEG";
1581 case DT_IA_64_VMS_FPMODE: return "VMS_FPMODE";
1582 default:
1583 return NULL;
1584 }
1585 }
1586
1587 static const char *
1588 get_alpha_dynamic_type (unsigned long type)
1589 {
1590 switch (type)
1591 {
1592 case DT_ALPHA_PLTRO: return "ALPHA_PLTRO";
1593 default:
1594 return NULL;
1595 }
1596 }
1597
1598 static const char *
1599 get_score_dynamic_type (unsigned long type)
1600 {
1601 switch (type)
1602 {
1603 case DT_SCORE_BASE_ADDRESS: return "SCORE_BASE_ADDRESS";
1604 case DT_SCORE_LOCAL_GOTNO: return "SCORE_LOCAL_GOTNO";
1605 case DT_SCORE_SYMTABNO: return "SCORE_SYMTABNO";
1606 case DT_SCORE_GOTSYM: return "SCORE_GOTSYM";
1607 case DT_SCORE_UNREFEXTNO: return "SCORE_UNREFEXTNO";
1608 case DT_SCORE_HIPAGENO: return "SCORE_HIPAGENO";
1609 default:
1610 return NULL;
1611 }
1612 }
1613
1614 static const char *
1615 get_tic6x_dynamic_type (unsigned long type)
1616 {
1617 switch (type)
1618 {
1619 case DT_C6000_GSYM_OFFSET: return "C6000_GSYM_OFFSET";
1620 case DT_C6000_GSTR_OFFSET: return "C6000_GSTR_OFFSET";
1621 case DT_C6000_DSBT_BASE: return "C6000_DSBT_BASE";
1622 case DT_C6000_DSBT_SIZE: return "C6000_DSBT_SIZE";
1623 case DT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
1624 case DT_C6000_DSBT_INDEX: return "C6000_DSBT_INDEX";
1625 default:
1626 return NULL;
1627 }
1628 }
1629
1630 static const char *
1631 get_dynamic_type (unsigned long type)
1632 {
1633 static char buff[64];
1634
1635 switch (type)
1636 {
1637 case DT_NULL: return "NULL";
1638 case DT_NEEDED: return "NEEDED";
1639 case DT_PLTRELSZ: return "PLTRELSZ";
1640 case DT_PLTGOT: return "PLTGOT";
1641 case DT_HASH: return "HASH";
1642 case DT_STRTAB: return "STRTAB";
1643 case DT_SYMTAB: return "SYMTAB";
1644 case DT_RELA: return "RELA";
1645 case DT_RELASZ: return "RELASZ";
1646 case DT_RELAENT: return "RELAENT";
1647 case DT_STRSZ: return "STRSZ";
1648 case DT_SYMENT: return "SYMENT";
1649 case DT_INIT: return "INIT";
1650 case DT_FINI: return "FINI";
1651 case DT_SONAME: return "SONAME";
1652 case DT_RPATH: return "RPATH";
1653 case DT_SYMBOLIC: return "SYMBOLIC";
1654 case DT_REL: return "REL";
1655 case DT_RELSZ: return "RELSZ";
1656 case DT_RELENT: return "RELENT";
1657 case DT_PLTREL: return "PLTREL";
1658 case DT_DEBUG: return "DEBUG";
1659 case DT_TEXTREL: return "TEXTREL";
1660 case DT_JMPREL: return "JMPREL";
1661 case DT_BIND_NOW: return "BIND_NOW";
1662 case DT_INIT_ARRAY: return "INIT_ARRAY";
1663 case DT_FINI_ARRAY: return "FINI_ARRAY";
1664 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
1665 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
1666 case DT_RUNPATH: return "RUNPATH";
1667 case DT_FLAGS: return "FLAGS";
1668
1669 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
1670 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
1671
1672 case DT_CHECKSUM: return "CHECKSUM";
1673 case DT_PLTPADSZ: return "PLTPADSZ";
1674 case DT_MOVEENT: return "MOVEENT";
1675 case DT_MOVESZ: return "MOVESZ";
1676 case DT_FEATURE: return "FEATURE";
1677 case DT_POSFLAG_1: return "POSFLAG_1";
1678 case DT_SYMINSZ: return "SYMINSZ";
1679 case DT_SYMINENT: return "SYMINENT"; /* aka VALRNGHI */
1680
1681 case DT_ADDRRNGLO: return "ADDRRNGLO";
1682 case DT_CONFIG: return "CONFIG";
1683 case DT_DEPAUDIT: return "DEPAUDIT";
1684 case DT_AUDIT: return "AUDIT";
1685 case DT_PLTPAD: return "PLTPAD";
1686 case DT_MOVETAB: return "MOVETAB";
1687 case DT_SYMINFO: return "SYMINFO"; /* aka ADDRRNGHI */
1688
1689 case DT_VERSYM: return "VERSYM";
1690
1691 case DT_TLSDESC_GOT: return "TLSDESC_GOT";
1692 case DT_TLSDESC_PLT: return "TLSDESC_PLT";
1693 case DT_RELACOUNT: return "RELACOUNT";
1694 case DT_RELCOUNT: return "RELCOUNT";
1695 case DT_FLAGS_1: return "FLAGS_1";
1696 case DT_VERDEF: return "VERDEF";
1697 case DT_VERDEFNUM: return "VERDEFNUM";
1698 case DT_VERNEED: return "VERNEED";
1699 case DT_VERNEEDNUM: return "VERNEEDNUM";
1700
1701 case DT_AUXILIARY: return "AUXILIARY";
1702 case DT_USED: return "USED";
1703 case DT_FILTER: return "FILTER";
1704
1705 case DT_GNU_PRELINKED: return "GNU_PRELINKED";
1706 case DT_GNU_CONFLICT: return "GNU_CONFLICT";
1707 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
1708 case DT_GNU_LIBLIST: return "GNU_LIBLIST";
1709 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
1710 case DT_GNU_HASH: return "GNU_HASH";
1711
1712 default:
1713 if ((type >= DT_LOPROC) && (type <= DT_HIPROC))
1714 {
1715 const char * result;
1716
1717 switch (elf_header.e_machine)
1718 {
1719 case EM_MIPS:
1720 case EM_MIPS_RS3_LE:
1721 result = get_mips_dynamic_type (type);
1722 break;
1723 case EM_SPARCV9:
1724 result = get_sparc64_dynamic_type (type);
1725 break;
1726 case EM_PPC:
1727 result = get_ppc_dynamic_type (type);
1728 break;
1729 case EM_PPC64:
1730 result = get_ppc64_dynamic_type (type);
1731 break;
1732 case EM_IA_64:
1733 result = get_ia64_dynamic_type (type);
1734 break;
1735 case EM_ALPHA:
1736 result = get_alpha_dynamic_type (type);
1737 break;
1738 case EM_SCORE:
1739 result = get_score_dynamic_type (type);
1740 break;
1741 case EM_TI_C6000:
1742 result = get_tic6x_dynamic_type (type);
1743 break;
1744 default:
1745 result = NULL;
1746 break;
1747 }
1748
1749 if (result != NULL)
1750 return result;
1751
1752 snprintf (buff, sizeof (buff), _("Processor Specific: %lx"), type);
1753 }
1754 else if (((type >= DT_LOOS) && (type <= DT_HIOS))
1755 || (elf_header.e_machine == EM_PARISC
1756 && (type >= OLD_DT_LOOS) && (type <= OLD_DT_HIOS)))
1757 {
1758 const char * result;
1759
1760 switch (elf_header.e_machine)
1761 {
1762 case EM_PARISC:
1763 result = get_parisc_dynamic_type (type);
1764 break;
1765 case EM_IA_64:
1766 result = get_ia64_dynamic_type (type);
1767 break;
1768 default:
1769 result = NULL;
1770 break;
1771 }
1772
1773 if (result != NULL)
1774 return result;
1775
1776 snprintf (buff, sizeof (buff), _("Operating System specific: %lx"),
1777 type);
1778 }
1779 else
1780 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), type);
1781
1782 return buff;
1783 }
1784 }
1785
1786 static char *
1787 get_file_type (unsigned e_type)
1788 {
1789 static char buff[32];
1790
1791 switch (e_type)
1792 {
1793 case ET_NONE: return _("NONE (None)");
1794 case ET_REL: return _("REL (Relocatable file)");
1795 case ET_EXEC: return _("EXEC (Executable file)");
1796 case ET_DYN: return _("DYN (Shared object file)");
1797 case ET_CORE: return _("CORE (Core file)");
1798
1799 default:
1800 if ((e_type >= ET_LOPROC) && (e_type <= ET_HIPROC))
1801 snprintf (buff, sizeof (buff), _("Processor Specific: (%x)"), e_type);
1802 else if ((e_type >= ET_LOOS) && (e_type <= ET_HIOS))
1803 snprintf (buff, sizeof (buff), _("OS Specific: (%x)"), e_type);
1804 else
1805 snprintf (buff, sizeof (buff), _("<unknown>: %x"), e_type);
1806 return buff;
1807 }
1808 }
1809
1810 static char *
1811 get_machine_name (unsigned e_machine)
1812 {
1813 static char buff[64]; /* XXX */
1814
1815 switch (e_machine)
1816 {
1817 case EM_NONE: return _("None");
1818 case EM_M32: return "WE32100";
1819 case EM_SPARC: return "Sparc";
1820 case EM_SPU: return "SPU";
1821 case EM_386: return "Intel 80386";
1822 case EM_68K: return "MC68000";
1823 case EM_88K: return "MC88000";
1824 case EM_486: return "Intel 80486";
1825 case EM_860: return "Intel 80860";
1826 case EM_MIPS: return "MIPS R3000";
1827 case EM_S370: return "IBM System/370";
1828 case EM_MIPS_RS3_LE: return "MIPS R4000 big-endian";
1829 case EM_OLD_SPARCV9: return "Sparc v9 (old)";
1830 case EM_PARISC: return "HPPA";
1831 case EM_PPC_OLD: return "Power PC (old)";
1832 case EM_SPARC32PLUS: return "Sparc v8+" ;
1833 case EM_960: return "Intel 90860";
1834 case EM_PPC: return "PowerPC";
1835 case EM_PPC64: return "PowerPC64";
1836 case EM_V800: return "NEC V800";
1837 case EM_FR20: return "Fujitsu FR20";
1838 case EM_RH32: return "TRW RH32";
1839 case EM_MCORE: return "MCORE";
1840 case EM_ARM: return "ARM";
1841 case EM_OLD_ALPHA: return "Digital Alpha (old)";
1842 case EM_SH: return "Renesas / SuperH SH";
1843 case EM_SPARCV9: return "Sparc v9";
1844 case EM_TRICORE: return "Siemens Tricore";
1845 case EM_ARC: return "ARC";
1846 case EM_H8_300: return "Renesas H8/300";
1847 case EM_H8_300H: return "Renesas H8/300H";
1848 case EM_H8S: return "Renesas H8S";
1849 case EM_H8_500: return "Renesas H8/500";
1850 case EM_IA_64: return "Intel IA-64";
1851 case EM_MIPS_X: return "Stanford MIPS-X";
1852 case EM_COLDFIRE: return "Motorola Coldfire";
1853 case EM_68HC12: return "Motorola M68HC12";
1854 case EM_ALPHA: return "Alpha";
1855 case EM_CYGNUS_D10V:
1856 case EM_D10V: return "d10v";
1857 case EM_CYGNUS_D30V:
1858 case EM_D30V: return "d30v";
1859 case EM_CYGNUS_M32R:
1860 case EM_M32R: return "Renesas M32R (formerly Mitsubishi M32r)";
1861 case EM_CYGNUS_V850:
1862 case EM_V850: return "Renesas v850";
1863 case EM_CYGNUS_MN10300:
1864 case EM_MN10300: return "mn10300";
1865 case EM_CYGNUS_MN10200:
1866 case EM_MN10200: return "mn10200";
1867 case EM_MOXIE: return "Moxie";
1868 case EM_CYGNUS_FR30:
1869 case EM_FR30: return "Fujitsu FR30";
1870 case EM_CYGNUS_FRV: return "Fujitsu FR-V";
1871 case EM_PJ_OLD:
1872 case EM_PJ: return "picoJava";
1873 case EM_MMA: return "Fujitsu Multimedia Accelerator";
1874 case EM_PCP: return "Siemens PCP";
1875 case EM_NCPU: return "Sony nCPU embedded RISC processor";
1876 case EM_NDR1: return "Denso NDR1 microprocesspr";
1877 case EM_STARCORE: return "Motorola Star*Core processor";
1878 case EM_ME16: return "Toyota ME16 processor";
1879 case EM_ST100: return "STMicroelectronics ST100 processor";
1880 case EM_TINYJ: return "Advanced Logic Corp. TinyJ embedded processor";
1881 case EM_PDSP: return "Sony DSP processor";
1882 case EM_PDP10: return "Digital Equipment Corp. PDP-10";
1883 case EM_PDP11: return "Digital Equipment Corp. PDP-11";
1884 case EM_FX66: return "Siemens FX66 microcontroller";
1885 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 bit microcontroller";
1886 case EM_ST7: return "STMicroelectronics ST7 8-bit microcontroller";
1887 case EM_68HC16: return "Motorola MC68HC16 Microcontroller";
1888 case EM_68HC11: return "Motorola MC68HC11 Microcontroller";
1889 case EM_68HC08: return "Motorola MC68HC08 Microcontroller";
1890 case EM_68HC05: return "Motorola MC68HC05 Microcontroller";
1891 case EM_SVX: return "Silicon Graphics SVx";
1892 case EM_ST19: return "STMicroelectronics ST19 8-bit microcontroller";
1893 case EM_VAX: return "Digital VAX";
1894 case EM_AVR_OLD:
1895 case EM_AVR: return "Atmel AVR 8-bit microcontroller";
1896 case EM_CRIS: return "Axis Communications 32-bit embedded processor";
1897 case EM_JAVELIN: return "Infineon Technologies 32-bit embedded cpu";
1898 case EM_FIREPATH: return "Element 14 64-bit DSP processor";
1899 case EM_ZSP: return "LSI Logic's 16-bit DSP processor";
1900 case EM_MMIX: return "Donald Knuth's educational 64-bit processor";
1901 case EM_HUANY: return "Harvard Universitys's machine-independent object format";
1902 case EM_PRISM: return "Vitesse Prism";
1903 case EM_X86_64: return "Advanced Micro Devices X86-64";
1904 case EM_L1OM: return "Intel L1OM";
1905 case EM_K1OM: return "Intel K1OM";
1906 case EM_S390_OLD:
1907 case EM_S390: return "IBM S/390";
1908 case EM_SCORE: return "SUNPLUS S+Core";
1909 case EM_XSTORMY16: return "Sanyo XStormy16 CPU core";
1910 case EM_OPENRISC:
1911 case EM_OR32: return "OpenRISC";
1912 case EM_ARC_A5: return "ARC International ARCompact processor";
1913 case EM_CRX: return "National Semiconductor CRX microprocessor";
1914 case EM_DLX: return "OpenDLX";
1915 case EM_IP2K_OLD:
1916 case EM_IP2K: return "Ubicom IP2xxx 8-bit microcontrollers";
1917 case EM_IQ2000: return "Vitesse IQ2000";
1918 case EM_XTENSA_OLD:
1919 case EM_XTENSA: return "Tensilica Xtensa Processor";
1920 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor";
1921 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor";
1922 case EM_NS32K: return "National Semiconductor 32000 series";
1923 case EM_TPC: return "Tenor Network TPC processor";
1924 case EM_ST200: return "STMicroelectronics ST200 microcontroller";
1925 case EM_MAX: return "MAX Processor";
1926 case EM_CR: return "National Semiconductor CompactRISC";
1927 case EM_F2MC16: return "Fujitsu F2MC16";
1928 case EM_MSP430: return "Texas Instruments msp430 microcontroller";
1929 case EM_LATTICEMICO32: return "Lattice Mico32";
1930 case EM_M32C_OLD:
1931 case EM_M32C: return "Renesas M32c";
1932 case EM_MT: return "Morpho Techologies MT processor";
1933 case EM_BLACKFIN: return "Analog Devices Blackfin";
1934 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors";
1935 case EM_SEP: return "Sharp embedded microprocessor";
1936 case EM_ARCA: return "Arca RISC microprocessor";
1937 case EM_UNICORE: return "Unicore";
1938 case EM_EXCESS: return "eXcess 16/32/64-bit configurable embedded CPU";
1939 case EM_DXP: return "Icera Semiconductor Inc. Deep Execution Processor";
1940 case EM_NIOS32: return "Altera Nios";
1941 case EM_ALTERA_NIOS2: return "Altera Nios II";
1942 case EM_C166:
1943 case EM_XC16X: return "Infineon Technologies xc16x";
1944 case EM_M16C: return "Renesas M16C series microprocessors";
1945 case EM_DSPIC30F: return "Microchip Technology dsPIC30F Digital Signal Controller";
1946 case EM_CE: return "Freescale Communication Engine RISC core";
1947 case EM_TSK3000: return "Altium TSK3000 core";
1948 case EM_RS08: return "Freescale RS08 embedded processor";
1949 case EM_ECOG2: return "Cyan Technology eCOG2 microprocessor";
1950 case EM_DSP24: return "New Japan Radio (NJR) 24-bit DSP Processor";
1951 case EM_VIDEOCORE3: return "Broadcom VideoCore III processor";
1952 case EM_SE_C17: return "Seiko Epson C17 family";
1953 case EM_TI_C6000: return "Texas Instruments TMS320C6000 DSP family";
1954 case EM_TI_C2000: return "Texas Instruments TMS320C2000 DSP family";
1955 case EM_TI_C5500: return "Texas Instruments TMS320C55x DSP family";
1956 case EM_MMDSP_PLUS: return "STMicroelectronics 64bit VLIW Data Signal Processor";
1957 case EM_CYPRESS_M8C: return "Cypress M8C microprocessor";
1958 case EM_R32C: return "Renesas R32C series microprocessors";
1959 case EM_TRIMEDIA: return "NXP Semiconductors TriMedia architecture family";
1960 case EM_QDSP6: return "QUALCOMM DSP6 Processor";
1961 case EM_8051: return "Intel 8051 and variants";
1962 case EM_STXP7X: return "STMicroelectronics STxP7x family";
1963 case EM_NDS32: return "Andes Technology compact code size embedded RISC processor family";
1964 case EM_ECOG1X: return "Cyan Technology eCOG1X family";
1965 case EM_MAXQ30: return "Dallas Semiconductor MAXQ30 Core microcontrollers";
1966 case EM_XIMO16: return "New Japan Radio (NJR) 16-bit DSP Processor";
1967 case EM_MANIK: return "M2000 Reconfigurable RISC Microprocessor";
1968 case EM_CRAYNV2: return "Cray Inc. NV2 vector architecture";
1969 case EM_CYGNUS_MEP: return "Toshiba MeP Media Engine";
1970 case EM_CR16:
1971 case EM_CR16_OLD: return "National Semiconductor's CR16";
1972 case EM_MICROBLAZE: return "Xilinx MicroBlaze";
1973 case EM_MICROBLAZE_OLD: return "Xilinx MicroBlaze";
1974 case EM_RX: return "Renesas RX";
1975 case EM_METAG: return "Imagination Technologies META processor architecture";
1976 case EM_MCST_ELBRUS: return "MCST Elbrus general purpose hardware architecture";
1977 case EM_ECOG16: return "Cyan Technology eCOG16 family";
1978 case EM_ETPU: return "Freescale Extended Time Processing Unit";
1979 case EM_SLE9X: return "Infineon Technologies SLE9X core";
1980 case EM_AVR32: return "Atmel Corporation 32-bit microprocessor family";
1981 case EM_STM8: return "STMicroeletronics STM8 8-bit microcontroller";
1982 case EM_TILE64: return "Tilera TILE64 multicore architecture family";
1983 case EM_TILEPRO: return "Tilera TILEPro multicore architecture family";
1984 case EM_TILEGX: return "Tilera TILE-Gx multicore architecture family";
1985 case EM_CUDA: return "NVIDIA CUDA architecture";
1986 default:
1987 snprintf (buff, sizeof (buff), _("<unknown>: 0x%x"), e_machine);
1988 return buff;
1989 }
1990 }
1991
1992 static void
1993 decode_ARM_machine_flags (unsigned e_flags, char buf[])
1994 {
1995 unsigned eabi;
1996 int unknown = 0;
1997
1998 eabi = EF_ARM_EABI_VERSION (e_flags);
1999 e_flags &= ~ EF_ARM_EABIMASK;
2000
2001 /* Handle "generic" ARM flags. */
2002 if (e_flags & EF_ARM_RELEXEC)
2003 {
2004 strcat (buf, ", relocatable executable");
2005 e_flags &= ~ EF_ARM_RELEXEC;
2006 }
2007
2008 if (e_flags & EF_ARM_HASENTRY)
2009 {
2010 strcat (buf, ", has entry point");
2011 e_flags &= ~ EF_ARM_HASENTRY;
2012 }
2013
2014 /* Now handle EABI specific flags. */
2015 switch (eabi)
2016 {
2017 default:
2018 strcat (buf, ", <unrecognized EABI>");
2019 if (e_flags)
2020 unknown = 1;
2021 break;
2022
2023 case EF_ARM_EABI_VER1:
2024 strcat (buf, ", Version1 EABI");
2025 while (e_flags)
2026 {
2027 unsigned flag;
2028
2029 /* Process flags one bit at a time. */
2030 flag = e_flags & - e_flags;
2031 e_flags &= ~ flag;
2032
2033 switch (flag)
2034 {
2035 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2036 strcat (buf, ", sorted symbol tables");
2037 break;
2038
2039 default:
2040 unknown = 1;
2041 break;
2042 }
2043 }
2044 break;
2045
2046 case EF_ARM_EABI_VER2:
2047 strcat (buf, ", Version2 EABI");
2048 while (e_flags)
2049 {
2050 unsigned flag;
2051
2052 /* Process flags one bit at a time. */
2053 flag = e_flags & - e_flags;
2054 e_flags &= ~ flag;
2055
2056 switch (flag)
2057 {
2058 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2059 strcat (buf, ", sorted symbol tables");
2060 break;
2061
2062 case EF_ARM_DYNSYMSUSESEGIDX:
2063 strcat (buf, ", dynamic symbols use segment index");
2064 break;
2065
2066 case EF_ARM_MAPSYMSFIRST:
2067 strcat (buf, ", mapping symbols precede others");
2068 break;
2069
2070 default:
2071 unknown = 1;
2072 break;
2073 }
2074 }
2075 break;
2076
2077 case EF_ARM_EABI_VER3:
2078 strcat (buf, ", Version3 EABI");
2079 break;
2080
2081 case EF_ARM_EABI_VER4:
2082 strcat (buf, ", Version4 EABI");
2083 goto eabi;
2084
2085 case EF_ARM_EABI_VER5:
2086 strcat (buf, ", Version5 EABI");
2087 eabi:
2088 while (e_flags)
2089 {
2090 unsigned flag;
2091
2092 /* Process flags one bit at a time. */
2093 flag = e_flags & - e_flags;
2094 e_flags &= ~ flag;
2095
2096 switch (flag)
2097 {
2098 case EF_ARM_BE8:
2099 strcat (buf, ", BE8");
2100 break;
2101
2102 case EF_ARM_LE8:
2103 strcat (buf, ", LE8");
2104 break;
2105
2106 default:
2107 unknown = 1;
2108 break;
2109 }
2110 }
2111 break;
2112
2113 case EF_ARM_EABI_UNKNOWN:
2114 strcat (buf, ", GNU EABI");
2115 while (e_flags)
2116 {
2117 unsigned flag;
2118
2119 /* Process flags one bit at a time. */
2120 flag = e_flags & - e_flags;
2121 e_flags &= ~ flag;
2122
2123 switch (flag)
2124 {
2125 case EF_ARM_INTERWORK:
2126 strcat (buf, ", interworking enabled");
2127 break;
2128
2129 case EF_ARM_APCS_26:
2130 strcat (buf, ", uses APCS/26");
2131 break;
2132
2133 case EF_ARM_APCS_FLOAT:
2134 strcat (buf, ", uses APCS/float");
2135 break;
2136
2137 case EF_ARM_PIC:
2138 strcat (buf, ", position independent");
2139 break;
2140
2141 case EF_ARM_ALIGN8:
2142 strcat (buf, ", 8 bit structure alignment");
2143 break;
2144
2145 case EF_ARM_NEW_ABI:
2146 strcat (buf, ", uses new ABI");
2147 break;
2148
2149 case EF_ARM_OLD_ABI:
2150 strcat (buf, ", uses old ABI");
2151 break;
2152
2153 case EF_ARM_SOFT_FLOAT:
2154 strcat (buf, ", software FP");
2155 break;
2156
2157 case EF_ARM_VFP_FLOAT:
2158 strcat (buf, ", VFP");
2159 break;
2160
2161 case EF_ARM_MAVERICK_FLOAT:
2162 strcat (buf, ", Maverick FP");
2163 break;
2164
2165 default:
2166 unknown = 1;
2167 break;
2168 }
2169 }
2170 }
2171
2172 if (unknown)
2173 strcat (buf,_(", <unknown>"));
2174 }
2175
2176 static char *
2177 get_machine_flags (unsigned e_flags, unsigned e_machine)
2178 {
2179 static char buf[1024];
2180
2181 buf[0] = '\0';
2182
2183 if (e_flags)
2184 {
2185 switch (e_machine)
2186 {
2187 default:
2188 break;
2189
2190 case EM_ARM:
2191 decode_ARM_machine_flags (e_flags, buf);
2192 break;
2193
2194 case EM_BLACKFIN:
2195 if (e_flags & EF_BFIN_PIC)
2196 strcat (buf, ", PIC");
2197
2198 if (e_flags & EF_BFIN_FDPIC)
2199 strcat (buf, ", FDPIC");
2200
2201 if (e_flags & EF_BFIN_CODE_IN_L1)
2202 strcat (buf, ", code in L1");
2203
2204 if (e_flags & EF_BFIN_DATA_IN_L1)
2205 strcat (buf, ", data in L1");
2206
2207 break;
2208
2209 case EM_CYGNUS_FRV:
2210 switch (e_flags & EF_FRV_CPU_MASK)
2211 {
2212 case EF_FRV_CPU_GENERIC:
2213 break;
2214
2215 default:
2216 strcat (buf, ", fr???");
2217 break;
2218
2219 case EF_FRV_CPU_FR300:
2220 strcat (buf, ", fr300");
2221 break;
2222
2223 case EF_FRV_CPU_FR400:
2224 strcat (buf, ", fr400");
2225 break;
2226 case EF_FRV_CPU_FR405:
2227 strcat (buf, ", fr405");
2228 break;
2229
2230 case EF_FRV_CPU_FR450:
2231 strcat (buf, ", fr450");
2232 break;
2233
2234 case EF_FRV_CPU_FR500:
2235 strcat (buf, ", fr500");
2236 break;
2237 case EF_FRV_CPU_FR550:
2238 strcat (buf, ", fr550");
2239 break;
2240
2241 case EF_FRV_CPU_SIMPLE:
2242 strcat (buf, ", simple");
2243 break;
2244 case EF_FRV_CPU_TOMCAT:
2245 strcat (buf, ", tomcat");
2246 break;
2247 }
2248 break;
2249
2250 case EM_68K:
2251 if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
2252 strcat (buf, ", m68000");
2253 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
2254 strcat (buf, ", cpu32");
2255 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
2256 strcat (buf, ", fido_a");
2257 else
2258 {
2259 char const * isa = _("unknown");
2260 char const * mac = _("unknown mac");
2261 char const * additional = NULL;
2262
2263 switch (e_flags & EF_M68K_CF_ISA_MASK)
2264 {
2265 case EF_M68K_CF_ISA_A_NODIV:
2266 isa = "A";
2267 additional = ", nodiv";
2268 break;
2269 case EF_M68K_CF_ISA_A:
2270 isa = "A";
2271 break;
2272 case EF_M68K_CF_ISA_A_PLUS:
2273 isa = "A+";
2274 break;
2275 case EF_M68K_CF_ISA_B_NOUSP:
2276 isa = "B";
2277 additional = ", nousp";
2278 break;
2279 case EF_M68K_CF_ISA_B:
2280 isa = "B";
2281 break;
2282 case EF_M68K_CF_ISA_C:
2283 isa = "C";
2284 break;
2285 case EF_M68K_CF_ISA_C_NODIV:
2286 isa = "C";
2287 additional = ", nodiv";
2288 break;
2289 }
2290 strcat (buf, ", cf, isa ");
2291 strcat (buf, isa);
2292 if (additional)
2293 strcat (buf, additional);
2294 if (e_flags & EF_M68K_CF_FLOAT)
2295 strcat (buf, ", float");
2296 switch (e_flags & EF_M68K_CF_MAC_MASK)
2297 {
2298 case 0:
2299 mac = NULL;
2300 break;
2301 case EF_M68K_CF_MAC:
2302 mac = "mac";
2303 break;
2304 case EF_M68K_CF_EMAC:
2305 mac = "emac";
2306 break;
2307 case EF_M68K_CF_EMAC_B:
2308 mac = "emac_b";
2309 break;
2310 }
2311 if (mac)
2312 {
2313 strcat (buf, ", ");
2314 strcat (buf, mac);
2315 }
2316 }
2317 break;
2318
2319 case EM_PPC:
2320 if (e_flags & EF_PPC_EMB)
2321 strcat (buf, ", emb");
2322
2323 if (e_flags & EF_PPC_RELOCATABLE)
2324 strcat (buf, _(", relocatable"));
2325
2326 if (e_flags & EF_PPC_RELOCATABLE_LIB)
2327 strcat (buf, _(", relocatable-lib"));
2328 break;
2329
2330 case EM_V850:
2331 case EM_CYGNUS_V850:
2332 switch (e_flags & EF_V850_ARCH)
2333 {
2334 case E_V850E2V3_ARCH:
2335 strcat (buf, ", v850e2v3");
2336 break;
2337 case E_V850E2_ARCH:
2338 strcat (buf, ", v850e2");
2339 break;
2340 case E_V850E1_ARCH:
2341 strcat (buf, ", v850e1");
2342 break;
2343 case E_V850E_ARCH:
2344 strcat (buf, ", v850e");
2345 break;
2346 case E_V850_ARCH:
2347 strcat (buf, ", v850");
2348 break;
2349 default:
2350 strcat (buf, _(", unknown v850 architecture variant"));
2351 break;
2352 }
2353 break;
2354
2355 case EM_M32R:
2356 case EM_CYGNUS_M32R:
2357 if ((e_flags & EF_M32R_ARCH) == E_M32R_ARCH)
2358 strcat (buf, ", m32r");
2359 break;
2360
2361 case EM_MIPS:
2362 case EM_MIPS_RS3_LE:
2363 if (e_flags & EF_MIPS_NOREORDER)
2364 strcat (buf, ", noreorder");
2365
2366 if (e_flags & EF_MIPS_PIC)
2367 strcat (buf, ", pic");
2368
2369 if (e_flags & EF_MIPS_CPIC)
2370 strcat (buf, ", cpic");
2371
2372 if (e_flags & EF_MIPS_UCODE)
2373 strcat (buf, ", ugen_reserved");
2374
2375 if (e_flags & EF_MIPS_ABI2)
2376 strcat (buf, ", abi2");
2377
2378 if (e_flags & EF_MIPS_OPTIONS_FIRST)
2379 strcat (buf, ", odk first");
2380
2381 if (e_flags & EF_MIPS_32BITMODE)
2382 strcat (buf, ", 32bitmode");
2383
2384 switch ((e_flags & EF_MIPS_MACH))
2385 {
2386 case E_MIPS_MACH_3900: strcat (buf, ", 3900"); break;
2387 case E_MIPS_MACH_4010: strcat (buf, ", 4010"); break;
2388 case E_MIPS_MACH_4100: strcat (buf, ", 4100"); break;
2389 case E_MIPS_MACH_4111: strcat (buf, ", 4111"); break;
2390 case E_MIPS_MACH_4120: strcat (buf, ", 4120"); break;
2391 case E_MIPS_MACH_4650: strcat (buf, ", 4650"); break;
2392 case E_MIPS_MACH_5400: strcat (buf, ", 5400"); break;
2393 case E_MIPS_MACH_5500: strcat (buf, ", 5500"); break;
2394 case E_MIPS_MACH_SB1: strcat (buf, ", sb1"); break;
2395 case E_MIPS_MACH_9000: strcat (buf, ", 9000"); break;
2396 case E_MIPS_MACH_LS2E: strcat (buf, ", loongson-2e"); break;
2397 case E_MIPS_MACH_LS2F: strcat (buf, ", loongson-2f"); break;
2398 case E_MIPS_MACH_LS3A: strcat (buf, ", loongson-3a"); break;
2399 case E_MIPS_MACH_OCTEON: strcat (buf, ", octeon"); break;
2400 case E_MIPS_MACH_OCTEON2: strcat (buf, ", octeon2"); break;
2401 case E_MIPS_MACH_XLR: strcat (buf, ", xlr"); break;
2402 case 0:
2403 /* We simply ignore the field in this case to avoid confusion:
2404 MIPS ELF does not specify EF_MIPS_MACH, it is a GNU
2405 extension. */
2406 break;
2407 default: strcat (buf, _(", unknown CPU")); break;
2408 }
2409
2410 switch ((e_flags & EF_MIPS_ABI))
2411 {
2412 case E_MIPS_ABI_O32: strcat (buf, ", o32"); break;
2413 case E_MIPS_ABI_O64: strcat (buf, ", o64"); break;
2414 case E_MIPS_ABI_EABI32: strcat (buf, ", eabi32"); break;
2415 case E_MIPS_ABI_EABI64: strcat (buf, ", eabi64"); break;
2416 case 0:
2417 /* We simply ignore the field in this case to avoid confusion:
2418 MIPS ELF does not specify EF_MIPS_ABI, it is a GNU extension.
2419 This means it is likely to be an o32 file, but not for
2420 sure. */
2421 break;
2422 default: strcat (buf, _(", unknown ABI")); break;
2423 }
2424
2425 if (e_flags & EF_MIPS_ARCH_ASE_MDMX)
2426 strcat (buf, ", mdmx");
2427
2428 if (e_flags & EF_MIPS_ARCH_ASE_M16)
2429 strcat (buf, ", mips16");
2430
2431 if (e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
2432 strcat (buf, ", micromips");
2433
2434 switch ((e_flags & EF_MIPS_ARCH))
2435 {
2436 case E_MIPS_ARCH_1: strcat (buf, ", mips1"); break;
2437 case E_MIPS_ARCH_2: strcat (buf, ", mips2"); break;
2438 case E_MIPS_ARCH_3: strcat (buf, ", mips3"); break;
2439 case E_MIPS_ARCH_4: strcat (buf, ", mips4"); break;
2440 case E_MIPS_ARCH_5: strcat (buf, ", mips5"); break;
2441 case E_MIPS_ARCH_32: strcat (buf, ", mips32"); break;
2442 case E_MIPS_ARCH_32R2: strcat (buf, ", mips32r2"); break;
2443 case E_MIPS_ARCH_64: strcat (buf, ", mips64"); break;
2444 case E_MIPS_ARCH_64R2: strcat (buf, ", mips64r2"); break;
2445 default: strcat (buf, _(", unknown ISA")); break;
2446 }
2447
2448 if (e_flags & EF_SH_PIC)
2449 strcat (buf, ", pic");
2450
2451 if (e_flags & EF_SH_FDPIC)
2452 strcat (buf, ", fdpic");
2453 break;
2454
2455 case EM_SH:
2456 switch ((e_flags & EF_SH_MACH_MASK))
2457 {
2458 case EF_SH1: strcat (buf, ", sh1"); break;
2459 case EF_SH2: strcat (buf, ", sh2"); break;
2460 case EF_SH3: strcat (buf, ", sh3"); break;
2461 case EF_SH_DSP: strcat (buf, ", sh-dsp"); break;
2462 case EF_SH3_DSP: strcat (buf, ", sh3-dsp"); break;
2463 case EF_SH4AL_DSP: strcat (buf, ", sh4al-dsp"); break;
2464 case EF_SH3E: strcat (buf, ", sh3e"); break;
2465 case EF_SH4: strcat (buf, ", sh4"); break;
2466 case EF_SH5: strcat (buf, ", sh5"); break;
2467 case EF_SH2E: strcat (buf, ", sh2e"); break;
2468 case EF_SH4A: strcat (buf, ", sh4a"); break;
2469 case EF_SH2A: strcat (buf, ", sh2a"); break;
2470 case EF_SH4_NOFPU: strcat (buf, ", sh4-nofpu"); break;
2471 case EF_SH4A_NOFPU: strcat (buf, ", sh4a-nofpu"); break;
2472 case EF_SH2A_NOFPU: strcat (buf, ", sh2a-nofpu"); break;
2473 case EF_SH3_NOMMU: strcat (buf, ", sh3-nommu"); break;
2474 case EF_SH4_NOMMU_NOFPU: strcat (buf, ", sh4-nommu-nofpu"); break;
2475 case EF_SH2A_SH4_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh4-nommu-nofpu"); break;
2476 case EF_SH2A_SH3_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh3-nommu"); break;
2477 case EF_SH2A_SH4: strcat (buf, ", sh2a-or-sh4"); break;
2478 case EF_SH2A_SH3E: strcat (buf, ", sh2a-or-sh3e"); break;
2479 default: strcat (buf, _(", unknown ISA")); break;
2480 }
2481
2482 break;
2483
2484 case EM_SPARCV9:
2485 if (e_flags & EF_SPARC_32PLUS)
2486 strcat (buf, ", v8+");
2487
2488 if (e_flags & EF_SPARC_SUN_US1)
2489 strcat (buf, ", ultrasparcI");
2490
2491 if (e_flags & EF_SPARC_SUN_US3)
2492 strcat (buf, ", ultrasparcIII");
2493
2494 if (e_flags & EF_SPARC_HAL_R1)
2495 strcat (buf, ", halr1");
2496
2497 if (e_flags & EF_SPARC_LEDATA)
2498 strcat (buf, ", ledata");
2499
2500 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_TSO)
2501 strcat (buf, ", tso");
2502
2503 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_PSO)
2504 strcat (buf, ", pso");
2505
2506 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_RMO)
2507 strcat (buf, ", rmo");
2508 break;
2509
2510 case EM_PARISC:
2511 switch (e_flags & EF_PARISC_ARCH)
2512 {
2513 case EFA_PARISC_1_0:
2514 strcpy (buf, ", PA-RISC 1.0");
2515 break;
2516 case EFA_PARISC_1_1:
2517 strcpy (buf, ", PA-RISC 1.1");
2518 break;
2519 case EFA_PARISC_2_0:
2520 strcpy (buf, ", PA-RISC 2.0");
2521 break;
2522 default:
2523 break;
2524 }
2525 if (e_flags & EF_PARISC_TRAPNIL)
2526 strcat (buf, ", trapnil");
2527 if (e_flags & EF_PARISC_EXT)
2528 strcat (buf, ", ext");
2529 if (e_flags & EF_PARISC_LSB)
2530 strcat (buf, ", lsb");
2531 if (e_flags & EF_PARISC_WIDE)
2532 strcat (buf, ", wide");
2533 if (e_flags & EF_PARISC_NO_KABP)
2534 strcat (buf, ", no kabp");
2535 if (e_flags & EF_PARISC_LAZYSWAP)
2536 strcat (buf, ", lazyswap");
2537 break;
2538
2539 case EM_PJ:
2540 case EM_PJ_OLD:
2541 if ((e_flags & EF_PICOJAVA_NEWCALLS) == EF_PICOJAVA_NEWCALLS)
2542 strcat (buf, ", new calling convention");
2543
2544 if ((e_flags & EF_PICOJAVA_GNUCALLS) == EF_PICOJAVA_GNUCALLS)
2545 strcat (buf, ", gnu calling convention");
2546 break;
2547
2548 case EM_IA_64:
2549 if ((e_flags & EF_IA_64_ABI64))
2550 strcat (buf, ", 64-bit");
2551 else
2552 strcat (buf, ", 32-bit");
2553 if ((e_flags & EF_IA_64_REDUCEDFP))
2554 strcat (buf, ", reduced fp model");
2555 if ((e_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
2556 strcat (buf, ", no function descriptors, constant gp");
2557 else if ((e_flags & EF_IA_64_CONS_GP))
2558 strcat (buf, ", constant gp");
2559 if ((e_flags & EF_IA_64_ABSOLUTE))
2560 strcat (buf, ", absolute");
2561 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
2562 {
2563 if ((e_flags & EF_IA_64_VMS_LINKAGES))
2564 strcat (buf, ", vms_linkages");
2565 switch ((e_flags & EF_IA_64_VMS_COMCOD))
2566 {
2567 case EF_IA_64_VMS_COMCOD_SUCCESS:
2568 break;
2569 case EF_IA_64_VMS_COMCOD_WARNING:
2570 strcat (buf, ", warning");
2571 break;
2572 case EF_IA_64_VMS_COMCOD_ERROR:
2573 strcat (buf, ", error");
2574 break;
2575 case EF_IA_64_VMS_COMCOD_ABORT:
2576 strcat (buf, ", abort");
2577 break;
2578 default:
2579 abort ();
2580 }
2581 }
2582 break;
2583
2584 case EM_VAX:
2585 if ((e_flags & EF_VAX_NONPIC))
2586 strcat (buf, ", non-PIC");
2587 if ((e_flags & EF_VAX_DFLOAT))
2588 strcat (buf, ", D-Float");
2589 if ((e_flags & EF_VAX_GFLOAT))
2590 strcat (buf, ", G-Float");
2591 break;
2592
2593 case EM_RX:
2594 if (e_flags & E_FLAG_RX_64BIT_DOUBLES)
2595 strcat (buf, ", 64-bit doubles");
2596 if (e_flags & E_FLAG_RX_DSP)
2597 strcat (buf, ", dsp");
2598 if (e_flags & E_FLAG_RX_PID)
2599 strcat (buf, ", pid");
2600 break;
2601
2602 case EM_S390:
2603 if (e_flags & EF_S390_HIGH_GPRS)
2604 strcat (buf, ", highgprs");
2605 break;
2606
2607 case EM_TI_C6000:
2608 if ((e_flags & EF_C6000_REL))
2609 strcat (buf, ", relocatable module");
2610 break;
2611 }
2612 }
2613
2614 return buf;
2615 }
2616
2617 static const char *
2618 get_osabi_name (unsigned int osabi)
2619 {
2620 static char buff[32];
2621
2622 switch (osabi)
2623 {
2624 case ELFOSABI_NONE: return "UNIX - System V";
2625 case ELFOSABI_HPUX: return "UNIX - HP-UX";
2626 case ELFOSABI_NETBSD: return "UNIX - NetBSD";
2627 case ELFOSABI_GNU: return "UNIX - GNU";
2628 case ELFOSABI_SOLARIS: return "UNIX - Solaris";
2629 case ELFOSABI_AIX: return "UNIX - AIX";
2630 case ELFOSABI_IRIX: return "UNIX - IRIX";
2631 case ELFOSABI_FREEBSD: return "UNIX - FreeBSD";
2632 case ELFOSABI_TRU64: return "UNIX - TRU64";
2633 case ELFOSABI_MODESTO: return "Novell - Modesto";
2634 case ELFOSABI_OPENBSD: return "UNIX - OpenBSD";
2635 case ELFOSABI_OPENVMS: return "VMS - OpenVMS";
2636 case ELFOSABI_NSK: return "HP - Non-Stop Kernel";
2637 case ELFOSABI_AROS: return "AROS";
2638 case ELFOSABI_FENIXOS: return "FenixOS";
2639 default:
2640 if (osabi >= 64)
2641 switch (elf_header.e_machine)
2642 {
2643 case EM_ARM:
2644 switch (osabi)
2645 {
2646 case ELFOSABI_ARM: return "ARM";
2647 default:
2648 break;
2649 }
2650 break;
2651
2652 case EM_MSP430:
2653 case EM_MSP430_OLD:
2654 switch (osabi)
2655 {
2656 case ELFOSABI_STANDALONE: return _("Standalone App");
2657 default:
2658 break;
2659 }
2660 break;
2661
2662 case EM_TI_C6000:
2663 switch (osabi)
2664 {
2665 case ELFOSABI_C6000_ELFABI: return _("Bare-metal C6000");
2666 case ELFOSABI_C6000_LINUX: return "Linux C6000";
2667 default:
2668 break;
2669 }
2670 break;
2671
2672 default:
2673 break;
2674 }
2675 snprintf (buff, sizeof (buff), _("<unknown: %x>"), osabi);
2676 return buff;
2677 }
2678 }
2679
2680 static const char *
2681 get_arm_segment_type (unsigned long type)
2682 {
2683 switch (type)
2684 {
2685 case PT_ARM_EXIDX:
2686 return "EXIDX";
2687 default:
2688 break;
2689 }
2690
2691 return NULL;
2692 }
2693
2694 static const char *
2695 get_mips_segment_type (unsigned long type)
2696 {
2697 switch (type)
2698 {
2699 case PT_MIPS_REGINFO:
2700 return "REGINFO";
2701 case PT_MIPS_RTPROC:
2702 return "RTPROC";
2703 case PT_MIPS_OPTIONS:
2704 return "OPTIONS";
2705 default:
2706 break;
2707 }
2708
2709 return NULL;
2710 }
2711
2712 static const char *
2713 get_parisc_segment_type (unsigned long type)
2714 {
2715 switch (type)
2716 {
2717 case PT_HP_TLS: return "HP_TLS";
2718 case PT_HP_CORE_NONE: return "HP_CORE_NONE";
2719 case PT_HP_CORE_VERSION: return "HP_CORE_VERSION";
2720 case PT_HP_CORE_KERNEL: return "HP_CORE_KERNEL";
2721 case PT_HP_CORE_COMM: return "HP_CORE_COMM";
2722 case PT_HP_CORE_PROC: return "HP_CORE_PROC";
2723 case PT_HP_CORE_LOADABLE: return "HP_CORE_LOADABLE";
2724 case PT_HP_CORE_STACK: return "HP_CORE_STACK";
2725 case PT_HP_CORE_SHM: return "HP_CORE_SHM";
2726 case PT_HP_CORE_MMF: return "HP_CORE_MMF";
2727 case PT_HP_PARALLEL: return "HP_PARALLEL";
2728 case PT_HP_FASTBIND: return "HP_FASTBIND";
2729 case PT_HP_OPT_ANNOT: return "HP_OPT_ANNOT";
2730 case PT_HP_HSL_ANNOT: return "HP_HSL_ANNOT";
2731 case PT_HP_STACK: return "HP_STACK";
2732 case PT_HP_CORE_UTSNAME: return "HP_CORE_UTSNAME";
2733 case PT_PARISC_ARCHEXT: return "PARISC_ARCHEXT";
2734 case PT_PARISC_UNWIND: return "PARISC_UNWIND";
2735 case PT_PARISC_WEAKORDER: return "PARISC_WEAKORDER";
2736 default:
2737 break;
2738 }
2739
2740 return NULL;
2741 }
2742
2743 static const char *
2744 get_ia64_segment_type (unsigned long type)
2745 {
2746 switch (type)
2747 {
2748 case PT_IA_64_ARCHEXT: return "IA_64_ARCHEXT";
2749 case PT_IA_64_UNWIND: return "IA_64_UNWIND";
2750 case PT_HP_TLS: return "HP_TLS";
2751 case PT_IA_64_HP_OPT_ANOT: return "HP_OPT_ANNOT";
2752 case PT_IA_64_HP_HSL_ANOT: return "HP_HSL_ANNOT";
2753 case PT_IA_64_HP_STACK: return "HP_STACK";
2754 default:
2755 break;
2756 }
2757
2758 return NULL;
2759 }
2760
2761 static const char *
2762 get_tic6x_segment_type (unsigned long type)
2763 {
2764 switch (type)
2765 {
2766 case PT_C6000_PHATTR: return "C6000_PHATTR";
2767 default:
2768 break;
2769 }
2770
2771 return NULL;
2772 }
2773
2774 static const char *
2775 get_segment_type (unsigned long p_type)
2776 {
2777 static char buff[32];
2778
2779 switch (p_type)
2780 {
2781 case PT_NULL: return "NULL";
2782 case PT_LOAD: return "LOAD";
2783 case PT_DYNAMIC: return "DYNAMIC";
2784 case PT_INTERP: return "INTERP";
2785 case PT_NOTE: return "NOTE";
2786 case PT_SHLIB: return "SHLIB";
2787 case PT_PHDR: return "PHDR";
2788 case PT_TLS: return "TLS";
2789
2790 case PT_GNU_EH_FRAME:
2791 return "GNU_EH_FRAME";
2792 case PT_GNU_STACK: return "GNU_STACK";
2793 case PT_GNU_RELRO: return "GNU_RELRO";
2794
2795 default:
2796 if ((p_type >= PT_LOPROC) && (p_type <= PT_HIPROC))
2797 {
2798 const char * result;
2799
2800 switch (elf_header.e_machine)
2801 {
2802 case EM_ARM:
2803 result = get_arm_segment_type (p_type);
2804 break;
2805 case EM_MIPS:
2806 case EM_MIPS_RS3_LE:
2807 result = get_mips_segment_type (p_type);
2808 break;
2809 case EM_PARISC:
2810 result = get_parisc_segment_type (p_type);
2811 break;
2812 case EM_IA_64:
2813 result = get_ia64_segment_type (p_type);
2814 break;
2815 case EM_TI_C6000:
2816 result = get_tic6x_segment_type (p_type);
2817 break;
2818 default:
2819 result = NULL;
2820 break;
2821 }
2822
2823 if (result != NULL)
2824 return result;
2825
2826 sprintf (buff, "LOPROC+%lx", p_type - PT_LOPROC);
2827 }
2828 else if ((p_type >= PT_LOOS) && (p_type <= PT_HIOS))
2829 {
2830 const char * result;
2831
2832 switch (elf_header.e_machine)
2833 {
2834 case EM_PARISC:
2835 result = get_parisc_segment_type (p_type);
2836 break;
2837 case EM_IA_64:
2838 result = get_ia64_segment_type (p_type);
2839 break;
2840 default:
2841 result = NULL;
2842 break;
2843 }
2844
2845 if (result != NULL)
2846 return result;
2847
2848 sprintf (buff, "LOOS+%lx", p_type - PT_LOOS);
2849 }
2850 else
2851 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), p_type);
2852
2853 return buff;
2854 }
2855 }
2856
2857 static const char *
2858 get_mips_section_type_name (unsigned int sh_type)
2859 {
2860 switch (sh_type)
2861 {
2862 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
2863 case SHT_MIPS_MSYM: return "MIPS_MSYM";
2864 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
2865 case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
2866 case SHT_MIPS_UCODE: return "MIPS_UCODE";
2867 case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
2868 case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
2869 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
2870 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
2871 case SHT_MIPS_RELD: return "MIPS_RELD";
2872 case SHT_MIPS_IFACE: return "MIPS_IFACE";
2873 case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
2874 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
2875 case SHT_MIPS_SHDR: return "MIPS_SHDR";
2876 case SHT_MIPS_FDESC: return "MIPS_FDESC";
2877 case SHT_MIPS_EXTSYM: return "MIPS_EXTSYM";
2878 case SHT_MIPS_DENSE: return "MIPS_DENSE";
2879 case SHT_MIPS_PDESC: return "MIPS_PDESC";
2880 case SHT_MIPS_LOCSYM: return "MIPS_LOCSYM";
2881 case SHT_MIPS_AUXSYM: return "MIPS_AUXSYM";
2882 case SHT_MIPS_OPTSYM: return "MIPS_OPTSYM";
2883 case SHT_MIPS_LOCSTR: return "MIPS_LOCSTR";
2884 case SHT_MIPS_LINE: return "MIPS_LINE";
2885 case SHT_MIPS_RFDESC: return "MIPS_RFDESC";
2886 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
2887 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
2888 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
2889 case SHT_MIPS_DWARF: return "MIPS_DWARF";
2890 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
2891 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
2892 case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
2893 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
2894 case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
2895 case SHT_MIPS_XLATE: return "MIPS_XLATE";
2896 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
2897 case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
2898 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
2899 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
2900 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
2901 default:
2902 break;
2903 }
2904 return NULL;
2905 }
2906
2907 static const char *
2908 get_parisc_section_type_name (unsigned int sh_type)
2909 {
2910 switch (sh_type)
2911 {
2912 case SHT_PARISC_EXT: return "PARISC_EXT";
2913 case SHT_PARISC_UNWIND: return "PARISC_UNWIND";
2914 case SHT_PARISC_DOC: return "PARISC_DOC";
2915 case SHT_PARISC_ANNOT: return "PARISC_ANNOT";
2916 case SHT_PARISC_SYMEXTN: return "PARISC_SYMEXTN";
2917 case SHT_PARISC_STUBS: return "PARISC_STUBS";
2918 case SHT_PARISC_DLKM: return "PARISC_DLKM";
2919 default:
2920 break;
2921 }
2922 return NULL;
2923 }
2924
2925 static const char *
2926 get_ia64_section_type_name (unsigned int sh_type)
2927 {
2928 /* If the top 8 bits are 0x78 the next 8 are the os/abi ID. */
2929 if ((sh_type & 0xFF000000) == SHT_IA_64_LOPSREG)
2930 return get_osabi_name ((sh_type & 0x00FF0000) >> 16);
2931
2932 switch (sh_type)
2933 {
2934 case SHT_IA_64_EXT: return "IA_64_EXT";
2935 case SHT_IA_64_UNWIND: return "IA_64_UNWIND";
2936 case SHT_IA_64_PRIORITY_INIT: return "IA_64_PRIORITY_INIT";
2937 case SHT_IA_64_VMS_TRACE: return "VMS_TRACE";
2938 case SHT_IA_64_VMS_TIE_SIGNATURES: return "VMS_TIE_SIGNATURES";
2939 case SHT_IA_64_VMS_DEBUG: return "VMS_DEBUG";
2940 case SHT_IA_64_VMS_DEBUG_STR: return "VMS_DEBUG_STR";
2941 case SHT_IA_64_VMS_LINKAGES: return "VMS_LINKAGES";
2942 case SHT_IA_64_VMS_SYMBOL_VECTOR: return "VMS_SYMBOL_VECTOR";
2943 case SHT_IA_64_VMS_FIXUP: return "VMS_FIXUP";
2944 default:
2945 break;
2946 }
2947 return NULL;
2948 }
2949
2950 static const char *
2951 get_x86_64_section_type_name (unsigned int sh_type)
2952 {
2953 switch (sh_type)
2954 {
2955 case SHT_X86_64_UNWIND: return "X86_64_UNWIND";
2956 default:
2957 break;
2958 }
2959 return NULL;
2960 }
2961
2962 static const char *
2963 get_arm_section_type_name (unsigned int sh_type)
2964 {
2965 switch (sh_type)
2966 {
2967 case SHT_ARM_EXIDX: return "ARM_EXIDX";
2968 case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP";
2969 case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES";
2970 case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY";
2971 case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION";
2972 default:
2973 break;
2974 }
2975 return NULL;
2976 }
2977
2978 static const char *
2979 get_tic6x_section_type_name (unsigned int sh_type)
2980 {
2981 switch (sh_type)
2982 {
2983 case SHT_C6000_UNWIND:
2984 return "C6000_UNWIND";
2985 case SHT_C6000_PREEMPTMAP:
2986 return "C6000_PREEMPTMAP";
2987 case SHT_C6000_ATTRIBUTES:
2988 return "C6000_ATTRIBUTES";
2989 case SHT_TI_ICODE:
2990 return "TI_ICODE";
2991 case SHT_TI_XREF:
2992 return "TI_XREF";
2993 case SHT_TI_HANDLER:
2994 return "TI_HANDLER";
2995 case SHT_TI_INITINFO:
2996 return "TI_INITINFO";
2997 case SHT_TI_PHATTRS:
2998 return "TI_PHATTRS";
2999 default:
3000 break;
3001 }
3002 return NULL;
3003 }
3004
3005 static const char *
3006 get_section_type_name (unsigned int sh_type)
3007 {
3008 static char buff[32];
3009
3010 switch (sh_type)
3011 {
3012 case SHT_NULL: return "NULL";
3013 case SHT_PROGBITS: return "PROGBITS";
3014 case SHT_SYMTAB: return "SYMTAB";
3015 case SHT_STRTAB: return "STRTAB";
3016 case SHT_RELA: return "RELA";
3017 case SHT_HASH: return "HASH";
3018 case SHT_DYNAMIC: return "DYNAMIC";
3019 case SHT_NOTE: return "NOTE";
3020 case SHT_NOBITS: return "NOBITS";
3021 case SHT_REL: return "REL";
3022 case SHT_SHLIB: return "SHLIB";
3023 case SHT_DYNSYM: return "DYNSYM";
3024 case SHT_INIT_ARRAY: return "INIT_ARRAY";
3025 case SHT_FINI_ARRAY: return "FINI_ARRAY";
3026 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
3027 case SHT_GNU_HASH: return "GNU_HASH";
3028 case SHT_GROUP: return "GROUP";
3029 case SHT_SYMTAB_SHNDX: return "SYMTAB SECTION INDICIES";
3030 case SHT_GNU_verdef: return "VERDEF";
3031 case SHT_GNU_verneed: return "VERNEED";
3032 case SHT_GNU_versym: return "VERSYM";
3033 case 0x6ffffff0: return "VERSYM";
3034 case 0x6ffffffc: return "VERDEF";
3035 case 0x7ffffffd: return "AUXILIARY";
3036 case 0x7fffffff: return "FILTER";
3037 case SHT_GNU_LIBLIST: return "GNU_LIBLIST";
3038
3039 default:
3040 if ((sh_type >= SHT_LOPROC) && (sh_type <= SHT_HIPROC))
3041 {
3042 const char * result;
3043
3044 switch (elf_header.e_machine)
3045 {
3046 case EM_MIPS:
3047 case EM_MIPS_RS3_LE:
3048 result = get_mips_section_type_name (sh_type);
3049 break;
3050 case EM_PARISC:
3051 result = get_parisc_section_type_name (sh_type);
3052 break;
3053 case EM_IA_64:
3054 result = get_ia64_section_type_name (sh_type);
3055 break;
3056 case EM_X86_64:
3057 case EM_L1OM:
3058 case EM_K1OM:
3059 result = get_x86_64_section_type_name (sh_type);
3060 break;
3061 case EM_ARM:
3062 result = get_arm_section_type_name (sh_type);
3063 break;
3064 case EM_TI_C6000:
3065 result = get_tic6x_section_type_name (sh_type);
3066 break;
3067 default:
3068 result = NULL;
3069 break;
3070 }
3071
3072 if (result != NULL)
3073 return result;
3074
3075 sprintf (buff, "LOPROC+%x", sh_type - SHT_LOPROC);
3076 }
3077 else if ((sh_type >= SHT_LOOS) && (sh_type <= SHT_HIOS))
3078 {
3079 const char * result;
3080
3081 switch (elf_header.e_machine)
3082 {
3083 case EM_IA_64:
3084 result = get_ia64_section_type_name (sh_type);
3085 break;
3086 default:
3087 result = NULL;
3088 break;
3089 }
3090
3091 if (result != NULL)
3092 return result;
3093
3094 sprintf (buff, "LOOS+%x", sh_type - SHT_LOOS);
3095 }
3096 else if ((sh_type >= SHT_LOUSER) && (sh_type <= SHT_HIUSER))
3097 sprintf (buff, "LOUSER+%x", sh_type - SHT_LOUSER);
3098 else
3099 /* This message is probably going to be displayed in a 15
3100 character wide field, so put the hex value first. */
3101 snprintf (buff, sizeof (buff), _("%08x: <unknown>"), sh_type);
3102
3103 return buff;
3104 }
3105 }
3106
3107 #define OPTION_DEBUG_DUMP 512
3108 #define OPTION_DYN_SYMS 513
3109 #define OPTION_DWARF_DEPTH 514
3110 #define OPTION_DWARF_START 515
3111
3112 static struct option options[] =
3113 {
3114 {"all", no_argument, 0, 'a'},
3115 {"file-header", no_argument, 0, 'h'},
3116 {"program-headers", no_argument, 0, 'l'},
3117 {"headers", no_argument, 0, 'e'},
3118 {"histogram", no_argument, 0, 'I'},
3119 {"segments", no_argument, 0, 'l'},
3120 {"sections", no_argument, 0, 'S'},
3121 {"section-headers", no_argument, 0, 'S'},
3122 {"section-groups", no_argument, 0, 'g'},
3123 {"section-details", no_argument, 0, 't'},
3124 {"full-section-name",no_argument, 0, 'N'},
3125 {"symbols", no_argument, 0, 's'},
3126 {"syms", no_argument, 0, 's'},
3127 {"dyn-syms", no_argument, 0, OPTION_DYN_SYMS},
3128 {"relocs", no_argument, 0, 'r'},
3129 {"notes", no_argument, 0, 'n'},
3130 {"dynamic", no_argument, 0, 'd'},
3131 {"arch-specific", no_argument, 0, 'A'},
3132 {"version-info", no_argument, 0, 'V'},
3133 {"use-dynamic", no_argument, 0, 'D'},
3134 {"unwind", no_argument, 0, 'u'},
3135 {"archive-index", no_argument, 0, 'c'},
3136 {"hex-dump", required_argument, 0, 'x'},
3137 {"relocated-dump", required_argument, 0, 'R'},
3138 {"string-dump", required_argument, 0, 'p'},
3139 #ifdef SUPPORT_DISASSEMBLY
3140 {"instruction-dump", required_argument, 0, 'i'},
3141 #endif
3142 {"debug-dump", optional_argument, 0, OPTION_DEBUG_DUMP},
3143
3144 {"dwarf-depth", required_argument, 0, OPTION_DWARF_DEPTH},
3145 {"dwarf-start", required_argument, 0, OPTION_DWARF_START},
3146
3147 {"version", no_argument, 0, 'v'},
3148 {"wide", no_argument, 0, 'W'},
3149 {"help", no_argument, 0, 'H'},
3150 {0, no_argument, 0, 0}
3151 };
3152
3153 static void
3154 usage (FILE * stream)
3155 {
3156 fprintf (stream, _("Usage: readelf <option(s)> elf-file(s)\n"));
3157 fprintf (stream, _(" Display information about the contents of ELF format files\n"));
3158 fprintf (stream, _(" Options are:\n\
3159 -a --all Equivalent to: -h -l -S -s -r -d -V -A -I\n\
3160 -h --file-header Display the ELF file header\n\
3161 -l --program-headers Display the program headers\n\
3162 --segments An alias for --program-headers\n\
3163 -S --section-headers Display the sections' header\n\
3164 --sections An alias for --section-headers\n\
3165 -g --section-groups Display the section groups\n\
3166 -t --section-details Display the section details\n\
3167 -e --headers Equivalent to: -h -l -S\n\
3168 -s --syms Display the symbol table\n\
3169 --symbols An alias for --syms\n\
3170 --dyn-syms Display the dynamic symbol table\n\
3171 -n --notes Display the core notes (if present)\n\
3172 -r --relocs Display the relocations (if present)\n\
3173 -u --unwind Display the unwind info (if present)\n\
3174 -d --dynamic Display the dynamic section (if present)\n\
3175 -V --version-info Display the version sections (if present)\n\
3176 -A --arch-specific Display architecture specific information (if any).\n\
3177 -c --archive-index Display the symbol/file index in an archive\n\
3178 -D --use-dynamic Use the dynamic section info when displaying symbols\n\
3179 -x --hex-dump=<number|name>\n\
3180 Dump the contents of section <number|name> as bytes\n\
3181 -p --string-dump=<number|name>\n\
3182 Dump the contents of section <number|name> as strings\n\
3183 -R --relocated-dump=<number|name>\n\
3184 Dump the contents of section <number|name> as relocated bytes\n\
3185 -w[lLiaprmfFsoRt] or\n\
3186 --debug-dump[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,\n\
3187 =frames-interp,=str,=loc,=Ranges,=pubtypes,\n\
3188 =gdb_index,=trace_info,=trace_abbrev,=trace_aranges]\n\
3189 Display the contents of DWARF2 debug sections\n"));
3190 fprintf (stream, _("\
3191 --dwarf-depth=N Do not display DIEs at depth N or greater\n\
3192 --dwarf-start=N Display DIEs starting with N, at the same depth\n\
3193 or deeper\n"));
3194 #ifdef SUPPORT_DISASSEMBLY
3195 fprintf (stream, _("\
3196 -i --instruction-dump=<number|name>\n\
3197 Disassemble the contents of section <number|name>\n"));
3198 #endif
3199 fprintf (stream, _("\
3200 -I --histogram Display histogram of bucket list lengths\n\
3201 -W --wide Allow output width to exceed 80 characters\n\
3202 @<file> Read options from <file>\n\
3203 -H --help Display this information\n\
3204 -v --version Display the version number of readelf\n"));
3205
3206 if (REPORT_BUGS_TO[0] && stream == stdout)
3207 fprintf (stdout, _("Report bugs to %s\n"), REPORT_BUGS_TO);
3208
3209 exit (stream == stdout ? 0 : 1);
3210 }
3211
3212 /* Record the fact that the user wants the contents of section number
3213 SECTION to be displayed using the method(s) encoded as flags bits
3214 in TYPE. Note, TYPE can be zero if we are creating the array for
3215 the first time. */
3216
3217 static void
3218 request_dump_bynumber (unsigned int section, dump_type type)
3219 {
3220 if (section >= num_dump_sects)
3221 {
3222 dump_type * new_dump_sects;
3223
3224 new_dump_sects = (dump_type *) calloc (section + 1,
3225 sizeof (* dump_sects));
3226
3227 if (new_dump_sects == NULL)
3228 error (_("Out of memory allocating dump request table.\n"));
3229 else
3230 {
3231 /* Copy current flag settings. */
3232 memcpy (new_dump_sects, dump_sects, num_dump_sects * sizeof (* dump_sects));
3233
3234 free (dump_sects);
3235
3236 dump_sects = new_dump_sects;
3237 num_dump_sects = section + 1;
3238 }
3239 }
3240
3241 if (dump_sects)
3242 dump_sects[section] |= type;
3243
3244 return;
3245 }
3246
3247 /* Request a dump by section name. */
3248
3249 static void
3250 request_dump_byname (const char * section, dump_type type)
3251 {
3252 struct dump_list_entry * new_request;
3253
3254 new_request = (struct dump_list_entry *)
3255 malloc (sizeof (struct dump_list_entry));
3256 if (!new_request)
3257 error (_("Out of memory allocating dump request table.\n"));
3258
3259 new_request->name = strdup (section);
3260 if (!new_request->name)
3261 error (_("Out of memory allocating dump request table.\n"));
3262
3263 new_request->type = type;
3264
3265 new_request->next = dump_sects_byname;
3266 dump_sects_byname = new_request;
3267 }
3268
3269 static inline void
3270 request_dump (dump_type type)
3271 {
3272 int section;
3273 char * cp;
3274
3275 do_dump++;
3276 section = strtoul (optarg, & cp, 0);
3277
3278 if (! *cp && section >= 0)
3279 request_dump_bynumber (section, type);
3280 else
3281 request_dump_byname (optarg, type);
3282 }
3283
3284
3285 static void
3286 parse_args (int argc, char ** argv)
3287 {
3288 int c;
3289
3290 if (argc < 2)
3291 usage (stderr);
3292
3293 while ((c = getopt_long
3294 (argc, argv, "ADHINR:SVWacdeghi:lnp:rstuvw::x:", options, NULL)) != EOF)
3295 {
3296 switch (c)
3297 {
3298 case 0:
3299 /* Long options. */
3300 break;
3301 case 'H':
3302 usage (stdout);
3303 break;
3304
3305 case 'a':
3306 do_syms++;
3307 do_reloc++;
3308 do_unwind++;
3309 do_dynamic++;
3310 do_header++;
3311 do_sections++;
3312 do_section_groups++;
3313 do_segments++;
3314 do_version++;
3315 do_histogram++;
3316 do_arch++;
3317 do_notes++;
3318 break;
3319 case 'g':
3320 do_section_groups++;
3321 break;
3322 case 't':
3323 case 'N':
3324 do_sections++;
3325 do_section_details++;
3326 break;
3327 case 'e':
3328 do_header++;
3329 do_sections++;
3330 do_segments++;
3331 break;
3332 case 'A':
3333 do_arch++;
3334 break;
3335 case 'D':
3336 do_using_dynamic++;
3337 break;
3338 case 'r':
3339 do_reloc++;
3340 break;
3341 case 'u':
3342 do_unwind++;
3343 break;
3344 case 'h':
3345 do_header++;
3346 break;
3347 case 'l':
3348 do_segments++;
3349 break;
3350 case 's':
3351 do_syms++;
3352 break;
3353 case 'S':
3354 do_sections++;
3355 break;
3356 case 'd':
3357 do_dynamic++;
3358 break;
3359 case 'I':
3360 do_histogram++;
3361 break;
3362 case 'n':
3363 do_notes++;
3364 break;
3365 case 'c':
3366 do_archive_index++;
3367 break;
3368 case 'x':
3369 request_dump (HEX_DUMP);
3370 break;
3371 case 'p':
3372 request_dump (STRING_DUMP);
3373 break;
3374 case 'R':
3375 request_dump (RELOC_DUMP);
3376 break;
3377 case 'w':
3378 do_dump++;
3379 if (optarg == 0)
3380 {
3381 do_debugging = 1;
3382 dwarf_select_sections_all ();
3383 }
3384 else
3385 {
3386 do_debugging = 0;
3387 dwarf_select_sections_by_letters (optarg);
3388 }
3389 break;
3390 case OPTION_DEBUG_DUMP:
3391 do_dump++;
3392 if (optarg == 0)
3393 do_debugging = 1;
3394 else
3395 {
3396 do_debugging = 0;
3397 dwarf_select_sections_by_names (optarg);
3398 }
3399 break;
3400 case OPTION_DWARF_DEPTH:
3401 {
3402 char *cp;
3403
3404 dwarf_cutoff_level = strtoul (optarg, & cp, 0);
3405 }
3406 break;
3407 case OPTION_DWARF_START:
3408 {
3409 char *cp;
3410
3411 dwarf_start_die = strtoul (optarg, & cp, 0);
3412 }
3413 break;
3414 case OPTION_DYN_SYMS:
3415 do_dyn_syms++;
3416 break;
3417 #ifdef SUPPORT_DISASSEMBLY
3418 case 'i':
3419 request_dump (DISASS_DUMP);
3420 break;
3421 #endif
3422 case 'v':
3423 print_version (program_name);
3424 break;
3425 case 'V':
3426 do_version++;
3427 break;
3428 case 'W':
3429 do_wide++;
3430 break;
3431 default:
3432 /* xgettext:c-format */
3433 error (_("Invalid option '-%c'\n"), c);
3434 /* Drop through. */
3435 case '?':
3436 usage (stderr);
3437 }
3438 }
3439
3440 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
3441 && !do_segments && !do_header && !do_dump && !do_version
3442 && !do_histogram && !do_debugging && !do_arch && !do_notes
3443 && !do_section_groups && !do_archive_index
3444 && !do_dyn_syms)
3445 usage (stderr);
3446 else if (argc < 3)
3447 {
3448 warn (_("Nothing to do.\n"));
3449 usage (stderr);
3450 }
3451 }
3452
3453 static const char *
3454 get_elf_class (unsigned int elf_class)
3455 {
3456 static char buff[32];
3457
3458 switch (elf_class)
3459 {
3460 case ELFCLASSNONE: return _("none");
3461 case ELFCLASS32: return "ELF32";
3462 case ELFCLASS64: return "ELF64";
3463 default:
3464 snprintf (buff, sizeof (buff), _("<unknown: %x>"), elf_class);
3465 return buff;
3466 }
3467 }
3468
3469 static const char *
3470 get_data_encoding (unsigned int encoding)
3471 {
3472 static char buff[32];
3473
3474 switch (encoding)
3475 {
3476 case ELFDATANONE: return _("none");
3477 case ELFDATA2LSB: return _("2's complement, little endian");
3478 case ELFDATA2MSB: return _("2's complement, big endian");
3479 default:
3480 snprintf (buff, sizeof (buff), _("<unknown: %x>"), encoding);
3481 return buff;
3482 }
3483 }
3484
3485 /* Decode the data held in 'elf_header'. */
3486
3487 static int
3488 process_file_header (void)
3489 {
3490 if ( elf_header.e_ident[EI_MAG0] != ELFMAG0
3491 || elf_header.e_ident[EI_MAG1] != ELFMAG1
3492 || elf_header.e_ident[EI_MAG2] != ELFMAG2
3493 || elf_header.e_ident[EI_MAG3] != ELFMAG3)
3494 {
3495 error
3496 (_("Not an ELF file - it has the wrong magic bytes at the start\n"));
3497 return 0;
3498 }
3499
3500 init_dwarf_regnames (elf_header.e_machine);
3501
3502 if (do_header)
3503 {
3504 int i;
3505
3506 printf (_("ELF Header:\n"));
3507 printf (_(" Magic: "));
3508 for (i = 0; i < EI_NIDENT; i++)
3509 printf ("%2.2x ", elf_header.e_ident[i]);
3510 printf ("\n");
3511 printf (_(" Class: %s\n"),
3512 get_elf_class (elf_header.e_ident[EI_CLASS]));
3513 printf (_(" Data: %s\n"),
3514 get_data_encoding (elf_header.e_ident[EI_DATA]));
3515 printf (_(" Version: %d %s\n"),
3516 elf_header.e_ident[EI_VERSION],
3517 (elf_header.e_ident[EI_VERSION] == EV_CURRENT
3518 ? "(current)"
3519 : (elf_header.e_ident[EI_VERSION] != EV_NONE
3520 ? _("<unknown: %lx>")
3521 : "")));
3522 printf (_(" OS/ABI: %s\n"),
3523 get_osabi_name (elf_header.e_ident[EI_OSABI]));
3524 printf (_(" ABI Version: %d\n"),
3525 elf_header.e_ident[EI_ABIVERSION]);
3526 printf (_(" Type: %s\n"),
3527 get_file_type (elf_header.e_type));
3528 printf (_(" Machine: %s\n"),
3529 get_machine_name (elf_header.e_machine));
3530 printf (_(" Version: 0x%lx\n"),
3531 (unsigned long) elf_header.e_version);
3532
3533 printf (_(" Entry point address: "));
3534 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
3535 printf (_("\n Start of program headers: "));
3536 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
3537 printf (_(" (bytes into file)\n Start of section headers: "));
3538 print_vma ((bfd_vma) elf_header.e_shoff, DEC);
3539 printf (_(" (bytes into file)\n"));
3540
3541 printf (_(" Flags: 0x%lx%s\n"),
3542 (unsigned long) elf_header.e_flags,
3543 get_machine_flags (elf_header.e_flags, elf_header.e_machine));
3544 printf (_(" Size of this header: %ld (bytes)\n"),
3545 (long) elf_header.e_ehsize);
3546 printf (_(" Size of program headers: %ld (bytes)\n"),
3547 (long) elf_header.e_phentsize);
3548 printf (_(" Number of program headers: %ld"),
3549 (long) elf_header.e_phnum);
3550 if (section_headers != NULL
3551 && elf_header.e_phnum == PN_XNUM
3552 && section_headers[0].sh_info != 0)
3553 printf (" (%ld)", (long) section_headers[0].sh_info);
3554 putc ('\n', stdout);
3555 printf (_(" Size of section headers: %ld (bytes)\n"),
3556 (long) elf_header.e_shentsize);
3557 printf (_(" Number of section headers: %ld"),
3558 (long) elf_header.e_shnum);
3559 if (section_headers != NULL && elf_header.e_shnum == SHN_UNDEF)
3560 printf (" (%ld)", (long) section_headers[0].sh_size);
3561 putc ('\n', stdout);
3562 printf (_(" Section header string table index: %ld"),
3563 (long) elf_header.e_shstrndx);
3564 if (section_headers != NULL
3565 && elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
3566 printf (" (%u)", section_headers[0].sh_link);
3567 else if (elf_header.e_shstrndx != SHN_UNDEF
3568 && elf_header.e_shstrndx >= elf_header.e_shnum)
3569 printf (_(" <corrupt: out of range>"));
3570 putc ('\n', stdout);
3571 }
3572
3573 if (section_headers != NULL)
3574 {
3575 if (elf_header.e_phnum == PN_XNUM
3576 && section_headers[0].sh_info != 0)
3577 elf_header.e_phnum = section_headers[0].sh_info;
3578 if (elf_header.e_shnum == SHN_UNDEF)
3579 elf_header.e_shnum = section_headers[0].sh_size;
3580 if (elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
3581 elf_header.e_shstrndx = section_headers[0].sh_link;
3582 else if (elf_header.e_shstrndx >= elf_header.e_shnum)
3583 elf_header.e_shstrndx = SHN_UNDEF;
3584 free (section_headers);
3585 section_headers = NULL;
3586 }
3587
3588 return 1;
3589 }
3590
3591
3592 static int
3593 get_32bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
3594 {
3595 Elf32_External_Phdr * phdrs;
3596 Elf32_External_Phdr * external;
3597 Elf_Internal_Phdr * internal;
3598 unsigned int i;
3599
3600 phdrs = (Elf32_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
3601 elf_header.e_phentsize,
3602 elf_header.e_phnum,
3603 _("program headers"));
3604 if (!phdrs)
3605 return 0;
3606
3607 for (i = 0, internal = pheaders, external = phdrs;
3608 i < elf_header.e_phnum;
3609 i++, internal++, external++)
3610 {
3611 internal->p_type = BYTE_GET (external->p_type);
3612 internal->p_offset = BYTE_GET (external->p_offset);
3613 internal->p_vaddr = BYTE_GET (external->p_vaddr);
3614 internal->p_paddr = BYTE_GET (external->p_paddr);
3615 internal->p_filesz = BYTE_GET (external->p_filesz);
3616 internal->p_memsz = BYTE_GET (external->p_memsz);
3617 internal->p_flags = BYTE_GET (external->p_flags);
3618 internal->p_align = BYTE_GET (external->p_align);
3619 }
3620
3621 free (phdrs);
3622
3623 return 1;
3624 }
3625
3626 static int
3627 get_64bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
3628 {
3629 Elf64_External_Phdr * phdrs;
3630 Elf64_External_Phdr * external;
3631 Elf_Internal_Phdr * internal;
3632 unsigned int i;
3633
3634 phdrs = (Elf64_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
3635 elf_header.e_phentsize,
3636 elf_header.e_phnum,
3637 _("program headers"));
3638 if (!phdrs)
3639 return 0;
3640
3641 for (i = 0, internal = pheaders, external = phdrs;
3642 i < elf_header.e_phnum;
3643 i++, internal++, external++)
3644 {
3645 internal->p_type = BYTE_GET (external->p_type);
3646 internal->p_flags = BYTE_GET (external->p_flags);
3647 internal->p_offset = BYTE_GET (external->p_offset);
3648 internal->p_vaddr = BYTE_GET (external->p_vaddr);
3649 internal->p_paddr = BYTE_GET (external->p_paddr);
3650 internal->p_filesz = BYTE_GET (external->p_filesz);
3651 internal->p_memsz = BYTE_GET (external->p_memsz);
3652 internal->p_align = BYTE_GET (external->p_align);
3653 }
3654
3655 free (phdrs);
3656
3657 return 1;
3658 }
3659
3660 /* Returns 1 if the program headers were read into `program_headers'. */
3661
3662 static int
3663 get_program_headers (FILE * file)
3664 {
3665 Elf_Internal_Phdr * phdrs;
3666
3667 /* Check cache of prior read. */
3668 if (program_headers != NULL)
3669 return 1;
3670
3671 phdrs = (Elf_Internal_Phdr *) cmalloc (elf_header.e_phnum,
3672 sizeof (Elf_Internal_Phdr));
3673
3674 if (phdrs == NULL)
3675 {
3676 error (_("Out of memory\n"));
3677 return 0;
3678 }
3679
3680 if (is_32bit_elf
3681 ? get_32bit_program_headers (file, phdrs)
3682 : get_64bit_program_headers (file, phdrs))
3683 {
3684 program_headers = phdrs;
3685 return 1;
3686 }
3687
3688 free (phdrs);
3689 return 0;
3690 }
3691
3692 /* Returns 1 if the program headers were loaded. */
3693
3694 static int
3695 process_program_headers (FILE * file)
3696 {
3697 Elf_Internal_Phdr * segment;
3698 unsigned int i;
3699
3700 if (elf_header.e_phnum == 0)
3701 {
3702 /* PR binutils/12467. */
3703 if (elf_header.e_phoff != 0)
3704 warn (_("possibly corrupt ELF header - it has a non-zero program"
3705 " header offset, but no program headers"));
3706 else if (do_segments)
3707 printf (_("\nThere are no program headers in this file.\n"));
3708 return 0;
3709 }
3710
3711 if (do_segments && !do_header)
3712 {
3713 printf (_("\nElf file type is %s\n"), get_file_type (elf_header.e_type));
3714 printf (_("Entry point "));
3715 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
3716 printf (_("\nThere are %d program headers, starting at offset "),
3717 elf_header.e_phnum);
3718 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
3719 printf ("\n");
3720 }
3721
3722 if (! get_program_headers (file))
3723 return 0;
3724
3725 if (do_segments)
3726 {
3727 if (elf_header.e_phnum > 1)
3728 printf (_("\nProgram Headers:\n"));
3729 else
3730 printf (_("\nProgram Headers:\n"));
3731
3732 if (is_32bit_elf)
3733 printf
3734 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
3735 else if (do_wide)
3736 printf
3737 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
3738 else
3739 {
3740 printf
3741 (_(" Type Offset VirtAddr PhysAddr\n"));
3742 printf
3743 (_(" FileSiz MemSiz Flags Align\n"));
3744 }
3745 }
3746
3747 dynamic_addr = 0;
3748 dynamic_size = 0;
3749
3750 for (i = 0, segment = program_headers;
3751 i < elf_header.e_phnum;
3752 i++, segment++)
3753 {
3754 if (do_segments)
3755 {
3756 printf (" %-14.14s ", get_segment_type (segment->p_type));
3757
3758 if (is_32bit_elf)
3759 {
3760 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
3761 printf ("0x%8.8lx ", (unsigned long) segment->p_vaddr);
3762 printf ("0x%8.8lx ", (unsigned long) segment->p_paddr);
3763 printf ("0x%5.5lx ", (unsigned long) segment->p_filesz);
3764 printf ("0x%5.5lx ", (unsigned long) segment->p_memsz);
3765 printf ("%c%c%c ",
3766 (segment->p_flags & PF_R ? 'R' : ' '),
3767 (segment->p_flags & PF_W ? 'W' : ' '),
3768 (segment->p_flags & PF_X ? 'E' : ' '));
3769 printf ("%#lx", (unsigned long) segment->p_align);
3770 }
3771 else if (do_wide)
3772 {
3773 if ((unsigned long) segment->p_offset == segment->p_offset)
3774 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
3775 else
3776 {
3777 print_vma (segment->p_offset, FULL_HEX);
3778 putchar (' ');
3779 }
3780
3781 print_vma (segment->p_vaddr, FULL_HEX);
3782 putchar (' ');
3783 print_vma (segment->p_paddr, FULL_HEX);
3784 putchar (' ');
3785
3786 if ((unsigned long) segment->p_filesz == segment->p_filesz)
3787 printf ("0x%6.6lx ", (unsigned long) segment->p_filesz);
3788 else
3789 {
3790 print_vma (segment->p_filesz, FULL_HEX);
3791 putchar (' ');
3792 }
3793
3794 if ((unsigned long) segment->p_memsz == segment->p_memsz)
3795 printf ("0x%6.6lx", (unsigned long) segment->p_memsz);
3796 else
3797 {
3798 print_vma (segment->p_offset, FULL_HEX);
3799 }
3800
3801 printf (" %c%c%c ",
3802 (segment->p_flags & PF_R ? 'R' : ' '),
3803 (segment->p_flags & PF_W ? 'W' : ' '),
3804 (segment->p_flags & PF_X ? 'E' : ' '));
3805
3806 if ((unsigned long) segment->p_align == segment->p_align)
3807 printf ("%#lx", (unsigned long) segment->p_align);
3808 else
3809 {
3810 print_vma (segment->p_align, PREFIX_HEX);
3811 }
3812 }
3813 else
3814 {
3815 print_vma (segment->p_offset, FULL_HEX);
3816 putchar (' ');
3817 print_vma (segment->p_vaddr, FULL_HEX);
3818 putchar (' ');
3819 print_vma (segment->p_paddr, FULL_HEX);
3820 printf ("\n ");
3821 print_vma (segment->p_filesz, FULL_HEX);
3822 putchar (' ');
3823 print_vma (segment->p_memsz, FULL_HEX);
3824 printf (" %c%c%c ",
3825 (segment->p_flags & PF_R ? 'R' : ' '),
3826 (segment->p_flags & PF_W ? 'W' : ' '),
3827 (segment->p_flags & PF_X ? 'E' : ' '));
3828 print_vma (segment->p_align, HEX);
3829 }
3830 }
3831
3832 switch (segment->p_type)
3833 {
3834 case PT_DYNAMIC:
3835 if (dynamic_addr)
3836 error (_("more than one dynamic segment\n"));
3837
3838 /* By default, assume that the .dynamic section is the first
3839 section in the DYNAMIC segment. */
3840 dynamic_addr = segment->p_offset;
3841 dynamic_size = segment->p_filesz;
3842
3843 /* Try to locate the .dynamic section. If there is
3844 a section header table, we can easily locate it. */
3845 if (section_headers != NULL)
3846 {
3847 Elf_Internal_Shdr * sec;
3848
3849 sec = find_section (".dynamic");
3850 if (sec == NULL || sec->sh_size == 0)
3851 {
3852 /* A corresponding .dynamic section is expected, but on
3853 IA-64/OpenVMS it is OK for it to be missing. */
3854 if (!is_ia64_vms ())
3855 error (_("no .dynamic section in the dynamic segment\n"));
3856 break;
3857 }
3858
3859 if (sec->sh_type == SHT_NOBITS)
3860 {
3861 dynamic_size = 0;
3862 break;
3863 }
3864
3865 dynamic_addr = sec->sh_offset;
3866 dynamic_size = sec->sh_size;
3867
3868 if (dynamic_addr < segment->p_offset
3869 || dynamic_addr > segment->p_offset + segment->p_filesz)
3870 warn (_("the .dynamic section is not contained"
3871 " within the dynamic segment\n"));
3872 else if (dynamic_addr > segment->p_offset)
3873 warn (_("the .dynamic section is not the first section"
3874 " in the dynamic segment.\n"));
3875 }
3876 break;
3877
3878 case PT_INTERP:
3879 if (fseek (file, archive_file_offset + (long) segment->p_offset,
3880 SEEK_SET))
3881 error (_("Unable to find program interpreter name\n"));
3882 else
3883 {
3884 char fmt [32];
3885 int ret = snprintf (fmt, sizeof (fmt), "%%%ds", PATH_MAX);
3886
3887 if (ret >= (int) sizeof (fmt) || ret < 0)
3888 error (_("Internal error: failed to create format string to display program interpreter\n"));
3889
3890 program_interpreter[0] = 0;
3891 if (fscanf (file, fmt, program_interpreter) <= 0)
3892 error (_("Unable to read program interpreter name\n"));
3893
3894 if (do_segments)
3895 printf (_("\n [Requesting program interpreter: %s]"),
3896 program_interpreter);
3897 }
3898 break;
3899 }
3900
3901 if (do_segments)
3902 putc ('\n', stdout);
3903 }
3904
3905 if (do_segments && section_headers != NULL && string_table != NULL)
3906 {
3907 printf (_("\n Section to Segment mapping:\n"));
3908 printf (_(" Segment Sections...\n"));
3909
3910 for (i = 0; i < elf_header.e_phnum; i++)
3911 {
3912 unsigned int j;
3913 Elf_Internal_Shdr * section;
3914
3915 segment = program_headers + i;
3916 section = section_headers + 1;
3917
3918 printf (" %2.2d ", i);
3919
3920 for (j = 1; j < elf_header.e_shnum; j++, section++)
3921 {
3922 if (!ELF_TBSS_SPECIAL (section, segment)
3923 && ELF_SECTION_IN_SEGMENT_STRICT (section, segment))
3924 printf ("%s ", SECTION_NAME (section));
3925 }
3926
3927 putc ('\n',stdout);
3928 }
3929 }
3930
3931 return 1;
3932 }
3933
3934
3935 /* Find the file offset corresponding to VMA by using the program headers. */
3936
3937 static long
3938 offset_from_vma (FILE * file, bfd_vma vma, bfd_size_type size)
3939 {
3940 Elf_Internal_Phdr * seg;
3941
3942 if (! get_program_headers (file))
3943 {
3944 warn (_("Cannot interpret virtual addresses without program headers.\n"));
3945 return (long) vma;
3946 }
3947
3948 for (seg = program_headers;
3949 seg < program_headers + elf_header.e_phnum;
3950 ++seg)
3951 {
3952 if (seg->p_type != PT_LOAD)
3953 continue;
3954
3955 if (vma >= (seg->p_vaddr & -seg->p_align)
3956 && vma + size <= seg->p_vaddr + seg->p_filesz)
3957 return vma - seg->p_vaddr + seg->p_offset;
3958 }
3959
3960 warn (_("Virtual address 0x%lx not located in any PT_LOAD segment.\n"),
3961 (unsigned long) vma);
3962 return (long) vma;
3963 }
3964
3965
3966 static int
3967 get_32bit_section_headers (FILE * file, unsigned int num)
3968 {
3969 Elf32_External_Shdr * shdrs;
3970 Elf_Internal_Shdr * internal;
3971 unsigned int i;
3972
3973 shdrs = (Elf32_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
3974 elf_header.e_shentsize, num,
3975 _("section headers"));
3976 if (!shdrs)
3977 return 0;
3978
3979 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
3980 sizeof (Elf_Internal_Shdr));
3981
3982 if (section_headers == NULL)
3983 {
3984 error (_("Out of memory\n"));
3985 return 0;
3986 }
3987
3988 for (i = 0, internal = section_headers;
3989 i < num;
3990 i++, internal++)
3991 {
3992 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
3993 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
3994 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
3995 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
3996 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
3997 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
3998 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
3999 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
4000 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
4001 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
4002 }
4003
4004 free (shdrs);
4005
4006 return 1;
4007 }
4008
4009 static int
4010 get_64bit_section_headers (FILE * file, unsigned int num)
4011 {
4012 Elf64_External_Shdr * shdrs;
4013 Elf_Internal_Shdr * internal;
4014 unsigned int i;
4015
4016 shdrs = (Elf64_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
4017 elf_header.e_shentsize, num,
4018 _("section headers"));
4019 if (!shdrs)
4020 return 0;
4021
4022 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
4023 sizeof (Elf_Internal_Shdr));
4024
4025 if (section_headers == NULL)
4026 {
4027 error (_("Out of memory\n"));
4028 return 0;
4029 }
4030
4031 for (i = 0, internal = section_headers;
4032 i < num;
4033 i++, internal++)
4034 {
4035 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
4036 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
4037 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
4038 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
4039 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
4040 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
4041 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
4042 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
4043 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
4044 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
4045 }
4046
4047 free (shdrs);
4048
4049 return 1;
4050 }
4051
4052 static Elf_Internal_Sym *
4053 get_32bit_elf_symbols (FILE * file,
4054 Elf_Internal_Shdr * section,
4055 unsigned long * num_syms_return)
4056 {
4057 unsigned long number = 0;
4058 Elf32_External_Sym * esyms = NULL;
4059 Elf_External_Sym_Shndx * shndx = NULL;
4060 Elf_Internal_Sym * isyms = NULL;
4061 Elf_Internal_Sym * psym;
4062 unsigned int j;
4063
4064 /* Run some sanity checks first. */
4065 if (section->sh_entsize == 0)
4066 {
4067 error (_("sh_entsize is zero\n"));
4068 goto exit_point;
4069 }
4070
4071 number = section->sh_size / section->sh_entsize;
4072
4073 if (number * sizeof (Elf32_External_Sym) > section->sh_size + 1)
4074 {
4075 error (_("Invalid sh_entsize\n"));
4076 goto exit_point;
4077 }
4078
4079 esyms = (Elf32_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
4080 section->sh_size, _("symbols"));
4081 if (esyms == NULL)
4082 goto exit_point;
4083
4084 shndx = NULL;
4085 if (symtab_shndx_hdr != NULL
4086 && (symtab_shndx_hdr->sh_link
4087 == (unsigned long) (section - section_headers)))
4088 {
4089 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
4090 symtab_shndx_hdr->sh_offset,
4091 1, symtab_shndx_hdr->sh_size,
4092 _("symbol table section indicies"));
4093 if (shndx == NULL)
4094 goto exit_point;
4095 }
4096
4097 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
4098
4099 if (isyms == NULL)
4100 {
4101 error (_("Out of memory\n"));
4102 goto exit_point;
4103 }
4104
4105 for (j = 0, psym = isyms; j < number; j++, psym++)
4106 {
4107 psym->st_name = BYTE_GET (esyms[j].st_name);
4108 psym->st_value = BYTE_GET (esyms[j].st_value);
4109 psym->st_size = BYTE_GET (esyms[j].st_size);
4110 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
4111 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
4112 psym->st_shndx
4113 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
4114 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
4115 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
4116 psym->st_info = BYTE_GET (esyms[j].st_info);
4117 psym->st_other = BYTE_GET (esyms[j].st_other);
4118 }
4119
4120 exit_point:
4121 if (shndx != NULL)
4122 free (shndx);
4123 if (esyms != NULL)
4124 free (esyms);
4125
4126 if (num_syms_return != NULL)
4127 * num_syms_return = isyms == NULL ? 0 : number;
4128
4129 return isyms;
4130 }
4131
4132 static Elf_Internal_Sym *
4133 get_64bit_elf_symbols (FILE * file,
4134 Elf_Internal_Shdr * section,
4135 unsigned long * num_syms_return)
4136 {
4137 unsigned long number = 0;
4138 Elf64_External_Sym * esyms = NULL;
4139 Elf_External_Sym_Shndx * shndx = NULL;
4140 Elf_Internal_Sym * isyms = NULL;
4141 Elf_Internal_Sym * psym;
4142 unsigned int j;
4143
4144 /* Run some sanity checks first. */
4145 if (section->sh_entsize == 0)
4146 {
4147 error (_("sh_entsize is zero\n"));
4148 goto exit_point;
4149 }
4150
4151 number = section->sh_size / section->sh_entsize;
4152
4153 if (number * sizeof (Elf64_External_Sym) > section->sh_size + 1)
4154 {
4155 error (_("Invalid sh_entsize\n"));
4156 goto exit_point;
4157 }
4158
4159 esyms = (Elf64_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
4160 section->sh_size, _("symbols"));
4161 if (!esyms)
4162 goto exit_point;
4163
4164 if (symtab_shndx_hdr != NULL
4165 && (symtab_shndx_hdr->sh_link
4166 == (unsigned long) (section - section_headers)))
4167 {
4168 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
4169 symtab_shndx_hdr->sh_offset,
4170 1, symtab_shndx_hdr->sh_size,
4171 _("symbol table section indicies"));
4172 if (shndx == NULL)
4173 goto exit_point;
4174 }
4175
4176 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
4177
4178 if (isyms == NULL)
4179 {
4180 error (_("Out of memory\n"));
4181 goto exit_point;
4182 }
4183
4184 for (j = 0, psym = isyms; j < number; j++, psym++)
4185 {
4186 psym->st_name = BYTE_GET (esyms[j].st_name);
4187 psym->st_info = BYTE_GET (esyms[j].st_info);
4188 psym->st_other = BYTE_GET (esyms[j].st_other);
4189 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
4190
4191 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
4192 psym->st_shndx
4193 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
4194 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
4195 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
4196
4197 psym->st_value = BYTE_GET (esyms[j].st_value);
4198 psym->st_size = BYTE_GET (esyms[j].st_size);
4199 }
4200
4201 exit_point:
4202 if (shndx != NULL)
4203 free (shndx);
4204 if (esyms != NULL)
4205 free (esyms);
4206
4207 if (num_syms_return != NULL)
4208 * num_syms_return = isyms == NULL ? 0 : number;
4209
4210 return isyms;
4211 }
4212
4213 static const char *
4214 get_elf_section_flags (bfd_vma sh_flags)
4215 {
4216 static char buff[1024];
4217 char * p = buff;
4218 int field_size = is_32bit_elf ? 8 : 16;
4219 int sindex;
4220 int size = sizeof (buff) - (field_size + 4 + 1);
4221 bfd_vma os_flags = 0;
4222 bfd_vma proc_flags = 0;
4223 bfd_vma unknown_flags = 0;
4224 static const struct
4225 {
4226 const char * str;
4227 int len;
4228 }
4229 flags [] =
4230 {
4231 /* 0 */ { STRING_COMMA_LEN ("WRITE") },
4232 /* 1 */ { STRING_COMMA_LEN ("ALLOC") },
4233 /* 2 */ { STRING_COMMA_LEN ("EXEC") },
4234 /* 3 */ { STRING_COMMA_LEN ("MERGE") },
4235 /* 4 */ { STRING_COMMA_LEN ("STRINGS") },
4236 /* 5 */ { STRING_COMMA_LEN ("INFO LINK") },
4237 /* 6 */ { STRING_COMMA_LEN ("LINK ORDER") },
4238 /* 7 */ { STRING_COMMA_LEN ("OS NONCONF") },
4239 /* 8 */ { STRING_COMMA_LEN ("GROUP") },
4240 /* 9 */ { STRING_COMMA_LEN ("TLS") },
4241 /* IA-64 specific. */
4242 /* 10 */ { STRING_COMMA_LEN ("SHORT") },
4243 /* 11 */ { STRING_COMMA_LEN ("NORECOV") },
4244 /* IA-64 OpenVMS specific. */
4245 /* 12 */ { STRING_COMMA_LEN ("VMS_GLOBAL") },
4246 /* 13 */ { STRING_COMMA_LEN ("VMS_OVERLAID") },
4247 /* 14 */ { STRING_COMMA_LEN ("VMS_SHARED") },
4248 /* 15 */ { STRING_COMMA_LEN ("VMS_VECTOR") },
4249 /* 16 */ { STRING_COMMA_LEN ("VMS_ALLOC_64BIT") },
4250 /* 17 */ { STRING_COMMA_LEN ("VMS_PROTECTED") },
4251 /* Generic. */
4252 /* 18 */ { STRING_COMMA_LEN ("EXCLUDE") },
4253 /* SPARC specific. */
4254 /* 19 */ { STRING_COMMA_LEN ("ORDERED") }
4255 };
4256
4257 if (do_section_details)
4258 {
4259 sprintf (buff, "[%*.*lx]: ",
4260 field_size, field_size, (unsigned long) sh_flags);
4261 p += field_size + 4;
4262 }
4263
4264 while (sh_flags)
4265 {
4266 bfd_vma flag;
4267
4268 flag = sh_flags & - sh_flags;
4269 sh_flags &= ~ flag;
4270
4271 if (do_section_details)
4272 {
4273 switch (flag)
4274 {
4275 case SHF_WRITE: sindex = 0; break;
4276 case SHF_ALLOC: sindex = 1; break;
4277 case SHF_EXECINSTR: sindex = 2; break;
4278 case SHF_MERGE: sindex = 3; break;
4279 case SHF_STRINGS: sindex = 4; break;
4280 case SHF_INFO_LINK: sindex = 5; break;
4281 case SHF_LINK_ORDER: sindex = 6; break;
4282 case SHF_OS_NONCONFORMING: sindex = 7; break;
4283 case SHF_GROUP: sindex = 8; break;
4284 case SHF_TLS: sindex = 9; break;
4285 case SHF_EXCLUDE: sindex = 18; break;
4286
4287 default:
4288 sindex = -1;
4289 switch (elf_header.e_machine)
4290 {
4291 case EM_IA_64:
4292 if (flag == SHF_IA_64_SHORT)
4293 sindex = 10;
4294 else if (flag == SHF_IA_64_NORECOV)
4295 sindex = 11;
4296 #ifdef BFD64
4297 else if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
4298 switch (flag)
4299 {
4300 case SHF_IA_64_VMS_GLOBAL: sindex = 12; break;
4301 case SHF_IA_64_VMS_OVERLAID: sindex = 13; break;
4302 case SHF_IA_64_VMS_SHARED: sindex = 14; break;
4303 case SHF_IA_64_VMS_VECTOR: sindex = 15; break;
4304 case SHF_IA_64_VMS_ALLOC_64BIT: sindex = 16; break;
4305 case SHF_IA_64_VMS_PROTECTED: sindex = 17; break;
4306 default: break;
4307 }
4308 #endif
4309 break;
4310
4311 case EM_386:
4312 case EM_486:
4313 case EM_X86_64:
4314 case EM_L1OM:
4315 case EM_K1OM:
4316 case EM_OLD_SPARCV9:
4317 case EM_SPARC32PLUS:
4318 case EM_SPARCV9:
4319 case EM_SPARC:
4320 if (flag == SHF_ORDERED)
4321 sindex = 19;
4322 break;
4323 default:
4324 break;
4325 }
4326 }
4327
4328 if (sindex != -1)
4329 {
4330 if (p != buff + field_size + 4)
4331 {
4332 if (size < (10 + 2))
4333 abort ();
4334 size -= 2;
4335 *p++ = ',';
4336 *p++ = ' ';
4337 }
4338
4339 size -= flags [sindex].len;
4340 p = stpcpy (p, flags [sindex].str);
4341 }
4342 else if (flag & SHF_MASKOS)
4343 os_flags |= flag;
4344 else if (flag & SHF_MASKPROC)
4345 proc_flags |= flag;
4346 else
4347 unknown_flags |= flag;
4348 }
4349 else
4350 {
4351 switch (flag)
4352 {
4353 case SHF_WRITE: *p = 'W'; break;
4354 case SHF_ALLOC: *p = 'A'; break;
4355 case SHF_EXECINSTR: *p = 'X'; break;
4356 case SHF_MERGE: *p = 'M'; break;
4357 case SHF_STRINGS: *p = 'S'; break;
4358 case SHF_INFO_LINK: *p = 'I'; break;
4359 case SHF_LINK_ORDER: *p = 'L'; break;
4360 case SHF_OS_NONCONFORMING: *p = 'O'; break;
4361 case SHF_GROUP: *p = 'G'; break;
4362 case SHF_TLS: *p = 'T'; break;
4363 case SHF_EXCLUDE: *p = 'E'; break;
4364
4365 default:
4366 if ((elf_header.e_machine == EM_X86_64
4367 || elf_header.e_machine == EM_L1OM
4368 || elf_header.e_machine == EM_K1OM)
4369 && flag == SHF_X86_64_LARGE)
4370 *p = 'l';
4371 else if (flag & SHF_MASKOS)
4372 {
4373 *p = 'o';
4374 sh_flags &= ~ SHF_MASKOS;
4375 }
4376 else if (flag & SHF_MASKPROC)
4377 {
4378 *p = 'p';
4379 sh_flags &= ~ SHF_MASKPROC;
4380 }
4381 else
4382 *p = 'x';
4383 break;
4384 }
4385 p++;
4386 }
4387 }
4388
4389 if (do_section_details)
4390 {
4391 if (os_flags)
4392 {
4393 size -= 5 + field_size;
4394 if (p != buff + field_size + 4)
4395 {
4396 if (size < (2 + 1))
4397 abort ();
4398 size -= 2;
4399 *p++ = ',';
4400 *p++ = ' ';
4401 }
4402 sprintf (p, "OS (%*.*lx)", field_size, field_size,
4403 (unsigned long) os_flags);
4404 p += 5 + field_size;
4405 }
4406 if (proc_flags)
4407 {
4408 size -= 7 + field_size;
4409 if (p != buff + field_size + 4)
4410 {
4411 if (size < (2 + 1))
4412 abort ();
4413 size -= 2;
4414 *p++ = ',';
4415 *p++ = ' ';
4416 }
4417 sprintf (p, "PROC (%*.*lx)", field_size, field_size,
4418 (unsigned long) proc_flags);
4419 p += 7 + field_size;
4420 }
4421 if (unknown_flags)
4422 {
4423 size -= 10 + field_size;
4424 if (p != buff + field_size + 4)
4425 {
4426 if (size < (2 + 1))
4427 abort ();
4428 size -= 2;
4429 *p++ = ',';
4430 *p++ = ' ';
4431 }
4432 sprintf (p, _("UNKNOWN (%*.*lx)"), field_size, field_size,
4433 (unsigned long) unknown_flags);
4434 p += 10 + field_size;
4435 }
4436 }
4437
4438 *p = '\0';
4439 return buff;
4440 }
4441
4442 static int
4443 process_section_headers (FILE * file)
4444 {
4445 Elf_Internal_Shdr * section;
4446 unsigned int i;
4447
4448 section_headers = NULL;
4449
4450 if (elf_header.e_shnum == 0)
4451 {
4452 /* PR binutils/12467. */
4453 if (elf_header.e_shoff != 0)
4454 warn (_("possibly corrupt ELF file header - it has a non-zero"
4455 " section header offset, but no section headers\n"));
4456 else if (do_sections)
4457 printf (_("\nThere are no sections in this file.\n"));
4458
4459 return 1;
4460 }
4461
4462 if (do_sections && !do_header)
4463 printf (_("There are %d section headers, starting at offset 0x%lx:\n"),
4464 elf_header.e_shnum, (unsigned long) elf_header.e_shoff);
4465
4466 if (is_32bit_elf)
4467 {
4468 if (! get_32bit_section_headers (file, elf_header.e_shnum))
4469 return 0;
4470 }
4471 else if (! get_64bit_section_headers (file, elf_header.e_shnum))
4472 return 0;
4473
4474 /* Read in the string table, so that we have names to display. */
4475 if (elf_header.e_shstrndx != SHN_UNDEF
4476 && elf_header.e_shstrndx < elf_header.e_shnum)
4477 {
4478 section = section_headers + elf_header.e_shstrndx;
4479
4480 if (section->sh_size != 0)
4481 {
4482 string_table = (char *) get_data (NULL, file, section->sh_offset,
4483 1, section->sh_size,
4484 _("string table"));
4485
4486 string_table_length = string_table != NULL ? section->sh_size : 0;
4487 }
4488 }
4489
4490 /* Scan the sections for the dynamic symbol table
4491 and dynamic string table and debug sections. */
4492 dynamic_symbols = NULL;
4493 dynamic_strings = NULL;
4494 dynamic_syminfo = NULL;
4495 symtab_shndx_hdr = NULL;
4496
4497 eh_addr_size = is_32bit_elf ? 4 : 8;
4498 switch (elf_header.e_machine)
4499 {
4500 case EM_MIPS:
4501 case EM_MIPS_RS3_LE:
4502 /* The 64-bit MIPS EABI uses a combination of 32-bit ELF and 64-bit
4503 FDE addresses. However, the ABI also has a semi-official ILP32
4504 variant for which the normal FDE address size rules apply.
4505
4506 GCC 4.0 marks EABI64 objects with a dummy .gcc_compiled_longXX
4507 section, where XX is the size of longs in bits. Unfortunately,
4508 earlier compilers provided no way of distinguishing ILP32 objects
4509 from LP64 objects, so if there's any doubt, we should assume that
4510 the official LP64 form is being used. */
4511 if ((elf_header.e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64
4512 && find_section (".gcc_compiled_long32") == NULL)
4513 eh_addr_size = 8;
4514 break;
4515
4516 case EM_H8_300:
4517 case EM_H8_300H:
4518 switch (elf_header.e_flags & EF_H8_MACH)
4519 {
4520 case E_H8_MACH_H8300:
4521 case E_H8_MACH_H8300HN:
4522 case E_H8_MACH_H8300SN:
4523 case E_H8_MACH_H8300SXN:
4524 eh_addr_size = 2;
4525 break;
4526 case E_H8_MACH_H8300H:
4527 case E_H8_MACH_H8300S:
4528 case E_H8_MACH_H8300SX:
4529 eh_addr_size = 4;
4530 break;
4531 }
4532 break;
4533
4534 case EM_M32C_OLD:
4535 case EM_M32C:
4536 switch (elf_header.e_flags & EF_M32C_CPU_MASK)
4537 {
4538 case EF_M32C_CPU_M16C:
4539 eh_addr_size = 2;
4540 break;
4541 }
4542 break;
4543 }
4544
4545 #define CHECK_ENTSIZE_VALUES(section, i, size32, size64) \
4546 do \
4547 { \
4548 size_t expected_entsize \
4549 = is_32bit_elf ? size32 : size64; \
4550 if (section->sh_entsize != expected_entsize) \
4551 error (_("Section %d has invalid sh_entsize %lx (expected %lx)\n"), \
4552 i, (unsigned long int) section->sh_entsize, \
4553 (unsigned long int) expected_entsize); \
4554 section->sh_entsize = expected_entsize; \
4555 } \
4556 while (0)
4557 #define CHECK_ENTSIZE(section, i, type) \
4558 CHECK_ENTSIZE_VALUES (section, i, sizeof (Elf32_External_##type), \
4559 sizeof (Elf64_External_##type))
4560
4561 for (i = 0, section = section_headers;
4562 i < elf_header.e_shnum;
4563 i++, section++)
4564 {
4565 char * name = SECTION_NAME (section);
4566
4567 if (section->sh_type == SHT_DYNSYM)
4568 {
4569 if (dynamic_symbols != NULL)
4570 {
4571 error (_("File contains multiple dynamic symbol tables\n"));
4572 continue;
4573 }
4574
4575 CHECK_ENTSIZE (section, i, Sym);
4576 dynamic_symbols = GET_ELF_SYMBOLS (file, section, & num_dynamic_syms);
4577 }
4578 else if (section->sh_type == SHT_STRTAB
4579 && streq (name, ".dynstr"))
4580 {
4581 if (dynamic_strings != NULL)
4582 {
4583 error (_("File contains multiple dynamic string tables\n"));
4584 continue;
4585 }
4586
4587 dynamic_strings = (char *) get_data (NULL, file, section->sh_offset,
4588 1, section->sh_size,
4589 _("dynamic strings"));
4590 dynamic_strings_length = dynamic_strings == NULL ? 0 : section->sh_size;
4591 }
4592 else if (section->sh_type == SHT_SYMTAB_SHNDX)
4593 {
4594 if (symtab_shndx_hdr != NULL)
4595 {
4596 error (_("File contains multiple symtab shndx tables\n"));
4597 continue;
4598 }
4599 symtab_shndx_hdr = section;
4600 }
4601 else if (section->sh_type == SHT_SYMTAB)
4602 CHECK_ENTSIZE (section, i, Sym);
4603 else if (section->sh_type == SHT_GROUP)
4604 CHECK_ENTSIZE_VALUES (section, i, GRP_ENTRY_SIZE, GRP_ENTRY_SIZE);
4605 else if (section->sh_type == SHT_REL)
4606 CHECK_ENTSIZE (section, i, Rel);
4607 else if (section->sh_type == SHT_RELA)
4608 CHECK_ENTSIZE (section, i, Rela);
4609 else if ((do_debugging || do_debug_info || do_debug_abbrevs
4610 || do_debug_lines || do_debug_pubnames || do_debug_pubtypes
4611 || do_debug_aranges || do_debug_frames || do_debug_macinfo
4612 || do_debug_str || do_debug_loc || do_debug_ranges)
4613 && (const_strneq (name, ".debug_")
4614 || const_strneq (name, ".zdebug_")))
4615 {
4616 if (name[1] == 'z')
4617 name += sizeof (".zdebug_") - 1;
4618 else
4619 name += sizeof (".debug_") - 1;
4620
4621 if (do_debugging
4622 || (do_debug_info && streq (name, "info"))
4623 || (do_debug_info && streq (name, "types"))
4624 || (do_debug_abbrevs && streq (name, "abbrev"))
4625 || (do_debug_lines && streq (name, "line"))
4626 || (do_debug_pubnames && streq (name, "pubnames"))
4627 || (do_debug_pubtypes && streq (name, "pubtypes"))
4628 || (do_debug_aranges && streq (name, "aranges"))
4629 || (do_debug_ranges && streq (name, "ranges"))
4630 || (do_debug_frames && streq (name, "frame"))
4631 || (do_debug_macinfo && streq (name, "macinfo"))
4632 || (do_debug_macinfo && streq (name, "macro"))
4633 || (do_debug_str && streq (name, "str"))
4634 || (do_debug_loc && streq (name, "loc"))
4635 )
4636 request_dump_bynumber (i, DEBUG_DUMP);
4637 }
4638 /* Linkonce section to be combined with .debug_info at link time. */
4639 else if ((do_debugging || do_debug_info)
4640 && const_strneq (name, ".gnu.linkonce.wi."))
4641 request_dump_bynumber (i, DEBUG_DUMP);
4642 else if (do_debug_frames && streq (name, ".eh_frame"))
4643 request_dump_bynumber (i, DEBUG_DUMP);
4644 else if (do_gdb_index && streq (name, ".gdb_index"))
4645 request_dump_bynumber (i, DEBUG_DUMP);
4646 /* Trace sections for Itanium VMS. */
4647 else if ((do_debugging || do_trace_info || do_trace_abbrevs
4648 || do_trace_aranges)
4649 && const_strneq (name, ".trace_"))
4650 {
4651 name += sizeof (".trace_") - 1;
4652
4653 if (do_debugging
4654 || (do_trace_info && streq (name, "info"))
4655 || (do_trace_abbrevs && streq (name, "abbrev"))
4656 || (do_trace_aranges && streq (name, "aranges"))
4657 )
4658 request_dump_bynumber (i, DEBUG_DUMP);
4659 }
4660
4661 }
4662
4663 if (! do_sections)
4664 return 1;
4665
4666 if (elf_header.e_shnum > 1)
4667 printf (_("\nSection Headers:\n"));
4668 else
4669 printf (_("\nSection Header:\n"));
4670
4671 if (is_32bit_elf)
4672 {
4673 if (do_section_details)
4674 {
4675 printf (_(" [Nr] Name\n"));
4676 printf (_(" Type Addr Off Size ES Lk Inf Al\n"));
4677 }
4678 else
4679 printf
4680 (_(" [Nr] Name Type Addr Off Size ES Flg Lk Inf Al\n"));
4681 }
4682 else if (do_wide)
4683 {
4684 if (do_section_details)
4685 {
4686 printf (_(" [Nr] Name\n"));
4687 printf (_(" Type Address Off Size ES Lk Inf Al\n"));
4688 }
4689 else
4690 printf
4691 (_(" [Nr] Name Type Address Off Size ES Flg Lk Inf Al\n"));
4692 }
4693 else
4694 {
4695 if (do_section_details)
4696 {
4697 printf (_(" [Nr] Name\n"));
4698 printf (_(" Type Address Offset Link\n"));
4699 printf (_(" Size EntSize Info Align\n"));
4700 }
4701 else
4702 {
4703 printf (_(" [Nr] Name Type Address Offset\n"));
4704 printf (_(" Size EntSize Flags Link Info Align\n"));
4705 }
4706 }
4707
4708 if (do_section_details)
4709 printf (_(" Flags\n"));
4710
4711 for (i = 0, section = section_headers;
4712 i < elf_header.e_shnum;
4713 i++, section++)
4714 {
4715 if (do_section_details)
4716 {
4717 printf (" [%2u] %s\n",
4718 i,
4719 SECTION_NAME (section));
4720 if (is_32bit_elf || do_wide)
4721 printf (" %-15.15s ",
4722 get_section_type_name (section->sh_type));
4723 }
4724 else
4725 printf ((do_wide ? " [%2u] %-17s %-15s "
4726 : " [%2u] %-17.17s %-15.15s "),
4727 i,
4728 SECTION_NAME (section),
4729 get_section_type_name (section->sh_type));
4730
4731 if (is_32bit_elf)
4732 {
4733 const char * link_too_big = NULL;
4734
4735 print_vma (section->sh_addr, LONG_HEX);
4736
4737 printf ( " %6.6lx %6.6lx %2.2lx",
4738 (unsigned long) section->sh_offset,
4739 (unsigned long) section->sh_size,
4740 (unsigned long) section->sh_entsize);
4741
4742 if (do_section_details)
4743 fputs (" ", stdout);
4744 else
4745 printf (" %3s ", get_elf_section_flags (section->sh_flags));
4746
4747 if (section->sh_link >= elf_header.e_shnum)
4748 {
4749 link_too_big = "";
4750 /* The sh_link value is out of range. Normally this indicates
4751 an error but it can have special values in Solaris binaries. */
4752 switch (elf_header.e_machine)
4753 {
4754 case EM_386:
4755 case EM_486:
4756 case EM_X86_64:
4757 case EM_L1OM:
4758 case EM_K1OM:
4759 case EM_OLD_SPARCV9:
4760 case EM_SPARC32PLUS:
4761 case EM_SPARCV9:
4762 case EM_SPARC:
4763 if (section->sh_link == (SHN_BEFORE & 0xffff))
4764 link_too_big = "BEFORE";
4765 else if (section->sh_link == (SHN_AFTER & 0xffff))
4766 link_too_big = "AFTER";
4767 break;
4768 default:
4769 break;
4770 }
4771 }
4772
4773 if (do_section_details)
4774 {
4775 if (link_too_big != NULL && * link_too_big)
4776 printf ("<%s> ", link_too_big);
4777 else
4778 printf ("%2u ", section->sh_link);
4779 printf ("%3u %2lu\n", section->sh_info,
4780 (unsigned long) section->sh_addralign);
4781 }
4782 else
4783 printf ("%2u %3u %2lu\n",
4784 section->sh_link,
4785 section->sh_info,
4786 (unsigned long) section->sh_addralign);
4787
4788 if (link_too_big && ! * link_too_big)
4789 warn (_("section %u: sh_link value of %u is larger than the number of sections\n"),
4790 i, section->sh_link);
4791 }
4792 else if (do_wide)
4793 {
4794 print_vma (section->sh_addr, LONG_HEX);
4795
4796 if ((long) section->sh_offset == section->sh_offset)
4797 printf (" %6.6lx", (unsigned long) section->sh_offset);
4798 else
4799 {
4800 putchar (' ');
4801 print_vma (section->sh_offset, LONG_HEX);
4802 }
4803
4804 if ((unsigned long) section->sh_size == section->sh_size)
4805 printf (" %6.6lx", (unsigned long) section->sh_size);
4806 else
4807 {
4808 putchar (' ');
4809 print_vma (section->sh_size, LONG_HEX);
4810 }
4811
4812 if ((unsigned long) section->sh_entsize == section->sh_entsize)
4813 printf (" %2.2lx", (unsigned long) section->sh_entsize);
4814 else
4815 {
4816 putchar (' ');
4817 print_vma (section->sh_entsize, LONG_HEX);
4818 }
4819
4820 if (do_section_details)
4821 fputs (" ", stdout);
4822 else
4823 printf (" %3s ", get_elf_section_flags (section->sh_flags));
4824
4825 printf ("%2u %3u ", section->sh_link, section->sh_info);
4826
4827 if ((unsigned long) section->sh_addralign == section->sh_addralign)
4828 printf ("%2lu\n", (unsigned long) section->sh_addralign);
4829 else
4830 {
4831 print_vma (section->sh_addralign, DEC);
4832 putchar ('\n');
4833 }
4834 }
4835 else if (do_section_details)
4836 {
4837 printf (" %-15.15s ",
4838 get_section_type_name (section->sh_type));
4839 print_vma (section->sh_addr, LONG_HEX);
4840 if ((long) section->sh_offset == section->sh_offset)
4841 printf (" %16.16lx", (unsigned long) section->sh_offset);
4842 else
4843 {
4844 printf (" ");
4845 print_vma (section->sh_offset, LONG_HEX);
4846 }
4847 printf (" %u\n ", section->sh_link);
4848 print_vma (section->sh_size, LONG_HEX);
4849 putchar (' ');
4850 print_vma (section->sh_entsize, LONG_HEX);
4851
4852 printf (" %-16u %lu\n",
4853 section->sh_info,
4854 (unsigned long) section->sh_addralign);
4855 }
4856 else
4857 {
4858 putchar (' ');
4859 print_vma (section->sh_addr, LONG_HEX);
4860 if ((long) section->sh_offset == section->sh_offset)
4861 printf (" %8.8lx", (unsigned long) section->sh_offset);
4862 else
4863 {
4864 printf (" ");
4865 print_vma (section->sh_offset, LONG_HEX);
4866 }
4867 printf ("\n ");
4868 print_vma (section->sh_size, LONG_HEX);
4869 printf (" ");
4870 print_vma (section->sh_entsize, LONG_HEX);
4871
4872 printf (" %3s ", get_elf_section_flags (section->sh_flags));
4873
4874 printf (" %2u %3u %lu\n",
4875 section->sh_link,
4876 section->sh_info,
4877 (unsigned long) section->sh_addralign);
4878 }
4879
4880 if (do_section_details)
4881 printf (" %s\n", get_elf_section_flags (section->sh_flags));
4882 }
4883
4884 if (!do_section_details)
4885 {
4886 if (elf_header.e_machine == EM_X86_64
4887 || elf_header.e_machine == EM_L1OM
4888 || elf_header.e_machine == EM_K1OM)
4889 printf (_("Key to Flags:\n\
4890 W (write), A (alloc), X (execute), M (merge), S (strings), l (large)\n\
4891 I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)\n\
4892 O (extra OS processing required) o (OS specific), p (processor specific)\n"));
4893 else
4894 printf (_("Key to Flags:\n\
4895 W (write), A (alloc), X (execute), M (merge), S (strings)\n\
4896 I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)\n\
4897 O (extra OS processing required) o (OS specific), p (processor specific)\n"));
4898 }
4899
4900 return 1;
4901 }
4902
4903 static const char *
4904 get_group_flags (unsigned int flags)
4905 {
4906 static char buff[32];
4907 switch (flags)
4908 {
4909 case 0:
4910 return "";
4911
4912 case GRP_COMDAT:
4913 return "COMDAT ";
4914
4915 default:
4916 snprintf (buff, sizeof (buff), _("[<unknown>: 0x%x] "), flags);
4917 break;
4918 }
4919 return buff;
4920 }
4921
4922 static int
4923 process_section_groups (FILE * file)
4924 {
4925 Elf_Internal_Shdr * section;
4926 unsigned int i;
4927 struct group * group;
4928 Elf_Internal_Shdr * symtab_sec;
4929 Elf_Internal_Shdr * strtab_sec;
4930 Elf_Internal_Sym * symtab;
4931 unsigned long num_syms;
4932 char * strtab;
4933 size_t strtab_size;
4934
4935 /* Don't process section groups unless needed. */
4936 if (!do_unwind && !do_section_groups)
4937 return 1;
4938
4939 if (elf_header.e_shnum == 0)
4940 {
4941 if (do_section_groups)
4942 printf (_("\nThere are no sections to group in this file.\n"));
4943
4944 return 1;
4945 }
4946
4947 if (section_headers == NULL)
4948 {
4949 error (_("Section headers are not available!\n"));
4950 abort ();
4951 }
4952
4953 section_headers_groups = (struct group **) calloc (elf_header.e_shnum,
4954 sizeof (struct group *));
4955
4956 if (section_headers_groups == NULL)
4957 {
4958 error (_("Out of memory\n"));
4959 return 0;
4960 }
4961
4962 /* Scan the sections for the group section. */
4963 group_count = 0;
4964 for (i = 0, section = section_headers;
4965 i < elf_header.e_shnum;
4966 i++, section++)
4967 if (section->sh_type == SHT_GROUP)
4968 group_count++;
4969
4970 if (group_count == 0)
4971 {
4972 if (do_section_groups)
4973 printf (_("\nThere are no section groups in this file.\n"));
4974
4975 return 1;
4976 }
4977
4978 section_groups = (struct group *) calloc (group_count, sizeof (struct group));
4979
4980 if (section_groups == NULL)
4981 {
4982 error (_("Out of memory\n"));
4983 return 0;
4984 }
4985
4986 symtab_sec = NULL;
4987 strtab_sec = NULL;
4988 symtab = NULL;
4989 num_syms = 0;
4990 strtab = NULL;
4991 strtab_size = 0;
4992 for (i = 0, section = section_headers, group = section_groups;
4993 i < elf_header.e_shnum;
4994 i++, section++)
4995 {
4996 if (section->sh_type == SHT_GROUP)
4997 {
4998 char * name = SECTION_NAME (section);
4999 char * group_name;
5000 unsigned char * start;
5001 unsigned char * indices;
5002 unsigned int entry, j, size;
5003 Elf_Internal_Shdr * sec;
5004 Elf_Internal_Sym * sym;
5005
5006 /* Get the symbol table. */
5007 if (section->sh_link >= elf_header.e_shnum
5008 || ((sec = section_headers + section->sh_link)->sh_type
5009 != SHT_SYMTAB))
5010 {
5011 error (_("Bad sh_link in group section `%s'\n"), name);
5012 continue;
5013 }
5014
5015 if (symtab_sec != sec)
5016 {
5017 symtab_sec = sec;
5018 if (symtab)
5019 free (symtab);
5020 symtab = GET_ELF_SYMBOLS (file, symtab_sec, & num_syms);
5021 }
5022
5023 if (symtab == NULL)
5024 {
5025 error (_("Corrupt header in group section `%s'\n"), name);
5026 continue;
5027 }
5028
5029 if (section->sh_info >= num_syms)
5030 {
5031 error (_("Bad sh_info in group section `%s'\n"), name);
5032 continue;
5033 }
5034
5035 sym = symtab + section->sh_info;
5036
5037 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5038 {
5039 if (sym->st_shndx == 0
5040 || sym->st_shndx >= elf_header.e_shnum)
5041 {
5042 error (_("Bad sh_info in group section `%s'\n"), name);
5043 continue;
5044 }
5045
5046 group_name = SECTION_NAME (section_headers + sym->st_shndx);
5047 strtab_sec = NULL;
5048 if (strtab)
5049 free (strtab);
5050 strtab = NULL;
5051 strtab_size = 0;
5052 }
5053 else
5054 {
5055 /* Get the string table. */
5056 if (symtab_sec->sh_link >= elf_header.e_shnum)
5057 {
5058 strtab_sec = NULL;
5059 if (strtab)
5060 free (strtab);
5061 strtab = NULL;
5062 strtab_size = 0;
5063 }
5064 else if (strtab_sec
5065 != (sec = section_headers + symtab_sec->sh_link))
5066 {
5067 strtab_sec = sec;
5068 if (strtab)
5069 free (strtab);
5070 strtab = (char *) get_data (NULL, file, strtab_sec->sh_offset,
5071 1, strtab_sec->sh_size,
5072 _("string table"));
5073 strtab_size = strtab != NULL ? strtab_sec->sh_size : 0;
5074 }
5075 group_name = sym->st_name < strtab_size
5076 ? strtab + sym->st_name : _("<corrupt>");
5077 }
5078
5079 start = (unsigned char *) get_data (NULL, file, section->sh_offset,
5080 1, section->sh_size,
5081 _("section data"));
5082 if (start == NULL)
5083 continue;
5084
5085 indices = start;
5086 size = (section->sh_size / section->sh_entsize) - 1;
5087 entry = byte_get (indices, 4);
5088 indices += 4;
5089
5090 if (do_section_groups)
5091 {
5092 printf (_("\n%sgroup section [%5u] `%s' [%s] contains %u sections:\n"),
5093 get_group_flags (entry), i, name, group_name, size);
5094
5095 printf (_(" [Index] Name\n"));
5096 }
5097
5098 group->group_index = i;
5099
5100 for (j = 0; j < size; j++)
5101 {
5102 struct group_list * g;
5103
5104 entry = byte_get (indices, 4);
5105 indices += 4;
5106
5107 if (entry >= elf_header.e_shnum)
5108 {
5109 error (_("section [%5u] in group section [%5u] > maximum section [%5u]\n"),
5110 entry, i, elf_header.e_shnum - 1);
5111 continue;
5112 }
5113
5114 if (section_headers_groups [entry] != NULL)
5115 {
5116 if (entry)
5117 {
5118 error (_("section [%5u] in group section [%5u] already in group section [%5u]\n"),
5119 entry, i,
5120 section_headers_groups [entry]->group_index);
5121 continue;
5122 }
5123 else
5124 {
5125 /* Intel C/C++ compiler may put section 0 in a
5126 section group. We just warn it the first time
5127 and ignore it afterwards. */
5128 static int warned = 0;
5129 if (!warned)
5130 {
5131 error (_("section 0 in group section [%5u]\n"),
5132 section_headers_groups [entry]->group_index);
5133 warned++;
5134 }
5135 }
5136 }
5137
5138 section_headers_groups [entry] = group;
5139
5140 if (do_section_groups)
5141 {
5142 sec = section_headers + entry;
5143 printf (" [%5u] %s\n", entry, SECTION_NAME (sec));
5144 }
5145
5146 g = (struct group_list *) xmalloc (sizeof (struct group_list));
5147 g->section_index = entry;
5148 g->next = group->root;
5149 group->root = g;
5150 }
5151
5152 if (start)
5153 free (start);
5154
5155 group++;
5156 }
5157 }
5158
5159 if (symtab)
5160 free (symtab);
5161 if (strtab)
5162 free (strtab);
5163 return 1;
5164 }
5165
5166 /* Data used to display dynamic fixups. */
5167
5168 struct ia64_vms_dynfixup
5169 {
5170 bfd_vma needed_ident; /* Library ident number. */
5171 bfd_vma needed; /* Index in the dstrtab of the library name. */
5172 bfd_vma fixup_needed; /* Index of the library. */
5173 bfd_vma fixup_rela_cnt; /* Number of fixups. */
5174 bfd_vma fixup_rela_off; /* Fixups offset in the dynamic segment. */
5175 };
5176
5177 /* Data used to display dynamic relocations. */
5178
5179 struct ia64_vms_dynimgrela
5180 {
5181 bfd_vma img_rela_cnt; /* Number of relocations. */
5182 bfd_vma img_rela_off; /* Reloc offset in the dynamic segment. */
5183 };
5184
5185 /* Display IA-64 OpenVMS dynamic fixups (used to dynamically link a shared
5186 library). */
5187
5188 static void
5189 dump_ia64_vms_dynamic_fixups (FILE *file, struct ia64_vms_dynfixup *fixup,
5190 const char *strtab, unsigned int strtab_sz)
5191 {
5192 Elf64_External_VMS_IMAGE_FIXUP *imfs;
5193 long i;
5194 const char *lib_name;
5195
5196 imfs = get_data (NULL, file, dynamic_addr + fixup->fixup_rela_off,
5197 1, fixup->fixup_rela_cnt * sizeof (*imfs),
5198 _("dynamic section image fixups"));
5199 if (!imfs)
5200 return;
5201
5202 if (fixup->needed < strtab_sz)
5203 lib_name = strtab + fixup->needed;
5204 else
5205 {
5206 warn ("corrupt library name index of 0x%lx found in dynamic entry",
5207 (unsigned long) fixup->needed);
5208 lib_name = "???";
5209 }
5210 printf (_("\nImage fixups for needed library #%d: %s - ident: %lx\n"),
5211 (int) fixup->fixup_needed, lib_name, (long) fixup->needed_ident);
5212 printf
5213 (_("Seg Offset Type SymVec DataType\n"));
5214
5215 for (i = 0; i < (long) fixup->fixup_rela_cnt; i++)
5216 {
5217 unsigned int type;
5218 const char *rtype;
5219
5220 printf ("%3u ", (unsigned) BYTE_GET (imfs [i].fixup_seg));
5221 printf_vma ((bfd_vma) BYTE_GET (imfs [i].fixup_offset));
5222 type = BYTE_GET (imfs [i].type);
5223 rtype = elf_ia64_reloc_type (type);
5224 if (rtype == NULL)
5225 printf (" 0x%08x ", type);
5226 else
5227 printf (" %-32s ", rtype);
5228 printf ("%6u ", (unsigned) BYTE_GET (imfs [i].symvec_index));
5229 printf ("0x%08x\n", (unsigned) BYTE_GET (imfs [i].data_type));
5230 }
5231
5232 free (imfs);
5233 }
5234
5235 /* Display IA-64 OpenVMS dynamic relocations (used to relocate an image). */
5236
5237 static void
5238 dump_ia64_vms_dynamic_relocs (FILE *file, struct ia64_vms_dynimgrela *imgrela)
5239 {
5240 Elf64_External_VMS_IMAGE_RELA *imrs;
5241 long i;
5242
5243 imrs = get_data (NULL, file, dynamic_addr + imgrela->img_rela_off,
5244 1, imgrela->img_rela_cnt * sizeof (*imrs),
5245 _("dynamic section image relocations"));
5246 if (!imrs)
5247 return;
5248
5249 printf (_("\nImage relocs\n"));
5250 printf
5251 (_("Seg Offset Type Addend Seg Sym Off\n"));
5252
5253 for (i = 0; i < (long) imgrela->img_rela_cnt; i++)
5254 {
5255 unsigned int type;
5256 const char *rtype;
5257
5258 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].rela_seg));
5259 printf ("%08" BFD_VMA_FMT "x ",
5260 (bfd_vma) BYTE_GET (imrs [i].rela_offset));
5261 type = BYTE_GET (imrs [i].type);
5262 rtype = elf_ia64_reloc_type (type);
5263 if (rtype == NULL)
5264 printf ("0x%08x ", type);
5265 else
5266 printf ("%-31s ", rtype);
5267 print_vma (BYTE_GET (imrs [i].addend), FULL_HEX);
5268 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].sym_seg));
5269 printf ("%08" BFD_VMA_FMT "x\n",
5270 (bfd_vma) BYTE_GET (imrs [i].sym_offset));
5271 }
5272
5273 free (imrs);
5274 }
5275
5276 /* Display IA-64 OpenVMS dynamic relocations and fixups. */
5277
5278 static int
5279 process_ia64_vms_dynamic_relocs (FILE *file)
5280 {
5281 struct ia64_vms_dynfixup fixup;
5282 struct ia64_vms_dynimgrela imgrela;
5283 Elf_Internal_Dyn *entry;
5284 int res = 0;
5285 bfd_vma strtab_off = 0;
5286 bfd_vma strtab_sz = 0;
5287 char *strtab = NULL;
5288
5289 memset (&fixup, 0, sizeof (fixup));
5290 memset (&imgrela, 0, sizeof (imgrela));
5291
5292 /* Note: the order of the entries is specified by the OpenVMS specs. */
5293 for (entry = dynamic_section;
5294 entry < dynamic_section + dynamic_nent;
5295 entry++)
5296 {
5297 switch (entry->d_tag)
5298 {
5299 case DT_IA_64_VMS_STRTAB_OFFSET:
5300 strtab_off = entry->d_un.d_val;
5301 break;
5302 case DT_STRSZ:
5303 strtab_sz = entry->d_un.d_val;
5304 if (strtab == NULL)
5305 strtab = get_data (NULL, file, dynamic_addr + strtab_off,
5306 1, strtab_sz, _("dynamic string section"));
5307 break;
5308
5309 case DT_IA_64_VMS_NEEDED_IDENT:
5310 fixup.needed_ident = entry->d_un.d_val;
5311 break;
5312 case DT_NEEDED:
5313 fixup.needed = entry->d_un.d_val;
5314 break;
5315 case DT_IA_64_VMS_FIXUP_NEEDED:
5316 fixup.fixup_needed = entry->d_un.d_val;
5317 break;
5318 case DT_IA_64_VMS_FIXUP_RELA_CNT:
5319 fixup.fixup_rela_cnt = entry->d_un.d_val;
5320 break;
5321 case DT_IA_64_VMS_FIXUP_RELA_OFF:
5322 fixup.fixup_rela_off = entry->d_un.d_val;
5323 res++;
5324 dump_ia64_vms_dynamic_fixups (file, &fixup, strtab, strtab_sz);
5325 break;
5326
5327 case DT_IA_64_VMS_IMG_RELA_CNT:
5328 imgrela.img_rela_cnt = entry->d_un.d_val;
5329 break;
5330 case DT_IA_64_VMS_IMG_RELA_OFF:
5331 imgrela.img_rela_off = entry->d_un.d_val;
5332 res++;
5333 dump_ia64_vms_dynamic_relocs (file, &imgrela);
5334 break;
5335
5336 default:
5337 break;
5338 }
5339 }
5340
5341 if (strtab != NULL)
5342 free (strtab);
5343
5344 return res;
5345 }
5346
5347 static struct
5348 {
5349 const char * name;
5350 int reloc;
5351 int size;
5352 int rela;
5353 } dynamic_relocations [] =
5354 {
5355 { "REL", DT_REL, DT_RELSZ, FALSE },
5356 { "RELA", DT_RELA, DT_RELASZ, TRUE },
5357 { "PLT", DT_JMPREL, DT_PLTRELSZ, UNKNOWN }
5358 };
5359
5360 /* Process the reloc section. */
5361
5362 static int
5363 process_relocs (FILE * file)
5364 {
5365 unsigned long rel_size;
5366 unsigned long rel_offset;
5367
5368
5369 if (!do_reloc)
5370 return 1;
5371
5372 if (do_using_dynamic)
5373 {
5374 int is_rela;
5375 const char * name;
5376 int has_dynamic_reloc;
5377 unsigned int i;
5378
5379 has_dynamic_reloc = 0;
5380
5381 for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
5382 {
5383 is_rela = dynamic_relocations [i].rela;
5384 name = dynamic_relocations [i].name;
5385 rel_size = dynamic_info [dynamic_relocations [i].size];
5386 rel_offset = dynamic_info [dynamic_relocations [i].reloc];
5387
5388 has_dynamic_reloc |= rel_size;
5389
5390 if (is_rela == UNKNOWN)
5391 {
5392 if (dynamic_relocations [i].reloc == DT_JMPREL)
5393 switch (dynamic_info[DT_PLTREL])
5394 {
5395 case DT_REL:
5396 is_rela = FALSE;
5397 break;
5398 case DT_RELA:
5399 is_rela = TRUE;
5400 break;
5401 }
5402 }
5403
5404 if (rel_size)
5405 {
5406 printf
5407 (_("\n'%s' relocation section at offset 0x%lx contains %ld bytes:\n"),
5408 name, rel_offset, rel_size);
5409
5410 dump_relocations (file,
5411 offset_from_vma (file, rel_offset, rel_size),
5412 rel_size,
5413 dynamic_symbols, num_dynamic_syms,
5414 dynamic_strings, dynamic_strings_length, is_rela);
5415 }
5416 }
5417
5418 if (is_ia64_vms ())
5419 has_dynamic_reloc |= process_ia64_vms_dynamic_relocs (file);
5420
5421 if (! has_dynamic_reloc)
5422 printf (_("\nThere are no dynamic relocations in this file.\n"));
5423 }
5424 else
5425 {
5426 Elf_Internal_Shdr * section;
5427 unsigned long i;
5428 int found = 0;
5429
5430 for (i = 0, section = section_headers;
5431 i < elf_header.e_shnum;
5432 i++, section++)
5433 {
5434 if ( section->sh_type != SHT_RELA
5435 && section->sh_type != SHT_REL)
5436 continue;
5437
5438 rel_offset = section->sh_offset;
5439 rel_size = section->sh_size;
5440
5441 if (rel_size)
5442 {
5443 Elf_Internal_Shdr * strsec;
5444 int is_rela;
5445
5446 printf (_("\nRelocation section "));
5447
5448 if (string_table == NULL)
5449 printf ("%d", section->sh_name);
5450 else
5451 printf ("'%s'", SECTION_NAME (section));
5452
5453 printf (_(" at offset 0x%lx contains %lu entries:\n"),
5454 rel_offset, (unsigned long) (rel_size / section->sh_entsize));
5455
5456 is_rela = section->sh_type == SHT_RELA;
5457
5458 if (section->sh_link != 0
5459 && section->sh_link < elf_header.e_shnum)
5460 {
5461 Elf_Internal_Shdr * symsec;
5462 Elf_Internal_Sym * symtab;
5463 unsigned long nsyms;
5464 unsigned long strtablen = 0;
5465 char * strtab = NULL;
5466
5467 symsec = section_headers + section->sh_link;
5468 if (symsec->sh_type != SHT_SYMTAB
5469 && symsec->sh_type != SHT_DYNSYM)
5470 continue;
5471
5472 symtab = GET_ELF_SYMBOLS (file, symsec, & nsyms);
5473
5474 if (symtab == NULL)
5475 continue;
5476
5477 if (symsec->sh_link != 0
5478 && symsec->sh_link < elf_header.e_shnum)
5479 {
5480 strsec = section_headers + symsec->sh_link;
5481
5482 strtab = (char *) get_data (NULL, file, strsec->sh_offset,
5483 1, strsec->sh_size,
5484 _("string table"));
5485 strtablen = strtab == NULL ? 0 : strsec->sh_size;
5486 }
5487
5488 dump_relocations (file, rel_offset, rel_size,
5489 symtab, nsyms, strtab, strtablen, is_rela);
5490 if (strtab)
5491 free (strtab);
5492 free (symtab);
5493 }
5494 else
5495 dump_relocations (file, rel_offset, rel_size,
5496 NULL, 0, NULL, 0, is_rela);
5497
5498 found = 1;
5499 }
5500 }
5501
5502 if (! found)
5503 printf (_("\nThere are no relocations in this file.\n"));
5504 }
5505
5506 return 1;
5507 }
5508
5509 /* Process the unwind section. */
5510
5511 #include "unwind-ia64.h"
5512
5513 /* An absolute address consists of a section and an offset. If the
5514 section is NULL, the offset itself is the address, otherwise, the
5515 address equals to LOAD_ADDRESS(section) + offset. */
5516
5517 struct absaddr
5518 {
5519 unsigned short section;
5520 bfd_vma offset;
5521 };
5522
5523 #define ABSADDR(a) \
5524 ((a).section \
5525 ? section_headers [(a).section].sh_addr + (a).offset \
5526 : (a).offset)
5527
5528 struct ia64_unw_table_entry
5529 {
5530 struct absaddr start;
5531 struct absaddr end;
5532 struct absaddr info;
5533 };
5534
5535 struct ia64_unw_aux_info
5536 {
5537
5538 struct ia64_unw_table_entry *table; /* Unwind table. */
5539 unsigned long table_len; /* Length of unwind table. */
5540 unsigned char * info; /* Unwind info. */
5541 unsigned long info_size; /* Size of unwind info. */
5542 bfd_vma info_addr; /* starting address of unwind info. */
5543 bfd_vma seg_base; /* Starting address of segment. */
5544 Elf_Internal_Sym * symtab; /* The symbol table. */
5545 unsigned long nsyms; /* Number of symbols. */
5546 char * strtab; /* The string table. */
5547 unsigned long strtab_size; /* Size of string table. */
5548 };
5549
5550 static void
5551 find_symbol_for_address (Elf_Internal_Sym * symtab,
5552 unsigned long nsyms,
5553 const char * strtab,
5554 unsigned long strtab_size,
5555 struct absaddr addr,
5556 const char ** symname,
5557 bfd_vma * offset)
5558 {
5559 bfd_vma dist = 0x100000;
5560 Elf_Internal_Sym * sym;
5561 Elf_Internal_Sym * best = NULL;
5562 unsigned long i;
5563
5564 REMOVE_ARCH_BITS (addr.offset);
5565
5566 for (i = 0, sym = symtab; i < nsyms; ++i, ++sym)
5567 {
5568 bfd_vma value = sym->st_value;
5569
5570 REMOVE_ARCH_BITS (value);
5571
5572 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC
5573 && sym->st_name != 0
5574 && (addr.section == SHN_UNDEF || addr.section == sym->st_shndx)
5575 && addr.offset >= value
5576 && addr.offset - value < dist)
5577 {
5578 best = sym;
5579 dist = addr.offset - value;
5580 if (!dist)
5581 break;
5582 }
5583 }
5584 if (best)
5585 {
5586 *symname = (best->st_name >= strtab_size
5587 ? _("<corrupt>") : strtab + best->st_name);
5588 *offset = dist;
5589 return;
5590 }
5591 *symname = NULL;
5592 *offset = addr.offset;
5593 }
5594
5595 static void
5596 dump_ia64_unwind (struct ia64_unw_aux_info * aux)
5597 {
5598 struct ia64_unw_table_entry * tp;
5599 int in_body;
5600
5601 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
5602 {
5603 bfd_vma stamp;
5604 bfd_vma offset;
5605 const unsigned char * dp;
5606 const unsigned char * head;
5607 const char * procname;
5608
5609 find_symbol_for_address (aux->symtab, aux->nsyms, aux->strtab,
5610 aux->strtab_size, tp->start, &procname, &offset);
5611
5612 fputs ("\n<", stdout);
5613
5614 if (procname)
5615 {
5616 fputs (procname, stdout);
5617
5618 if (offset)
5619 printf ("+%lx", (unsigned long) offset);
5620 }
5621
5622 fputs (">: [", stdout);
5623 print_vma (tp->start.offset, PREFIX_HEX);
5624 fputc ('-', stdout);
5625 print_vma (tp->end.offset, PREFIX_HEX);
5626 printf ("], info at +0x%lx\n",
5627 (unsigned long) (tp->info.offset - aux->seg_base));
5628
5629 head = aux->info + (ABSADDR (tp->info) - aux->info_addr);
5630 stamp = byte_get ((unsigned char *) head, sizeof (stamp));
5631
5632 printf (" v%u, flags=0x%lx (%s%s), len=%lu bytes\n",
5633 (unsigned) UNW_VER (stamp),
5634 (unsigned long) ((stamp & UNW_FLAG_MASK) >> 32),
5635 UNW_FLAG_EHANDLER (stamp) ? " ehandler" : "",
5636 UNW_FLAG_UHANDLER (stamp) ? " uhandler" : "",
5637 (unsigned long) (eh_addr_size * UNW_LENGTH (stamp)));
5638
5639 if (UNW_VER (stamp) != 1)
5640 {
5641 printf (_("\tUnknown version.\n"));
5642 continue;
5643 }
5644
5645 in_body = 0;
5646 for (dp = head + 8; dp < head + 8 + eh_addr_size * UNW_LENGTH (stamp);)
5647 dp = unw_decode (dp, in_body, & in_body);
5648 }
5649 }
5650
5651 static int
5652 slurp_ia64_unwind_table (FILE * file,
5653 struct ia64_unw_aux_info * aux,
5654 Elf_Internal_Shdr * sec)
5655 {
5656 unsigned long size, nrelas, i;
5657 Elf_Internal_Phdr * seg;
5658 struct ia64_unw_table_entry * tep;
5659 Elf_Internal_Shdr * relsec;
5660 Elf_Internal_Rela * rela;
5661 Elf_Internal_Rela * rp;
5662 unsigned char * table;
5663 unsigned char * tp;
5664 Elf_Internal_Sym * sym;
5665 const char * relname;
5666
5667 /* First, find the starting address of the segment that includes
5668 this section: */
5669
5670 if (elf_header.e_phnum)
5671 {
5672 if (! get_program_headers (file))
5673 return 0;
5674
5675 for (seg = program_headers;
5676 seg < program_headers + elf_header.e_phnum;
5677 ++seg)
5678 {
5679 if (seg->p_type != PT_LOAD)
5680 continue;
5681
5682 if (sec->sh_addr >= seg->p_vaddr
5683 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
5684 {
5685 aux->seg_base = seg->p_vaddr;
5686 break;
5687 }
5688 }
5689 }
5690
5691 /* Second, build the unwind table from the contents of the unwind section: */
5692 size = sec->sh_size;
5693 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
5694 _("unwind table"));
5695 if (!table)
5696 return 0;
5697
5698 aux->table = (struct ia64_unw_table_entry *)
5699 xcmalloc (size / (3 * eh_addr_size), sizeof (aux->table[0]));
5700 tep = aux->table;
5701 for (tp = table; tp < table + size; ++tep)
5702 {
5703 tep->start.section = SHN_UNDEF;
5704 tep->end.section = SHN_UNDEF;
5705 tep->info.section = SHN_UNDEF;
5706 tep->start.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
5707 tep->end.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
5708 tep->info.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
5709 tep->start.offset += aux->seg_base;
5710 tep->end.offset += aux->seg_base;
5711 tep->info.offset += aux->seg_base;
5712 }
5713 free (table);
5714
5715 /* Third, apply any relocations to the unwind table: */
5716 for (relsec = section_headers;
5717 relsec < section_headers + elf_header.e_shnum;
5718 ++relsec)
5719 {
5720 if (relsec->sh_type != SHT_RELA
5721 || relsec->sh_info >= elf_header.e_shnum
5722 || section_headers + relsec->sh_info != sec)
5723 continue;
5724
5725 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
5726 & rela, & nrelas))
5727 return 0;
5728
5729 for (rp = rela; rp < rela + nrelas; ++rp)
5730 {
5731 relname = elf_ia64_reloc_type (get_reloc_type (rp->r_info));
5732 sym = aux->symtab + get_reloc_symindex (rp->r_info);
5733
5734 if (! const_strneq (relname, "R_IA64_SEGREL"))
5735 {
5736 warn (_("Skipping unexpected relocation type %s\n"), relname);
5737 continue;
5738 }
5739
5740 i = rp->r_offset / (3 * eh_addr_size);
5741
5742 switch (rp->r_offset/eh_addr_size % 3)
5743 {
5744 case 0:
5745 aux->table[i].start.section = sym->st_shndx;
5746 aux->table[i].start.offset = rp->r_addend + sym->st_value;
5747 break;
5748 case 1:
5749 aux->table[i].end.section = sym->st_shndx;
5750 aux->table[i].end.offset = rp->r_addend + sym->st_value;
5751 break;
5752 case 2:
5753 aux->table[i].info.section = sym->st_shndx;
5754 aux->table[i].info.offset = rp->r_addend + sym->st_value;
5755 break;
5756 default:
5757 break;
5758 }
5759 }
5760
5761 free (rela);
5762 }
5763
5764 aux->table_len = size / (3 * eh_addr_size);
5765 return 1;
5766 }
5767
5768 static int
5769 ia64_process_unwind (FILE * file)
5770 {
5771 Elf_Internal_Shdr * sec;
5772 Elf_Internal_Shdr * unwsec = NULL;
5773 Elf_Internal_Shdr * strsec;
5774 unsigned long i, unwcount = 0, unwstart = 0;
5775 struct ia64_unw_aux_info aux;
5776
5777 memset (& aux, 0, sizeof (aux));
5778
5779 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
5780 {
5781 if (sec->sh_type == SHT_SYMTAB
5782 && sec->sh_link < elf_header.e_shnum)
5783 {
5784 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
5785
5786 strsec = section_headers + sec->sh_link;
5787 assert (aux.strtab == NULL);
5788 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
5789 1, strsec->sh_size,
5790 _("string table"));
5791 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
5792 }
5793 else if (sec->sh_type == SHT_IA_64_UNWIND)
5794 unwcount++;
5795 }
5796
5797 if (!unwcount)
5798 printf (_("\nThere are no unwind sections in this file.\n"));
5799
5800 while (unwcount-- > 0)
5801 {
5802 char * suffix;
5803 size_t len, len2;
5804
5805 for (i = unwstart, sec = section_headers + unwstart;
5806 i < elf_header.e_shnum; ++i, ++sec)
5807 if (sec->sh_type == SHT_IA_64_UNWIND)
5808 {
5809 unwsec = sec;
5810 break;
5811 }
5812
5813 unwstart = i + 1;
5814 len = sizeof (ELF_STRING_ia64_unwind_once) - 1;
5815
5816 if ((unwsec->sh_flags & SHF_GROUP) != 0)
5817 {
5818 /* We need to find which section group it is in. */
5819 struct group_list * g = section_headers_groups [i]->root;
5820
5821 for (; g != NULL; g = g->next)
5822 {
5823 sec = section_headers + g->section_index;
5824
5825 if (streq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info))
5826 break;
5827 }
5828
5829 if (g == NULL)
5830 i = elf_header.e_shnum;
5831 }
5832 else if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind_once, len))
5833 {
5834 /* .gnu.linkonce.ia64unw.FOO -> .gnu.linkonce.ia64unwi.FOO. */
5835 len2 = sizeof (ELF_STRING_ia64_unwind_info_once) - 1;
5836 suffix = SECTION_NAME (unwsec) + len;
5837 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
5838 ++i, ++sec)
5839 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info_once, len2)
5840 && streq (SECTION_NAME (sec) + len2, suffix))
5841 break;
5842 }
5843 else
5844 {
5845 /* .IA_64.unwindFOO -> .IA_64.unwind_infoFOO
5846 .IA_64.unwind or BAR -> .IA_64.unwind_info. */
5847 len = sizeof (ELF_STRING_ia64_unwind) - 1;
5848 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
5849 suffix = "";
5850 if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind, len))
5851 suffix = SECTION_NAME (unwsec) + len;
5852 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
5853 ++i, ++sec)
5854 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info, len2)
5855 && streq (SECTION_NAME (sec) + len2, suffix))
5856 break;
5857 }
5858
5859 if (i == elf_header.e_shnum)
5860 {
5861 printf (_("\nCould not find unwind info section for "));
5862
5863 if (string_table == NULL)
5864 printf ("%d", unwsec->sh_name);
5865 else
5866 printf (_("'%s'"), SECTION_NAME (unwsec));
5867 }
5868 else
5869 {
5870 aux.info_addr = sec->sh_addr;
5871 aux.info = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1,
5872 sec->sh_size,
5873 _("unwind info"));
5874 aux.info_size = aux.info == NULL ? 0 : sec->sh_size;
5875
5876 printf (_("\nUnwind section "));
5877
5878 if (string_table == NULL)
5879 printf ("%d", unwsec->sh_name);
5880 else
5881 printf (_("'%s'"), SECTION_NAME (unwsec));
5882
5883 printf (_(" at offset 0x%lx contains %lu entries:\n"),
5884 (unsigned long) unwsec->sh_offset,
5885 (unsigned long) (unwsec->sh_size / (3 * eh_addr_size)));
5886
5887 (void) slurp_ia64_unwind_table (file, & aux, unwsec);
5888
5889 if (aux.table_len > 0)
5890 dump_ia64_unwind (& aux);
5891
5892 if (aux.table)
5893 free ((char *) aux.table);
5894 if (aux.info)
5895 free ((char *) aux.info);
5896 aux.table = NULL;
5897 aux.info = NULL;
5898 }
5899 }
5900
5901 if (aux.symtab)
5902 free (aux.symtab);
5903 if (aux.strtab)
5904 free ((char *) aux.strtab);
5905
5906 return 1;
5907 }
5908
5909 struct hppa_unw_table_entry
5910 {
5911 struct absaddr start;
5912 struct absaddr end;
5913 unsigned int Cannot_unwind:1; /* 0 */
5914 unsigned int Millicode:1; /* 1 */
5915 unsigned int Millicode_save_sr0:1; /* 2 */
5916 unsigned int Region_description:2; /* 3..4 */
5917 unsigned int reserved1:1; /* 5 */
5918 unsigned int Entry_SR:1; /* 6 */
5919 unsigned int Entry_FR:4; /* number saved */ /* 7..10 */
5920 unsigned int Entry_GR:5; /* number saved */ /* 11..15 */
5921 unsigned int Args_stored:1; /* 16 */
5922 unsigned int Variable_Frame:1; /* 17 */
5923 unsigned int Separate_Package_Body:1; /* 18 */
5924 unsigned int Frame_Extension_Millicode:1; /* 19 */
5925 unsigned int Stack_Overflow_Check:1; /* 20 */
5926 unsigned int Two_Instruction_SP_Increment:1; /* 21 */
5927 unsigned int Ada_Region:1; /* 22 */
5928 unsigned int cxx_info:1; /* 23 */
5929 unsigned int cxx_try_catch:1; /* 24 */
5930 unsigned int sched_entry_seq:1; /* 25 */
5931 unsigned int reserved2:1; /* 26 */
5932 unsigned int Save_SP:1; /* 27 */
5933 unsigned int Save_RP:1; /* 28 */
5934 unsigned int Save_MRP_in_frame:1; /* 29 */
5935 unsigned int extn_ptr_defined:1; /* 30 */
5936 unsigned int Cleanup_defined:1; /* 31 */
5937
5938 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
5939 unsigned int HP_UX_interrupt_marker:1; /* 1 */
5940 unsigned int Large_frame:1; /* 2 */
5941 unsigned int Pseudo_SP_Set:1; /* 3 */
5942 unsigned int reserved4:1; /* 4 */
5943 unsigned int Total_frame_size:27; /* 5..31 */
5944 };
5945
5946 struct hppa_unw_aux_info
5947 {
5948 struct hppa_unw_table_entry *table; /* Unwind table. */
5949 unsigned long table_len; /* Length of unwind table. */
5950 bfd_vma seg_base; /* Starting address of segment. */
5951 Elf_Internal_Sym * symtab; /* The symbol table. */
5952 unsigned long nsyms; /* Number of symbols. */
5953 char * strtab; /* The string table. */
5954 unsigned long strtab_size; /* Size of string table. */
5955 };
5956
5957 static void
5958 dump_hppa_unwind (struct hppa_unw_aux_info * aux)
5959 {
5960 struct hppa_unw_table_entry * tp;
5961
5962 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
5963 {
5964 bfd_vma offset;
5965 const char * procname;
5966
5967 find_symbol_for_address (aux->symtab, aux->nsyms, aux->strtab,
5968 aux->strtab_size, tp->start, &procname,
5969 &offset);
5970
5971 fputs ("\n<", stdout);
5972
5973 if (procname)
5974 {
5975 fputs (procname, stdout);
5976
5977 if (offset)
5978 printf ("+%lx", (unsigned long) offset);
5979 }
5980
5981 fputs (">: [", stdout);
5982 print_vma (tp->start.offset, PREFIX_HEX);
5983 fputc ('-', stdout);
5984 print_vma (tp->end.offset, PREFIX_HEX);
5985 printf ("]\n\t");
5986
5987 #define PF(_m) if (tp->_m) printf (#_m " ");
5988 #define PV(_m) if (tp->_m) printf (#_m "=%d ", tp->_m);
5989 PF(Cannot_unwind);
5990 PF(Millicode);
5991 PF(Millicode_save_sr0);
5992 /* PV(Region_description); */
5993 PF(Entry_SR);
5994 PV(Entry_FR);
5995 PV(Entry_GR);
5996 PF(Args_stored);
5997 PF(Variable_Frame);
5998 PF(Separate_Package_Body);
5999 PF(Frame_Extension_Millicode);
6000 PF(Stack_Overflow_Check);
6001 PF(Two_Instruction_SP_Increment);
6002 PF(Ada_Region);
6003 PF(cxx_info);
6004 PF(cxx_try_catch);
6005 PF(sched_entry_seq);
6006 PF(Save_SP);
6007 PF(Save_RP);
6008 PF(Save_MRP_in_frame);
6009 PF(extn_ptr_defined);
6010 PF(Cleanup_defined);
6011 PF(MPE_XL_interrupt_marker);
6012 PF(HP_UX_interrupt_marker);
6013 PF(Large_frame);
6014 PF(Pseudo_SP_Set);
6015 PV(Total_frame_size);
6016 #undef PF
6017 #undef PV
6018 }
6019
6020 printf ("\n");
6021 }
6022
6023 static int
6024 slurp_hppa_unwind_table (FILE * file,
6025 struct hppa_unw_aux_info * aux,
6026 Elf_Internal_Shdr * sec)
6027 {
6028 unsigned long size, unw_ent_size, nentries, nrelas, i;
6029 Elf_Internal_Phdr * seg;
6030 struct hppa_unw_table_entry * tep;
6031 Elf_Internal_Shdr * relsec;
6032 Elf_Internal_Rela * rela;
6033 Elf_Internal_Rela * rp;
6034 unsigned char * table;
6035 unsigned char * tp;
6036 Elf_Internal_Sym * sym;
6037 const char * relname;
6038
6039 /* First, find the starting address of the segment that includes
6040 this section. */
6041
6042 if (elf_header.e_phnum)
6043 {
6044 if (! get_program_headers (file))
6045 return 0;
6046
6047 for (seg = program_headers;
6048 seg < program_headers + elf_header.e_phnum;
6049 ++seg)
6050 {
6051 if (seg->p_type != PT_LOAD)
6052 continue;
6053
6054 if (sec->sh_addr >= seg->p_vaddr
6055 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
6056 {
6057 aux->seg_base = seg->p_vaddr;
6058 break;
6059 }
6060 }
6061 }
6062
6063 /* Second, build the unwind table from the contents of the unwind
6064 section. */
6065 size = sec->sh_size;
6066 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
6067 _("unwind table"));
6068 if (!table)
6069 return 0;
6070
6071 unw_ent_size = 16;
6072 nentries = size / unw_ent_size;
6073 size = unw_ent_size * nentries;
6074
6075 tep = aux->table = (struct hppa_unw_table_entry *)
6076 xcmalloc (nentries, sizeof (aux->table[0]));
6077
6078 for (tp = table; tp < table + size; tp += unw_ent_size, ++tep)
6079 {
6080 unsigned int tmp1, tmp2;
6081
6082 tep->start.section = SHN_UNDEF;
6083 tep->end.section = SHN_UNDEF;
6084
6085 tep->start.offset = byte_get ((unsigned char *) tp + 0, 4);
6086 tep->end.offset = byte_get ((unsigned char *) tp + 4, 4);
6087 tmp1 = byte_get ((unsigned char *) tp + 8, 4);
6088 tmp2 = byte_get ((unsigned char *) tp + 12, 4);
6089
6090 tep->start.offset += aux->seg_base;
6091 tep->end.offset += aux->seg_base;
6092
6093 tep->Cannot_unwind = (tmp1 >> 31) & 0x1;
6094 tep->Millicode = (tmp1 >> 30) & 0x1;
6095 tep->Millicode_save_sr0 = (tmp1 >> 29) & 0x1;
6096 tep->Region_description = (tmp1 >> 27) & 0x3;
6097 tep->reserved1 = (tmp1 >> 26) & 0x1;
6098 tep->Entry_SR = (tmp1 >> 25) & 0x1;
6099 tep->Entry_FR = (tmp1 >> 21) & 0xf;
6100 tep->Entry_GR = (tmp1 >> 16) & 0x1f;
6101 tep->Args_stored = (tmp1 >> 15) & 0x1;
6102 tep->Variable_Frame = (tmp1 >> 14) & 0x1;
6103 tep->Separate_Package_Body = (tmp1 >> 13) & 0x1;
6104 tep->Frame_Extension_Millicode = (tmp1 >> 12) & 0x1;
6105 tep->Stack_Overflow_Check = (tmp1 >> 11) & 0x1;
6106 tep->Two_Instruction_SP_Increment = (tmp1 >> 10) & 0x1;
6107 tep->Ada_Region = (tmp1 >> 9) & 0x1;
6108 tep->cxx_info = (tmp1 >> 8) & 0x1;
6109 tep->cxx_try_catch = (tmp1 >> 7) & 0x1;
6110 tep->sched_entry_seq = (tmp1 >> 6) & 0x1;
6111 tep->reserved2 = (tmp1 >> 5) & 0x1;
6112 tep->Save_SP = (tmp1 >> 4) & 0x1;
6113 tep->Save_RP = (tmp1 >> 3) & 0x1;
6114 tep->Save_MRP_in_frame = (tmp1 >> 2) & 0x1;
6115 tep->extn_ptr_defined = (tmp1 >> 1) & 0x1;
6116 tep->Cleanup_defined = tmp1 & 0x1;
6117
6118 tep->MPE_XL_interrupt_marker = (tmp2 >> 31) & 0x1;
6119 tep->HP_UX_interrupt_marker = (tmp2 >> 30) & 0x1;
6120 tep->Large_frame = (tmp2 >> 29) & 0x1;
6121 tep->Pseudo_SP_Set = (tmp2 >> 28) & 0x1;
6122 tep->reserved4 = (tmp2 >> 27) & 0x1;
6123 tep->Total_frame_size = tmp2 & 0x7ffffff;
6124 }
6125 free (table);
6126
6127 /* Third, apply any relocations to the unwind table. */
6128 for (relsec = section_headers;
6129 relsec < section_headers + elf_header.e_shnum;
6130 ++relsec)
6131 {
6132 if (relsec->sh_type != SHT_RELA
6133 || relsec->sh_info >= elf_header.e_shnum
6134 || section_headers + relsec->sh_info != sec)
6135 continue;
6136
6137 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
6138 & rela, & nrelas))
6139 return 0;
6140
6141 for (rp = rela; rp < rela + nrelas; ++rp)
6142 {
6143 relname = elf_hppa_reloc_type (get_reloc_type (rp->r_info));
6144 sym = aux->symtab + get_reloc_symindex (rp->r_info);
6145
6146 /* R_PARISC_SEGREL32 or R_PARISC_SEGREL64. */
6147 if (! const_strneq (relname, "R_PARISC_SEGREL"))
6148 {
6149 warn (_("Skipping unexpected relocation type %s\n"), relname);
6150 continue;
6151 }
6152
6153 i = rp->r_offset / unw_ent_size;
6154
6155 switch ((rp->r_offset % unw_ent_size) / eh_addr_size)
6156 {
6157 case 0:
6158 aux->table[i].start.section = sym->st_shndx;
6159 aux->table[i].start.offset = sym->st_value + rp->r_addend;
6160 break;
6161 case 1:
6162 aux->table[i].end.section = sym->st_shndx;
6163 aux->table[i].end.offset = sym->st_value + rp->r_addend;
6164 break;
6165 default:
6166 break;
6167 }
6168 }
6169
6170 free (rela);
6171 }
6172
6173 aux->table_len = nentries;
6174
6175 return 1;
6176 }
6177
6178 static int
6179 hppa_process_unwind (FILE * file)
6180 {
6181 struct hppa_unw_aux_info aux;
6182 Elf_Internal_Shdr * unwsec = NULL;
6183 Elf_Internal_Shdr * strsec;
6184 Elf_Internal_Shdr * sec;
6185 unsigned long i;
6186
6187 memset (& aux, 0, sizeof (aux));
6188
6189 if (string_table == NULL)
6190 return 1;
6191
6192 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
6193 {
6194 if (sec->sh_type == SHT_SYMTAB
6195 && sec->sh_link < elf_header.e_shnum)
6196 {
6197 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
6198
6199 strsec = section_headers + sec->sh_link;
6200 assert (aux.strtab == NULL);
6201 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
6202 1, strsec->sh_size,
6203 _("string table"));
6204 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
6205 }
6206 else if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
6207 unwsec = sec;
6208 }
6209
6210 if (!unwsec)
6211 printf (_("\nThere are no unwind sections in this file.\n"));
6212
6213 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
6214 {
6215 if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
6216 {
6217 printf (_("\nUnwind section "));
6218 printf (_("'%s'"), SECTION_NAME (sec));
6219
6220 printf (_(" at offset 0x%lx contains %lu entries:\n"),
6221 (unsigned long) sec->sh_offset,
6222 (unsigned long) (sec->sh_size / (2 * eh_addr_size + 8)));
6223
6224 slurp_hppa_unwind_table (file, &aux, sec);
6225 if (aux.table_len > 0)
6226 dump_hppa_unwind (&aux);
6227
6228 if (aux.table)
6229 free ((char *) aux.table);
6230 aux.table = NULL;
6231 }
6232 }
6233
6234 if (aux.symtab)
6235 free (aux.symtab);
6236 if (aux.strtab)
6237 free ((char *) aux.strtab);
6238
6239 return 1;
6240 }
6241
6242 struct arm_section
6243 {
6244 unsigned char *data;
6245
6246 Elf_Internal_Shdr *sec;
6247 Elf_Internal_Rela *rela;
6248 unsigned long nrelas;
6249 unsigned int rel_type;
6250
6251 Elf_Internal_Rela *next_rela;
6252 };
6253
6254 struct arm_unw_aux_info
6255 {
6256 FILE *file;
6257
6258 Elf_Internal_Sym *symtab; /* The symbol table. */
6259 unsigned long nsyms; /* Number of symbols. */
6260 char *strtab; /* The string table. */
6261 unsigned long strtab_size; /* Size of string table. */
6262 };
6263
6264 static const char *
6265 arm_print_vma_and_name (struct arm_unw_aux_info *aux,
6266 bfd_vma fn, struct absaddr addr)
6267 {
6268 const char *procname;
6269 bfd_vma sym_offset;
6270
6271 if (addr.section == SHN_UNDEF)
6272 addr.offset = fn;
6273
6274 find_symbol_for_address (aux->symtab, aux->nsyms, aux->strtab,
6275 aux->strtab_size, addr, &procname,
6276 &sym_offset);
6277
6278 print_vma (fn, PREFIX_HEX);
6279
6280 if (procname)
6281 {
6282 fputs (" <", stdout);
6283 fputs (procname, stdout);
6284
6285 if (sym_offset)
6286 printf ("+0x%lx", (unsigned long) sym_offset);
6287 fputc ('>', stdout);
6288 }
6289
6290 return procname;
6291 }
6292
6293 static void
6294 arm_free_section (struct arm_section *arm_sec)
6295 {
6296 if (arm_sec->data != NULL)
6297 free (arm_sec->data);
6298
6299 if (arm_sec->rela != NULL)
6300 free (arm_sec->rela);
6301 }
6302
6303 static int
6304 arm_section_get_word (struct arm_unw_aux_info *aux,
6305 struct arm_section *arm_sec,
6306 Elf_Internal_Shdr *sec, bfd_vma word_offset,
6307 unsigned int *wordp, struct absaddr *addr)
6308 {
6309 Elf_Internal_Rela *rp;
6310 Elf_Internal_Sym *sym;
6311 const char * relname;
6312 unsigned int word;
6313 bfd_boolean wrapped;
6314
6315 addr->section = SHN_UNDEF;
6316 addr->offset = 0;
6317
6318 if (sec != arm_sec->sec)
6319 {
6320 Elf_Internal_Shdr *relsec;
6321
6322 arm_free_section (arm_sec);
6323
6324 arm_sec->sec = sec;
6325 arm_sec->data = get_data (NULL, aux->file, sec->sh_offset, 1,
6326 sec->sh_size, _("unwind data"));
6327 arm_sec->rela = NULL;
6328 arm_sec->nrelas = 0;
6329
6330 for (relsec = section_headers;
6331 relsec < section_headers + elf_header.e_shnum;
6332 ++relsec)
6333 {
6334 if (relsec->sh_info >= elf_header.e_shnum
6335 || section_headers + relsec->sh_info != sec)
6336 continue;
6337
6338 if (relsec->sh_type == SHT_REL)
6339 {
6340 if (!slurp_rel_relocs (aux->file, relsec->sh_offset,
6341 relsec->sh_size,
6342 & arm_sec->rela, & arm_sec->nrelas))
6343 return 0;
6344 break;
6345 }
6346 else if (relsec->sh_type == SHT_RELA)
6347 {
6348 if (!slurp_rela_relocs (aux->file, relsec->sh_offset,
6349 relsec->sh_size,
6350 & arm_sec->rela, & arm_sec->nrelas))
6351 return 0;
6352 break;
6353 }
6354 }
6355
6356 arm_sec->next_rela = arm_sec->rela;
6357 }
6358
6359 if (arm_sec->data == NULL)
6360 return 0;
6361
6362 word = byte_get (arm_sec->data + word_offset, 4);
6363
6364 wrapped = FALSE;
6365 for (rp = arm_sec->next_rela; rp != arm_sec->rela + arm_sec->nrelas; rp++)
6366 {
6367 bfd_vma prelval, offset;
6368
6369 if (rp->r_offset > word_offset && !wrapped)
6370 {
6371 rp = arm_sec->rela;
6372 wrapped = TRUE;
6373 }
6374 if (rp->r_offset > word_offset)
6375 break;
6376
6377 if (rp->r_offset & 3)
6378 {
6379 warn (_("Skipping unexpected relocation at offset 0x%lx\n"),
6380 (unsigned long) rp->r_offset);
6381 continue;
6382 }
6383
6384 if (rp->r_offset < word_offset)
6385 continue;
6386
6387 switch (elf_header.e_machine)
6388 {
6389 case EM_ARM:
6390 relname = elf_arm_reloc_type (ELF32_R_TYPE (rp->r_info));
6391 break;
6392
6393 case EM_TI_C6000:
6394 relname = elf_tic6x_reloc_type (ELF32_R_TYPE (rp->r_info));
6395 break;
6396
6397 default:
6398 abort();
6399 }
6400
6401 if (streq (relname, "R_ARM_NONE")
6402 || streq (relname, "R_C6000_NONE"))
6403 continue;
6404
6405 if (!(streq (relname, "R_ARM_PREL31")
6406 || streq (relname, "R_C6000_PREL31")))
6407 {
6408 warn (_("Skipping unexpected relocation type %s\n"), relname);
6409 continue;
6410 }
6411
6412 sym = aux->symtab + ELF32_R_SYM (rp->r_info);
6413
6414 if (arm_sec->rel_type == SHT_REL)
6415 {
6416 offset = word & 0x7fffffff;
6417 if (offset & 0x40000000)
6418 offset |= ~ (bfd_vma) 0x7fffffff;
6419 }
6420 else
6421 offset = rp->r_addend;
6422
6423 offset += sym->st_value;
6424 prelval = offset - (arm_sec->sec->sh_addr + rp->r_offset);
6425
6426 if (streq (relname, "R_C6000_PREL31"))
6427 prelval >>= 1;
6428
6429 word = (word & ~ (bfd_vma) 0x7fffffff) | (prelval & 0x7fffffff);
6430 addr->section = sym->st_shndx;
6431 addr->offset = offset;
6432 break;
6433 }
6434
6435 *wordp = word;
6436 arm_sec->next_rela = rp;
6437
6438 return 1;
6439 }
6440
6441 static const char *tic6x_unwind_regnames[16] = {
6442 "A15", "B15", "B14", "B13", "B12", "B11", "B10", "B3",
6443 "A14", "A13", "A12", "A11", "A10",
6444 "[invalid reg 13]", "[invalid reg 14]", "[invalid reg 15]"};
6445
6446 static void
6447 decode_tic6x_unwind_regmask (unsigned int mask)
6448 {
6449 int i;
6450
6451 for (i = 12; mask; mask >>= 1, i--)
6452 {
6453 if (mask & 1)
6454 {
6455 fputs (tic6x_unwind_regnames[i], stdout);
6456 if (mask > 1)
6457 fputs (", ", stdout);
6458 }
6459 }
6460 }
6461
6462 #define ADVANCE \
6463 if (remaining == 0 && more_words) \
6464 { \
6465 data_offset += 4; \
6466 if (!arm_section_get_word (aux, data_arm_sec, data_sec, \
6467 data_offset, &word, &addr)) \
6468 return; \
6469 remaining = 4; \
6470 more_words--; \
6471 } \
6472
6473 #define GET_OP(OP) \
6474 ADVANCE; \
6475 if (remaining) \
6476 { \
6477 remaining--; \
6478 (OP) = word >> 24; \
6479 word <<= 8; \
6480 } \
6481 else \
6482 { \
6483 printf (_("[Truncated opcode]\n")); \
6484 return; \
6485 } \
6486 printf ("0x%02x ", OP)
6487
6488 static void
6489 decode_arm_unwind_bytecode (struct arm_unw_aux_info *aux,
6490 unsigned int word, unsigned int remaining,
6491 unsigned int more_words,
6492 bfd_vma data_offset, Elf_Internal_Shdr *data_sec,
6493 struct arm_section *data_arm_sec)
6494 {
6495 struct absaddr addr;
6496
6497 /* Decode the unwinding instructions. */
6498 while (1)
6499 {
6500 unsigned int op, op2;
6501
6502 ADVANCE;
6503 if (remaining == 0)
6504 break;
6505 remaining--;
6506 op = word >> 24;
6507 word <<= 8;
6508
6509 printf (" 0x%02x ", op);
6510
6511 if ((op & 0xc0) == 0x00)
6512 {
6513 int offset = ((op & 0x3f) << 2) + 4;
6514
6515 printf (" vsp = vsp + %d", offset);
6516 }
6517 else if ((op & 0xc0) == 0x40)
6518 {
6519 int offset = ((op & 0x3f) << 2) + 4;
6520
6521 printf (" vsp = vsp - %d", offset);
6522 }
6523 else if ((op & 0xf0) == 0x80)
6524 {
6525 GET_OP (op2);
6526 if (op == 0x80 && op2 == 0)
6527 printf (_("Refuse to unwind"));
6528 else
6529 {
6530 unsigned int mask = ((op & 0x0f) << 8) | op2;
6531 int first = 1;
6532 int i;
6533
6534 printf ("pop {");
6535 for (i = 0; i < 12; i++)
6536 if (mask & (1 << i))
6537 {
6538 if (first)
6539 first = 0;
6540 else
6541 printf (", ");
6542 printf ("r%d", 4 + i);
6543 }
6544 printf ("}");
6545 }
6546 }
6547 else if ((op & 0xf0) == 0x90)
6548 {
6549 if (op == 0x9d || op == 0x9f)
6550 printf (_(" [Reserved]"));
6551 else
6552 printf (" vsp = r%d", op & 0x0f);
6553 }
6554 else if ((op & 0xf0) == 0xa0)
6555 {
6556 int end = 4 + (op & 0x07);
6557 int first = 1;
6558 int i;
6559
6560 printf (" pop {");
6561 for (i = 4; i <= end; i++)
6562 {
6563 if (first)
6564 first = 0;
6565 else
6566 printf (", ");
6567 printf ("r%d", i);
6568 }
6569 if (op & 0x08)
6570 {
6571 if (first)
6572 printf (", ");
6573 printf ("r14");
6574 }
6575 printf ("}");
6576 }
6577 else if (op == 0xb0)
6578 printf (_(" finish"));
6579 else if (op == 0xb1)
6580 {
6581 GET_OP (op2);
6582 if (op2 == 0 || (op2 & 0xf0) != 0)
6583 printf (_("[Spare]"));
6584 else
6585 {
6586 unsigned int mask = op2 & 0x0f;
6587 int first = 1;
6588 int i;
6589
6590 printf ("pop {");
6591 for (i = 0; i < 12; i++)
6592 if (mask & (1 << i))
6593 {
6594 if (first)
6595 first = 0;
6596 else
6597 printf (", ");
6598 printf ("r%d", i);
6599 }
6600 printf ("}");
6601 }
6602 }
6603 else if (op == 0xb2)
6604 {
6605 unsigned char buf[9];
6606 unsigned int i, len;
6607 unsigned long offset;
6608
6609 for (i = 0; i < sizeof (buf); i++)
6610 {
6611 GET_OP (buf[i]);
6612 if ((buf[i] & 0x80) == 0)
6613 break;
6614 }
6615 assert (i < sizeof (buf));
6616 offset = read_uleb128 (buf, &len);
6617 assert (len == i + 1);
6618 offset = offset * 4 + 0x204;
6619 printf ("vsp = vsp + %ld", offset);
6620 }
6621 else if (op == 0xb3 || op == 0xc8 || op == 0xc9)
6622 {
6623 unsigned int first, last;
6624
6625 GET_OP (op2);
6626 first = op2 >> 4;
6627 last = op2 & 0x0f;
6628 if (op == 0xc8)
6629 first = first + 16;
6630 printf ("pop {D%d", first);
6631 if (last)
6632 printf ("-D%d", first + last);
6633 printf ("}");
6634 }
6635 else if ((op & 0xf8) == 0xb8 || (op & 0xf8) == 0xd0)
6636 {
6637 unsigned int count = op & 0x07;
6638
6639 printf ("pop {D8");
6640 if (count)
6641 printf ("-D%d", 8 + count);
6642 printf ("}");
6643 }
6644 else if (op >= 0xc0 && op <= 0xc5)
6645 {
6646 unsigned int count = op & 0x07;
6647
6648 printf (" pop {wR10");
6649 if (count)
6650 printf ("-wR%d", 10 + count);
6651 printf ("}");
6652 }
6653 else if (op == 0xc6)
6654 {
6655 unsigned int first, last;
6656
6657 GET_OP (op2);
6658 first = op2 >> 4;
6659 last = op2 & 0x0f;
6660 printf ("pop {wR%d", first);
6661 if (last)
6662 printf ("-wR%d", first + last);
6663 printf ("}");
6664 }
6665 else if (op == 0xc7)
6666 {
6667 GET_OP (op2);
6668 if (op2 == 0 || (op2 & 0xf0) != 0)
6669 printf (_("[Spare]"));
6670 else
6671 {
6672 unsigned int mask = op2 & 0x0f;
6673 int first = 1;
6674 int i;
6675
6676 printf ("pop {");
6677 for (i = 0; i < 4; i++)
6678 if (mask & (1 << i))
6679 {
6680 if (first)
6681 first = 0;
6682 else
6683 printf (", ");
6684 printf ("wCGR%d", i);
6685 }
6686 printf ("}");
6687 }
6688 }
6689 else
6690 printf (_(" [unsupported opcode]"));
6691 printf ("\n");
6692 }
6693 }
6694
6695 static void
6696 decode_tic6x_unwind_bytecode (struct arm_unw_aux_info *aux,
6697 unsigned int word, unsigned int remaining,
6698 unsigned int more_words,
6699 bfd_vma data_offset, Elf_Internal_Shdr *data_sec,
6700 struct arm_section *data_arm_sec)
6701 {
6702 struct absaddr addr;
6703
6704 /* Decode the unwinding instructions. */
6705 while (1)
6706 {
6707 unsigned int op, op2;
6708
6709 ADVANCE;
6710 if (remaining == 0)
6711 break;
6712 remaining--;
6713 op = word >> 24;
6714 word <<= 8;
6715
6716 printf (" 0x%02x ", op);
6717
6718 if ((op & 0xc0) == 0x00)
6719 {
6720 int offset = ((op & 0x3f) << 3) + 8;
6721 printf (" sp = sp + %d", offset);
6722 }
6723 else if ((op & 0xc0) == 0x80)
6724 {
6725 GET_OP (op2);
6726 if (op == 0x80 && op2 == 0)
6727 printf (_("Refuse to unwind"));
6728 else
6729 {
6730 unsigned int mask = ((op & 0x1f) << 8) | op2;
6731 if (op & 0x20)
6732 printf ("pop compact {");
6733 else
6734 printf ("pop {");
6735
6736 decode_tic6x_unwind_regmask (mask);
6737 printf("}");
6738 }
6739 }
6740 else if ((op & 0xf0) == 0xc0)
6741 {
6742 unsigned int reg;
6743 unsigned int nregs;
6744 unsigned int i;
6745 const char *name;
6746 struct {
6747 unsigned int offset;
6748 unsigned int reg;
6749 } regpos[16];
6750
6751 /* Scan entire instruction first so that GET_OP output is not
6752 interleaved with disassembly. */
6753 nregs = 0;
6754 for (i = 0; nregs < (op & 0xf); i++)
6755 {
6756 GET_OP (op2);
6757 reg = op2 >> 4;
6758 if (reg != 0xf)
6759 {
6760 regpos[nregs].offset = i * 2;
6761 regpos[nregs].reg = reg;
6762 nregs++;
6763 }
6764
6765 reg = op2 & 0xf;
6766 if (reg != 0xf)
6767 {
6768 regpos[nregs].offset = i * 2 + 1;
6769 regpos[nregs].reg = reg;
6770 nregs++;
6771 }
6772 }
6773
6774 printf (_("pop frame {"));
6775 reg = nregs - 1;
6776 for (i = i * 2; i > 0; i--)
6777 {
6778 if (regpos[reg].offset == i - 1)
6779 {
6780 name = tic6x_unwind_regnames[regpos[reg].reg];
6781 if (reg > 0)
6782 reg--;
6783 }
6784 else
6785 name = _("[pad]");
6786
6787 fputs (name, stdout);
6788 if (i > 1)
6789 printf (", ");
6790 }
6791
6792 printf ("}");
6793 }
6794 else if (op == 0xd0)
6795 printf (" MOV FP, SP");
6796 else if (op == 0xd1)
6797 printf (" __c6xabi_pop_rts");
6798 else if (op == 0xd2)
6799 {
6800 unsigned char buf[9];
6801 unsigned int i, len;
6802 unsigned long offset;
6803 for (i = 0; i < sizeof (buf); i++)
6804 {
6805 GET_OP (buf[i]);
6806 if ((buf[i] & 0x80) == 0)
6807 break;
6808 }
6809 assert (i < sizeof (buf));
6810 offset = read_uleb128 (buf, &len);
6811 assert (len == i + 1);
6812 offset = offset * 8 + 0x408;
6813 printf (_("sp = sp + %ld"), offset);
6814 }
6815 else if ((op & 0xf0) == 0xe0)
6816 {
6817 if ((op & 0x0f) == 7)
6818 printf (" RETURN");
6819 else
6820 printf (" MV %s, B3", tic6x_unwind_regnames[op & 0x0f]);
6821 }
6822 else
6823 {
6824 printf (_(" [unsupported opcode]"));
6825 }
6826 putchar ('\n');
6827 }
6828 }
6829
6830 static bfd_vma
6831 expand_prel31 (bfd_vma word, bfd_vma where)
6832 {
6833 bfd_vma offset;
6834
6835 offset = word & 0x7fffffff;
6836 if (offset & 0x40000000)
6837 offset |= ~ (bfd_vma) 0x7fffffff;
6838
6839 if (elf_header.e_machine == EM_TI_C6000)
6840 offset <<= 1;
6841
6842 return offset + where;
6843 }
6844
6845 static void
6846 decode_arm_unwind (struct arm_unw_aux_info *aux,
6847 unsigned int word, unsigned int remaining,
6848 bfd_vma data_offset, Elf_Internal_Shdr *data_sec,
6849 struct arm_section *data_arm_sec)
6850 {
6851 int per_index;
6852 unsigned int more_words = 0;
6853 struct absaddr addr;
6854
6855 if (remaining == 0)
6856 {
6857 /* Fetch the first word. */
6858 if (!arm_section_get_word (aux, data_arm_sec, data_sec, data_offset,
6859 &word, &addr))
6860 return;
6861 remaining = 4;
6862 }
6863
6864 if ((word & 0x80000000) == 0)
6865 {
6866 /* Expand prel31 for personality routine. */
6867 bfd_vma fn;
6868 const char *procname;
6869
6870 fn = expand_prel31 (word, data_sec->sh_addr + data_offset);
6871 printf (_(" Personality routine: "));
6872 procname = arm_print_vma_and_name (aux, fn, addr);
6873 fputc ('\n', stdout);
6874
6875 /* The GCC personality routines use the standard compact
6876 encoding, starting with one byte giving the number of
6877 words. */
6878 if (procname != NULL
6879 && (const_strneq (procname, "__gcc_personality_v0")
6880 || const_strneq (procname, "__gxx_personality_v0")
6881 || const_strneq (procname, "__gcj_personality_v0")
6882 || const_strneq (procname, "__gnu_objc_personality_v0")))
6883 {
6884 remaining = 0;
6885 more_words = 1;
6886 ADVANCE;
6887 if (!remaining)
6888 {
6889 printf (_(" [Truncated data]\n"));
6890 return;
6891 }
6892 more_words = word >> 24;
6893 word <<= 8;
6894 remaining--;
6895 per_index = -1;
6896 }
6897 else
6898 return;
6899 }
6900 else
6901 {
6902
6903 per_index = (word >> 24) & 0x7f;
6904 printf (_(" Compact model %d\n"), per_index);
6905 if (per_index == 0)
6906 {
6907 more_words = 0;
6908 word <<= 8;
6909 remaining--;
6910 }
6911 else if (per_index < 3)
6912 {
6913 more_words = (word >> 16) & 0xff;
6914 word <<= 16;
6915 remaining -= 2;
6916 }
6917 }
6918
6919 switch (elf_header.e_machine)
6920 {
6921 case EM_ARM:
6922 if (per_index < 3)
6923 {
6924 decode_arm_unwind_bytecode (aux, word, remaining, more_words,
6925 data_offset, data_sec, data_arm_sec);
6926 }
6927 else
6928 printf (" [reserved]\n");
6929 break;
6930
6931 case EM_TI_C6000:
6932 if (per_index < 3)
6933 {
6934 decode_tic6x_unwind_bytecode (aux, word, remaining, more_words,
6935 data_offset, data_sec, data_arm_sec);
6936 }
6937 else if (per_index < 5)
6938 {
6939 if (((word >> 17) & 0x7f) == 0x7f)
6940 printf (_(" Restore stack from frame pointer\n"));
6941 else
6942 printf (_(" Stack increment %d\n"), (word >> 14) & 0x1fc);
6943 printf (_(" Registers restored: "));
6944 if (per_index == 4)
6945 printf (" (compact) ");
6946 decode_tic6x_unwind_regmask ((word >> 4) & 0x1fff);
6947 putchar ('\n');
6948 printf (_(" Return register: %s\n"),
6949 tic6x_unwind_regnames[word & 0xf]);
6950 }
6951 else
6952 printf (" [reserved]\n");
6953 break;
6954
6955 default:
6956 abort ();
6957 }
6958
6959 /* Decode the descriptors. Not implemented. */
6960 }
6961
6962 static void
6963 dump_arm_unwind (struct arm_unw_aux_info *aux, Elf_Internal_Shdr *exidx_sec)
6964 {
6965 struct arm_section exidx_arm_sec, extab_arm_sec;
6966 unsigned int i, exidx_len;
6967
6968 memset (&exidx_arm_sec, 0, sizeof (exidx_arm_sec));
6969 memset (&extab_arm_sec, 0, sizeof (extab_arm_sec));
6970 exidx_len = exidx_sec->sh_size / 8;
6971
6972 for (i = 0; i < exidx_len; i++)
6973 {
6974 unsigned int exidx_fn, exidx_entry;
6975 struct absaddr fn_addr, entry_addr;
6976 bfd_vma fn;
6977
6978 fputc ('\n', stdout);
6979
6980 if (!arm_section_get_word (aux, &exidx_arm_sec, exidx_sec,
6981 8 * i, &exidx_fn, &fn_addr)
6982 || !arm_section_get_word (aux, &exidx_arm_sec, exidx_sec,
6983 8 * i + 4, &exidx_entry, &entry_addr))
6984 {
6985 arm_free_section (&exidx_arm_sec);
6986 arm_free_section (&extab_arm_sec);
6987 return;
6988 }
6989
6990 fn = expand_prel31 (exidx_fn, exidx_sec->sh_addr + 8 * i);
6991
6992 arm_print_vma_and_name (aux, fn, entry_addr);
6993 fputs (": ", stdout);
6994
6995 if (exidx_entry == 1)
6996 {
6997 print_vma (exidx_entry, PREFIX_HEX);
6998 fputs (" [cantunwind]\n", stdout);
6999 }
7000 else if (exidx_entry & 0x80000000)
7001 {
7002 print_vma (exidx_entry, PREFIX_HEX);
7003 fputc ('\n', stdout);
7004 decode_arm_unwind (aux, exidx_entry, 4, 0, NULL, NULL);
7005 }
7006 else
7007 {
7008 bfd_vma table, table_offset = 0;
7009 Elf_Internal_Shdr *table_sec;
7010
7011 fputs ("@", stdout);
7012 table = expand_prel31 (exidx_entry, exidx_sec->sh_addr + 8 * i + 4);
7013 print_vma (table, PREFIX_HEX);
7014 printf ("\n");
7015
7016 /* Locate the matching .ARM.extab. */
7017 if (entry_addr.section != SHN_UNDEF
7018 && entry_addr.section < elf_header.e_shnum)
7019 {
7020 table_sec = section_headers + entry_addr.section;
7021 table_offset = entry_addr.offset;
7022 }
7023 else
7024 {
7025 table_sec = find_section_by_address (table);
7026 if (table_sec != NULL)
7027 table_offset = table - table_sec->sh_addr;
7028 }
7029 if (table_sec == NULL)
7030 {
7031 warn (_("Could not locate .ARM.extab section containing 0x%lx.\n"),
7032 (unsigned long) table);
7033 continue;
7034 }
7035 decode_arm_unwind (aux, 0, 0, table_offset, table_sec,
7036 &extab_arm_sec);
7037 }
7038 }
7039
7040 printf ("\n");
7041
7042 arm_free_section (&exidx_arm_sec);
7043 arm_free_section (&extab_arm_sec);
7044 }
7045
7046 /* Used for both ARM and C6X unwinding tables. */
7047 static int
7048 arm_process_unwind (FILE *file)
7049 {
7050 struct arm_unw_aux_info aux;
7051 Elf_Internal_Shdr *unwsec = NULL;
7052 Elf_Internal_Shdr *strsec;
7053 Elf_Internal_Shdr *sec;
7054 unsigned long i;
7055 unsigned int sec_type;
7056
7057 memset (& aux, 0, sizeof (aux));
7058 aux.file = file;
7059
7060 switch (elf_header.e_machine)
7061 {
7062 case EM_ARM:
7063 sec_type = SHT_ARM_EXIDX;
7064 break;
7065
7066 case EM_TI_C6000:
7067 sec_type = SHT_C6000_UNWIND;
7068 break;
7069
7070 default:
7071 abort();
7072 }
7073
7074 if (string_table == NULL)
7075 return 1;
7076
7077 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7078 {
7079 if (sec->sh_type == SHT_SYMTAB && sec->sh_link < elf_header.e_shnum)
7080 {
7081 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7082
7083 strsec = section_headers + sec->sh_link;
7084 assert (aux.strtab == NULL);
7085 aux.strtab = get_data (NULL, file, strsec->sh_offset,
7086 1, strsec->sh_size, _("string table"));
7087 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7088 }
7089 else if (sec->sh_type == sec_type)
7090 unwsec = sec;
7091 }
7092
7093 if (!unwsec)
7094 printf (_("\nThere are no unwind sections in this file.\n"));
7095
7096 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7097 {
7098 if (sec->sh_type == sec_type)
7099 {
7100 printf (_("\nUnwind table index '%s' at offset 0x%lx contains %lu entries:\n"),
7101 SECTION_NAME (sec),
7102 (unsigned long) sec->sh_offset,
7103 (unsigned long) (sec->sh_size / (2 * eh_addr_size)));
7104
7105 dump_arm_unwind (&aux, sec);
7106 }
7107 }
7108
7109 if (aux.symtab)
7110 free (aux.symtab);
7111 if (aux.strtab)
7112 free ((char *) aux.strtab);
7113
7114 return 1;
7115 }
7116
7117 static int
7118 process_unwind (FILE * file)
7119 {
7120 struct unwind_handler
7121 {
7122 int machtype;
7123 int (* handler)(FILE *);
7124 } handlers[] =
7125 {
7126 { EM_ARM, arm_process_unwind },
7127 { EM_IA_64, ia64_process_unwind },
7128 { EM_PARISC, hppa_process_unwind },
7129 { EM_TI_C6000, arm_process_unwind },
7130 { 0, 0 }
7131 };
7132 int i;
7133
7134 if (!do_unwind)
7135 return 1;
7136
7137 for (i = 0; handlers[i].handler != NULL; i++)
7138 if (elf_header.e_machine == handlers[i].machtype)
7139 return handlers[i].handler (file);
7140
7141 printf (_("\nThere are no unwind sections in this file.\n"));
7142 return 1;
7143 }
7144
7145 static void
7146 dynamic_section_mips_val (Elf_Internal_Dyn * entry)
7147 {
7148 switch (entry->d_tag)
7149 {
7150 case DT_MIPS_FLAGS:
7151 if (entry->d_un.d_val == 0)
7152 printf (_("NONE\n"));
7153 else
7154 {
7155 static const char * opts[] =
7156 {
7157 "QUICKSTART", "NOTPOT", "NO_LIBRARY_REPLACEMENT",
7158 "NO_MOVE", "SGI_ONLY", "GUARANTEE_INIT", "DELTA_C_PLUS_PLUS",
7159 "GUARANTEE_START_INIT", "PIXIE", "DEFAULT_DELAY_LOAD",
7160 "REQUICKSTART", "REQUICKSTARTED", "CORD", "NO_UNRES_UNDEF",
7161 "RLD_ORDER_SAFE"
7162 };
7163 unsigned int cnt;
7164 int first = 1;
7165
7166 for (cnt = 0; cnt < ARRAY_SIZE (opts); ++cnt)
7167 if (entry->d_un.d_val & (1 << cnt))
7168 {
7169 printf ("%s%s", first ? "" : " ", opts[cnt]);
7170 first = 0;
7171 }
7172 puts ("");
7173 }
7174 break;
7175
7176 case DT_MIPS_IVERSION:
7177 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
7178 printf (_("Interface Version: %s\n"), GET_DYNAMIC_NAME (entry->d_un.d_val));
7179 else
7180 printf (_("<corrupt: %ld>\n"), (long) entry->d_un.d_ptr);
7181 break;
7182
7183 case DT_MIPS_TIME_STAMP:
7184 {
7185 char timebuf[20];
7186 struct tm * tmp;
7187
7188 time_t atime = entry->d_un.d_val;
7189 tmp = gmtime (&atime);
7190 snprintf (timebuf, sizeof (timebuf), "%04u-%02u-%02uT%02u:%02u:%02u",
7191 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
7192 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
7193 printf (_("Time Stamp: %s\n"), timebuf);
7194 }
7195 break;
7196
7197 case DT_MIPS_RLD_VERSION:
7198 case DT_MIPS_LOCAL_GOTNO:
7199 case DT_MIPS_CONFLICTNO:
7200 case DT_MIPS_LIBLISTNO:
7201 case DT_MIPS_SYMTABNO:
7202 case DT_MIPS_UNREFEXTNO:
7203 case DT_MIPS_HIPAGENO:
7204 case DT_MIPS_DELTA_CLASS_NO:
7205 case DT_MIPS_DELTA_INSTANCE_NO:
7206 case DT_MIPS_DELTA_RELOC_NO:
7207 case DT_MIPS_DELTA_SYM_NO:
7208 case DT_MIPS_DELTA_CLASSSYM_NO:
7209 case DT_MIPS_COMPACT_SIZE:
7210 printf ("%ld\n", (long) entry->d_un.d_ptr);
7211 break;
7212
7213 default:
7214 printf ("%#lx\n", (unsigned long) entry->d_un.d_ptr);
7215 }
7216 }
7217
7218 static void
7219 dynamic_section_parisc_val (Elf_Internal_Dyn * entry)
7220 {
7221 switch (entry->d_tag)
7222 {
7223 case DT_HP_DLD_FLAGS:
7224 {
7225 static struct
7226 {
7227 long int bit;
7228 const char * str;
7229 }
7230 flags[] =
7231 {
7232 { DT_HP_DEBUG_PRIVATE, "HP_DEBUG_PRIVATE" },
7233 { DT_HP_DEBUG_CALLBACK, "HP_DEBUG_CALLBACK" },
7234 { DT_HP_DEBUG_CALLBACK_BOR, "HP_DEBUG_CALLBACK_BOR" },
7235 { DT_HP_NO_ENVVAR, "HP_NO_ENVVAR" },
7236 { DT_HP_BIND_NOW, "HP_BIND_NOW" },
7237 { DT_HP_BIND_NONFATAL, "HP_BIND_NONFATAL" },
7238 { DT_HP_BIND_VERBOSE, "HP_BIND_VERBOSE" },
7239 { DT_HP_BIND_RESTRICTED, "HP_BIND_RESTRICTED" },
7240 { DT_HP_BIND_SYMBOLIC, "HP_BIND_SYMBOLIC" },
7241 { DT_HP_RPATH_FIRST, "HP_RPATH_FIRST" },
7242 { DT_HP_BIND_DEPTH_FIRST, "HP_BIND_DEPTH_FIRST" },
7243 { DT_HP_GST, "HP_GST" },
7244 { DT_HP_SHLIB_FIXED, "HP_SHLIB_FIXED" },
7245 { DT_HP_MERGE_SHLIB_SEG, "HP_MERGE_SHLIB_SEG" },
7246 { DT_HP_NODELETE, "HP_NODELETE" },
7247 { DT_HP_GROUP, "HP_GROUP" },
7248 { DT_HP_PROTECT_LINKAGE_TABLE, "HP_PROTECT_LINKAGE_TABLE" }
7249 };
7250 int first = 1;
7251 size_t cnt;
7252 bfd_vma val = entry->d_un.d_val;
7253
7254 for (cnt = 0; cnt < ARRAY_SIZE (flags); ++cnt)
7255 if (val & flags[cnt].bit)
7256 {
7257 if (! first)
7258 putchar (' ');
7259 fputs (flags[cnt].str, stdout);
7260 first = 0;
7261 val ^= flags[cnt].bit;
7262 }
7263
7264 if (val != 0 || first)
7265 {
7266 if (! first)
7267 putchar (' ');
7268 print_vma (val, HEX);
7269 }
7270 }
7271 break;
7272
7273 default:
7274 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7275 break;
7276 }
7277 putchar ('\n');
7278 }
7279
7280 #ifdef BFD64
7281
7282 /* VMS vs Unix time offset and factor. */
7283
7284 #define VMS_EPOCH_OFFSET 35067168000000000LL
7285 #define VMS_GRANULARITY_FACTOR 10000000
7286
7287 /* Display a VMS time in a human readable format. */
7288
7289 static void
7290 print_vms_time (bfd_int64_t vmstime)
7291 {
7292 struct tm *tm;
7293 time_t unxtime;
7294
7295 unxtime = (vmstime - VMS_EPOCH_OFFSET) / VMS_GRANULARITY_FACTOR;
7296 tm = gmtime (&unxtime);
7297 printf ("%04u-%02u-%02uT%02u:%02u:%02u",
7298 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
7299 tm->tm_hour, tm->tm_min, tm->tm_sec);
7300 }
7301 #endif /* BFD64 */
7302
7303 static void
7304 dynamic_section_ia64_val (Elf_Internal_Dyn * entry)
7305 {
7306 switch (entry->d_tag)
7307 {
7308 case DT_IA_64_PLT_RESERVE:
7309 /* First 3 slots reserved. */
7310 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7311 printf (" -- ");
7312 print_vma (entry->d_un.d_ptr + (3 * 8), PREFIX_HEX);
7313 break;
7314
7315 case DT_IA_64_VMS_LINKTIME:
7316 #ifdef BFD64
7317 print_vms_time (entry->d_un.d_val);
7318 #endif
7319 break;
7320
7321 case DT_IA_64_VMS_LNKFLAGS:
7322 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7323 if (entry->d_un.d_val & VMS_LF_CALL_DEBUG)
7324 printf (" CALL_DEBUG");
7325 if (entry->d_un.d_val & VMS_LF_NOP0BUFS)
7326 printf (" NOP0BUFS");
7327 if (entry->d_un.d_val & VMS_LF_P0IMAGE)
7328 printf (" P0IMAGE");
7329 if (entry->d_un.d_val & VMS_LF_MKTHREADS)
7330 printf (" MKTHREADS");
7331 if (entry->d_un.d_val & VMS_LF_UPCALLS)
7332 printf (" UPCALLS");
7333 if (entry->d_un.d_val & VMS_LF_IMGSTA)
7334 printf (" IMGSTA");
7335 if (entry->d_un.d_val & VMS_LF_INITIALIZE)
7336 printf (" INITIALIZE");
7337 if (entry->d_un.d_val & VMS_LF_MAIN)
7338 printf (" MAIN");
7339 if (entry->d_un.d_val & VMS_LF_EXE_INIT)
7340 printf (" EXE_INIT");
7341 if (entry->d_un.d_val & VMS_LF_TBK_IN_IMG)
7342 printf (" TBK_IN_IMG");
7343 if (entry->d_un.d_val & VMS_LF_DBG_IN_IMG)
7344 printf (" DBG_IN_IMG");
7345 if (entry->d_un.d_val & VMS_LF_TBK_IN_DSF)
7346 printf (" TBK_IN_DSF");
7347 if (entry->d_un.d_val & VMS_LF_DBG_IN_DSF)
7348 printf (" DBG_IN_DSF");
7349 if (entry->d_un.d_val & VMS_LF_SIGNATURES)
7350 printf (" SIGNATURES");
7351 if (entry->d_un.d_val & VMS_LF_REL_SEG_OFF)
7352 printf (" REL_SEG_OFF");
7353 break;
7354
7355 default:
7356 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7357 break;
7358 }
7359 putchar ('\n');
7360 }
7361
7362 static int
7363 get_32bit_dynamic_section (FILE * file)
7364 {
7365 Elf32_External_Dyn * edyn;
7366 Elf32_External_Dyn * ext;
7367 Elf_Internal_Dyn * entry;
7368
7369 edyn = (Elf32_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
7370 dynamic_size, _("dynamic section"));
7371 if (!edyn)
7372 return 0;
7373
7374 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
7375 might not have the luxury of section headers. Look for the DT_NULL
7376 terminator to determine the number of entries. */
7377 for (ext = edyn, dynamic_nent = 0;
7378 (char *) ext < (char *) edyn + dynamic_size;
7379 ext++)
7380 {
7381 dynamic_nent++;
7382 if (BYTE_GET (ext->d_tag) == DT_NULL)
7383 break;
7384 }
7385
7386 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
7387 sizeof (* entry));
7388 if (dynamic_section == NULL)
7389 {
7390 error (_("Out of memory\n"));
7391 free (edyn);
7392 return 0;
7393 }
7394
7395 for (ext = edyn, entry = dynamic_section;
7396 entry < dynamic_section + dynamic_nent;
7397 ext++, entry++)
7398 {
7399 entry->d_tag = BYTE_GET (ext->d_tag);
7400 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
7401 }
7402
7403 free (edyn);
7404
7405 return 1;
7406 }
7407
7408 static int
7409 get_64bit_dynamic_section (FILE * file)
7410 {
7411 Elf64_External_Dyn * edyn;
7412 Elf64_External_Dyn * ext;
7413 Elf_Internal_Dyn * entry;
7414
7415 edyn = (Elf64_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
7416 dynamic_size, _("dynamic section"));
7417 if (!edyn)
7418 return 0;
7419
7420 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
7421 might not have the luxury of section headers. Look for the DT_NULL
7422 terminator to determine the number of entries. */
7423 for (ext = edyn, dynamic_nent = 0;
7424 (char *) ext < (char *) edyn + dynamic_size;
7425 ext++)
7426 {
7427 dynamic_nent++;
7428 if (BYTE_GET (ext->d_tag) == DT_NULL)
7429 break;
7430 }
7431
7432 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
7433 sizeof (* entry));
7434 if (dynamic_section == NULL)
7435 {
7436 error (_("Out of memory\n"));
7437 free (edyn);
7438 return 0;
7439 }
7440
7441 for (ext = edyn, entry = dynamic_section;
7442 entry < dynamic_section + dynamic_nent;
7443 ext++, entry++)
7444 {
7445 entry->d_tag = BYTE_GET (ext->d_tag);
7446 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
7447 }
7448
7449 free (edyn);
7450
7451 return 1;
7452 }
7453
7454 static void
7455 print_dynamic_flags (bfd_vma flags)
7456 {
7457 int first = 1;
7458
7459 while (flags)
7460 {
7461 bfd_vma flag;
7462
7463 flag = flags & - flags;
7464 flags &= ~ flag;
7465
7466 if (first)
7467 first = 0;
7468 else
7469 putc (' ', stdout);
7470
7471 switch (flag)
7472 {
7473 case DF_ORIGIN: fputs ("ORIGIN", stdout); break;
7474 case DF_SYMBOLIC: fputs ("SYMBOLIC", stdout); break;
7475 case DF_TEXTREL: fputs ("TEXTREL", stdout); break;
7476 case DF_BIND_NOW: fputs ("BIND_NOW", stdout); break;
7477 case DF_STATIC_TLS: fputs ("STATIC_TLS", stdout); break;
7478 default: fputs (_("unknown"), stdout); break;
7479 }
7480 }
7481 puts ("");
7482 }
7483
7484 /* Parse and display the contents of the dynamic section. */
7485
7486 static int
7487 process_dynamic_section (FILE * file)
7488 {
7489 Elf_Internal_Dyn * entry;
7490
7491 if (dynamic_size == 0)
7492 {
7493 if (do_dynamic)
7494 printf (_("\nThere is no dynamic section in this file.\n"));
7495
7496 return 1;
7497 }
7498
7499 if (is_32bit_elf)
7500 {
7501 if (! get_32bit_dynamic_section (file))
7502 return 0;
7503 }
7504 else if (! get_64bit_dynamic_section (file))
7505 return 0;
7506
7507 /* Find the appropriate symbol table. */
7508 if (dynamic_symbols == NULL)
7509 {
7510 for (entry = dynamic_section;
7511 entry < dynamic_section + dynamic_nent;
7512 ++entry)
7513 {
7514 Elf_Internal_Shdr section;
7515
7516 if (entry->d_tag != DT_SYMTAB)
7517 continue;
7518
7519 dynamic_info[DT_SYMTAB] = entry->d_un.d_val;
7520
7521 /* Since we do not know how big the symbol table is,
7522 we default to reading in the entire file (!) and
7523 processing that. This is overkill, I know, but it
7524 should work. */
7525 section.sh_offset = offset_from_vma (file, entry->d_un.d_val, 0);
7526
7527 if (archive_file_offset != 0)
7528 section.sh_size = archive_file_size - section.sh_offset;
7529 else
7530 {
7531 if (fseek (file, 0, SEEK_END))
7532 error (_("Unable to seek to end of file!\n"));
7533
7534 section.sh_size = ftell (file) - section.sh_offset;
7535 }
7536
7537 if (is_32bit_elf)
7538 section.sh_entsize = sizeof (Elf32_External_Sym);
7539 else
7540 section.sh_entsize = sizeof (Elf64_External_Sym);
7541
7542 dynamic_symbols = GET_ELF_SYMBOLS (file, &section, & num_dynamic_syms);
7543 if (num_dynamic_syms < 1)
7544 {
7545 error (_("Unable to determine the number of symbols to load\n"));
7546 continue;
7547 }
7548 }
7549 }
7550
7551 /* Similarly find a string table. */
7552 if (dynamic_strings == NULL)
7553 {
7554 for (entry = dynamic_section;
7555 entry < dynamic_section + dynamic_nent;
7556 ++entry)
7557 {
7558 unsigned long offset;
7559 long str_tab_len;
7560
7561 if (entry->d_tag != DT_STRTAB)
7562 continue;
7563
7564 dynamic_info[DT_STRTAB] = entry->d_un.d_val;
7565
7566 /* Since we do not know how big the string table is,
7567 we default to reading in the entire file (!) and
7568 processing that. This is overkill, I know, but it
7569 should work. */
7570
7571 offset = offset_from_vma (file, entry->d_un.d_val, 0);
7572
7573 if (archive_file_offset != 0)
7574 str_tab_len = archive_file_size - offset;
7575 else
7576 {
7577 if (fseek (file, 0, SEEK_END))
7578 error (_("Unable to seek to end of file\n"));
7579 str_tab_len = ftell (file) - offset;
7580 }
7581
7582 if (str_tab_len < 1)
7583 {
7584 error
7585 (_("Unable to determine the length of the dynamic string table\n"));
7586 continue;
7587 }
7588
7589 dynamic_strings = (char *) get_data (NULL, file, offset, 1,
7590 str_tab_len,
7591 _("dynamic string table"));
7592 dynamic_strings_length = dynamic_strings == NULL ? 0 : str_tab_len;
7593 break;
7594 }
7595 }
7596
7597 /* And find the syminfo section if available. */
7598 if (dynamic_syminfo == NULL)
7599 {
7600 unsigned long syminsz = 0;
7601
7602 for (entry = dynamic_section;
7603 entry < dynamic_section + dynamic_nent;
7604 ++entry)
7605 {
7606 if (entry->d_tag == DT_SYMINENT)
7607 {
7608 /* Note: these braces are necessary to avoid a syntax
7609 error from the SunOS4 C compiler. */
7610 assert (sizeof (Elf_External_Syminfo) == entry->d_un.d_val);
7611 }
7612 else if (entry->d_tag == DT_SYMINSZ)
7613 syminsz = entry->d_un.d_val;
7614 else if (entry->d_tag == DT_SYMINFO)
7615 dynamic_syminfo_offset = offset_from_vma (file, entry->d_un.d_val,
7616 syminsz);
7617 }
7618
7619 if (dynamic_syminfo_offset != 0 && syminsz != 0)
7620 {
7621 Elf_External_Syminfo * extsyminfo;
7622 Elf_External_Syminfo * extsym;
7623 Elf_Internal_Syminfo * syminfo;
7624
7625 /* There is a syminfo section. Read the data. */
7626 extsyminfo = (Elf_External_Syminfo *)
7627 get_data (NULL, file, dynamic_syminfo_offset, 1, syminsz,
7628 _("symbol information"));
7629 if (!extsyminfo)
7630 return 0;
7631
7632 dynamic_syminfo = (Elf_Internal_Syminfo *) malloc (syminsz);
7633 if (dynamic_syminfo == NULL)
7634 {
7635 error (_("Out of memory\n"));
7636 return 0;
7637 }
7638
7639 dynamic_syminfo_nent = syminsz / sizeof (Elf_External_Syminfo);
7640 for (syminfo = dynamic_syminfo, extsym = extsyminfo;
7641 syminfo < dynamic_syminfo + dynamic_syminfo_nent;
7642 ++syminfo, ++extsym)
7643 {
7644 syminfo->si_boundto = BYTE_GET (extsym->si_boundto);
7645 syminfo->si_flags = BYTE_GET (extsym->si_flags);
7646 }
7647
7648 free (extsyminfo);
7649 }
7650 }
7651
7652 if (do_dynamic && dynamic_addr)
7653 printf (_("\nDynamic section at offset 0x%lx contains %u entries:\n"),
7654 dynamic_addr, dynamic_nent);
7655 if (do_dynamic)
7656 printf (_(" Tag Type Name/Value\n"));
7657
7658 for (entry = dynamic_section;
7659 entry < dynamic_section + dynamic_nent;
7660 entry++)
7661 {
7662 if (do_dynamic)
7663 {
7664 const char * dtype;
7665
7666 putchar (' ');
7667 print_vma (entry->d_tag, FULL_HEX);
7668 dtype = get_dynamic_type (entry->d_tag);
7669 printf (" (%s)%*s", dtype,
7670 ((is_32bit_elf ? 27 : 19)
7671 - (int) strlen (dtype)),
7672 " ");
7673 }
7674
7675 switch (entry->d_tag)
7676 {
7677 case DT_FLAGS:
7678 if (do_dynamic)
7679 print_dynamic_flags (entry->d_un.d_val);
7680 break;
7681
7682 case DT_AUXILIARY:
7683 case DT_FILTER:
7684 case DT_CONFIG:
7685 case DT_DEPAUDIT:
7686 case DT_AUDIT:
7687 if (do_dynamic)
7688 {
7689 switch (entry->d_tag)
7690 {
7691 case DT_AUXILIARY:
7692 printf (_("Auxiliary library"));
7693 break;
7694
7695 case DT_FILTER:
7696 printf (_("Filter library"));
7697 break;
7698
7699 case DT_CONFIG:
7700 printf (_("Configuration file"));
7701 break;
7702
7703 case DT_DEPAUDIT:
7704 printf (_("Dependency audit library"));
7705 break;
7706
7707 case DT_AUDIT:
7708 printf (_("Audit library"));
7709 break;
7710 }
7711
7712 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
7713 printf (": [%s]\n", GET_DYNAMIC_NAME (entry->d_un.d_val));
7714 else
7715 {
7716 printf (": ");
7717 print_vma (entry->d_un.d_val, PREFIX_HEX);
7718 putchar ('\n');
7719 }
7720 }
7721 break;
7722
7723 case DT_FEATURE:
7724 if (do_dynamic)
7725 {
7726 printf (_("Flags:"));
7727
7728 if (entry->d_un.d_val == 0)
7729 printf (_(" None\n"));
7730 else
7731 {
7732 unsigned long int val = entry->d_un.d_val;
7733
7734 if (val & DTF_1_PARINIT)
7735 {
7736 printf (" PARINIT");
7737 val ^= DTF_1_PARINIT;
7738 }
7739 if (val & DTF_1_CONFEXP)
7740 {
7741 printf (" CONFEXP");
7742 val ^= DTF_1_CONFEXP;
7743 }
7744 if (val != 0)
7745 printf (" %lx", val);
7746 puts ("");
7747 }
7748 }
7749 break;
7750
7751 case DT_POSFLAG_1:
7752 if (do_dynamic)
7753 {
7754 printf (_("Flags:"));
7755
7756 if (entry->d_un.d_val == 0)
7757 printf (_(" None\n"));
7758 else
7759 {
7760 unsigned long int val = entry->d_un.d_val;
7761
7762 if (val & DF_P1_LAZYLOAD)
7763 {
7764 printf (" LAZYLOAD");
7765 val ^= DF_P1_LAZYLOAD;
7766 }
7767 if (val & DF_P1_GROUPPERM)
7768 {
7769 printf (" GROUPPERM");
7770 val ^= DF_P1_GROUPPERM;
7771 }
7772 if (val != 0)
7773 printf (" %lx", val);
7774 puts ("");
7775 }
7776 }
7777 break;
7778
7779 case DT_FLAGS_1:
7780 if (do_dynamic)
7781 {
7782 printf (_("Flags:"));
7783 if (entry->d_un.d_val == 0)
7784 printf (_(" None\n"));
7785 else
7786 {
7787 unsigned long int val = entry->d_un.d_val;
7788
7789 if (val & DF_1_NOW)
7790 {
7791 printf (" NOW");
7792 val ^= DF_1_NOW;
7793 }
7794 if (val & DF_1_GLOBAL)
7795 {
7796 printf (" GLOBAL");
7797 val ^= DF_1_GLOBAL;
7798 }
7799 if (val & DF_1_GROUP)
7800 {
7801 printf (" GROUP");
7802 val ^= DF_1_GROUP;
7803 }
7804 if (val & DF_1_NODELETE)
7805 {
7806 printf (" NODELETE");
7807 val ^= DF_1_NODELETE;
7808 }
7809 if (val & DF_1_LOADFLTR)
7810 {
7811 printf (" LOADFLTR");
7812 val ^= DF_1_LOADFLTR;
7813 }
7814 if (val & DF_1_INITFIRST)
7815 {
7816 printf (" INITFIRST");
7817 val ^= DF_1_INITFIRST;
7818 }
7819 if (val & DF_1_NOOPEN)
7820 {
7821 printf (" NOOPEN");
7822 val ^= DF_1_NOOPEN;
7823 }
7824 if (val & DF_1_ORIGIN)
7825 {
7826 printf (" ORIGIN");
7827 val ^= DF_1_ORIGIN;
7828 }
7829 if (val & DF_1_DIRECT)
7830 {
7831 printf (" DIRECT");
7832 val ^= DF_1_DIRECT;
7833 }
7834 if (val & DF_1_TRANS)
7835 {
7836 printf (" TRANS");
7837 val ^= DF_1_TRANS;
7838 }
7839 if (val & DF_1_INTERPOSE)
7840 {
7841 printf (" INTERPOSE");
7842 val ^= DF_1_INTERPOSE;
7843 }
7844 if (val & DF_1_NODEFLIB)
7845 {
7846 printf (" NODEFLIB");
7847 val ^= DF_1_NODEFLIB;
7848 }
7849 if (val & DF_1_NODUMP)
7850 {
7851 printf (" NODUMP");
7852 val ^= DF_1_NODUMP;
7853 }
7854 if (val & DF_1_CONLFAT)
7855 {
7856 printf (" CONLFAT");
7857 val ^= DF_1_CONLFAT;
7858 }
7859 if (val != 0)
7860 printf (" %lx", val);
7861 puts ("");
7862 }
7863 }
7864 break;
7865
7866 case DT_PLTREL:
7867 dynamic_info[entry->d_tag] = entry->d_un.d_val;
7868 if (do_dynamic)
7869 puts (get_dynamic_type (entry->d_un.d_val));
7870 break;
7871
7872 case DT_NULL :
7873 case DT_NEEDED :
7874 case DT_PLTGOT :
7875 case DT_HASH :
7876 case DT_STRTAB :
7877 case DT_SYMTAB :
7878 case DT_RELA :
7879 case DT_INIT :
7880 case DT_FINI :
7881 case DT_SONAME :
7882 case DT_RPATH :
7883 case DT_SYMBOLIC:
7884 case DT_REL :
7885 case DT_DEBUG :
7886 case DT_TEXTREL :
7887 case DT_JMPREL :
7888 case DT_RUNPATH :
7889 dynamic_info[entry->d_tag] = entry->d_un.d_val;
7890
7891 if (do_dynamic)
7892 {
7893 char * name;
7894
7895 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
7896 name = GET_DYNAMIC_NAME (entry->d_un.d_val);
7897 else
7898 name = NULL;
7899
7900 if (name)
7901 {
7902 switch (entry->d_tag)
7903 {
7904 case DT_NEEDED:
7905 printf (_("Shared library: [%s]"), name);
7906
7907 if (streq (name, program_interpreter))
7908 printf (_(" program interpreter"));
7909 break;
7910
7911 case DT_SONAME:
7912 printf (_("Library soname: [%s]"), name);
7913 break;
7914
7915 case DT_RPATH:
7916 printf (_("Library rpath: [%s]"), name);
7917 break;
7918
7919 case DT_RUNPATH:
7920 printf (_("Library runpath: [%s]"), name);
7921 break;
7922
7923 default:
7924 print_vma (entry->d_un.d_val, PREFIX_HEX);
7925 break;
7926 }
7927 }
7928 else
7929 print_vma (entry->d_un.d_val, PREFIX_HEX);
7930
7931 putchar ('\n');
7932 }
7933 break;
7934
7935 case DT_PLTRELSZ:
7936 case DT_RELASZ :
7937 case DT_STRSZ :
7938 case DT_RELSZ :
7939 case DT_RELAENT :
7940 case DT_SYMENT :
7941 case DT_RELENT :
7942 dynamic_info[entry->d_tag] = entry->d_un.d_val;
7943 case DT_PLTPADSZ:
7944 case DT_MOVEENT :
7945 case DT_MOVESZ :
7946 case DT_INIT_ARRAYSZ:
7947 case DT_FINI_ARRAYSZ:
7948 case DT_GNU_CONFLICTSZ:
7949 case DT_GNU_LIBLISTSZ:
7950 if (do_dynamic)
7951 {
7952 print_vma (entry->d_un.d_val, UNSIGNED);
7953 printf (_(" (bytes)\n"));
7954 }
7955 break;
7956
7957 case DT_VERDEFNUM:
7958 case DT_VERNEEDNUM:
7959 case DT_RELACOUNT:
7960 case DT_RELCOUNT:
7961 if (do_dynamic)
7962 {
7963 print_vma (entry->d_un.d_val, UNSIGNED);
7964 putchar ('\n');
7965 }
7966 break;
7967
7968 case DT_SYMINSZ:
7969 case DT_SYMINENT:
7970 case DT_SYMINFO:
7971 case DT_USED:
7972 case DT_INIT_ARRAY:
7973 case DT_FINI_ARRAY:
7974 if (do_dynamic)
7975 {
7976 if (entry->d_tag == DT_USED
7977 && VALID_DYNAMIC_NAME (entry->d_un.d_val))
7978 {
7979 char * name = GET_DYNAMIC_NAME (entry->d_un.d_val);
7980
7981 if (*name)
7982 {
7983 printf (_("Not needed object: [%s]\n"), name);
7984 break;
7985 }
7986 }
7987
7988 print_vma (entry->d_un.d_val, PREFIX_HEX);
7989 putchar ('\n');
7990 }
7991 break;
7992
7993 case DT_BIND_NOW:
7994 /* The value of this entry is ignored. */
7995 if (do_dynamic)
7996 putchar ('\n');
7997 break;
7998
7999 case DT_GNU_PRELINKED:
8000 if (do_dynamic)
8001 {
8002 struct tm * tmp;
8003 time_t atime = entry->d_un.d_val;
8004
8005 tmp = gmtime (&atime);
8006 printf ("%04u-%02u-%02uT%02u:%02u:%02u\n",
8007 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
8008 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
8009
8010 }
8011 break;
8012
8013 case DT_GNU_HASH:
8014 dynamic_info_DT_GNU_HASH = entry->d_un.d_val;
8015 if (do_dynamic)
8016 {
8017 print_vma (entry->d_un.d_val, PREFIX_HEX);
8018 putchar ('\n');
8019 }
8020 break;
8021
8022 default:
8023 if ((entry->d_tag >= DT_VERSYM) && (entry->d_tag <= DT_VERNEEDNUM))
8024 version_info[DT_VERSIONTAGIDX (entry->d_tag)] =
8025 entry->d_un.d_val;
8026
8027 if (do_dynamic)
8028 {
8029 switch (elf_header.e_machine)
8030 {
8031 case EM_MIPS:
8032 case EM_MIPS_RS3_LE:
8033 dynamic_section_mips_val (entry);
8034 break;
8035 case EM_PARISC:
8036 dynamic_section_parisc_val (entry);
8037 break;
8038 case EM_IA_64:
8039 dynamic_section_ia64_val (entry);
8040 break;
8041 default:
8042 print_vma (entry->d_un.d_val, PREFIX_HEX);
8043 putchar ('\n');
8044 }
8045 }
8046 break;
8047 }
8048 }
8049
8050 return 1;
8051 }
8052
8053 static char *
8054 get_ver_flags (unsigned int flags)
8055 {
8056 static char buff[32];
8057
8058 buff[0] = 0;
8059
8060 if (flags == 0)
8061 return _("none");
8062
8063 if (flags & VER_FLG_BASE)
8064 strcat (buff, "BASE ");
8065
8066 if (flags & VER_FLG_WEAK)
8067 {
8068 if (flags & VER_FLG_BASE)
8069 strcat (buff, "| ");
8070
8071 strcat (buff, "WEAK ");
8072 }
8073
8074 if (flags & VER_FLG_INFO)
8075 {
8076 if (flags & (VER_FLG_BASE|VER_FLG_WEAK))
8077 strcat (buff, "| ");
8078
8079 strcat (buff, "INFO ");
8080 }
8081
8082 if (flags & ~(VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
8083 strcat (buff, _("| <unknown>"));
8084
8085 return buff;
8086 }
8087
8088 /* Display the contents of the version sections. */
8089
8090 static int
8091 process_version_sections (FILE * file)
8092 {
8093 Elf_Internal_Shdr * section;
8094 unsigned i;
8095 int found = 0;
8096
8097 if (! do_version)
8098 return 1;
8099
8100 for (i = 0, section = section_headers;
8101 i < elf_header.e_shnum;
8102 i++, section++)
8103 {
8104 switch (section->sh_type)
8105 {
8106 case SHT_GNU_verdef:
8107 {
8108 Elf_External_Verdef * edefs;
8109 unsigned int idx;
8110 unsigned int cnt;
8111 char * endbuf;
8112
8113 found = 1;
8114
8115 printf
8116 (_("\nVersion definition section '%s' contains %u entries:\n"),
8117 SECTION_NAME (section), section->sh_info);
8118
8119 printf (_(" Addr: 0x"));
8120 printf_vma (section->sh_addr);
8121 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
8122 (unsigned long) section->sh_offset, section->sh_link,
8123 section->sh_link < elf_header.e_shnum
8124 ? SECTION_NAME (section_headers + section->sh_link)
8125 : _("<corrupt>"));
8126
8127 edefs = (Elf_External_Verdef *)
8128 get_data (NULL, file, section->sh_offset, 1,section->sh_size,
8129 _("version definition section"));
8130 if (!edefs)
8131 break;
8132 endbuf = (char *) edefs + section->sh_size;
8133
8134 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
8135 {
8136 char * vstart;
8137 Elf_External_Verdef * edef;
8138 Elf_Internal_Verdef ent;
8139 Elf_External_Verdaux * eaux;
8140 Elf_Internal_Verdaux aux;
8141 int j;
8142 int isum;
8143
8144 /* Check for negative or very large indicies. */
8145 if ((unsigned char *) edefs + idx < (unsigned char *) edefs)
8146 break;
8147
8148 vstart = ((char *) edefs) + idx;
8149 if (vstart + sizeof (*edef) > endbuf)
8150 break;
8151
8152 edef = (Elf_External_Verdef *) vstart;
8153
8154 ent.vd_version = BYTE_GET (edef->vd_version);
8155 ent.vd_flags = BYTE_GET (edef->vd_flags);
8156 ent.vd_ndx = BYTE_GET (edef->vd_ndx);
8157 ent.vd_cnt = BYTE_GET (edef->vd_cnt);
8158 ent.vd_hash = BYTE_GET (edef->vd_hash);
8159 ent.vd_aux = BYTE_GET (edef->vd_aux);
8160 ent.vd_next = BYTE_GET (edef->vd_next);
8161
8162 printf (_(" %#06x: Rev: %d Flags: %s"),
8163 idx, ent.vd_version, get_ver_flags (ent.vd_flags));
8164
8165 printf (_(" Index: %d Cnt: %d "),
8166 ent.vd_ndx, ent.vd_cnt);
8167
8168 /* Check for overflow. */
8169 if ((unsigned char *)(vstart + ent.vd_aux) < (unsigned char *) vstart
8170 || (unsigned char *)(vstart + ent.vd_aux) > (unsigned char *) endbuf)
8171 break;
8172
8173 vstart += ent.vd_aux;
8174
8175 eaux = (Elf_External_Verdaux *) vstart;
8176
8177 aux.vda_name = BYTE_GET (eaux->vda_name);
8178 aux.vda_next = BYTE_GET (eaux->vda_next);
8179
8180 if (VALID_DYNAMIC_NAME (aux.vda_name))
8181 printf (_("Name: %s\n"), GET_DYNAMIC_NAME (aux.vda_name));
8182 else
8183 printf (_("Name index: %ld\n"), aux.vda_name);
8184
8185 isum = idx + ent.vd_aux;
8186
8187 for (j = 1; j < ent.vd_cnt; j++)
8188 {
8189 /* Check for overflow. */
8190 if ((unsigned char *)(vstart + aux.vda_next) < (unsigned char *) vstart
8191 || (unsigned char *)(vstart + aux.vda_next) > (unsigned char *) endbuf)
8192 break;
8193
8194 isum += aux.vda_next;
8195 vstart += aux.vda_next;
8196
8197 eaux = (Elf_External_Verdaux *) vstart;
8198 if (vstart + sizeof (*eaux) > endbuf)
8199 break;
8200
8201 aux.vda_name = BYTE_GET (eaux->vda_name);
8202 aux.vda_next = BYTE_GET (eaux->vda_next);
8203
8204 if (VALID_DYNAMIC_NAME (aux.vda_name))
8205 printf (_(" %#06x: Parent %d: %s\n"),
8206 isum, j, GET_DYNAMIC_NAME (aux.vda_name));
8207 else
8208 printf (_(" %#06x: Parent %d, name index: %ld\n"),
8209 isum, j, aux.vda_name);
8210 }
8211
8212 if (j < ent.vd_cnt)
8213 printf (_(" Version def aux past end of section\n"));
8214
8215 idx += ent.vd_next;
8216 }
8217
8218 if (cnt < section->sh_info)
8219 printf (_(" Version definition past end of section\n"));
8220
8221 free (edefs);
8222 }
8223 break;
8224
8225 case SHT_GNU_verneed:
8226 {
8227 Elf_External_Verneed * eneed;
8228 unsigned int idx;
8229 unsigned int cnt;
8230 char * endbuf;
8231
8232 found = 1;
8233
8234 printf (_("\nVersion needs section '%s' contains %u entries:\n"),
8235 SECTION_NAME (section), section->sh_info);
8236
8237 printf (_(" Addr: 0x"));
8238 printf_vma (section->sh_addr);
8239 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
8240 (unsigned long) section->sh_offset, section->sh_link,
8241 section->sh_link < elf_header.e_shnum
8242 ? SECTION_NAME (section_headers + section->sh_link)
8243 : _("<corrupt>"));
8244
8245 eneed = (Elf_External_Verneed *) get_data (NULL, file,
8246 section->sh_offset, 1,
8247 section->sh_size,
8248 _("Version Needs section"));
8249 if (!eneed)
8250 break;
8251 endbuf = (char *) eneed + section->sh_size;
8252
8253 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
8254 {
8255 Elf_External_Verneed * entry;
8256 Elf_Internal_Verneed ent;
8257 int j;
8258 int isum;
8259 char * vstart;
8260
8261 if ((unsigned char *) eneed + idx < (unsigned char *) eneed)
8262 break;
8263
8264 vstart = ((char *) eneed) + idx;
8265 if (vstart + sizeof (*entry) > endbuf)
8266 break;
8267
8268 entry = (Elf_External_Verneed *) vstart;
8269
8270 ent.vn_version = BYTE_GET (entry->vn_version);
8271 ent.vn_cnt = BYTE_GET (entry->vn_cnt);
8272 ent.vn_file = BYTE_GET (entry->vn_file);
8273 ent.vn_aux = BYTE_GET (entry->vn_aux);
8274 ent.vn_next = BYTE_GET (entry->vn_next);
8275
8276 printf (_(" %#06x: Version: %d"), idx, ent.vn_version);
8277
8278 if (VALID_DYNAMIC_NAME (ent.vn_file))
8279 printf (_(" File: %s"), GET_DYNAMIC_NAME (ent.vn_file));
8280 else
8281 printf (_(" File: %lx"), ent.vn_file);
8282
8283 printf (_(" Cnt: %d\n"), ent.vn_cnt);
8284
8285 /* Check for overflow. */
8286 if ((unsigned char *)(vstart + ent.vn_aux) < (unsigned char *) vstart
8287 || (unsigned char *)(vstart + ent.vn_aux) > (unsigned char *) endbuf)
8288 break;
8289
8290 vstart += ent.vn_aux;
8291
8292 for (j = 0, isum = idx + ent.vn_aux; j < ent.vn_cnt; ++j)
8293 {
8294 Elf_External_Vernaux * eaux;
8295 Elf_Internal_Vernaux aux;
8296
8297 if (vstart + sizeof (*eaux) > endbuf)
8298 break;
8299 eaux = (Elf_External_Vernaux *) vstart;
8300
8301 aux.vna_hash = BYTE_GET (eaux->vna_hash);
8302 aux.vna_flags = BYTE_GET (eaux->vna_flags);
8303 aux.vna_other = BYTE_GET (eaux->vna_other);
8304 aux.vna_name = BYTE_GET (eaux->vna_name);
8305 aux.vna_next = BYTE_GET (eaux->vna_next);
8306
8307 if (VALID_DYNAMIC_NAME (aux.vna_name))
8308 printf (_(" %#06x: Name: %s"),
8309 isum, GET_DYNAMIC_NAME (aux.vna_name));
8310 else
8311 printf (_(" %#06x: Name index: %lx"),
8312 isum, aux.vna_name);
8313
8314 printf (_(" Flags: %s Version: %d\n"),
8315 get_ver_flags (aux.vna_flags), aux.vna_other);
8316
8317 /* Check for overflow. */
8318 if ((unsigned char *)(vstart + aux.vna_next) < (unsigned char *) vstart
8319 || (unsigned char *)(vstart + aux.vna_next) > (unsigned char *) endbuf)
8320 break;
8321
8322 isum += aux.vna_next;
8323 vstart += aux.vna_next;
8324 }
8325
8326 if (j < ent.vn_cnt)
8327 warn (_("Missing Version Needs auxillary information\n"));
8328
8329 idx += ent.vn_next;
8330 }
8331
8332 if (cnt < section->sh_info)
8333 warn (_("Missing Version Needs information\n"));
8334
8335 free (eneed);
8336 }
8337 break;
8338
8339 case SHT_GNU_versym:
8340 {
8341 Elf_Internal_Shdr * link_section;
8342 int total;
8343 int cnt;
8344 unsigned char * edata;
8345 unsigned short * data;
8346 char * strtab;
8347 Elf_Internal_Sym * symbols;
8348 Elf_Internal_Shdr * string_sec;
8349 unsigned long num_syms;
8350 long off;
8351
8352 if (section->sh_link >= elf_header.e_shnum)
8353 break;
8354
8355 link_section = section_headers + section->sh_link;
8356 total = section->sh_size / sizeof (Elf_External_Versym);
8357
8358 if (link_section->sh_link >= elf_header.e_shnum)
8359 break;
8360
8361 found = 1;
8362
8363 symbols = GET_ELF_SYMBOLS (file, link_section, & num_syms);
8364 if (symbols == NULL)
8365 break;
8366
8367 string_sec = section_headers + link_section->sh_link;
8368
8369 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
8370 string_sec->sh_size,
8371 _("version string table"));
8372 if (!strtab)
8373 {
8374 free (symbols);
8375 break;
8376 }
8377
8378 printf (_("\nVersion symbols section '%s' contains %d entries:\n"),
8379 SECTION_NAME (section), total);
8380
8381 printf (_(" Addr: "));
8382 printf_vma (section->sh_addr);
8383 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
8384 (unsigned long) section->sh_offset, section->sh_link,
8385 SECTION_NAME (link_section));
8386
8387 off = offset_from_vma (file,
8388 version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
8389 total * sizeof (short));
8390 edata = (unsigned char *) get_data (NULL, file, off, total,
8391 sizeof (short),
8392 _("version symbol data"));
8393 if (!edata)
8394 {
8395 free (strtab);
8396 free (symbols);
8397 break;
8398 }
8399
8400 data = (short unsigned int *) cmalloc (total, sizeof (short));
8401
8402 for (cnt = total; cnt --;)
8403 data[cnt] = byte_get (edata + cnt * sizeof (short),
8404 sizeof (short));
8405
8406 free (edata);
8407
8408 for (cnt = 0; cnt < total; cnt += 4)
8409 {
8410 int j, nn;
8411 int check_def, check_need;
8412 char * name;
8413
8414 printf (" %03x:", cnt);
8415
8416 for (j = 0; (j < 4) && (cnt + j) < total; ++j)
8417 switch (data[cnt + j])
8418 {
8419 case 0:
8420 fputs (_(" 0 (*local*) "), stdout);
8421 break;
8422
8423 case 1:
8424 fputs (_(" 1 (*global*) "), stdout);
8425 break;
8426
8427 default:
8428 nn = printf ("%4x%c", data[cnt + j] & VERSYM_VERSION,
8429 data[cnt + j] & VERSYM_HIDDEN ? 'h' : ' ');
8430
8431 /* If this index value is greater than the size of the symbols
8432 array, break to avoid an out-of-bounds read. */
8433 if ((unsigned long)(cnt + j) >= num_syms)
8434 {
8435 warn (_("invalid index into symbol array\n"));
8436 break;
8437 }
8438
8439 check_def = 1;
8440 check_need = 1;
8441 if (symbols[cnt + j].st_shndx >= elf_header.e_shnum
8442 || section_headers[symbols[cnt + j].st_shndx].sh_type
8443 != SHT_NOBITS)
8444 {
8445 if (symbols[cnt + j].st_shndx == SHN_UNDEF)
8446 check_def = 0;
8447 else
8448 check_need = 0;
8449 }
8450
8451 if (check_need
8452 && version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
8453 {
8454 Elf_Internal_Verneed ivn;
8455 unsigned long offset;
8456
8457 offset = offset_from_vma
8458 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
8459 sizeof (Elf_External_Verneed));
8460
8461 do
8462 {
8463 Elf_Internal_Vernaux ivna;
8464 Elf_External_Verneed evn;
8465 Elf_External_Vernaux evna;
8466 unsigned long a_off;
8467
8468 if (get_data (&evn, file, offset, sizeof (evn), 1,
8469 _("version need")) == NULL)
8470 break;
8471
8472 ivn.vn_aux = BYTE_GET (evn.vn_aux);
8473 ivn.vn_next = BYTE_GET (evn.vn_next);
8474
8475 a_off = offset + ivn.vn_aux;
8476
8477 do
8478 {
8479 if (get_data (&evna, file, a_off, sizeof (evna),
8480 1, _("version need aux (2)")) == NULL)
8481 {
8482 ivna.vna_next = 0;
8483 ivna.vna_other = 0;
8484 }
8485 else
8486 {
8487 ivna.vna_next = BYTE_GET (evna.vna_next);
8488 ivna.vna_other = BYTE_GET (evna.vna_other);
8489 }
8490
8491 a_off += ivna.vna_next;
8492 }
8493 while (ivna.vna_other != data[cnt + j]
8494 && ivna.vna_next != 0);
8495
8496 if (ivna.vna_other == data[cnt + j])
8497 {
8498 ivna.vna_name = BYTE_GET (evna.vna_name);
8499
8500 if (ivna.vna_name >= string_sec->sh_size)
8501 name = _("*invalid*");
8502 else
8503 name = strtab + ivna.vna_name;
8504 nn += printf ("(%s%-*s",
8505 name,
8506 12 - (int) strlen (name),
8507 ")");
8508 check_def = 0;
8509 break;
8510 }
8511
8512 offset += ivn.vn_next;
8513 }
8514 while (ivn.vn_next);
8515 }
8516
8517 if (check_def && data[cnt + j] != 0x8001
8518 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
8519 {
8520 Elf_Internal_Verdef ivd;
8521 Elf_External_Verdef evd;
8522 unsigned long offset;
8523
8524 offset = offset_from_vma
8525 (file, version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
8526 sizeof evd);
8527
8528 do
8529 {
8530 if (get_data (&evd, file, offset, sizeof (evd), 1,
8531 _("version def")) == NULL)
8532 {
8533 ivd.vd_next = 0;
8534 ivd.vd_ndx = 0;
8535 }
8536 else
8537 {
8538 ivd.vd_next = BYTE_GET (evd.vd_next);
8539 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
8540 }
8541
8542 offset += ivd.vd_next;
8543 }
8544 while (ivd.vd_ndx != (data[cnt + j] & VERSYM_VERSION)
8545 && ivd.vd_next != 0);
8546
8547 if (ivd.vd_ndx == (data[cnt + j] & VERSYM_VERSION))
8548 {
8549 Elf_External_Verdaux evda;
8550 Elf_Internal_Verdaux ivda;
8551
8552 ivd.vd_aux = BYTE_GET (evd.vd_aux);
8553
8554 if (get_data (&evda, file,
8555 offset - ivd.vd_next + ivd.vd_aux,
8556 sizeof (evda), 1,
8557 _("version def aux")) == NULL)
8558 break;
8559
8560 ivda.vda_name = BYTE_GET (evda.vda_name);
8561
8562 if (ivda.vda_name >= string_sec->sh_size)
8563 name = _("*invalid*");
8564 else
8565 name = strtab + ivda.vda_name;
8566 nn += printf ("(%s%-*s",
8567 name,
8568 12 - (int) strlen (name),
8569 ")");
8570 }
8571 }
8572
8573 if (nn < 18)
8574 printf ("%*c", 18 - nn, ' ');
8575 }
8576
8577 putchar ('\n');
8578 }
8579
8580 free (data);
8581 free (strtab);
8582 free (symbols);
8583 }
8584 break;
8585
8586 default:
8587 break;
8588 }
8589 }
8590
8591 if (! found)
8592 printf (_("\nNo version information found in this file.\n"));
8593
8594 return 1;
8595 }
8596
8597 static const char *
8598 get_symbol_binding (unsigned int binding)
8599 {
8600 static char buff[32];
8601
8602 switch (binding)
8603 {
8604 case STB_LOCAL: return "LOCAL";
8605 case STB_GLOBAL: return "GLOBAL";
8606 case STB_WEAK: return "WEAK";
8607 default:
8608 if (binding >= STB_LOPROC && binding <= STB_HIPROC)
8609 snprintf (buff, sizeof (buff), _("<processor specific>: %d"),
8610 binding);
8611 else if (binding >= STB_LOOS && binding <= STB_HIOS)
8612 {
8613 if (binding == STB_GNU_UNIQUE
8614 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
8615 /* GNU is still using the default value 0. */
8616 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
8617 return "UNIQUE";
8618 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), binding);
8619 }
8620 else
8621 snprintf (buff, sizeof (buff), _("<unknown>: %d"), binding);
8622 return buff;
8623 }
8624 }
8625
8626 static const char *
8627 get_symbol_type (unsigned int type)
8628 {
8629 static char buff[32];
8630
8631 switch (type)
8632 {
8633 case STT_NOTYPE: return "NOTYPE";
8634 case STT_OBJECT: return "OBJECT";
8635 case STT_FUNC: return "FUNC";
8636 case STT_SECTION: return "SECTION";
8637 case STT_FILE: return "FILE";
8638 case STT_COMMON: return "COMMON";
8639 case STT_TLS: return "TLS";
8640 case STT_RELC: return "RELC";
8641 case STT_SRELC: return "SRELC";
8642 default:
8643 if (type >= STT_LOPROC && type <= STT_HIPROC)
8644 {
8645 if (elf_header.e_machine == EM_ARM && type == STT_ARM_TFUNC)
8646 return "THUMB_FUNC";
8647
8648 if (elf_header.e_machine == EM_SPARCV9 && type == STT_REGISTER)
8649 return "REGISTER";
8650
8651 if (elf_header.e_machine == EM_PARISC && type == STT_PARISC_MILLI)
8652 return "PARISC_MILLI";
8653
8654 snprintf (buff, sizeof (buff), _("<processor specific>: %d"), type);
8655 }
8656 else if (type >= STT_LOOS && type <= STT_HIOS)
8657 {
8658 if (elf_header.e_machine == EM_PARISC)
8659 {
8660 if (type == STT_HP_OPAQUE)
8661 return "HP_OPAQUE";
8662 if (type == STT_HP_STUB)
8663 return "HP_STUB";
8664 }
8665
8666 if (type == STT_GNU_IFUNC
8667 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
8668 /* GNU is still using the default value 0. */
8669 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
8670 return "IFUNC";
8671
8672 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), type);
8673 }
8674 else
8675 snprintf (buff, sizeof (buff), _("<unknown>: %d"), type);
8676 return buff;
8677 }
8678 }
8679
8680 static const char *
8681 get_symbol_visibility (unsigned int visibility)
8682 {
8683 switch (visibility)
8684 {
8685 case STV_DEFAULT: return "DEFAULT";
8686 case STV_INTERNAL: return "INTERNAL";
8687 case STV_HIDDEN: return "HIDDEN";
8688 case STV_PROTECTED: return "PROTECTED";
8689 default: abort ();
8690 }
8691 }
8692
8693 static const char *
8694 get_mips_symbol_other (unsigned int other)
8695 {
8696 switch (other)
8697 {
8698 case STO_OPTIONAL:
8699 return "OPTIONAL";
8700 case STO_MIPS_PLT:
8701 return "MIPS PLT";
8702 case STO_MIPS_PIC:
8703 return "MIPS PIC";
8704 case STO_MICROMIPS:
8705 return "MICROMIPS";
8706 case STO_MICROMIPS | STO_MIPS_PIC:
8707 return "MICROMIPS, MIPS PIC";
8708 case STO_MIPS16:
8709 return "MIPS16";
8710 default:
8711 return NULL;
8712 }
8713 }
8714
8715 static const char *
8716 get_ia64_symbol_other (unsigned int other)
8717 {
8718 if (is_ia64_vms ())
8719 {
8720 static char res[32];
8721
8722 res[0] = 0;
8723
8724 /* Function types is for images and .STB files only. */
8725 switch (elf_header.e_type)
8726 {
8727 case ET_DYN:
8728 case ET_EXEC:
8729 switch (VMS_ST_FUNC_TYPE (other))
8730 {
8731 case VMS_SFT_CODE_ADDR:
8732 strcat (res, " CA");
8733 break;
8734 case VMS_SFT_SYMV_IDX:
8735 strcat (res, " VEC");
8736 break;
8737 case VMS_SFT_FD:
8738 strcat (res, " FD");
8739 break;
8740 case VMS_SFT_RESERVE:
8741 strcat (res, " RSV");
8742 break;
8743 default:
8744 abort ();
8745 }
8746 break;
8747 default:
8748 break;
8749 }
8750 switch (VMS_ST_LINKAGE (other))
8751 {
8752 case VMS_STL_IGNORE:
8753 strcat (res, " IGN");
8754 break;
8755 case VMS_STL_RESERVE:
8756 strcat (res, " RSV");
8757 break;
8758 case VMS_STL_STD:
8759 strcat (res, " STD");
8760 break;
8761 case VMS_STL_LNK:
8762 strcat (res, " LNK");
8763 break;
8764 default:
8765 abort ();
8766 }
8767
8768 if (res[0] != 0)
8769 return res + 1;
8770 else
8771 return res;
8772 }
8773 return NULL;
8774 }
8775
8776 static const char *
8777 get_symbol_other (unsigned int other)
8778 {
8779 const char * result = NULL;
8780 static char buff [32];
8781
8782 if (other == 0)
8783 return "";
8784
8785 switch (elf_header.e_machine)
8786 {
8787 case EM_MIPS:
8788 result = get_mips_symbol_other (other);
8789 break;
8790 case EM_IA_64:
8791 result = get_ia64_symbol_other (other);
8792 break;
8793 default:
8794 break;
8795 }
8796
8797 if (result)
8798 return result;
8799
8800 snprintf (buff, sizeof buff, _("<other>: %x"), other);
8801 return buff;
8802 }
8803
8804 static const char *
8805 get_symbol_index_type (unsigned int type)
8806 {
8807 static char buff[32];
8808
8809 switch (type)
8810 {
8811 case SHN_UNDEF: return "UND";
8812 case SHN_ABS: return "ABS";
8813 case SHN_COMMON: return "COM";
8814 default:
8815 if (type == SHN_IA_64_ANSI_COMMON
8816 && elf_header.e_machine == EM_IA_64
8817 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX)
8818 return "ANSI_COM";
8819 else if ((elf_header.e_machine == EM_X86_64
8820 || elf_header.e_machine == EM_L1OM
8821 || elf_header.e_machine == EM_K1OM)
8822 && type == SHN_X86_64_LCOMMON)
8823 return "LARGE_COM";
8824 else if ((type == SHN_MIPS_SCOMMON
8825 && elf_header.e_machine == EM_MIPS)
8826 || (type == SHN_TIC6X_SCOMMON
8827 && elf_header.e_machine == EM_TI_C6000))
8828 return "SCOM";
8829 else if (type == SHN_MIPS_SUNDEFINED
8830 && elf_header.e_machine == EM_MIPS)
8831 return "SUND";
8832 else if (type >= SHN_LOPROC && type <= SHN_HIPROC)
8833 sprintf (buff, "PRC[0x%04x]", type & 0xffff);
8834 else if (type >= SHN_LOOS && type <= SHN_HIOS)
8835 sprintf (buff, "OS [0x%04x]", type & 0xffff);
8836 else if (type >= SHN_LORESERVE)
8837 sprintf (buff, "RSV[0x%04x]", type & 0xffff);
8838 else
8839 sprintf (buff, "%3d", type);
8840 break;
8841 }
8842
8843 return buff;
8844 }
8845
8846 static bfd_vma *
8847 get_dynamic_data (FILE * file, unsigned int number, unsigned int ent_size)
8848 {
8849 unsigned char * e_data;
8850 bfd_vma * i_data;
8851
8852 e_data = (unsigned char *) cmalloc (number, ent_size);
8853
8854 if (e_data == NULL)
8855 {
8856 error (_("Out of memory\n"));
8857 return NULL;
8858 }
8859
8860 if (fread (e_data, ent_size, number, file) != number)
8861 {
8862 error (_("Unable to read in dynamic data\n"));
8863 return NULL;
8864 }
8865
8866 i_data = (bfd_vma *) cmalloc (number, sizeof (*i_data));
8867
8868 if (i_data == NULL)
8869 {
8870 error (_("Out of memory\n"));
8871 free (e_data);
8872 return NULL;
8873 }
8874
8875 while (number--)
8876 i_data[number] = byte_get (e_data + number * ent_size, ent_size);
8877
8878 free (e_data);
8879
8880 return i_data;
8881 }
8882
8883 static void
8884 print_dynamic_symbol (bfd_vma si, unsigned long hn)
8885 {
8886 Elf_Internal_Sym * psym;
8887 int n;
8888
8889 psym = dynamic_symbols + si;
8890
8891 n = print_vma (si, DEC_5);
8892 if (n < 5)
8893 fputs (" " + n, stdout);
8894 printf (" %3lu: ", hn);
8895 print_vma (psym->st_value, LONG_HEX);
8896 putchar (' ');
8897 print_vma (psym->st_size, DEC_5);
8898
8899 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
8900 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
8901 printf (" %-7s", get_symbol_visibility (ELF_ST_VISIBILITY (psym->st_other)));
8902 /* Check to see if any other bits in the st_other field are set.
8903 Note - displaying this information disrupts the layout of the
8904 table being generated, but for the moment this case is very
8905 rare. */
8906 if (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other))
8907 printf (" [%s] ", get_symbol_other (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other)));
8908 printf (" %3.3s ", get_symbol_index_type (psym->st_shndx));
8909 if (VALID_DYNAMIC_NAME (psym->st_name))
8910 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
8911 else
8912 printf (_(" <corrupt: %14ld>"), psym->st_name);
8913 putchar ('\n');
8914 }
8915
8916 /* Dump the symbol table. */
8917 static int
8918 process_symbol_table (FILE * file)
8919 {
8920 Elf_Internal_Shdr * section;
8921 bfd_vma nbuckets = 0;
8922 bfd_vma nchains = 0;
8923 bfd_vma * buckets = NULL;
8924 bfd_vma * chains = NULL;
8925 bfd_vma ngnubuckets = 0;
8926 bfd_vma * gnubuckets = NULL;
8927 bfd_vma * gnuchains = NULL;
8928 bfd_vma gnusymidx = 0;
8929
8930 if (!do_syms && !do_dyn_syms && !do_histogram)
8931 return 1;
8932
8933 if (dynamic_info[DT_HASH]
8934 && (do_histogram
8935 || (do_using_dynamic
8936 && !do_dyn_syms
8937 && dynamic_strings != NULL)))
8938 {
8939 unsigned char nb[8];
8940 unsigned char nc[8];
8941 int hash_ent_size = 4;
8942
8943 if ((elf_header.e_machine == EM_ALPHA
8944 || elf_header.e_machine == EM_S390
8945 || elf_header.e_machine == EM_S390_OLD)
8946 && elf_header.e_ident[EI_CLASS] == ELFCLASS64)
8947 hash_ent_size = 8;
8948
8949 if (fseek (file,
8950 (archive_file_offset
8951 + offset_from_vma (file, dynamic_info[DT_HASH],
8952 sizeof nb + sizeof nc)),
8953 SEEK_SET))
8954 {
8955 error (_("Unable to seek to start of dynamic information\n"));
8956 goto no_hash;
8957 }
8958
8959 if (fread (nb, hash_ent_size, 1, file) != 1)
8960 {
8961 error (_("Failed to read in number of buckets\n"));
8962 goto no_hash;
8963 }
8964
8965 if (fread (nc, hash_ent_size, 1, file) != 1)
8966 {
8967 error (_("Failed to read in number of chains\n"));
8968 goto no_hash;
8969 }
8970
8971 nbuckets = byte_get (nb, hash_ent_size);
8972 nchains = byte_get (nc, hash_ent_size);
8973
8974 buckets = get_dynamic_data (file, nbuckets, hash_ent_size);
8975 chains = get_dynamic_data (file, nchains, hash_ent_size);
8976
8977 no_hash:
8978 if (buckets == NULL || chains == NULL)
8979 {
8980 if (do_using_dynamic)
8981 return 0;
8982 free (buckets);
8983 free (chains);
8984 buckets = NULL;
8985 chains = NULL;
8986 nbuckets = 0;
8987 nchains = 0;
8988 }
8989 }
8990
8991 if (dynamic_info_DT_GNU_HASH
8992 && (do_histogram
8993 || (do_using_dynamic
8994 && !do_dyn_syms
8995 && dynamic_strings != NULL)))
8996 {
8997 unsigned char nb[16];
8998 bfd_vma i, maxchain = 0xffffffff, bitmaskwords;
8999 bfd_vma buckets_vma;
9000
9001 if (fseek (file,
9002 (archive_file_offset
9003 + offset_from_vma (file, dynamic_info_DT_GNU_HASH,
9004 sizeof nb)),
9005 SEEK_SET))
9006 {
9007 error (_("Unable to seek to start of dynamic information\n"));
9008 goto no_gnu_hash;
9009 }
9010
9011 if (fread (nb, 16, 1, file) != 1)
9012 {
9013 error (_("Failed to read in number of buckets\n"));
9014 goto no_gnu_hash;
9015 }
9016
9017 ngnubuckets = byte_get (nb, 4);
9018 gnusymidx = byte_get (nb + 4, 4);
9019 bitmaskwords = byte_get (nb + 8, 4);
9020 buckets_vma = dynamic_info_DT_GNU_HASH + 16;
9021 if (is_32bit_elf)
9022 buckets_vma += bitmaskwords * 4;
9023 else
9024 buckets_vma += bitmaskwords * 8;
9025
9026 if (fseek (file,
9027 (archive_file_offset
9028 + offset_from_vma (file, buckets_vma, 4)),
9029 SEEK_SET))
9030 {
9031 error (_("Unable to seek to start of dynamic information\n"));
9032 goto no_gnu_hash;
9033 }
9034
9035 gnubuckets = get_dynamic_data (file, ngnubuckets, 4);
9036
9037 if (gnubuckets == NULL)
9038 goto no_gnu_hash;
9039
9040 for (i = 0; i < ngnubuckets; i++)
9041 if (gnubuckets[i] != 0)
9042 {
9043 if (gnubuckets[i] < gnusymidx)
9044 return 0;
9045
9046 if (maxchain == 0xffffffff || gnubuckets[i] > maxchain)
9047 maxchain = gnubuckets[i];
9048 }
9049
9050 if (maxchain == 0xffffffff)
9051 goto no_gnu_hash;
9052
9053 maxchain -= gnusymidx;
9054
9055 if (fseek (file,
9056 (archive_file_offset
9057 + offset_from_vma (file, buckets_vma
9058 + 4 * (ngnubuckets + maxchain), 4)),
9059 SEEK_SET))
9060 {
9061 error (_("Unable to seek to start of dynamic information\n"));
9062 goto no_gnu_hash;
9063 }
9064
9065 do
9066 {
9067 if (fread (nb, 4, 1, file) != 1)
9068 {
9069 error (_("Failed to determine last chain length\n"));
9070 goto no_gnu_hash;
9071 }
9072
9073 if (maxchain + 1 == 0)
9074 goto no_gnu_hash;
9075
9076 ++maxchain;
9077 }
9078 while ((byte_get (nb, 4) & 1) == 0);
9079
9080 if (fseek (file,
9081 (archive_file_offset
9082 + offset_from_vma (file, buckets_vma + 4 * ngnubuckets, 4)),
9083 SEEK_SET))
9084 {
9085 error (_("Unable to seek to start of dynamic information\n"));
9086 goto no_gnu_hash;
9087 }
9088
9089 gnuchains = get_dynamic_data (file, maxchain, 4);
9090
9091 no_gnu_hash:
9092 if (gnuchains == NULL)
9093 {
9094 free (gnubuckets);
9095 gnubuckets = NULL;
9096 ngnubuckets = 0;
9097 if (do_using_dynamic)
9098 return 0;
9099 }
9100 }
9101
9102 if ((dynamic_info[DT_HASH] || dynamic_info_DT_GNU_HASH)
9103 && do_syms
9104 && do_using_dynamic
9105 && dynamic_strings != NULL)
9106 {
9107 unsigned long hn;
9108
9109 if (dynamic_info[DT_HASH])
9110 {
9111 bfd_vma si;
9112
9113 printf (_("\nSymbol table for image:\n"));
9114 if (is_32bit_elf)
9115 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9116 else
9117 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9118
9119 for (hn = 0; hn < nbuckets; hn++)
9120 {
9121 if (! buckets[hn])
9122 continue;
9123
9124 for (si = buckets[hn]; si < nchains && si > 0; si = chains[si])
9125 print_dynamic_symbol (si, hn);
9126 }
9127 }
9128
9129 if (dynamic_info_DT_GNU_HASH)
9130 {
9131 printf (_("\nSymbol table of `.gnu.hash' for image:\n"));
9132 if (is_32bit_elf)
9133 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9134 else
9135 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9136
9137 for (hn = 0; hn < ngnubuckets; ++hn)
9138 if (gnubuckets[hn] != 0)
9139 {
9140 bfd_vma si = gnubuckets[hn];
9141 bfd_vma off = si - gnusymidx;
9142
9143 do
9144 {
9145 print_dynamic_symbol (si, hn);
9146 si++;
9147 }
9148 while ((gnuchains[off++] & 1) == 0);
9149 }
9150 }
9151 }
9152 else if (do_dyn_syms || (do_syms && !do_using_dynamic))
9153 {
9154 unsigned int i;
9155
9156 for (i = 0, section = section_headers;
9157 i < elf_header.e_shnum;
9158 i++, section++)
9159 {
9160 unsigned int si;
9161 char * strtab = NULL;
9162 unsigned long int strtab_size = 0;
9163 Elf_Internal_Sym * symtab;
9164 Elf_Internal_Sym * psym;
9165 unsigned long num_syms;
9166
9167 if ((section->sh_type != SHT_SYMTAB
9168 && section->sh_type != SHT_DYNSYM)
9169 || (!do_syms
9170 && section->sh_type == SHT_SYMTAB))
9171 continue;
9172
9173 if (section->sh_entsize == 0)
9174 {
9175 printf (_("\nSymbol table '%s' has a sh_entsize of zero!\n"),
9176 SECTION_NAME (section));
9177 continue;
9178 }
9179
9180 printf (_("\nSymbol table '%s' contains %lu entries:\n"),
9181 SECTION_NAME (section),
9182 (unsigned long) (section->sh_size / section->sh_entsize));
9183
9184 if (is_32bit_elf)
9185 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
9186 else
9187 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
9188
9189 symtab = GET_ELF_SYMBOLS (file, section, & num_syms);
9190 if (symtab == NULL)
9191 continue;
9192
9193 if (section->sh_link == elf_header.e_shstrndx)
9194 {
9195 strtab = string_table;
9196 strtab_size = string_table_length;
9197 }
9198 else if (section->sh_link < elf_header.e_shnum)
9199 {
9200 Elf_Internal_Shdr * string_sec;
9201
9202 string_sec = section_headers + section->sh_link;
9203
9204 strtab = (char *) get_data (NULL, file, string_sec->sh_offset,
9205 1, string_sec->sh_size,
9206 _("string table"));
9207 strtab_size = strtab != NULL ? string_sec->sh_size : 0;
9208 }
9209
9210 for (si = 0, psym = symtab; si < num_syms; si++, psym++)
9211 {
9212 printf ("%6d: ", si);
9213 print_vma (psym->st_value, LONG_HEX);
9214 putchar (' ');
9215 print_vma (psym->st_size, DEC_5);
9216 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
9217 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
9218 printf (" %-7s", get_symbol_visibility (ELF_ST_VISIBILITY (psym->st_other)));
9219 /* Check to see if any other bits in the st_other field are set.
9220 Note - displaying this information disrupts the layout of the
9221 table being generated, but for the moment this case is very rare. */
9222 if (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other))
9223 printf (" [%s] ", get_symbol_other (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other)));
9224 printf (" %4s ", get_symbol_index_type (psym->st_shndx));
9225 print_symbol (25, psym->st_name < strtab_size
9226 ? strtab + psym->st_name : _("<corrupt>"));
9227
9228 if (section->sh_type == SHT_DYNSYM
9229 && version_info[DT_VERSIONTAGIDX (DT_VERSYM)] != 0)
9230 {
9231 unsigned char data[2];
9232 unsigned short vers_data;
9233 unsigned long offset;
9234 int is_nobits;
9235 int check_def;
9236
9237 offset = offset_from_vma
9238 (file, version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
9239 sizeof data + si * sizeof (vers_data));
9240
9241 if (get_data (&data, file, offset + si * sizeof (vers_data),
9242 sizeof (data), 1, _("version data")) == NULL)
9243 break;
9244
9245 vers_data = byte_get (data, 2);
9246
9247 is_nobits = (psym->st_shndx < elf_header.e_shnum
9248 && section_headers[psym->st_shndx].sh_type
9249 == SHT_NOBITS);
9250
9251 check_def = (psym->st_shndx != SHN_UNDEF);
9252
9253 if ((vers_data & VERSYM_HIDDEN) || vers_data > 1)
9254 {
9255 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)]
9256 && (is_nobits || ! check_def))
9257 {
9258 Elf_External_Verneed evn;
9259 Elf_Internal_Verneed ivn;
9260 Elf_Internal_Vernaux ivna;
9261
9262 /* We must test both. */
9263 offset = offset_from_vma
9264 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
9265 sizeof evn);
9266
9267 do
9268 {
9269 unsigned long vna_off;
9270
9271 if (get_data (&evn, file, offset, sizeof (evn), 1,
9272 _("version need")) == NULL)
9273 {
9274 ivna.vna_next = 0;
9275 ivna.vna_other = 0;
9276 ivna.vna_name = 0;
9277 break;
9278 }
9279
9280 ivn.vn_aux = BYTE_GET (evn.vn_aux);
9281 ivn.vn_next = BYTE_GET (evn.vn_next);
9282
9283 vna_off = offset + ivn.vn_aux;
9284
9285 do
9286 {
9287 Elf_External_Vernaux evna;
9288
9289 if (get_data (&evna, file, vna_off,
9290 sizeof (evna), 1,
9291 _("version need aux (3)")) == NULL)
9292 {
9293 ivna.vna_next = 0;
9294 ivna.vna_other = 0;
9295 ivna.vna_name = 0;
9296 }
9297 else
9298 {
9299 ivna.vna_other = BYTE_GET (evna.vna_other);
9300 ivna.vna_next = BYTE_GET (evna.vna_next);
9301 ivna.vna_name = BYTE_GET (evna.vna_name);
9302 }
9303
9304 vna_off += ivna.vna_next;
9305 }
9306 while (ivna.vna_other != vers_data
9307 && ivna.vna_next != 0);
9308
9309 if (ivna.vna_other == vers_data)
9310 break;
9311
9312 offset += ivn.vn_next;
9313 }
9314 while (ivn.vn_next != 0);
9315
9316 if (ivna.vna_other == vers_data)
9317 {
9318 printf ("@%s (%d)",
9319 ivna.vna_name < strtab_size
9320 ? strtab + ivna.vna_name : _("<corrupt>"),
9321 ivna.vna_other);
9322 check_def = 0;
9323 }
9324 else if (! is_nobits)
9325 error (_("bad dynamic symbol\n"));
9326 else
9327 check_def = 1;
9328 }
9329
9330 if (check_def)
9331 {
9332 if (vers_data != 0x8001
9333 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
9334 {
9335 Elf_Internal_Verdef ivd;
9336 Elf_Internal_Verdaux ivda;
9337 Elf_External_Verdaux evda;
9338 unsigned long off;
9339
9340 off = offset_from_vma
9341 (file,
9342 version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
9343 sizeof (Elf_External_Verdef));
9344
9345 do
9346 {
9347 Elf_External_Verdef evd;
9348
9349 if (get_data (&evd, file, off, sizeof (evd),
9350 1, _("version def")) == NULL)
9351 {
9352 ivd.vd_ndx = 0;
9353 ivd.vd_aux = 0;
9354 ivd.vd_next = 0;
9355 }
9356 else
9357 {
9358 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
9359 ivd.vd_aux = BYTE_GET (evd.vd_aux);
9360 ivd.vd_next = BYTE_GET (evd.vd_next);
9361 }
9362
9363 off += ivd.vd_next;
9364 }
9365 while (ivd.vd_ndx != (vers_data & VERSYM_VERSION)
9366 && ivd.vd_next != 0);
9367
9368 off -= ivd.vd_next;
9369 off += ivd.vd_aux;
9370
9371 if (get_data (&evda, file, off, sizeof (evda),
9372 1, _("version def aux")) == NULL)
9373 break;
9374
9375 ivda.vda_name = BYTE_GET (evda.vda_name);
9376
9377 if (psym->st_name != ivda.vda_name)
9378 printf ((vers_data & VERSYM_HIDDEN)
9379 ? "@%s" : "@@%s",
9380 ivda.vda_name < strtab_size
9381 ? strtab + ivda.vda_name : _("<corrupt>"));
9382 }
9383 }
9384 }
9385 }
9386
9387 putchar ('\n');
9388 }
9389
9390 free (symtab);
9391 if (strtab != string_table)
9392 free (strtab);
9393 }
9394 }
9395 else if (do_syms)
9396 printf
9397 (_("\nDynamic symbol information is not available for displaying symbols.\n"));
9398
9399 if (do_histogram && buckets != NULL)
9400 {
9401 unsigned long * lengths;
9402 unsigned long * counts;
9403 unsigned long hn;
9404 bfd_vma si;
9405 unsigned long maxlength = 0;
9406 unsigned long nzero_counts = 0;
9407 unsigned long nsyms = 0;
9408
9409 printf (_("\nHistogram for bucket list length (total of %lu buckets):\n"),
9410 (unsigned long) nbuckets);
9411 printf (_(" Length Number %% of total Coverage\n"));
9412
9413 lengths = (unsigned long *) calloc (nbuckets, sizeof (*lengths));
9414 if (lengths == NULL)
9415 {
9416 error (_("Out of memory\n"));
9417 return 0;
9418 }
9419 for (hn = 0; hn < nbuckets; ++hn)
9420 {
9421 for (si = buckets[hn]; si > 0 && si < nchains; si = chains[si])
9422 {
9423 ++nsyms;
9424 if (maxlength < ++lengths[hn])
9425 ++maxlength;
9426 }
9427 }
9428
9429 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
9430 if (counts == NULL)
9431 {
9432 error (_("Out of memory\n"));
9433 return 0;
9434 }
9435
9436 for (hn = 0; hn < nbuckets; ++hn)
9437 ++counts[lengths[hn]];
9438
9439 if (nbuckets > 0)
9440 {
9441 unsigned long i;
9442 printf (" 0 %-10lu (%5.1f%%)\n",
9443 counts[0], (counts[0] * 100.0) / nbuckets);
9444 for (i = 1; i <= maxlength; ++i)
9445 {
9446 nzero_counts += counts[i] * i;
9447 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
9448 i, counts[i], (counts[i] * 100.0) / nbuckets,
9449 (nzero_counts * 100.0) / nsyms);
9450 }
9451 }
9452
9453 free (counts);
9454 free (lengths);
9455 }
9456
9457 if (buckets != NULL)
9458 {
9459 free (buckets);
9460 free (chains);
9461 }
9462
9463 if (do_histogram && gnubuckets != NULL)
9464 {
9465 unsigned long * lengths;
9466 unsigned long * counts;
9467 unsigned long hn;
9468 unsigned long maxlength = 0;
9469 unsigned long nzero_counts = 0;
9470 unsigned long nsyms = 0;
9471
9472 lengths = (unsigned long *) calloc (ngnubuckets, sizeof (*lengths));
9473 if (lengths == NULL)
9474 {
9475 error (_("Out of memory\n"));
9476 return 0;
9477 }
9478
9479 printf (_("\nHistogram for `.gnu.hash' bucket list length (total of %lu buckets):\n"),
9480 (unsigned long) ngnubuckets);
9481 printf (_(" Length Number %% of total Coverage\n"));
9482
9483 for (hn = 0; hn < ngnubuckets; ++hn)
9484 if (gnubuckets[hn] != 0)
9485 {
9486 bfd_vma off, length = 1;
9487
9488 for (off = gnubuckets[hn] - gnusymidx;
9489 (gnuchains[off] & 1) == 0; ++off)
9490 ++length;
9491 lengths[hn] = length;
9492 if (length > maxlength)
9493 maxlength = length;
9494 nsyms += length;
9495 }
9496
9497 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
9498 if (counts == NULL)
9499 {
9500 error (_("Out of memory\n"));
9501 return 0;
9502 }
9503
9504 for (hn = 0; hn < ngnubuckets; ++hn)
9505 ++counts[lengths[hn]];
9506
9507 if (ngnubuckets > 0)
9508 {
9509 unsigned long j;
9510 printf (" 0 %-10lu (%5.1f%%)\n",
9511 counts[0], (counts[0] * 100.0) / ngnubuckets);
9512 for (j = 1; j <= maxlength; ++j)
9513 {
9514 nzero_counts += counts[j] * j;
9515 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
9516 j, counts[j], (counts[j] * 100.0) / ngnubuckets,
9517 (nzero_counts * 100.0) / nsyms);
9518 }
9519 }
9520
9521 free (counts);
9522 free (lengths);
9523 free (gnubuckets);
9524 free (gnuchains);
9525 }
9526
9527 return 1;
9528 }
9529
9530 static int
9531 process_syminfo (FILE * file ATTRIBUTE_UNUSED)
9532 {
9533 unsigned int i;
9534
9535 if (dynamic_syminfo == NULL
9536 || !do_dynamic)
9537 /* No syminfo, this is ok. */
9538 return 1;
9539
9540 /* There better should be a dynamic symbol section. */
9541 if (dynamic_symbols == NULL || dynamic_strings == NULL)
9542 return 0;
9543
9544 if (dynamic_addr)
9545 printf (_("\nDynamic info segment at offset 0x%lx contains %d entries:\n"),
9546 dynamic_syminfo_offset, dynamic_syminfo_nent);
9547
9548 printf (_(" Num: Name BoundTo Flags\n"));
9549 for (i = 0; i < dynamic_syminfo_nent; ++i)
9550 {
9551 unsigned short int flags = dynamic_syminfo[i].si_flags;
9552
9553 printf ("%4d: ", i);
9554 if (VALID_DYNAMIC_NAME (dynamic_symbols[i].st_name))
9555 print_symbol (30, GET_DYNAMIC_NAME (dynamic_symbols[i].st_name));
9556 else
9557 printf (_("<corrupt: %19ld>"), dynamic_symbols[i].st_name);
9558 putchar (' ');
9559
9560 switch (dynamic_syminfo[i].si_boundto)
9561 {
9562 case SYMINFO_BT_SELF:
9563 fputs ("SELF ", stdout);
9564 break;
9565 case SYMINFO_BT_PARENT:
9566 fputs ("PARENT ", stdout);
9567 break;
9568 default:
9569 if (dynamic_syminfo[i].si_boundto > 0
9570 && dynamic_syminfo[i].si_boundto < dynamic_nent
9571 && VALID_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val))
9572 {
9573 print_symbol (10, GET_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val));
9574 putchar (' ' );
9575 }
9576 else
9577 printf ("%-10d ", dynamic_syminfo[i].si_boundto);
9578 break;
9579 }
9580
9581 if (flags & SYMINFO_FLG_DIRECT)
9582 printf (" DIRECT");
9583 if (flags & SYMINFO_FLG_PASSTHRU)
9584 printf (" PASSTHRU");
9585 if (flags & SYMINFO_FLG_COPY)
9586 printf (" COPY");
9587 if (flags & SYMINFO_FLG_LAZYLOAD)
9588 printf (" LAZYLOAD");
9589
9590 puts ("");
9591 }
9592
9593 return 1;
9594 }
9595
9596 /* Check to see if the given reloc needs to be handled in a target specific
9597 manner. If so then process the reloc and return TRUE otherwise return
9598 FALSE. */
9599
9600 static bfd_boolean
9601 target_specific_reloc_handling (Elf_Internal_Rela * reloc,
9602 unsigned char * start,
9603 Elf_Internal_Sym * symtab)
9604 {
9605 unsigned int reloc_type = get_reloc_type (reloc->r_info);
9606
9607 switch (elf_header.e_machine)
9608 {
9609 case EM_MN10300:
9610 case EM_CYGNUS_MN10300:
9611 {
9612 static Elf_Internal_Sym * saved_sym = NULL;
9613
9614 switch (reloc_type)
9615 {
9616 case 34: /* R_MN10300_ALIGN */
9617 return TRUE;
9618 case 33: /* R_MN10300_SYM_DIFF */
9619 saved_sym = symtab + get_reloc_symindex (reloc->r_info);
9620 return TRUE;
9621 case 1: /* R_MN10300_32 */
9622 case 2: /* R_MN10300_16 */
9623 if (saved_sym != NULL)
9624 {
9625 bfd_vma value;
9626
9627 value = reloc->r_addend
9628 + (symtab[get_reloc_symindex (reloc->r_info)].st_value
9629 - saved_sym->st_value);
9630
9631 byte_put (start + reloc->r_offset, value, reloc_type == 1 ? 4 : 2);
9632
9633 saved_sym = NULL;
9634 return TRUE;
9635 }
9636 break;
9637 default:
9638 if (saved_sym != NULL)
9639 error (_("Unhandled MN10300 reloc type found after SYM_DIFF reloc"));
9640 break;
9641 }
9642 break;
9643 }
9644 }
9645
9646 return FALSE;
9647 }
9648
9649 /* Returns TRUE iff RELOC_TYPE is a 32-bit absolute RELA relocation used in
9650 DWARF debug sections. This is a target specific test. Note - we do not
9651 go through the whole including-target-headers-multiple-times route, (as
9652 we have already done with <elf/h8.h>) because this would become very
9653 messy and even then this function would have to contain target specific
9654 information (the names of the relocs instead of their numeric values).
9655 FIXME: This is not the correct way to solve this problem. The proper way
9656 is to have target specific reloc sizing and typing functions created by
9657 the reloc-macros.h header, in the same way that it already creates the
9658 reloc naming functions. */
9659
9660 static bfd_boolean
9661 is_32bit_abs_reloc (unsigned int reloc_type)
9662 {
9663 switch (elf_header.e_machine)
9664 {
9665 case EM_386:
9666 case EM_486:
9667 return reloc_type == 1; /* R_386_32. */
9668 case EM_68K:
9669 return reloc_type == 1; /* R_68K_32. */
9670 case EM_860:
9671 return reloc_type == 1; /* R_860_32. */
9672 case EM_960:
9673 return reloc_type == 2; /* R_960_32. */
9674 case EM_ALPHA:
9675 return reloc_type == 1; /* R_ALPHA_REFLONG. */
9676 case EM_ARC:
9677 return reloc_type == 1; /* R_ARC_32. */
9678 case EM_ARM:
9679 return reloc_type == 2; /* R_ARM_ABS32 */
9680 case EM_AVR_OLD:
9681 case EM_AVR:
9682 return reloc_type == 1;
9683 case EM_BLACKFIN:
9684 return reloc_type == 0x12; /* R_byte4_data. */
9685 case EM_CRIS:
9686 return reloc_type == 3; /* R_CRIS_32. */
9687 case EM_CR16:
9688 case EM_CR16_OLD:
9689 return reloc_type == 3; /* R_CR16_NUM32. */
9690 case EM_CRX:
9691 return reloc_type == 15; /* R_CRX_NUM32. */
9692 case EM_CYGNUS_FRV:
9693 return reloc_type == 1;
9694 case EM_CYGNUS_D10V:
9695 case EM_D10V:
9696 return reloc_type == 6; /* R_D10V_32. */
9697 case EM_CYGNUS_D30V:
9698 case EM_D30V:
9699 return reloc_type == 12; /* R_D30V_32_NORMAL. */
9700 case EM_DLX:
9701 return reloc_type == 3; /* R_DLX_RELOC_32. */
9702 case EM_CYGNUS_FR30:
9703 case EM_FR30:
9704 return reloc_type == 3; /* R_FR30_32. */
9705 case EM_H8S:
9706 case EM_H8_300:
9707 case EM_H8_300H:
9708 return reloc_type == 1; /* R_H8_DIR32. */
9709 case EM_IA_64:
9710 return reloc_type == 0x65; /* R_IA64_SECREL32LSB. */
9711 case EM_IP2K_OLD:
9712 case EM_IP2K:
9713 return reloc_type == 2; /* R_IP2K_32. */
9714 case EM_IQ2000:
9715 return reloc_type == 2; /* R_IQ2000_32. */
9716 case EM_LATTICEMICO32:
9717 return reloc_type == 3; /* R_LM32_32. */
9718 case EM_M32C_OLD:
9719 case EM_M32C:
9720 return reloc_type == 3; /* R_M32C_32. */
9721 case EM_M32R:
9722 return reloc_type == 34; /* R_M32R_32_RELA. */
9723 case EM_MCORE:
9724 return reloc_type == 1; /* R_MCORE_ADDR32. */
9725 case EM_CYGNUS_MEP:
9726 return reloc_type == 4; /* R_MEP_32. */
9727 case EM_MICROBLAZE:
9728 return reloc_type == 1; /* R_MICROBLAZE_32. */
9729 case EM_MIPS:
9730 return reloc_type == 2; /* R_MIPS_32. */
9731 case EM_MMIX:
9732 return reloc_type == 4; /* R_MMIX_32. */
9733 case EM_CYGNUS_MN10200:
9734 case EM_MN10200:
9735 return reloc_type == 1; /* R_MN10200_32. */
9736 case EM_CYGNUS_MN10300:
9737 case EM_MN10300:
9738 return reloc_type == 1; /* R_MN10300_32. */
9739 case EM_MOXIE:
9740 return reloc_type == 1; /* R_MOXIE_32. */
9741 case EM_MSP430_OLD:
9742 case EM_MSP430:
9743 return reloc_type == 1; /* R_MSP43_32. */
9744 case EM_MT:
9745 return reloc_type == 2; /* R_MT_32. */
9746 case EM_ALTERA_NIOS2:
9747 case EM_NIOS32:
9748 return reloc_type == 1; /* R_NIOS_32. */
9749 case EM_OPENRISC:
9750 case EM_OR32:
9751 return reloc_type == 1; /* R_OR32_32. */
9752 case EM_PARISC:
9753 return (reloc_type == 1 /* R_PARISC_DIR32. */
9754 || reloc_type == 41); /* R_PARISC_SECREL32. */
9755 case EM_PJ:
9756 case EM_PJ_OLD:
9757 return reloc_type == 1; /* R_PJ_DATA_DIR32. */
9758 case EM_PPC64:
9759 return reloc_type == 1; /* R_PPC64_ADDR32. */
9760 case EM_PPC:
9761 return reloc_type == 1; /* R_PPC_ADDR32. */
9762 case EM_RX:
9763 return reloc_type == 1; /* R_RX_DIR32. */
9764 case EM_S370:
9765 return reloc_type == 1; /* R_I370_ADDR31. */
9766 case EM_S390_OLD:
9767 case EM_S390:
9768 return reloc_type == 4; /* R_S390_32. */
9769 case EM_SCORE:
9770 return reloc_type == 8; /* R_SCORE_ABS32. */
9771 case EM_SH:
9772 return reloc_type == 1; /* R_SH_DIR32. */
9773 case EM_SPARC32PLUS:
9774 case EM_SPARCV9:
9775 case EM_SPARC:
9776 return reloc_type == 3 /* R_SPARC_32. */
9777 || reloc_type == 23; /* R_SPARC_UA32. */
9778 case EM_SPU:
9779 return reloc_type == 6; /* R_SPU_ADDR32 */
9780 case EM_TI_C6000:
9781 return reloc_type == 1; /* R_C6000_ABS32. */
9782 case EM_TILEGX:
9783 return reloc_type == 2; /* R_TILEGX_32. */
9784 case EM_TILEPRO:
9785 return reloc_type == 1; /* R_TILEPRO_32. */
9786 case EM_CYGNUS_V850:
9787 case EM_V850:
9788 return reloc_type == 6; /* R_V850_ABS32. */
9789 case EM_VAX:
9790 return reloc_type == 1; /* R_VAX_32. */
9791 case EM_X86_64:
9792 case EM_L1OM:
9793 case EM_K1OM:
9794 return reloc_type == 10; /* R_X86_64_32. */
9795 case EM_XC16X:
9796 case EM_C166:
9797 return reloc_type == 3; /* R_XC16C_ABS_32. */
9798 case EM_XSTORMY16:
9799 return reloc_type == 1; /* R_XSTROMY16_32. */
9800 case EM_XTENSA_OLD:
9801 case EM_XTENSA:
9802 return reloc_type == 1; /* R_XTENSA_32. */
9803 default:
9804 error (_("Missing knowledge of 32-bit reloc types used in DWARF sections of machine number %d\n"),
9805 elf_header.e_machine);
9806 abort ();
9807 }
9808 }
9809
9810 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
9811 a 32-bit pc-relative RELA relocation used in DWARF debug sections. */
9812
9813 static bfd_boolean
9814 is_32bit_pcrel_reloc (unsigned int reloc_type)
9815 {
9816 switch (elf_header.e_machine)
9817 {
9818 case EM_386:
9819 case EM_486:
9820 return reloc_type == 2; /* R_386_PC32. */
9821 case EM_68K:
9822 return reloc_type == 4; /* R_68K_PC32. */
9823 case EM_ALPHA:
9824 return reloc_type == 10; /* R_ALPHA_SREL32. */
9825 case EM_ARM:
9826 return reloc_type == 3; /* R_ARM_REL32 */
9827 case EM_MICROBLAZE:
9828 return reloc_type == 2; /* R_MICROBLAZE_32_PCREL. */
9829 case EM_PARISC:
9830 return reloc_type == 9; /* R_PARISC_PCREL32. */
9831 case EM_PPC:
9832 return reloc_type == 26; /* R_PPC_REL32. */
9833 case EM_PPC64:
9834 return reloc_type == 26; /* R_PPC64_REL32. */
9835 case EM_S390_OLD:
9836 case EM_S390:
9837 return reloc_type == 5; /* R_390_PC32. */
9838 case EM_SH:
9839 return reloc_type == 2; /* R_SH_REL32. */
9840 case EM_SPARC32PLUS:
9841 case EM_SPARCV9:
9842 case EM_SPARC:
9843 return reloc_type == 6; /* R_SPARC_DISP32. */
9844 case EM_SPU:
9845 return reloc_type == 13; /* R_SPU_REL32. */
9846 case EM_TILEGX:
9847 return reloc_type == 6; /* R_TILEGX_32_PCREL. */
9848 case EM_TILEPRO:
9849 return reloc_type == 4; /* R_TILEPRO_32_PCREL. */
9850 case EM_X86_64:
9851 case EM_L1OM:
9852 case EM_K1OM:
9853 return reloc_type == 2; /* R_X86_64_PC32. */
9854 case EM_XTENSA_OLD:
9855 case EM_XTENSA:
9856 return reloc_type == 14; /* R_XTENSA_32_PCREL. */
9857 default:
9858 /* Do not abort or issue an error message here. Not all targets use
9859 pc-relative 32-bit relocs in their DWARF debug information and we
9860 have already tested for target coverage in is_32bit_abs_reloc. A
9861 more helpful warning message will be generated by apply_relocations
9862 anyway, so just return. */
9863 return FALSE;
9864 }
9865 }
9866
9867 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
9868 a 64-bit absolute RELA relocation used in DWARF debug sections. */
9869
9870 static bfd_boolean
9871 is_64bit_abs_reloc (unsigned int reloc_type)
9872 {
9873 switch (elf_header.e_machine)
9874 {
9875 case EM_ALPHA:
9876 return reloc_type == 2; /* R_ALPHA_REFQUAD. */
9877 case EM_IA_64:
9878 return reloc_type == 0x27; /* R_IA64_DIR64LSB. */
9879 case EM_PARISC:
9880 return reloc_type == 80; /* R_PARISC_DIR64. */
9881 case EM_PPC64:
9882 return reloc_type == 38; /* R_PPC64_ADDR64. */
9883 case EM_SPARC32PLUS:
9884 case EM_SPARCV9:
9885 case EM_SPARC:
9886 return reloc_type == 54; /* R_SPARC_UA64. */
9887 case EM_X86_64:
9888 case EM_L1OM:
9889 case EM_K1OM:
9890 return reloc_type == 1; /* R_X86_64_64. */
9891 case EM_S390_OLD:
9892 case EM_S390:
9893 return reloc_type == 22; /* R_S390_64. */
9894 case EM_TILEGX:
9895 return reloc_type == 1; /* R_TILEGX_64. */
9896 case EM_MIPS:
9897 return reloc_type == 18; /* R_MIPS_64. */
9898 default:
9899 return FALSE;
9900 }
9901 }
9902
9903 /* Like is_32bit_pcrel_reloc except that it returns TRUE iff RELOC_TYPE is
9904 a 64-bit pc-relative RELA relocation used in DWARF debug sections. */
9905
9906 static bfd_boolean
9907 is_64bit_pcrel_reloc (unsigned int reloc_type)
9908 {
9909 switch (elf_header.e_machine)
9910 {
9911 case EM_ALPHA:
9912 return reloc_type == 11; /* R_ALPHA_SREL64. */
9913 case EM_IA_64:
9914 return reloc_type == 0x4f; /* R_IA64_PCREL64LSB. */
9915 case EM_PARISC:
9916 return reloc_type == 72; /* R_PARISC_PCREL64. */
9917 case EM_PPC64:
9918 return reloc_type == 44; /* R_PPC64_REL64. */
9919 case EM_SPARC32PLUS:
9920 case EM_SPARCV9:
9921 case EM_SPARC:
9922 return reloc_type == 46; /* R_SPARC_DISP64. */
9923 case EM_X86_64:
9924 case EM_L1OM:
9925 case EM_K1OM:
9926 return reloc_type == 24; /* R_X86_64_PC64. */
9927 case EM_S390_OLD:
9928 case EM_S390:
9929 return reloc_type == 23; /* R_S390_PC64. */
9930 case EM_TILEGX:
9931 return reloc_type == 5; /* R_TILEGX_64_PCREL. */
9932 default:
9933 return FALSE;
9934 }
9935 }
9936
9937 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
9938 a 24-bit absolute RELA relocation used in DWARF debug sections. */
9939
9940 static bfd_boolean
9941 is_24bit_abs_reloc (unsigned int reloc_type)
9942 {
9943 switch (elf_header.e_machine)
9944 {
9945 case EM_CYGNUS_MN10200:
9946 case EM_MN10200:
9947 return reloc_type == 4; /* R_MN10200_24. */
9948 default:
9949 return FALSE;
9950 }
9951 }
9952
9953 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
9954 a 16-bit absolute RELA relocation used in DWARF debug sections. */
9955
9956 static bfd_boolean
9957 is_16bit_abs_reloc (unsigned int reloc_type)
9958 {
9959 switch (elf_header.e_machine)
9960 {
9961 case EM_AVR_OLD:
9962 case EM_AVR:
9963 return reloc_type == 4; /* R_AVR_16. */
9964 case EM_CYGNUS_D10V:
9965 case EM_D10V:
9966 return reloc_type == 3; /* R_D10V_16. */
9967 case EM_H8S:
9968 case EM_H8_300:
9969 case EM_H8_300H:
9970 return reloc_type == R_H8_DIR16;
9971 case EM_IP2K_OLD:
9972 case EM_IP2K:
9973 return reloc_type == 1; /* R_IP2K_16. */
9974 case EM_M32C_OLD:
9975 case EM_M32C:
9976 return reloc_type == 1; /* R_M32C_16 */
9977 case EM_MSP430_OLD:
9978 case EM_MSP430:
9979 return reloc_type == 5; /* R_MSP430_16_BYTE. */
9980 case EM_ALTERA_NIOS2:
9981 case EM_NIOS32:
9982 return reloc_type == 9; /* R_NIOS_16. */
9983 case EM_TI_C6000:
9984 return reloc_type == 2; /* R_C6000_ABS16. */
9985 case EM_XC16X:
9986 case EM_C166:
9987 return reloc_type == 2; /* R_XC16C_ABS_16. */
9988 default:
9989 return FALSE;
9990 }
9991 }
9992
9993 /* Returns TRUE iff RELOC_TYPE is a NONE relocation used for discarded
9994 relocation entries (possibly formerly used for SHT_GROUP sections). */
9995
9996 static bfd_boolean
9997 is_none_reloc (unsigned int reloc_type)
9998 {
9999 switch (elf_header.e_machine)
10000 {
10001 case EM_68K: /* R_68K_NONE. */
10002 case EM_386: /* R_386_NONE. */
10003 case EM_SPARC32PLUS:
10004 case EM_SPARCV9:
10005 case EM_SPARC: /* R_SPARC_NONE. */
10006 case EM_MIPS: /* R_MIPS_NONE. */
10007 case EM_PARISC: /* R_PARISC_NONE. */
10008 case EM_ALPHA: /* R_ALPHA_NONE. */
10009 case EM_PPC: /* R_PPC_NONE. */
10010 case EM_PPC64: /* R_PPC64_NONE. */
10011 case EM_ARM: /* R_ARM_NONE. */
10012 case EM_IA_64: /* R_IA64_NONE. */
10013 case EM_SH: /* R_SH_NONE. */
10014 case EM_S390_OLD:
10015 case EM_S390: /* R_390_NONE. */
10016 case EM_CRIS: /* R_CRIS_NONE. */
10017 case EM_X86_64: /* R_X86_64_NONE. */
10018 case EM_L1OM: /* R_X86_64_NONE. */
10019 case EM_K1OM: /* R_X86_64_NONE. */
10020 case EM_MN10300: /* R_MN10300_NONE. */
10021 case EM_MOXIE: /* R_MOXIE_NONE. */
10022 case EM_M32R: /* R_M32R_NONE. */
10023 case EM_TI_C6000:/* R_C6000_NONE. */
10024 case EM_TILEGX: /* R_TILEGX_NONE. */
10025 case EM_TILEPRO: /* R_TILEPRO_NONE. */
10026 case EM_XC16X:
10027 case EM_C166: /* R_XC16X_NONE. */
10028 return reloc_type == 0;
10029 case EM_XTENSA_OLD:
10030 case EM_XTENSA:
10031 return (reloc_type == 0 /* R_XTENSA_NONE. */
10032 || reloc_type == 17 /* R_XTENSA_DIFF8. */
10033 || reloc_type == 18 /* R_XTENSA_DIFF16. */
10034 || reloc_type == 19 /* R_XTENSA_DIFF32. */);
10035 }
10036 return FALSE;
10037 }
10038
10039 /* Apply relocations to a section.
10040 Note: So far support has been added only for those relocations
10041 which can be found in debug sections.
10042 FIXME: Add support for more relocations ? */
10043
10044 static void
10045 apply_relocations (void * file,
10046 Elf_Internal_Shdr * section,
10047 unsigned char * start)
10048 {
10049 Elf_Internal_Shdr * relsec;
10050 unsigned char * end = start + section->sh_size;
10051
10052 if (elf_header.e_type != ET_REL)
10053 return;
10054
10055 /* Find the reloc section associated with the section. */
10056 for (relsec = section_headers;
10057 relsec < section_headers + elf_header.e_shnum;
10058 ++relsec)
10059 {
10060 bfd_boolean is_rela;
10061 unsigned long num_relocs;
10062 Elf_Internal_Rela * relocs;
10063 Elf_Internal_Rela * rp;
10064 Elf_Internal_Shdr * symsec;
10065 Elf_Internal_Sym * symtab;
10066 unsigned long num_syms;
10067 Elf_Internal_Sym * sym;
10068
10069 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
10070 || relsec->sh_info >= elf_header.e_shnum
10071 || section_headers + relsec->sh_info != section
10072 || relsec->sh_size == 0
10073 || relsec->sh_link >= elf_header.e_shnum)
10074 continue;
10075
10076 is_rela = relsec->sh_type == SHT_RELA;
10077
10078 if (is_rela)
10079 {
10080 if (!slurp_rela_relocs ((FILE *) file, relsec->sh_offset,
10081 relsec->sh_size, & relocs, & num_relocs))
10082 return;
10083 }
10084 else
10085 {
10086 if (!slurp_rel_relocs ((FILE *) file, relsec->sh_offset,
10087 relsec->sh_size, & relocs, & num_relocs))
10088 return;
10089 }
10090
10091 /* SH uses RELA but uses in place value instead of the addend field. */
10092 if (elf_header.e_machine == EM_SH)
10093 is_rela = FALSE;
10094
10095 symsec = section_headers + relsec->sh_link;
10096 symtab = GET_ELF_SYMBOLS ((FILE *) file, symsec, & num_syms);
10097
10098 for (rp = relocs; rp < relocs + num_relocs; ++rp)
10099 {
10100 bfd_vma addend;
10101 unsigned int reloc_type;
10102 unsigned int reloc_size;
10103 unsigned char * rloc;
10104 unsigned long sym_index;
10105
10106 reloc_type = get_reloc_type (rp->r_info);
10107
10108 if (target_specific_reloc_handling (rp, start, symtab))
10109 continue;
10110 else if (is_none_reloc (reloc_type))
10111 continue;
10112 else if (is_32bit_abs_reloc (reloc_type)
10113 || is_32bit_pcrel_reloc (reloc_type))
10114 reloc_size = 4;
10115 else if (is_64bit_abs_reloc (reloc_type)
10116 || is_64bit_pcrel_reloc (reloc_type))
10117 reloc_size = 8;
10118 else if (is_24bit_abs_reloc (reloc_type))
10119 reloc_size = 3;
10120 else if (is_16bit_abs_reloc (reloc_type))
10121 reloc_size = 2;
10122 else
10123 {
10124 warn (_("unable to apply unsupported reloc type %d to section %s\n"),
10125 reloc_type, SECTION_NAME (section));
10126 continue;
10127 }
10128
10129 rloc = start + rp->r_offset;
10130 if ((rloc + reloc_size) > end)
10131 {
10132 warn (_("skipping invalid relocation offset 0x%lx in section %s\n"),
10133 (unsigned long) rp->r_offset,
10134 SECTION_NAME (section));
10135 continue;
10136 }
10137
10138 sym_index = (unsigned long) get_reloc_symindex (rp->r_info);
10139 if (sym_index >= num_syms)
10140 {
10141 warn (_("skipping invalid relocation symbol index 0x%lx in section %s\n"),
10142 sym_index, SECTION_NAME (section));
10143 continue;
10144 }
10145 sym = symtab + sym_index;
10146
10147 /* If the reloc has a symbol associated with it,
10148 make sure that it is of an appropriate type.
10149
10150 Relocations against symbols without type can happen.
10151 Gcc -feliminate-dwarf2-dups may generate symbols
10152 without type for debug info.
10153
10154 Icc generates relocations against function symbols
10155 instead of local labels.
10156
10157 Relocations against object symbols can happen, eg when
10158 referencing a global array. For an example of this see
10159 the _clz.o binary in libgcc.a. */
10160 if (sym != symtab
10161 && ELF_ST_TYPE (sym->st_info) > STT_SECTION)
10162 {
10163 warn (_("skipping unexpected symbol type %s in %ld'th relocation in section %s\n"),
10164 get_symbol_type (ELF_ST_TYPE (sym->st_info)),
10165 (long int)(rp - relocs),
10166 SECTION_NAME (relsec));
10167 continue;
10168 }
10169
10170 addend = 0;
10171 if (is_rela)
10172 addend += rp->r_addend;
10173 /* R_XTENSA_32, R_PJ_DATA_DIR32 and R_D30V_32_NORMAL are
10174 partial_inplace. */
10175 if (!is_rela
10176 || (elf_header.e_machine == EM_XTENSA
10177 && reloc_type == 1)
10178 || ((elf_header.e_machine == EM_PJ
10179 || elf_header.e_machine == EM_PJ_OLD)
10180 && reloc_type == 1)
10181 || ((elf_header.e_machine == EM_D30V
10182 || elf_header.e_machine == EM_CYGNUS_D30V)
10183 && reloc_type == 12))
10184 addend += byte_get (rloc, reloc_size);
10185
10186 if (is_32bit_pcrel_reloc (reloc_type)
10187 || is_64bit_pcrel_reloc (reloc_type))
10188 {
10189 /* On HPPA, all pc-relative relocations are biased by 8. */
10190 if (elf_header.e_machine == EM_PARISC)
10191 addend -= 8;
10192 byte_put (rloc, (addend + sym->st_value) - rp->r_offset,
10193 reloc_size);
10194 }
10195 else
10196 byte_put (rloc, addend + sym->st_value, reloc_size);
10197 }
10198
10199 free (symtab);
10200 free (relocs);
10201 break;
10202 }
10203 }
10204
10205 #ifdef SUPPORT_DISASSEMBLY
10206 static int
10207 disassemble_section (Elf_Internal_Shdr * section, FILE * file)
10208 {
10209 printf (_("\nAssembly dump of section %s\n"),
10210 SECTION_NAME (section));
10211
10212 /* XXX -- to be done --- XXX */
10213
10214 return 1;
10215 }
10216 #endif
10217
10218 /* Reads in the contents of SECTION from FILE, returning a pointer
10219 to a malloc'ed buffer or NULL if something went wrong. */
10220
10221 static char *
10222 get_section_contents (Elf_Internal_Shdr * section, FILE * file)
10223 {
10224 bfd_size_type num_bytes;
10225
10226 num_bytes = section->sh_size;
10227
10228 if (num_bytes == 0 || section->sh_type == SHT_NOBITS)
10229 {
10230 printf (_("\nSection '%s' has no data to dump.\n"),
10231 SECTION_NAME (section));
10232 return NULL;
10233 }
10234
10235 return (char *) get_data (NULL, file, section->sh_offset, 1, num_bytes,
10236 _("section contents"));
10237 }
10238
10239
10240 static void
10241 dump_section_as_strings (Elf_Internal_Shdr * section, FILE * file)
10242 {
10243 Elf_Internal_Shdr * relsec;
10244 bfd_size_type num_bytes;
10245 char * data;
10246 char * end;
10247 char * start;
10248 char * name = SECTION_NAME (section);
10249 bfd_boolean some_strings_shown;
10250
10251 start = get_section_contents (section, file);
10252 if (start == NULL)
10253 return;
10254
10255 printf (_("\nString dump of section '%s':\n"), name);
10256
10257 /* If the section being dumped has relocations against it the user might
10258 be expecting these relocations to have been applied. Check for this
10259 case and issue a warning message in order to avoid confusion.
10260 FIXME: Maybe we ought to have an option that dumps a section with
10261 relocs applied ? */
10262 for (relsec = section_headers;
10263 relsec < section_headers + elf_header.e_shnum;
10264 ++relsec)
10265 {
10266 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
10267 || relsec->sh_info >= elf_header.e_shnum
10268 || section_headers + relsec->sh_info != section
10269 || relsec->sh_size == 0
10270 || relsec->sh_link >= elf_header.e_shnum)
10271 continue;
10272
10273 printf (_(" Note: This section has relocations against it, but these have NOT been applied to this dump.\n"));
10274 break;
10275 }
10276
10277 num_bytes = section->sh_size;
10278 data = start;
10279 end = start + num_bytes;
10280 some_strings_shown = FALSE;
10281
10282 while (data < end)
10283 {
10284 while (!ISPRINT (* data))
10285 if (++ data >= end)
10286 break;
10287
10288 if (data < end)
10289 {
10290 #ifndef __MSVCRT__
10291 /* PR 11128: Use two separate invocations in order to work
10292 around bugs in the Solaris 8 implementation of printf. */
10293 printf (" [%6tx] ", data - start);
10294 printf ("%s\n", data);
10295 #else
10296 printf (" [%6Ix] %s\n", (size_t) (data - start), data);
10297 #endif
10298 data += strlen (data);
10299 some_strings_shown = TRUE;
10300 }
10301 }
10302
10303 if (! some_strings_shown)
10304 printf (_(" No strings found in this section."));
10305
10306 free (start);
10307
10308 putchar ('\n');
10309 }
10310
10311 static void
10312 dump_section_as_bytes (Elf_Internal_Shdr * section,
10313 FILE * file,
10314 bfd_boolean relocate)
10315 {
10316 Elf_Internal_Shdr * relsec;
10317 bfd_size_type bytes;
10318 bfd_vma addr;
10319 unsigned char * data;
10320 unsigned char * start;
10321
10322 start = (unsigned char *) get_section_contents (section, file);
10323 if (start == NULL)
10324 return;
10325
10326 printf (_("\nHex dump of section '%s':\n"), SECTION_NAME (section));
10327
10328 if (relocate)
10329 {
10330 apply_relocations (file, section, start);
10331 }
10332 else
10333 {
10334 /* If the section being dumped has relocations against it the user might
10335 be expecting these relocations to have been applied. Check for this
10336 case and issue a warning message in order to avoid confusion.
10337 FIXME: Maybe we ought to have an option that dumps a section with
10338 relocs applied ? */
10339 for (relsec = section_headers;
10340 relsec < section_headers + elf_header.e_shnum;
10341 ++relsec)
10342 {
10343 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
10344 || relsec->sh_info >= elf_header.e_shnum
10345 || section_headers + relsec->sh_info != section
10346 || relsec->sh_size == 0
10347 || relsec->sh_link >= elf_header.e_shnum)
10348 continue;
10349
10350 printf (_(" NOTE: This section has relocations against it, but these have NOT been applied to this dump.\n"));
10351 break;
10352 }
10353 }
10354
10355 addr = section->sh_addr;
10356 bytes = section->sh_size;
10357 data = start;
10358
10359 while (bytes)
10360 {
10361 int j;
10362 int k;
10363 int lbytes;
10364
10365 lbytes = (bytes > 16 ? 16 : bytes);
10366
10367 printf (" 0x%8.8lx ", (unsigned long) addr);
10368
10369 for (j = 0; j < 16; j++)
10370 {
10371 if (j < lbytes)
10372 printf ("%2.2x", data[j]);
10373 else
10374 printf (" ");
10375
10376 if ((j & 3) == 3)
10377 printf (" ");
10378 }
10379
10380 for (j = 0; j < lbytes; j++)
10381 {
10382 k = data[j];
10383 if (k >= ' ' && k < 0x7f)
10384 printf ("%c", k);
10385 else
10386 printf (".");
10387 }
10388
10389 putchar ('\n');
10390
10391 data += lbytes;
10392 addr += lbytes;
10393 bytes -= lbytes;
10394 }
10395
10396 free (start);
10397
10398 putchar ('\n');
10399 }
10400
10401 /* Uncompresses a section that was compressed using zlib, in place. */
10402
10403 static int
10404 uncompress_section_contents (unsigned char **buffer ATTRIBUTE_UNUSED,
10405 dwarf_size_type *size ATTRIBUTE_UNUSED)
10406 {
10407 #ifndef HAVE_ZLIB_H
10408 return FALSE;
10409 #else
10410 dwarf_size_type compressed_size = *size;
10411 unsigned char * compressed_buffer = *buffer;
10412 dwarf_size_type uncompressed_size;
10413 unsigned char * uncompressed_buffer;
10414 z_stream strm;
10415 int rc;
10416 dwarf_size_type header_size = 12;
10417
10418 /* Read the zlib header. In this case, it should be "ZLIB" followed
10419 by the uncompressed section size, 8 bytes in big-endian order. */
10420 if (compressed_size < header_size
10421 || ! streq ((char *) compressed_buffer, "ZLIB"))
10422 return 0;
10423
10424 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
10425 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
10426 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
10427 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
10428 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
10429 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
10430 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
10431 uncompressed_size += compressed_buffer[11];
10432
10433 /* It is possible the section consists of several compressed
10434 buffers concatenated together, so we uncompress in a loop. */
10435 strm.zalloc = NULL;
10436 strm.zfree = NULL;
10437 strm.opaque = NULL;
10438 strm.avail_in = compressed_size - header_size;
10439 strm.next_in = (Bytef *) compressed_buffer + header_size;
10440 strm.avail_out = uncompressed_size;
10441 uncompressed_buffer = (unsigned char *) xmalloc (uncompressed_size);
10442
10443 rc = inflateInit (& strm);
10444 while (strm.avail_in > 0)
10445 {
10446 if (rc != Z_OK)
10447 goto fail;
10448 strm.next_out = ((Bytef *) uncompressed_buffer
10449 + (uncompressed_size - strm.avail_out));
10450 rc = inflate (&strm, Z_FINISH);
10451 if (rc != Z_STREAM_END)
10452 goto fail;
10453 rc = inflateReset (& strm);
10454 }
10455 rc = inflateEnd (& strm);
10456 if (rc != Z_OK
10457 || strm.avail_out != 0)
10458 goto fail;
10459
10460 free (compressed_buffer);
10461 *buffer = uncompressed_buffer;
10462 *size = uncompressed_size;
10463 return 1;
10464
10465 fail:
10466 free (uncompressed_buffer);
10467 /* Indicate decompression failure. */
10468 *buffer = NULL;
10469 return 0;
10470 #endif /* HAVE_ZLIB_H */
10471 }
10472
10473 static int
10474 load_specific_debug_section (enum dwarf_section_display_enum debug,
10475 Elf_Internal_Shdr * sec, void * file)
10476 {
10477 struct dwarf_section * section = &debug_displays [debug].section;
10478 char buf [64];
10479
10480 /* If it is already loaded, do nothing. */
10481 if (section->start != NULL)
10482 return 1;
10483
10484 snprintf (buf, sizeof (buf), _("%s section data"), section->name);
10485 section->address = sec->sh_addr;
10486 section->start = (unsigned char *) get_data (NULL, (FILE *) file,
10487 sec->sh_offset, 1,
10488 sec->sh_size, buf);
10489 if (section->start == NULL)
10490 section->size = 0;
10491 else
10492 {
10493 section->size = sec->sh_size;
10494 if (uncompress_section_contents (&section->start, &section->size))
10495 sec->sh_size = section->size;
10496 }
10497
10498 if (section->start == NULL)
10499 return 0;
10500
10501 if (debug_displays [debug].relocate)
10502 apply_relocations ((FILE *) file, sec, section->start);
10503
10504 return 1;
10505 }
10506
10507 int
10508 load_debug_section (enum dwarf_section_display_enum debug, void * file)
10509 {
10510 struct dwarf_section * section = &debug_displays [debug].section;
10511 Elf_Internal_Shdr * sec;
10512
10513 /* Locate the debug section. */
10514 sec = find_section (section->uncompressed_name);
10515 if (sec != NULL)
10516 section->name = section->uncompressed_name;
10517 else
10518 {
10519 sec = find_section (section->compressed_name);
10520 if (sec != NULL)
10521 section->name = section->compressed_name;
10522 }
10523 if (sec == NULL)
10524 return 0;
10525
10526 return load_specific_debug_section (debug, sec, (FILE *) file);
10527 }
10528
10529 void
10530 free_debug_section (enum dwarf_section_display_enum debug)
10531 {
10532 struct dwarf_section * section = &debug_displays [debug].section;
10533
10534 if (section->start == NULL)
10535 return;
10536
10537 free ((char *) section->start);
10538 section->start = NULL;
10539 section->address = 0;
10540 section->size = 0;
10541 }
10542
10543 static int
10544 display_debug_section (Elf_Internal_Shdr * section, FILE * file)
10545 {
10546 char * name = SECTION_NAME (section);
10547 bfd_size_type length;
10548 int result = 1;
10549 int i;
10550
10551 length = section->sh_size;
10552 if (length == 0)
10553 {
10554 printf (_("\nSection '%s' has no debugging data.\n"), name);
10555 return 0;
10556 }
10557 if (section->sh_type == SHT_NOBITS)
10558 {
10559 /* There is no point in dumping the contents of a debugging section
10560 which has the NOBITS type - the bits in the file will be random.
10561 This can happen when a file containing a .eh_frame section is
10562 stripped with the --only-keep-debug command line option. */
10563 printf (_("section '%s' has the NOBITS type - its contents are unreliable.\n"), name);
10564 return 0;
10565 }
10566
10567 if (const_strneq (name, ".gnu.linkonce.wi."))
10568 name = ".debug_info";
10569
10570 /* See if we know how to display the contents of this section. */
10571 for (i = 0; i < max; i++)
10572 if (streq (debug_displays[i].section.uncompressed_name, name)
10573 || streq (debug_displays[i].section.compressed_name, name))
10574 {
10575 struct dwarf_section * sec = &debug_displays [i].section;
10576 int secondary = (section != find_section (name));
10577
10578 if (secondary)
10579 free_debug_section ((enum dwarf_section_display_enum) i);
10580
10581 if (streq (sec->uncompressed_name, name))
10582 sec->name = sec->uncompressed_name;
10583 else
10584 sec->name = sec->compressed_name;
10585 if (load_specific_debug_section ((enum dwarf_section_display_enum) i,
10586 section, file))
10587 {
10588 result &= debug_displays[i].display (sec, file);
10589
10590 if (secondary || (i != info && i != abbrev))
10591 free_debug_section ((enum dwarf_section_display_enum) i);
10592 }
10593
10594 break;
10595 }
10596
10597 if (i == max)
10598 {
10599 printf (_("Unrecognized debug section: %s\n"), name);
10600 result = 0;
10601 }
10602
10603 return result;
10604 }
10605
10606 /* Set DUMP_SECTS for all sections where dumps were requested
10607 based on section name. */
10608
10609 static void
10610 initialise_dumps_byname (void)
10611 {
10612 struct dump_list_entry * cur;
10613
10614 for (cur = dump_sects_byname; cur; cur = cur->next)
10615 {
10616 unsigned int i;
10617 int any;
10618
10619 for (i = 0, any = 0; i < elf_header.e_shnum; i++)
10620 if (streq (SECTION_NAME (section_headers + i), cur->name))
10621 {
10622 request_dump_bynumber (i, cur->type);
10623 any = 1;
10624 }
10625
10626 if (!any)
10627 warn (_("Section '%s' was not dumped because it does not exist!\n"),
10628 cur->name);
10629 }
10630 }
10631
10632 static void
10633 process_section_contents (FILE * file)
10634 {
10635 Elf_Internal_Shdr * section;
10636 unsigned int i;
10637
10638 if (! do_dump)
10639 return;
10640
10641 initialise_dumps_byname ();
10642
10643 for (i = 0, section = section_headers;
10644 i < elf_header.e_shnum && i < num_dump_sects;
10645 i++, section++)
10646 {
10647 #ifdef SUPPORT_DISASSEMBLY
10648 if (dump_sects[i] & DISASS_DUMP)
10649 disassemble_section (section, file);
10650 #endif
10651 if (dump_sects[i] & HEX_DUMP)
10652 dump_section_as_bytes (section, file, FALSE);
10653
10654 if (dump_sects[i] & RELOC_DUMP)
10655 dump_section_as_bytes (section, file, TRUE);
10656
10657 if (dump_sects[i] & STRING_DUMP)
10658 dump_section_as_strings (section, file);
10659
10660 if (dump_sects[i] & DEBUG_DUMP)
10661 display_debug_section (section, file);
10662 }
10663
10664 /* Check to see if the user requested a
10665 dump of a section that does not exist. */
10666 while (i++ < num_dump_sects)
10667 if (dump_sects[i])
10668 warn (_("Section %d was not dumped because it does not exist!\n"), i);
10669 }
10670
10671 static void
10672 process_mips_fpe_exception (int mask)
10673 {
10674 if (mask)
10675 {
10676 int first = 1;
10677 if (mask & OEX_FPU_INEX)
10678 fputs ("INEX", stdout), first = 0;
10679 if (mask & OEX_FPU_UFLO)
10680 printf ("%sUFLO", first ? "" : "|"), first = 0;
10681 if (mask & OEX_FPU_OFLO)
10682 printf ("%sOFLO", first ? "" : "|"), first = 0;
10683 if (mask & OEX_FPU_DIV0)
10684 printf ("%sDIV0", first ? "" : "|"), first = 0;
10685 if (mask & OEX_FPU_INVAL)
10686 printf ("%sINVAL", first ? "" : "|");
10687 }
10688 else
10689 fputs ("0", stdout);
10690 }
10691
10692 /* ARM EABI attributes section. */
10693 typedef struct
10694 {
10695 int tag;
10696 const char * name;
10697 /* 0 = special, 1 = string, 2 = uleb123, > 0x80 == table lookup. */
10698 int type;
10699 const char ** table;
10700 } arm_attr_public_tag;
10701
10702 static const char * arm_attr_tag_CPU_arch[] =
10703 {"Pre-v4", "v4", "v4T", "v5T", "v5TE", "v5TEJ", "v6", "v6KZ", "v6T2",
10704 "v6K", "v7", "v6-M", "v6S-M", "v7E-M"};
10705 static const char * arm_attr_tag_ARM_ISA_use[] = {"No", "Yes"};
10706 static const char * arm_attr_tag_THUMB_ISA_use[] =
10707 {"No", "Thumb-1", "Thumb-2"};
10708 static const char * arm_attr_tag_FP_arch[] =
10709 {"No", "VFPv1", "VFPv2", "VFPv3", "VFPv3-D16", "VFPv4", "VFPv4-D16"};
10710 static const char * arm_attr_tag_WMMX_arch[] = {"No", "WMMXv1", "WMMXv2"};
10711 static const char * arm_attr_tag_Advanced_SIMD_arch[] =
10712 {"No", "NEONv1", "NEONv1 with Fused-MAC"};
10713 static const char * arm_attr_tag_PCS_config[] =
10714 {"None", "Bare platform", "Linux application", "Linux DSO", "PalmOS 2004",
10715 "PalmOS (reserved)", "SymbianOS 2004", "SymbianOS (reserved)"};
10716 static const char * arm_attr_tag_ABI_PCS_R9_use[] =
10717 {"V6", "SB", "TLS", "Unused"};
10718 static const char * arm_attr_tag_ABI_PCS_RW_data[] =
10719 {"Absolute", "PC-relative", "SB-relative", "None"};
10720 static const char * arm_attr_tag_ABI_PCS_RO_data[] =
10721 {"Absolute", "PC-relative", "None"};
10722 static const char * arm_attr_tag_ABI_PCS_GOT_use[] =
10723 {"None", "direct", "GOT-indirect"};
10724 static const char * arm_attr_tag_ABI_PCS_wchar_t[] =
10725 {"None", "??? 1", "2", "??? 3", "4"};
10726 static const char * arm_attr_tag_ABI_FP_rounding[] = {"Unused", "Needed"};
10727 static const char * arm_attr_tag_ABI_FP_denormal[] =
10728 {"Unused", "Needed", "Sign only"};
10729 static const char * arm_attr_tag_ABI_FP_exceptions[] = {"Unused", "Needed"};
10730 static const char * arm_attr_tag_ABI_FP_user_exceptions[] = {"Unused", "Needed"};
10731 static const char * arm_attr_tag_ABI_FP_number_model[] =
10732 {"Unused", "Finite", "RTABI", "IEEE 754"};
10733 static const char * arm_attr_tag_ABI_enum_size[] =
10734 {"Unused", "small", "int", "forced to int"};
10735 static const char * arm_attr_tag_ABI_HardFP_use[] =
10736 {"As Tag_FP_arch", "SP only", "DP only", "SP and DP"};
10737 static const char * arm_attr_tag_ABI_VFP_args[] =
10738 {"AAPCS", "VFP registers", "custom"};
10739 static const char * arm_attr_tag_ABI_WMMX_args[] =
10740 {"AAPCS", "WMMX registers", "custom"};
10741 static const char * arm_attr_tag_ABI_optimization_goals[] =
10742 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
10743 "Aggressive Size", "Prefer Debug", "Aggressive Debug"};
10744 static const char * arm_attr_tag_ABI_FP_optimization_goals[] =
10745 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
10746 "Aggressive Size", "Prefer Accuracy", "Aggressive Accuracy"};
10747 static const char * arm_attr_tag_CPU_unaligned_access[] = {"None", "v6"};
10748 static const char * arm_attr_tag_FP_HP_extension[] =
10749 {"Not Allowed", "Allowed"};
10750 static const char * arm_attr_tag_ABI_FP_16bit_format[] =
10751 {"None", "IEEE 754", "Alternative Format"};
10752 static const char * arm_attr_tag_MPextension_use[] =
10753 {"Not Allowed", "Allowed"};
10754 static const char * arm_attr_tag_DIV_use[] =
10755 {"Allowed in Thumb-ISA, v7-R or v7-M", "Not allowed",
10756 "Allowed in v7-A with integer division extension"};
10757 static const char * arm_attr_tag_T2EE_use[] = {"Not Allowed", "Allowed"};
10758 static const char * arm_attr_tag_Virtualization_use[] =
10759 {"Not Allowed", "TrustZone", "Virtualization Extensions",
10760 "TrustZone and Virtualization Extensions"};
10761 static const char * arm_attr_tag_MPextension_use_legacy[] =
10762 {"Not Allowed", "Allowed"};
10763
10764 #define LOOKUP(id, name) \
10765 {id, #name, 0x80 | ARRAY_SIZE(arm_attr_tag_##name), arm_attr_tag_##name}
10766 static arm_attr_public_tag arm_attr_public_tags[] =
10767 {
10768 {4, "CPU_raw_name", 1, NULL},
10769 {5, "CPU_name", 1, NULL},
10770 LOOKUP(6, CPU_arch),
10771 {7, "CPU_arch_profile", 0, NULL},
10772 LOOKUP(8, ARM_ISA_use),
10773 LOOKUP(9, THUMB_ISA_use),
10774 LOOKUP(10, FP_arch),
10775 LOOKUP(11, WMMX_arch),
10776 LOOKUP(12, Advanced_SIMD_arch),
10777 LOOKUP(13, PCS_config),
10778 LOOKUP(14, ABI_PCS_R9_use),
10779 LOOKUP(15, ABI_PCS_RW_data),
10780 LOOKUP(16, ABI_PCS_RO_data),
10781 LOOKUP(17, ABI_PCS_GOT_use),
10782 LOOKUP(18, ABI_PCS_wchar_t),
10783 LOOKUP(19, ABI_FP_rounding),
10784 LOOKUP(20, ABI_FP_denormal),
10785 LOOKUP(21, ABI_FP_exceptions),
10786 LOOKUP(22, ABI_FP_user_exceptions),
10787 LOOKUP(23, ABI_FP_number_model),
10788 {24, "ABI_align_needed", 0, NULL},
10789 {25, "ABI_align_preserved", 0, NULL},
10790 LOOKUP(26, ABI_enum_size),
10791 LOOKUP(27, ABI_HardFP_use),
10792 LOOKUP(28, ABI_VFP_args),
10793 LOOKUP(29, ABI_WMMX_args),
10794 LOOKUP(30, ABI_optimization_goals),
10795 LOOKUP(31, ABI_FP_optimization_goals),
10796 {32, "compatibility", 0, NULL},
10797 LOOKUP(34, CPU_unaligned_access),
10798 LOOKUP(36, FP_HP_extension),
10799 LOOKUP(38, ABI_FP_16bit_format),
10800 LOOKUP(42, MPextension_use),
10801 LOOKUP(44, DIV_use),
10802 {64, "nodefaults", 0, NULL},
10803 {65, "also_compatible_with", 0, NULL},
10804 LOOKUP(66, T2EE_use),
10805 {67, "conformance", 1, NULL},
10806 LOOKUP(68, Virtualization_use),
10807 LOOKUP(70, MPextension_use_legacy)
10808 };
10809 #undef LOOKUP
10810
10811 static unsigned char *
10812 display_arm_attribute (unsigned char * p)
10813 {
10814 int tag;
10815 unsigned int len;
10816 int val;
10817 arm_attr_public_tag * attr;
10818 unsigned i;
10819 int type;
10820
10821 tag = read_uleb128 (p, &len);
10822 p += len;
10823 attr = NULL;
10824 for (i = 0; i < ARRAY_SIZE (arm_attr_public_tags); i++)
10825 {
10826 if (arm_attr_public_tags[i].tag == tag)
10827 {
10828 attr = &arm_attr_public_tags[i];
10829 break;
10830 }
10831 }
10832
10833 if (attr)
10834 {
10835 printf (" Tag_%s: ", attr->name);
10836 switch (attr->type)
10837 {
10838 case 0:
10839 switch (tag)
10840 {
10841 case 7: /* Tag_CPU_arch_profile. */
10842 val = read_uleb128 (p, &len);
10843 p += len;
10844 switch (val)
10845 {
10846 case 0: printf (_("None\n")); break;
10847 case 'A': printf (_("Application\n")); break;
10848 case 'R': printf (_("Realtime\n")); break;
10849 case 'M': printf (_("Microcontroller\n")); break;
10850 case 'S': printf (_("Application or Realtime\n")); break;
10851 default: printf ("??? (%d)\n", val); break;
10852 }
10853 break;
10854
10855 case 24: /* Tag_align_needed. */
10856 val = read_uleb128 (p, &len);
10857 p += len;
10858 switch (val)
10859 {
10860 case 0: printf (_("None\n")); break;
10861 case 1: printf (_("8-byte\n")); break;
10862 case 2: printf (_("4-byte\n")); break;
10863 case 3: printf ("??? 3\n"); break;
10864 default:
10865 if (val <= 12)
10866 printf (_("8-byte and up to %d-byte extended\n"),
10867 1 << val);
10868 else
10869 printf ("??? (%d)\n", val);
10870 break;
10871 }
10872 break;
10873
10874 case 25: /* Tag_align_preserved. */
10875 val = read_uleb128 (p, &len);
10876 p += len;
10877 switch (val)
10878 {
10879 case 0: printf (_("None\n")); break;
10880 case 1: printf (_("8-byte, except leaf SP\n")); break;
10881 case 2: printf (_("8-byte\n")); break;
10882 case 3: printf ("??? 3\n"); break;
10883 default:
10884 if (val <= 12)
10885 printf (_("8-byte and up to %d-byte extended\n"),
10886 1 << val);
10887 else
10888 printf ("??? (%d)\n", val);
10889 break;
10890 }
10891 break;
10892
10893 case 32: /* Tag_compatibility. */
10894 val = read_uleb128 (p, &len);
10895 p += len;
10896 printf (_("flag = %d, vendor = %s\n"), val, p);
10897 p += strlen ((char *) p) + 1;
10898 break;
10899
10900 case 64: /* Tag_nodefaults. */
10901 p++;
10902 printf (_("True\n"));
10903 break;
10904
10905 case 65: /* Tag_also_compatible_with. */
10906 val = read_uleb128 (p, &len);
10907 p += len;
10908 if (val == 6 /* Tag_CPU_arch. */)
10909 {
10910 val = read_uleb128 (p, &len);
10911 p += len;
10912 if ((unsigned int)val >= ARRAY_SIZE (arm_attr_tag_CPU_arch))
10913 printf ("??? (%d)\n", val);
10914 else
10915 printf ("%s\n", arm_attr_tag_CPU_arch[val]);
10916 }
10917 else
10918 printf ("???\n");
10919 while (*(p++) != '\0' /* NUL terminator. */);
10920 break;
10921
10922 default:
10923 abort ();
10924 }
10925 return p;
10926
10927 case 1:
10928 case 2:
10929 type = attr->type;
10930 break;
10931
10932 default:
10933 assert (attr->type & 0x80);
10934 val = read_uleb128 (p, &len);
10935 p += len;
10936 type = attr->type & 0x7f;
10937 if (val >= type)
10938 printf ("??? (%d)\n", val);
10939 else
10940 printf ("%s\n", attr->table[val]);
10941 return p;
10942 }
10943 }
10944 else
10945 {
10946 if (tag & 1)
10947 type = 1; /* String. */
10948 else
10949 type = 2; /* uleb128. */
10950 printf (" Tag_unknown_%d: ", tag);
10951 }
10952
10953 if (type == 1)
10954 {
10955 printf ("\"%s\"\n", p);
10956 p += strlen ((char *) p) + 1;
10957 }
10958 else
10959 {
10960 val = read_uleb128 (p, &len);
10961 p += len;
10962 printf ("%d (0x%x)\n", val, val);
10963 }
10964
10965 return p;
10966 }
10967
10968 static unsigned char *
10969 display_gnu_attribute (unsigned char * p,
10970 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, int))
10971 {
10972 int tag;
10973 unsigned int len;
10974 int val;
10975 int type;
10976
10977 tag = read_uleb128 (p, &len);
10978 p += len;
10979
10980 /* Tag_compatibility is the only generic GNU attribute defined at
10981 present. */
10982 if (tag == 32)
10983 {
10984 val = read_uleb128 (p, &len);
10985 p += len;
10986 printf (_("flag = %d, vendor = %s\n"), val, p);
10987 p += strlen ((char *) p) + 1;
10988 return p;
10989 }
10990
10991 if ((tag & 2) == 0 && display_proc_gnu_attribute)
10992 return display_proc_gnu_attribute (p, tag);
10993
10994 if (tag & 1)
10995 type = 1; /* String. */
10996 else
10997 type = 2; /* uleb128. */
10998 printf (" Tag_unknown_%d: ", tag);
10999
11000 if (type == 1)
11001 {
11002 printf ("\"%s\"\n", p);
11003 p += strlen ((char *) p) + 1;
11004 }
11005 else
11006 {
11007 val = read_uleb128 (p, &len);
11008 p += len;
11009 printf ("%d (0x%x)\n", val, val);
11010 }
11011
11012 return p;
11013 }
11014
11015 static unsigned char *
11016 display_power_gnu_attribute (unsigned char * p, int tag)
11017 {
11018 int type;
11019 unsigned int len;
11020 int val;
11021
11022 if (tag == Tag_GNU_Power_ABI_FP)
11023 {
11024 val = read_uleb128 (p, &len);
11025 p += len;
11026 printf (" Tag_GNU_Power_ABI_FP: ");
11027
11028 switch (val)
11029 {
11030 case 0:
11031 printf (_("Hard or soft float\n"));
11032 break;
11033 case 1:
11034 printf (_("Hard float\n"));
11035 break;
11036 case 2:
11037 printf (_("Soft float\n"));
11038 break;
11039 case 3:
11040 printf (_("Single-precision hard float\n"));
11041 break;
11042 default:
11043 printf ("??? (%d)\n", val);
11044 break;
11045 }
11046 return p;
11047 }
11048
11049 if (tag == Tag_GNU_Power_ABI_Vector)
11050 {
11051 val = read_uleb128 (p, &len);
11052 p += len;
11053 printf (" Tag_GNU_Power_ABI_Vector: ");
11054 switch (val)
11055 {
11056 case 0:
11057 printf (_("Any\n"));
11058 break;
11059 case 1:
11060 printf (_("Generic\n"));
11061 break;
11062 case 2:
11063 printf ("AltiVec\n");
11064 break;
11065 case 3:
11066 printf ("SPE\n");
11067 break;
11068 default:
11069 printf ("??? (%d)\n", val);
11070 break;
11071 }
11072 return p;
11073 }
11074
11075 if (tag == Tag_GNU_Power_ABI_Struct_Return)
11076 {
11077 val = read_uleb128 (p, &len);
11078 p += len;
11079 printf (" Tag_GNU_Power_ABI_Struct_Return: ");
11080 switch (val)
11081 {
11082 case 0:
11083 printf (_("Any\n"));
11084 break;
11085 case 1:
11086 printf ("r3/r4\n");
11087 break;
11088 case 2:
11089 printf (_("Memory\n"));
11090 break;
11091 default:
11092 printf ("??? (%d)\n", val);
11093 break;
11094 }
11095 return p;
11096 }
11097
11098 if (tag & 1)
11099 type = 1; /* String. */
11100 else
11101 type = 2; /* uleb128. */
11102 printf (" Tag_unknown_%d: ", tag);
11103
11104 if (type == 1)
11105 {
11106 printf ("\"%s\"\n", p);
11107 p += strlen ((char *) p) + 1;
11108 }
11109 else
11110 {
11111 val = read_uleb128 (p, &len);
11112 p += len;
11113 printf ("%d (0x%x)\n", val, val);
11114 }
11115
11116 return p;
11117 }
11118
11119 static void
11120 display_sparc_hwcaps (int mask)
11121 {
11122 if (mask)
11123 {
11124 int first = 1;
11125 if (mask & ELF_SPARC_HWCAP_MUL32)
11126 fputs ("mul32", stdout), first = 0;
11127 if (mask & ELF_SPARC_HWCAP_DIV32)
11128 printf ("%sdiv32", first ? "" : "|"), first = 0;
11129 if (mask & ELF_SPARC_HWCAP_FSMULD)
11130 printf ("%sfsmuld", first ? "" : "|"), first = 0;
11131 if (mask & ELF_SPARC_HWCAP_V8PLUS)
11132 printf ("%sv8plus", first ? "" : "|"), first = 0;
11133 if (mask & ELF_SPARC_HWCAP_POPC)
11134 printf ("%spopc", first ? "" : "|"), first = 0;
11135 if (mask & ELF_SPARC_HWCAP_VIS)
11136 printf ("%svis", first ? "" : "|"), first = 0;
11137 if (mask & ELF_SPARC_HWCAP_VIS2)
11138 printf ("%svis2", first ? "" : "|"), first = 0;
11139 if (mask & ELF_SPARC_HWCAP_ASI_BLK_INIT)
11140 printf ("%sASIBlkInit", first ? "" : "|"), first = 0;
11141 if (mask & ELF_SPARC_HWCAP_FMAF)
11142 printf ("%sfmaf", first ? "" : "|"), first = 0;
11143 if (mask & ELF_SPARC_HWCAP_VIS3)
11144 printf ("%svis3", first ? "" : "|"), first = 0;
11145 if (mask & ELF_SPARC_HWCAP_HPC)
11146 printf ("%shpc", first ? "" : "|"), first = 0;
11147 if (mask & ELF_SPARC_HWCAP_RANDOM)
11148 printf ("%srandom", first ? "" : "|"), first = 0;
11149 if (mask & ELF_SPARC_HWCAP_TRANS)
11150 printf ("%strans", first ? "" : "|"), first = 0;
11151 if (mask & ELF_SPARC_HWCAP_FJFMAU)
11152 printf ("%sfjfmau", first ? "" : "|"), first = 0;
11153 if (mask & ELF_SPARC_HWCAP_IMA)
11154 printf ("%sima", first ? "" : "|"), first = 0;
11155 if (mask & ELF_SPARC_HWCAP_ASI_CACHE_SPARING)
11156 printf ("%scspare", first ? "" : "|"), first = 0;
11157 }
11158 else
11159 fputc('0', stdout);
11160 fputc('\n', stdout);
11161 }
11162
11163 static unsigned char *
11164 display_sparc_gnu_attribute (unsigned char * p, int tag)
11165 {
11166 int type;
11167 unsigned int len;
11168 int val;
11169
11170 if (tag == Tag_GNU_Sparc_HWCAPS)
11171 {
11172 val = read_uleb128 (p, &len);
11173 p += len;
11174 printf (" Tag_GNU_Sparc_HWCAPS: ");
11175
11176 display_sparc_hwcaps (val);
11177 return p;
11178 }
11179
11180 if (tag & 1)
11181 type = 1; /* String. */
11182 else
11183 type = 2; /* uleb128. */
11184 printf (" Tag_unknown_%d: ", tag);
11185
11186 if (type == 1)
11187 {
11188 printf ("\"%s\"\n", p);
11189 p += strlen ((char *) p) + 1;
11190 }
11191 else
11192 {
11193 val = read_uleb128 (p, &len);
11194 p += len;
11195 printf ("%d (0x%x)\n", val, val);
11196 }
11197
11198 return p;
11199 }
11200
11201 static unsigned char *
11202 display_mips_gnu_attribute (unsigned char * p, int tag)
11203 {
11204 int type;
11205 unsigned int len;
11206 int val;
11207
11208 if (tag == Tag_GNU_MIPS_ABI_FP)
11209 {
11210 val = read_uleb128 (p, &len);
11211 p += len;
11212 printf (" Tag_GNU_MIPS_ABI_FP: ");
11213
11214 switch (val)
11215 {
11216 case 0:
11217 printf (_("Hard or soft float\n"));
11218 break;
11219 case 1:
11220 printf (_("Hard float (double precision)\n"));
11221 break;
11222 case 2:
11223 printf (_("Hard float (single precision)\n"));
11224 break;
11225 case 3:
11226 printf (_("Soft float\n"));
11227 break;
11228 case 4:
11229 printf (_("Hard float (MIPS32r2 64-bit FPU)\n"));
11230 break;
11231 default:
11232 printf ("??? (%d)\n", val);
11233 break;
11234 }
11235 return p;
11236 }
11237
11238 if (tag & 1)
11239 type = 1; /* String. */
11240 else
11241 type = 2; /* uleb128. */
11242 printf (" Tag_unknown_%d: ", tag);
11243
11244 if (type == 1)
11245 {
11246 printf ("\"%s\"\n", p);
11247 p += strlen ((char *) p) + 1;
11248 }
11249 else
11250 {
11251 val = read_uleb128 (p, &len);
11252 p += len;
11253 printf ("%d (0x%x)\n", val, val);
11254 }
11255
11256 return p;
11257 }
11258
11259 static unsigned char *
11260 display_tic6x_attribute (unsigned char * p)
11261 {
11262 int tag;
11263 unsigned int len;
11264 int val;
11265
11266 tag = read_uleb128 (p, &len);
11267 p += len;
11268
11269 switch (tag)
11270 {
11271 case Tag_ISA:
11272 val = read_uleb128 (p, &len);
11273 p += len;
11274 printf (" Tag_ISA: ");
11275
11276 switch (val)
11277 {
11278 case C6XABI_Tag_ISA_none:
11279 printf (_("None\n"));
11280 break;
11281 case C6XABI_Tag_ISA_C62X:
11282 printf ("C62x\n");
11283 break;
11284 case C6XABI_Tag_ISA_C67X:
11285 printf ("C67x\n");
11286 break;
11287 case C6XABI_Tag_ISA_C67XP:
11288 printf ("C67x+\n");
11289 break;
11290 case C6XABI_Tag_ISA_C64X:
11291 printf ("C64x\n");
11292 break;
11293 case C6XABI_Tag_ISA_C64XP:
11294 printf ("C64x+\n");
11295 break;
11296 case C6XABI_Tag_ISA_C674X:
11297 printf ("C674x\n");
11298 break;
11299 default:
11300 printf ("??? (%d)\n", val);
11301 break;
11302 }
11303 return p;
11304
11305 case Tag_ABI_wchar_t:
11306 val = read_uleb128 (p, &len);
11307 p += len;
11308 printf (" Tag_ABI_wchar_t: ");
11309 switch (val)
11310 {
11311 case 0:
11312 printf (_("Not used\n"));
11313 break;
11314 case 1:
11315 printf (_("2 bytes\n"));
11316 break;
11317 case 2:
11318 printf (_("4 bytes\n"));
11319 break;
11320 default:
11321 printf ("??? (%d)\n", val);
11322 break;
11323 }
11324 return p;
11325
11326 case Tag_ABI_stack_align_needed:
11327 val = read_uleb128 (p, &len);
11328 p += len;
11329 printf (" Tag_ABI_stack_align_needed: ");
11330 switch (val)
11331 {
11332 case 0:
11333 printf (_("8-byte\n"));
11334 break;
11335 case 1:
11336 printf (_("16-byte\n"));
11337 break;
11338 default:
11339 printf ("??? (%d)\n", val);
11340 break;
11341 }
11342 return p;
11343
11344 case Tag_ABI_stack_align_preserved:
11345 val = read_uleb128 (p, &len);
11346 p += len;
11347 printf (" Tag_ABI_stack_align_preserved: ");
11348 switch (val)
11349 {
11350 case 0:
11351 printf (_("8-byte\n"));
11352 break;
11353 case 1:
11354 printf (_("16-byte\n"));
11355 break;
11356 default:
11357 printf ("??? (%d)\n", val);
11358 break;
11359 }
11360 return p;
11361
11362 case Tag_ABI_DSBT:
11363 val = read_uleb128 (p, &len);
11364 p += len;
11365 printf (" Tag_ABI_DSBT: ");
11366 switch (val)
11367 {
11368 case 0:
11369 printf (_("DSBT addressing not used\n"));
11370 break;
11371 case 1:
11372 printf (_("DSBT addressing used\n"));
11373 break;
11374 default:
11375 printf ("??? (%d)\n", val);
11376 break;
11377 }
11378 return p;
11379
11380 case Tag_ABI_PID:
11381 val = read_uleb128 (p, &len);
11382 p += len;
11383 printf (" Tag_ABI_PID: ");
11384 switch (val)
11385 {
11386 case 0:
11387 printf (_("Data addressing position-dependent\n"));
11388 break;
11389 case 1:
11390 printf (_("Data addressing position-independent, GOT near DP\n"));
11391 break;
11392 case 2:
11393 printf (_("Data addressing position-independent, GOT far from DP\n"));
11394 break;
11395 default:
11396 printf ("??? (%d)\n", val);
11397 break;
11398 }
11399 return p;
11400
11401 case Tag_ABI_PIC:
11402 val = read_uleb128 (p, &len);
11403 p += len;
11404 printf (" Tag_ABI_PIC: ");
11405 switch (val)
11406 {
11407 case 0:
11408 printf (_("Code addressing position-dependent\n"));
11409 break;
11410 case 1:
11411 printf (_("Code addressing position-independent\n"));
11412 break;
11413 default:
11414 printf ("??? (%d)\n", val);
11415 break;
11416 }
11417 return p;
11418
11419 case Tag_ABI_array_object_alignment:
11420 val = read_uleb128 (p, &len);
11421 p += len;
11422 printf (" Tag_ABI_array_object_alignment: ");
11423 switch (val)
11424 {
11425 case 0:
11426 printf (_("8-byte\n"));
11427 break;
11428 case 1:
11429 printf (_("4-byte\n"));
11430 break;
11431 case 2:
11432 printf (_("16-byte\n"));
11433 break;
11434 default:
11435 printf ("??? (%d)\n", val);
11436 break;
11437 }
11438 return p;
11439
11440 case Tag_ABI_array_object_align_expected:
11441 val = read_uleb128 (p, &len);
11442 p += len;
11443 printf (" Tag_ABI_array_object_align_expected: ");
11444 switch (val)
11445 {
11446 case 0:
11447 printf (_("8-byte\n"));
11448 break;
11449 case 1:
11450 printf (_("4-byte\n"));
11451 break;
11452 case 2:
11453 printf (_("16-byte\n"));
11454 break;
11455 default:
11456 printf ("??? (%d)\n", val);
11457 break;
11458 }
11459 return p;
11460
11461 case Tag_ABI_compatibility:
11462 val = read_uleb128 (p, &len);
11463 p += len;
11464 printf (" Tag_ABI_compatibility: ");
11465 printf (_("flag = %d, vendor = %s\n"), val, p);
11466 p += strlen ((char *) p) + 1;
11467 return p;
11468
11469 case Tag_ABI_conformance:
11470 printf (" Tag_ABI_conformance: ");
11471 printf ("\"%s\"\n", p);
11472 p += strlen ((char *) p) + 1;
11473 return p;
11474 }
11475
11476 printf (" Tag_unknown_%d: ", tag);
11477
11478 if (tag & 1)
11479 {
11480 printf ("\"%s\"\n", p);
11481 p += strlen ((char *) p) + 1;
11482 }
11483 else
11484 {
11485 val = read_uleb128 (p, &len);
11486 p += len;
11487 printf ("%d (0x%x)\n", val, val);
11488 }
11489
11490 return p;
11491 }
11492
11493 static int
11494 process_attributes (FILE * file,
11495 const char * public_name,
11496 unsigned int proc_type,
11497 unsigned char * (* display_pub_attribute) (unsigned char *),
11498 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, int))
11499 {
11500 Elf_Internal_Shdr * sect;
11501 unsigned char * contents;
11502 unsigned char * p;
11503 unsigned char * end;
11504 bfd_vma section_len;
11505 bfd_vma len;
11506 unsigned i;
11507
11508 /* Find the section header so that we get the size. */
11509 for (i = 0, sect = section_headers;
11510 i < elf_header.e_shnum;
11511 i++, sect++)
11512 {
11513 if (sect->sh_type != proc_type && sect->sh_type != SHT_GNU_ATTRIBUTES)
11514 continue;
11515
11516 contents = (unsigned char *) get_data (NULL, file, sect->sh_offset, 1,
11517 sect->sh_size, _("attributes"));
11518 if (contents == NULL)
11519 continue;
11520
11521 p = contents;
11522 if (*p == 'A')
11523 {
11524 len = sect->sh_size - 1;
11525 p++;
11526
11527 while (len > 0)
11528 {
11529 int namelen;
11530 bfd_boolean public_section;
11531 bfd_boolean gnu_section;
11532
11533 section_len = byte_get (p, 4);
11534 p += 4;
11535
11536 if (section_len > len)
11537 {
11538 printf (_("ERROR: Bad section length (%d > %d)\n"),
11539 (int) section_len, (int) len);
11540 section_len = len;
11541 }
11542
11543 len -= section_len;
11544 printf (_("Attribute Section: %s\n"), p);
11545
11546 if (public_name && streq ((char *) p, public_name))
11547 public_section = TRUE;
11548 else
11549 public_section = FALSE;
11550
11551 if (streq ((char *) p, "gnu"))
11552 gnu_section = TRUE;
11553 else
11554 gnu_section = FALSE;
11555
11556 namelen = strlen ((char *) p) + 1;
11557 p += namelen;
11558 section_len -= namelen + 4;
11559
11560 while (section_len > 0)
11561 {
11562 int tag = *(p++);
11563 int val;
11564 bfd_vma size;
11565
11566 size = byte_get (p, 4);
11567 if (size > section_len)
11568 {
11569 printf (_("ERROR: Bad subsection length (%d > %d)\n"),
11570 (int) size, (int) section_len);
11571 size = section_len;
11572 }
11573
11574 section_len -= size;
11575 end = p + size - 1;
11576 p += 4;
11577
11578 switch (tag)
11579 {
11580 case 1:
11581 printf (_("File Attributes\n"));
11582 break;
11583 case 2:
11584 printf (_("Section Attributes:"));
11585 goto do_numlist;
11586 case 3:
11587 printf (_("Symbol Attributes:"));
11588 do_numlist:
11589 for (;;)
11590 {
11591 unsigned int j;
11592
11593 val = read_uleb128 (p, &j);
11594 p += j;
11595 if (val == 0)
11596 break;
11597 printf (" %d", val);
11598 }
11599 printf ("\n");
11600 break;
11601 default:
11602 printf (_("Unknown tag: %d\n"), tag);
11603 public_section = FALSE;
11604 break;
11605 }
11606
11607 if (public_section)
11608 {
11609 while (p < end)
11610 p = display_pub_attribute (p);
11611 }
11612 else if (gnu_section)
11613 {
11614 while (p < end)
11615 p = display_gnu_attribute (p,
11616 display_proc_gnu_attribute);
11617 }
11618 else
11619 {
11620 /* ??? Do something sensible, like dump hex. */
11621 printf (_(" Unknown section contexts\n"));
11622 p = end;
11623 }
11624 }
11625 }
11626 }
11627 else
11628 printf (_("Unknown format '%c'\n"), *p);
11629
11630 free (contents);
11631 }
11632 return 1;
11633 }
11634
11635 static int
11636 process_arm_specific (FILE * file)
11637 {
11638 return process_attributes (file, "aeabi", SHT_ARM_ATTRIBUTES,
11639 display_arm_attribute, NULL);
11640 }
11641
11642 static int
11643 process_power_specific (FILE * file)
11644 {
11645 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
11646 display_power_gnu_attribute);
11647 }
11648
11649 static int
11650 process_sparc_specific (FILE * file)
11651 {
11652 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
11653 display_sparc_gnu_attribute);
11654 }
11655
11656 static int
11657 process_tic6x_specific (FILE * file)
11658 {
11659 return process_attributes (file, "c6xabi", SHT_C6000_ATTRIBUTES,
11660 display_tic6x_attribute, NULL);
11661 }
11662
11663 /* DATA points to the contents of a MIPS GOT that starts at VMA PLTGOT.
11664 Print the Address, Access and Initial fields of an entry at VMA ADDR
11665 and return the VMA of the next entry. */
11666
11667 static bfd_vma
11668 print_mips_got_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
11669 {
11670 printf (" ");
11671 print_vma (addr, LONG_HEX);
11672 printf (" ");
11673 if (addr < pltgot + 0xfff0)
11674 printf ("%6d(gp)", (int) (addr - pltgot - 0x7ff0));
11675 else
11676 printf ("%10s", "");
11677 printf (" ");
11678 if (data == NULL)
11679 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
11680 else
11681 {
11682 bfd_vma entry;
11683
11684 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
11685 print_vma (entry, LONG_HEX);
11686 }
11687 return addr + (is_32bit_elf ? 4 : 8);
11688 }
11689
11690 /* DATA points to the contents of a MIPS PLT GOT that starts at VMA
11691 PLTGOT. Print the Address and Initial fields of an entry at VMA
11692 ADDR and return the VMA of the next entry. */
11693
11694 static bfd_vma
11695 print_mips_pltgot_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
11696 {
11697 printf (" ");
11698 print_vma (addr, LONG_HEX);
11699 printf (" ");
11700 if (data == NULL)
11701 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
11702 else
11703 {
11704 bfd_vma entry;
11705
11706 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
11707 print_vma (entry, LONG_HEX);
11708 }
11709 return addr + (is_32bit_elf ? 4 : 8);
11710 }
11711
11712 static int
11713 process_mips_specific (FILE * file)
11714 {
11715 Elf_Internal_Dyn * entry;
11716 size_t liblist_offset = 0;
11717 size_t liblistno = 0;
11718 size_t conflictsno = 0;
11719 size_t options_offset = 0;
11720 size_t conflicts_offset = 0;
11721 size_t pltrelsz = 0;
11722 size_t pltrel = 0;
11723 bfd_vma pltgot = 0;
11724 bfd_vma mips_pltgot = 0;
11725 bfd_vma jmprel = 0;
11726 bfd_vma local_gotno = 0;
11727 bfd_vma gotsym = 0;
11728 bfd_vma symtabno = 0;
11729
11730 process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
11731 display_mips_gnu_attribute);
11732
11733 /* We have a lot of special sections. Thanks SGI! */
11734 if (dynamic_section == NULL)
11735 /* No information available. */
11736 return 0;
11737
11738 for (entry = dynamic_section; entry->d_tag != DT_NULL; ++entry)
11739 switch (entry->d_tag)
11740 {
11741 case DT_MIPS_LIBLIST:
11742 liblist_offset
11743 = offset_from_vma (file, entry->d_un.d_val,
11744 liblistno * sizeof (Elf32_External_Lib));
11745 break;
11746 case DT_MIPS_LIBLISTNO:
11747 liblistno = entry->d_un.d_val;
11748 break;
11749 case DT_MIPS_OPTIONS:
11750 options_offset = offset_from_vma (file, entry->d_un.d_val, 0);
11751 break;
11752 case DT_MIPS_CONFLICT:
11753 conflicts_offset
11754 = offset_from_vma (file, entry->d_un.d_val,
11755 conflictsno * sizeof (Elf32_External_Conflict));
11756 break;
11757 case DT_MIPS_CONFLICTNO:
11758 conflictsno = entry->d_un.d_val;
11759 break;
11760 case DT_PLTGOT:
11761 pltgot = entry->d_un.d_ptr;
11762 break;
11763 case DT_MIPS_LOCAL_GOTNO:
11764 local_gotno = entry->d_un.d_val;
11765 break;
11766 case DT_MIPS_GOTSYM:
11767 gotsym = entry->d_un.d_val;
11768 break;
11769 case DT_MIPS_SYMTABNO:
11770 symtabno = entry->d_un.d_val;
11771 break;
11772 case DT_MIPS_PLTGOT:
11773 mips_pltgot = entry->d_un.d_ptr;
11774 break;
11775 case DT_PLTREL:
11776 pltrel = entry->d_un.d_val;
11777 break;
11778 case DT_PLTRELSZ:
11779 pltrelsz = entry->d_un.d_val;
11780 break;
11781 case DT_JMPREL:
11782 jmprel = entry->d_un.d_ptr;
11783 break;
11784 default:
11785 break;
11786 }
11787
11788 if (liblist_offset != 0 && liblistno != 0 && do_dynamic)
11789 {
11790 Elf32_External_Lib * elib;
11791 size_t cnt;
11792
11793 elib = (Elf32_External_Lib *) get_data (NULL, file, liblist_offset,
11794 liblistno,
11795 sizeof (Elf32_External_Lib),
11796 _("liblist section data"));
11797 if (elib)
11798 {
11799 printf (_("\nSection '.liblist' contains %lu entries:\n"),
11800 (unsigned long) liblistno);
11801 fputs (_(" Library Time Stamp Checksum Version Flags\n"),
11802 stdout);
11803
11804 for (cnt = 0; cnt < liblistno; ++cnt)
11805 {
11806 Elf32_Lib liblist;
11807 time_t atime;
11808 char timebuf[20];
11809 struct tm * tmp;
11810
11811 liblist.l_name = BYTE_GET (elib[cnt].l_name);
11812 atime = BYTE_GET (elib[cnt].l_time_stamp);
11813 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
11814 liblist.l_version = BYTE_GET (elib[cnt].l_version);
11815 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
11816
11817 tmp = gmtime (&atime);
11818 snprintf (timebuf, sizeof (timebuf),
11819 "%04u-%02u-%02uT%02u:%02u:%02u",
11820 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
11821 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
11822
11823 printf ("%3lu: ", (unsigned long) cnt);
11824 if (VALID_DYNAMIC_NAME (liblist.l_name))
11825 print_symbol (20, GET_DYNAMIC_NAME (liblist.l_name));
11826 else
11827 printf (_("<corrupt: %9ld>"), liblist.l_name);
11828 printf (" %s %#10lx %-7ld", timebuf, liblist.l_checksum,
11829 liblist.l_version);
11830
11831 if (liblist.l_flags == 0)
11832 puts (_(" NONE"));
11833 else
11834 {
11835 static const struct
11836 {
11837 const char * name;
11838 int bit;
11839 }
11840 l_flags_vals[] =
11841 {
11842 { " EXACT_MATCH", LL_EXACT_MATCH },
11843 { " IGNORE_INT_VER", LL_IGNORE_INT_VER },
11844 { " REQUIRE_MINOR", LL_REQUIRE_MINOR },
11845 { " EXPORTS", LL_EXPORTS },
11846 { " DELAY_LOAD", LL_DELAY_LOAD },
11847 { " DELTA", LL_DELTA }
11848 };
11849 int flags = liblist.l_flags;
11850 size_t fcnt;
11851
11852 for (fcnt = 0; fcnt < ARRAY_SIZE (l_flags_vals); ++fcnt)
11853 if ((flags & l_flags_vals[fcnt].bit) != 0)
11854 {
11855 fputs (l_flags_vals[fcnt].name, stdout);
11856 flags ^= l_flags_vals[fcnt].bit;
11857 }
11858 if (flags != 0)
11859 printf (" %#x", (unsigned int) flags);
11860
11861 puts ("");
11862 }
11863 }
11864
11865 free (elib);
11866 }
11867 }
11868
11869 if (options_offset != 0)
11870 {
11871 Elf_External_Options * eopt;
11872 Elf_Internal_Shdr * sect = section_headers;
11873 Elf_Internal_Options * iopt;
11874 Elf_Internal_Options * option;
11875 size_t offset;
11876 int cnt;
11877
11878 /* Find the section header so that we get the size. */
11879 while (sect->sh_type != SHT_MIPS_OPTIONS)
11880 ++sect;
11881
11882 eopt = (Elf_External_Options *) get_data (NULL, file, options_offset, 1,
11883 sect->sh_size, _("options"));
11884 if (eopt)
11885 {
11886 iopt = (Elf_Internal_Options *)
11887 cmalloc ((sect->sh_size / sizeof (eopt)), sizeof (* iopt));
11888 if (iopt == NULL)
11889 {
11890 error (_("Out of memory\n"));
11891 return 0;
11892 }
11893
11894 offset = cnt = 0;
11895 option = iopt;
11896
11897 while (offset < sect->sh_size)
11898 {
11899 Elf_External_Options * eoption;
11900
11901 eoption = (Elf_External_Options *) ((char *) eopt + offset);
11902
11903 option->kind = BYTE_GET (eoption->kind);
11904 option->size = BYTE_GET (eoption->size);
11905 option->section = BYTE_GET (eoption->section);
11906 option->info = BYTE_GET (eoption->info);
11907
11908 offset += option->size;
11909
11910 ++option;
11911 ++cnt;
11912 }
11913
11914 printf (_("\nSection '%s' contains %d entries:\n"),
11915 SECTION_NAME (sect), cnt);
11916
11917 option = iopt;
11918
11919 while (cnt-- > 0)
11920 {
11921 size_t len;
11922
11923 switch (option->kind)
11924 {
11925 case ODK_NULL:
11926 /* This shouldn't happen. */
11927 printf (" NULL %d %lx", option->section, option->info);
11928 break;
11929 case ODK_REGINFO:
11930 printf (" REGINFO ");
11931 if (elf_header.e_machine == EM_MIPS)
11932 {
11933 /* 32bit form. */
11934 Elf32_External_RegInfo * ereg;
11935 Elf32_RegInfo reginfo;
11936
11937 ereg = (Elf32_External_RegInfo *) (option + 1);
11938 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
11939 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
11940 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
11941 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
11942 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
11943 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
11944
11945 printf ("GPR %08lx GP 0x%lx\n",
11946 reginfo.ri_gprmask,
11947 (unsigned long) reginfo.ri_gp_value);
11948 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
11949 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
11950 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
11951 }
11952 else
11953 {
11954 /* 64 bit form. */
11955 Elf64_External_RegInfo * ereg;
11956 Elf64_Internal_RegInfo reginfo;
11957
11958 ereg = (Elf64_External_RegInfo *) (option + 1);
11959 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
11960 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
11961 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
11962 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
11963 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
11964 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
11965
11966 printf ("GPR %08lx GP 0x",
11967 reginfo.ri_gprmask);
11968 printf_vma (reginfo.ri_gp_value);
11969 printf ("\n");
11970
11971 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
11972 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
11973 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
11974 }
11975 ++option;
11976 continue;
11977 case ODK_EXCEPTIONS:
11978 fputs (" EXCEPTIONS fpe_min(", stdout);
11979 process_mips_fpe_exception (option->info & OEX_FPU_MIN);
11980 fputs (") fpe_max(", stdout);
11981 process_mips_fpe_exception ((option->info & OEX_FPU_MAX) >> 8);
11982 fputs (")", stdout);
11983
11984 if (option->info & OEX_PAGE0)
11985 fputs (" PAGE0", stdout);
11986 if (option->info & OEX_SMM)
11987 fputs (" SMM", stdout);
11988 if (option->info & OEX_FPDBUG)
11989 fputs (" FPDBUG", stdout);
11990 if (option->info & OEX_DISMISS)
11991 fputs (" DISMISS", stdout);
11992 break;
11993 case ODK_PAD:
11994 fputs (" PAD ", stdout);
11995 if (option->info & OPAD_PREFIX)
11996 fputs (" PREFIX", stdout);
11997 if (option->info & OPAD_POSTFIX)
11998 fputs (" POSTFIX", stdout);
11999 if (option->info & OPAD_SYMBOL)
12000 fputs (" SYMBOL", stdout);
12001 break;
12002 case ODK_HWPATCH:
12003 fputs (" HWPATCH ", stdout);
12004 if (option->info & OHW_R4KEOP)
12005 fputs (" R4KEOP", stdout);
12006 if (option->info & OHW_R8KPFETCH)
12007 fputs (" R8KPFETCH", stdout);
12008 if (option->info & OHW_R5KEOP)
12009 fputs (" R5KEOP", stdout);
12010 if (option->info & OHW_R5KCVTL)
12011 fputs (" R5KCVTL", stdout);
12012 break;
12013 case ODK_FILL:
12014 fputs (" FILL ", stdout);
12015 /* XXX Print content of info word? */
12016 break;
12017 case ODK_TAGS:
12018 fputs (" TAGS ", stdout);
12019 /* XXX Print content of info word? */
12020 break;
12021 case ODK_HWAND:
12022 fputs (" HWAND ", stdout);
12023 if (option->info & OHWA0_R4KEOP_CHECKED)
12024 fputs (" R4KEOP_CHECKED", stdout);
12025 if (option->info & OHWA0_R4KEOP_CLEAN)
12026 fputs (" R4KEOP_CLEAN", stdout);
12027 break;
12028 case ODK_HWOR:
12029 fputs (" HWOR ", stdout);
12030 if (option->info & OHWA0_R4KEOP_CHECKED)
12031 fputs (" R4KEOP_CHECKED", stdout);
12032 if (option->info & OHWA0_R4KEOP_CLEAN)
12033 fputs (" R4KEOP_CLEAN", stdout);
12034 break;
12035 case ODK_GP_GROUP:
12036 printf (" GP_GROUP %#06lx self-contained %#06lx",
12037 option->info & OGP_GROUP,
12038 (option->info & OGP_SELF) >> 16);
12039 break;
12040 case ODK_IDENT:
12041 printf (" IDENT %#06lx self-contained %#06lx",
12042 option->info & OGP_GROUP,
12043 (option->info & OGP_SELF) >> 16);
12044 break;
12045 default:
12046 /* This shouldn't happen. */
12047 printf (" %3d ??? %d %lx",
12048 option->kind, option->section, option->info);
12049 break;
12050 }
12051
12052 len = sizeof (* eopt);
12053 while (len < option->size)
12054 if (((char *) option)[len] >= ' '
12055 && ((char *) option)[len] < 0x7f)
12056 printf ("%c", ((char *) option)[len++]);
12057 else
12058 printf ("\\%03o", ((char *) option)[len++]);
12059
12060 fputs ("\n", stdout);
12061 ++option;
12062 }
12063
12064 free (eopt);
12065 }
12066 }
12067
12068 if (conflicts_offset != 0 && conflictsno != 0)
12069 {
12070 Elf32_Conflict * iconf;
12071 size_t cnt;
12072
12073 if (dynamic_symbols == NULL)
12074 {
12075 error (_("conflict list found without a dynamic symbol table\n"));
12076 return 0;
12077 }
12078
12079 iconf = (Elf32_Conflict *) cmalloc (conflictsno, sizeof (* iconf));
12080 if (iconf == NULL)
12081 {
12082 error (_("Out of memory\n"));
12083 return 0;
12084 }
12085
12086 if (is_32bit_elf)
12087 {
12088 Elf32_External_Conflict * econf32;
12089
12090 econf32 = (Elf32_External_Conflict *)
12091 get_data (NULL, file, conflicts_offset, conflictsno,
12092 sizeof (* econf32), _("conflict"));
12093 if (!econf32)
12094 return 0;
12095
12096 for (cnt = 0; cnt < conflictsno; ++cnt)
12097 iconf[cnt] = BYTE_GET (econf32[cnt]);
12098
12099 free (econf32);
12100 }
12101 else
12102 {
12103 Elf64_External_Conflict * econf64;
12104
12105 econf64 = (Elf64_External_Conflict *)
12106 get_data (NULL, file, conflicts_offset, conflictsno,
12107 sizeof (* econf64), _("conflict"));
12108 if (!econf64)
12109 return 0;
12110
12111 for (cnt = 0; cnt < conflictsno; ++cnt)
12112 iconf[cnt] = BYTE_GET (econf64[cnt]);
12113
12114 free (econf64);
12115 }
12116
12117 printf (_("\nSection '.conflict' contains %lu entries:\n"),
12118 (unsigned long) conflictsno);
12119 puts (_(" Num: Index Value Name"));
12120
12121 for (cnt = 0; cnt < conflictsno; ++cnt)
12122 {
12123 Elf_Internal_Sym * psym = & dynamic_symbols[iconf[cnt]];
12124
12125 printf ("%5lu: %8lu ", (unsigned long) cnt, iconf[cnt]);
12126 print_vma (psym->st_value, FULL_HEX);
12127 putchar (' ');
12128 if (VALID_DYNAMIC_NAME (psym->st_name))
12129 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
12130 else
12131 printf (_("<corrupt: %14ld>"), psym->st_name);
12132 putchar ('\n');
12133 }
12134
12135 free (iconf);
12136 }
12137
12138 if (pltgot != 0 && local_gotno != 0)
12139 {
12140 bfd_vma ent, local_end, global_end;
12141 size_t i, offset;
12142 unsigned char * data;
12143 int addr_size;
12144
12145 ent = pltgot;
12146 addr_size = (is_32bit_elf ? 4 : 8);
12147 local_end = pltgot + local_gotno * addr_size;
12148 global_end = local_end + (symtabno - gotsym) * addr_size;
12149
12150 offset = offset_from_vma (file, pltgot, global_end - pltgot);
12151 data = (unsigned char *) get_data (NULL, file, offset,
12152 global_end - pltgot, 1,
12153 _("Global Offset Table data"));
12154 if (data == NULL)
12155 return 0;
12156
12157 printf (_("\nPrimary GOT:\n"));
12158 printf (_(" Canonical gp value: "));
12159 print_vma (pltgot + 0x7ff0, LONG_HEX);
12160 printf ("\n\n");
12161
12162 printf (_(" Reserved entries:\n"));
12163 printf (_(" %*s %10s %*s Purpose\n"),
12164 addr_size * 2, _("Address"), _("Access"),
12165 addr_size * 2, _("Initial"));
12166 ent = print_mips_got_entry (data, pltgot, ent);
12167 printf (_(" Lazy resolver\n"));
12168 if (data
12169 && (byte_get (data + ent - pltgot, addr_size)
12170 >> (addr_size * 8 - 1)) != 0)
12171 {
12172 ent = print_mips_got_entry (data, pltgot, ent);
12173 printf (_(" Module pointer (GNU extension)\n"));
12174 }
12175 printf ("\n");
12176
12177 if (ent < local_end)
12178 {
12179 printf (_(" Local entries:\n"));
12180 printf (" %*s %10s %*s\n",
12181 addr_size * 2, _("Address"), _("Access"),
12182 addr_size * 2, _("Initial"));
12183 while (ent < local_end)
12184 {
12185 ent = print_mips_got_entry (data, pltgot, ent);
12186 printf ("\n");
12187 }
12188 printf ("\n");
12189 }
12190
12191 if (gotsym < symtabno)
12192 {
12193 int sym_width;
12194
12195 printf (_(" Global entries:\n"));
12196 printf (" %*s %10s %*s %*s %-7s %3s %s\n",
12197 addr_size * 2, _("Address"),
12198 _("Access"),
12199 addr_size * 2, _("Initial"),
12200 addr_size * 2, _("Sym.Val."),
12201 _("Type"),
12202 /* Note for translators: "Ndx" = abbreviated form of "Index". */
12203 _("Ndx"), _("Name"));
12204
12205 sym_width = (is_32bit_elf ? 80 : 160) - 28 - addr_size * 6 - 1;
12206 for (i = gotsym; i < symtabno; i++)
12207 {
12208 Elf_Internal_Sym * psym;
12209
12210 psym = dynamic_symbols + i;
12211 ent = print_mips_got_entry (data, pltgot, ent);
12212 printf (" ");
12213 print_vma (psym->st_value, LONG_HEX);
12214 printf (" %-7s %3s ",
12215 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
12216 get_symbol_index_type (psym->st_shndx));
12217 if (VALID_DYNAMIC_NAME (psym->st_name))
12218 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
12219 else
12220 printf (_("<corrupt: %14ld>"), psym->st_name);
12221 printf ("\n");
12222 }
12223 printf ("\n");
12224 }
12225
12226 if (data)
12227 free (data);
12228 }
12229
12230 if (mips_pltgot != 0 && jmprel != 0 && pltrel != 0 && pltrelsz != 0)
12231 {
12232 bfd_vma ent, end;
12233 size_t offset, rel_offset;
12234 unsigned long count, i;
12235 unsigned char * data;
12236 int addr_size, sym_width;
12237 Elf_Internal_Rela * rels;
12238
12239 rel_offset = offset_from_vma (file, jmprel, pltrelsz);
12240 if (pltrel == DT_RELA)
12241 {
12242 if (!slurp_rela_relocs (file, rel_offset, pltrelsz, &rels, &count))
12243 return 0;
12244 }
12245 else
12246 {
12247 if (!slurp_rel_relocs (file, rel_offset, pltrelsz, &rels, &count))
12248 return 0;
12249 }
12250
12251 ent = mips_pltgot;
12252 addr_size = (is_32bit_elf ? 4 : 8);
12253 end = mips_pltgot + (2 + count) * addr_size;
12254
12255 offset = offset_from_vma (file, mips_pltgot, end - mips_pltgot);
12256 data = (unsigned char *) get_data (NULL, file, offset, end - mips_pltgot,
12257 1, _("Procedure Linkage Table data"));
12258 if (data == NULL)
12259 return 0;
12260
12261 printf ("\nPLT GOT:\n\n");
12262 printf (_(" Reserved entries:\n"));
12263 printf (_(" %*s %*s Purpose\n"),
12264 addr_size * 2, _("Address"), addr_size * 2, _("Initial"));
12265 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
12266 printf (_(" PLT lazy resolver\n"));
12267 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
12268 printf (_(" Module pointer\n"));
12269 printf ("\n");
12270
12271 printf (_(" Entries:\n"));
12272 printf (" %*s %*s %*s %-7s %3s %s\n",
12273 addr_size * 2, _("Address"),
12274 addr_size * 2, _("Initial"),
12275 addr_size * 2, _("Sym.Val."), _("Type"), _("Ndx"), _("Name"));
12276 sym_width = (is_32bit_elf ? 80 : 160) - 17 - addr_size * 6 - 1;
12277 for (i = 0; i < count; i++)
12278 {
12279 Elf_Internal_Sym * psym;
12280
12281 psym = dynamic_symbols + get_reloc_symindex (rels[i].r_info);
12282 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
12283 printf (" ");
12284 print_vma (psym->st_value, LONG_HEX);
12285 printf (" %-7s %3s ",
12286 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
12287 get_symbol_index_type (psym->st_shndx));
12288 if (VALID_DYNAMIC_NAME (psym->st_name))
12289 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
12290 else
12291 printf (_("<corrupt: %14ld>"), psym->st_name);
12292 printf ("\n");
12293 }
12294 printf ("\n");
12295
12296 if (data)
12297 free (data);
12298 free (rels);
12299 }
12300
12301 return 1;
12302 }
12303
12304 static int
12305 process_gnu_liblist (FILE * file)
12306 {
12307 Elf_Internal_Shdr * section;
12308 Elf_Internal_Shdr * string_sec;
12309 Elf32_External_Lib * elib;
12310 char * strtab;
12311 size_t strtab_size;
12312 size_t cnt;
12313 unsigned i;
12314
12315 if (! do_arch)
12316 return 0;
12317
12318 for (i = 0, section = section_headers;
12319 i < elf_header.e_shnum;
12320 i++, section++)
12321 {
12322 switch (section->sh_type)
12323 {
12324 case SHT_GNU_LIBLIST:
12325 if (section->sh_link >= elf_header.e_shnum)
12326 break;
12327
12328 elib = (Elf32_External_Lib *)
12329 get_data (NULL, file, section->sh_offset, 1, section->sh_size,
12330 _("liblist section data"));
12331
12332 if (elib == NULL)
12333 break;
12334 string_sec = section_headers + section->sh_link;
12335
12336 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
12337 string_sec->sh_size,
12338 _("liblist string table"));
12339 if (strtab == NULL
12340 || section->sh_entsize != sizeof (Elf32_External_Lib))
12341 {
12342 free (elib);
12343 free (strtab);
12344 break;
12345 }
12346 strtab_size = string_sec->sh_size;
12347
12348 printf (_("\nLibrary list section '%s' contains %lu entries:\n"),
12349 SECTION_NAME (section),
12350 (unsigned long) (section->sh_size / sizeof (Elf32_External_Lib)));
12351
12352 puts (_(" Library Time Stamp Checksum Version Flags"));
12353
12354 for (cnt = 0; cnt < section->sh_size / sizeof (Elf32_External_Lib);
12355 ++cnt)
12356 {
12357 Elf32_Lib liblist;
12358 time_t atime;
12359 char timebuf[20];
12360 struct tm * tmp;
12361
12362 liblist.l_name = BYTE_GET (elib[cnt].l_name);
12363 atime = BYTE_GET (elib[cnt].l_time_stamp);
12364 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
12365 liblist.l_version = BYTE_GET (elib[cnt].l_version);
12366 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
12367
12368 tmp = gmtime (&atime);
12369 snprintf (timebuf, sizeof (timebuf),
12370 "%04u-%02u-%02uT%02u:%02u:%02u",
12371 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
12372 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
12373
12374 printf ("%3lu: ", (unsigned long) cnt);
12375 if (do_wide)
12376 printf ("%-20s", liblist.l_name < strtab_size
12377 ? strtab + liblist.l_name : _("<corrupt>"));
12378 else
12379 printf ("%-20.20s", liblist.l_name < strtab_size
12380 ? strtab + liblist.l_name : _("<corrupt>"));
12381 printf (" %s %#010lx %-7ld %-7ld\n", timebuf, liblist.l_checksum,
12382 liblist.l_version, liblist.l_flags);
12383 }
12384
12385 free (elib);
12386 free (strtab);
12387 }
12388 }
12389
12390 return 1;
12391 }
12392
12393 static const char *
12394 get_note_type (unsigned e_type)
12395 {
12396 static char buff[64];
12397
12398 if (elf_header.e_type == ET_CORE)
12399 switch (e_type)
12400 {
12401 case NT_AUXV:
12402 return _("NT_AUXV (auxiliary vector)");
12403 case NT_PRSTATUS:
12404 return _("NT_PRSTATUS (prstatus structure)");
12405 case NT_FPREGSET:
12406 return _("NT_FPREGSET (floating point registers)");
12407 case NT_PRPSINFO:
12408 return _("NT_PRPSINFO (prpsinfo structure)");
12409 case NT_TASKSTRUCT:
12410 return _("NT_TASKSTRUCT (task structure)");
12411 case NT_PRXFPREG:
12412 return _("NT_PRXFPREG (user_xfpregs structure)");
12413 case NT_PPC_VMX:
12414 return _("NT_PPC_VMX (ppc Altivec registers)");
12415 case NT_PPC_VSX:
12416 return _("NT_PPC_VSX (ppc VSX registers)");
12417 case NT_X86_XSTATE:
12418 return _("NT_X86_XSTATE (x86 XSAVE extended state)");
12419 case NT_S390_HIGH_GPRS:
12420 return _("NT_S390_HIGH_GPRS (s390 upper register halves)");
12421 case NT_S390_TIMER:
12422 return _("NT_S390_TIMER (s390 timer register)");
12423 case NT_S390_TODCMP:
12424 return _("NT_S390_TODCMP (s390 TOD comparator register)");
12425 case NT_S390_TODPREG:
12426 return _("NT_S390_TODPREG (s390 TOD programmable register)");
12427 case NT_S390_CTRS:
12428 return _("NT_S390_CTRS (s390 control registers)");
12429 case NT_S390_PREFIX:
12430 return _("NT_S390_PREFIX (s390 prefix register)");
12431 case NT_ARM_VFP:
12432 return _("NT_ARM_VFP (arm VFP registers)");
12433 case NT_PSTATUS:
12434 return _("NT_PSTATUS (pstatus structure)");
12435 case NT_FPREGS:
12436 return _("NT_FPREGS (floating point registers)");
12437 case NT_PSINFO:
12438 return _("NT_PSINFO (psinfo structure)");
12439 case NT_LWPSTATUS:
12440 return _("NT_LWPSTATUS (lwpstatus_t structure)");
12441 case NT_LWPSINFO:
12442 return _("NT_LWPSINFO (lwpsinfo_t structure)");
12443 case NT_WIN32PSTATUS:
12444 return _("NT_WIN32PSTATUS (win32_pstatus structure)");
12445 default:
12446 break;
12447 }
12448 else
12449 switch (e_type)
12450 {
12451 case NT_VERSION:
12452 return _("NT_VERSION (version)");
12453 case NT_ARCH:
12454 return _("NT_ARCH (architecture)");
12455 default:
12456 break;
12457 }
12458
12459 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
12460 return buff;
12461 }
12462
12463 static const char *
12464 get_gnu_elf_note_type (unsigned e_type)
12465 {
12466 static char buff[64];
12467
12468 switch (e_type)
12469 {
12470 case NT_GNU_ABI_TAG:
12471 return _("NT_GNU_ABI_TAG (ABI version tag)");
12472 case NT_GNU_HWCAP:
12473 return _("NT_GNU_HWCAP (DSO-supplied software HWCAP info)");
12474 case NT_GNU_BUILD_ID:
12475 return _("NT_GNU_BUILD_ID (unique build ID bitstring)");
12476 case NT_GNU_GOLD_VERSION:
12477 return _("NT_GNU_GOLD_VERSION (gold version)");
12478 default:
12479 break;
12480 }
12481
12482 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
12483 return buff;
12484 }
12485
12486 static int
12487 print_gnu_note (Elf_Internal_Note *pnote)
12488 {
12489 switch (pnote->type)
12490 {
12491 case NT_GNU_BUILD_ID:
12492 {
12493 unsigned long i;
12494
12495 printf (_(" Build ID: "));
12496 for (i = 0; i < pnote->descsz; ++i)
12497 printf ("%02x", pnote->descdata[i] & 0xff);
12498 printf ("\n");
12499 }
12500 break;
12501
12502 case NT_GNU_ABI_TAG:
12503 {
12504 unsigned long os, major, minor, subminor;
12505 const char *osname;
12506
12507 os = byte_get ((unsigned char *) pnote->descdata, 4);
12508 major = byte_get ((unsigned char *) pnote->descdata + 4, 4);
12509 minor = byte_get ((unsigned char *) pnote->descdata + 8, 4);
12510 subminor = byte_get ((unsigned char *) pnote->descdata + 12, 4);
12511
12512 switch (os)
12513 {
12514 case GNU_ABI_TAG_LINUX:
12515 osname = "Linux";
12516 break;
12517 case GNU_ABI_TAG_HURD:
12518 osname = "Hurd";
12519 break;
12520 case GNU_ABI_TAG_SOLARIS:
12521 osname = "Solaris";
12522 break;
12523 case GNU_ABI_TAG_FREEBSD:
12524 osname = "FreeBSD";
12525 break;
12526 case GNU_ABI_TAG_NETBSD:
12527 osname = "NetBSD";
12528 break;
12529 default:
12530 osname = "Unknown";
12531 break;
12532 }
12533
12534 printf (_(" OS: %s, ABI: %ld.%ld.%ld\n"), osname,
12535 major, minor, subminor);
12536 }
12537 break;
12538 }
12539
12540 return 1;
12541 }
12542
12543 static const char *
12544 get_netbsd_elfcore_note_type (unsigned e_type)
12545 {
12546 static char buff[64];
12547
12548 if (e_type == NT_NETBSDCORE_PROCINFO)
12549 {
12550 /* NetBSD core "procinfo" structure. */
12551 return _("NetBSD procinfo structure");
12552 }
12553
12554 /* As of Jan 2002 there are no other machine-independent notes
12555 defined for NetBSD core files. If the note type is less
12556 than the start of the machine-dependent note types, we don't
12557 understand it. */
12558
12559 if (e_type < NT_NETBSDCORE_FIRSTMACH)
12560 {
12561 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
12562 return buff;
12563 }
12564
12565 switch (elf_header.e_machine)
12566 {
12567 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0
12568 and PT_GETFPREGS == mach+2. */
12569
12570 case EM_OLD_ALPHA:
12571 case EM_ALPHA:
12572 case EM_SPARC:
12573 case EM_SPARC32PLUS:
12574 case EM_SPARCV9:
12575 switch (e_type)
12576 {
12577 case NT_NETBSDCORE_FIRSTMACH + 0:
12578 return _("PT_GETREGS (reg structure)");
12579 case NT_NETBSDCORE_FIRSTMACH + 2:
12580 return _("PT_GETFPREGS (fpreg structure)");
12581 default:
12582 break;
12583 }
12584 break;
12585
12586 /* On all other arch's, PT_GETREGS == mach+1 and
12587 PT_GETFPREGS == mach+3. */
12588 default:
12589 switch (e_type)
12590 {
12591 case NT_NETBSDCORE_FIRSTMACH + 1:
12592 return _("PT_GETREGS (reg structure)");
12593 case NT_NETBSDCORE_FIRSTMACH + 3:
12594 return _("PT_GETFPREGS (fpreg structure)");
12595 default:
12596 break;
12597 }
12598 }
12599
12600 snprintf (buff, sizeof (buff), "PT_FIRSTMACH+%d",
12601 e_type - NT_NETBSDCORE_FIRSTMACH);
12602 return buff;
12603 }
12604
12605 static const char *
12606 get_stapsdt_note_type (unsigned e_type)
12607 {
12608 static char buff[64];
12609
12610 switch (e_type)
12611 {
12612 case NT_STAPSDT:
12613 return _("NT_STAPSDT (SystemTap probe descriptors)");
12614
12615 default:
12616 break;
12617 }
12618
12619 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
12620 return buff;
12621 }
12622
12623 static int
12624 print_stapsdt_note (Elf_Internal_Note *pnote)
12625 {
12626 int addr_size = is_32bit_elf ? 4 : 8;
12627 char *data = pnote->descdata;
12628 char *data_end = pnote->descdata + pnote->descsz;
12629 bfd_vma pc, base_addr, semaphore;
12630 char *provider, *probe, *arg_fmt;
12631
12632 pc = byte_get ((unsigned char *) data, addr_size);
12633 data += addr_size;
12634 base_addr = byte_get ((unsigned char *) data, addr_size);
12635 data += addr_size;
12636 semaphore = byte_get ((unsigned char *) data, addr_size);
12637 data += addr_size;
12638
12639 provider = data;
12640 data += strlen (data) + 1;
12641 probe = data;
12642 data += strlen (data) + 1;
12643 arg_fmt = data;
12644 data += strlen (data) + 1;
12645
12646 printf (_(" Provider: %s\n"), provider);
12647 printf (_(" Name: %s\n"), probe);
12648 printf (_(" Location: "));
12649 print_vma (pc, FULL_HEX);
12650 printf (_(", Base: "));
12651 print_vma (base_addr, FULL_HEX);
12652 printf (_(", Semaphore: "));
12653 print_vma (semaphore, FULL_HEX);
12654 printf ("\n");
12655 printf (_(" Arguments: %s\n"), arg_fmt);
12656
12657 return data == data_end;
12658 }
12659
12660 static const char *
12661 get_ia64_vms_note_type (unsigned e_type)
12662 {
12663 static char buff[64];
12664
12665 switch (e_type)
12666 {
12667 case NT_VMS_MHD:
12668 return _("NT_VMS_MHD (module header)");
12669 case NT_VMS_LNM:
12670 return _("NT_VMS_LNM (language name)");
12671 case NT_VMS_SRC:
12672 return _("NT_VMS_SRC (source files)");
12673 case NT_VMS_TITLE:
12674 return "NT_VMS_TITLE";
12675 case NT_VMS_EIDC:
12676 return _("NT_VMS_EIDC (consistency check)");
12677 case NT_VMS_FPMODE:
12678 return _("NT_VMS_FPMODE (FP mode)");
12679 case NT_VMS_LINKTIME:
12680 return "NT_VMS_LINKTIME";
12681 case NT_VMS_IMGNAM:
12682 return _("NT_VMS_IMGNAM (image name)");
12683 case NT_VMS_IMGID:
12684 return _("NT_VMS_IMGID (image id)");
12685 case NT_VMS_LINKID:
12686 return _("NT_VMS_LINKID (link id)");
12687 case NT_VMS_IMGBID:
12688 return _("NT_VMS_IMGBID (build id)");
12689 case NT_VMS_GSTNAM:
12690 return _("NT_VMS_GSTNAM (sym table name)");
12691 case NT_VMS_ORIG_DYN:
12692 return "NT_VMS_ORIG_DYN";
12693 case NT_VMS_PATCHTIME:
12694 return "NT_VMS_PATCHTIME";
12695 default:
12696 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
12697 return buff;
12698 }
12699 }
12700
12701 static int
12702 print_ia64_vms_note (Elf_Internal_Note * pnote)
12703 {
12704 switch (pnote->type)
12705 {
12706 case NT_VMS_MHD:
12707 if (pnote->descsz > 36)
12708 {
12709 size_t l = strlen (pnote->descdata + 34);
12710 printf (_(" Creation date : %.17s\n"), pnote->descdata);
12711 printf (_(" Last patch date: %.17s\n"), pnote->descdata + 17);
12712 printf (_(" Module name : %s\n"), pnote->descdata + 34);
12713 printf (_(" Module version : %s\n"), pnote->descdata + 34 + l + 1);
12714 }
12715 else
12716 printf (_(" Invalid size\n"));
12717 break;
12718 case NT_VMS_LNM:
12719 printf (_(" Language: %s\n"), pnote->descdata);
12720 break;
12721 #ifdef BFD64
12722 case NT_VMS_FPMODE:
12723 printf (_(" Floating Point mode: "));
12724 printf ("0x%016" BFD_VMA_FMT "x\n",
12725 (bfd_vma)byte_get ((unsigned char *)pnote->descdata, 8));
12726 break;
12727 case NT_VMS_LINKTIME:
12728 printf (_(" Link time: "));
12729 print_vms_time
12730 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
12731 printf ("\n");
12732 break;
12733 case NT_VMS_PATCHTIME:
12734 printf (_(" Patch time: "));
12735 print_vms_time
12736 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
12737 printf ("\n");
12738 break;
12739 case NT_VMS_ORIG_DYN:
12740 printf (_(" Major id: %u, minor id: %u\n"),
12741 (unsigned) byte_get ((unsigned char *)pnote->descdata, 4),
12742 (unsigned) byte_get ((unsigned char *)pnote->descdata + 4, 4));
12743 printf (_(" Last modified : "));
12744 print_vms_time
12745 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata + 8, 8));
12746 printf (_("\n Link flags : "));
12747 printf ("0x%016" BFD_VMA_FMT "x\n",
12748 (bfd_vma)byte_get ((unsigned char *)pnote->descdata + 16, 8));
12749 printf (_(" Header flags: 0x%08x\n"),
12750 (unsigned)byte_get ((unsigned char *)pnote->descdata + 24, 4));
12751 printf (_(" Image id : %s\n"), pnote->descdata + 32);
12752 break;
12753 #endif
12754 case NT_VMS_IMGNAM:
12755 printf (_(" Image name: %s\n"), pnote->descdata);
12756 break;
12757 case NT_VMS_GSTNAM:
12758 printf (_(" Global symbol table name: %s\n"), pnote->descdata);
12759 break;
12760 case NT_VMS_IMGID:
12761 printf (_(" Image id: %s\n"), pnote->descdata);
12762 break;
12763 case NT_VMS_LINKID:
12764 printf (_(" Linker id: %s\n"), pnote->descdata);
12765 break;
12766 default:
12767 break;
12768 }
12769 return 1;
12770 }
12771
12772 /* Note that by the ELF standard, the name field is already null byte
12773 terminated, and namesz includes the terminating null byte.
12774 I.E. the value of namesz for the name "FSF" is 4.
12775
12776 If the value of namesz is zero, there is no name present. */
12777 static int
12778 process_note (Elf_Internal_Note * pnote)
12779 {
12780 const char * name = pnote->namesz ? pnote->namedata : "(NONE)";
12781 const char * nt;
12782
12783 if (pnote->namesz == 0)
12784 /* If there is no note name, then use the default set of
12785 note type strings. */
12786 nt = get_note_type (pnote->type);
12787
12788 else if (const_strneq (pnote->namedata, "GNU"))
12789 /* GNU-specific object file notes. */
12790 nt = get_gnu_elf_note_type (pnote->type);
12791
12792 else if (const_strneq (pnote->namedata, "NetBSD-CORE"))
12793 /* NetBSD-specific core file notes. */
12794 nt = get_netbsd_elfcore_note_type (pnote->type);
12795
12796 else if (strneq (pnote->namedata, "SPU/", 4))
12797 {
12798 /* SPU-specific core file notes. */
12799 nt = pnote->namedata + 4;
12800 name = "SPU";
12801 }
12802
12803 else if (const_strneq (pnote->namedata, "IPF/VMS"))
12804 /* VMS/ia64-specific file notes. */
12805 nt = get_ia64_vms_note_type (pnote->type);
12806
12807 else if (const_strneq (pnote->namedata, "stapsdt"))
12808 nt = get_stapsdt_note_type (pnote->type);
12809
12810 else
12811 /* Don't recognize this note name; just use the default set of
12812 note type strings. */
12813 nt = get_note_type (pnote->type);
12814
12815 printf (" %-20s 0x%08lx\t%s\n", name, pnote->descsz, nt);
12816
12817 if (const_strneq (pnote->namedata, "IPF/VMS"))
12818 return print_ia64_vms_note (pnote);
12819 else if (const_strneq (pnote->namedata, "GNU"))
12820 return print_gnu_note (pnote);
12821 else if (const_strneq (pnote->namedata, "stapsdt"))
12822 return print_stapsdt_note (pnote);
12823 else
12824 return 1;
12825 }
12826
12827
12828 static int
12829 process_corefile_note_segment (FILE * file, bfd_vma offset, bfd_vma length)
12830 {
12831 Elf_External_Note * pnotes;
12832 Elf_External_Note * external;
12833 int res = 1;
12834
12835 if (length <= 0)
12836 return 0;
12837
12838 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
12839 _("notes"));
12840 if (pnotes == NULL)
12841 return 0;
12842
12843 external = pnotes;
12844
12845 printf (_("\nNotes at offset 0x%08lx with length 0x%08lx:\n"),
12846 (unsigned long) offset, (unsigned long) length);
12847 printf (_(" %-20s %10s\tDescription\n"), _("Owner"), _("Data size"));
12848
12849 while (external < (Elf_External_Note *) ((char *) pnotes + length))
12850 {
12851 Elf_External_Note * next;
12852 Elf_Internal_Note inote;
12853 char * temp = NULL;
12854
12855 if (!is_ia64_vms ())
12856 {
12857 inote.type = BYTE_GET (external->type);
12858 inote.namesz = BYTE_GET (external->namesz);
12859 inote.namedata = external->name;
12860 inote.descsz = BYTE_GET (external->descsz);
12861 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
12862 inote.descpos = offset + (inote.descdata - (char *) pnotes);
12863
12864 next = (Elf_External_Note *) (inote.descdata + align_power (inote.descsz, 2));
12865 }
12866 else
12867 {
12868 Elf64_External_VMS_Note *vms_external;
12869
12870 vms_external = (Elf64_External_VMS_Note *)external;
12871 inote.type = BYTE_GET (vms_external->type);
12872 inote.namesz = BYTE_GET (vms_external->namesz);
12873 inote.namedata = vms_external->name;
12874 inote.descsz = BYTE_GET (vms_external->descsz);
12875 inote.descdata = inote.namedata + align_power (inote.namesz, 3);
12876 inote.descpos = offset + (inote.descdata - (char *) pnotes);
12877
12878 next = (Elf_External_Note *)
12879 (inote.descdata + align_power (inote.descsz, 3));
12880 }
12881
12882 if ( ((char *) next > ((char *) pnotes) + length)
12883 || ((char *) next < (char *) pnotes))
12884 {
12885 warn (_("corrupt note found at offset %lx into core notes\n"),
12886 (unsigned long) ((char *) external - (char *) pnotes));
12887 warn (_(" type: %lx, namesize: %08lx, descsize: %08lx\n"),
12888 inote.type, inote.namesz, inote.descsz);
12889 break;
12890 }
12891
12892 external = next;
12893
12894 /* Prevent out-of-bounds indexing. */
12895 if (inote.namedata + inote.namesz >= (char *) pnotes + length
12896 || inote.namedata + inote.namesz < inote.namedata)
12897 {
12898 warn (_("corrupt note found at offset %lx into core notes\n"),
12899 (unsigned long) ((char *) external - (char *) pnotes));
12900 warn (_(" type: %lx, namesize: %08lx, descsize: %08lx\n"),
12901 inote.type, inote.namesz, inote.descsz);
12902 break;
12903 }
12904
12905 /* Verify that name is null terminated. It appears that at least
12906 one version of Linux (RedHat 6.0) generates corefiles that don't
12907 comply with the ELF spec by failing to include the null byte in
12908 namesz. */
12909 if (inote.namedata[inote.namesz] != '\0')
12910 {
12911 temp = (char *) malloc (inote.namesz + 1);
12912
12913 if (temp == NULL)
12914 {
12915 error (_("Out of memory\n"));
12916 res = 0;
12917 break;
12918 }
12919
12920 strncpy (temp, inote.namedata, inote.namesz);
12921 temp[inote.namesz] = 0;
12922
12923 /* warn (_("'%s' NOTE name not properly null terminated\n"), temp); */
12924 inote.namedata = temp;
12925 }
12926
12927 res &= process_note (& inote);
12928
12929 if (temp != NULL)
12930 {
12931 free (temp);
12932 temp = NULL;
12933 }
12934 }
12935
12936 free (pnotes);
12937
12938 return res;
12939 }
12940
12941 static int
12942 process_corefile_note_segments (FILE * file)
12943 {
12944 Elf_Internal_Phdr * segment;
12945 unsigned int i;
12946 int res = 1;
12947
12948 if (! get_program_headers (file))
12949 return 0;
12950
12951 for (i = 0, segment = program_headers;
12952 i < elf_header.e_phnum;
12953 i++, segment++)
12954 {
12955 if (segment->p_type == PT_NOTE)
12956 res &= process_corefile_note_segment (file,
12957 (bfd_vma) segment->p_offset,
12958 (bfd_vma) segment->p_filesz);
12959 }
12960
12961 return res;
12962 }
12963
12964 static int
12965 process_note_sections (FILE * file)
12966 {
12967 Elf_Internal_Shdr * section;
12968 unsigned long i;
12969 int res = 1;
12970
12971 for (i = 0, section = section_headers;
12972 i < elf_header.e_shnum;
12973 i++, section++)
12974 if (section->sh_type == SHT_NOTE)
12975 res &= process_corefile_note_segment (file,
12976 (bfd_vma) section->sh_offset,
12977 (bfd_vma) section->sh_size);
12978
12979 return res;
12980 }
12981
12982 static int
12983 process_notes (FILE * file)
12984 {
12985 /* If we have not been asked to display the notes then do nothing. */
12986 if (! do_notes)
12987 return 1;
12988
12989 if (elf_header.e_type != ET_CORE)
12990 return process_note_sections (file);
12991
12992 /* No program headers means no NOTE segment. */
12993 if (elf_header.e_phnum > 0)
12994 return process_corefile_note_segments (file);
12995
12996 printf (_("No note segments present in the core file.\n"));
12997 return 1;
12998 }
12999
13000 static int
13001 process_arch_specific (FILE * file)
13002 {
13003 if (! do_arch)
13004 return 1;
13005
13006 switch (elf_header.e_machine)
13007 {
13008 case EM_ARM:
13009 return process_arm_specific (file);
13010 case EM_MIPS:
13011 case EM_MIPS_RS3_LE:
13012 return process_mips_specific (file);
13013 break;
13014 case EM_PPC:
13015 return process_power_specific (file);
13016 break;
13017 case EM_SPARC:
13018 case EM_SPARC32PLUS:
13019 case EM_SPARCV9:
13020 return process_sparc_specific (file);
13021 break;
13022 case EM_TI_C6000:
13023 return process_tic6x_specific (file);
13024 break;
13025 default:
13026 break;
13027 }
13028 return 1;
13029 }
13030
13031 static int
13032 get_file_header (FILE * file)
13033 {
13034 /* Read in the identity array. */
13035 if (fread (elf_header.e_ident, EI_NIDENT, 1, file) != 1)
13036 return 0;
13037
13038 /* Determine how to read the rest of the header. */
13039 switch (elf_header.e_ident[EI_DATA])
13040 {
13041 default: /* fall through */
13042 case ELFDATANONE: /* fall through */
13043 case ELFDATA2LSB:
13044 byte_get = byte_get_little_endian;
13045 byte_put = byte_put_little_endian;
13046 break;
13047 case ELFDATA2MSB:
13048 byte_get = byte_get_big_endian;
13049 byte_put = byte_put_big_endian;
13050 break;
13051 }
13052
13053 /* For now we only support 32 bit and 64 bit ELF files. */
13054 is_32bit_elf = (elf_header.e_ident[EI_CLASS] != ELFCLASS64);
13055
13056 /* Read in the rest of the header. */
13057 if (is_32bit_elf)
13058 {
13059 Elf32_External_Ehdr ehdr32;
13060
13061 if (fread (ehdr32.e_type, sizeof (ehdr32) - EI_NIDENT, 1, file) != 1)
13062 return 0;
13063
13064 elf_header.e_type = BYTE_GET (ehdr32.e_type);
13065 elf_header.e_machine = BYTE_GET (ehdr32.e_machine);
13066 elf_header.e_version = BYTE_GET (ehdr32.e_version);
13067 elf_header.e_entry = BYTE_GET (ehdr32.e_entry);
13068 elf_header.e_phoff = BYTE_GET (ehdr32.e_phoff);
13069 elf_header.e_shoff = BYTE_GET (ehdr32.e_shoff);
13070 elf_header.e_flags = BYTE_GET (ehdr32.e_flags);
13071 elf_header.e_ehsize = BYTE_GET (ehdr32.e_ehsize);
13072 elf_header.e_phentsize = BYTE_GET (ehdr32.e_phentsize);
13073 elf_header.e_phnum = BYTE_GET (ehdr32.e_phnum);
13074 elf_header.e_shentsize = BYTE_GET (ehdr32.e_shentsize);
13075 elf_header.e_shnum = BYTE_GET (ehdr32.e_shnum);
13076 elf_header.e_shstrndx = BYTE_GET (ehdr32.e_shstrndx);
13077 }
13078 else
13079 {
13080 Elf64_External_Ehdr ehdr64;
13081
13082 /* If we have been compiled with sizeof (bfd_vma) == 4, then
13083 we will not be able to cope with the 64bit data found in
13084 64 ELF files. Detect this now and abort before we start
13085 overwriting things. */
13086 if (sizeof (bfd_vma) < 8)
13087 {
13088 error (_("This instance of readelf has been built without support for a\n\
13089 64 bit data type and so it cannot read 64 bit ELF files.\n"));
13090 return 0;
13091 }
13092
13093 if (fread (ehdr64.e_type, sizeof (ehdr64) - EI_NIDENT, 1, file) != 1)
13094 return 0;
13095
13096 elf_header.e_type = BYTE_GET (ehdr64.e_type);
13097 elf_header.e_machine = BYTE_GET (ehdr64.e_machine);
13098 elf_header.e_version = BYTE_GET (ehdr64.e_version);
13099 elf_header.e_entry = BYTE_GET (ehdr64.e_entry);
13100 elf_header.e_phoff = BYTE_GET (ehdr64.e_phoff);
13101 elf_header.e_shoff = BYTE_GET (ehdr64.e_shoff);
13102 elf_header.e_flags = BYTE_GET (ehdr64.e_flags);
13103 elf_header.e_ehsize = BYTE_GET (ehdr64.e_ehsize);
13104 elf_header.e_phentsize = BYTE_GET (ehdr64.e_phentsize);
13105 elf_header.e_phnum = BYTE_GET (ehdr64.e_phnum);
13106 elf_header.e_shentsize = BYTE_GET (ehdr64.e_shentsize);
13107 elf_header.e_shnum = BYTE_GET (ehdr64.e_shnum);
13108 elf_header.e_shstrndx = BYTE_GET (ehdr64.e_shstrndx);
13109 }
13110
13111 if (elf_header.e_shoff)
13112 {
13113 /* There may be some extensions in the first section header. Don't
13114 bomb if we can't read it. */
13115 if (is_32bit_elf)
13116 get_32bit_section_headers (file, 1);
13117 else
13118 get_64bit_section_headers (file, 1);
13119 }
13120
13121 return 1;
13122 }
13123
13124 /* Process one ELF object file according to the command line options.
13125 This file may actually be stored in an archive. The file is
13126 positioned at the start of the ELF object. */
13127
13128 static int
13129 process_object (char * file_name, FILE * file)
13130 {
13131 unsigned int i;
13132
13133 if (! get_file_header (file))
13134 {
13135 error (_("%s: Failed to read file header\n"), file_name);
13136 return 1;
13137 }
13138
13139 /* Initialise per file variables. */
13140 for (i = ARRAY_SIZE (version_info); i--;)
13141 version_info[i] = 0;
13142
13143 for (i = ARRAY_SIZE (dynamic_info); i--;)
13144 dynamic_info[i] = 0;
13145 dynamic_info_DT_GNU_HASH = 0;
13146
13147 /* Process the file. */
13148 if (show_name)
13149 printf (_("\nFile: %s\n"), file_name);
13150
13151 /* Initialise the dump_sects array from the cmdline_dump_sects array.
13152 Note we do this even if cmdline_dump_sects is empty because we
13153 must make sure that the dump_sets array is zeroed out before each
13154 object file is processed. */
13155 if (num_dump_sects > num_cmdline_dump_sects)
13156 memset (dump_sects, 0, num_dump_sects * sizeof (* dump_sects));
13157
13158 if (num_cmdline_dump_sects > 0)
13159 {
13160 if (num_dump_sects == 0)
13161 /* A sneaky way of allocating the dump_sects array. */
13162 request_dump_bynumber (num_cmdline_dump_sects, 0);
13163
13164 assert (num_dump_sects >= num_cmdline_dump_sects);
13165 memcpy (dump_sects, cmdline_dump_sects,
13166 num_cmdline_dump_sects * sizeof (* dump_sects));
13167 }
13168
13169 if (! process_file_header ())
13170 return 1;
13171
13172 if (! process_section_headers (file))
13173 {
13174 /* Without loaded section headers we cannot process lots of
13175 things. */
13176 do_unwind = do_version = do_dump = do_arch = 0;
13177
13178 if (! do_using_dynamic)
13179 do_syms = do_dyn_syms = do_reloc = 0;
13180 }
13181
13182 if (! process_section_groups (file))
13183 {
13184 /* Without loaded section groups we cannot process unwind. */
13185 do_unwind = 0;
13186 }
13187
13188 if (process_program_headers (file))
13189 process_dynamic_section (file);
13190
13191 process_relocs (file);
13192
13193 process_unwind (file);
13194
13195 process_symbol_table (file);
13196
13197 process_syminfo (file);
13198
13199 process_version_sections (file);
13200
13201 process_section_contents (file);
13202
13203 process_notes (file);
13204
13205 process_gnu_liblist (file);
13206
13207 process_arch_specific (file);
13208
13209 if (program_headers)
13210 {
13211 free (program_headers);
13212 program_headers = NULL;
13213 }
13214
13215 if (section_headers)
13216 {
13217 free (section_headers);
13218 section_headers = NULL;
13219 }
13220
13221 if (string_table)
13222 {
13223 free (string_table);
13224 string_table = NULL;
13225 string_table_length = 0;
13226 }
13227
13228 if (dynamic_strings)
13229 {
13230 free (dynamic_strings);
13231 dynamic_strings = NULL;
13232 dynamic_strings_length = 0;
13233 }
13234
13235 if (dynamic_symbols)
13236 {
13237 free (dynamic_symbols);
13238 dynamic_symbols = NULL;
13239 num_dynamic_syms = 0;
13240 }
13241
13242 if (dynamic_syminfo)
13243 {
13244 free (dynamic_syminfo);
13245 dynamic_syminfo = NULL;
13246 }
13247
13248 if (dynamic_section)
13249 {
13250 free (dynamic_section);
13251 dynamic_section = NULL;
13252 }
13253
13254 if (section_headers_groups)
13255 {
13256 free (section_headers_groups);
13257 section_headers_groups = NULL;
13258 }
13259
13260 if (section_groups)
13261 {
13262 struct group_list * g;
13263 struct group_list * next;
13264
13265 for (i = 0; i < group_count; i++)
13266 {
13267 for (g = section_groups [i].root; g != NULL; g = next)
13268 {
13269 next = g->next;
13270 free (g);
13271 }
13272 }
13273
13274 free (section_groups);
13275 section_groups = NULL;
13276 }
13277
13278 free_debug_memory ();
13279
13280 return 0;
13281 }
13282
13283 /* Process an ELF archive.
13284 On entry the file is positioned just after the ARMAG string. */
13285
13286 static int
13287 process_archive (char * file_name, FILE * file, bfd_boolean is_thin_archive)
13288 {
13289 struct archive_info arch;
13290 struct archive_info nested_arch;
13291 size_t got;
13292 int ret;
13293
13294 show_name = 1;
13295
13296 /* The ARCH structure is used to hold information about this archive. */
13297 arch.file_name = NULL;
13298 arch.file = NULL;
13299 arch.index_array = NULL;
13300 arch.sym_table = NULL;
13301 arch.longnames = NULL;
13302
13303 /* The NESTED_ARCH structure is used as a single-item cache of information
13304 about a nested archive (when members of a thin archive reside within
13305 another regular archive file). */
13306 nested_arch.file_name = NULL;
13307 nested_arch.file = NULL;
13308 nested_arch.index_array = NULL;
13309 nested_arch.sym_table = NULL;
13310 nested_arch.longnames = NULL;
13311
13312 if (setup_archive (&arch, file_name, file, is_thin_archive, do_archive_index) != 0)
13313 {
13314 ret = 1;
13315 goto out;
13316 }
13317
13318 if (do_archive_index)
13319 {
13320 if (arch.sym_table == NULL)
13321 error (_("%s: unable to dump the index as none was found\n"), file_name);
13322 else
13323 {
13324 unsigned int i, l;
13325 unsigned long current_pos;
13326
13327 printf (_("Index of archive %s: (%ld entries, 0x%lx bytes in the symbol table)\n"),
13328 file_name, arch.index_num, arch.sym_size);
13329 current_pos = ftell (file);
13330
13331 for (i = l = 0; i < arch.index_num; i++)
13332 {
13333 if ((i == 0) || ((i > 0) && (arch.index_array[i] != arch.index_array[i - 1])))
13334 {
13335 char * member_name;
13336
13337 member_name = get_archive_member_name_at (&arch, arch.index_array[i], &nested_arch);
13338
13339 if (member_name != NULL)
13340 {
13341 char * qualified_name = make_qualified_name (&arch, &nested_arch, member_name);
13342
13343 if (qualified_name != NULL)
13344 {
13345 printf (_("Binary %s contains:\n"), qualified_name);
13346 free (qualified_name);
13347 }
13348 }
13349 }
13350
13351 if (l >= arch.sym_size)
13352 {
13353 error (_("%s: end of the symbol table reached before the end of the index\n"),
13354 file_name);
13355 break;
13356 }
13357 printf ("\t%s\n", arch.sym_table + l);
13358 l += strlen (arch.sym_table + l) + 1;
13359 }
13360
13361 if (l & 01)
13362 ++l;
13363 if (l < arch.sym_size)
13364 error (_("%s: symbols remain in the index symbol table, but without corresponding entries in the index table\n"),
13365 file_name);
13366
13367 if (fseek (file, current_pos, SEEK_SET) != 0)
13368 {
13369 error (_("%s: failed to seek back to start of object files in the archive\n"), file_name);
13370 ret = 1;
13371 goto out;
13372 }
13373 }
13374
13375 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
13376 && !do_segments && !do_header && !do_dump && !do_version
13377 && !do_histogram && !do_debugging && !do_arch && !do_notes
13378 && !do_section_groups && !do_dyn_syms)
13379 {
13380 ret = 0; /* Archive index only. */
13381 goto out;
13382 }
13383 }
13384
13385 ret = 0;
13386
13387 while (1)
13388 {
13389 char * name;
13390 size_t namelen;
13391 char * qualified_name;
13392
13393 /* Read the next archive header. */
13394 if (fseek (file, arch.next_arhdr_offset, SEEK_SET) != 0)
13395 {
13396 error (_("%s: failed to seek to next archive header\n"), file_name);
13397 return 1;
13398 }
13399 got = fread (&arch.arhdr, 1, sizeof arch.arhdr, file);
13400 if (got != sizeof arch.arhdr)
13401 {
13402 if (got == 0)
13403 break;
13404 error (_("%s: failed to read archive header\n"), file_name);
13405 ret = 1;
13406 break;
13407 }
13408 if (memcmp (arch.arhdr.ar_fmag, ARFMAG, 2) != 0)
13409 {
13410 error (_("%s: did not find a valid archive header\n"), arch.file_name);
13411 ret = 1;
13412 break;
13413 }
13414
13415 arch.next_arhdr_offset += sizeof arch.arhdr;
13416
13417 archive_file_size = strtoul (arch.arhdr.ar_size, NULL, 10);
13418 if (archive_file_size & 01)
13419 ++archive_file_size;
13420
13421 name = get_archive_member_name (&arch, &nested_arch);
13422 if (name == NULL)
13423 {
13424 error (_("%s: bad archive file name\n"), file_name);
13425 ret = 1;
13426 break;
13427 }
13428 namelen = strlen (name);
13429
13430 qualified_name = make_qualified_name (&arch, &nested_arch, name);
13431 if (qualified_name == NULL)
13432 {
13433 error (_("%s: bad archive file name\n"), file_name);
13434 ret = 1;
13435 break;
13436 }
13437
13438 if (is_thin_archive && arch.nested_member_origin == 0)
13439 {
13440 /* This is a proxy for an external member of a thin archive. */
13441 FILE * member_file;
13442 char * member_file_name = adjust_relative_path (file_name, name, namelen);
13443 if (member_file_name == NULL)
13444 {
13445 ret = 1;
13446 break;
13447 }
13448
13449 member_file = fopen (member_file_name, "rb");
13450 if (member_file == NULL)
13451 {
13452 error (_("Input file '%s' is not readable.\n"), member_file_name);
13453 free (member_file_name);
13454 ret = 1;
13455 break;
13456 }
13457
13458 archive_file_offset = arch.nested_member_origin;
13459
13460 ret |= process_object (qualified_name, member_file);
13461
13462 fclose (member_file);
13463 free (member_file_name);
13464 }
13465 else if (is_thin_archive)
13466 {
13467 /* This is a proxy for a member of a nested archive. */
13468 archive_file_offset = arch.nested_member_origin + sizeof arch.arhdr;
13469
13470 /* The nested archive file will have been opened and setup by
13471 get_archive_member_name. */
13472 if (fseek (nested_arch.file, archive_file_offset, SEEK_SET) != 0)
13473 {
13474 error (_("%s: failed to seek to archive member.\n"), nested_arch.file_name);
13475 ret = 1;
13476 break;
13477 }
13478
13479 ret |= process_object (qualified_name, nested_arch.file);
13480 }
13481 else
13482 {
13483 archive_file_offset = arch.next_arhdr_offset;
13484 arch.next_arhdr_offset += archive_file_size;
13485
13486 ret |= process_object (qualified_name, file);
13487 }
13488
13489 if (dump_sects != NULL)
13490 {
13491 free (dump_sects);
13492 dump_sects = NULL;
13493 num_dump_sects = 0;
13494 }
13495
13496 free (qualified_name);
13497 }
13498
13499 out:
13500 if (nested_arch.file != NULL)
13501 fclose (nested_arch.file);
13502 release_archive (&nested_arch);
13503 release_archive (&arch);
13504
13505 return ret;
13506 }
13507
13508 static int
13509 process_file (char * file_name)
13510 {
13511 FILE * file;
13512 struct stat statbuf;
13513 char armag[SARMAG];
13514 int ret;
13515
13516 if (stat (file_name, &statbuf) < 0)
13517 {
13518 if (errno == ENOENT)
13519 error (_("'%s': No such file\n"), file_name);
13520 else
13521 error (_("Could not locate '%s'. System error message: %s\n"),
13522 file_name, strerror (errno));
13523 return 1;
13524 }
13525
13526 if (! S_ISREG (statbuf.st_mode))
13527 {
13528 error (_("'%s' is not an ordinary file\n"), file_name);
13529 return 1;
13530 }
13531
13532 file = fopen (file_name, "rb");
13533 if (file == NULL)
13534 {
13535 error (_("Input file '%s' is not readable.\n"), file_name);
13536 return 1;
13537 }
13538
13539 if (fread (armag, SARMAG, 1, file) != 1)
13540 {
13541 error (_("%s: Failed to read file's magic number\n"), file_name);
13542 fclose (file);
13543 return 1;
13544 }
13545
13546 if (memcmp (armag, ARMAG, SARMAG) == 0)
13547 ret = process_archive (file_name, file, FALSE);
13548 else if (memcmp (armag, ARMAGT, SARMAG) == 0)
13549 ret = process_archive (file_name, file, TRUE);
13550 else
13551 {
13552 if (do_archive_index)
13553 error (_("File %s is not an archive so its index cannot be displayed.\n"),
13554 file_name);
13555
13556 rewind (file);
13557 archive_file_size = archive_file_offset = 0;
13558 ret = process_object (file_name, file);
13559 }
13560
13561 fclose (file);
13562
13563 return ret;
13564 }
13565
13566 #ifdef SUPPORT_DISASSEMBLY
13567 /* Needed by the i386 disassembler. For extra credit, someone could
13568 fix this so that we insert symbolic addresses here, esp for GOT/PLT
13569 symbols. */
13570
13571 void
13572 print_address (unsigned int addr, FILE * outfile)
13573 {
13574 fprintf (outfile,"0x%8.8x", addr);
13575 }
13576
13577 /* Needed by the i386 disassembler. */
13578 void
13579 db_task_printsym (unsigned int addr)
13580 {
13581 print_address (addr, stderr);
13582 }
13583 #endif
13584
13585 int
13586 main (int argc, char ** argv)
13587 {
13588 int err;
13589
13590 #if defined (HAVE_SETLOCALE) && defined (HAVE_LC_MESSAGES)
13591 setlocale (LC_MESSAGES, "");
13592 #endif
13593 #if defined (HAVE_SETLOCALE)
13594 setlocale (LC_CTYPE, "");
13595 #endif
13596 bindtextdomain (PACKAGE, LOCALEDIR);
13597 textdomain (PACKAGE);
13598
13599 expandargv (&argc, &argv);
13600
13601 parse_args (argc, argv);
13602
13603 if (num_dump_sects > 0)
13604 {
13605 /* Make a copy of the dump_sects array. */
13606 cmdline_dump_sects = (dump_type *)
13607 malloc (num_dump_sects * sizeof (* dump_sects));
13608 if (cmdline_dump_sects == NULL)
13609 error (_("Out of memory allocating dump request table.\n"));
13610 else
13611 {
13612 memcpy (cmdline_dump_sects, dump_sects,
13613 num_dump_sects * sizeof (* dump_sects));
13614 num_cmdline_dump_sects = num_dump_sects;
13615 }
13616 }
13617
13618 if (optind < (argc - 1))
13619 show_name = 1;
13620
13621 err = 0;
13622 while (optind < argc)
13623 err |= process_file (argv[optind++]);
13624
13625 if (dump_sects != NULL)
13626 free (dump_sects);
13627 if (cmdline_dump_sects != NULL)
13628 free (cmdline_dump_sects);
13629
13630 return err;
13631 }
This page took 0.316693 seconds and 4 git commands to generate.