Fixes part of a problem reading deliberately non-conforming ELF binaries - where a
[deliverable/binutils-gdb.git] / binutils / readelf.c
1 /* readelf.c -- display contents of an ELF format file
2 Copyright (C) 1998-2014 Free Software Foundation, Inc.
3
4 Originally developed by Eric Youngdale <eric@andante.jic.com>
5 Modifications by Nick Clifton <nickc@redhat.com>
6
7 This file is part of GNU Binutils.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
22 02110-1301, USA. */
23 \f
24 /* The difference between readelf and objdump:
25
26 Both programs are capable of displaying the contents of ELF format files,
27 so why does the binutils project have two file dumpers ?
28
29 The reason is that objdump sees an ELF file through a BFD filter of the
30 world; if BFD has a bug where, say, it disagrees about a machine constant
31 in e_flags, then the odds are good that it will remain internally
32 consistent. The linker sees it the BFD way, objdump sees it the BFD way,
33 GAS sees it the BFD way. There was need for a tool to go find out what
34 the file actually says.
35
36 This is why the readelf program does not link against the BFD library - it
37 exists as an independent program to help verify the correct working of BFD.
38
39 There is also the case that readelf can provide more information about an
40 ELF file than is provided by objdump. In particular it can display DWARF
41 debugging information which (at the moment) objdump cannot. */
42 \f
43 #include "sysdep.h"
44 #include <assert.h>
45 #include <time.h>
46 #ifdef HAVE_ZLIB_H
47 #include <zlib.h>
48 #endif
49 #ifdef HAVE_WCHAR_H
50 #include <wchar.h>
51 #endif
52
53 #if __GNUC__ >= 2
54 /* Define BFD64 here, even if our default architecture is 32 bit ELF
55 as this will allow us to read in and parse 64bit and 32bit ELF files.
56 Only do this if we believe that the compiler can support a 64 bit
57 data type. For now we only rely on GCC being able to do this. */
58 #define BFD64
59 #endif
60
61 #include "bfd.h"
62 #include "bucomm.h"
63 #include "elfcomm.h"
64 #include "dwarf.h"
65
66 #include "elf/common.h"
67 #include "elf/external.h"
68 #include "elf/internal.h"
69
70
71 /* Included here, before RELOC_MACROS_GEN_FUNC is defined, so that
72 we can obtain the H8 reloc numbers. We need these for the
73 get_reloc_size() function. We include h8.h again after defining
74 RELOC_MACROS_GEN_FUNC so that we get the naming function as well. */
75
76 #include "elf/h8.h"
77 #undef _ELF_H8_H
78
79 /* Undo the effects of #including reloc-macros.h. */
80
81 #undef START_RELOC_NUMBERS
82 #undef RELOC_NUMBER
83 #undef FAKE_RELOC
84 #undef EMPTY_RELOC
85 #undef END_RELOC_NUMBERS
86 #undef _RELOC_MACROS_H
87
88 /* The following headers use the elf/reloc-macros.h file to
89 automatically generate relocation recognition functions
90 such as elf_mips_reloc_type() */
91
92 #define RELOC_MACROS_GEN_FUNC
93
94 #include "elf/aarch64.h"
95 #include "elf/alpha.h"
96 #include "elf/arc.h"
97 #include "elf/arm.h"
98 #include "elf/avr.h"
99 #include "elf/bfin.h"
100 #include "elf/cr16.h"
101 #include "elf/cris.h"
102 #include "elf/crx.h"
103 #include "elf/d10v.h"
104 #include "elf/d30v.h"
105 #include "elf/dlx.h"
106 #include "elf/epiphany.h"
107 #include "elf/fr30.h"
108 #include "elf/frv.h"
109 #include "elf/h8.h"
110 #include "elf/hppa.h"
111 #include "elf/i386.h"
112 #include "elf/i370.h"
113 #include "elf/i860.h"
114 #include "elf/i960.h"
115 #include "elf/ia64.h"
116 #include "elf/ip2k.h"
117 #include "elf/lm32.h"
118 #include "elf/iq2000.h"
119 #include "elf/m32c.h"
120 #include "elf/m32r.h"
121 #include "elf/m68k.h"
122 #include "elf/m68hc11.h"
123 #include "elf/mcore.h"
124 #include "elf/mep.h"
125 #include "elf/metag.h"
126 #include "elf/microblaze.h"
127 #include "elf/mips.h"
128 #include "elf/mmix.h"
129 #include "elf/mn10200.h"
130 #include "elf/mn10300.h"
131 #include "elf/moxie.h"
132 #include "elf/mt.h"
133 #include "elf/msp430.h"
134 #include "elf/nds32.h"
135 #include "elf/nios2.h"
136 #include "elf/or1k.h"
137 #include "elf/pj.h"
138 #include "elf/ppc.h"
139 #include "elf/ppc64.h"
140 #include "elf/rl78.h"
141 #include "elf/rx.h"
142 #include "elf/s390.h"
143 #include "elf/score.h"
144 #include "elf/sh.h"
145 #include "elf/sparc.h"
146 #include "elf/spu.h"
147 #include "elf/tic6x.h"
148 #include "elf/tilegx.h"
149 #include "elf/tilepro.h"
150 #include "elf/v850.h"
151 #include "elf/vax.h"
152 #include "elf/x86-64.h"
153 #include "elf/xc16x.h"
154 #include "elf/xgate.h"
155 #include "elf/xstormy16.h"
156 #include "elf/xtensa.h"
157
158 #include "getopt.h"
159 #include "libiberty.h"
160 #include "safe-ctype.h"
161 #include "filenames.h"
162
163 #ifndef offsetof
164 #define offsetof(TYPE, MEMBER) ((size_t) &(((TYPE *) 0)->MEMBER))
165 #endif
166
167 char * program_name = "readelf";
168 static long archive_file_offset;
169 static unsigned long archive_file_size;
170 static unsigned long dynamic_addr;
171 static bfd_size_type dynamic_size;
172 static unsigned int dynamic_nent;
173 static char * dynamic_strings;
174 static unsigned long dynamic_strings_length;
175 static char * string_table;
176 static unsigned long string_table_length;
177 static unsigned long num_dynamic_syms;
178 static Elf_Internal_Sym * dynamic_symbols;
179 static Elf_Internal_Syminfo * dynamic_syminfo;
180 static unsigned long dynamic_syminfo_offset;
181 static unsigned int dynamic_syminfo_nent;
182 static char program_interpreter[PATH_MAX];
183 static bfd_vma dynamic_info[DT_ENCODING];
184 static bfd_vma dynamic_info_DT_GNU_HASH;
185 static bfd_vma version_info[16];
186 static Elf_Internal_Ehdr elf_header;
187 static Elf_Internal_Shdr * section_headers;
188 static Elf_Internal_Phdr * program_headers;
189 static Elf_Internal_Dyn * dynamic_section;
190 static Elf_Internal_Shdr * symtab_shndx_hdr;
191 static int show_name;
192 static int do_dynamic;
193 static int do_syms;
194 static int do_dyn_syms;
195 static int do_reloc;
196 static int do_sections;
197 static int do_section_groups;
198 static int do_section_details;
199 static int do_segments;
200 static int do_unwind;
201 static int do_using_dynamic;
202 static int do_header;
203 static int do_dump;
204 static int do_version;
205 static int do_histogram;
206 static int do_debugging;
207 static int do_arch;
208 static int do_notes;
209 static int do_archive_index;
210 static int is_32bit_elf;
211
212 struct group_list
213 {
214 struct group_list * next;
215 unsigned int section_index;
216 };
217
218 struct group
219 {
220 struct group_list * root;
221 unsigned int group_index;
222 };
223
224 static size_t group_count;
225 static struct group * section_groups;
226 static struct group ** section_headers_groups;
227
228
229 /* Flag bits indicating particular types of dump. */
230 #define HEX_DUMP (1 << 0) /* The -x command line switch. */
231 #define DISASS_DUMP (1 << 1) /* The -i command line switch. */
232 #define DEBUG_DUMP (1 << 2) /* The -w command line switch. */
233 #define STRING_DUMP (1 << 3) /* The -p command line switch. */
234 #define RELOC_DUMP (1 << 4) /* The -R command line switch. */
235
236 typedef unsigned char dump_type;
237
238 /* A linked list of the section names for which dumps were requested. */
239 struct dump_list_entry
240 {
241 char * name;
242 dump_type type;
243 struct dump_list_entry * next;
244 };
245 static struct dump_list_entry * dump_sects_byname;
246
247 /* A dynamic array of flags indicating for which sections a dump
248 has been requested via command line switches. */
249 static dump_type * cmdline_dump_sects = NULL;
250 static unsigned int num_cmdline_dump_sects = 0;
251
252 /* A dynamic array of flags indicating for which sections a dump of
253 some kind has been requested. It is reset on a per-object file
254 basis and then initialised from the cmdline_dump_sects array,
255 the results of interpreting the -w switch, and the
256 dump_sects_byname list. */
257 static dump_type * dump_sects = NULL;
258 static unsigned int num_dump_sects = 0;
259
260
261 /* How to print a vma value. */
262 typedef enum print_mode
263 {
264 HEX,
265 DEC,
266 DEC_5,
267 UNSIGNED,
268 PREFIX_HEX,
269 FULL_HEX,
270 LONG_HEX
271 }
272 print_mode;
273
274 #define UNKNOWN -1
275
276 #define SECTION_NAME(X) \
277 ((X) == NULL ? _("<none>") \
278 : string_table == NULL ? _("<no-name>") \
279 : ((X)->sh_name >= string_table_length ? _("<corrupt>") \
280 : string_table + (X)->sh_name))
281
282 #define DT_VERSIONTAGIDX(tag) (DT_VERNEEDNUM - (tag)) /* Reverse order! */
283
284 #define GET_ELF_SYMBOLS(file, section, sym_count) \
285 (is_32bit_elf ? get_32bit_elf_symbols (file, section, sym_count) \
286 : get_64bit_elf_symbols (file, section, sym_count))
287
288 #define VALID_DYNAMIC_NAME(offset) ((dynamic_strings != NULL) && (offset < dynamic_strings_length))
289 /* GET_DYNAMIC_NAME asssumes that VALID_DYNAMIC_NAME has
290 already been called and verified that the string exists. */
291 #define GET_DYNAMIC_NAME(offset) (dynamic_strings + offset)
292
293 #define REMOVE_ARCH_BITS(ADDR) \
294 do \
295 { \
296 if (elf_header.e_machine == EM_ARM) \
297 (ADDR) &= ~1; \
298 } \
299 while (0)
300 \f
301 /* Retrieve NMEMB structures, each SIZE bytes long from FILE starting at OFFSET.
302 Put the retrieved data into VAR, if it is not NULL. Otherwise allocate a buffer
303 using malloc and fill that. In either case return the pointer to the start of
304 the retrieved data or NULL if something went wrong. If something does go wrong
305 emit an error message using REASON as part of the context. */
306
307 static void *
308 get_data (void * var, FILE * file, long offset, size_t size, size_t nmemb,
309 const char * reason)
310 {
311 void * mvar;
312
313 if (size == 0 || nmemb == 0)
314 return NULL;
315
316 if (fseek (file, archive_file_offset + offset, SEEK_SET))
317 {
318 error (_("Unable to seek to 0x%lx for %s\n"),
319 (unsigned long) archive_file_offset + offset, reason);
320 return NULL;
321 }
322
323 mvar = var;
324 if (mvar == NULL)
325 {
326 /* Check for overflow. */
327 if (nmemb < (~(size_t) 0 - 1) / size)
328 /* + 1 so that we can '\0' terminate invalid string table sections. */
329 mvar = malloc (size * nmemb + 1);
330
331 if (mvar == NULL)
332 {
333 error (_("Out of memory allocating 0x%lx bytes for %s\n"),
334 (unsigned long)(size * nmemb), reason);
335 return NULL;
336 }
337
338 ((char *) mvar)[size * nmemb] = '\0';
339 }
340
341 if (fread (mvar, size, nmemb, file) != nmemb)
342 {
343 error (_("Unable to read in 0x%lx bytes of %s\n"),
344 (unsigned long)(size * nmemb), reason);
345 if (mvar != var)
346 free (mvar);
347 return NULL;
348 }
349
350 return mvar;
351 }
352
353 /* Print a VMA value. */
354
355 static int
356 print_vma (bfd_vma vma, print_mode mode)
357 {
358 int nc = 0;
359
360 switch (mode)
361 {
362 case FULL_HEX:
363 nc = printf ("0x");
364 /* Drop through. */
365
366 case LONG_HEX:
367 #ifdef BFD64
368 if (is_32bit_elf)
369 return nc + printf ("%8.8" BFD_VMA_FMT "x", vma);
370 #endif
371 printf_vma (vma);
372 return nc + 16;
373
374 case DEC_5:
375 if (vma <= 99999)
376 return printf ("%5" BFD_VMA_FMT "d", vma);
377 /* Drop through. */
378
379 case PREFIX_HEX:
380 nc = printf ("0x");
381 /* Drop through. */
382
383 case HEX:
384 return nc + printf ("%" BFD_VMA_FMT "x", vma);
385
386 case DEC:
387 return printf ("%" BFD_VMA_FMT "d", vma);
388
389 case UNSIGNED:
390 return printf ("%" BFD_VMA_FMT "u", vma);
391 }
392 return 0;
393 }
394
395 /* Display a symbol on stdout. Handles the display of control characters and
396 multibye characters (assuming the host environment supports them).
397
398 Display at most abs(WIDTH) characters, truncating as necessary, unless do_wide is true.
399
400 If WIDTH is negative then ensure that the output is at least (- WIDTH) characters,
401 padding as necessary.
402
403 Returns the number of emitted characters. */
404
405 static unsigned int
406 print_symbol (int width, const char *symbol)
407 {
408 bfd_boolean extra_padding = FALSE;
409 int num_printed = 0;
410 #ifdef HAVE_MBSTATE_T
411 mbstate_t state;
412 #endif
413 int width_remaining;
414
415 if (width < 0)
416 {
417 /* Keep the width positive. This also helps. */
418 width = - width;
419 extra_padding = TRUE;
420 }
421
422 if (do_wide)
423 /* Set the remaining width to a very large value.
424 This simplifies the code below. */
425 width_remaining = INT_MAX;
426 else
427 width_remaining = width;
428
429 #ifdef HAVE_MBSTATE_T
430 /* Initialise the multibyte conversion state. */
431 memset (& state, 0, sizeof (state));
432 #endif
433
434 while (width_remaining)
435 {
436 size_t n;
437 const char c = *symbol++;
438
439 if (c == 0)
440 break;
441
442 /* Do not print control characters directly as they can affect terminal
443 settings. Such characters usually appear in the names generated
444 by the assembler for local labels. */
445 if (ISCNTRL (c))
446 {
447 if (width_remaining < 2)
448 break;
449
450 printf ("^%c", c + 0x40);
451 width_remaining -= 2;
452 num_printed += 2;
453 }
454 else if (ISPRINT (c))
455 {
456 putchar (c);
457 width_remaining --;
458 num_printed ++;
459 }
460 else
461 {
462 #ifdef HAVE_MBSTATE_T
463 wchar_t w;
464 #endif
465 /* Let printf do the hard work of displaying multibyte characters. */
466 printf ("%.1s", symbol - 1);
467 width_remaining --;
468 num_printed ++;
469
470 #ifdef HAVE_MBSTATE_T
471 /* Try to find out how many bytes made up the character that was
472 just printed. Advance the symbol pointer past the bytes that
473 were displayed. */
474 n = mbrtowc (& w, symbol - 1, MB_CUR_MAX, & state);
475 #else
476 n = 1;
477 #endif
478 if (n != (size_t) -1 && n != (size_t) -2 && n > 0)
479 symbol += (n - 1);
480 }
481 }
482
483 if (extra_padding && num_printed < width)
484 {
485 /* Fill in the remaining spaces. */
486 printf ("%-*s", width - num_printed, " ");
487 num_printed = width;
488 }
489
490 return num_printed;
491 }
492
493 /* Return a pointer to section NAME, or NULL if no such section exists. */
494
495 static Elf_Internal_Shdr *
496 find_section (const char * name)
497 {
498 unsigned int i;
499
500 for (i = 0; i < elf_header.e_shnum; i++)
501 if (streq (SECTION_NAME (section_headers + i), name))
502 return section_headers + i;
503
504 return NULL;
505 }
506
507 /* Return a pointer to a section containing ADDR, or NULL if no such
508 section exists. */
509
510 static Elf_Internal_Shdr *
511 find_section_by_address (bfd_vma addr)
512 {
513 unsigned int i;
514
515 for (i = 0; i < elf_header.e_shnum; i++)
516 {
517 Elf_Internal_Shdr *sec = section_headers + i;
518 if (addr >= sec->sh_addr && addr < sec->sh_addr + sec->sh_size)
519 return sec;
520 }
521
522 return NULL;
523 }
524
525 /* Return a pointer to section NAME, or NULL if no such section exists,
526 restricted to the list of sections given in SET. */
527
528 static Elf_Internal_Shdr *
529 find_section_in_set (const char * name, unsigned int * set)
530 {
531 unsigned int i;
532
533 if (set != NULL)
534 {
535 while ((i = *set++) > 0)
536 if (streq (SECTION_NAME (section_headers + i), name))
537 return section_headers + i;
538 }
539
540 return find_section (name);
541 }
542
543 /* Read an unsigned LEB128 encoded value from p. Set *PLEN to the number of
544 bytes read. */
545
546 static inline unsigned long
547 read_uleb128 (unsigned char *data,
548 unsigned int *length_return,
549 const unsigned char * const end)
550 {
551 return read_leb128 (data, length_return, FALSE, end);
552 }
553
554 /* Return true if the current file is for IA-64 machine and OpenVMS ABI.
555 This OS has so many departures from the ELF standard that we test it at
556 many places. */
557
558 static inline int
559 is_ia64_vms (void)
560 {
561 return elf_header.e_machine == EM_IA_64
562 && elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS;
563 }
564
565 /* Guess the relocation size commonly used by the specific machines. */
566
567 static int
568 guess_is_rela (unsigned int e_machine)
569 {
570 switch (e_machine)
571 {
572 /* Targets that use REL relocations. */
573 case EM_386:
574 case EM_486:
575 case EM_960:
576 case EM_ARM:
577 case EM_D10V:
578 case EM_CYGNUS_D10V:
579 case EM_DLX:
580 case EM_MIPS:
581 case EM_MIPS_RS3_LE:
582 case EM_CYGNUS_M32R:
583 case EM_SCORE:
584 case EM_XGATE:
585 return FALSE;
586
587 /* Targets that use RELA relocations. */
588 case EM_68K:
589 case EM_860:
590 case EM_AARCH64:
591 case EM_ADAPTEVA_EPIPHANY:
592 case EM_ALPHA:
593 case EM_ALTERA_NIOS2:
594 case EM_AVR:
595 case EM_AVR_OLD:
596 case EM_BLACKFIN:
597 case EM_CR16:
598 case EM_CRIS:
599 case EM_CRX:
600 case EM_D30V:
601 case EM_CYGNUS_D30V:
602 case EM_FR30:
603 case EM_CYGNUS_FR30:
604 case EM_CYGNUS_FRV:
605 case EM_H8S:
606 case EM_H8_300:
607 case EM_H8_300H:
608 case EM_IA_64:
609 case EM_IP2K:
610 case EM_IP2K_OLD:
611 case EM_IQ2000:
612 case EM_LATTICEMICO32:
613 case EM_M32C_OLD:
614 case EM_M32C:
615 case EM_M32R:
616 case EM_MCORE:
617 case EM_CYGNUS_MEP:
618 case EM_METAG:
619 case EM_MMIX:
620 case EM_MN10200:
621 case EM_CYGNUS_MN10200:
622 case EM_MN10300:
623 case EM_CYGNUS_MN10300:
624 case EM_MOXIE:
625 case EM_MSP430:
626 case EM_MSP430_OLD:
627 case EM_MT:
628 case EM_NDS32:
629 case EM_NIOS32:
630 case EM_OR1K:
631 case EM_PPC64:
632 case EM_PPC:
633 case EM_RL78:
634 case EM_RX:
635 case EM_S390:
636 case EM_S390_OLD:
637 case EM_SH:
638 case EM_SPARC:
639 case EM_SPARC32PLUS:
640 case EM_SPARCV9:
641 case EM_SPU:
642 case EM_TI_C6000:
643 case EM_TILEGX:
644 case EM_TILEPRO:
645 case EM_V800:
646 case EM_V850:
647 case EM_CYGNUS_V850:
648 case EM_VAX:
649 case EM_X86_64:
650 case EM_L1OM:
651 case EM_K1OM:
652 case EM_XSTORMY16:
653 case EM_XTENSA:
654 case EM_XTENSA_OLD:
655 case EM_MICROBLAZE:
656 case EM_MICROBLAZE_OLD:
657 return TRUE;
658
659 case EM_68HC05:
660 case EM_68HC08:
661 case EM_68HC11:
662 case EM_68HC16:
663 case EM_FX66:
664 case EM_ME16:
665 case EM_MMA:
666 case EM_NCPU:
667 case EM_NDR1:
668 case EM_PCP:
669 case EM_ST100:
670 case EM_ST19:
671 case EM_ST7:
672 case EM_ST9PLUS:
673 case EM_STARCORE:
674 case EM_SVX:
675 case EM_TINYJ:
676 default:
677 warn (_("Don't know about relocations on this machine architecture\n"));
678 return FALSE;
679 }
680 }
681
682 static int
683 slurp_rela_relocs (FILE * file,
684 unsigned long rel_offset,
685 unsigned long rel_size,
686 Elf_Internal_Rela ** relasp,
687 unsigned long * nrelasp)
688 {
689 Elf_Internal_Rela * relas;
690 unsigned long nrelas;
691 unsigned int i;
692
693 if (is_32bit_elf)
694 {
695 Elf32_External_Rela * erelas;
696
697 erelas = (Elf32_External_Rela *) get_data (NULL, file, rel_offset, 1,
698 rel_size, _("32-bit relocation data"));
699 if (!erelas)
700 return 0;
701
702 nrelas = rel_size / sizeof (Elf32_External_Rela);
703
704 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
705 sizeof (Elf_Internal_Rela));
706
707 if (relas == NULL)
708 {
709 free (erelas);
710 error (_("out of memory parsing relocs\n"));
711 return 0;
712 }
713
714 for (i = 0; i < nrelas; i++)
715 {
716 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
717 relas[i].r_info = BYTE_GET (erelas[i].r_info);
718 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
719 }
720
721 free (erelas);
722 }
723 else
724 {
725 Elf64_External_Rela * erelas;
726
727 erelas = (Elf64_External_Rela *) get_data (NULL, file, rel_offset, 1,
728 rel_size, _("64-bit relocation data"));
729 if (!erelas)
730 return 0;
731
732 nrelas = rel_size / sizeof (Elf64_External_Rela);
733
734 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
735 sizeof (Elf_Internal_Rela));
736
737 if (relas == NULL)
738 {
739 free (erelas);
740 error (_("out of memory parsing relocs\n"));
741 return 0;
742 }
743
744 for (i = 0; i < nrelas; i++)
745 {
746 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
747 relas[i].r_info = BYTE_GET (erelas[i].r_info);
748 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
749
750 /* The #ifdef BFD64 below is to prevent a compile time
751 warning. We know that if we do not have a 64 bit data
752 type that we will never execute this code anyway. */
753 #ifdef BFD64
754 if (elf_header.e_machine == EM_MIPS
755 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
756 {
757 /* In little-endian objects, r_info isn't really a
758 64-bit little-endian value: it has a 32-bit
759 little-endian symbol index followed by four
760 individual byte fields. Reorder INFO
761 accordingly. */
762 bfd_vma inf = relas[i].r_info;
763 inf = (((inf & 0xffffffff) << 32)
764 | ((inf >> 56) & 0xff)
765 | ((inf >> 40) & 0xff00)
766 | ((inf >> 24) & 0xff0000)
767 | ((inf >> 8) & 0xff000000));
768 relas[i].r_info = inf;
769 }
770 #endif /* BFD64 */
771 }
772
773 free (erelas);
774 }
775 *relasp = relas;
776 *nrelasp = nrelas;
777 return 1;
778 }
779
780 static int
781 slurp_rel_relocs (FILE * file,
782 unsigned long rel_offset,
783 unsigned long rel_size,
784 Elf_Internal_Rela ** relsp,
785 unsigned long * nrelsp)
786 {
787 Elf_Internal_Rela * rels;
788 unsigned long nrels;
789 unsigned int i;
790
791 if (is_32bit_elf)
792 {
793 Elf32_External_Rel * erels;
794
795 erels = (Elf32_External_Rel *) get_data (NULL, file, rel_offset, 1,
796 rel_size, _("32-bit relocation data"));
797 if (!erels)
798 return 0;
799
800 nrels = rel_size / sizeof (Elf32_External_Rel);
801
802 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
803
804 if (rels == NULL)
805 {
806 free (erels);
807 error (_("out of memory parsing relocs\n"));
808 return 0;
809 }
810
811 for (i = 0; i < nrels; i++)
812 {
813 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
814 rels[i].r_info = BYTE_GET (erels[i].r_info);
815 rels[i].r_addend = 0;
816 }
817
818 free (erels);
819 }
820 else
821 {
822 Elf64_External_Rel * erels;
823
824 erels = (Elf64_External_Rel *) get_data (NULL, file, rel_offset, 1,
825 rel_size, _("64-bit relocation data"));
826 if (!erels)
827 return 0;
828
829 nrels = rel_size / sizeof (Elf64_External_Rel);
830
831 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
832
833 if (rels == NULL)
834 {
835 free (erels);
836 error (_("out of memory parsing relocs\n"));
837 return 0;
838 }
839
840 for (i = 0; i < nrels; i++)
841 {
842 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
843 rels[i].r_info = BYTE_GET (erels[i].r_info);
844 rels[i].r_addend = 0;
845
846 /* The #ifdef BFD64 below is to prevent a compile time
847 warning. We know that if we do not have a 64 bit data
848 type that we will never execute this code anyway. */
849 #ifdef BFD64
850 if (elf_header.e_machine == EM_MIPS
851 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
852 {
853 /* In little-endian objects, r_info isn't really a
854 64-bit little-endian value: it has a 32-bit
855 little-endian symbol index followed by four
856 individual byte fields. Reorder INFO
857 accordingly. */
858 bfd_vma inf = rels[i].r_info;
859 inf = (((inf & 0xffffffff) << 32)
860 | ((inf >> 56) & 0xff)
861 | ((inf >> 40) & 0xff00)
862 | ((inf >> 24) & 0xff0000)
863 | ((inf >> 8) & 0xff000000));
864 rels[i].r_info = inf;
865 }
866 #endif /* BFD64 */
867 }
868
869 free (erels);
870 }
871 *relsp = rels;
872 *nrelsp = nrels;
873 return 1;
874 }
875
876 /* Returns the reloc type extracted from the reloc info field. */
877
878 static unsigned int
879 get_reloc_type (bfd_vma reloc_info)
880 {
881 if (is_32bit_elf)
882 return ELF32_R_TYPE (reloc_info);
883
884 switch (elf_header.e_machine)
885 {
886 case EM_MIPS:
887 /* Note: We assume that reloc_info has already been adjusted for us. */
888 return ELF64_MIPS_R_TYPE (reloc_info);
889
890 case EM_SPARCV9:
891 return ELF64_R_TYPE_ID (reloc_info);
892
893 default:
894 return ELF64_R_TYPE (reloc_info);
895 }
896 }
897
898 /* Return the symbol index extracted from the reloc info field. */
899
900 static bfd_vma
901 get_reloc_symindex (bfd_vma reloc_info)
902 {
903 return is_32bit_elf ? ELF32_R_SYM (reloc_info) : ELF64_R_SYM (reloc_info);
904 }
905
906 static inline bfd_boolean
907 uses_msp430x_relocs (void)
908 {
909 return
910 elf_header.e_machine == EM_MSP430 /* Paranoia. */
911 /* GCC uses osabi == ELFOSBI_STANDALONE. */
912 && (((elf_header.e_flags & EF_MSP430_MACH) == E_MSP430_MACH_MSP430X)
913 /* TI compiler uses ELFOSABI_NONE. */
914 || (elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE));
915 }
916
917 /* Display the contents of the relocation data found at the specified
918 offset. */
919
920 static void
921 dump_relocations (FILE * file,
922 unsigned long rel_offset,
923 unsigned long rel_size,
924 Elf_Internal_Sym * symtab,
925 unsigned long nsyms,
926 char * strtab,
927 unsigned long strtablen,
928 int is_rela)
929 {
930 unsigned int i;
931 Elf_Internal_Rela * rels;
932
933 if (is_rela == UNKNOWN)
934 is_rela = guess_is_rela (elf_header.e_machine);
935
936 if (is_rela)
937 {
938 if (!slurp_rela_relocs (file, rel_offset, rel_size, &rels, &rel_size))
939 return;
940 }
941 else
942 {
943 if (!slurp_rel_relocs (file, rel_offset, rel_size, &rels, &rel_size))
944 return;
945 }
946
947 if (is_32bit_elf)
948 {
949 if (is_rela)
950 {
951 if (do_wide)
952 printf (_(" Offset Info Type Sym. Value Symbol's Name + Addend\n"));
953 else
954 printf (_(" Offset Info Type Sym.Value Sym. Name + Addend\n"));
955 }
956 else
957 {
958 if (do_wide)
959 printf (_(" Offset Info Type Sym. Value Symbol's Name\n"));
960 else
961 printf (_(" Offset Info Type Sym.Value Sym. Name\n"));
962 }
963 }
964 else
965 {
966 if (is_rela)
967 {
968 if (do_wide)
969 printf (_(" Offset Info Type Symbol's Value Symbol's Name + Addend\n"));
970 else
971 printf (_(" Offset Info Type Sym. Value Sym. Name + Addend\n"));
972 }
973 else
974 {
975 if (do_wide)
976 printf (_(" Offset Info Type Symbol's Value Symbol's Name\n"));
977 else
978 printf (_(" Offset Info Type Sym. Value Sym. Name\n"));
979 }
980 }
981
982 for (i = 0; i < rel_size; i++)
983 {
984 const char * rtype;
985 bfd_vma offset;
986 bfd_vma inf;
987 bfd_vma symtab_index;
988 bfd_vma type;
989
990 offset = rels[i].r_offset;
991 inf = rels[i].r_info;
992
993 type = get_reloc_type (inf);
994 symtab_index = get_reloc_symindex (inf);
995
996 if (is_32bit_elf)
997 {
998 printf ("%8.8lx %8.8lx ",
999 (unsigned long) offset & 0xffffffff,
1000 (unsigned long) inf & 0xffffffff);
1001 }
1002 else
1003 {
1004 #if BFD_HOST_64BIT_LONG
1005 printf (do_wide
1006 ? "%16.16lx %16.16lx "
1007 : "%12.12lx %12.12lx ",
1008 offset, inf);
1009 #elif BFD_HOST_64BIT_LONG_LONG
1010 #ifndef __MSVCRT__
1011 printf (do_wide
1012 ? "%16.16llx %16.16llx "
1013 : "%12.12llx %12.12llx ",
1014 offset, inf);
1015 #else
1016 printf (do_wide
1017 ? "%16.16I64x %16.16I64x "
1018 : "%12.12I64x %12.12I64x ",
1019 offset, inf);
1020 #endif
1021 #else
1022 printf (do_wide
1023 ? "%8.8lx%8.8lx %8.8lx%8.8lx "
1024 : "%4.4lx%8.8lx %4.4lx%8.8lx ",
1025 _bfd_int64_high (offset),
1026 _bfd_int64_low (offset),
1027 _bfd_int64_high (inf),
1028 _bfd_int64_low (inf));
1029 #endif
1030 }
1031
1032 switch (elf_header.e_machine)
1033 {
1034 default:
1035 rtype = NULL;
1036 break;
1037
1038 case EM_AARCH64:
1039 rtype = elf_aarch64_reloc_type (type);
1040 break;
1041
1042 case EM_M32R:
1043 case EM_CYGNUS_M32R:
1044 rtype = elf_m32r_reloc_type (type);
1045 break;
1046
1047 case EM_386:
1048 case EM_486:
1049 rtype = elf_i386_reloc_type (type);
1050 break;
1051
1052 case EM_68HC11:
1053 case EM_68HC12:
1054 rtype = elf_m68hc11_reloc_type (type);
1055 break;
1056
1057 case EM_68K:
1058 rtype = elf_m68k_reloc_type (type);
1059 break;
1060
1061 case EM_960:
1062 rtype = elf_i960_reloc_type (type);
1063 break;
1064
1065 case EM_AVR:
1066 case EM_AVR_OLD:
1067 rtype = elf_avr_reloc_type (type);
1068 break;
1069
1070 case EM_OLD_SPARCV9:
1071 case EM_SPARC32PLUS:
1072 case EM_SPARCV9:
1073 case EM_SPARC:
1074 rtype = elf_sparc_reloc_type (type);
1075 break;
1076
1077 case EM_SPU:
1078 rtype = elf_spu_reloc_type (type);
1079 break;
1080
1081 case EM_V800:
1082 rtype = v800_reloc_type (type);
1083 break;
1084 case EM_V850:
1085 case EM_CYGNUS_V850:
1086 rtype = v850_reloc_type (type);
1087 break;
1088
1089 case EM_D10V:
1090 case EM_CYGNUS_D10V:
1091 rtype = elf_d10v_reloc_type (type);
1092 break;
1093
1094 case EM_D30V:
1095 case EM_CYGNUS_D30V:
1096 rtype = elf_d30v_reloc_type (type);
1097 break;
1098
1099 case EM_DLX:
1100 rtype = elf_dlx_reloc_type (type);
1101 break;
1102
1103 case EM_SH:
1104 rtype = elf_sh_reloc_type (type);
1105 break;
1106
1107 case EM_MN10300:
1108 case EM_CYGNUS_MN10300:
1109 rtype = elf_mn10300_reloc_type (type);
1110 break;
1111
1112 case EM_MN10200:
1113 case EM_CYGNUS_MN10200:
1114 rtype = elf_mn10200_reloc_type (type);
1115 break;
1116
1117 case EM_FR30:
1118 case EM_CYGNUS_FR30:
1119 rtype = elf_fr30_reloc_type (type);
1120 break;
1121
1122 case EM_CYGNUS_FRV:
1123 rtype = elf_frv_reloc_type (type);
1124 break;
1125
1126 case EM_MCORE:
1127 rtype = elf_mcore_reloc_type (type);
1128 break;
1129
1130 case EM_MMIX:
1131 rtype = elf_mmix_reloc_type (type);
1132 break;
1133
1134 case EM_MOXIE:
1135 rtype = elf_moxie_reloc_type (type);
1136 break;
1137
1138 case EM_MSP430:
1139 if (uses_msp430x_relocs ())
1140 {
1141 rtype = elf_msp430x_reloc_type (type);
1142 break;
1143 }
1144 case EM_MSP430_OLD:
1145 rtype = elf_msp430_reloc_type (type);
1146 break;
1147
1148 case EM_NDS32:
1149 rtype = elf_nds32_reloc_type (type);
1150 break;
1151
1152 case EM_PPC:
1153 rtype = elf_ppc_reloc_type (type);
1154 break;
1155
1156 case EM_PPC64:
1157 rtype = elf_ppc64_reloc_type (type);
1158 break;
1159
1160 case EM_MIPS:
1161 case EM_MIPS_RS3_LE:
1162 rtype = elf_mips_reloc_type (type);
1163 break;
1164
1165 case EM_ALPHA:
1166 rtype = elf_alpha_reloc_type (type);
1167 break;
1168
1169 case EM_ARM:
1170 rtype = elf_arm_reloc_type (type);
1171 break;
1172
1173 case EM_ARC:
1174 rtype = elf_arc_reloc_type (type);
1175 break;
1176
1177 case EM_PARISC:
1178 rtype = elf_hppa_reloc_type (type);
1179 break;
1180
1181 case EM_H8_300:
1182 case EM_H8_300H:
1183 case EM_H8S:
1184 rtype = elf_h8_reloc_type (type);
1185 break;
1186
1187 case EM_OR1K:
1188 rtype = elf_or1k_reloc_type (type);
1189 break;
1190
1191 case EM_PJ:
1192 case EM_PJ_OLD:
1193 rtype = elf_pj_reloc_type (type);
1194 break;
1195 case EM_IA_64:
1196 rtype = elf_ia64_reloc_type (type);
1197 break;
1198
1199 case EM_CRIS:
1200 rtype = elf_cris_reloc_type (type);
1201 break;
1202
1203 case EM_860:
1204 rtype = elf_i860_reloc_type (type);
1205 break;
1206
1207 case EM_X86_64:
1208 case EM_L1OM:
1209 case EM_K1OM:
1210 rtype = elf_x86_64_reloc_type (type);
1211 break;
1212
1213 case EM_S370:
1214 rtype = i370_reloc_type (type);
1215 break;
1216
1217 case EM_S390_OLD:
1218 case EM_S390:
1219 rtype = elf_s390_reloc_type (type);
1220 break;
1221
1222 case EM_SCORE:
1223 rtype = elf_score_reloc_type (type);
1224 break;
1225
1226 case EM_XSTORMY16:
1227 rtype = elf_xstormy16_reloc_type (type);
1228 break;
1229
1230 case EM_CRX:
1231 rtype = elf_crx_reloc_type (type);
1232 break;
1233
1234 case EM_VAX:
1235 rtype = elf_vax_reloc_type (type);
1236 break;
1237
1238 case EM_ADAPTEVA_EPIPHANY:
1239 rtype = elf_epiphany_reloc_type (type);
1240 break;
1241
1242 case EM_IP2K:
1243 case EM_IP2K_OLD:
1244 rtype = elf_ip2k_reloc_type (type);
1245 break;
1246
1247 case EM_IQ2000:
1248 rtype = elf_iq2000_reloc_type (type);
1249 break;
1250
1251 case EM_XTENSA_OLD:
1252 case EM_XTENSA:
1253 rtype = elf_xtensa_reloc_type (type);
1254 break;
1255
1256 case EM_LATTICEMICO32:
1257 rtype = elf_lm32_reloc_type (type);
1258 break;
1259
1260 case EM_M32C_OLD:
1261 case EM_M32C:
1262 rtype = elf_m32c_reloc_type (type);
1263 break;
1264
1265 case EM_MT:
1266 rtype = elf_mt_reloc_type (type);
1267 break;
1268
1269 case EM_BLACKFIN:
1270 rtype = elf_bfin_reloc_type (type);
1271 break;
1272
1273 case EM_CYGNUS_MEP:
1274 rtype = elf_mep_reloc_type (type);
1275 break;
1276
1277 case EM_CR16:
1278 rtype = elf_cr16_reloc_type (type);
1279 break;
1280
1281 case EM_MICROBLAZE:
1282 case EM_MICROBLAZE_OLD:
1283 rtype = elf_microblaze_reloc_type (type);
1284 break;
1285
1286 case EM_RL78:
1287 rtype = elf_rl78_reloc_type (type);
1288 break;
1289
1290 case EM_RX:
1291 rtype = elf_rx_reloc_type (type);
1292 break;
1293
1294 case EM_METAG:
1295 rtype = elf_metag_reloc_type (type);
1296 break;
1297
1298 case EM_XC16X:
1299 case EM_C166:
1300 rtype = elf_xc16x_reloc_type (type);
1301 break;
1302
1303 case EM_TI_C6000:
1304 rtype = elf_tic6x_reloc_type (type);
1305 break;
1306
1307 case EM_TILEGX:
1308 rtype = elf_tilegx_reloc_type (type);
1309 break;
1310
1311 case EM_TILEPRO:
1312 rtype = elf_tilepro_reloc_type (type);
1313 break;
1314
1315 case EM_XGATE:
1316 rtype = elf_xgate_reloc_type (type);
1317 break;
1318
1319 case EM_ALTERA_NIOS2:
1320 rtype = elf_nios2_reloc_type (type);
1321 break;
1322 }
1323
1324 if (rtype == NULL)
1325 printf (_("unrecognized: %-7lx"), (unsigned long) type & 0xffffffff);
1326 else
1327 printf (do_wide ? "%-22.22s" : "%-17.17s", rtype);
1328
1329 if (elf_header.e_machine == EM_ALPHA
1330 && rtype != NULL
1331 && streq (rtype, "R_ALPHA_LITUSE")
1332 && is_rela)
1333 {
1334 switch (rels[i].r_addend)
1335 {
1336 case LITUSE_ALPHA_ADDR: rtype = "ADDR"; break;
1337 case LITUSE_ALPHA_BASE: rtype = "BASE"; break;
1338 case LITUSE_ALPHA_BYTOFF: rtype = "BYTOFF"; break;
1339 case LITUSE_ALPHA_JSR: rtype = "JSR"; break;
1340 case LITUSE_ALPHA_TLSGD: rtype = "TLSGD"; break;
1341 case LITUSE_ALPHA_TLSLDM: rtype = "TLSLDM"; break;
1342 case LITUSE_ALPHA_JSRDIRECT: rtype = "JSRDIRECT"; break;
1343 default: rtype = NULL;
1344 }
1345 if (rtype)
1346 printf (" (%s)", rtype);
1347 else
1348 {
1349 putchar (' ');
1350 printf (_("<unknown addend: %lx>"),
1351 (unsigned long) rels[i].r_addend);
1352 }
1353 }
1354 else if (symtab_index)
1355 {
1356 if (symtab == NULL || symtab_index >= nsyms)
1357 printf (_(" bad symbol index: %08lx"), (unsigned long) symtab_index);
1358 else
1359 {
1360 Elf_Internal_Sym * psym;
1361
1362 psym = symtab + symtab_index;
1363
1364 printf (" ");
1365
1366 if (ELF_ST_TYPE (psym->st_info) == STT_GNU_IFUNC)
1367 {
1368 const char * name;
1369 unsigned int len;
1370 unsigned int width = is_32bit_elf ? 8 : 14;
1371
1372 /* Relocations against GNU_IFUNC symbols do not use the value
1373 of the symbol as the address to relocate against. Instead
1374 they invoke the function named by the symbol and use its
1375 result as the address for relocation.
1376
1377 To indicate this to the user, do not display the value of
1378 the symbol in the "Symbols's Value" field. Instead show
1379 its name followed by () as a hint that the symbol is
1380 invoked. */
1381
1382 if (strtab == NULL
1383 || psym->st_name == 0
1384 || psym->st_name >= strtablen)
1385 name = "??";
1386 else
1387 name = strtab + psym->st_name;
1388
1389 len = print_symbol (width, name);
1390 printf ("()%-*s", len <= width ? (width + 1) - len : 1, " ");
1391 }
1392 else
1393 {
1394 print_vma (psym->st_value, LONG_HEX);
1395
1396 printf (is_32bit_elf ? " " : " ");
1397 }
1398
1399 if (psym->st_name == 0)
1400 {
1401 const char * sec_name = "<null>";
1402 char name_buf[40];
1403
1404 if (ELF_ST_TYPE (psym->st_info) == STT_SECTION)
1405 {
1406 if (psym->st_shndx < elf_header.e_shnum)
1407 sec_name
1408 = SECTION_NAME (section_headers + psym->st_shndx);
1409 else if (psym->st_shndx == SHN_ABS)
1410 sec_name = "ABS";
1411 else if (psym->st_shndx == SHN_COMMON)
1412 sec_name = "COMMON";
1413 else if ((elf_header.e_machine == EM_MIPS
1414 && psym->st_shndx == SHN_MIPS_SCOMMON)
1415 || (elf_header.e_machine == EM_TI_C6000
1416 && psym->st_shndx == SHN_TIC6X_SCOMMON))
1417 sec_name = "SCOMMON";
1418 else if (elf_header.e_machine == EM_MIPS
1419 && psym->st_shndx == SHN_MIPS_SUNDEFINED)
1420 sec_name = "SUNDEF";
1421 else if ((elf_header.e_machine == EM_X86_64
1422 || elf_header.e_machine == EM_L1OM
1423 || elf_header.e_machine == EM_K1OM)
1424 && psym->st_shndx == SHN_X86_64_LCOMMON)
1425 sec_name = "LARGE_COMMON";
1426 else if (elf_header.e_machine == EM_IA_64
1427 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX
1428 && psym->st_shndx == SHN_IA_64_ANSI_COMMON)
1429 sec_name = "ANSI_COM";
1430 else if (is_ia64_vms ()
1431 && psym->st_shndx == SHN_IA_64_VMS_SYMVEC)
1432 sec_name = "VMS_SYMVEC";
1433 else
1434 {
1435 sprintf (name_buf, "<section 0x%x>",
1436 (unsigned int) psym->st_shndx);
1437 sec_name = name_buf;
1438 }
1439 }
1440 print_symbol (22, sec_name);
1441 }
1442 else if (strtab == NULL)
1443 printf (_("<string table index: %3ld>"), psym->st_name);
1444 else if (psym->st_name >= strtablen)
1445 printf (_("<corrupt string table index: %3ld>"), psym->st_name);
1446 else
1447 print_symbol (22, strtab + psym->st_name);
1448
1449 if (is_rela)
1450 {
1451 bfd_signed_vma off = rels[i].r_addend;
1452
1453 if (off < 0)
1454 printf (" - %" BFD_VMA_FMT "x", - off);
1455 else
1456 printf (" + %" BFD_VMA_FMT "x", off);
1457 }
1458 }
1459 }
1460 else if (is_rela)
1461 {
1462 bfd_signed_vma off = rels[i].r_addend;
1463
1464 printf ("%*c", is_32bit_elf ? 12 : 20, ' ');
1465 if (off < 0)
1466 printf ("-%" BFD_VMA_FMT "x", - off);
1467 else
1468 printf ("%" BFD_VMA_FMT "x", off);
1469 }
1470
1471 if (elf_header.e_machine == EM_SPARCV9
1472 && rtype != NULL
1473 && streq (rtype, "R_SPARC_OLO10"))
1474 printf (" + %lx", (unsigned long) ELF64_R_TYPE_DATA (inf));
1475
1476 putchar ('\n');
1477
1478 #ifdef BFD64
1479 if (! is_32bit_elf && elf_header.e_machine == EM_MIPS)
1480 {
1481 bfd_vma type2 = ELF64_MIPS_R_TYPE2 (inf);
1482 bfd_vma type3 = ELF64_MIPS_R_TYPE3 (inf);
1483 const char * rtype2 = elf_mips_reloc_type (type2);
1484 const char * rtype3 = elf_mips_reloc_type (type3);
1485
1486 printf (" Type2: ");
1487
1488 if (rtype2 == NULL)
1489 printf (_("unrecognized: %-7lx"),
1490 (unsigned long) type2 & 0xffffffff);
1491 else
1492 printf ("%-17.17s", rtype2);
1493
1494 printf ("\n Type3: ");
1495
1496 if (rtype3 == NULL)
1497 printf (_("unrecognized: %-7lx"),
1498 (unsigned long) type3 & 0xffffffff);
1499 else
1500 printf ("%-17.17s", rtype3);
1501
1502 putchar ('\n');
1503 }
1504 #endif /* BFD64 */
1505 }
1506
1507 free (rels);
1508 }
1509
1510 static const char *
1511 get_mips_dynamic_type (unsigned long type)
1512 {
1513 switch (type)
1514 {
1515 case DT_MIPS_RLD_VERSION: return "MIPS_RLD_VERSION";
1516 case DT_MIPS_TIME_STAMP: return "MIPS_TIME_STAMP";
1517 case DT_MIPS_ICHECKSUM: return "MIPS_ICHECKSUM";
1518 case DT_MIPS_IVERSION: return "MIPS_IVERSION";
1519 case DT_MIPS_FLAGS: return "MIPS_FLAGS";
1520 case DT_MIPS_BASE_ADDRESS: return "MIPS_BASE_ADDRESS";
1521 case DT_MIPS_MSYM: return "MIPS_MSYM";
1522 case DT_MIPS_CONFLICT: return "MIPS_CONFLICT";
1523 case DT_MIPS_LIBLIST: return "MIPS_LIBLIST";
1524 case DT_MIPS_LOCAL_GOTNO: return "MIPS_LOCAL_GOTNO";
1525 case DT_MIPS_CONFLICTNO: return "MIPS_CONFLICTNO";
1526 case DT_MIPS_LIBLISTNO: return "MIPS_LIBLISTNO";
1527 case DT_MIPS_SYMTABNO: return "MIPS_SYMTABNO";
1528 case DT_MIPS_UNREFEXTNO: return "MIPS_UNREFEXTNO";
1529 case DT_MIPS_GOTSYM: return "MIPS_GOTSYM";
1530 case DT_MIPS_HIPAGENO: return "MIPS_HIPAGENO";
1531 case DT_MIPS_RLD_MAP: return "MIPS_RLD_MAP";
1532 case DT_MIPS_DELTA_CLASS: return "MIPS_DELTA_CLASS";
1533 case DT_MIPS_DELTA_CLASS_NO: return "MIPS_DELTA_CLASS_NO";
1534 case DT_MIPS_DELTA_INSTANCE: return "MIPS_DELTA_INSTANCE";
1535 case DT_MIPS_DELTA_INSTANCE_NO: return "MIPS_DELTA_INSTANCE_NO";
1536 case DT_MIPS_DELTA_RELOC: return "MIPS_DELTA_RELOC";
1537 case DT_MIPS_DELTA_RELOC_NO: return "MIPS_DELTA_RELOC_NO";
1538 case DT_MIPS_DELTA_SYM: return "MIPS_DELTA_SYM";
1539 case DT_MIPS_DELTA_SYM_NO: return "MIPS_DELTA_SYM_NO";
1540 case DT_MIPS_DELTA_CLASSSYM: return "MIPS_DELTA_CLASSSYM";
1541 case DT_MIPS_DELTA_CLASSSYM_NO: return "MIPS_DELTA_CLASSSYM_NO";
1542 case DT_MIPS_CXX_FLAGS: return "MIPS_CXX_FLAGS";
1543 case DT_MIPS_PIXIE_INIT: return "MIPS_PIXIE_INIT";
1544 case DT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
1545 case DT_MIPS_LOCALPAGE_GOTIDX: return "MIPS_LOCALPAGE_GOTIDX";
1546 case DT_MIPS_LOCAL_GOTIDX: return "MIPS_LOCAL_GOTIDX";
1547 case DT_MIPS_HIDDEN_GOTIDX: return "MIPS_HIDDEN_GOTIDX";
1548 case DT_MIPS_PROTECTED_GOTIDX: return "MIPS_PROTECTED_GOTIDX";
1549 case DT_MIPS_OPTIONS: return "MIPS_OPTIONS";
1550 case DT_MIPS_INTERFACE: return "MIPS_INTERFACE";
1551 case DT_MIPS_DYNSTR_ALIGN: return "MIPS_DYNSTR_ALIGN";
1552 case DT_MIPS_INTERFACE_SIZE: return "MIPS_INTERFACE_SIZE";
1553 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: return "MIPS_RLD_TEXT_RESOLVE_ADDR";
1554 case DT_MIPS_PERF_SUFFIX: return "MIPS_PERF_SUFFIX";
1555 case DT_MIPS_COMPACT_SIZE: return "MIPS_COMPACT_SIZE";
1556 case DT_MIPS_GP_VALUE: return "MIPS_GP_VALUE";
1557 case DT_MIPS_AUX_DYNAMIC: return "MIPS_AUX_DYNAMIC";
1558 case DT_MIPS_PLTGOT: return "MIPS_PLTGOT";
1559 case DT_MIPS_RWPLT: return "MIPS_RWPLT";
1560 default:
1561 return NULL;
1562 }
1563 }
1564
1565 static const char *
1566 get_sparc64_dynamic_type (unsigned long type)
1567 {
1568 switch (type)
1569 {
1570 case DT_SPARC_REGISTER: return "SPARC_REGISTER";
1571 default:
1572 return NULL;
1573 }
1574 }
1575
1576 static const char *
1577 get_ppc_dynamic_type (unsigned long type)
1578 {
1579 switch (type)
1580 {
1581 case DT_PPC_GOT: return "PPC_GOT";
1582 case DT_PPC_OPT: return "PPC_OPT";
1583 default:
1584 return NULL;
1585 }
1586 }
1587
1588 static const char *
1589 get_ppc64_dynamic_type (unsigned long type)
1590 {
1591 switch (type)
1592 {
1593 case DT_PPC64_GLINK: return "PPC64_GLINK";
1594 case DT_PPC64_OPD: return "PPC64_OPD";
1595 case DT_PPC64_OPDSZ: return "PPC64_OPDSZ";
1596 case DT_PPC64_OPT: return "PPC64_OPT";
1597 default:
1598 return NULL;
1599 }
1600 }
1601
1602 static const char *
1603 get_parisc_dynamic_type (unsigned long type)
1604 {
1605 switch (type)
1606 {
1607 case DT_HP_LOAD_MAP: return "HP_LOAD_MAP";
1608 case DT_HP_DLD_FLAGS: return "HP_DLD_FLAGS";
1609 case DT_HP_DLD_HOOK: return "HP_DLD_HOOK";
1610 case DT_HP_UX10_INIT: return "HP_UX10_INIT";
1611 case DT_HP_UX10_INITSZ: return "HP_UX10_INITSZ";
1612 case DT_HP_PREINIT: return "HP_PREINIT";
1613 case DT_HP_PREINITSZ: return "HP_PREINITSZ";
1614 case DT_HP_NEEDED: return "HP_NEEDED";
1615 case DT_HP_TIME_STAMP: return "HP_TIME_STAMP";
1616 case DT_HP_CHECKSUM: return "HP_CHECKSUM";
1617 case DT_HP_GST_SIZE: return "HP_GST_SIZE";
1618 case DT_HP_GST_VERSION: return "HP_GST_VERSION";
1619 case DT_HP_GST_HASHVAL: return "HP_GST_HASHVAL";
1620 case DT_HP_EPLTREL: return "HP_GST_EPLTREL";
1621 case DT_HP_EPLTRELSZ: return "HP_GST_EPLTRELSZ";
1622 case DT_HP_FILTERED: return "HP_FILTERED";
1623 case DT_HP_FILTER_TLS: return "HP_FILTER_TLS";
1624 case DT_HP_COMPAT_FILTERED: return "HP_COMPAT_FILTERED";
1625 case DT_HP_LAZYLOAD: return "HP_LAZYLOAD";
1626 case DT_HP_BIND_NOW_COUNT: return "HP_BIND_NOW_COUNT";
1627 case DT_PLT: return "PLT";
1628 case DT_PLT_SIZE: return "PLT_SIZE";
1629 case DT_DLT: return "DLT";
1630 case DT_DLT_SIZE: return "DLT_SIZE";
1631 default:
1632 return NULL;
1633 }
1634 }
1635
1636 static const char *
1637 get_ia64_dynamic_type (unsigned long type)
1638 {
1639 switch (type)
1640 {
1641 case DT_IA_64_PLT_RESERVE: return "IA_64_PLT_RESERVE";
1642 case DT_IA_64_VMS_SUBTYPE: return "VMS_SUBTYPE";
1643 case DT_IA_64_VMS_IMGIOCNT: return "VMS_IMGIOCNT";
1644 case DT_IA_64_VMS_LNKFLAGS: return "VMS_LNKFLAGS";
1645 case DT_IA_64_VMS_VIR_MEM_BLK_SIZ: return "VMS_VIR_MEM_BLK_SIZ";
1646 case DT_IA_64_VMS_IDENT: return "VMS_IDENT";
1647 case DT_IA_64_VMS_NEEDED_IDENT: return "VMS_NEEDED_IDENT";
1648 case DT_IA_64_VMS_IMG_RELA_CNT: return "VMS_IMG_RELA_CNT";
1649 case DT_IA_64_VMS_SEG_RELA_CNT: return "VMS_SEG_RELA_CNT";
1650 case DT_IA_64_VMS_FIXUP_RELA_CNT: return "VMS_FIXUP_RELA_CNT";
1651 case DT_IA_64_VMS_FIXUP_NEEDED: return "VMS_FIXUP_NEEDED";
1652 case DT_IA_64_VMS_SYMVEC_CNT: return "VMS_SYMVEC_CNT";
1653 case DT_IA_64_VMS_XLATED: return "VMS_XLATED";
1654 case DT_IA_64_VMS_STACKSIZE: return "VMS_STACKSIZE";
1655 case DT_IA_64_VMS_UNWINDSZ: return "VMS_UNWINDSZ";
1656 case DT_IA_64_VMS_UNWIND_CODSEG: return "VMS_UNWIND_CODSEG";
1657 case DT_IA_64_VMS_UNWIND_INFOSEG: return "VMS_UNWIND_INFOSEG";
1658 case DT_IA_64_VMS_LINKTIME: return "VMS_LINKTIME";
1659 case DT_IA_64_VMS_SEG_NO: return "VMS_SEG_NO";
1660 case DT_IA_64_VMS_SYMVEC_OFFSET: return "VMS_SYMVEC_OFFSET";
1661 case DT_IA_64_VMS_SYMVEC_SEG: return "VMS_SYMVEC_SEG";
1662 case DT_IA_64_VMS_UNWIND_OFFSET: return "VMS_UNWIND_OFFSET";
1663 case DT_IA_64_VMS_UNWIND_SEG: return "VMS_UNWIND_SEG";
1664 case DT_IA_64_VMS_STRTAB_OFFSET: return "VMS_STRTAB_OFFSET";
1665 case DT_IA_64_VMS_SYSVER_OFFSET: return "VMS_SYSVER_OFFSET";
1666 case DT_IA_64_VMS_IMG_RELA_OFF: return "VMS_IMG_RELA_OFF";
1667 case DT_IA_64_VMS_SEG_RELA_OFF: return "VMS_SEG_RELA_OFF";
1668 case DT_IA_64_VMS_FIXUP_RELA_OFF: return "VMS_FIXUP_RELA_OFF";
1669 case DT_IA_64_VMS_PLTGOT_OFFSET: return "VMS_PLTGOT_OFFSET";
1670 case DT_IA_64_VMS_PLTGOT_SEG: return "VMS_PLTGOT_SEG";
1671 case DT_IA_64_VMS_FPMODE: return "VMS_FPMODE";
1672 default:
1673 return NULL;
1674 }
1675 }
1676
1677 static const char *
1678 get_alpha_dynamic_type (unsigned long type)
1679 {
1680 switch (type)
1681 {
1682 case DT_ALPHA_PLTRO: return "ALPHA_PLTRO";
1683 default:
1684 return NULL;
1685 }
1686 }
1687
1688 static const char *
1689 get_score_dynamic_type (unsigned long type)
1690 {
1691 switch (type)
1692 {
1693 case DT_SCORE_BASE_ADDRESS: return "SCORE_BASE_ADDRESS";
1694 case DT_SCORE_LOCAL_GOTNO: return "SCORE_LOCAL_GOTNO";
1695 case DT_SCORE_SYMTABNO: return "SCORE_SYMTABNO";
1696 case DT_SCORE_GOTSYM: return "SCORE_GOTSYM";
1697 case DT_SCORE_UNREFEXTNO: return "SCORE_UNREFEXTNO";
1698 case DT_SCORE_HIPAGENO: return "SCORE_HIPAGENO";
1699 default:
1700 return NULL;
1701 }
1702 }
1703
1704 static const char *
1705 get_tic6x_dynamic_type (unsigned long type)
1706 {
1707 switch (type)
1708 {
1709 case DT_C6000_GSYM_OFFSET: return "C6000_GSYM_OFFSET";
1710 case DT_C6000_GSTR_OFFSET: return "C6000_GSTR_OFFSET";
1711 case DT_C6000_DSBT_BASE: return "C6000_DSBT_BASE";
1712 case DT_C6000_DSBT_SIZE: return "C6000_DSBT_SIZE";
1713 case DT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
1714 case DT_C6000_DSBT_INDEX: return "C6000_DSBT_INDEX";
1715 default:
1716 return NULL;
1717 }
1718 }
1719
1720 static const char *
1721 get_nios2_dynamic_type (unsigned long type)
1722 {
1723 switch (type)
1724 {
1725 case DT_NIOS2_GP: return "NIOS2_GP";
1726 default:
1727 return NULL;
1728 }
1729 }
1730
1731 static const char *
1732 get_dynamic_type (unsigned long type)
1733 {
1734 static char buff[64];
1735
1736 switch (type)
1737 {
1738 case DT_NULL: return "NULL";
1739 case DT_NEEDED: return "NEEDED";
1740 case DT_PLTRELSZ: return "PLTRELSZ";
1741 case DT_PLTGOT: return "PLTGOT";
1742 case DT_HASH: return "HASH";
1743 case DT_STRTAB: return "STRTAB";
1744 case DT_SYMTAB: return "SYMTAB";
1745 case DT_RELA: return "RELA";
1746 case DT_RELASZ: return "RELASZ";
1747 case DT_RELAENT: return "RELAENT";
1748 case DT_STRSZ: return "STRSZ";
1749 case DT_SYMENT: return "SYMENT";
1750 case DT_INIT: return "INIT";
1751 case DT_FINI: return "FINI";
1752 case DT_SONAME: return "SONAME";
1753 case DT_RPATH: return "RPATH";
1754 case DT_SYMBOLIC: return "SYMBOLIC";
1755 case DT_REL: return "REL";
1756 case DT_RELSZ: return "RELSZ";
1757 case DT_RELENT: return "RELENT";
1758 case DT_PLTREL: return "PLTREL";
1759 case DT_DEBUG: return "DEBUG";
1760 case DT_TEXTREL: return "TEXTREL";
1761 case DT_JMPREL: return "JMPREL";
1762 case DT_BIND_NOW: return "BIND_NOW";
1763 case DT_INIT_ARRAY: return "INIT_ARRAY";
1764 case DT_FINI_ARRAY: return "FINI_ARRAY";
1765 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
1766 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
1767 case DT_RUNPATH: return "RUNPATH";
1768 case DT_FLAGS: return "FLAGS";
1769
1770 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
1771 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
1772
1773 case DT_CHECKSUM: return "CHECKSUM";
1774 case DT_PLTPADSZ: return "PLTPADSZ";
1775 case DT_MOVEENT: return "MOVEENT";
1776 case DT_MOVESZ: return "MOVESZ";
1777 case DT_FEATURE: return "FEATURE";
1778 case DT_POSFLAG_1: return "POSFLAG_1";
1779 case DT_SYMINSZ: return "SYMINSZ";
1780 case DT_SYMINENT: return "SYMINENT"; /* aka VALRNGHI */
1781
1782 case DT_ADDRRNGLO: return "ADDRRNGLO";
1783 case DT_CONFIG: return "CONFIG";
1784 case DT_DEPAUDIT: return "DEPAUDIT";
1785 case DT_AUDIT: return "AUDIT";
1786 case DT_PLTPAD: return "PLTPAD";
1787 case DT_MOVETAB: return "MOVETAB";
1788 case DT_SYMINFO: return "SYMINFO"; /* aka ADDRRNGHI */
1789
1790 case DT_VERSYM: return "VERSYM";
1791
1792 case DT_TLSDESC_GOT: return "TLSDESC_GOT";
1793 case DT_TLSDESC_PLT: return "TLSDESC_PLT";
1794 case DT_RELACOUNT: return "RELACOUNT";
1795 case DT_RELCOUNT: return "RELCOUNT";
1796 case DT_FLAGS_1: return "FLAGS_1";
1797 case DT_VERDEF: return "VERDEF";
1798 case DT_VERDEFNUM: return "VERDEFNUM";
1799 case DT_VERNEED: return "VERNEED";
1800 case DT_VERNEEDNUM: return "VERNEEDNUM";
1801
1802 case DT_AUXILIARY: return "AUXILIARY";
1803 case DT_USED: return "USED";
1804 case DT_FILTER: return "FILTER";
1805
1806 case DT_GNU_PRELINKED: return "GNU_PRELINKED";
1807 case DT_GNU_CONFLICT: return "GNU_CONFLICT";
1808 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
1809 case DT_GNU_LIBLIST: return "GNU_LIBLIST";
1810 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
1811 case DT_GNU_HASH: return "GNU_HASH";
1812
1813 default:
1814 if ((type >= DT_LOPROC) && (type <= DT_HIPROC))
1815 {
1816 const char * result;
1817
1818 switch (elf_header.e_machine)
1819 {
1820 case EM_MIPS:
1821 case EM_MIPS_RS3_LE:
1822 result = get_mips_dynamic_type (type);
1823 break;
1824 case EM_SPARCV9:
1825 result = get_sparc64_dynamic_type (type);
1826 break;
1827 case EM_PPC:
1828 result = get_ppc_dynamic_type (type);
1829 break;
1830 case EM_PPC64:
1831 result = get_ppc64_dynamic_type (type);
1832 break;
1833 case EM_IA_64:
1834 result = get_ia64_dynamic_type (type);
1835 break;
1836 case EM_ALPHA:
1837 result = get_alpha_dynamic_type (type);
1838 break;
1839 case EM_SCORE:
1840 result = get_score_dynamic_type (type);
1841 break;
1842 case EM_TI_C6000:
1843 result = get_tic6x_dynamic_type (type);
1844 break;
1845 case EM_ALTERA_NIOS2:
1846 result = get_nios2_dynamic_type (type);
1847 break;
1848 default:
1849 result = NULL;
1850 break;
1851 }
1852
1853 if (result != NULL)
1854 return result;
1855
1856 snprintf (buff, sizeof (buff), _("Processor Specific: %lx"), type);
1857 }
1858 else if (((type >= DT_LOOS) && (type <= DT_HIOS))
1859 || (elf_header.e_machine == EM_PARISC
1860 && (type >= OLD_DT_LOOS) && (type <= OLD_DT_HIOS)))
1861 {
1862 const char * result;
1863
1864 switch (elf_header.e_machine)
1865 {
1866 case EM_PARISC:
1867 result = get_parisc_dynamic_type (type);
1868 break;
1869 case EM_IA_64:
1870 result = get_ia64_dynamic_type (type);
1871 break;
1872 default:
1873 result = NULL;
1874 break;
1875 }
1876
1877 if (result != NULL)
1878 return result;
1879
1880 snprintf (buff, sizeof (buff), _("Operating System specific: %lx"),
1881 type);
1882 }
1883 else
1884 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), type);
1885
1886 return buff;
1887 }
1888 }
1889
1890 static char *
1891 get_file_type (unsigned e_type)
1892 {
1893 static char buff[32];
1894
1895 switch (e_type)
1896 {
1897 case ET_NONE: return _("NONE (None)");
1898 case ET_REL: return _("REL (Relocatable file)");
1899 case ET_EXEC: return _("EXEC (Executable file)");
1900 case ET_DYN: return _("DYN (Shared object file)");
1901 case ET_CORE: return _("CORE (Core file)");
1902
1903 default:
1904 if ((e_type >= ET_LOPROC) && (e_type <= ET_HIPROC))
1905 snprintf (buff, sizeof (buff), _("Processor Specific: (%x)"), e_type);
1906 else if ((e_type >= ET_LOOS) && (e_type <= ET_HIOS))
1907 snprintf (buff, sizeof (buff), _("OS Specific: (%x)"), e_type);
1908 else
1909 snprintf (buff, sizeof (buff), _("<unknown>: %x"), e_type);
1910 return buff;
1911 }
1912 }
1913
1914 static char *
1915 get_machine_name (unsigned e_machine)
1916 {
1917 static char buff[64]; /* XXX */
1918
1919 switch (e_machine)
1920 {
1921 case EM_NONE: return _("None");
1922 case EM_AARCH64: return "AArch64";
1923 case EM_M32: return "WE32100";
1924 case EM_SPARC: return "Sparc";
1925 case EM_SPU: return "SPU";
1926 case EM_386: return "Intel 80386";
1927 case EM_68K: return "MC68000";
1928 case EM_88K: return "MC88000";
1929 case EM_486: return "Intel 80486";
1930 case EM_860: return "Intel 80860";
1931 case EM_MIPS: return "MIPS R3000";
1932 case EM_S370: return "IBM System/370";
1933 case EM_MIPS_RS3_LE: return "MIPS R4000 big-endian";
1934 case EM_OLD_SPARCV9: return "Sparc v9 (old)";
1935 case EM_PARISC: return "HPPA";
1936 case EM_PPC_OLD: return "Power PC (old)";
1937 case EM_SPARC32PLUS: return "Sparc v8+" ;
1938 case EM_960: return "Intel 90860";
1939 case EM_PPC: return "PowerPC";
1940 case EM_PPC64: return "PowerPC64";
1941 case EM_FR20: return "Fujitsu FR20";
1942 case EM_RH32: return "TRW RH32";
1943 case EM_MCORE: return "MCORE";
1944 case EM_ARM: return "ARM";
1945 case EM_OLD_ALPHA: return "Digital Alpha (old)";
1946 case EM_SH: return "Renesas / SuperH SH";
1947 case EM_SPARCV9: return "Sparc v9";
1948 case EM_TRICORE: return "Siemens Tricore";
1949 case EM_ARC: return "ARC";
1950 case EM_H8_300: return "Renesas H8/300";
1951 case EM_H8_300H: return "Renesas H8/300H";
1952 case EM_H8S: return "Renesas H8S";
1953 case EM_H8_500: return "Renesas H8/500";
1954 case EM_IA_64: return "Intel IA-64";
1955 case EM_MIPS_X: return "Stanford MIPS-X";
1956 case EM_COLDFIRE: return "Motorola Coldfire";
1957 case EM_ALPHA: return "Alpha";
1958 case EM_CYGNUS_D10V:
1959 case EM_D10V: return "d10v";
1960 case EM_CYGNUS_D30V:
1961 case EM_D30V: return "d30v";
1962 case EM_CYGNUS_M32R:
1963 case EM_M32R: return "Renesas M32R (formerly Mitsubishi M32r)";
1964 case EM_CYGNUS_V850:
1965 case EM_V800: return "Renesas V850 (using RH850 ABI)";
1966 case EM_V850: return "Renesas V850";
1967 case EM_CYGNUS_MN10300:
1968 case EM_MN10300: return "mn10300";
1969 case EM_CYGNUS_MN10200:
1970 case EM_MN10200: return "mn10200";
1971 case EM_MOXIE: return "Moxie";
1972 case EM_CYGNUS_FR30:
1973 case EM_FR30: return "Fujitsu FR30";
1974 case EM_CYGNUS_FRV: return "Fujitsu FR-V";
1975 case EM_PJ_OLD:
1976 case EM_PJ: return "picoJava";
1977 case EM_MMA: return "Fujitsu Multimedia Accelerator";
1978 case EM_PCP: return "Siemens PCP";
1979 case EM_NCPU: return "Sony nCPU embedded RISC processor";
1980 case EM_NDR1: return "Denso NDR1 microprocesspr";
1981 case EM_STARCORE: return "Motorola Star*Core processor";
1982 case EM_ME16: return "Toyota ME16 processor";
1983 case EM_ST100: return "STMicroelectronics ST100 processor";
1984 case EM_TINYJ: return "Advanced Logic Corp. TinyJ embedded processor";
1985 case EM_PDSP: return "Sony DSP processor";
1986 case EM_PDP10: return "Digital Equipment Corp. PDP-10";
1987 case EM_PDP11: return "Digital Equipment Corp. PDP-11";
1988 case EM_FX66: return "Siemens FX66 microcontroller";
1989 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 bit microcontroller";
1990 case EM_ST7: return "STMicroelectronics ST7 8-bit microcontroller";
1991 case EM_68HC16: return "Motorola MC68HC16 Microcontroller";
1992 case EM_68HC12: return "Motorola MC68HC12 Microcontroller";
1993 case EM_68HC11: return "Motorola MC68HC11 Microcontroller";
1994 case EM_68HC08: return "Motorola MC68HC08 Microcontroller";
1995 case EM_68HC05: return "Motorola MC68HC05 Microcontroller";
1996 case EM_SVX: return "Silicon Graphics SVx";
1997 case EM_ST19: return "STMicroelectronics ST19 8-bit microcontroller";
1998 case EM_VAX: return "Digital VAX";
1999 case EM_AVR_OLD:
2000 case EM_AVR: return "Atmel AVR 8-bit microcontroller";
2001 case EM_CRIS: return "Axis Communications 32-bit embedded processor";
2002 case EM_JAVELIN: return "Infineon Technologies 32-bit embedded cpu";
2003 case EM_FIREPATH: return "Element 14 64-bit DSP processor";
2004 case EM_ZSP: return "LSI Logic's 16-bit DSP processor";
2005 case EM_MMIX: return "Donald Knuth's educational 64-bit processor";
2006 case EM_HUANY: return "Harvard Universitys's machine-independent object format";
2007 case EM_PRISM: return "Vitesse Prism";
2008 case EM_X86_64: return "Advanced Micro Devices X86-64";
2009 case EM_L1OM: return "Intel L1OM";
2010 case EM_K1OM: return "Intel K1OM";
2011 case EM_S390_OLD:
2012 case EM_S390: return "IBM S/390";
2013 case EM_SCORE: return "SUNPLUS S+Core";
2014 case EM_XSTORMY16: return "Sanyo XStormy16 CPU core";
2015 case EM_OR1K: return "OpenRISC 1000";
2016 case EM_ARC_A5: return "ARC International ARCompact processor";
2017 case EM_CRX: return "National Semiconductor CRX microprocessor";
2018 case EM_ADAPTEVA_EPIPHANY: return "Adapteva EPIPHANY";
2019 case EM_DLX: return "OpenDLX";
2020 case EM_IP2K_OLD:
2021 case EM_IP2K: return "Ubicom IP2xxx 8-bit microcontrollers";
2022 case EM_IQ2000: return "Vitesse IQ2000";
2023 case EM_XTENSA_OLD:
2024 case EM_XTENSA: return "Tensilica Xtensa Processor";
2025 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor";
2026 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor";
2027 case EM_NS32K: return "National Semiconductor 32000 series";
2028 case EM_TPC: return "Tenor Network TPC processor";
2029 case EM_ST200: return "STMicroelectronics ST200 microcontroller";
2030 case EM_MAX: return "MAX Processor";
2031 case EM_CR: return "National Semiconductor CompactRISC";
2032 case EM_F2MC16: return "Fujitsu F2MC16";
2033 case EM_MSP430: return "Texas Instruments msp430 microcontroller";
2034 case EM_LATTICEMICO32: return "Lattice Mico32";
2035 case EM_M32C_OLD:
2036 case EM_M32C: return "Renesas M32c";
2037 case EM_MT: return "Morpho Techologies MT processor";
2038 case EM_BLACKFIN: return "Analog Devices Blackfin";
2039 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors";
2040 case EM_SEP: return "Sharp embedded microprocessor";
2041 case EM_ARCA: return "Arca RISC microprocessor";
2042 case EM_UNICORE: return "Unicore";
2043 case EM_EXCESS: return "eXcess 16/32/64-bit configurable embedded CPU";
2044 case EM_DXP: return "Icera Semiconductor Inc. Deep Execution Processor";
2045 case EM_NIOS32: return "Altera Nios";
2046 case EM_ALTERA_NIOS2: return "Altera Nios II";
2047 case EM_C166:
2048 case EM_XC16X: return "Infineon Technologies xc16x";
2049 case EM_M16C: return "Renesas M16C series microprocessors";
2050 case EM_DSPIC30F: return "Microchip Technology dsPIC30F Digital Signal Controller";
2051 case EM_CE: return "Freescale Communication Engine RISC core";
2052 case EM_TSK3000: return "Altium TSK3000 core";
2053 case EM_RS08: return "Freescale RS08 embedded processor";
2054 case EM_ECOG2: return "Cyan Technology eCOG2 microprocessor";
2055 case EM_DSP24: return "New Japan Radio (NJR) 24-bit DSP Processor";
2056 case EM_VIDEOCORE3: return "Broadcom VideoCore III processor";
2057 case EM_SE_C17: return "Seiko Epson C17 family";
2058 case EM_TI_C6000: return "Texas Instruments TMS320C6000 DSP family";
2059 case EM_TI_C2000: return "Texas Instruments TMS320C2000 DSP family";
2060 case EM_TI_C5500: return "Texas Instruments TMS320C55x DSP family";
2061 case EM_MMDSP_PLUS: return "STMicroelectronics 64bit VLIW Data Signal Processor";
2062 case EM_CYPRESS_M8C: return "Cypress M8C microprocessor";
2063 case EM_R32C: return "Renesas R32C series microprocessors";
2064 case EM_TRIMEDIA: return "NXP Semiconductors TriMedia architecture family";
2065 case EM_QDSP6: return "QUALCOMM DSP6 Processor";
2066 case EM_8051: return "Intel 8051 and variants";
2067 case EM_STXP7X: return "STMicroelectronics STxP7x family";
2068 case EM_NDS32: return "Andes Technology compact code size embedded RISC processor family";
2069 case EM_ECOG1X: return "Cyan Technology eCOG1X family";
2070 case EM_MAXQ30: return "Dallas Semiconductor MAXQ30 Core microcontrollers";
2071 case EM_XIMO16: return "New Japan Radio (NJR) 16-bit DSP Processor";
2072 case EM_MANIK: return "M2000 Reconfigurable RISC Microprocessor";
2073 case EM_CRAYNV2: return "Cray Inc. NV2 vector architecture";
2074 case EM_CYGNUS_MEP: return "Toshiba MeP Media Engine";
2075 case EM_CR16:
2076 case EM_MICROBLAZE:
2077 case EM_MICROBLAZE_OLD: return "Xilinx MicroBlaze";
2078 case EM_RL78: return "Renesas RL78";
2079 case EM_RX: return "Renesas RX";
2080 case EM_METAG: return "Imagination Technologies Meta processor architecture";
2081 case EM_MCST_ELBRUS: return "MCST Elbrus general purpose hardware architecture";
2082 case EM_ECOG16: return "Cyan Technology eCOG16 family";
2083 case EM_ETPU: return "Freescale Extended Time Processing Unit";
2084 case EM_SLE9X: return "Infineon Technologies SLE9X core";
2085 case EM_AVR32: return "Atmel Corporation 32-bit microprocessor family";
2086 case EM_STM8: return "STMicroeletronics STM8 8-bit microcontroller";
2087 case EM_TILE64: return "Tilera TILE64 multicore architecture family";
2088 case EM_TILEPRO: return "Tilera TILEPro multicore architecture family";
2089 case EM_TILEGX: return "Tilera TILE-Gx multicore architecture family";
2090 case EM_CUDA: return "NVIDIA CUDA architecture";
2091 case EM_XGATE: return "Motorola XGATE embedded processor";
2092 default:
2093 snprintf (buff, sizeof (buff), _("<unknown>: 0x%x"), e_machine);
2094 return buff;
2095 }
2096 }
2097
2098 static void
2099 decode_ARM_machine_flags (unsigned e_flags, char buf[])
2100 {
2101 unsigned eabi;
2102 int unknown = 0;
2103
2104 eabi = EF_ARM_EABI_VERSION (e_flags);
2105 e_flags &= ~ EF_ARM_EABIMASK;
2106
2107 /* Handle "generic" ARM flags. */
2108 if (e_flags & EF_ARM_RELEXEC)
2109 {
2110 strcat (buf, ", relocatable executable");
2111 e_flags &= ~ EF_ARM_RELEXEC;
2112 }
2113
2114 if (e_flags & EF_ARM_HASENTRY)
2115 {
2116 strcat (buf, ", has entry point");
2117 e_flags &= ~ EF_ARM_HASENTRY;
2118 }
2119
2120 /* Now handle EABI specific flags. */
2121 switch (eabi)
2122 {
2123 default:
2124 strcat (buf, ", <unrecognized EABI>");
2125 if (e_flags)
2126 unknown = 1;
2127 break;
2128
2129 case EF_ARM_EABI_VER1:
2130 strcat (buf, ", Version1 EABI");
2131 while (e_flags)
2132 {
2133 unsigned flag;
2134
2135 /* Process flags one bit at a time. */
2136 flag = e_flags & - e_flags;
2137 e_flags &= ~ flag;
2138
2139 switch (flag)
2140 {
2141 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2142 strcat (buf, ", sorted symbol tables");
2143 break;
2144
2145 default:
2146 unknown = 1;
2147 break;
2148 }
2149 }
2150 break;
2151
2152 case EF_ARM_EABI_VER2:
2153 strcat (buf, ", Version2 EABI");
2154 while (e_flags)
2155 {
2156 unsigned flag;
2157
2158 /* Process flags one bit at a time. */
2159 flag = e_flags & - e_flags;
2160 e_flags &= ~ flag;
2161
2162 switch (flag)
2163 {
2164 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2165 strcat (buf, ", sorted symbol tables");
2166 break;
2167
2168 case EF_ARM_DYNSYMSUSESEGIDX:
2169 strcat (buf, ", dynamic symbols use segment index");
2170 break;
2171
2172 case EF_ARM_MAPSYMSFIRST:
2173 strcat (buf, ", mapping symbols precede others");
2174 break;
2175
2176 default:
2177 unknown = 1;
2178 break;
2179 }
2180 }
2181 break;
2182
2183 case EF_ARM_EABI_VER3:
2184 strcat (buf, ", Version3 EABI");
2185 break;
2186
2187 case EF_ARM_EABI_VER4:
2188 strcat (buf, ", Version4 EABI");
2189 while (e_flags)
2190 {
2191 unsigned flag;
2192
2193 /* Process flags one bit at a time. */
2194 flag = e_flags & - e_flags;
2195 e_flags &= ~ flag;
2196
2197 switch (flag)
2198 {
2199 case EF_ARM_BE8:
2200 strcat (buf, ", BE8");
2201 break;
2202
2203 case EF_ARM_LE8:
2204 strcat (buf, ", LE8");
2205 break;
2206
2207 default:
2208 unknown = 1;
2209 break;
2210 }
2211 break;
2212 }
2213 break;
2214
2215 case EF_ARM_EABI_VER5:
2216 strcat (buf, ", Version5 EABI");
2217 while (e_flags)
2218 {
2219 unsigned flag;
2220
2221 /* Process flags one bit at a time. */
2222 flag = e_flags & - e_flags;
2223 e_flags &= ~ flag;
2224
2225 switch (flag)
2226 {
2227 case EF_ARM_BE8:
2228 strcat (buf, ", BE8");
2229 break;
2230
2231 case EF_ARM_LE8:
2232 strcat (buf, ", LE8");
2233 break;
2234
2235 case EF_ARM_ABI_FLOAT_SOFT: /* Conflicts with EF_ARM_SOFT_FLOAT. */
2236 strcat (buf, ", soft-float ABI");
2237 break;
2238
2239 case EF_ARM_ABI_FLOAT_HARD: /* Conflicts with EF_ARM_VFP_FLOAT. */
2240 strcat (buf, ", hard-float ABI");
2241 break;
2242
2243 default:
2244 unknown = 1;
2245 break;
2246 }
2247 }
2248 break;
2249
2250 case EF_ARM_EABI_UNKNOWN:
2251 strcat (buf, ", GNU EABI");
2252 while (e_flags)
2253 {
2254 unsigned flag;
2255
2256 /* Process flags one bit at a time. */
2257 flag = e_flags & - e_flags;
2258 e_flags &= ~ flag;
2259
2260 switch (flag)
2261 {
2262 case EF_ARM_INTERWORK:
2263 strcat (buf, ", interworking enabled");
2264 break;
2265
2266 case EF_ARM_APCS_26:
2267 strcat (buf, ", uses APCS/26");
2268 break;
2269
2270 case EF_ARM_APCS_FLOAT:
2271 strcat (buf, ", uses APCS/float");
2272 break;
2273
2274 case EF_ARM_PIC:
2275 strcat (buf, ", position independent");
2276 break;
2277
2278 case EF_ARM_ALIGN8:
2279 strcat (buf, ", 8 bit structure alignment");
2280 break;
2281
2282 case EF_ARM_NEW_ABI:
2283 strcat (buf, ", uses new ABI");
2284 break;
2285
2286 case EF_ARM_OLD_ABI:
2287 strcat (buf, ", uses old ABI");
2288 break;
2289
2290 case EF_ARM_SOFT_FLOAT:
2291 strcat (buf, ", software FP");
2292 break;
2293
2294 case EF_ARM_VFP_FLOAT:
2295 strcat (buf, ", VFP");
2296 break;
2297
2298 case EF_ARM_MAVERICK_FLOAT:
2299 strcat (buf, ", Maverick FP");
2300 break;
2301
2302 default:
2303 unknown = 1;
2304 break;
2305 }
2306 }
2307 }
2308
2309 if (unknown)
2310 strcat (buf,_(", <unknown>"));
2311 }
2312
2313 static void
2314 decode_NDS32_machine_flags (unsigned e_flags, char buf[], size_t size)
2315 {
2316 unsigned abi;
2317 unsigned arch;
2318 unsigned config;
2319 unsigned version;
2320 int has_fpu = 0;
2321 int r = 0;
2322
2323 static const char *ABI_STRINGS[] =
2324 {
2325 "ABI v0", /* use r5 as return register; only used in N1213HC */
2326 "ABI v1", /* use r0 as return register */
2327 "ABI v2", /* use r0 as return register and don't reserve 24 bytes for arguments */
2328 "ABI v2fp", /* for FPU */
2329 "AABI"
2330 };
2331 static const char *VER_STRINGS[] =
2332 {
2333 "Andes ELF V1.3 or older",
2334 "Andes ELF V1.3.1",
2335 "Andes ELF V1.4"
2336 };
2337 static const char *ARCH_STRINGS[] =
2338 {
2339 "",
2340 "Andes Star v1.0",
2341 "Andes Star v2.0",
2342 "Andes Star v3.0",
2343 "Andes Star v3.0m"
2344 };
2345
2346 abi = EF_NDS_ABI & e_flags;
2347 arch = EF_NDS_ARCH & e_flags;
2348 config = EF_NDS_INST & e_flags;
2349 version = EF_NDS32_ELF_VERSION & e_flags;
2350
2351 memset (buf, 0, size);
2352
2353 switch (abi)
2354 {
2355 case E_NDS_ABI_V0:
2356 case E_NDS_ABI_V1:
2357 case E_NDS_ABI_V2:
2358 case E_NDS_ABI_V2FP:
2359 case E_NDS_ABI_AABI:
2360 /* In case there are holes in the array. */
2361 r += snprintf (buf + r, size - r, ", %s", ABI_STRINGS[abi >> EF_NDS_ABI_SHIFT]);
2362 break;
2363
2364 default:
2365 r += snprintf (buf + r, size - r, ", <unrecognized ABI>");
2366 break;
2367 }
2368
2369 switch (version)
2370 {
2371 case E_NDS32_ELF_VER_1_2:
2372 case E_NDS32_ELF_VER_1_3:
2373 case E_NDS32_ELF_VER_1_4:
2374 r += snprintf (buf + r, size - r, ", %s", VER_STRINGS[version >> EF_NDS32_ELF_VERSION_SHIFT]);
2375 break;
2376
2377 default:
2378 r += snprintf (buf + r, size - r, ", <unrecognized ELF version number>");
2379 break;
2380 }
2381
2382 if (E_NDS_ABI_V0 == abi)
2383 {
2384 /* OLD ABI; only used in N1213HC, has performance extension 1. */
2385 r += snprintf (buf + r, size - r, ", Andes Star v1.0, N1213HC, MAC, PERF1");
2386 if (arch == E_NDS_ARCH_STAR_V1_0)
2387 r += snprintf (buf + r, size -r, ", 16b"); /* has 16-bit instructions */
2388 return;
2389 }
2390
2391 switch (arch)
2392 {
2393 case E_NDS_ARCH_STAR_V1_0:
2394 case E_NDS_ARCH_STAR_V2_0:
2395 case E_NDS_ARCH_STAR_V3_0:
2396 case E_NDS_ARCH_STAR_V3_M:
2397 r += snprintf (buf + r, size - r, ", %s", ARCH_STRINGS[arch >> EF_NDS_ARCH_SHIFT]);
2398 break;
2399
2400 default:
2401 r += snprintf (buf + r, size - r, ", <unrecognized architecture>");
2402 /* ARCH version determines how the e_flags are interpreted.
2403 If it is unknown, we cannot proceed. */
2404 return;
2405 }
2406
2407 /* Newer ABI; Now handle architecture specific flags. */
2408 if (arch == E_NDS_ARCH_STAR_V1_0)
2409 {
2410 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2411 r += snprintf (buf + r, size -r, ", MFUSR_PC");
2412
2413 if (!(config & E_NDS32_HAS_NO_MAC_INST))
2414 r += snprintf (buf + r, size -r, ", MAC");
2415
2416 if (config & E_NDS32_HAS_DIV_INST)
2417 r += snprintf (buf + r, size -r, ", DIV");
2418
2419 if (config & E_NDS32_HAS_16BIT_INST)
2420 r += snprintf (buf + r, size -r, ", 16b");
2421 }
2422 else
2423 {
2424 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2425 {
2426 if (version <= E_NDS32_ELF_VER_1_3)
2427 r += snprintf (buf + r, size -r, ", [B8]");
2428 else
2429 r += snprintf (buf + r, size -r, ", EX9");
2430 }
2431
2432 if (config & E_NDS32_HAS_MAC_DX_INST)
2433 r += snprintf (buf + r, size -r, ", MAC_DX");
2434
2435 if (config & E_NDS32_HAS_DIV_DX_INST)
2436 r += snprintf (buf + r, size -r, ", DIV_DX");
2437
2438 if (config & E_NDS32_HAS_16BIT_INST)
2439 {
2440 if (version <= E_NDS32_ELF_VER_1_3)
2441 r += snprintf (buf + r, size -r, ", 16b");
2442 else
2443 r += snprintf (buf + r, size -r, ", IFC");
2444 }
2445 }
2446
2447 if (config & E_NDS32_HAS_EXT_INST)
2448 r += snprintf (buf + r, size -r, ", PERF1");
2449
2450 if (config & E_NDS32_HAS_EXT2_INST)
2451 r += snprintf (buf + r, size -r, ", PERF2");
2452
2453 if (config & E_NDS32_HAS_FPU_INST)
2454 {
2455 has_fpu = 1;
2456 r += snprintf (buf + r, size -r, ", FPU_SP");
2457 }
2458
2459 if (config & E_NDS32_HAS_FPU_DP_INST)
2460 {
2461 has_fpu = 1;
2462 r += snprintf (buf + r, size -r, ", FPU_DP");
2463 }
2464
2465 if (config & E_NDS32_HAS_FPU_MAC_INST)
2466 {
2467 has_fpu = 1;
2468 r += snprintf (buf + r, size -r, ", FPU_MAC");
2469 }
2470
2471 if (has_fpu)
2472 {
2473 switch ((config & E_NDS32_FPU_REG_CONF) >> E_NDS32_FPU_REG_CONF_SHIFT)
2474 {
2475 case E_NDS32_FPU_REG_8SP_4DP:
2476 r += snprintf (buf + r, size -r, ", FPU_REG:8/4");
2477 break;
2478 case E_NDS32_FPU_REG_16SP_8DP:
2479 r += snprintf (buf + r, size -r, ", FPU_REG:16/8");
2480 break;
2481 case E_NDS32_FPU_REG_32SP_16DP:
2482 r += snprintf (buf + r, size -r, ", FPU_REG:32/16");
2483 break;
2484 case E_NDS32_FPU_REG_32SP_32DP:
2485 r += snprintf (buf + r, size -r, ", FPU_REG:32/32");
2486 break;
2487 }
2488 }
2489
2490 if (config & E_NDS32_HAS_AUDIO_INST)
2491 r += snprintf (buf + r, size -r, ", AUDIO");
2492
2493 if (config & E_NDS32_HAS_STRING_INST)
2494 r += snprintf (buf + r, size -r, ", STR");
2495
2496 if (config & E_NDS32_HAS_REDUCED_REGS)
2497 r += snprintf (buf + r, size -r, ", 16REG");
2498
2499 if (config & E_NDS32_HAS_VIDEO_INST)
2500 {
2501 if (version <= E_NDS32_ELF_VER_1_3)
2502 r += snprintf (buf + r, size -r, ", VIDEO");
2503 else
2504 r += snprintf (buf + r, size -r, ", SATURATION");
2505 }
2506
2507 if (config & E_NDS32_HAS_ENCRIPT_INST)
2508 r += snprintf (buf + r, size -r, ", ENCRP");
2509
2510 if (config & E_NDS32_HAS_L2C_INST)
2511 r += snprintf (buf + r, size -r, ", L2C");
2512 }
2513
2514 static char *
2515 get_machine_flags (unsigned e_flags, unsigned e_machine)
2516 {
2517 static char buf[1024];
2518
2519 buf[0] = '\0';
2520
2521 if (e_flags)
2522 {
2523 switch (e_machine)
2524 {
2525 default:
2526 break;
2527
2528 case EM_ARM:
2529 decode_ARM_machine_flags (e_flags, buf);
2530 break;
2531
2532 case EM_BLACKFIN:
2533 if (e_flags & EF_BFIN_PIC)
2534 strcat (buf, ", PIC");
2535
2536 if (e_flags & EF_BFIN_FDPIC)
2537 strcat (buf, ", FDPIC");
2538
2539 if (e_flags & EF_BFIN_CODE_IN_L1)
2540 strcat (buf, ", code in L1");
2541
2542 if (e_flags & EF_BFIN_DATA_IN_L1)
2543 strcat (buf, ", data in L1");
2544
2545 break;
2546
2547 case EM_CYGNUS_FRV:
2548 switch (e_flags & EF_FRV_CPU_MASK)
2549 {
2550 case EF_FRV_CPU_GENERIC:
2551 break;
2552
2553 default:
2554 strcat (buf, ", fr???");
2555 break;
2556
2557 case EF_FRV_CPU_FR300:
2558 strcat (buf, ", fr300");
2559 break;
2560
2561 case EF_FRV_CPU_FR400:
2562 strcat (buf, ", fr400");
2563 break;
2564 case EF_FRV_CPU_FR405:
2565 strcat (buf, ", fr405");
2566 break;
2567
2568 case EF_FRV_CPU_FR450:
2569 strcat (buf, ", fr450");
2570 break;
2571
2572 case EF_FRV_CPU_FR500:
2573 strcat (buf, ", fr500");
2574 break;
2575 case EF_FRV_CPU_FR550:
2576 strcat (buf, ", fr550");
2577 break;
2578
2579 case EF_FRV_CPU_SIMPLE:
2580 strcat (buf, ", simple");
2581 break;
2582 case EF_FRV_CPU_TOMCAT:
2583 strcat (buf, ", tomcat");
2584 break;
2585 }
2586 break;
2587
2588 case EM_68K:
2589 if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
2590 strcat (buf, ", m68000");
2591 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
2592 strcat (buf, ", cpu32");
2593 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
2594 strcat (buf, ", fido_a");
2595 else
2596 {
2597 char const * isa = _("unknown");
2598 char const * mac = _("unknown mac");
2599 char const * additional = NULL;
2600
2601 switch (e_flags & EF_M68K_CF_ISA_MASK)
2602 {
2603 case EF_M68K_CF_ISA_A_NODIV:
2604 isa = "A";
2605 additional = ", nodiv";
2606 break;
2607 case EF_M68K_CF_ISA_A:
2608 isa = "A";
2609 break;
2610 case EF_M68K_CF_ISA_A_PLUS:
2611 isa = "A+";
2612 break;
2613 case EF_M68K_CF_ISA_B_NOUSP:
2614 isa = "B";
2615 additional = ", nousp";
2616 break;
2617 case EF_M68K_CF_ISA_B:
2618 isa = "B";
2619 break;
2620 case EF_M68K_CF_ISA_C:
2621 isa = "C";
2622 break;
2623 case EF_M68K_CF_ISA_C_NODIV:
2624 isa = "C";
2625 additional = ", nodiv";
2626 break;
2627 }
2628 strcat (buf, ", cf, isa ");
2629 strcat (buf, isa);
2630 if (additional)
2631 strcat (buf, additional);
2632 if (e_flags & EF_M68K_CF_FLOAT)
2633 strcat (buf, ", float");
2634 switch (e_flags & EF_M68K_CF_MAC_MASK)
2635 {
2636 case 0:
2637 mac = NULL;
2638 break;
2639 case EF_M68K_CF_MAC:
2640 mac = "mac";
2641 break;
2642 case EF_M68K_CF_EMAC:
2643 mac = "emac";
2644 break;
2645 case EF_M68K_CF_EMAC_B:
2646 mac = "emac_b";
2647 break;
2648 }
2649 if (mac)
2650 {
2651 strcat (buf, ", ");
2652 strcat (buf, mac);
2653 }
2654 }
2655 break;
2656
2657 case EM_PPC:
2658 if (e_flags & EF_PPC_EMB)
2659 strcat (buf, ", emb");
2660
2661 if (e_flags & EF_PPC_RELOCATABLE)
2662 strcat (buf, _(", relocatable"));
2663
2664 if (e_flags & EF_PPC_RELOCATABLE_LIB)
2665 strcat (buf, _(", relocatable-lib"));
2666 break;
2667
2668 case EM_PPC64:
2669 if (e_flags & EF_PPC64_ABI)
2670 {
2671 char abi[] = ", abiv0";
2672
2673 abi[6] += e_flags & EF_PPC64_ABI;
2674 strcat (buf, abi);
2675 }
2676 break;
2677
2678 case EM_V800:
2679 if ((e_flags & EF_RH850_ABI) == EF_RH850_ABI)
2680 strcat (buf, ", RH850 ABI");
2681
2682 if (e_flags & EF_V800_850E3)
2683 strcat (buf, ", V3 architecture");
2684
2685 if ((e_flags & (EF_RH850_FPU_DOUBLE | EF_RH850_FPU_SINGLE)) == 0)
2686 strcat (buf, ", FPU not used");
2687
2688 if ((e_flags & (EF_RH850_REGMODE22 | EF_RH850_REGMODE32)) == 0)
2689 strcat (buf, ", regmode: COMMON");
2690
2691 if ((e_flags & (EF_RH850_GP_FIX | EF_RH850_GP_NOFIX)) == 0)
2692 strcat (buf, ", r4 not used");
2693
2694 if ((e_flags & (EF_RH850_EP_FIX | EF_RH850_EP_NOFIX)) == 0)
2695 strcat (buf, ", r30 not used");
2696
2697 if ((e_flags & (EF_RH850_TP_FIX | EF_RH850_TP_NOFIX)) == 0)
2698 strcat (buf, ", r5 not used");
2699
2700 if ((e_flags & (EF_RH850_REG2_RESERVE | EF_RH850_REG2_NORESERVE)) == 0)
2701 strcat (buf, ", r2 not used");
2702
2703 for (e_flags &= 0xFFFF; e_flags; e_flags &= ~ (e_flags & - e_flags))
2704 {
2705 switch (e_flags & - e_flags)
2706 {
2707 case EF_RH850_FPU_DOUBLE: strcat (buf, ", double precision FPU"); break;
2708 case EF_RH850_FPU_SINGLE: strcat (buf, ", single precision FPU"); break;
2709 case EF_RH850_SIMD: strcat (buf, ", SIMD"); break;
2710 case EF_RH850_CACHE: strcat (buf, ", CACHE"); break;
2711 case EF_RH850_MMU: strcat (buf, ", MMU"); break;
2712 case EF_RH850_REGMODE22: strcat (buf, ", regmode:22"); break;
2713 case EF_RH850_REGMODE32: strcat (buf, ", regmode:23"); break;
2714 case EF_RH850_DATA_ALIGN8: strcat (buf, ", 8-byte alignment"); break;
2715 case EF_RH850_GP_FIX: strcat (buf, ", r4 fixed"); break;
2716 case EF_RH850_GP_NOFIX: strcat (buf, ", r4 free"); break;
2717 case EF_RH850_EP_FIX: strcat (buf, ", r30 fixed"); break;
2718 case EF_RH850_EP_NOFIX: strcat (buf, ", r30 free"); break;
2719 case EF_RH850_TP_FIX: strcat (buf, ", r5 fixed"); break;
2720 case EF_RH850_TP_NOFIX: strcat (buf, ", r5 free"); break;
2721 case EF_RH850_REG2_RESERVE: strcat (buf, ", r2 fixed"); break;
2722 case EF_RH850_REG2_NORESERVE: strcat (buf, ", r2 free"); break;
2723 default: break;
2724 }
2725 }
2726 break;
2727
2728 case EM_V850:
2729 case EM_CYGNUS_V850:
2730 switch (e_flags & EF_V850_ARCH)
2731 {
2732 case E_V850E3V5_ARCH:
2733 strcat (buf, ", v850e3v5");
2734 break;
2735 case E_V850E2V3_ARCH:
2736 strcat (buf, ", v850e2v3");
2737 break;
2738 case E_V850E2_ARCH:
2739 strcat (buf, ", v850e2");
2740 break;
2741 case E_V850E1_ARCH:
2742 strcat (buf, ", v850e1");
2743 break;
2744 case E_V850E_ARCH:
2745 strcat (buf, ", v850e");
2746 break;
2747 case E_V850_ARCH:
2748 strcat (buf, ", v850");
2749 break;
2750 default:
2751 strcat (buf, _(", unknown v850 architecture variant"));
2752 break;
2753 }
2754 break;
2755
2756 case EM_M32R:
2757 case EM_CYGNUS_M32R:
2758 if ((e_flags & EF_M32R_ARCH) == E_M32R_ARCH)
2759 strcat (buf, ", m32r");
2760 break;
2761
2762 case EM_MIPS:
2763 case EM_MIPS_RS3_LE:
2764 if (e_flags & EF_MIPS_NOREORDER)
2765 strcat (buf, ", noreorder");
2766
2767 if (e_flags & EF_MIPS_PIC)
2768 strcat (buf, ", pic");
2769
2770 if (e_flags & EF_MIPS_CPIC)
2771 strcat (buf, ", cpic");
2772
2773 if (e_flags & EF_MIPS_UCODE)
2774 strcat (buf, ", ugen_reserved");
2775
2776 if (e_flags & EF_MIPS_ABI2)
2777 strcat (buf, ", abi2");
2778
2779 if (e_flags & EF_MIPS_OPTIONS_FIRST)
2780 strcat (buf, ", odk first");
2781
2782 if (e_flags & EF_MIPS_32BITMODE)
2783 strcat (buf, ", 32bitmode");
2784
2785 if (e_flags & EF_MIPS_NAN2008)
2786 strcat (buf, ", nan2008");
2787
2788 if (e_flags & EF_MIPS_FP64)
2789 strcat (buf, ", fp64");
2790
2791 switch ((e_flags & EF_MIPS_MACH))
2792 {
2793 case E_MIPS_MACH_3900: strcat (buf, ", 3900"); break;
2794 case E_MIPS_MACH_4010: strcat (buf, ", 4010"); break;
2795 case E_MIPS_MACH_4100: strcat (buf, ", 4100"); break;
2796 case E_MIPS_MACH_4111: strcat (buf, ", 4111"); break;
2797 case E_MIPS_MACH_4120: strcat (buf, ", 4120"); break;
2798 case E_MIPS_MACH_4650: strcat (buf, ", 4650"); break;
2799 case E_MIPS_MACH_5400: strcat (buf, ", 5400"); break;
2800 case E_MIPS_MACH_5500: strcat (buf, ", 5500"); break;
2801 case E_MIPS_MACH_SB1: strcat (buf, ", sb1"); break;
2802 case E_MIPS_MACH_9000: strcat (buf, ", 9000"); break;
2803 case E_MIPS_MACH_LS2E: strcat (buf, ", loongson-2e"); break;
2804 case E_MIPS_MACH_LS2F: strcat (buf, ", loongson-2f"); break;
2805 case E_MIPS_MACH_LS3A: strcat (buf, ", loongson-3a"); break;
2806 case E_MIPS_MACH_OCTEON: strcat (buf, ", octeon"); break;
2807 case E_MIPS_MACH_OCTEON2: strcat (buf, ", octeon2"); break;
2808 case E_MIPS_MACH_OCTEON3: strcat (buf, ", octeon3"); break;
2809 case E_MIPS_MACH_XLR: strcat (buf, ", xlr"); break;
2810 case 0:
2811 /* We simply ignore the field in this case to avoid confusion:
2812 MIPS ELF does not specify EF_MIPS_MACH, it is a GNU
2813 extension. */
2814 break;
2815 default: strcat (buf, _(", unknown CPU")); break;
2816 }
2817
2818 switch ((e_flags & EF_MIPS_ABI))
2819 {
2820 case E_MIPS_ABI_O32: strcat (buf, ", o32"); break;
2821 case E_MIPS_ABI_O64: strcat (buf, ", o64"); break;
2822 case E_MIPS_ABI_EABI32: strcat (buf, ", eabi32"); break;
2823 case E_MIPS_ABI_EABI64: strcat (buf, ", eabi64"); break;
2824 case 0:
2825 /* We simply ignore the field in this case to avoid confusion:
2826 MIPS ELF does not specify EF_MIPS_ABI, it is a GNU extension.
2827 This means it is likely to be an o32 file, but not for
2828 sure. */
2829 break;
2830 default: strcat (buf, _(", unknown ABI")); break;
2831 }
2832
2833 if (e_flags & EF_MIPS_ARCH_ASE_MDMX)
2834 strcat (buf, ", mdmx");
2835
2836 if (e_flags & EF_MIPS_ARCH_ASE_M16)
2837 strcat (buf, ", mips16");
2838
2839 if (e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
2840 strcat (buf, ", micromips");
2841
2842 switch ((e_flags & EF_MIPS_ARCH))
2843 {
2844 case E_MIPS_ARCH_1: strcat (buf, ", mips1"); break;
2845 case E_MIPS_ARCH_2: strcat (buf, ", mips2"); break;
2846 case E_MIPS_ARCH_3: strcat (buf, ", mips3"); break;
2847 case E_MIPS_ARCH_4: strcat (buf, ", mips4"); break;
2848 case E_MIPS_ARCH_5: strcat (buf, ", mips5"); break;
2849 case E_MIPS_ARCH_32: strcat (buf, ", mips32"); break;
2850 case E_MIPS_ARCH_32R2: strcat (buf, ", mips32r2"); break;
2851 case E_MIPS_ARCH_64: strcat (buf, ", mips64"); break;
2852 case E_MIPS_ARCH_64R2: strcat (buf, ", mips64r2"); break;
2853 default: strcat (buf, _(", unknown ISA")); break;
2854 }
2855 break;
2856
2857 case EM_NDS32:
2858 decode_NDS32_machine_flags (e_flags, buf, sizeof buf);
2859 break;
2860
2861 case EM_SH:
2862 switch ((e_flags & EF_SH_MACH_MASK))
2863 {
2864 case EF_SH1: strcat (buf, ", sh1"); break;
2865 case EF_SH2: strcat (buf, ", sh2"); break;
2866 case EF_SH3: strcat (buf, ", sh3"); break;
2867 case EF_SH_DSP: strcat (buf, ", sh-dsp"); break;
2868 case EF_SH3_DSP: strcat (buf, ", sh3-dsp"); break;
2869 case EF_SH4AL_DSP: strcat (buf, ", sh4al-dsp"); break;
2870 case EF_SH3E: strcat (buf, ", sh3e"); break;
2871 case EF_SH4: strcat (buf, ", sh4"); break;
2872 case EF_SH5: strcat (buf, ", sh5"); break;
2873 case EF_SH2E: strcat (buf, ", sh2e"); break;
2874 case EF_SH4A: strcat (buf, ", sh4a"); break;
2875 case EF_SH2A: strcat (buf, ", sh2a"); break;
2876 case EF_SH4_NOFPU: strcat (buf, ", sh4-nofpu"); break;
2877 case EF_SH4A_NOFPU: strcat (buf, ", sh4a-nofpu"); break;
2878 case EF_SH2A_NOFPU: strcat (buf, ", sh2a-nofpu"); break;
2879 case EF_SH3_NOMMU: strcat (buf, ", sh3-nommu"); break;
2880 case EF_SH4_NOMMU_NOFPU: strcat (buf, ", sh4-nommu-nofpu"); break;
2881 case EF_SH2A_SH4_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh4-nommu-nofpu"); break;
2882 case EF_SH2A_SH3_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh3-nommu"); break;
2883 case EF_SH2A_SH4: strcat (buf, ", sh2a-or-sh4"); break;
2884 case EF_SH2A_SH3E: strcat (buf, ", sh2a-or-sh3e"); break;
2885 default: strcat (buf, _(", unknown ISA")); break;
2886 }
2887
2888 if (e_flags & EF_SH_PIC)
2889 strcat (buf, ", pic");
2890
2891 if (e_flags & EF_SH_FDPIC)
2892 strcat (buf, ", fdpic");
2893 break;
2894
2895 case EM_OR1K:
2896 if (e_flags & EF_OR1K_NODELAY)
2897 strcat (buf, ", no delay");
2898 break;
2899
2900 case EM_SPARCV9:
2901 if (e_flags & EF_SPARC_32PLUS)
2902 strcat (buf, ", v8+");
2903
2904 if (e_flags & EF_SPARC_SUN_US1)
2905 strcat (buf, ", ultrasparcI");
2906
2907 if (e_flags & EF_SPARC_SUN_US3)
2908 strcat (buf, ", ultrasparcIII");
2909
2910 if (e_flags & EF_SPARC_HAL_R1)
2911 strcat (buf, ", halr1");
2912
2913 if (e_flags & EF_SPARC_LEDATA)
2914 strcat (buf, ", ledata");
2915
2916 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_TSO)
2917 strcat (buf, ", tso");
2918
2919 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_PSO)
2920 strcat (buf, ", pso");
2921
2922 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_RMO)
2923 strcat (buf, ", rmo");
2924 break;
2925
2926 case EM_PARISC:
2927 switch (e_flags & EF_PARISC_ARCH)
2928 {
2929 case EFA_PARISC_1_0:
2930 strcpy (buf, ", PA-RISC 1.0");
2931 break;
2932 case EFA_PARISC_1_1:
2933 strcpy (buf, ", PA-RISC 1.1");
2934 break;
2935 case EFA_PARISC_2_0:
2936 strcpy (buf, ", PA-RISC 2.0");
2937 break;
2938 default:
2939 break;
2940 }
2941 if (e_flags & EF_PARISC_TRAPNIL)
2942 strcat (buf, ", trapnil");
2943 if (e_flags & EF_PARISC_EXT)
2944 strcat (buf, ", ext");
2945 if (e_flags & EF_PARISC_LSB)
2946 strcat (buf, ", lsb");
2947 if (e_flags & EF_PARISC_WIDE)
2948 strcat (buf, ", wide");
2949 if (e_flags & EF_PARISC_NO_KABP)
2950 strcat (buf, ", no kabp");
2951 if (e_flags & EF_PARISC_LAZYSWAP)
2952 strcat (buf, ", lazyswap");
2953 break;
2954
2955 case EM_PJ:
2956 case EM_PJ_OLD:
2957 if ((e_flags & EF_PICOJAVA_NEWCALLS) == EF_PICOJAVA_NEWCALLS)
2958 strcat (buf, ", new calling convention");
2959
2960 if ((e_flags & EF_PICOJAVA_GNUCALLS) == EF_PICOJAVA_GNUCALLS)
2961 strcat (buf, ", gnu calling convention");
2962 break;
2963
2964 case EM_IA_64:
2965 if ((e_flags & EF_IA_64_ABI64))
2966 strcat (buf, ", 64-bit");
2967 else
2968 strcat (buf, ", 32-bit");
2969 if ((e_flags & EF_IA_64_REDUCEDFP))
2970 strcat (buf, ", reduced fp model");
2971 if ((e_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
2972 strcat (buf, ", no function descriptors, constant gp");
2973 else if ((e_flags & EF_IA_64_CONS_GP))
2974 strcat (buf, ", constant gp");
2975 if ((e_flags & EF_IA_64_ABSOLUTE))
2976 strcat (buf, ", absolute");
2977 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
2978 {
2979 if ((e_flags & EF_IA_64_VMS_LINKAGES))
2980 strcat (buf, ", vms_linkages");
2981 switch ((e_flags & EF_IA_64_VMS_COMCOD))
2982 {
2983 case EF_IA_64_VMS_COMCOD_SUCCESS:
2984 break;
2985 case EF_IA_64_VMS_COMCOD_WARNING:
2986 strcat (buf, ", warning");
2987 break;
2988 case EF_IA_64_VMS_COMCOD_ERROR:
2989 strcat (buf, ", error");
2990 break;
2991 case EF_IA_64_VMS_COMCOD_ABORT:
2992 strcat (buf, ", abort");
2993 break;
2994 default:
2995 abort ();
2996 }
2997 }
2998 break;
2999
3000 case EM_VAX:
3001 if ((e_flags & EF_VAX_NONPIC))
3002 strcat (buf, ", non-PIC");
3003 if ((e_flags & EF_VAX_DFLOAT))
3004 strcat (buf, ", D-Float");
3005 if ((e_flags & EF_VAX_GFLOAT))
3006 strcat (buf, ", G-Float");
3007 break;
3008
3009 case EM_RL78:
3010 if (e_flags & E_FLAG_RL78_G10)
3011 strcat (buf, ", G10");
3012 if (e_flags & E_FLAG_RL78_64BIT_DOUBLES)
3013 strcat (buf, ", 64-bit doubles");
3014 break;
3015
3016 case EM_RX:
3017 if (e_flags & E_FLAG_RX_64BIT_DOUBLES)
3018 strcat (buf, ", 64-bit doubles");
3019 if (e_flags & E_FLAG_RX_DSP)
3020 strcat (buf, ", dsp");
3021 if (e_flags & E_FLAG_RX_PID)
3022 strcat (buf, ", pid");
3023 if (e_flags & E_FLAG_RX_ABI)
3024 strcat (buf, ", RX ABI");
3025 break;
3026
3027 case EM_S390:
3028 if (e_flags & EF_S390_HIGH_GPRS)
3029 strcat (buf, ", highgprs");
3030 break;
3031
3032 case EM_TI_C6000:
3033 if ((e_flags & EF_C6000_REL))
3034 strcat (buf, ", relocatable module");
3035 break;
3036
3037 case EM_MSP430:
3038 strcat (buf, _(": architecture variant: "));
3039 switch (e_flags & EF_MSP430_MACH)
3040 {
3041 case E_MSP430_MACH_MSP430x11: strcat (buf, "MSP430x11"); break;
3042 case E_MSP430_MACH_MSP430x11x1 : strcat (buf, "MSP430x11x1 "); break;
3043 case E_MSP430_MACH_MSP430x12: strcat (buf, "MSP430x12"); break;
3044 case E_MSP430_MACH_MSP430x13: strcat (buf, "MSP430x13"); break;
3045 case E_MSP430_MACH_MSP430x14: strcat (buf, "MSP430x14"); break;
3046 case E_MSP430_MACH_MSP430x15: strcat (buf, "MSP430x15"); break;
3047 case E_MSP430_MACH_MSP430x16: strcat (buf, "MSP430x16"); break;
3048 case E_MSP430_MACH_MSP430x31: strcat (buf, "MSP430x31"); break;
3049 case E_MSP430_MACH_MSP430x32: strcat (buf, "MSP430x32"); break;
3050 case E_MSP430_MACH_MSP430x33: strcat (buf, "MSP430x33"); break;
3051 case E_MSP430_MACH_MSP430x41: strcat (buf, "MSP430x41"); break;
3052 case E_MSP430_MACH_MSP430x42: strcat (buf, "MSP430x42"); break;
3053 case E_MSP430_MACH_MSP430x43: strcat (buf, "MSP430x43"); break;
3054 case E_MSP430_MACH_MSP430x44: strcat (buf, "MSP430x44"); break;
3055 case E_MSP430_MACH_MSP430X : strcat (buf, "MSP430X"); break;
3056 default:
3057 strcat (buf, _(": unknown")); break;
3058 }
3059
3060 if (e_flags & ~ EF_MSP430_MACH)
3061 strcat (buf, _(": unknown extra flag bits also present"));
3062 }
3063 }
3064
3065 return buf;
3066 }
3067
3068 static const char *
3069 get_osabi_name (unsigned int osabi)
3070 {
3071 static char buff[32];
3072
3073 switch (osabi)
3074 {
3075 case ELFOSABI_NONE: return "UNIX - System V";
3076 case ELFOSABI_HPUX: return "UNIX - HP-UX";
3077 case ELFOSABI_NETBSD: return "UNIX - NetBSD";
3078 case ELFOSABI_GNU: return "UNIX - GNU";
3079 case ELFOSABI_SOLARIS: return "UNIX - Solaris";
3080 case ELFOSABI_AIX: return "UNIX - AIX";
3081 case ELFOSABI_IRIX: return "UNIX - IRIX";
3082 case ELFOSABI_FREEBSD: return "UNIX - FreeBSD";
3083 case ELFOSABI_TRU64: return "UNIX - TRU64";
3084 case ELFOSABI_MODESTO: return "Novell - Modesto";
3085 case ELFOSABI_OPENBSD: return "UNIX - OpenBSD";
3086 case ELFOSABI_OPENVMS: return "VMS - OpenVMS";
3087 case ELFOSABI_NSK: return "HP - Non-Stop Kernel";
3088 case ELFOSABI_AROS: return "AROS";
3089 case ELFOSABI_FENIXOS: return "FenixOS";
3090 default:
3091 if (osabi >= 64)
3092 switch (elf_header.e_machine)
3093 {
3094 case EM_ARM:
3095 switch (osabi)
3096 {
3097 case ELFOSABI_ARM: return "ARM";
3098 default:
3099 break;
3100 }
3101 break;
3102
3103 case EM_MSP430:
3104 case EM_MSP430_OLD:
3105 switch (osabi)
3106 {
3107 case ELFOSABI_STANDALONE: return _("Standalone App");
3108 default:
3109 break;
3110 }
3111 break;
3112
3113 case EM_TI_C6000:
3114 switch (osabi)
3115 {
3116 case ELFOSABI_C6000_ELFABI: return _("Bare-metal C6000");
3117 case ELFOSABI_C6000_LINUX: return "Linux C6000";
3118 default:
3119 break;
3120 }
3121 break;
3122
3123 default:
3124 break;
3125 }
3126 snprintf (buff, sizeof (buff), _("<unknown: %x>"), osabi);
3127 return buff;
3128 }
3129 }
3130
3131 static const char *
3132 get_aarch64_segment_type (unsigned long type)
3133 {
3134 switch (type)
3135 {
3136 case PT_AARCH64_ARCHEXT:
3137 return "AARCH64_ARCHEXT";
3138 default:
3139 break;
3140 }
3141
3142 return NULL;
3143 }
3144
3145 static const char *
3146 get_arm_segment_type (unsigned long type)
3147 {
3148 switch (type)
3149 {
3150 case PT_ARM_EXIDX:
3151 return "EXIDX";
3152 default:
3153 break;
3154 }
3155
3156 return NULL;
3157 }
3158
3159 static const char *
3160 get_mips_segment_type (unsigned long type)
3161 {
3162 switch (type)
3163 {
3164 case PT_MIPS_REGINFO:
3165 return "REGINFO";
3166 case PT_MIPS_RTPROC:
3167 return "RTPROC";
3168 case PT_MIPS_OPTIONS:
3169 return "OPTIONS";
3170 default:
3171 break;
3172 }
3173
3174 return NULL;
3175 }
3176
3177 static const char *
3178 get_parisc_segment_type (unsigned long type)
3179 {
3180 switch (type)
3181 {
3182 case PT_HP_TLS: return "HP_TLS";
3183 case PT_HP_CORE_NONE: return "HP_CORE_NONE";
3184 case PT_HP_CORE_VERSION: return "HP_CORE_VERSION";
3185 case PT_HP_CORE_KERNEL: return "HP_CORE_KERNEL";
3186 case PT_HP_CORE_COMM: return "HP_CORE_COMM";
3187 case PT_HP_CORE_PROC: return "HP_CORE_PROC";
3188 case PT_HP_CORE_LOADABLE: return "HP_CORE_LOADABLE";
3189 case PT_HP_CORE_STACK: return "HP_CORE_STACK";
3190 case PT_HP_CORE_SHM: return "HP_CORE_SHM";
3191 case PT_HP_CORE_MMF: return "HP_CORE_MMF";
3192 case PT_HP_PARALLEL: return "HP_PARALLEL";
3193 case PT_HP_FASTBIND: return "HP_FASTBIND";
3194 case PT_HP_OPT_ANNOT: return "HP_OPT_ANNOT";
3195 case PT_HP_HSL_ANNOT: return "HP_HSL_ANNOT";
3196 case PT_HP_STACK: return "HP_STACK";
3197 case PT_HP_CORE_UTSNAME: return "HP_CORE_UTSNAME";
3198 case PT_PARISC_ARCHEXT: return "PARISC_ARCHEXT";
3199 case PT_PARISC_UNWIND: return "PARISC_UNWIND";
3200 case PT_PARISC_WEAKORDER: return "PARISC_WEAKORDER";
3201 default:
3202 break;
3203 }
3204
3205 return NULL;
3206 }
3207
3208 static const char *
3209 get_ia64_segment_type (unsigned long type)
3210 {
3211 switch (type)
3212 {
3213 case PT_IA_64_ARCHEXT: return "IA_64_ARCHEXT";
3214 case PT_IA_64_UNWIND: return "IA_64_UNWIND";
3215 case PT_HP_TLS: return "HP_TLS";
3216 case PT_IA_64_HP_OPT_ANOT: return "HP_OPT_ANNOT";
3217 case PT_IA_64_HP_HSL_ANOT: return "HP_HSL_ANNOT";
3218 case PT_IA_64_HP_STACK: return "HP_STACK";
3219 default:
3220 break;
3221 }
3222
3223 return NULL;
3224 }
3225
3226 static const char *
3227 get_tic6x_segment_type (unsigned long type)
3228 {
3229 switch (type)
3230 {
3231 case PT_C6000_PHATTR: return "C6000_PHATTR";
3232 default:
3233 break;
3234 }
3235
3236 return NULL;
3237 }
3238
3239 static const char *
3240 get_segment_type (unsigned long p_type)
3241 {
3242 static char buff[32];
3243
3244 switch (p_type)
3245 {
3246 case PT_NULL: return "NULL";
3247 case PT_LOAD: return "LOAD";
3248 case PT_DYNAMIC: return "DYNAMIC";
3249 case PT_INTERP: return "INTERP";
3250 case PT_NOTE: return "NOTE";
3251 case PT_SHLIB: return "SHLIB";
3252 case PT_PHDR: return "PHDR";
3253 case PT_TLS: return "TLS";
3254
3255 case PT_GNU_EH_FRAME:
3256 return "GNU_EH_FRAME";
3257 case PT_GNU_STACK: return "GNU_STACK";
3258 case PT_GNU_RELRO: return "GNU_RELRO";
3259
3260 default:
3261 if ((p_type >= PT_LOPROC) && (p_type <= PT_HIPROC))
3262 {
3263 const char * result;
3264
3265 switch (elf_header.e_machine)
3266 {
3267 case EM_AARCH64:
3268 result = get_aarch64_segment_type (p_type);
3269 break;
3270 case EM_ARM:
3271 result = get_arm_segment_type (p_type);
3272 break;
3273 case EM_MIPS:
3274 case EM_MIPS_RS3_LE:
3275 result = get_mips_segment_type (p_type);
3276 break;
3277 case EM_PARISC:
3278 result = get_parisc_segment_type (p_type);
3279 break;
3280 case EM_IA_64:
3281 result = get_ia64_segment_type (p_type);
3282 break;
3283 case EM_TI_C6000:
3284 result = get_tic6x_segment_type (p_type);
3285 break;
3286 default:
3287 result = NULL;
3288 break;
3289 }
3290
3291 if (result != NULL)
3292 return result;
3293
3294 sprintf (buff, "LOPROC+%lx", p_type - PT_LOPROC);
3295 }
3296 else if ((p_type >= PT_LOOS) && (p_type <= PT_HIOS))
3297 {
3298 const char * result;
3299
3300 switch (elf_header.e_machine)
3301 {
3302 case EM_PARISC:
3303 result = get_parisc_segment_type (p_type);
3304 break;
3305 case EM_IA_64:
3306 result = get_ia64_segment_type (p_type);
3307 break;
3308 default:
3309 result = NULL;
3310 break;
3311 }
3312
3313 if (result != NULL)
3314 return result;
3315
3316 sprintf (buff, "LOOS+%lx", p_type - PT_LOOS);
3317 }
3318 else
3319 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), p_type);
3320
3321 return buff;
3322 }
3323 }
3324
3325 static const char *
3326 get_mips_section_type_name (unsigned int sh_type)
3327 {
3328 switch (sh_type)
3329 {
3330 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
3331 case SHT_MIPS_MSYM: return "MIPS_MSYM";
3332 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
3333 case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
3334 case SHT_MIPS_UCODE: return "MIPS_UCODE";
3335 case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
3336 case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
3337 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
3338 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
3339 case SHT_MIPS_RELD: return "MIPS_RELD";
3340 case SHT_MIPS_IFACE: return "MIPS_IFACE";
3341 case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
3342 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
3343 case SHT_MIPS_SHDR: return "MIPS_SHDR";
3344 case SHT_MIPS_FDESC: return "MIPS_FDESC";
3345 case SHT_MIPS_EXTSYM: return "MIPS_EXTSYM";
3346 case SHT_MIPS_DENSE: return "MIPS_DENSE";
3347 case SHT_MIPS_PDESC: return "MIPS_PDESC";
3348 case SHT_MIPS_LOCSYM: return "MIPS_LOCSYM";
3349 case SHT_MIPS_AUXSYM: return "MIPS_AUXSYM";
3350 case SHT_MIPS_OPTSYM: return "MIPS_OPTSYM";
3351 case SHT_MIPS_LOCSTR: return "MIPS_LOCSTR";
3352 case SHT_MIPS_LINE: return "MIPS_LINE";
3353 case SHT_MIPS_RFDESC: return "MIPS_RFDESC";
3354 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
3355 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
3356 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
3357 case SHT_MIPS_DWARF: return "MIPS_DWARF";
3358 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
3359 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
3360 case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
3361 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
3362 case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
3363 case SHT_MIPS_XLATE: return "MIPS_XLATE";
3364 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
3365 case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
3366 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
3367 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
3368 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
3369 default:
3370 break;
3371 }
3372 return NULL;
3373 }
3374
3375 static const char *
3376 get_parisc_section_type_name (unsigned int sh_type)
3377 {
3378 switch (sh_type)
3379 {
3380 case SHT_PARISC_EXT: return "PARISC_EXT";
3381 case SHT_PARISC_UNWIND: return "PARISC_UNWIND";
3382 case SHT_PARISC_DOC: return "PARISC_DOC";
3383 case SHT_PARISC_ANNOT: return "PARISC_ANNOT";
3384 case SHT_PARISC_SYMEXTN: return "PARISC_SYMEXTN";
3385 case SHT_PARISC_STUBS: return "PARISC_STUBS";
3386 case SHT_PARISC_DLKM: return "PARISC_DLKM";
3387 default:
3388 break;
3389 }
3390 return NULL;
3391 }
3392
3393 static const char *
3394 get_ia64_section_type_name (unsigned int sh_type)
3395 {
3396 /* If the top 8 bits are 0x78 the next 8 are the os/abi ID. */
3397 if ((sh_type & 0xFF000000) == SHT_IA_64_LOPSREG)
3398 return get_osabi_name ((sh_type & 0x00FF0000) >> 16);
3399
3400 switch (sh_type)
3401 {
3402 case SHT_IA_64_EXT: return "IA_64_EXT";
3403 case SHT_IA_64_UNWIND: return "IA_64_UNWIND";
3404 case SHT_IA_64_PRIORITY_INIT: return "IA_64_PRIORITY_INIT";
3405 case SHT_IA_64_VMS_TRACE: return "VMS_TRACE";
3406 case SHT_IA_64_VMS_TIE_SIGNATURES: return "VMS_TIE_SIGNATURES";
3407 case SHT_IA_64_VMS_DEBUG: return "VMS_DEBUG";
3408 case SHT_IA_64_VMS_DEBUG_STR: return "VMS_DEBUG_STR";
3409 case SHT_IA_64_VMS_LINKAGES: return "VMS_LINKAGES";
3410 case SHT_IA_64_VMS_SYMBOL_VECTOR: return "VMS_SYMBOL_VECTOR";
3411 case SHT_IA_64_VMS_FIXUP: return "VMS_FIXUP";
3412 default:
3413 break;
3414 }
3415 return NULL;
3416 }
3417
3418 static const char *
3419 get_x86_64_section_type_name (unsigned int sh_type)
3420 {
3421 switch (sh_type)
3422 {
3423 case SHT_X86_64_UNWIND: return "X86_64_UNWIND";
3424 default:
3425 break;
3426 }
3427 return NULL;
3428 }
3429
3430 static const char *
3431 get_aarch64_section_type_name (unsigned int sh_type)
3432 {
3433 switch (sh_type)
3434 {
3435 case SHT_AARCH64_ATTRIBUTES:
3436 return "AARCH64_ATTRIBUTES";
3437 default:
3438 break;
3439 }
3440 return NULL;
3441 }
3442
3443 static const char *
3444 get_arm_section_type_name (unsigned int sh_type)
3445 {
3446 switch (sh_type)
3447 {
3448 case SHT_ARM_EXIDX: return "ARM_EXIDX";
3449 case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP";
3450 case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES";
3451 case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY";
3452 case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION";
3453 default:
3454 break;
3455 }
3456 return NULL;
3457 }
3458
3459 static const char *
3460 get_tic6x_section_type_name (unsigned int sh_type)
3461 {
3462 switch (sh_type)
3463 {
3464 case SHT_C6000_UNWIND:
3465 return "C6000_UNWIND";
3466 case SHT_C6000_PREEMPTMAP:
3467 return "C6000_PREEMPTMAP";
3468 case SHT_C6000_ATTRIBUTES:
3469 return "C6000_ATTRIBUTES";
3470 case SHT_TI_ICODE:
3471 return "TI_ICODE";
3472 case SHT_TI_XREF:
3473 return "TI_XREF";
3474 case SHT_TI_HANDLER:
3475 return "TI_HANDLER";
3476 case SHT_TI_INITINFO:
3477 return "TI_INITINFO";
3478 case SHT_TI_PHATTRS:
3479 return "TI_PHATTRS";
3480 default:
3481 break;
3482 }
3483 return NULL;
3484 }
3485
3486 static const char *
3487 get_msp430x_section_type_name (unsigned int sh_type)
3488 {
3489 switch (sh_type)
3490 {
3491 case SHT_MSP430_SEC_FLAGS: return "MSP430_SEC_FLAGS";
3492 case SHT_MSP430_SYM_ALIASES: return "MSP430_SYM_ALIASES";
3493 case SHT_MSP430_ATTRIBUTES: return "MSP430_ATTRIBUTES";
3494 default: return NULL;
3495 }
3496 }
3497
3498 static const char *
3499 get_section_type_name (unsigned int sh_type)
3500 {
3501 static char buff[32];
3502
3503 switch (sh_type)
3504 {
3505 case SHT_NULL: return "NULL";
3506 case SHT_PROGBITS: return "PROGBITS";
3507 case SHT_SYMTAB: return "SYMTAB";
3508 case SHT_STRTAB: return "STRTAB";
3509 case SHT_RELA: return "RELA";
3510 case SHT_HASH: return "HASH";
3511 case SHT_DYNAMIC: return "DYNAMIC";
3512 case SHT_NOTE: return "NOTE";
3513 case SHT_NOBITS: return "NOBITS";
3514 case SHT_REL: return "REL";
3515 case SHT_SHLIB: return "SHLIB";
3516 case SHT_DYNSYM: return "DYNSYM";
3517 case SHT_INIT_ARRAY: return "INIT_ARRAY";
3518 case SHT_FINI_ARRAY: return "FINI_ARRAY";
3519 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
3520 case SHT_GNU_HASH: return "GNU_HASH";
3521 case SHT_GROUP: return "GROUP";
3522 case SHT_SYMTAB_SHNDX: return "SYMTAB SECTION INDICIES";
3523 case SHT_GNU_verdef: return "VERDEF";
3524 case SHT_GNU_verneed: return "VERNEED";
3525 case SHT_GNU_versym: return "VERSYM";
3526 case 0x6ffffff0: return "VERSYM";
3527 case 0x6ffffffc: return "VERDEF";
3528 case 0x7ffffffd: return "AUXILIARY";
3529 case 0x7fffffff: return "FILTER";
3530 case SHT_GNU_LIBLIST: return "GNU_LIBLIST";
3531
3532 default:
3533 if ((sh_type >= SHT_LOPROC) && (sh_type <= SHT_HIPROC))
3534 {
3535 const char * result;
3536
3537 switch (elf_header.e_machine)
3538 {
3539 case EM_MIPS:
3540 case EM_MIPS_RS3_LE:
3541 result = get_mips_section_type_name (sh_type);
3542 break;
3543 case EM_PARISC:
3544 result = get_parisc_section_type_name (sh_type);
3545 break;
3546 case EM_IA_64:
3547 result = get_ia64_section_type_name (sh_type);
3548 break;
3549 case EM_X86_64:
3550 case EM_L1OM:
3551 case EM_K1OM:
3552 result = get_x86_64_section_type_name (sh_type);
3553 break;
3554 case EM_AARCH64:
3555 result = get_aarch64_section_type_name (sh_type);
3556 break;
3557 case EM_ARM:
3558 result = get_arm_section_type_name (sh_type);
3559 break;
3560 case EM_TI_C6000:
3561 result = get_tic6x_section_type_name (sh_type);
3562 break;
3563 case EM_MSP430:
3564 result = get_msp430x_section_type_name (sh_type);
3565 break;
3566 default:
3567 result = NULL;
3568 break;
3569 }
3570
3571 if (result != NULL)
3572 return result;
3573
3574 sprintf (buff, "LOPROC+%x", sh_type - SHT_LOPROC);
3575 }
3576 else if ((sh_type >= SHT_LOOS) && (sh_type <= SHT_HIOS))
3577 {
3578 const char * result;
3579
3580 switch (elf_header.e_machine)
3581 {
3582 case EM_IA_64:
3583 result = get_ia64_section_type_name (sh_type);
3584 break;
3585 default:
3586 result = NULL;
3587 break;
3588 }
3589
3590 if (result != NULL)
3591 return result;
3592
3593 sprintf (buff, "LOOS+%x", sh_type - SHT_LOOS);
3594 }
3595 else if ((sh_type >= SHT_LOUSER) && (sh_type <= SHT_HIUSER))
3596 sprintf (buff, "LOUSER+%x", sh_type - SHT_LOUSER);
3597 else
3598 /* This message is probably going to be displayed in a 15
3599 character wide field, so put the hex value first. */
3600 snprintf (buff, sizeof (buff), _("%08x: <unknown>"), sh_type);
3601
3602 return buff;
3603 }
3604 }
3605
3606 #define OPTION_DEBUG_DUMP 512
3607 #define OPTION_DYN_SYMS 513
3608 #define OPTION_DWARF_DEPTH 514
3609 #define OPTION_DWARF_START 515
3610 #define OPTION_DWARF_CHECK 516
3611
3612 static struct option options[] =
3613 {
3614 {"all", no_argument, 0, 'a'},
3615 {"file-header", no_argument, 0, 'h'},
3616 {"program-headers", no_argument, 0, 'l'},
3617 {"headers", no_argument, 0, 'e'},
3618 {"histogram", no_argument, 0, 'I'},
3619 {"segments", no_argument, 0, 'l'},
3620 {"sections", no_argument, 0, 'S'},
3621 {"section-headers", no_argument, 0, 'S'},
3622 {"section-groups", no_argument, 0, 'g'},
3623 {"section-details", no_argument, 0, 't'},
3624 {"full-section-name",no_argument, 0, 'N'},
3625 {"symbols", no_argument, 0, 's'},
3626 {"syms", no_argument, 0, 's'},
3627 {"dyn-syms", no_argument, 0, OPTION_DYN_SYMS},
3628 {"relocs", no_argument, 0, 'r'},
3629 {"notes", no_argument, 0, 'n'},
3630 {"dynamic", no_argument, 0, 'd'},
3631 {"arch-specific", no_argument, 0, 'A'},
3632 {"version-info", no_argument, 0, 'V'},
3633 {"use-dynamic", no_argument, 0, 'D'},
3634 {"unwind", no_argument, 0, 'u'},
3635 {"archive-index", no_argument, 0, 'c'},
3636 {"hex-dump", required_argument, 0, 'x'},
3637 {"relocated-dump", required_argument, 0, 'R'},
3638 {"string-dump", required_argument, 0, 'p'},
3639 #ifdef SUPPORT_DISASSEMBLY
3640 {"instruction-dump", required_argument, 0, 'i'},
3641 #endif
3642 {"debug-dump", optional_argument, 0, OPTION_DEBUG_DUMP},
3643
3644 {"dwarf-depth", required_argument, 0, OPTION_DWARF_DEPTH},
3645 {"dwarf-start", required_argument, 0, OPTION_DWARF_START},
3646 {"dwarf-check", no_argument, 0, OPTION_DWARF_CHECK},
3647
3648 {"version", no_argument, 0, 'v'},
3649 {"wide", no_argument, 0, 'W'},
3650 {"help", no_argument, 0, 'H'},
3651 {0, no_argument, 0, 0}
3652 };
3653
3654 static void
3655 usage (FILE * stream)
3656 {
3657 fprintf (stream, _("Usage: readelf <option(s)> elf-file(s)\n"));
3658 fprintf (stream, _(" Display information about the contents of ELF format files\n"));
3659 fprintf (stream, _(" Options are:\n\
3660 -a --all Equivalent to: -h -l -S -s -r -d -V -A -I\n\
3661 -h --file-header Display the ELF file header\n\
3662 -l --program-headers Display the program headers\n\
3663 --segments An alias for --program-headers\n\
3664 -S --section-headers Display the sections' header\n\
3665 --sections An alias for --section-headers\n\
3666 -g --section-groups Display the section groups\n\
3667 -t --section-details Display the section details\n\
3668 -e --headers Equivalent to: -h -l -S\n\
3669 -s --syms Display the symbol table\n\
3670 --symbols An alias for --syms\n\
3671 --dyn-syms Display the dynamic symbol table\n\
3672 -n --notes Display the core notes (if present)\n\
3673 -r --relocs Display the relocations (if present)\n\
3674 -u --unwind Display the unwind info (if present)\n\
3675 -d --dynamic Display the dynamic section (if present)\n\
3676 -V --version-info Display the version sections (if present)\n\
3677 -A --arch-specific Display architecture specific information (if any)\n\
3678 -c --archive-index Display the symbol/file index in an archive\n\
3679 -D --use-dynamic Use the dynamic section info when displaying symbols\n\
3680 -x --hex-dump=<number|name>\n\
3681 Dump the contents of section <number|name> as bytes\n\
3682 -p --string-dump=<number|name>\n\
3683 Dump the contents of section <number|name> as strings\n\
3684 -R --relocated-dump=<number|name>\n\
3685 Dump the contents of section <number|name> as relocated bytes\n\
3686 -w[lLiaprmfFsoRt] or\n\
3687 --debug-dump[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,\n\
3688 =frames-interp,=str,=loc,=Ranges,=pubtypes,\n\
3689 =gdb_index,=trace_info,=trace_abbrev,=trace_aranges,\n\
3690 =addr,=cu_index]\n\
3691 Display the contents of DWARF2 debug sections\n"));
3692 fprintf (stream, _("\
3693 --dwarf-depth=N Do not display DIEs at depth N or greater\n\
3694 --dwarf-start=N Display DIEs starting with N, at the same depth\n\
3695 or deeper\n"));
3696 #ifdef SUPPORT_DISASSEMBLY
3697 fprintf (stream, _("\
3698 -i --instruction-dump=<number|name>\n\
3699 Disassemble the contents of section <number|name>\n"));
3700 #endif
3701 fprintf (stream, _("\
3702 -I --histogram Display histogram of bucket list lengths\n\
3703 -W --wide Allow output width to exceed 80 characters\n\
3704 @<file> Read options from <file>\n\
3705 -H --help Display this information\n\
3706 -v --version Display the version number of readelf\n"));
3707
3708 if (REPORT_BUGS_TO[0] && stream == stdout)
3709 fprintf (stdout, _("Report bugs to %s\n"), REPORT_BUGS_TO);
3710
3711 exit (stream == stdout ? 0 : 1);
3712 }
3713
3714 /* Record the fact that the user wants the contents of section number
3715 SECTION to be displayed using the method(s) encoded as flags bits
3716 in TYPE. Note, TYPE can be zero if we are creating the array for
3717 the first time. */
3718
3719 static void
3720 request_dump_bynumber (unsigned int section, dump_type type)
3721 {
3722 if (section >= num_dump_sects)
3723 {
3724 dump_type * new_dump_sects;
3725
3726 new_dump_sects = (dump_type *) calloc (section + 1,
3727 sizeof (* dump_sects));
3728
3729 if (new_dump_sects == NULL)
3730 error (_("Out of memory allocating dump request table.\n"));
3731 else
3732 {
3733 /* Copy current flag settings. */
3734 memcpy (new_dump_sects, dump_sects, num_dump_sects * sizeof (* dump_sects));
3735
3736 free (dump_sects);
3737
3738 dump_sects = new_dump_sects;
3739 num_dump_sects = section + 1;
3740 }
3741 }
3742
3743 if (dump_sects)
3744 dump_sects[section] |= type;
3745
3746 return;
3747 }
3748
3749 /* Request a dump by section name. */
3750
3751 static void
3752 request_dump_byname (const char * section, dump_type type)
3753 {
3754 struct dump_list_entry * new_request;
3755
3756 new_request = (struct dump_list_entry *)
3757 malloc (sizeof (struct dump_list_entry));
3758 if (!new_request)
3759 error (_("Out of memory allocating dump request table.\n"));
3760
3761 new_request->name = strdup (section);
3762 if (!new_request->name)
3763 error (_("Out of memory allocating dump request table.\n"));
3764
3765 new_request->type = type;
3766
3767 new_request->next = dump_sects_byname;
3768 dump_sects_byname = new_request;
3769 }
3770
3771 static inline void
3772 request_dump (dump_type type)
3773 {
3774 int section;
3775 char * cp;
3776
3777 do_dump++;
3778 section = strtoul (optarg, & cp, 0);
3779
3780 if (! *cp && section >= 0)
3781 request_dump_bynumber (section, type);
3782 else
3783 request_dump_byname (optarg, type);
3784 }
3785
3786
3787 static void
3788 parse_args (int argc, char ** argv)
3789 {
3790 int c;
3791
3792 if (argc < 2)
3793 usage (stderr);
3794
3795 while ((c = getopt_long
3796 (argc, argv, "ADHINR:SVWacdeghi:lnp:rstuvw::x:", options, NULL)) != EOF)
3797 {
3798 switch (c)
3799 {
3800 case 0:
3801 /* Long options. */
3802 break;
3803 case 'H':
3804 usage (stdout);
3805 break;
3806
3807 case 'a':
3808 do_syms++;
3809 do_reloc++;
3810 do_unwind++;
3811 do_dynamic++;
3812 do_header++;
3813 do_sections++;
3814 do_section_groups++;
3815 do_segments++;
3816 do_version++;
3817 do_histogram++;
3818 do_arch++;
3819 do_notes++;
3820 break;
3821 case 'g':
3822 do_section_groups++;
3823 break;
3824 case 't':
3825 case 'N':
3826 do_sections++;
3827 do_section_details++;
3828 break;
3829 case 'e':
3830 do_header++;
3831 do_sections++;
3832 do_segments++;
3833 break;
3834 case 'A':
3835 do_arch++;
3836 break;
3837 case 'D':
3838 do_using_dynamic++;
3839 break;
3840 case 'r':
3841 do_reloc++;
3842 break;
3843 case 'u':
3844 do_unwind++;
3845 break;
3846 case 'h':
3847 do_header++;
3848 break;
3849 case 'l':
3850 do_segments++;
3851 break;
3852 case 's':
3853 do_syms++;
3854 break;
3855 case 'S':
3856 do_sections++;
3857 break;
3858 case 'd':
3859 do_dynamic++;
3860 break;
3861 case 'I':
3862 do_histogram++;
3863 break;
3864 case 'n':
3865 do_notes++;
3866 break;
3867 case 'c':
3868 do_archive_index++;
3869 break;
3870 case 'x':
3871 request_dump (HEX_DUMP);
3872 break;
3873 case 'p':
3874 request_dump (STRING_DUMP);
3875 break;
3876 case 'R':
3877 request_dump (RELOC_DUMP);
3878 break;
3879 case 'w':
3880 do_dump++;
3881 if (optarg == 0)
3882 {
3883 do_debugging = 1;
3884 dwarf_select_sections_all ();
3885 }
3886 else
3887 {
3888 do_debugging = 0;
3889 dwarf_select_sections_by_letters (optarg);
3890 }
3891 break;
3892 case OPTION_DEBUG_DUMP:
3893 do_dump++;
3894 if (optarg == 0)
3895 do_debugging = 1;
3896 else
3897 {
3898 do_debugging = 0;
3899 dwarf_select_sections_by_names (optarg);
3900 }
3901 break;
3902 case OPTION_DWARF_DEPTH:
3903 {
3904 char *cp;
3905
3906 dwarf_cutoff_level = strtoul (optarg, & cp, 0);
3907 }
3908 break;
3909 case OPTION_DWARF_START:
3910 {
3911 char *cp;
3912
3913 dwarf_start_die = strtoul (optarg, & cp, 0);
3914 }
3915 break;
3916 case OPTION_DWARF_CHECK:
3917 dwarf_check = 1;
3918 break;
3919 case OPTION_DYN_SYMS:
3920 do_dyn_syms++;
3921 break;
3922 #ifdef SUPPORT_DISASSEMBLY
3923 case 'i':
3924 request_dump (DISASS_DUMP);
3925 break;
3926 #endif
3927 case 'v':
3928 print_version (program_name);
3929 break;
3930 case 'V':
3931 do_version++;
3932 break;
3933 case 'W':
3934 do_wide++;
3935 break;
3936 default:
3937 /* xgettext:c-format */
3938 error (_("Invalid option '-%c'\n"), c);
3939 /* Drop through. */
3940 case '?':
3941 usage (stderr);
3942 }
3943 }
3944
3945 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
3946 && !do_segments && !do_header && !do_dump && !do_version
3947 && !do_histogram && !do_debugging && !do_arch && !do_notes
3948 && !do_section_groups && !do_archive_index
3949 && !do_dyn_syms)
3950 usage (stderr);
3951 else if (argc < 3)
3952 {
3953 warn (_("Nothing to do.\n"));
3954 usage (stderr);
3955 }
3956 }
3957
3958 static const char *
3959 get_elf_class (unsigned int elf_class)
3960 {
3961 static char buff[32];
3962
3963 switch (elf_class)
3964 {
3965 case ELFCLASSNONE: return _("none");
3966 case ELFCLASS32: return "ELF32";
3967 case ELFCLASS64: return "ELF64";
3968 default:
3969 snprintf (buff, sizeof (buff), _("<unknown: %x>"), elf_class);
3970 return buff;
3971 }
3972 }
3973
3974 static const char *
3975 get_data_encoding (unsigned int encoding)
3976 {
3977 static char buff[32];
3978
3979 switch (encoding)
3980 {
3981 case ELFDATANONE: return _("none");
3982 case ELFDATA2LSB: return _("2's complement, little endian");
3983 case ELFDATA2MSB: return _("2's complement, big endian");
3984 default:
3985 snprintf (buff, sizeof (buff), _("<unknown: %x>"), encoding);
3986 return buff;
3987 }
3988 }
3989
3990 /* Decode the data held in 'elf_header'. */
3991
3992 static int
3993 process_file_header (void)
3994 {
3995 if ( elf_header.e_ident[EI_MAG0] != ELFMAG0
3996 || elf_header.e_ident[EI_MAG1] != ELFMAG1
3997 || elf_header.e_ident[EI_MAG2] != ELFMAG2
3998 || elf_header.e_ident[EI_MAG3] != ELFMAG3)
3999 {
4000 error
4001 (_("Not an ELF file - it has the wrong magic bytes at the start\n"));
4002 return 0;
4003 }
4004
4005 init_dwarf_regnames (elf_header.e_machine);
4006
4007 if (do_header)
4008 {
4009 int i;
4010
4011 printf (_("ELF Header:\n"));
4012 printf (_(" Magic: "));
4013 for (i = 0; i < EI_NIDENT; i++)
4014 printf ("%2.2x ", elf_header.e_ident[i]);
4015 printf ("\n");
4016 printf (_(" Class: %s\n"),
4017 get_elf_class (elf_header.e_ident[EI_CLASS]));
4018 printf (_(" Data: %s\n"),
4019 get_data_encoding (elf_header.e_ident[EI_DATA]));
4020 printf (_(" Version: %d %s\n"),
4021 elf_header.e_ident[EI_VERSION],
4022 (elf_header.e_ident[EI_VERSION] == EV_CURRENT
4023 ? "(current)"
4024 : (elf_header.e_ident[EI_VERSION] != EV_NONE
4025 ? _("<unknown: %lx>")
4026 : "")));
4027 printf (_(" OS/ABI: %s\n"),
4028 get_osabi_name (elf_header.e_ident[EI_OSABI]));
4029 printf (_(" ABI Version: %d\n"),
4030 elf_header.e_ident[EI_ABIVERSION]);
4031 printf (_(" Type: %s\n"),
4032 get_file_type (elf_header.e_type));
4033 printf (_(" Machine: %s\n"),
4034 get_machine_name (elf_header.e_machine));
4035 printf (_(" Version: 0x%lx\n"),
4036 (unsigned long) elf_header.e_version);
4037
4038 printf (_(" Entry point address: "));
4039 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4040 printf (_("\n Start of program headers: "));
4041 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4042 printf (_(" (bytes into file)\n Start of section headers: "));
4043 print_vma ((bfd_vma) elf_header.e_shoff, DEC);
4044 printf (_(" (bytes into file)\n"));
4045
4046 printf (_(" Flags: 0x%lx%s\n"),
4047 (unsigned long) elf_header.e_flags,
4048 get_machine_flags (elf_header.e_flags, elf_header.e_machine));
4049 printf (_(" Size of this header: %ld (bytes)\n"),
4050 (long) elf_header.e_ehsize);
4051 printf (_(" Size of program headers: %ld (bytes)\n"),
4052 (long) elf_header.e_phentsize);
4053 printf (_(" Number of program headers: %ld"),
4054 (long) elf_header.e_phnum);
4055 if (section_headers != NULL
4056 && elf_header.e_phnum == PN_XNUM
4057 && section_headers[0].sh_info != 0)
4058 printf (" (%ld)", (long) section_headers[0].sh_info);
4059 putc ('\n', stdout);
4060 printf (_(" Size of section headers: %ld (bytes)\n"),
4061 (long) elf_header.e_shentsize);
4062 printf (_(" Number of section headers: %ld"),
4063 (long) elf_header.e_shnum);
4064 if (section_headers != NULL && elf_header.e_shnum == SHN_UNDEF)
4065 printf (" (%ld)", (long) section_headers[0].sh_size);
4066 putc ('\n', stdout);
4067 printf (_(" Section header string table index: %ld"),
4068 (long) elf_header.e_shstrndx);
4069 if (section_headers != NULL
4070 && elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4071 printf (" (%u)", section_headers[0].sh_link);
4072 else if (elf_header.e_shstrndx != SHN_UNDEF
4073 && elf_header.e_shstrndx >= elf_header.e_shnum)
4074 printf (_(" <corrupt: out of range>"));
4075 putc ('\n', stdout);
4076 }
4077
4078 if (section_headers != NULL)
4079 {
4080 if (elf_header.e_phnum == PN_XNUM
4081 && section_headers[0].sh_info != 0)
4082 elf_header.e_phnum = section_headers[0].sh_info;
4083 if (elf_header.e_shnum == SHN_UNDEF)
4084 elf_header.e_shnum = section_headers[0].sh_size;
4085 if (elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4086 elf_header.e_shstrndx = section_headers[0].sh_link;
4087 else if (elf_header.e_shstrndx >= elf_header.e_shnum)
4088 elf_header.e_shstrndx = SHN_UNDEF;
4089 free (section_headers);
4090 section_headers = NULL;
4091 }
4092
4093 return 1;
4094 }
4095
4096
4097 static int
4098 get_32bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4099 {
4100 Elf32_External_Phdr * phdrs;
4101 Elf32_External_Phdr * external;
4102 Elf_Internal_Phdr * internal;
4103 unsigned int i;
4104
4105 phdrs = (Elf32_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4106 elf_header.e_phentsize,
4107 elf_header.e_phnum,
4108 _("program headers"));
4109 if (!phdrs)
4110 return 0;
4111
4112 for (i = 0, internal = pheaders, external = phdrs;
4113 i < elf_header.e_phnum;
4114 i++, internal++, external++)
4115 {
4116 internal->p_type = BYTE_GET (external->p_type);
4117 internal->p_offset = BYTE_GET (external->p_offset);
4118 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4119 internal->p_paddr = BYTE_GET (external->p_paddr);
4120 internal->p_filesz = BYTE_GET (external->p_filesz);
4121 internal->p_memsz = BYTE_GET (external->p_memsz);
4122 internal->p_flags = BYTE_GET (external->p_flags);
4123 internal->p_align = BYTE_GET (external->p_align);
4124 }
4125
4126 free (phdrs);
4127
4128 return 1;
4129 }
4130
4131 static int
4132 get_64bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4133 {
4134 Elf64_External_Phdr * phdrs;
4135 Elf64_External_Phdr * external;
4136 Elf_Internal_Phdr * internal;
4137 unsigned int i;
4138
4139 phdrs = (Elf64_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4140 elf_header.e_phentsize,
4141 elf_header.e_phnum,
4142 _("program headers"));
4143 if (!phdrs)
4144 return 0;
4145
4146 for (i = 0, internal = pheaders, external = phdrs;
4147 i < elf_header.e_phnum;
4148 i++, internal++, external++)
4149 {
4150 internal->p_type = BYTE_GET (external->p_type);
4151 internal->p_flags = BYTE_GET (external->p_flags);
4152 internal->p_offset = BYTE_GET (external->p_offset);
4153 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4154 internal->p_paddr = BYTE_GET (external->p_paddr);
4155 internal->p_filesz = BYTE_GET (external->p_filesz);
4156 internal->p_memsz = BYTE_GET (external->p_memsz);
4157 internal->p_align = BYTE_GET (external->p_align);
4158 }
4159
4160 free (phdrs);
4161
4162 return 1;
4163 }
4164
4165 /* Returns 1 if the program headers were read into `program_headers'. */
4166
4167 static int
4168 get_program_headers (FILE * file)
4169 {
4170 Elf_Internal_Phdr * phdrs;
4171
4172 /* Check cache of prior read. */
4173 if (program_headers != NULL)
4174 return 1;
4175
4176 phdrs = (Elf_Internal_Phdr *) cmalloc (elf_header.e_phnum,
4177 sizeof (Elf_Internal_Phdr));
4178
4179 if (phdrs == NULL)
4180 {
4181 error (_("Out of memory\n"));
4182 return 0;
4183 }
4184
4185 if (is_32bit_elf
4186 ? get_32bit_program_headers (file, phdrs)
4187 : get_64bit_program_headers (file, phdrs))
4188 {
4189 program_headers = phdrs;
4190 return 1;
4191 }
4192
4193 free (phdrs);
4194 return 0;
4195 }
4196
4197 /* Returns 1 if the program headers were loaded. */
4198
4199 static int
4200 process_program_headers (FILE * file)
4201 {
4202 Elf_Internal_Phdr * segment;
4203 unsigned int i;
4204
4205 if (elf_header.e_phnum == 0)
4206 {
4207 /* PR binutils/12467. */
4208 if (elf_header.e_phoff != 0)
4209 warn (_("possibly corrupt ELF header - it has a non-zero program"
4210 " header offset, but no program headers"));
4211 else if (do_segments)
4212 printf (_("\nThere are no program headers in this file.\n"));
4213 return 0;
4214 }
4215
4216 if (do_segments && !do_header)
4217 {
4218 printf (_("\nElf file type is %s\n"), get_file_type (elf_header.e_type));
4219 printf (_("Entry point "));
4220 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4221 printf (_("\nThere are %d program headers, starting at offset "),
4222 elf_header.e_phnum);
4223 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4224 printf ("\n");
4225 }
4226
4227 if (! get_program_headers (file))
4228 return 0;
4229
4230 if (do_segments)
4231 {
4232 if (elf_header.e_phnum > 1)
4233 printf (_("\nProgram Headers:\n"));
4234 else
4235 printf (_("\nProgram Headers:\n"));
4236
4237 if (is_32bit_elf)
4238 printf
4239 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4240 else if (do_wide)
4241 printf
4242 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4243 else
4244 {
4245 printf
4246 (_(" Type Offset VirtAddr PhysAddr\n"));
4247 printf
4248 (_(" FileSiz MemSiz Flags Align\n"));
4249 }
4250 }
4251
4252 dynamic_addr = 0;
4253 dynamic_size = 0;
4254
4255 for (i = 0, segment = program_headers;
4256 i < elf_header.e_phnum;
4257 i++, segment++)
4258 {
4259 if (do_segments)
4260 {
4261 printf (" %-14.14s ", get_segment_type (segment->p_type));
4262
4263 if (is_32bit_elf)
4264 {
4265 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4266 printf ("0x%8.8lx ", (unsigned long) segment->p_vaddr);
4267 printf ("0x%8.8lx ", (unsigned long) segment->p_paddr);
4268 printf ("0x%5.5lx ", (unsigned long) segment->p_filesz);
4269 printf ("0x%5.5lx ", (unsigned long) segment->p_memsz);
4270 printf ("%c%c%c ",
4271 (segment->p_flags & PF_R ? 'R' : ' '),
4272 (segment->p_flags & PF_W ? 'W' : ' '),
4273 (segment->p_flags & PF_X ? 'E' : ' '));
4274 printf ("%#lx", (unsigned long) segment->p_align);
4275 }
4276 else if (do_wide)
4277 {
4278 if ((unsigned long) segment->p_offset == segment->p_offset)
4279 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4280 else
4281 {
4282 print_vma (segment->p_offset, FULL_HEX);
4283 putchar (' ');
4284 }
4285
4286 print_vma (segment->p_vaddr, FULL_HEX);
4287 putchar (' ');
4288 print_vma (segment->p_paddr, FULL_HEX);
4289 putchar (' ');
4290
4291 if ((unsigned long) segment->p_filesz == segment->p_filesz)
4292 printf ("0x%6.6lx ", (unsigned long) segment->p_filesz);
4293 else
4294 {
4295 print_vma (segment->p_filesz, FULL_HEX);
4296 putchar (' ');
4297 }
4298
4299 if ((unsigned long) segment->p_memsz == segment->p_memsz)
4300 printf ("0x%6.6lx", (unsigned long) segment->p_memsz);
4301 else
4302 {
4303 print_vma (segment->p_memsz, FULL_HEX);
4304 }
4305
4306 printf (" %c%c%c ",
4307 (segment->p_flags & PF_R ? 'R' : ' '),
4308 (segment->p_flags & PF_W ? 'W' : ' '),
4309 (segment->p_flags & PF_X ? 'E' : ' '));
4310
4311 if ((unsigned long) segment->p_align == segment->p_align)
4312 printf ("%#lx", (unsigned long) segment->p_align);
4313 else
4314 {
4315 print_vma (segment->p_align, PREFIX_HEX);
4316 }
4317 }
4318 else
4319 {
4320 print_vma (segment->p_offset, FULL_HEX);
4321 putchar (' ');
4322 print_vma (segment->p_vaddr, FULL_HEX);
4323 putchar (' ');
4324 print_vma (segment->p_paddr, FULL_HEX);
4325 printf ("\n ");
4326 print_vma (segment->p_filesz, FULL_HEX);
4327 putchar (' ');
4328 print_vma (segment->p_memsz, FULL_HEX);
4329 printf (" %c%c%c ",
4330 (segment->p_flags & PF_R ? 'R' : ' '),
4331 (segment->p_flags & PF_W ? 'W' : ' '),
4332 (segment->p_flags & PF_X ? 'E' : ' '));
4333 print_vma (segment->p_align, HEX);
4334 }
4335 }
4336
4337 switch (segment->p_type)
4338 {
4339 case PT_DYNAMIC:
4340 if (dynamic_addr)
4341 error (_("more than one dynamic segment\n"));
4342
4343 /* By default, assume that the .dynamic section is the first
4344 section in the DYNAMIC segment. */
4345 dynamic_addr = segment->p_offset;
4346 dynamic_size = segment->p_filesz;
4347
4348 /* Try to locate the .dynamic section. If there is
4349 a section header table, we can easily locate it. */
4350 if (section_headers != NULL)
4351 {
4352 Elf_Internal_Shdr * sec;
4353
4354 sec = find_section (".dynamic");
4355 if (sec == NULL || sec->sh_size == 0)
4356 {
4357 /* A corresponding .dynamic section is expected, but on
4358 IA-64/OpenVMS it is OK for it to be missing. */
4359 if (!is_ia64_vms ())
4360 error (_("no .dynamic section in the dynamic segment\n"));
4361 break;
4362 }
4363
4364 if (sec->sh_type == SHT_NOBITS)
4365 {
4366 dynamic_size = 0;
4367 break;
4368 }
4369
4370 dynamic_addr = sec->sh_offset;
4371 dynamic_size = sec->sh_size;
4372
4373 if (dynamic_addr < segment->p_offset
4374 || dynamic_addr > segment->p_offset + segment->p_filesz)
4375 warn (_("the .dynamic section is not contained"
4376 " within the dynamic segment\n"));
4377 else if (dynamic_addr > segment->p_offset)
4378 warn (_("the .dynamic section is not the first section"
4379 " in the dynamic segment.\n"));
4380 }
4381 break;
4382
4383 case PT_INTERP:
4384 if (fseek (file, archive_file_offset + (long) segment->p_offset,
4385 SEEK_SET))
4386 error (_("Unable to find program interpreter name\n"));
4387 else
4388 {
4389 char fmt [32];
4390 int ret = snprintf (fmt, sizeof (fmt), "%%%ds", PATH_MAX);
4391
4392 if (ret >= (int) sizeof (fmt) || ret < 0)
4393 error (_("Internal error: failed to create format string to display program interpreter\n"));
4394
4395 program_interpreter[0] = 0;
4396 if (fscanf (file, fmt, program_interpreter) <= 0)
4397 error (_("Unable to read program interpreter name\n"));
4398
4399 if (do_segments)
4400 printf (_("\n [Requesting program interpreter: %s]"),
4401 program_interpreter);
4402 }
4403 break;
4404 }
4405
4406 if (do_segments)
4407 putc ('\n', stdout);
4408 }
4409
4410 if (do_segments && section_headers != NULL && string_table != NULL)
4411 {
4412 printf (_("\n Section to Segment mapping:\n"));
4413 printf (_(" Segment Sections...\n"));
4414
4415 for (i = 0; i < elf_header.e_phnum; i++)
4416 {
4417 unsigned int j;
4418 Elf_Internal_Shdr * section;
4419
4420 segment = program_headers + i;
4421 section = section_headers + 1;
4422
4423 printf (" %2.2d ", i);
4424
4425 for (j = 1; j < elf_header.e_shnum; j++, section++)
4426 {
4427 if (!ELF_TBSS_SPECIAL (section, segment)
4428 && ELF_SECTION_IN_SEGMENT_STRICT (section, segment))
4429 printf ("%s ", SECTION_NAME (section));
4430 }
4431
4432 putc ('\n',stdout);
4433 }
4434 }
4435
4436 return 1;
4437 }
4438
4439
4440 /* Find the file offset corresponding to VMA by using the program headers. */
4441
4442 static long
4443 offset_from_vma (FILE * file, bfd_vma vma, bfd_size_type size)
4444 {
4445 Elf_Internal_Phdr * seg;
4446
4447 if (! get_program_headers (file))
4448 {
4449 warn (_("Cannot interpret virtual addresses without program headers.\n"));
4450 return (long) vma;
4451 }
4452
4453 for (seg = program_headers;
4454 seg < program_headers + elf_header.e_phnum;
4455 ++seg)
4456 {
4457 if (seg->p_type != PT_LOAD)
4458 continue;
4459
4460 if (vma >= (seg->p_vaddr & -seg->p_align)
4461 && vma + size <= seg->p_vaddr + seg->p_filesz)
4462 return vma - seg->p_vaddr + seg->p_offset;
4463 }
4464
4465 warn (_("Virtual address 0x%lx not located in any PT_LOAD segment.\n"),
4466 (unsigned long) vma);
4467 return (long) vma;
4468 }
4469
4470
4471 static int
4472 get_32bit_section_headers (FILE * file, unsigned int num)
4473 {
4474 Elf32_External_Shdr * shdrs;
4475 Elf_Internal_Shdr * internal;
4476 unsigned int i;
4477
4478 shdrs = (Elf32_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
4479 elf_header.e_shentsize, num,
4480 _("section headers"));
4481 if (!shdrs)
4482 return 0;
4483
4484 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
4485 sizeof (Elf_Internal_Shdr));
4486
4487 if (section_headers == NULL)
4488 {
4489 error (_("Out of memory\n"));
4490 return 0;
4491 }
4492
4493 for (i = 0, internal = section_headers;
4494 i < num;
4495 i++, internal++)
4496 {
4497 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
4498 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
4499 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
4500 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
4501 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
4502 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
4503 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
4504 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
4505 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
4506 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
4507 }
4508
4509 free (shdrs);
4510
4511 return 1;
4512 }
4513
4514 static int
4515 get_64bit_section_headers (FILE * file, unsigned int num)
4516 {
4517 Elf64_External_Shdr * shdrs;
4518 Elf_Internal_Shdr * internal;
4519 unsigned int i;
4520
4521 shdrs = (Elf64_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
4522 elf_header.e_shentsize, num,
4523 _("section headers"));
4524 if (!shdrs)
4525 return 0;
4526
4527 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
4528 sizeof (Elf_Internal_Shdr));
4529
4530 if (section_headers == NULL)
4531 {
4532 error (_("Out of memory\n"));
4533 return 0;
4534 }
4535
4536 for (i = 0, internal = section_headers;
4537 i < num;
4538 i++, internal++)
4539 {
4540 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
4541 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
4542 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
4543 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
4544 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
4545 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
4546 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
4547 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
4548 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
4549 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
4550 }
4551
4552 free (shdrs);
4553
4554 return 1;
4555 }
4556
4557 static Elf_Internal_Sym *
4558 get_32bit_elf_symbols (FILE * file,
4559 Elf_Internal_Shdr * section,
4560 unsigned long * num_syms_return)
4561 {
4562 unsigned long number = 0;
4563 Elf32_External_Sym * esyms = NULL;
4564 Elf_External_Sym_Shndx * shndx = NULL;
4565 Elf_Internal_Sym * isyms = NULL;
4566 Elf_Internal_Sym * psym;
4567 unsigned int j;
4568
4569 /* Run some sanity checks first. */
4570 if (section->sh_entsize == 0)
4571 {
4572 error (_("sh_entsize is zero\n"));
4573 goto exit_point;
4574 }
4575
4576 number = section->sh_size / section->sh_entsize;
4577
4578 if (number * sizeof (Elf32_External_Sym) > section->sh_size + 1)
4579 {
4580 error (_("Invalid sh_entsize\n"));
4581 goto exit_point;
4582 }
4583
4584 esyms = (Elf32_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
4585 section->sh_size, _("symbols"));
4586 if (esyms == NULL)
4587 goto exit_point;
4588
4589 shndx = NULL;
4590 if (symtab_shndx_hdr != NULL
4591 && (symtab_shndx_hdr->sh_link
4592 == (unsigned long) (section - section_headers)))
4593 {
4594 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
4595 symtab_shndx_hdr->sh_offset,
4596 1, symtab_shndx_hdr->sh_size,
4597 _("symbol table section indicies"));
4598 if (shndx == NULL)
4599 goto exit_point;
4600 }
4601
4602 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
4603
4604 if (isyms == NULL)
4605 {
4606 error (_("Out of memory\n"));
4607 goto exit_point;
4608 }
4609
4610 for (j = 0, psym = isyms; j < number; j++, psym++)
4611 {
4612 psym->st_name = BYTE_GET (esyms[j].st_name);
4613 psym->st_value = BYTE_GET (esyms[j].st_value);
4614 psym->st_size = BYTE_GET (esyms[j].st_size);
4615 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
4616 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
4617 psym->st_shndx
4618 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
4619 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
4620 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
4621 psym->st_info = BYTE_GET (esyms[j].st_info);
4622 psym->st_other = BYTE_GET (esyms[j].st_other);
4623 }
4624
4625 exit_point:
4626 if (shndx != NULL)
4627 free (shndx);
4628 if (esyms != NULL)
4629 free (esyms);
4630
4631 if (num_syms_return != NULL)
4632 * num_syms_return = isyms == NULL ? 0 : number;
4633
4634 return isyms;
4635 }
4636
4637 static Elf_Internal_Sym *
4638 get_64bit_elf_symbols (FILE * file,
4639 Elf_Internal_Shdr * section,
4640 unsigned long * num_syms_return)
4641 {
4642 unsigned long number = 0;
4643 Elf64_External_Sym * esyms = NULL;
4644 Elf_External_Sym_Shndx * shndx = NULL;
4645 Elf_Internal_Sym * isyms = NULL;
4646 Elf_Internal_Sym * psym;
4647 unsigned int j;
4648
4649 /* Run some sanity checks first. */
4650 if (section->sh_entsize == 0)
4651 {
4652 error (_("sh_entsize is zero\n"));
4653 goto exit_point;
4654 }
4655
4656 number = section->sh_size / section->sh_entsize;
4657
4658 if (number * sizeof (Elf64_External_Sym) > section->sh_size + 1)
4659 {
4660 error (_("Invalid sh_entsize\n"));
4661 goto exit_point;
4662 }
4663
4664 esyms = (Elf64_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
4665 section->sh_size, _("symbols"));
4666 if (!esyms)
4667 goto exit_point;
4668
4669 if (symtab_shndx_hdr != NULL
4670 && (symtab_shndx_hdr->sh_link
4671 == (unsigned long) (section - section_headers)))
4672 {
4673 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
4674 symtab_shndx_hdr->sh_offset,
4675 1, symtab_shndx_hdr->sh_size,
4676 _("symbol table section indicies"));
4677 if (shndx == NULL)
4678 goto exit_point;
4679 }
4680
4681 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
4682
4683 if (isyms == NULL)
4684 {
4685 error (_("Out of memory\n"));
4686 goto exit_point;
4687 }
4688
4689 for (j = 0, psym = isyms; j < number; j++, psym++)
4690 {
4691 psym->st_name = BYTE_GET (esyms[j].st_name);
4692 psym->st_info = BYTE_GET (esyms[j].st_info);
4693 psym->st_other = BYTE_GET (esyms[j].st_other);
4694 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
4695
4696 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
4697 psym->st_shndx
4698 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
4699 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
4700 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
4701
4702 psym->st_value = BYTE_GET (esyms[j].st_value);
4703 psym->st_size = BYTE_GET (esyms[j].st_size);
4704 }
4705
4706 exit_point:
4707 if (shndx != NULL)
4708 free (shndx);
4709 if (esyms != NULL)
4710 free (esyms);
4711
4712 if (num_syms_return != NULL)
4713 * num_syms_return = isyms == NULL ? 0 : number;
4714
4715 return isyms;
4716 }
4717
4718 static const char *
4719 get_elf_section_flags (bfd_vma sh_flags)
4720 {
4721 static char buff[1024];
4722 char * p = buff;
4723 int field_size = is_32bit_elf ? 8 : 16;
4724 int sindex;
4725 int size = sizeof (buff) - (field_size + 4 + 1);
4726 bfd_vma os_flags = 0;
4727 bfd_vma proc_flags = 0;
4728 bfd_vma unknown_flags = 0;
4729 static const struct
4730 {
4731 const char * str;
4732 int len;
4733 }
4734 flags [] =
4735 {
4736 /* 0 */ { STRING_COMMA_LEN ("WRITE") },
4737 /* 1 */ { STRING_COMMA_LEN ("ALLOC") },
4738 /* 2 */ { STRING_COMMA_LEN ("EXEC") },
4739 /* 3 */ { STRING_COMMA_LEN ("MERGE") },
4740 /* 4 */ { STRING_COMMA_LEN ("STRINGS") },
4741 /* 5 */ { STRING_COMMA_LEN ("INFO LINK") },
4742 /* 6 */ { STRING_COMMA_LEN ("LINK ORDER") },
4743 /* 7 */ { STRING_COMMA_LEN ("OS NONCONF") },
4744 /* 8 */ { STRING_COMMA_LEN ("GROUP") },
4745 /* 9 */ { STRING_COMMA_LEN ("TLS") },
4746 /* IA-64 specific. */
4747 /* 10 */ { STRING_COMMA_LEN ("SHORT") },
4748 /* 11 */ { STRING_COMMA_LEN ("NORECOV") },
4749 /* IA-64 OpenVMS specific. */
4750 /* 12 */ { STRING_COMMA_LEN ("VMS_GLOBAL") },
4751 /* 13 */ { STRING_COMMA_LEN ("VMS_OVERLAID") },
4752 /* 14 */ { STRING_COMMA_LEN ("VMS_SHARED") },
4753 /* 15 */ { STRING_COMMA_LEN ("VMS_VECTOR") },
4754 /* 16 */ { STRING_COMMA_LEN ("VMS_ALLOC_64BIT") },
4755 /* 17 */ { STRING_COMMA_LEN ("VMS_PROTECTED") },
4756 /* Generic. */
4757 /* 18 */ { STRING_COMMA_LEN ("EXCLUDE") },
4758 /* SPARC specific. */
4759 /* 19 */ { STRING_COMMA_LEN ("ORDERED") }
4760 };
4761
4762 if (do_section_details)
4763 {
4764 sprintf (buff, "[%*.*lx]: ",
4765 field_size, field_size, (unsigned long) sh_flags);
4766 p += field_size + 4;
4767 }
4768
4769 while (sh_flags)
4770 {
4771 bfd_vma flag;
4772
4773 flag = sh_flags & - sh_flags;
4774 sh_flags &= ~ flag;
4775
4776 if (do_section_details)
4777 {
4778 switch (flag)
4779 {
4780 case SHF_WRITE: sindex = 0; break;
4781 case SHF_ALLOC: sindex = 1; break;
4782 case SHF_EXECINSTR: sindex = 2; break;
4783 case SHF_MERGE: sindex = 3; break;
4784 case SHF_STRINGS: sindex = 4; break;
4785 case SHF_INFO_LINK: sindex = 5; break;
4786 case SHF_LINK_ORDER: sindex = 6; break;
4787 case SHF_OS_NONCONFORMING: sindex = 7; break;
4788 case SHF_GROUP: sindex = 8; break;
4789 case SHF_TLS: sindex = 9; break;
4790 case SHF_EXCLUDE: sindex = 18; break;
4791
4792 default:
4793 sindex = -1;
4794 switch (elf_header.e_machine)
4795 {
4796 case EM_IA_64:
4797 if (flag == SHF_IA_64_SHORT)
4798 sindex = 10;
4799 else if (flag == SHF_IA_64_NORECOV)
4800 sindex = 11;
4801 #ifdef BFD64
4802 else if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
4803 switch (flag)
4804 {
4805 case SHF_IA_64_VMS_GLOBAL: sindex = 12; break;
4806 case SHF_IA_64_VMS_OVERLAID: sindex = 13; break;
4807 case SHF_IA_64_VMS_SHARED: sindex = 14; break;
4808 case SHF_IA_64_VMS_VECTOR: sindex = 15; break;
4809 case SHF_IA_64_VMS_ALLOC_64BIT: sindex = 16; break;
4810 case SHF_IA_64_VMS_PROTECTED: sindex = 17; break;
4811 default: break;
4812 }
4813 #endif
4814 break;
4815
4816 case EM_386:
4817 case EM_486:
4818 case EM_X86_64:
4819 case EM_L1OM:
4820 case EM_K1OM:
4821 case EM_OLD_SPARCV9:
4822 case EM_SPARC32PLUS:
4823 case EM_SPARCV9:
4824 case EM_SPARC:
4825 if (flag == SHF_ORDERED)
4826 sindex = 19;
4827 break;
4828 default:
4829 break;
4830 }
4831 }
4832
4833 if (sindex != -1)
4834 {
4835 if (p != buff + field_size + 4)
4836 {
4837 if (size < (10 + 2))
4838 abort ();
4839 size -= 2;
4840 *p++ = ',';
4841 *p++ = ' ';
4842 }
4843
4844 size -= flags [sindex].len;
4845 p = stpcpy (p, flags [sindex].str);
4846 }
4847 else if (flag & SHF_MASKOS)
4848 os_flags |= flag;
4849 else if (flag & SHF_MASKPROC)
4850 proc_flags |= flag;
4851 else
4852 unknown_flags |= flag;
4853 }
4854 else
4855 {
4856 switch (flag)
4857 {
4858 case SHF_WRITE: *p = 'W'; break;
4859 case SHF_ALLOC: *p = 'A'; break;
4860 case SHF_EXECINSTR: *p = 'X'; break;
4861 case SHF_MERGE: *p = 'M'; break;
4862 case SHF_STRINGS: *p = 'S'; break;
4863 case SHF_INFO_LINK: *p = 'I'; break;
4864 case SHF_LINK_ORDER: *p = 'L'; break;
4865 case SHF_OS_NONCONFORMING: *p = 'O'; break;
4866 case SHF_GROUP: *p = 'G'; break;
4867 case SHF_TLS: *p = 'T'; break;
4868 case SHF_EXCLUDE: *p = 'E'; break;
4869
4870 default:
4871 if ((elf_header.e_machine == EM_X86_64
4872 || elf_header.e_machine == EM_L1OM
4873 || elf_header.e_machine == EM_K1OM)
4874 && flag == SHF_X86_64_LARGE)
4875 *p = 'l';
4876 else if (flag & SHF_MASKOS)
4877 {
4878 *p = 'o';
4879 sh_flags &= ~ SHF_MASKOS;
4880 }
4881 else if (flag & SHF_MASKPROC)
4882 {
4883 *p = 'p';
4884 sh_flags &= ~ SHF_MASKPROC;
4885 }
4886 else
4887 *p = 'x';
4888 break;
4889 }
4890 p++;
4891 }
4892 }
4893
4894 if (do_section_details)
4895 {
4896 if (os_flags)
4897 {
4898 size -= 5 + field_size;
4899 if (p != buff + field_size + 4)
4900 {
4901 if (size < (2 + 1))
4902 abort ();
4903 size -= 2;
4904 *p++ = ',';
4905 *p++ = ' ';
4906 }
4907 sprintf (p, "OS (%*.*lx)", field_size, field_size,
4908 (unsigned long) os_flags);
4909 p += 5 + field_size;
4910 }
4911 if (proc_flags)
4912 {
4913 size -= 7 + field_size;
4914 if (p != buff + field_size + 4)
4915 {
4916 if (size < (2 + 1))
4917 abort ();
4918 size -= 2;
4919 *p++ = ',';
4920 *p++ = ' ';
4921 }
4922 sprintf (p, "PROC (%*.*lx)", field_size, field_size,
4923 (unsigned long) proc_flags);
4924 p += 7 + field_size;
4925 }
4926 if (unknown_flags)
4927 {
4928 size -= 10 + field_size;
4929 if (p != buff + field_size + 4)
4930 {
4931 if (size < (2 + 1))
4932 abort ();
4933 size -= 2;
4934 *p++ = ',';
4935 *p++ = ' ';
4936 }
4937 sprintf (p, _("UNKNOWN (%*.*lx)"), field_size, field_size,
4938 (unsigned long) unknown_flags);
4939 p += 10 + field_size;
4940 }
4941 }
4942
4943 *p = '\0';
4944 return buff;
4945 }
4946
4947 static int
4948 process_section_headers (FILE * file)
4949 {
4950 Elf_Internal_Shdr * section;
4951 unsigned int i;
4952
4953 section_headers = NULL;
4954
4955 if (elf_header.e_shnum == 0)
4956 {
4957 /* PR binutils/12467. */
4958 if (elf_header.e_shoff != 0)
4959 warn (_("possibly corrupt ELF file header - it has a non-zero"
4960 " section header offset, but no section headers\n"));
4961 else if (do_sections)
4962 printf (_("\nThere are no sections in this file.\n"));
4963
4964 return 1;
4965 }
4966
4967 if (do_sections && !do_header)
4968 printf (_("There are %d section headers, starting at offset 0x%lx:\n"),
4969 elf_header.e_shnum, (unsigned long) elf_header.e_shoff);
4970
4971 if (is_32bit_elf)
4972 {
4973 if (! get_32bit_section_headers (file, elf_header.e_shnum))
4974 return 0;
4975 }
4976 else if (! get_64bit_section_headers (file, elf_header.e_shnum))
4977 return 0;
4978
4979 /* Read in the string table, so that we have names to display. */
4980 if (elf_header.e_shstrndx != SHN_UNDEF
4981 && elf_header.e_shstrndx < elf_header.e_shnum)
4982 {
4983 section = section_headers + elf_header.e_shstrndx;
4984
4985 if (section->sh_size != 0)
4986 {
4987 string_table = (char *) get_data (NULL, file, section->sh_offset,
4988 1, section->sh_size,
4989 _("string table"));
4990
4991 string_table_length = string_table != NULL ? section->sh_size : 0;
4992 }
4993 }
4994
4995 /* Scan the sections for the dynamic symbol table
4996 and dynamic string table and debug sections. */
4997 dynamic_symbols = NULL;
4998 dynamic_strings = NULL;
4999 dynamic_syminfo = NULL;
5000 symtab_shndx_hdr = NULL;
5001
5002 eh_addr_size = is_32bit_elf ? 4 : 8;
5003 switch (elf_header.e_machine)
5004 {
5005 case EM_MIPS:
5006 case EM_MIPS_RS3_LE:
5007 /* The 64-bit MIPS EABI uses a combination of 32-bit ELF and 64-bit
5008 FDE addresses. However, the ABI also has a semi-official ILP32
5009 variant for which the normal FDE address size rules apply.
5010
5011 GCC 4.0 marks EABI64 objects with a dummy .gcc_compiled_longXX
5012 section, where XX is the size of longs in bits. Unfortunately,
5013 earlier compilers provided no way of distinguishing ILP32 objects
5014 from LP64 objects, so if there's any doubt, we should assume that
5015 the official LP64 form is being used. */
5016 if ((elf_header.e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64
5017 && find_section (".gcc_compiled_long32") == NULL)
5018 eh_addr_size = 8;
5019 break;
5020
5021 case EM_H8_300:
5022 case EM_H8_300H:
5023 switch (elf_header.e_flags & EF_H8_MACH)
5024 {
5025 case E_H8_MACH_H8300:
5026 case E_H8_MACH_H8300HN:
5027 case E_H8_MACH_H8300SN:
5028 case E_H8_MACH_H8300SXN:
5029 eh_addr_size = 2;
5030 break;
5031 case E_H8_MACH_H8300H:
5032 case E_H8_MACH_H8300S:
5033 case E_H8_MACH_H8300SX:
5034 eh_addr_size = 4;
5035 break;
5036 }
5037 break;
5038
5039 case EM_M32C_OLD:
5040 case EM_M32C:
5041 switch (elf_header.e_flags & EF_M32C_CPU_MASK)
5042 {
5043 case EF_M32C_CPU_M16C:
5044 eh_addr_size = 2;
5045 break;
5046 }
5047 break;
5048 }
5049
5050 #define CHECK_ENTSIZE_VALUES(section, i, size32, size64) \
5051 do \
5052 { \
5053 bfd_size_type expected_entsize = is_32bit_elf ? size32 : size64; \
5054 if (section->sh_entsize != expected_entsize) \
5055 { \
5056 error (_("Section %d has invalid sh_entsize of %" BFD_VMA_FMT "x\n"), \
5057 i, section->sh_entsize); \
5058 error (_("(Using the expected size of %d for the rest of this dump)\n"), \
5059 (int) expected_entsize); \
5060 section->sh_entsize = expected_entsize; \
5061 } \
5062 } \
5063 while (0)
5064
5065 #define CHECK_ENTSIZE(section, i, type) \
5066 CHECK_ENTSIZE_VALUES (section, i, sizeof (Elf32_External_##type), \
5067 sizeof (Elf64_External_##type))
5068
5069 for (i = 0, section = section_headers;
5070 i < elf_header.e_shnum;
5071 i++, section++)
5072 {
5073 char * name = SECTION_NAME (section);
5074
5075 if (section->sh_type == SHT_DYNSYM)
5076 {
5077 if (dynamic_symbols != NULL)
5078 {
5079 error (_("File contains multiple dynamic symbol tables\n"));
5080 continue;
5081 }
5082
5083 CHECK_ENTSIZE (section, i, Sym);
5084 dynamic_symbols = GET_ELF_SYMBOLS (file, section, & num_dynamic_syms);
5085 }
5086 else if (section->sh_type == SHT_STRTAB
5087 && streq (name, ".dynstr"))
5088 {
5089 if (dynamic_strings != NULL)
5090 {
5091 error (_("File contains multiple dynamic string tables\n"));
5092 continue;
5093 }
5094
5095 dynamic_strings = (char *) get_data (NULL, file, section->sh_offset,
5096 1, section->sh_size,
5097 _("dynamic strings"));
5098 dynamic_strings_length = dynamic_strings == NULL ? 0 : section->sh_size;
5099 }
5100 else if (section->sh_type == SHT_SYMTAB_SHNDX)
5101 {
5102 if (symtab_shndx_hdr != NULL)
5103 {
5104 error (_("File contains multiple symtab shndx tables\n"));
5105 continue;
5106 }
5107 symtab_shndx_hdr = section;
5108 }
5109 else if (section->sh_type == SHT_SYMTAB)
5110 CHECK_ENTSIZE (section, i, Sym);
5111 else if (section->sh_type == SHT_GROUP)
5112 CHECK_ENTSIZE_VALUES (section, i, GRP_ENTRY_SIZE, GRP_ENTRY_SIZE);
5113 else if (section->sh_type == SHT_REL)
5114 CHECK_ENTSIZE (section, i, Rel);
5115 else if (section->sh_type == SHT_RELA)
5116 CHECK_ENTSIZE (section, i, Rela);
5117 else if ((do_debugging || do_debug_info || do_debug_abbrevs
5118 || do_debug_lines || do_debug_pubnames || do_debug_pubtypes
5119 || do_debug_aranges || do_debug_frames || do_debug_macinfo
5120 || do_debug_str || do_debug_loc || do_debug_ranges
5121 || do_debug_addr || do_debug_cu_index)
5122 && (const_strneq (name, ".debug_")
5123 || const_strneq (name, ".zdebug_")))
5124 {
5125 if (name[1] == 'z')
5126 name += sizeof (".zdebug_") - 1;
5127 else
5128 name += sizeof (".debug_") - 1;
5129
5130 if (do_debugging
5131 || (do_debug_info && const_strneq (name, "info"))
5132 || (do_debug_info && const_strneq (name, "types"))
5133 || (do_debug_abbrevs && const_strneq (name, "abbrev"))
5134 || (do_debug_lines && strcmp (name, "line") == 0)
5135 || (do_debug_lines && const_strneq (name, "line."))
5136 || (do_debug_pubnames && const_strneq (name, "pubnames"))
5137 || (do_debug_pubtypes && const_strneq (name, "pubtypes"))
5138 || (do_debug_pubnames && const_strneq (name, "gnu_pubnames"))
5139 || (do_debug_pubtypes && const_strneq (name, "gnu_pubtypes"))
5140 || (do_debug_aranges && const_strneq (name, "aranges"))
5141 || (do_debug_ranges && const_strneq (name, "ranges"))
5142 || (do_debug_frames && const_strneq (name, "frame"))
5143 || (do_debug_macinfo && const_strneq (name, "macinfo"))
5144 || (do_debug_macinfo && const_strneq (name, "macro"))
5145 || (do_debug_str && const_strneq (name, "str"))
5146 || (do_debug_loc && const_strneq (name, "loc"))
5147 || (do_debug_addr && const_strneq (name, "addr"))
5148 || (do_debug_cu_index && const_strneq (name, "cu_index"))
5149 || (do_debug_cu_index && const_strneq (name, "tu_index"))
5150 )
5151 request_dump_bynumber (i, DEBUG_DUMP);
5152 }
5153 /* Linkonce section to be combined with .debug_info at link time. */
5154 else if ((do_debugging || do_debug_info)
5155 && const_strneq (name, ".gnu.linkonce.wi."))
5156 request_dump_bynumber (i, DEBUG_DUMP);
5157 else if (do_debug_frames && streq (name, ".eh_frame"))
5158 request_dump_bynumber (i, DEBUG_DUMP);
5159 else if (do_gdb_index && streq (name, ".gdb_index"))
5160 request_dump_bynumber (i, DEBUG_DUMP);
5161 /* Trace sections for Itanium VMS. */
5162 else if ((do_debugging || do_trace_info || do_trace_abbrevs
5163 || do_trace_aranges)
5164 && const_strneq (name, ".trace_"))
5165 {
5166 name += sizeof (".trace_") - 1;
5167
5168 if (do_debugging
5169 || (do_trace_info && streq (name, "info"))
5170 || (do_trace_abbrevs && streq (name, "abbrev"))
5171 || (do_trace_aranges && streq (name, "aranges"))
5172 )
5173 request_dump_bynumber (i, DEBUG_DUMP);
5174 }
5175
5176 }
5177
5178 if (! do_sections)
5179 return 1;
5180
5181 if (elf_header.e_shnum > 1)
5182 printf (_("\nSection Headers:\n"));
5183 else
5184 printf (_("\nSection Header:\n"));
5185
5186 if (is_32bit_elf)
5187 {
5188 if (do_section_details)
5189 {
5190 printf (_(" [Nr] Name\n"));
5191 printf (_(" Type Addr Off Size ES Lk Inf Al\n"));
5192 }
5193 else
5194 printf
5195 (_(" [Nr] Name Type Addr Off Size ES Flg Lk Inf Al\n"));
5196 }
5197 else if (do_wide)
5198 {
5199 if (do_section_details)
5200 {
5201 printf (_(" [Nr] Name\n"));
5202 printf (_(" Type Address Off Size ES Lk Inf Al\n"));
5203 }
5204 else
5205 printf
5206 (_(" [Nr] Name Type Address Off Size ES Flg Lk Inf Al\n"));
5207 }
5208 else
5209 {
5210 if (do_section_details)
5211 {
5212 printf (_(" [Nr] Name\n"));
5213 printf (_(" Type Address Offset Link\n"));
5214 printf (_(" Size EntSize Info Align\n"));
5215 }
5216 else
5217 {
5218 printf (_(" [Nr] Name Type Address Offset\n"));
5219 printf (_(" Size EntSize Flags Link Info Align\n"));
5220 }
5221 }
5222
5223 if (do_section_details)
5224 printf (_(" Flags\n"));
5225
5226 for (i = 0, section = section_headers;
5227 i < elf_header.e_shnum;
5228 i++, section++)
5229 {
5230 printf (" [%2u] ", i);
5231 if (do_section_details)
5232 {
5233 print_symbol (INT_MAX, SECTION_NAME (section));
5234 printf ("\n ");
5235 }
5236 else
5237 {
5238 print_symbol (-17, SECTION_NAME (section));
5239 }
5240
5241 printf (do_wide ? " %-15s " : " %-15.15s ",
5242 get_section_type_name (section->sh_type));
5243
5244 if (is_32bit_elf)
5245 {
5246 const char * link_too_big = NULL;
5247
5248 print_vma (section->sh_addr, LONG_HEX);
5249
5250 printf ( " %6.6lx %6.6lx %2.2lx",
5251 (unsigned long) section->sh_offset,
5252 (unsigned long) section->sh_size,
5253 (unsigned long) section->sh_entsize);
5254
5255 if (do_section_details)
5256 fputs (" ", stdout);
5257 else
5258 printf (" %3s ", get_elf_section_flags (section->sh_flags));
5259
5260 if (section->sh_link >= elf_header.e_shnum)
5261 {
5262 link_too_big = "";
5263 /* The sh_link value is out of range. Normally this indicates
5264 an error but it can have special values in Solaris binaries. */
5265 switch (elf_header.e_machine)
5266 {
5267 case EM_386:
5268 case EM_486:
5269 case EM_X86_64:
5270 case EM_L1OM:
5271 case EM_K1OM:
5272 case EM_OLD_SPARCV9:
5273 case EM_SPARC32PLUS:
5274 case EM_SPARCV9:
5275 case EM_SPARC:
5276 if (section->sh_link == (SHN_BEFORE & 0xffff))
5277 link_too_big = "BEFORE";
5278 else if (section->sh_link == (SHN_AFTER & 0xffff))
5279 link_too_big = "AFTER";
5280 break;
5281 default:
5282 break;
5283 }
5284 }
5285
5286 if (do_section_details)
5287 {
5288 if (link_too_big != NULL && * link_too_big)
5289 printf ("<%s> ", link_too_big);
5290 else
5291 printf ("%2u ", section->sh_link);
5292 printf ("%3u %2lu\n", section->sh_info,
5293 (unsigned long) section->sh_addralign);
5294 }
5295 else
5296 printf ("%2u %3u %2lu\n",
5297 section->sh_link,
5298 section->sh_info,
5299 (unsigned long) section->sh_addralign);
5300
5301 if (link_too_big && ! * link_too_big)
5302 warn (_("section %u: sh_link value of %u is larger than the number of sections\n"),
5303 i, section->sh_link);
5304 }
5305 else if (do_wide)
5306 {
5307 print_vma (section->sh_addr, LONG_HEX);
5308
5309 if ((long) section->sh_offset == section->sh_offset)
5310 printf (" %6.6lx", (unsigned long) section->sh_offset);
5311 else
5312 {
5313 putchar (' ');
5314 print_vma (section->sh_offset, LONG_HEX);
5315 }
5316
5317 if ((unsigned long) section->sh_size == section->sh_size)
5318 printf (" %6.6lx", (unsigned long) section->sh_size);
5319 else
5320 {
5321 putchar (' ');
5322 print_vma (section->sh_size, LONG_HEX);
5323 }
5324
5325 if ((unsigned long) section->sh_entsize == section->sh_entsize)
5326 printf (" %2.2lx", (unsigned long) section->sh_entsize);
5327 else
5328 {
5329 putchar (' ');
5330 print_vma (section->sh_entsize, LONG_HEX);
5331 }
5332
5333 if (do_section_details)
5334 fputs (" ", stdout);
5335 else
5336 printf (" %3s ", get_elf_section_flags (section->sh_flags));
5337
5338 printf ("%2u %3u ", section->sh_link, section->sh_info);
5339
5340 if ((unsigned long) section->sh_addralign == section->sh_addralign)
5341 printf ("%2lu\n", (unsigned long) section->sh_addralign);
5342 else
5343 {
5344 print_vma (section->sh_addralign, DEC);
5345 putchar ('\n');
5346 }
5347 }
5348 else if (do_section_details)
5349 {
5350 printf (" %-15.15s ",
5351 get_section_type_name (section->sh_type));
5352 print_vma (section->sh_addr, LONG_HEX);
5353 if ((long) section->sh_offset == section->sh_offset)
5354 printf (" %16.16lx", (unsigned long) section->sh_offset);
5355 else
5356 {
5357 printf (" ");
5358 print_vma (section->sh_offset, LONG_HEX);
5359 }
5360 printf (" %u\n ", section->sh_link);
5361 print_vma (section->sh_size, LONG_HEX);
5362 putchar (' ');
5363 print_vma (section->sh_entsize, LONG_HEX);
5364
5365 printf (" %-16u %lu\n",
5366 section->sh_info,
5367 (unsigned long) section->sh_addralign);
5368 }
5369 else
5370 {
5371 putchar (' ');
5372 print_vma (section->sh_addr, LONG_HEX);
5373 if ((long) section->sh_offset == section->sh_offset)
5374 printf (" %8.8lx", (unsigned long) section->sh_offset);
5375 else
5376 {
5377 printf (" ");
5378 print_vma (section->sh_offset, LONG_HEX);
5379 }
5380 printf ("\n ");
5381 print_vma (section->sh_size, LONG_HEX);
5382 printf (" ");
5383 print_vma (section->sh_entsize, LONG_HEX);
5384
5385 printf (" %3s ", get_elf_section_flags (section->sh_flags));
5386
5387 printf (" %2u %3u %lu\n",
5388 section->sh_link,
5389 section->sh_info,
5390 (unsigned long) section->sh_addralign);
5391 }
5392
5393 if (do_section_details)
5394 printf (" %s\n", get_elf_section_flags (section->sh_flags));
5395 }
5396
5397 if (!do_section_details)
5398 {
5399 if (elf_header.e_machine == EM_X86_64
5400 || elf_header.e_machine == EM_L1OM
5401 || elf_header.e_machine == EM_K1OM)
5402 printf (_("Key to Flags:\n\
5403 W (write), A (alloc), X (execute), M (merge), S (strings), l (large)\n\
5404 I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)\n\
5405 O (extra OS processing required) o (OS specific), p (processor specific)\n"));
5406 else
5407 printf (_("Key to Flags:\n\
5408 W (write), A (alloc), X (execute), M (merge), S (strings)\n\
5409 I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)\n\
5410 O (extra OS processing required) o (OS specific), p (processor specific)\n"));
5411 }
5412
5413 return 1;
5414 }
5415
5416 static const char *
5417 get_group_flags (unsigned int flags)
5418 {
5419 static char buff[32];
5420 switch (flags)
5421 {
5422 case 0:
5423 return "";
5424
5425 case GRP_COMDAT:
5426 return "COMDAT ";
5427
5428 default:
5429 snprintf (buff, sizeof (buff), _("[<unknown>: 0x%x] "), flags);
5430 break;
5431 }
5432 return buff;
5433 }
5434
5435 static int
5436 process_section_groups (FILE * file)
5437 {
5438 Elf_Internal_Shdr * section;
5439 unsigned int i;
5440 struct group * group;
5441 Elf_Internal_Shdr * symtab_sec;
5442 Elf_Internal_Shdr * strtab_sec;
5443 Elf_Internal_Sym * symtab;
5444 unsigned long num_syms;
5445 char * strtab;
5446 size_t strtab_size;
5447
5448 /* Don't process section groups unless needed. */
5449 if (!do_unwind && !do_section_groups)
5450 return 1;
5451
5452 if (elf_header.e_shnum == 0)
5453 {
5454 if (do_section_groups)
5455 printf (_("\nThere are no sections to group in this file.\n"));
5456
5457 return 1;
5458 }
5459
5460 if (section_headers == NULL)
5461 {
5462 error (_("Section headers are not available!\n"));
5463 /* PR 13622: This can happen with a corrupt ELF header. */
5464 return 0;
5465 }
5466
5467 section_headers_groups = (struct group **) calloc (elf_header.e_shnum,
5468 sizeof (struct group *));
5469
5470 if (section_headers_groups == NULL)
5471 {
5472 error (_("Out of memory\n"));
5473 return 0;
5474 }
5475
5476 /* Scan the sections for the group section. */
5477 group_count = 0;
5478 for (i = 0, section = section_headers;
5479 i < elf_header.e_shnum;
5480 i++, section++)
5481 if (section->sh_type == SHT_GROUP)
5482 group_count++;
5483
5484 if (group_count == 0)
5485 {
5486 if (do_section_groups)
5487 printf (_("\nThere are no section groups in this file.\n"));
5488
5489 return 1;
5490 }
5491
5492 section_groups = (struct group *) calloc (group_count, sizeof (struct group));
5493
5494 if (section_groups == NULL)
5495 {
5496 error (_("Out of memory\n"));
5497 return 0;
5498 }
5499
5500 symtab_sec = NULL;
5501 strtab_sec = NULL;
5502 symtab = NULL;
5503 num_syms = 0;
5504 strtab = NULL;
5505 strtab_size = 0;
5506 for (i = 0, section = section_headers, group = section_groups;
5507 i < elf_header.e_shnum;
5508 i++, section++)
5509 {
5510 if (section->sh_type == SHT_GROUP)
5511 {
5512 char * name = SECTION_NAME (section);
5513 char * group_name;
5514 unsigned char * start;
5515 unsigned char * indices;
5516 unsigned int entry, j, size;
5517 Elf_Internal_Shdr * sec;
5518 Elf_Internal_Sym * sym;
5519
5520 /* Get the symbol table. */
5521 if (section->sh_link >= elf_header.e_shnum
5522 || ((sec = section_headers + section->sh_link)->sh_type
5523 != SHT_SYMTAB))
5524 {
5525 error (_("Bad sh_link in group section `%s'\n"), name);
5526 continue;
5527 }
5528
5529 if (symtab_sec != sec)
5530 {
5531 symtab_sec = sec;
5532 if (symtab)
5533 free (symtab);
5534 symtab = GET_ELF_SYMBOLS (file, symtab_sec, & num_syms);
5535 }
5536
5537 if (symtab == NULL)
5538 {
5539 error (_("Corrupt header in group section `%s'\n"), name);
5540 continue;
5541 }
5542
5543 if (section->sh_info >= num_syms)
5544 {
5545 error (_("Bad sh_info in group section `%s'\n"), name);
5546 continue;
5547 }
5548
5549 sym = symtab + section->sh_info;
5550
5551 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5552 {
5553 if (sym->st_shndx == 0
5554 || sym->st_shndx >= elf_header.e_shnum)
5555 {
5556 error (_("Bad sh_info in group section `%s'\n"), name);
5557 continue;
5558 }
5559
5560 group_name = SECTION_NAME (section_headers + sym->st_shndx);
5561 strtab_sec = NULL;
5562 if (strtab)
5563 free (strtab);
5564 strtab = NULL;
5565 strtab_size = 0;
5566 }
5567 else
5568 {
5569 /* Get the string table. */
5570 if (symtab_sec->sh_link >= elf_header.e_shnum)
5571 {
5572 strtab_sec = NULL;
5573 if (strtab)
5574 free (strtab);
5575 strtab = NULL;
5576 strtab_size = 0;
5577 }
5578 else if (strtab_sec
5579 != (sec = section_headers + symtab_sec->sh_link))
5580 {
5581 strtab_sec = sec;
5582 if (strtab)
5583 free (strtab);
5584 strtab = (char *) get_data (NULL, file, strtab_sec->sh_offset,
5585 1, strtab_sec->sh_size,
5586 _("string table"));
5587 strtab_size = strtab != NULL ? strtab_sec->sh_size : 0;
5588 }
5589 group_name = sym->st_name < strtab_size
5590 ? strtab + sym->st_name : _("<corrupt>");
5591 }
5592
5593 start = (unsigned char *) get_data (NULL, file, section->sh_offset,
5594 1, section->sh_size,
5595 _("section data"));
5596 if (start == NULL)
5597 continue;
5598
5599 indices = start;
5600 size = (section->sh_size / section->sh_entsize) - 1;
5601 entry = byte_get (indices, 4);
5602 indices += 4;
5603
5604 if (do_section_groups)
5605 {
5606 printf (_("\n%sgroup section [%5u] `%s' [%s] contains %u sections:\n"),
5607 get_group_flags (entry), i, name, group_name, size);
5608
5609 printf (_(" [Index] Name\n"));
5610 }
5611
5612 group->group_index = i;
5613
5614 for (j = 0; j < size; j++)
5615 {
5616 struct group_list * g;
5617
5618 entry = byte_get (indices, 4);
5619 indices += 4;
5620
5621 if (entry >= elf_header.e_shnum)
5622 {
5623 error (_("section [%5u] in group section [%5u] > maximum section [%5u]\n"),
5624 entry, i, elf_header.e_shnum - 1);
5625 continue;
5626 }
5627
5628 if (section_headers_groups [entry] != NULL)
5629 {
5630 if (entry)
5631 {
5632 error (_("section [%5u] in group section [%5u] already in group section [%5u]\n"),
5633 entry, i,
5634 section_headers_groups [entry]->group_index);
5635 continue;
5636 }
5637 else
5638 {
5639 /* Intel C/C++ compiler may put section 0 in a
5640 section group. We just warn it the first time
5641 and ignore it afterwards. */
5642 static int warned = 0;
5643 if (!warned)
5644 {
5645 error (_("section 0 in group section [%5u]\n"),
5646 section_headers_groups [entry]->group_index);
5647 warned++;
5648 }
5649 }
5650 }
5651
5652 section_headers_groups [entry] = group;
5653
5654 if (do_section_groups)
5655 {
5656 sec = section_headers + entry;
5657 printf (" [%5u] %s\n", entry, SECTION_NAME (sec));
5658 }
5659
5660 g = (struct group_list *) xmalloc (sizeof (struct group_list));
5661 g->section_index = entry;
5662 g->next = group->root;
5663 group->root = g;
5664 }
5665
5666 if (start)
5667 free (start);
5668
5669 group++;
5670 }
5671 }
5672
5673 if (symtab)
5674 free (symtab);
5675 if (strtab)
5676 free (strtab);
5677 return 1;
5678 }
5679
5680 /* Data used to display dynamic fixups. */
5681
5682 struct ia64_vms_dynfixup
5683 {
5684 bfd_vma needed_ident; /* Library ident number. */
5685 bfd_vma needed; /* Index in the dstrtab of the library name. */
5686 bfd_vma fixup_needed; /* Index of the library. */
5687 bfd_vma fixup_rela_cnt; /* Number of fixups. */
5688 bfd_vma fixup_rela_off; /* Fixups offset in the dynamic segment. */
5689 };
5690
5691 /* Data used to display dynamic relocations. */
5692
5693 struct ia64_vms_dynimgrela
5694 {
5695 bfd_vma img_rela_cnt; /* Number of relocations. */
5696 bfd_vma img_rela_off; /* Reloc offset in the dynamic segment. */
5697 };
5698
5699 /* Display IA-64 OpenVMS dynamic fixups (used to dynamically link a shared
5700 library). */
5701
5702 static void
5703 dump_ia64_vms_dynamic_fixups (FILE *file, struct ia64_vms_dynfixup *fixup,
5704 const char *strtab, unsigned int strtab_sz)
5705 {
5706 Elf64_External_VMS_IMAGE_FIXUP *imfs;
5707 long i;
5708 const char *lib_name;
5709
5710 imfs = get_data (NULL, file, dynamic_addr + fixup->fixup_rela_off,
5711 1, fixup->fixup_rela_cnt * sizeof (*imfs),
5712 _("dynamic section image fixups"));
5713 if (!imfs)
5714 return;
5715
5716 if (fixup->needed < strtab_sz)
5717 lib_name = strtab + fixup->needed;
5718 else
5719 {
5720 warn ("corrupt library name index of 0x%lx found in dynamic entry",
5721 (unsigned long) fixup->needed);
5722 lib_name = "???";
5723 }
5724 printf (_("\nImage fixups for needed library #%d: %s - ident: %lx\n"),
5725 (int) fixup->fixup_needed, lib_name, (long) fixup->needed_ident);
5726 printf
5727 (_("Seg Offset Type SymVec DataType\n"));
5728
5729 for (i = 0; i < (long) fixup->fixup_rela_cnt; i++)
5730 {
5731 unsigned int type;
5732 const char *rtype;
5733
5734 printf ("%3u ", (unsigned) BYTE_GET (imfs [i].fixup_seg));
5735 printf_vma ((bfd_vma) BYTE_GET (imfs [i].fixup_offset));
5736 type = BYTE_GET (imfs [i].type);
5737 rtype = elf_ia64_reloc_type (type);
5738 if (rtype == NULL)
5739 printf (" 0x%08x ", type);
5740 else
5741 printf (" %-32s ", rtype);
5742 printf ("%6u ", (unsigned) BYTE_GET (imfs [i].symvec_index));
5743 printf ("0x%08x\n", (unsigned) BYTE_GET (imfs [i].data_type));
5744 }
5745
5746 free (imfs);
5747 }
5748
5749 /* Display IA-64 OpenVMS dynamic relocations (used to relocate an image). */
5750
5751 static void
5752 dump_ia64_vms_dynamic_relocs (FILE *file, struct ia64_vms_dynimgrela *imgrela)
5753 {
5754 Elf64_External_VMS_IMAGE_RELA *imrs;
5755 long i;
5756
5757 imrs = get_data (NULL, file, dynamic_addr + imgrela->img_rela_off,
5758 1, imgrela->img_rela_cnt * sizeof (*imrs),
5759 _("dynamic section image relocations"));
5760 if (!imrs)
5761 return;
5762
5763 printf (_("\nImage relocs\n"));
5764 printf
5765 (_("Seg Offset Type Addend Seg Sym Off\n"));
5766
5767 for (i = 0; i < (long) imgrela->img_rela_cnt; i++)
5768 {
5769 unsigned int type;
5770 const char *rtype;
5771
5772 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].rela_seg));
5773 printf ("%08" BFD_VMA_FMT "x ",
5774 (bfd_vma) BYTE_GET (imrs [i].rela_offset));
5775 type = BYTE_GET (imrs [i].type);
5776 rtype = elf_ia64_reloc_type (type);
5777 if (rtype == NULL)
5778 printf ("0x%08x ", type);
5779 else
5780 printf ("%-31s ", rtype);
5781 print_vma (BYTE_GET (imrs [i].addend), FULL_HEX);
5782 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].sym_seg));
5783 printf ("%08" BFD_VMA_FMT "x\n",
5784 (bfd_vma) BYTE_GET (imrs [i].sym_offset));
5785 }
5786
5787 free (imrs);
5788 }
5789
5790 /* Display IA-64 OpenVMS dynamic relocations and fixups. */
5791
5792 static int
5793 process_ia64_vms_dynamic_relocs (FILE *file)
5794 {
5795 struct ia64_vms_dynfixup fixup;
5796 struct ia64_vms_dynimgrela imgrela;
5797 Elf_Internal_Dyn *entry;
5798 int res = 0;
5799 bfd_vma strtab_off = 0;
5800 bfd_vma strtab_sz = 0;
5801 char *strtab = NULL;
5802
5803 memset (&fixup, 0, sizeof (fixup));
5804 memset (&imgrela, 0, sizeof (imgrela));
5805
5806 /* Note: the order of the entries is specified by the OpenVMS specs. */
5807 for (entry = dynamic_section;
5808 entry < dynamic_section + dynamic_nent;
5809 entry++)
5810 {
5811 switch (entry->d_tag)
5812 {
5813 case DT_IA_64_VMS_STRTAB_OFFSET:
5814 strtab_off = entry->d_un.d_val;
5815 break;
5816 case DT_STRSZ:
5817 strtab_sz = entry->d_un.d_val;
5818 if (strtab == NULL)
5819 strtab = get_data (NULL, file, dynamic_addr + strtab_off,
5820 1, strtab_sz, _("dynamic string section"));
5821 break;
5822
5823 case DT_IA_64_VMS_NEEDED_IDENT:
5824 fixup.needed_ident = entry->d_un.d_val;
5825 break;
5826 case DT_NEEDED:
5827 fixup.needed = entry->d_un.d_val;
5828 break;
5829 case DT_IA_64_VMS_FIXUP_NEEDED:
5830 fixup.fixup_needed = entry->d_un.d_val;
5831 break;
5832 case DT_IA_64_VMS_FIXUP_RELA_CNT:
5833 fixup.fixup_rela_cnt = entry->d_un.d_val;
5834 break;
5835 case DT_IA_64_VMS_FIXUP_RELA_OFF:
5836 fixup.fixup_rela_off = entry->d_un.d_val;
5837 res++;
5838 dump_ia64_vms_dynamic_fixups (file, &fixup, strtab, strtab_sz);
5839 break;
5840
5841 case DT_IA_64_VMS_IMG_RELA_CNT:
5842 imgrela.img_rela_cnt = entry->d_un.d_val;
5843 break;
5844 case DT_IA_64_VMS_IMG_RELA_OFF:
5845 imgrela.img_rela_off = entry->d_un.d_val;
5846 res++;
5847 dump_ia64_vms_dynamic_relocs (file, &imgrela);
5848 break;
5849
5850 default:
5851 break;
5852 }
5853 }
5854
5855 if (strtab != NULL)
5856 free (strtab);
5857
5858 return res;
5859 }
5860
5861 static struct
5862 {
5863 const char * name;
5864 int reloc;
5865 int size;
5866 int rela;
5867 } dynamic_relocations [] =
5868 {
5869 { "REL", DT_REL, DT_RELSZ, FALSE },
5870 { "RELA", DT_RELA, DT_RELASZ, TRUE },
5871 { "PLT", DT_JMPREL, DT_PLTRELSZ, UNKNOWN }
5872 };
5873
5874 /* Process the reloc section. */
5875
5876 static int
5877 process_relocs (FILE * file)
5878 {
5879 unsigned long rel_size;
5880 unsigned long rel_offset;
5881
5882
5883 if (!do_reloc)
5884 return 1;
5885
5886 if (do_using_dynamic)
5887 {
5888 int is_rela;
5889 const char * name;
5890 int has_dynamic_reloc;
5891 unsigned int i;
5892
5893 has_dynamic_reloc = 0;
5894
5895 for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
5896 {
5897 is_rela = dynamic_relocations [i].rela;
5898 name = dynamic_relocations [i].name;
5899 rel_size = dynamic_info [dynamic_relocations [i].size];
5900 rel_offset = dynamic_info [dynamic_relocations [i].reloc];
5901
5902 has_dynamic_reloc |= rel_size;
5903
5904 if (is_rela == UNKNOWN)
5905 {
5906 if (dynamic_relocations [i].reloc == DT_JMPREL)
5907 switch (dynamic_info[DT_PLTREL])
5908 {
5909 case DT_REL:
5910 is_rela = FALSE;
5911 break;
5912 case DT_RELA:
5913 is_rela = TRUE;
5914 break;
5915 }
5916 }
5917
5918 if (rel_size)
5919 {
5920 printf
5921 (_("\n'%s' relocation section at offset 0x%lx contains %ld bytes:\n"),
5922 name, rel_offset, rel_size);
5923
5924 dump_relocations (file,
5925 offset_from_vma (file, rel_offset, rel_size),
5926 rel_size,
5927 dynamic_symbols, num_dynamic_syms,
5928 dynamic_strings, dynamic_strings_length, is_rela);
5929 }
5930 }
5931
5932 if (is_ia64_vms ())
5933 has_dynamic_reloc |= process_ia64_vms_dynamic_relocs (file);
5934
5935 if (! has_dynamic_reloc)
5936 printf (_("\nThere are no dynamic relocations in this file.\n"));
5937 }
5938 else
5939 {
5940 Elf_Internal_Shdr * section;
5941 unsigned long i;
5942 int found = 0;
5943
5944 for (i = 0, section = section_headers;
5945 i < elf_header.e_shnum;
5946 i++, section++)
5947 {
5948 if ( section->sh_type != SHT_RELA
5949 && section->sh_type != SHT_REL)
5950 continue;
5951
5952 rel_offset = section->sh_offset;
5953 rel_size = section->sh_size;
5954
5955 if (rel_size)
5956 {
5957 Elf_Internal_Shdr * strsec;
5958 int is_rela;
5959
5960 printf (_("\nRelocation section "));
5961
5962 if (string_table == NULL)
5963 printf ("%d", section->sh_name);
5964 else
5965 printf ("'%s'", SECTION_NAME (section));
5966
5967 printf (_(" at offset 0x%lx contains %lu entries:\n"),
5968 rel_offset, (unsigned long) (rel_size / section->sh_entsize));
5969
5970 is_rela = section->sh_type == SHT_RELA;
5971
5972 if (section->sh_link != 0
5973 && section->sh_link < elf_header.e_shnum)
5974 {
5975 Elf_Internal_Shdr * symsec;
5976 Elf_Internal_Sym * symtab;
5977 unsigned long nsyms;
5978 unsigned long strtablen = 0;
5979 char * strtab = NULL;
5980
5981 symsec = section_headers + section->sh_link;
5982 if (symsec->sh_type != SHT_SYMTAB
5983 && symsec->sh_type != SHT_DYNSYM)
5984 continue;
5985
5986 symtab = GET_ELF_SYMBOLS (file, symsec, & nsyms);
5987
5988 if (symtab == NULL)
5989 continue;
5990
5991 if (symsec->sh_link != 0
5992 && symsec->sh_link < elf_header.e_shnum)
5993 {
5994 strsec = section_headers + symsec->sh_link;
5995
5996 strtab = (char *) get_data (NULL, file, strsec->sh_offset,
5997 1, strsec->sh_size,
5998 _("string table"));
5999 strtablen = strtab == NULL ? 0 : strsec->sh_size;
6000 }
6001
6002 dump_relocations (file, rel_offset, rel_size,
6003 symtab, nsyms, strtab, strtablen, is_rela);
6004 if (strtab)
6005 free (strtab);
6006 free (symtab);
6007 }
6008 else
6009 dump_relocations (file, rel_offset, rel_size,
6010 NULL, 0, NULL, 0, is_rela);
6011
6012 found = 1;
6013 }
6014 }
6015
6016 if (! found)
6017 printf (_("\nThere are no relocations in this file.\n"));
6018 }
6019
6020 return 1;
6021 }
6022
6023 /* Process the unwind section. */
6024
6025 #include "unwind-ia64.h"
6026
6027 /* An absolute address consists of a section and an offset. If the
6028 section is NULL, the offset itself is the address, otherwise, the
6029 address equals to LOAD_ADDRESS(section) + offset. */
6030
6031 struct absaddr
6032 {
6033 unsigned short section;
6034 bfd_vma offset;
6035 };
6036
6037 #define ABSADDR(a) \
6038 ((a).section \
6039 ? section_headers [(a).section].sh_addr + (a).offset \
6040 : (a).offset)
6041
6042 struct ia64_unw_table_entry
6043 {
6044 struct absaddr start;
6045 struct absaddr end;
6046 struct absaddr info;
6047 };
6048
6049 struct ia64_unw_aux_info
6050 {
6051
6052 struct ia64_unw_table_entry *table; /* Unwind table. */
6053 unsigned long table_len; /* Length of unwind table. */
6054 unsigned char * info; /* Unwind info. */
6055 unsigned long info_size; /* Size of unwind info. */
6056 bfd_vma info_addr; /* starting address of unwind info. */
6057 bfd_vma seg_base; /* Starting address of segment. */
6058 Elf_Internal_Sym * symtab; /* The symbol table. */
6059 unsigned long nsyms; /* Number of symbols. */
6060 char * strtab; /* The string table. */
6061 unsigned long strtab_size; /* Size of string table. */
6062 };
6063
6064 static void
6065 find_symbol_for_address (Elf_Internal_Sym * symtab,
6066 unsigned long nsyms,
6067 const char * strtab,
6068 unsigned long strtab_size,
6069 struct absaddr addr,
6070 const char ** symname,
6071 bfd_vma * offset)
6072 {
6073 bfd_vma dist = 0x100000;
6074 Elf_Internal_Sym * sym;
6075 Elf_Internal_Sym * best = NULL;
6076 unsigned long i;
6077
6078 REMOVE_ARCH_BITS (addr.offset);
6079
6080 for (i = 0, sym = symtab; i < nsyms; ++i, ++sym)
6081 {
6082 bfd_vma value = sym->st_value;
6083
6084 REMOVE_ARCH_BITS (value);
6085
6086 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC
6087 && sym->st_name != 0
6088 && (addr.section == SHN_UNDEF || addr.section == sym->st_shndx)
6089 && addr.offset >= value
6090 && addr.offset - value < dist)
6091 {
6092 best = sym;
6093 dist = addr.offset - value;
6094 if (!dist)
6095 break;
6096 }
6097 }
6098
6099 if (best)
6100 {
6101 *symname = (best->st_name >= strtab_size
6102 ? _("<corrupt>") : strtab + best->st_name);
6103 *offset = dist;
6104 return;
6105 }
6106
6107 *symname = NULL;
6108 *offset = addr.offset;
6109 }
6110
6111 static void
6112 dump_ia64_unwind (struct ia64_unw_aux_info * aux)
6113 {
6114 struct ia64_unw_table_entry * tp;
6115 int in_body;
6116
6117 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
6118 {
6119 bfd_vma stamp;
6120 bfd_vma offset;
6121 const unsigned char * dp;
6122 const unsigned char * head;
6123 const char * procname;
6124
6125 find_symbol_for_address (aux->symtab, aux->nsyms, aux->strtab,
6126 aux->strtab_size, tp->start, &procname, &offset);
6127
6128 fputs ("\n<", stdout);
6129
6130 if (procname)
6131 {
6132 fputs (procname, stdout);
6133
6134 if (offset)
6135 printf ("+%lx", (unsigned long) offset);
6136 }
6137
6138 fputs (">: [", stdout);
6139 print_vma (tp->start.offset, PREFIX_HEX);
6140 fputc ('-', stdout);
6141 print_vma (tp->end.offset, PREFIX_HEX);
6142 printf ("], info at +0x%lx\n",
6143 (unsigned long) (tp->info.offset - aux->seg_base));
6144
6145 head = aux->info + (ABSADDR (tp->info) - aux->info_addr);
6146 stamp = byte_get ((unsigned char *) head, sizeof (stamp));
6147
6148 printf (" v%u, flags=0x%lx (%s%s), len=%lu bytes\n",
6149 (unsigned) UNW_VER (stamp),
6150 (unsigned long) ((stamp & UNW_FLAG_MASK) >> 32),
6151 UNW_FLAG_EHANDLER (stamp) ? " ehandler" : "",
6152 UNW_FLAG_UHANDLER (stamp) ? " uhandler" : "",
6153 (unsigned long) (eh_addr_size * UNW_LENGTH (stamp)));
6154
6155 if (UNW_VER (stamp) != 1)
6156 {
6157 printf (_("\tUnknown version.\n"));
6158 continue;
6159 }
6160
6161 in_body = 0;
6162 for (dp = head + 8; dp < head + 8 + eh_addr_size * UNW_LENGTH (stamp);)
6163 dp = unw_decode (dp, in_body, & in_body);
6164 }
6165 }
6166
6167 static int
6168 slurp_ia64_unwind_table (FILE * file,
6169 struct ia64_unw_aux_info * aux,
6170 Elf_Internal_Shdr * sec)
6171 {
6172 unsigned long size, nrelas, i;
6173 Elf_Internal_Phdr * seg;
6174 struct ia64_unw_table_entry * tep;
6175 Elf_Internal_Shdr * relsec;
6176 Elf_Internal_Rela * rela;
6177 Elf_Internal_Rela * rp;
6178 unsigned char * table;
6179 unsigned char * tp;
6180 Elf_Internal_Sym * sym;
6181 const char * relname;
6182
6183 /* First, find the starting address of the segment that includes
6184 this section: */
6185
6186 if (elf_header.e_phnum)
6187 {
6188 if (! get_program_headers (file))
6189 return 0;
6190
6191 for (seg = program_headers;
6192 seg < program_headers + elf_header.e_phnum;
6193 ++seg)
6194 {
6195 if (seg->p_type != PT_LOAD)
6196 continue;
6197
6198 if (sec->sh_addr >= seg->p_vaddr
6199 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
6200 {
6201 aux->seg_base = seg->p_vaddr;
6202 break;
6203 }
6204 }
6205 }
6206
6207 /* Second, build the unwind table from the contents of the unwind section: */
6208 size = sec->sh_size;
6209 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
6210 _("unwind table"));
6211 if (!table)
6212 return 0;
6213
6214 aux->table = (struct ia64_unw_table_entry *)
6215 xcmalloc (size / (3 * eh_addr_size), sizeof (aux->table[0]));
6216 tep = aux->table;
6217 for (tp = table; tp < table + size; ++tep)
6218 {
6219 tep->start.section = SHN_UNDEF;
6220 tep->end.section = SHN_UNDEF;
6221 tep->info.section = SHN_UNDEF;
6222 tep->start.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
6223 tep->end.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
6224 tep->info.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
6225 tep->start.offset += aux->seg_base;
6226 tep->end.offset += aux->seg_base;
6227 tep->info.offset += aux->seg_base;
6228 }
6229 free (table);
6230
6231 /* Third, apply any relocations to the unwind table: */
6232 for (relsec = section_headers;
6233 relsec < section_headers + elf_header.e_shnum;
6234 ++relsec)
6235 {
6236 if (relsec->sh_type != SHT_RELA
6237 || relsec->sh_info >= elf_header.e_shnum
6238 || section_headers + relsec->sh_info != sec)
6239 continue;
6240
6241 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
6242 & rela, & nrelas))
6243 return 0;
6244
6245 for (rp = rela; rp < rela + nrelas; ++rp)
6246 {
6247 relname = elf_ia64_reloc_type (get_reloc_type (rp->r_info));
6248 sym = aux->symtab + get_reloc_symindex (rp->r_info);
6249
6250 if (! const_strneq (relname, "R_IA64_SEGREL"))
6251 {
6252 warn (_("Skipping unexpected relocation type %s\n"), relname);
6253 continue;
6254 }
6255
6256 i = rp->r_offset / (3 * eh_addr_size);
6257
6258 switch (rp->r_offset/eh_addr_size % 3)
6259 {
6260 case 0:
6261 aux->table[i].start.section = sym->st_shndx;
6262 aux->table[i].start.offset = rp->r_addend + sym->st_value;
6263 break;
6264 case 1:
6265 aux->table[i].end.section = sym->st_shndx;
6266 aux->table[i].end.offset = rp->r_addend + sym->st_value;
6267 break;
6268 case 2:
6269 aux->table[i].info.section = sym->st_shndx;
6270 aux->table[i].info.offset = rp->r_addend + sym->st_value;
6271 break;
6272 default:
6273 break;
6274 }
6275 }
6276
6277 free (rela);
6278 }
6279
6280 aux->table_len = size / (3 * eh_addr_size);
6281 return 1;
6282 }
6283
6284 static void
6285 ia64_process_unwind (FILE * file)
6286 {
6287 Elf_Internal_Shdr * sec;
6288 Elf_Internal_Shdr * unwsec = NULL;
6289 Elf_Internal_Shdr * strsec;
6290 unsigned long i, unwcount = 0, unwstart = 0;
6291 struct ia64_unw_aux_info aux;
6292
6293 memset (& aux, 0, sizeof (aux));
6294
6295 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
6296 {
6297 if (sec->sh_type == SHT_SYMTAB
6298 && sec->sh_link < elf_header.e_shnum)
6299 {
6300 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
6301
6302 strsec = section_headers + sec->sh_link;
6303 assert (aux.strtab == NULL);
6304 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
6305 1, strsec->sh_size,
6306 _("string table"));
6307 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
6308 }
6309 else if (sec->sh_type == SHT_IA_64_UNWIND)
6310 unwcount++;
6311 }
6312
6313 if (!unwcount)
6314 printf (_("\nThere are no unwind sections in this file.\n"));
6315
6316 while (unwcount-- > 0)
6317 {
6318 char * suffix;
6319 size_t len, len2;
6320
6321 for (i = unwstart, sec = section_headers + unwstart;
6322 i < elf_header.e_shnum; ++i, ++sec)
6323 if (sec->sh_type == SHT_IA_64_UNWIND)
6324 {
6325 unwsec = sec;
6326 break;
6327 }
6328
6329 unwstart = i + 1;
6330 len = sizeof (ELF_STRING_ia64_unwind_once) - 1;
6331
6332 if ((unwsec->sh_flags & SHF_GROUP) != 0)
6333 {
6334 /* We need to find which section group it is in. */
6335 struct group_list * g = section_headers_groups [i]->root;
6336
6337 for (; g != NULL; g = g->next)
6338 {
6339 sec = section_headers + g->section_index;
6340
6341 if (streq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info))
6342 break;
6343 }
6344
6345 if (g == NULL)
6346 i = elf_header.e_shnum;
6347 }
6348 else if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind_once, len))
6349 {
6350 /* .gnu.linkonce.ia64unw.FOO -> .gnu.linkonce.ia64unwi.FOO. */
6351 len2 = sizeof (ELF_STRING_ia64_unwind_info_once) - 1;
6352 suffix = SECTION_NAME (unwsec) + len;
6353 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
6354 ++i, ++sec)
6355 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info_once, len2)
6356 && streq (SECTION_NAME (sec) + len2, suffix))
6357 break;
6358 }
6359 else
6360 {
6361 /* .IA_64.unwindFOO -> .IA_64.unwind_infoFOO
6362 .IA_64.unwind or BAR -> .IA_64.unwind_info. */
6363 len = sizeof (ELF_STRING_ia64_unwind) - 1;
6364 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
6365 suffix = "";
6366 if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind, len))
6367 suffix = SECTION_NAME (unwsec) + len;
6368 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
6369 ++i, ++sec)
6370 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info, len2)
6371 && streq (SECTION_NAME (sec) + len2, suffix))
6372 break;
6373 }
6374
6375 if (i == elf_header.e_shnum)
6376 {
6377 printf (_("\nCould not find unwind info section for "));
6378
6379 if (string_table == NULL)
6380 printf ("%d", unwsec->sh_name);
6381 else
6382 printf (_("'%s'"), SECTION_NAME (unwsec));
6383 }
6384 else
6385 {
6386 aux.info_addr = sec->sh_addr;
6387 aux.info = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1,
6388 sec->sh_size,
6389 _("unwind info"));
6390 aux.info_size = aux.info == NULL ? 0 : sec->sh_size;
6391
6392 printf (_("\nUnwind section "));
6393
6394 if (string_table == NULL)
6395 printf ("%d", unwsec->sh_name);
6396 else
6397 printf (_("'%s'"), SECTION_NAME (unwsec));
6398
6399 printf (_(" at offset 0x%lx contains %lu entries:\n"),
6400 (unsigned long) unwsec->sh_offset,
6401 (unsigned long) (unwsec->sh_size / (3 * eh_addr_size)));
6402
6403 (void) slurp_ia64_unwind_table (file, & aux, unwsec);
6404
6405 if (aux.table_len > 0)
6406 dump_ia64_unwind (& aux);
6407
6408 if (aux.table)
6409 free ((char *) aux.table);
6410 if (aux.info)
6411 free ((char *) aux.info);
6412 aux.table = NULL;
6413 aux.info = NULL;
6414 }
6415 }
6416
6417 if (aux.symtab)
6418 free (aux.symtab);
6419 if (aux.strtab)
6420 free ((char *) aux.strtab);
6421 }
6422
6423 struct hppa_unw_table_entry
6424 {
6425 struct absaddr start;
6426 struct absaddr end;
6427 unsigned int Cannot_unwind:1; /* 0 */
6428 unsigned int Millicode:1; /* 1 */
6429 unsigned int Millicode_save_sr0:1; /* 2 */
6430 unsigned int Region_description:2; /* 3..4 */
6431 unsigned int reserved1:1; /* 5 */
6432 unsigned int Entry_SR:1; /* 6 */
6433 unsigned int Entry_FR:4; /* number saved */ /* 7..10 */
6434 unsigned int Entry_GR:5; /* number saved */ /* 11..15 */
6435 unsigned int Args_stored:1; /* 16 */
6436 unsigned int Variable_Frame:1; /* 17 */
6437 unsigned int Separate_Package_Body:1; /* 18 */
6438 unsigned int Frame_Extension_Millicode:1; /* 19 */
6439 unsigned int Stack_Overflow_Check:1; /* 20 */
6440 unsigned int Two_Instruction_SP_Increment:1; /* 21 */
6441 unsigned int Ada_Region:1; /* 22 */
6442 unsigned int cxx_info:1; /* 23 */
6443 unsigned int cxx_try_catch:1; /* 24 */
6444 unsigned int sched_entry_seq:1; /* 25 */
6445 unsigned int reserved2:1; /* 26 */
6446 unsigned int Save_SP:1; /* 27 */
6447 unsigned int Save_RP:1; /* 28 */
6448 unsigned int Save_MRP_in_frame:1; /* 29 */
6449 unsigned int extn_ptr_defined:1; /* 30 */
6450 unsigned int Cleanup_defined:1; /* 31 */
6451
6452 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
6453 unsigned int HP_UX_interrupt_marker:1; /* 1 */
6454 unsigned int Large_frame:1; /* 2 */
6455 unsigned int Pseudo_SP_Set:1; /* 3 */
6456 unsigned int reserved4:1; /* 4 */
6457 unsigned int Total_frame_size:27; /* 5..31 */
6458 };
6459
6460 struct hppa_unw_aux_info
6461 {
6462 struct hppa_unw_table_entry *table; /* Unwind table. */
6463 unsigned long table_len; /* Length of unwind table. */
6464 bfd_vma seg_base; /* Starting address of segment. */
6465 Elf_Internal_Sym * symtab; /* The symbol table. */
6466 unsigned long nsyms; /* Number of symbols. */
6467 char * strtab; /* The string table. */
6468 unsigned long strtab_size; /* Size of string table. */
6469 };
6470
6471 static void
6472 dump_hppa_unwind (struct hppa_unw_aux_info * aux)
6473 {
6474 struct hppa_unw_table_entry * tp;
6475
6476 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
6477 {
6478 bfd_vma offset;
6479 const char * procname;
6480
6481 find_symbol_for_address (aux->symtab, aux->nsyms, aux->strtab,
6482 aux->strtab_size, tp->start, &procname,
6483 &offset);
6484
6485 fputs ("\n<", stdout);
6486
6487 if (procname)
6488 {
6489 fputs (procname, stdout);
6490
6491 if (offset)
6492 printf ("+%lx", (unsigned long) offset);
6493 }
6494
6495 fputs (">: [", stdout);
6496 print_vma (tp->start.offset, PREFIX_HEX);
6497 fputc ('-', stdout);
6498 print_vma (tp->end.offset, PREFIX_HEX);
6499 printf ("]\n\t");
6500
6501 #define PF(_m) if (tp->_m) printf (#_m " ");
6502 #define PV(_m) if (tp->_m) printf (#_m "=%d ", tp->_m);
6503 PF(Cannot_unwind);
6504 PF(Millicode);
6505 PF(Millicode_save_sr0);
6506 /* PV(Region_description); */
6507 PF(Entry_SR);
6508 PV(Entry_FR);
6509 PV(Entry_GR);
6510 PF(Args_stored);
6511 PF(Variable_Frame);
6512 PF(Separate_Package_Body);
6513 PF(Frame_Extension_Millicode);
6514 PF(Stack_Overflow_Check);
6515 PF(Two_Instruction_SP_Increment);
6516 PF(Ada_Region);
6517 PF(cxx_info);
6518 PF(cxx_try_catch);
6519 PF(sched_entry_seq);
6520 PF(Save_SP);
6521 PF(Save_RP);
6522 PF(Save_MRP_in_frame);
6523 PF(extn_ptr_defined);
6524 PF(Cleanup_defined);
6525 PF(MPE_XL_interrupt_marker);
6526 PF(HP_UX_interrupt_marker);
6527 PF(Large_frame);
6528 PF(Pseudo_SP_Set);
6529 PV(Total_frame_size);
6530 #undef PF
6531 #undef PV
6532 }
6533
6534 printf ("\n");
6535 }
6536
6537 static int
6538 slurp_hppa_unwind_table (FILE * file,
6539 struct hppa_unw_aux_info * aux,
6540 Elf_Internal_Shdr * sec)
6541 {
6542 unsigned long size, unw_ent_size, nentries, nrelas, i;
6543 Elf_Internal_Phdr * seg;
6544 struct hppa_unw_table_entry * tep;
6545 Elf_Internal_Shdr * relsec;
6546 Elf_Internal_Rela * rela;
6547 Elf_Internal_Rela * rp;
6548 unsigned char * table;
6549 unsigned char * tp;
6550 Elf_Internal_Sym * sym;
6551 const char * relname;
6552
6553 /* First, find the starting address of the segment that includes
6554 this section. */
6555
6556 if (elf_header.e_phnum)
6557 {
6558 if (! get_program_headers (file))
6559 return 0;
6560
6561 for (seg = program_headers;
6562 seg < program_headers + elf_header.e_phnum;
6563 ++seg)
6564 {
6565 if (seg->p_type != PT_LOAD)
6566 continue;
6567
6568 if (sec->sh_addr >= seg->p_vaddr
6569 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
6570 {
6571 aux->seg_base = seg->p_vaddr;
6572 break;
6573 }
6574 }
6575 }
6576
6577 /* Second, build the unwind table from the contents of the unwind
6578 section. */
6579 size = sec->sh_size;
6580 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
6581 _("unwind table"));
6582 if (!table)
6583 return 0;
6584
6585 unw_ent_size = 16;
6586 nentries = size / unw_ent_size;
6587 size = unw_ent_size * nentries;
6588
6589 tep = aux->table = (struct hppa_unw_table_entry *)
6590 xcmalloc (nentries, sizeof (aux->table[0]));
6591
6592 for (tp = table; tp < table + size; tp += unw_ent_size, ++tep)
6593 {
6594 unsigned int tmp1, tmp2;
6595
6596 tep->start.section = SHN_UNDEF;
6597 tep->end.section = SHN_UNDEF;
6598
6599 tep->start.offset = byte_get ((unsigned char *) tp + 0, 4);
6600 tep->end.offset = byte_get ((unsigned char *) tp + 4, 4);
6601 tmp1 = byte_get ((unsigned char *) tp + 8, 4);
6602 tmp2 = byte_get ((unsigned char *) tp + 12, 4);
6603
6604 tep->start.offset += aux->seg_base;
6605 tep->end.offset += aux->seg_base;
6606
6607 tep->Cannot_unwind = (tmp1 >> 31) & 0x1;
6608 tep->Millicode = (tmp1 >> 30) & 0x1;
6609 tep->Millicode_save_sr0 = (tmp1 >> 29) & 0x1;
6610 tep->Region_description = (tmp1 >> 27) & 0x3;
6611 tep->reserved1 = (tmp1 >> 26) & 0x1;
6612 tep->Entry_SR = (tmp1 >> 25) & 0x1;
6613 tep->Entry_FR = (tmp1 >> 21) & 0xf;
6614 tep->Entry_GR = (tmp1 >> 16) & 0x1f;
6615 tep->Args_stored = (tmp1 >> 15) & 0x1;
6616 tep->Variable_Frame = (tmp1 >> 14) & 0x1;
6617 tep->Separate_Package_Body = (tmp1 >> 13) & 0x1;
6618 tep->Frame_Extension_Millicode = (tmp1 >> 12) & 0x1;
6619 tep->Stack_Overflow_Check = (tmp1 >> 11) & 0x1;
6620 tep->Two_Instruction_SP_Increment = (tmp1 >> 10) & 0x1;
6621 tep->Ada_Region = (tmp1 >> 9) & 0x1;
6622 tep->cxx_info = (tmp1 >> 8) & 0x1;
6623 tep->cxx_try_catch = (tmp1 >> 7) & 0x1;
6624 tep->sched_entry_seq = (tmp1 >> 6) & 0x1;
6625 tep->reserved2 = (tmp1 >> 5) & 0x1;
6626 tep->Save_SP = (tmp1 >> 4) & 0x1;
6627 tep->Save_RP = (tmp1 >> 3) & 0x1;
6628 tep->Save_MRP_in_frame = (tmp1 >> 2) & 0x1;
6629 tep->extn_ptr_defined = (tmp1 >> 1) & 0x1;
6630 tep->Cleanup_defined = tmp1 & 0x1;
6631
6632 tep->MPE_XL_interrupt_marker = (tmp2 >> 31) & 0x1;
6633 tep->HP_UX_interrupt_marker = (tmp2 >> 30) & 0x1;
6634 tep->Large_frame = (tmp2 >> 29) & 0x1;
6635 tep->Pseudo_SP_Set = (tmp2 >> 28) & 0x1;
6636 tep->reserved4 = (tmp2 >> 27) & 0x1;
6637 tep->Total_frame_size = tmp2 & 0x7ffffff;
6638 }
6639 free (table);
6640
6641 /* Third, apply any relocations to the unwind table. */
6642 for (relsec = section_headers;
6643 relsec < section_headers + elf_header.e_shnum;
6644 ++relsec)
6645 {
6646 if (relsec->sh_type != SHT_RELA
6647 || relsec->sh_info >= elf_header.e_shnum
6648 || section_headers + relsec->sh_info != sec)
6649 continue;
6650
6651 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
6652 & rela, & nrelas))
6653 return 0;
6654
6655 for (rp = rela; rp < rela + nrelas; ++rp)
6656 {
6657 relname = elf_hppa_reloc_type (get_reloc_type (rp->r_info));
6658 sym = aux->symtab + get_reloc_symindex (rp->r_info);
6659
6660 /* R_PARISC_SEGREL32 or R_PARISC_SEGREL64. */
6661 if (! const_strneq (relname, "R_PARISC_SEGREL"))
6662 {
6663 warn (_("Skipping unexpected relocation type %s\n"), relname);
6664 continue;
6665 }
6666
6667 i = rp->r_offset / unw_ent_size;
6668
6669 switch ((rp->r_offset % unw_ent_size) / eh_addr_size)
6670 {
6671 case 0:
6672 aux->table[i].start.section = sym->st_shndx;
6673 aux->table[i].start.offset = sym->st_value + rp->r_addend;
6674 break;
6675 case 1:
6676 aux->table[i].end.section = sym->st_shndx;
6677 aux->table[i].end.offset = sym->st_value + rp->r_addend;
6678 break;
6679 default:
6680 break;
6681 }
6682 }
6683
6684 free (rela);
6685 }
6686
6687 aux->table_len = nentries;
6688
6689 return 1;
6690 }
6691
6692 static void
6693 hppa_process_unwind (FILE * file)
6694 {
6695 struct hppa_unw_aux_info aux;
6696 Elf_Internal_Shdr * unwsec = NULL;
6697 Elf_Internal_Shdr * strsec;
6698 Elf_Internal_Shdr * sec;
6699 unsigned long i;
6700
6701 if (string_table == NULL)
6702 return;
6703
6704 memset (& aux, 0, sizeof (aux));
6705
6706 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
6707 {
6708 if (sec->sh_type == SHT_SYMTAB
6709 && sec->sh_link < elf_header.e_shnum)
6710 {
6711 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
6712
6713 strsec = section_headers + sec->sh_link;
6714 assert (aux.strtab == NULL);
6715 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
6716 1, strsec->sh_size,
6717 _("string table"));
6718 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
6719 }
6720 else if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
6721 unwsec = sec;
6722 }
6723
6724 if (!unwsec)
6725 printf (_("\nThere are no unwind sections in this file.\n"));
6726
6727 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
6728 {
6729 if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
6730 {
6731 printf (_("\nUnwind section "));
6732 printf (_("'%s'"), SECTION_NAME (sec));
6733
6734 printf (_(" at offset 0x%lx contains %lu entries:\n"),
6735 (unsigned long) sec->sh_offset,
6736 (unsigned long) (sec->sh_size / (2 * eh_addr_size + 8)));
6737
6738 slurp_hppa_unwind_table (file, &aux, sec);
6739 if (aux.table_len > 0)
6740 dump_hppa_unwind (&aux);
6741
6742 if (aux.table)
6743 free ((char *) aux.table);
6744 aux.table = NULL;
6745 }
6746 }
6747
6748 if (aux.symtab)
6749 free (aux.symtab);
6750 if (aux.strtab)
6751 free ((char *) aux.strtab);
6752 }
6753
6754 struct arm_section
6755 {
6756 unsigned char * data; /* The unwind data. */
6757 Elf_Internal_Shdr * sec; /* The cached unwind section header. */
6758 Elf_Internal_Rela * rela; /* The cached relocations for this section. */
6759 unsigned long nrelas; /* The number of relocations. */
6760 unsigned int rel_type; /* REL or RELA ? */
6761 Elf_Internal_Rela * next_rela; /* Cyclic pointer to the next reloc to process. */
6762 };
6763
6764 struct arm_unw_aux_info
6765 {
6766 FILE * file; /* The file containing the unwind sections. */
6767 Elf_Internal_Sym * symtab; /* The file's symbol table. */
6768 unsigned long nsyms; /* Number of symbols. */
6769 char * strtab; /* The file's string table. */
6770 unsigned long strtab_size; /* Size of string table. */
6771 };
6772
6773 static const char *
6774 arm_print_vma_and_name (struct arm_unw_aux_info *aux,
6775 bfd_vma fn, struct absaddr addr)
6776 {
6777 const char *procname;
6778 bfd_vma sym_offset;
6779
6780 if (addr.section == SHN_UNDEF)
6781 addr.offset = fn;
6782
6783 find_symbol_for_address (aux->symtab, aux->nsyms, aux->strtab,
6784 aux->strtab_size, addr, &procname,
6785 &sym_offset);
6786
6787 print_vma (fn, PREFIX_HEX);
6788
6789 if (procname)
6790 {
6791 fputs (" <", stdout);
6792 fputs (procname, stdout);
6793
6794 if (sym_offset)
6795 printf ("+0x%lx", (unsigned long) sym_offset);
6796 fputc ('>', stdout);
6797 }
6798
6799 return procname;
6800 }
6801
6802 static void
6803 arm_free_section (struct arm_section *arm_sec)
6804 {
6805 if (arm_sec->data != NULL)
6806 free (arm_sec->data);
6807
6808 if (arm_sec->rela != NULL)
6809 free (arm_sec->rela);
6810 }
6811
6812 /* 1) If SEC does not match the one cached in ARM_SEC, then free the current
6813 cached section and install SEC instead.
6814 2) Locate the 32-bit word at WORD_OFFSET in unwind section SEC
6815 and return its valued in * WORDP, relocating if necessary.
6816 3) Update the NEXT_RELA field in ARM_SEC and store the section index and
6817 relocation's offset in ADDR.
6818 4) If SYM_NAME is non-NULL and a relocation was applied, record the offset
6819 into the string table of the symbol associated with the reloc. If no
6820 reloc was applied store -1 there.
6821 5) Return TRUE upon success, FALSE otherwise. */
6822
6823 static bfd_boolean
6824 get_unwind_section_word (struct arm_unw_aux_info * aux,
6825 struct arm_section * arm_sec,
6826 Elf_Internal_Shdr * sec,
6827 bfd_vma word_offset,
6828 unsigned int * wordp,
6829 struct absaddr * addr,
6830 bfd_vma * sym_name)
6831 {
6832 Elf_Internal_Rela *rp;
6833 Elf_Internal_Sym *sym;
6834 const char * relname;
6835 unsigned int word;
6836 bfd_boolean wrapped;
6837
6838 addr->section = SHN_UNDEF;
6839 addr->offset = 0;
6840
6841 if (sym_name != NULL)
6842 *sym_name = (bfd_vma) -1;
6843
6844 /* If necessary, update the section cache. */
6845 if (sec != arm_sec->sec)
6846 {
6847 Elf_Internal_Shdr *relsec;
6848
6849 arm_free_section (arm_sec);
6850
6851 arm_sec->sec = sec;
6852 arm_sec->data = get_data (NULL, aux->file, sec->sh_offset, 1,
6853 sec->sh_size, _("unwind data"));
6854 arm_sec->rela = NULL;
6855 arm_sec->nrelas = 0;
6856
6857 for (relsec = section_headers;
6858 relsec < section_headers + elf_header.e_shnum;
6859 ++relsec)
6860 {
6861 if (relsec->sh_info >= elf_header.e_shnum
6862 || section_headers + relsec->sh_info != sec
6863 /* PR 15745: Check the section type as well. */
6864 || (relsec->sh_type != SHT_REL
6865 && relsec->sh_type != SHT_RELA))
6866 continue;
6867
6868 arm_sec->rel_type = relsec->sh_type;
6869 if (relsec->sh_type == SHT_REL)
6870 {
6871 if (!slurp_rel_relocs (aux->file, relsec->sh_offset,
6872 relsec->sh_size,
6873 & arm_sec->rela, & arm_sec->nrelas))
6874 return FALSE;
6875 }
6876 else /* relsec->sh_type == SHT_RELA */
6877 {
6878 if (!slurp_rela_relocs (aux->file, relsec->sh_offset,
6879 relsec->sh_size,
6880 & arm_sec->rela, & arm_sec->nrelas))
6881 return FALSE;
6882 }
6883 break;
6884 }
6885
6886 arm_sec->next_rela = arm_sec->rela;
6887 }
6888
6889 /* If there is no unwind data we can do nothing. */
6890 if (arm_sec->data == NULL)
6891 return FALSE;
6892
6893 /* Get the word at the required offset. */
6894 word = byte_get (arm_sec->data + word_offset, 4);
6895
6896 /* Look through the relocs to find the one that applies to the provided offset. */
6897 wrapped = FALSE;
6898 for (rp = arm_sec->next_rela; rp != arm_sec->rela + arm_sec->nrelas; rp++)
6899 {
6900 bfd_vma prelval, offset;
6901
6902 if (rp->r_offset > word_offset && !wrapped)
6903 {
6904 rp = arm_sec->rela;
6905 wrapped = TRUE;
6906 }
6907 if (rp->r_offset > word_offset)
6908 break;
6909
6910 if (rp->r_offset & 3)
6911 {
6912 warn (_("Skipping unexpected relocation at offset 0x%lx\n"),
6913 (unsigned long) rp->r_offset);
6914 continue;
6915 }
6916
6917 if (rp->r_offset < word_offset)
6918 continue;
6919
6920 sym = aux->symtab + ELF32_R_SYM (rp->r_info);
6921
6922 if (arm_sec->rel_type == SHT_REL)
6923 {
6924 offset = word & 0x7fffffff;
6925 if (offset & 0x40000000)
6926 offset |= ~ (bfd_vma) 0x7fffffff;
6927 }
6928 else if (arm_sec->rel_type == SHT_RELA)
6929 offset = rp->r_addend;
6930 else
6931 abort ();
6932
6933 offset += sym->st_value;
6934 prelval = offset - (arm_sec->sec->sh_addr + rp->r_offset);
6935
6936 /* Check that we are processing the expected reloc type. */
6937 if (elf_header.e_machine == EM_ARM)
6938 {
6939 relname = elf_arm_reloc_type (ELF32_R_TYPE (rp->r_info));
6940
6941 if (streq (relname, "R_ARM_NONE"))
6942 continue;
6943
6944 if (! streq (relname, "R_ARM_PREL31"))
6945 {
6946 warn (_("Skipping unexpected relocation type %s\n"), relname);
6947 continue;
6948 }
6949 }
6950 else if (elf_header.e_machine == EM_TI_C6000)
6951 {
6952 relname = elf_tic6x_reloc_type (ELF32_R_TYPE (rp->r_info));
6953
6954 if (streq (relname, "R_C6000_NONE"))
6955 continue;
6956
6957 if (! streq (relname, "R_C6000_PREL31"))
6958 {
6959 warn (_("Skipping unexpected relocation type %s\n"), relname);
6960 continue;
6961 }
6962
6963 prelval >>= 1;
6964 }
6965 else
6966 /* This function currently only supports ARM and TI unwinders. */
6967 abort ();
6968
6969 word = (word & ~ (bfd_vma) 0x7fffffff) | (prelval & 0x7fffffff);
6970 addr->section = sym->st_shndx;
6971 addr->offset = offset;
6972 if (sym_name)
6973 * sym_name = sym->st_name;
6974 break;
6975 }
6976
6977 *wordp = word;
6978 arm_sec->next_rela = rp;
6979
6980 return TRUE;
6981 }
6982
6983 static const char *tic6x_unwind_regnames[16] =
6984 {
6985 "A15", "B15", "B14", "B13", "B12", "B11", "B10", "B3",
6986 "A14", "A13", "A12", "A11", "A10",
6987 "[invalid reg 13]", "[invalid reg 14]", "[invalid reg 15]"
6988 };
6989
6990 static void
6991 decode_tic6x_unwind_regmask (unsigned int mask)
6992 {
6993 int i;
6994
6995 for (i = 12; mask; mask >>= 1, i--)
6996 {
6997 if (mask & 1)
6998 {
6999 fputs (tic6x_unwind_regnames[i], stdout);
7000 if (mask > 1)
7001 fputs (", ", stdout);
7002 }
7003 }
7004 }
7005
7006 #define ADVANCE \
7007 if (remaining == 0 && more_words) \
7008 { \
7009 data_offset += 4; \
7010 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, \
7011 data_offset, & word, & addr, NULL)) \
7012 return; \
7013 remaining = 4; \
7014 more_words--; \
7015 } \
7016
7017 #define GET_OP(OP) \
7018 ADVANCE; \
7019 if (remaining) \
7020 { \
7021 remaining--; \
7022 (OP) = word >> 24; \
7023 word <<= 8; \
7024 } \
7025 else \
7026 { \
7027 printf (_("[Truncated opcode]\n")); \
7028 return; \
7029 } \
7030 printf ("0x%02x ", OP)
7031
7032 static void
7033 decode_arm_unwind_bytecode (struct arm_unw_aux_info *aux,
7034 unsigned int word, unsigned int remaining,
7035 unsigned int more_words,
7036 bfd_vma data_offset, Elf_Internal_Shdr *data_sec,
7037 struct arm_section *data_arm_sec)
7038 {
7039 struct absaddr addr;
7040
7041 /* Decode the unwinding instructions. */
7042 while (1)
7043 {
7044 unsigned int op, op2;
7045
7046 ADVANCE;
7047 if (remaining == 0)
7048 break;
7049 remaining--;
7050 op = word >> 24;
7051 word <<= 8;
7052
7053 printf (" 0x%02x ", op);
7054
7055 if ((op & 0xc0) == 0x00)
7056 {
7057 int offset = ((op & 0x3f) << 2) + 4;
7058
7059 printf (" vsp = vsp + %d", offset);
7060 }
7061 else if ((op & 0xc0) == 0x40)
7062 {
7063 int offset = ((op & 0x3f) << 2) + 4;
7064
7065 printf (" vsp = vsp - %d", offset);
7066 }
7067 else if ((op & 0xf0) == 0x80)
7068 {
7069 GET_OP (op2);
7070 if (op == 0x80 && op2 == 0)
7071 printf (_("Refuse to unwind"));
7072 else
7073 {
7074 unsigned int mask = ((op & 0x0f) << 8) | op2;
7075 int first = 1;
7076 int i;
7077
7078 printf ("pop {");
7079 for (i = 0; i < 12; i++)
7080 if (mask & (1 << i))
7081 {
7082 if (first)
7083 first = 0;
7084 else
7085 printf (", ");
7086 printf ("r%d", 4 + i);
7087 }
7088 printf ("}");
7089 }
7090 }
7091 else if ((op & 0xf0) == 0x90)
7092 {
7093 if (op == 0x9d || op == 0x9f)
7094 printf (_(" [Reserved]"));
7095 else
7096 printf (" vsp = r%d", op & 0x0f);
7097 }
7098 else if ((op & 0xf0) == 0xa0)
7099 {
7100 int end = 4 + (op & 0x07);
7101 int first = 1;
7102 int i;
7103
7104 printf (" pop {");
7105 for (i = 4; i <= end; i++)
7106 {
7107 if (first)
7108 first = 0;
7109 else
7110 printf (", ");
7111 printf ("r%d", i);
7112 }
7113 if (op & 0x08)
7114 {
7115 if (!first)
7116 printf (", ");
7117 printf ("r14");
7118 }
7119 printf ("}");
7120 }
7121 else if (op == 0xb0)
7122 printf (_(" finish"));
7123 else if (op == 0xb1)
7124 {
7125 GET_OP (op2);
7126 if (op2 == 0 || (op2 & 0xf0) != 0)
7127 printf (_("[Spare]"));
7128 else
7129 {
7130 unsigned int mask = op2 & 0x0f;
7131 int first = 1;
7132 int i;
7133
7134 printf ("pop {");
7135 for (i = 0; i < 12; i++)
7136 if (mask & (1 << i))
7137 {
7138 if (first)
7139 first = 0;
7140 else
7141 printf (", ");
7142 printf ("r%d", i);
7143 }
7144 printf ("}");
7145 }
7146 }
7147 else if (op == 0xb2)
7148 {
7149 unsigned char buf[9];
7150 unsigned int i, len;
7151 unsigned long offset;
7152
7153 for (i = 0; i < sizeof (buf); i++)
7154 {
7155 GET_OP (buf[i]);
7156 if ((buf[i] & 0x80) == 0)
7157 break;
7158 }
7159 assert (i < sizeof (buf));
7160 offset = read_uleb128 (buf, &len, buf + i + 1);
7161 assert (len == i + 1);
7162 offset = offset * 4 + 0x204;
7163 printf ("vsp = vsp + %ld", offset);
7164 }
7165 else if (op == 0xb3 || op == 0xc8 || op == 0xc9)
7166 {
7167 unsigned int first, last;
7168
7169 GET_OP (op2);
7170 first = op2 >> 4;
7171 last = op2 & 0x0f;
7172 if (op == 0xc8)
7173 first = first + 16;
7174 printf ("pop {D%d", first);
7175 if (last)
7176 printf ("-D%d", first + last);
7177 printf ("}");
7178 }
7179 else if ((op & 0xf8) == 0xb8 || (op & 0xf8) == 0xd0)
7180 {
7181 unsigned int count = op & 0x07;
7182
7183 printf ("pop {D8");
7184 if (count)
7185 printf ("-D%d", 8 + count);
7186 printf ("}");
7187 }
7188 else if (op >= 0xc0 && op <= 0xc5)
7189 {
7190 unsigned int count = op & 0x07;
7191
7192 printf (" pop {wR10");
7193 if (count)
7194 printf ("-wR%d", 10 + count);
7195 printf ("}");
7196 }
7197 else if (op == 0xc6)
7198 {
7199 unsigned int first, last;
7200
7201 GET_OP (op2);
7202 first = op2 >> 4;
7203 last = op2 & 0x0f;
7204 printf ("pop {wR%d", first);
7205 if (last)
7206 printf ("-wR%d", first + last);
7207 printf ("}");
7208 }
7209 else if (op == 0xc7)
7210 {
7211 GET_OP (op2);
7212 if (op2 == 0 || (op2 & 0xf0) != 0)
7213 printf (_("[Spare]"));
7214 else
7215 {
7216 unsigned int mask = op2 & 0x0f;
7217 int first = 1;
7218 int i;
7219
7220 printf ("pop {");
7221 for (i = 0; i < 4; i++)
7222 if (mask & (1 << i))
7223 {
7224 if (first)
7225 first = 0;
7226 else
7227 printf (", ");
7228 printf ("wCGR%d", i);
7229 }
7230 printf ("}");
7231 }
7232 }
7233 else
7234 printf (_(" [unsupported opcode]"));
7235 printf ("\n");
7236 }
7237 }
7238
7239 static void
7240 decode_tic6x_unwind_bytecode (struct arm_unw_aux_info *aux,
7241 unsigned int word, unsigned int remaining,
7242 unsigned int more_words,
7243 bfd_vma data_offset, Elf_Internal_Shdr *data_sec,
7244 struct arm_section *data_arm_sec)
7245 {
7246 struct absaddr addr;
7247
7248 /* Decode the unwinding instructions. */
7249 while (1)
7250 {
7251 unsigned int op, op2;
7252
7253 ADVANCE;
7254 if (remaining == 0)
7255 break;
7256 remaining--;
7257 op = word >> 24;
7258 word <<= 8;
7259
7260 printf (" 0x%02x ", op);
7261
7262 if ((op & 0xc0) == 0x00)
7263 {
7264 int offset = ((op & 0x3f) << 3) + 8;
7265 printf (" sp = sp + %d", offset);
7266 }
7267 else if ((op & 0xc0) == 0x80)
7268 {
7269 GET_OP (op2);
7270 if (op == 0x80 && op2 == 0)
7271 printf (_("Refuse to unwind"));
7272 else
7273 {
7274 unsigned int mask = ((op & 0x1f) << 8) | op2;
7275 if (op & 0x20)
7276 printf ("pop compact {");
7277 else
7278 printf ("pop {");
7279
7280 decode_tic6x_unwind_regmask (mask);
7281 printf("}");
7282 }
7283 }
7284 else if ((op & 0xf0) == 0xc0)
7285 {
7286 unsigned int reg;
7287 unsigned int nregs;
7288 unsigned int i;
7289 const char *name;
7290 struct
7291 {
7292 unsigned int offset;
7293 unsigned int reg;
7294 } regpos[16];
7295
7296 /* Scan entire instruction first so that GET_OP output is not
7297 interleaved with disassembly. */
7298 nregs = 0;
7299 for (i = 0; nregs < (op & 0xf); i++)
7300 {
7301 GET_OP (op2);
7302 reg = op2 >> 4;
7303 if (reg != 0xf)
7304 {
7305 regpos[nregs].offset = i * 2;
7306 regpos[nregs].reg = reg;
7307 nregs++;
7308 }
7309
7310 reg = op2 & 0xf;
7311 if (reg != 0xf)
7312 {
7313 regpos[nregs].offset = i * 2 + 1;
7314 regpos[nregs].reg = reg;
7315 nregs++;
7316 }
7317 }
7318
7319 printf (_("pop frame {"));
7320 reg = nregs - 1;
7321 for (i = i * 2; i > 0; i--)
7322 {
7323 if (regpos[reg].offset == i - 1)
7324 {
7325 name = tic6x_unwind_regnames[regpos[reg].reg];
7326 if (reg > 0)
7327 reg--;
7328 }
7329 else
7330 name = _("[pad]");
7331
7332 fputs (name, stdout);
7333 if (i > 1)
7334 printf (", ");
7335 }
7336
7337 printf ("}");
7338 }
7339 else if (op == 0xd0)
7340 printf (" MOV FP, SP");
7341 else if (op == 0xd1)
7342 printf (" __c6xabi_pop_rts");
7343 else if (op == 0xd2)
7344 {
7345 unsigned char buf[9];
7346 unsigned int i, len;
7347 unsigned long offset;
7348
7349 for (i = 0; i < sizeof (buf); i++)
7350 {
7351 GET_OP (buf[i]);
7352 if ((buf[i] & 0x80) == 0)
7353 break;
7354 }
7355 assert (i < sizeof (buf));
7356 offset = read_uleb128 (buf, &len, buf + i + 1);
7357 assert (len == i + 1);
7358 offset = offset * 8 + 0x408;
7359 printf (_("sp = sp + %ld"), offset);
7360 }
7361 else if ((op & 0xf0) == 0xe0)
7362 {
7363 if ((op & 0x0f) == 7)
7364 printf (" RETURN");
7365 else
7366 printf (" MV %s, B3", tic6x_unwind_regnames[op & 0x0f]);
7367 }
7368 else
7369 {
7370 printf (_(" [unsupported opcode]"));
7371 }
7372 putchar ('\n');
7373 }
7374 }
7375
7376 static bfd_vma
7377 arm_expand_prel31 (bfd_vma word, bfd_vma where)
7378 {
7379 bfd_vma offset;
7380
7381 offset = word & 0x7fffffff;
7382 if (offset & 0x40000000)
7383 offset |= ~ (bfd_vma) 0x7fffffff;
7384
7385 if (elf_header.e_machine == EM_TI_C6000)
7386 offset <<= 1;
7387
7388 return offset + where;
7389 }
7390
7391 static void
7392 decode_arm_unwind (struct arm_unw_aux_info * aux,
7393 unsigned int word,
7394 unsigned int remaining,
7395 bfd_vma data_offset,
7396 Elf_Internal_Shdr * data_sec,
7397 struct arm_section * data_arm_sec)
7398 {
7399 int per_index;
7400 unsigned int more_words = 0;
7401 struct absaddr addr;
7402 bfd_vma sym_name = (bfd_vma) -1;
7403
7404 if (remaining == 0)
7405 {
7406 /* Fetch the first word.
7407 Note - when decoding an object file the address extracted
7408 here will always be 0. So we also pass in the sym_name
7409 parameter so that we can find the symbol associated with
7410 the personality routine. */
7411 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, data_offset,
7412 & word, & addr, & sym_name))
7413 return;
7414
7415 remaining = 4;
7416 }
7417
7418 if ((word & 0x80000000) == 0)
7419 {
7420 /* Expand prel31 for personality routine. */
7421 bfd_vma fn;
7422 const char *procname;
7423
7424 fn = arm_expand_prel31 (word, data_sec->sh_addr + data_offset);
7425 printf (_(" Personality routine: "));
7426 if (fn == 0
7427 && addr.section == SHN_UNDEF && addr.offset == 0
7428 && sym_name != (bfd_vma) -1 && sym_name < aux->strtab_size)
7429 {
7430 procname = aux->strtab + sym_name;
7431 print_vma (fn, PREFIX_HEX);
7432 if (procname)
7433 {
7434 fputs (" <", stdout);
7435 fputs (procname, stdout);
7436 fputc ('>', stdout);
7437 }
7438 }
7439 else
7440 procname = arm_print_vma_and_name (aux, fn, addr);
7441 fputc ('\n', stdout);
7442
7443 /* The GCC personality routines use the standard compact
7444 encoding, starting with one byte giving the number of
7445 words. */
7446 if (procname != NULL
7447 && (const_strneq (procname, "__gcc_personality_v0")
7448 || const_strneq (procname, "__gxx_personality_v0")
7449 || const_strneq (procname, "__gcj_personality_v0")
7450 || const_strneq (procname, "__gnu_objc_personality_v0")))
7451 {
7452 remaining = 0;
7453 more_words = 1;
7454 ADVANCE;
7455 if (!remaining)
7456 {
7457 printf (_(" [Truncated data]\n"));
7458 return;
7459 }
7460 more_words = word >> 24;
7461 word <<= 8;
7462 remaining--;
7463 per_index = -1;
7464 }
7465 else
7466 return;
7467 }
7468 else
7469 {
7470 /* ARM EHABI Section 6.3:
7471
7472 An exception-handling table entry for the compact model looks like:
7473
7474 31 30-28 27-24 23-0
7475 -- ----- ----- ----
7476 1 0 index Data for personalityRoutine[index] */
7477
7478 if (elf_header.e_machine == EM_ARM
7479 && (word & 0x70000000))
7480 warn (_("Corrupt ARM compact model table entry: %x \n"), word);
7481
7482 per_index = (word >> 24) & 0x7f;
7483 printf (_(" Compact model index: %d\n"), per_index);
7484 if (per_index == 0)
7485 {
7486 more_words = 0;
7487 word <<= 8;
7488 remaining--;
7489 }
7490 else if (per_index < 3)
7491 {
7492 more_words = (word >> 16) & 0xff;
7493 word <<= 16;
7494 remaining -= 2;
7495 }
7496 }
7497
7498 switch (elf_header.e_machine)
7499 {
7500 case EM_ARM:
7501 if (per_index < 3)
7502 {
7503 decode_arm_unwind_bytecode (aux, word, remaining, more_words,
7504 data_offset, data_sec, data_arm_sec);
7505 }
7506 else
7507 {
7508 warn (_("Unknown ARM compact model index encountered\n"));
7509 printf (_(" [reserved]\n"));
7510 }
7511 break;
7512
7513 case EM_TI_C6000:
7514 if (per_index < 3)
7515 {
7516 decode_tic6x_unwind_bytecode (aux, word, remaining, more_words,
7517 data_offset, data_sec, data_arm_sec);
7518 }
7519 else if (per_index < 5)
7520 {
7521 if (((word >> 17) & 0x7f) == 0x7f)
7522 printf (_(" Restore stack from frame pointer\n"));
7523 else
7524 printf (_(" Stack increment %d\n"), (word >> 14) & 0x1fc);
7525 printf (_(" Registers restored: "));
7526 if (per_index == 4)
7527 printf (" (compact) ");
7528 decode_tic6x_unwind_regmask ((word >> 4) & 0x1fff);
7529 putchar ('\n');
7530 printf (_(" Return register: %s\n"),
7531 tic6x_unwind_regnames[word & 0xf]);
7532 }
7533 else
7534 printf (_(" [reserved (%d)]\n"), per_index);
7535 break;
7536
7537 default:
7538 error (_("Unsupported architecture type %d encountered when decoding unwind table"),
7539 elf_header.e_machine);
7540 }
7541
7542 /* Decode the descriptors. Not implemented. */
7543 }
7544
7545 static void
7546 dump_arm_unwind (struct arm_unw_aux_info *aux, Elf_Internal_Shdr *exidx_sec)
7547 {
7548 struct arm_section exidx_arm_sec, extab_arm_sec;
7549 unsigned int i, exidx_len;
7550
7551 memset (&exidx_arm_sec, 0, sizeof (exidx_arm_sec));
7552 memset (&extab_arm_sec, 0, sizeof (extab_arm_sec));
7553 exidx_len = exidx_sec->sh_size / 8;
7554
7555 for (i = 0; i < exidx_len; i++)
7556 {
7557 unsigned int exidx_fn, exidx_entry;
7558 struct absaddr fn_addr, entry_addr;
7559 bfd_vma fn;
7560
7561 fputc ('\n', stdout);
7562
7563 if (! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
7564 8 * i, & exidx_fn, & fn_addr, NULL)
7565 || ! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
7566 8 * i + 4, & exidx_entry, & entry_addr, NULL))
7567 {
7568 arm_free_section (& exidx_arm_sec);
7569 arm_free_section (& extab_arm_sec);
7570 return;
7571 }
7572
7573 /* ARM EHABI, Section 5:
7574 An index table entry consists of 2 words.
7575 The first word contains a prel31 offset to the start of a function, with bit 31 clear. */
7576 if (exidx_fn & 0x80000000)
7577 warn (_("corrupt index table entry: %x\n"), exidx_fn);
7578
7579 fn = arm_expand_prel31 (exidx_fn, exidx_sec->sh_addr + 8 * i);
7580
7581 arm_print_vma_and_name (aux, fn, fn_addr);
7582 fputs (": ", stdout);
7583
7584 if (exidx_entry == 1)
7585 {
7586 print_vma (exidx_entry, PREFIX_HEX);
7587 fputs (" [cantunwind]\n", stdout);
7588 }
7589 else if (exidx_entry & 0x80000000)
7590 {
7591 print_vma (exidx_entry, PREFIX_HEX);
7592 fputc ('\n', stdout);
7593 decode_arm_unwind (aux, exidx_entry, 4, 0, NULL, NULL);
7594 }
7595 else
7596 {
7597 bfd_vma table, table_offset = 0;
7598 Elf_Internal_Shdr *table_sec;
7599
7600 fputs ("@", stdout);
7601 table = arm_expand_prel31 (exidx_entry, exidx_sec->sh_addr + 8 * i + 4);
7602 print_vma (table, PREFIX_HEX);
7603 printf ("\n");
7604
7605 /* Locate the matching .ARM.extab. */
7606 if (entry_addr.section != SHN_UNDEF
7607 && entry_addr.section < elf_header.e_shnum)
7608 {
7609 table_sec = section_headers + entry_addr.section;
7610 table_offset = entry_addr.offset;
7611 }
7612 else
7613 {
7614 table_sec = find_section_by_address (table);
7615 if (table_sec != NULL)
7616 table_offset = table - table_sec->sh_addr;
7617 }
7618 if (table_sec == NULL)
7619 {
7620 warn (_("Could not locate .ARM.extab section containing 0x%lx.\n"),
7621 (unsigned long) table);
7622 continue;
7623 }
7624 decode_arm_unwind (aux, 0, 0, table_offset, table_sec,
7625 &extab_arm_sec);
7626 }
7627 }
7628
7629 printf ("\n");
7630
7631 arm_free_section (&exidx_arm_sec);
7632 arm_free_section (&extab_arm_sec);
7633 }
7634
7635 /* Used for both ARM and C6X unwinding tables. */
7636
7637 static void
7638 arm_process_unwind (FILE *file)
7639 {
7640 struct arm_unw_aux_info aux;
7641 Elf_Internal_Shdr *unwsec = NULL;
7642 Elf_Internal_Shdr *strsec;
7643 Elf_Internal_Shdr *sec;
7644 unsigned long i;
7645 unsigned int sec_type;
7646
7647 switch (elf_header.e_machine)
7648 {
7649 case EM_ARM:
7650 sec_type = SHT_ARM_EXIDX;
7651 break;
7652
7653 case EM_TI_C6000:
7654 sec_type = SHT_C6000_UNWIND;
7655 break;
7656
7657 default:
7658 error (_("Unsupported architecture type %d encountered when processing unwind table"),
7659 elf_header.e_machine);
7660 return;
7661 }
7662
7663 if (string_table == NULL)
7664 return;
7665
7666 memset (& aux, 0, sizeof (aux));
7667 aux.file = file;
7668
7669 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7670 {
7671 if (sec->sh_type == SHT_SYMTAB && sec->sh_link < elf_header.e_shnum)
7672 {
7673 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7674
7675 strsec = section_headers + sec->sh_link;
7676 assert (aux.strtab == NULL);
7677 aux.strtab = get_data (NULL, file, strsec->sh_offset,
7678 1, strsec->sh_size, _("string table"));
7679 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7680 }
7681 else if (sec->sh_type == sec_type)
7682 unwsec = sec;
7683 }
7684
7685 if (unwsec == NULL)
7686 printf (_("\nThere are no unwind sections in this file.\n"));
7687 else
7688 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7689 {
7690 if (sec->sh_type == sec_type)
7691 {
7692 printf (_("\nUnwind table index '%s' at offset 0x%lx contains %lu entries:\n"),
7693 SECTION_NAME (sec),
7694 (unsigned long) sec->sh_offset,
7695 (unsigned long) (sec->sh_size / (2 * eh_addr_size)));
7696
7697 dump_arm_unwind (&aux, sec);
7698 }
7699 }
7700
7701 if (aux.symtab)
7702 free (aux.symtab);
7703 if (aux.strtab)
7704 free ((char *) aux.strtab);
7705 }
7706
7707 static void
7708 process_unwind (FILE * file)
7709 {
7710 struct unwind_handler
7711 {
7712 int machtype;
7713 void (* handler)(FILE *);
7714 } handlers[] =
7715 {
7716 { EM_ARM, arm_process_unwind },
7717 { EM_IA_64, ia64_process_unwind },
7718 { EM_PARISC, hppa_process_unwind },
7719 { EM_TI_C6000, arm_process_unwind },
7720 { 0, 0 }
7721 };
7722 int i;
7723
7724 if (!do_unwind)
7725 return;
7726
7727 for (i = 0; handlers[i].handler != NULL; i++)
7728 if (elf_header.e_machine == handlers[i].machtype)
7729 {
7730 handlers[i].handler (file);
7731 return;
7732 }
7733
7734 printf (_("\nThe decoding of unwind sections for machine type %s is not currently supported.\n"),
7735 get_machine_name (elf_header.e_machine));
7736 }
7737
7738 static void
7739 dynamic_section_mips_val (Elf_Internal_Dyn * entry)
7740 {
7741 switch (entry->d_tag)
7742 {
7743 case DT_MIPS_FLAGS:
7744 if (entry->d_un.d_val == 0)
7745 printf (_("NONE"));
7746 else
7747 {
7748 static const char * opts[] =
7749 {
7750 "QUICKSTART", "NOTPOT", "NO_LIBRARY_REPLACEMENT",
7751 "NO_MOVE", "SGI_ONLY", "GUARANTEE_INIT", "DELTA_C_PLUS_PLUS",
7752 "GUARANTEE_START_INIT", "PIXIE", "DEFAULT_DELAY_LOAD",
7753 "REQUICKSTART", "REQUICKSTARTED", "CORD", "NO_UNRES_UNDEF",
7754 "RLD_ORDER_SAFE"
7755 };
7756 unsigned int cnt;
7757 int first = 1;
7758
7759 for (cnt = 0; cnt < ARRAY_SIZE (opts); ++cnt)
7760 if (entry->d_un.d_val & (1 << cnt))
7761 {
7762 printf ("%s%s", first ? "" : " ", opts[cnt]);
7763 first = 0;
7764 }
7765 }
7766 break;
7767
7768 case DT_MIPS_IVERSION:
7769 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
7770 printf (_("Interface Version: %s"), GET_DYNAMIC_NAME (entry->d_un.d_val));
7771 else
7772 printf (_("<corrupt: %" BFD_VMA_FMT "d>"), entry->d_un.d_ptr);
7773 break;
7774
7775 case DT_MIPS_TIME_STAMP:
7776 {
7777 char timebuf[20];
7778 struct tm * tmp;
7779
7780 time_t atime = entry->d_un.d_val;
7781 tmp = gmtime (&atime);
7782 snprintf (timebuf, sizeof (timebuf), "%04u-%02u-%02uT%02u:%02u:%02u",
7783 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
7784 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
7785 printf (_("Time Stamp: %s"), timebuf);
7786 }
7787 break;
7788
7789 case DT_MIPS_RLD_VERSION:
7790 case DT_MIPS_LOCAL_GOTNO:
7791 case DT_MIPS_CONFLICTNO:
7792 case DT_MIPS_LIBLISTNO:
7793 case DT_MIPS_SYMTABNO:
7794 case DT_MIPS_UNREFEXTNO:
7795 case DT_MIPS_HIPAGENO:
7796 case DT_MIPS_DELTA_CLASS_NO:
7797 case DT_MIPS_DELTA_INSTANCE_NO:
7798 case DT_MIPS_DELTA_RELOC_NO:
7799 case DT_MIPS_DELTA_SYM_NO:
7800 case DT_MIPS_DELTA_CLASSSYM_NO:
7801 case DT_MIPS_COMPACT_SIZE:
7802 print_vma (entry->d_un.d_ptr, DEC);
7803 break;
7804
7805 default:
7806 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7807 }
7808 putchar ('\n');
7809 }
7810
7811 static void
7812 dynamic_section_parisc_val (Elf_Internal_Dyn * entry)
7813 {
7814 switch (entry->d_tag)
7815 {
7816 case DT_HP_DLD_FLAGS:
7817 {
7818 static struct
7819 {
7820 long int bit;
7821 const char * str;
7822 }
7823 flags[] =
7824 {
7825 { DT_HP_DEBUG_PRIVATE, "HP_DEBUG_PRIVATE" },
7826 { DT_HP_DEBUG_CALLBACK, "HP_DEBUG_CALLBACK" },
7827 { DT_HP_DEBUG_CALLBACK_BOR, "HP_DEBUG_CALLBACK_BOR" },
7828 { DT_HP_NO_ENVVAR, "HP_NO_ENVVAR" },
7829 { DT_HP_BIND_NOW, "HP_BIND_NOW" },
7830 { DT_HP_BIND_NONFATAL, "HP_BIND_NONFATAL" },
7831 { DT_HP_BIND_VERBOSE, "HP_BIND_VERBOSE" },
7832 { DT_HP_BIND_RESTRICTED, "HP_BIND_RESTRICTED" },
7833 { DT_HP_BIND_SYMBOLIC, "HP_BIND_SYMBOLIC" },
7834 { DT_HP_RPATH_FIRST, "HP_RPATH_FIRST" },
7835 { DT_HP_BIND_DEPTH_FIRST, "HP_BIND_DEPTH_FIRST" },
7836 { DT_HP_GST, "HP_GST" },
7837 { DT_HP_SHLIB_FIXED, "HP_SHLIB_FIXED" },
7838 { DT_HP_MERGE_SHLIB_SEG, "HP_MERGE_SHLIB_SEG" },
7839 { DT_HP_NODELETE, "HP_NODELETE" },
7840 { DT_HP_GROUP, "HP_GROUP" },
7841 { DT_HP_PROTECT_LINKAGE_TABLE, "HP_PROTECT_LINKAGE_TABLE" }
7842 };
7843 int first = 1;
7844 size_t cnt;
7845 bfd_vma val = entry->d_un.d_val;
7846
7847 for (cnt = 0; cnt < ARRAY_SIZE (flags); ++cnt)
7848 if (val & flags[cnt].bit)
7849 {
7850 if (! first)
7851 putchar (' ');
7852 fputs (flags[cnt].str, stdout);
7853 first = 0;
7854 val ^= flags[cnt].bit;
7855 }
7856
7857 if (val != 0 || first)
7858 {
7859 if (! first)
7860 putchar (' ');
7861 print_vma (val, HEX);
7862 }
7863 }
7864 break;
7865
7866 default:
7867 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7868 break;
7869 }
7870 putchar ('\n');
7871 }
7872
7873 #ifdef BFD64
7874
7875 /* VMS vs Unix time offset and factor. */
7876
7877 #define VMS_EPOCH_OFFSET 35067168000000000LL
7878 #define VMS_GRANULARITY_FACTOR 10000000
7879
7880 /* Display a VMS time in a human readable format. */
7881
7882 static void
7883 print_vms_time (bfd_int64_t vmstime)
7884 {
7885 struct tm *tm;
7886 time_t unxtime;
7887
7888 unxtime = (vmstime - VMS_EPOCH_OFFSET) / VMS_GRANULARITY_FACTOR;
7889 tm = gmtime (&unxtime);
7890 printf ("%04u-%02u-%02uT%02u:%02u:%02u",
7891 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
7892 tm->tm_hour, tm->tm_min, tm->tm_sec);
7893 }
7894 #endif /* BFD64 */
7895
7896 static void
7897 dynamic_section_ia64_val (Elf_Internal_Dyn * entry)
7898 {
7899 switch (entry->d_tag)
7900 {
7901 case DT_IA_64_PLT_RESERVE:
7902 /* First 3 slots reserved. */
7903 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7904 printf (" -- ");
7905 print_vma (entry->d_un.d_ptr + (3 * 8), PREFIX_HEX);
7906 break;
7907
7908 case DT_IA_64_VMS_LINKTIME:
7909 #ifdef BFD64
7910 print_vms_time (entry->d_un.d_val);
7911 #endif
7912 break;
7913
7914 case DT_IA_64_VMS_LNKFLAGS:
7915 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7916 if (entry->d_un.d_val & VMS_LF_CALL_DEBUG)
7917 printf (" CALL_DEBUG");
7918 if (entry->d_un.d_val & VMS_LF_NOP0BUFS)
7919 printf (" NOP0BUFS");
7920 if (entry->d_un.d_val & VMS_LF_P0IMAGE)
7921 printf (" P0IMAGE");
7922 if (entry->d_un.d_val & VMS_LF_MKTHREADS)
7923 printf (" MKTHREADS");
7924 if (entry->d_un.d_val & VMS_LF_UPCALLS)
7925 printf (" UPCALLS");
7926 if (entry->d_un.d_val & VMS_LF_IMGSTA)
7927 printf (" IMGSTA");
7928 if (entry->d_un.d_val & VMS_LF_INITIALIZE)
7929 printf (" INITIALIZE");
7930 if (entry->d_un.d_val & VMS_LF_MAIN)
7931 printf (" MAIN");
7932 if (entry->d_un.d_val & VMS_LF_EXE_INIT)
7933 printf (" EXE_INIT");
7934 if (entry->d_un.d_val & VMS_LF_TBK_IN_IMG)
7935 printf (" TBK_IN_IMG");
7936 if (entry->d_un.d_val & VMS_LF_DBG_IN_IMG)
7937 printf (" DBG_IN_IMG");
7938 if (entry->d_un.d_val & VMS_LF_TBK_IN_DSF)
7939 printf (" TBK_IN_DSF");
7940 if (entry->d_un.d_val & VMS_LF_DBG_IN_DSF)
7941 printf (" DBG_IN_DSF");
7942 if (entry->d_un.d_val & VMS_LF_SIGNATURES)
7943 printf (" SIGNATURES");
7944 if (entry->d_un.d_val & VMS_LF_REL_SEG_OFF)
7945 printf (" REL_SEG_OFF");
7946 break;
7947
7948 default:
7949 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7950 break;
7951 }
7952 putchar ('\n');
7953 }
7954
7955 static int
7956 get_32bit_dynamic_section (FILE * file)
7957 {
7958 Elf32_External_Dyn * edyn;
7959 Elf32_External_Dyn * ext;
7960 Elf_Internal_Dyn * entry;
7961
7962 edyn = (Elf32_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
7963 dynamic_size, _("dynamic section"));
7964 if (!edyn)
7965 return 0;
7966
7967 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
7968 might not have the luxury of section headers. Look for the DT_NULL
7969 terminator to determine the number of entries. */
7970 for (ext = edyn, dynamic_nent = 0;
7971 (char *) ext < (char *) edyn + dynamic_size;
7972 ext++)
7973 {
7974 dynamic_nent++;
7975 if (BYTE_GET (ext->d_tag) == DT_NULL)
7976 break;
7977 }
7978
7979 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
7980 sizeof (* entry));
7981 if (dynamic_section == NULL)
7982 {
7983 error (_("Out of memory\n"));
7984 free (edyn);
7985 return 0;
7986 }
7987
7988 for (ext = edyn, entry = dynamic_section;
7989 entry < dynamic_section + dynamic_nent;
7990 ext++, entry++)
7991 {
7992 entry->d_tag = BYTE_GET (ext->d_tag);
7993 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
7994 }
7995
7996 free (edyn);
7997
7998 return 1;
7999 }
8000
8001 static int
8002 get_64bit_dynamic_section (FILE * file)
8003 {
8004 Elf64_External_Dyn * edyn;
8005 Elf64_External_Dyn * ext;
8006 Elf_Internal_Dyn * entry;
8007
8008 edyn = (Elf64_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
8009 dynamic_size, _("dynamic section"));
8010 if (!edyn)
8011 return 0;
8012
8013 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
8014 might not have the luxury of section headers. Look for the DT_NULL
8015 terminator to determine the number of entries. */
8016 for (ext = edyn, dynamic_nent = 0;
8017 (char *) ext < (char *) edyn + dynamic_size;
8018 ext++)
8019 {
8020 dynamic_nent++;
8021 if (BYTE_GET (ext->d_tag) == DT_NULL)
8022 break;
8023 }
8024
8025 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
8026 sizeof (* entry));
8027 if (dynamic_section == NULL)
8028 {
8029 error (_("Out of memory\n"));
8030 free (edyn);
8031 return 0;
8032 }
8033
8034 for (ext = edyn, entry = dynamic_section;
8035 entry < dynamic_section + dynamic_nent;
8036 ext++, entry++)
8037 {
8038 entry->d_tag = BYTE_GET (ext->d_tag);
8039 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
8040 }
8041
8042 free (edyn);
8043
8044 return 1;
8045 }
8046
8047 static void
8048 print_dynamic_flags (bfd_vma flags)
8049 {
8050 int first = 1;
8051
8052 while (flags)
8053 {
8054 bfd_vma flag;
8055
8056 flag = flags & - flags;
8057 flags &= ~ flag;
8058
8059 if (first)
8060 first = 0;
8061 else
8062 putc (' ', stdout);
8063
8064 switch (flag)
8065 {
8066 case DF_ORIGIN: fputs ("ORIGIN", stdout); break;
8067 case DF_SYMBOLIC: fputs ("SYMBOLIC", stdout); break;
8068 case DF_TEXTREL: fputs ("TEXTREL", stdout); break;
8069 case DF_BIND_NOW: fputs ("BIND_NOW", stdout); break;
8070 case DF_STATIC_TLS: fputs ("STATIC_TLS", stdout); break;
8071 default: fputs (_("unknown"), stdout); break;
8072 }
8073 }
8074 puts ("");
8075 }
8076
8077 /* Parse and display the contents of the dynamic section. */
8078
8079 static int
8080 process_dynamic_section (FILE * file)
8081 {
8082 Elf_Internal_Dyn * entry;
8083
8084 if (dynamic_size == 0)
8085 {
8086 if (do_dynamic)
8087 printf (_("\nThere is no dynamic section in this file.\n"));
8088
8089 return 1;
8090 }
8091
8092 if (is_32bit_elf)
8093 {
8094 if (! get_32bit_dynamic_section (file))
8095 return 0;
8096 }
8097 else if (! get_64bit_dynamic_section (file))
8098 return 0;
8099
8100 /* Find the appropriate symbol table. */
8101 if (dynamic_symbols == NULL)
8102 {
8103 for (entry = dynamic_section;
8104 entry < dynamic_section + dynamic_nent;
8105 ++entry)
8106 {
8107 Elf_Internal_Shdr section;
8108
8109 if (entry->d_tag != DT_SYMTAB)
8110 continue;
8111
8112 dynamic_info[DT_SYMTAB] = entry->d_un.d_val;
8113
8114 /* Since we do not know how big the symbol table is,
8115 we default to reading in the entire file (!) and
8116 processing that. This is overkill, I know, but it
8117 should work. */
8118 section.sh_offset = offset_from_vma (file, entry->d_un.d_val, 0);
8119
8120 if (archive_file_offset != 0)
8121 section.sh_size = archive_file_size - section.sh_offset;
8122 else
8123 {
8124 if (fseek (file, 0, SEEK_END))
8125 error (_("Unable to seek to end of file!\n"));
8126
8127 section.sh_size = ftell (file) - section.sh_offset;
8128 }
8129
8130 if (is_32bit_elf)
8131 section.sh_entsize = sizeof (Elf32_External_Sym);
8132 else
8133 section.sh_entsize = sizeof (Elf64_External_Sym);
8134
8135 dynamic_symbols = GET_ELF_SYMBOLS (file, &section, & num_dynamic_syms);
8136 if (num_dynamic_syms < 1)
8137 {
8138 error (_("Unable to determine the number of symbols to load\n"));
8139 continue;
8140 }
8141 }
8142 }
8143
8144 /* Similarly find a string table. */
8145 if (dynamic_strings == NULL)
8146 {
8147 for (entry = dynamic_section;
8148 entry < dynamic_section + dynamic_nent;
8149 ++entry)
8150 {
8151 unsigned long offset;
8152 long str_tab_len;
8153
8154 if (entry->d_tag != DT_STRTAB)
8155 continue;
8156
8157 dynamic_info[DT_STRTAB] = entry->d_un.d_val;
8158
8159 /* Since we do not know how big the string table is,
8160 we default to reading in the entire file (!) and
8161 processing that. This is overkill, I know, but it
8162 should work. */
8163
8164 offset = offset_from_vma (file, entry->d_un.d_val, 0);
8165
8166 if (archive_file_offset != 0)
8167 str_tab_len = archive_file_size - offset;
8168 else
8169 {
8170 if (fseek (file, 0, SEEK_END))
8171 error (_("Unable to seek to end of file\n"));
8172 str_tab_len = ftell (file) - offset;
8173 }
8174
8175 if (str_tab_len < 1)
8176 {
8177 error
8178 (_("Unable to determine the length of the dynamic string table\n"));
8179 continue;
8180 }
8181
8182 dynamic_strings = (char *) get_data (NULL, file, offset, 1,
8183 str_tab_len,
8184 _("dynamic string table"));
8185 dynamic_strings_length = dynamic_strings == NULL ? 0 : str_tab_len;
8186 break;
8187 }
8188 }
8189
8190 /* And find the syminfo section if available. */
8191 if (dynamic_syminfo == NULL)
8192 {
8193 unsigned long syminsz = 0;
8194
8195 for (entry = dynamic_section;
8196 entry < dynamic_section + dynamic_nent;
8197 ++entry)
8198 {
8199 if (entry->d_tag == DT_SYMINENT)
8200 {
8201 /* Note: these braces are necessary to avoid a syntax
8202 error from the SunOS4 C compiler. */
8203 assert (sizeof (Elf_External_Syminfo) == entry->d_un.d_val);
8204 }
8205 else if (entry->d_tag == DT_SYMINSZ)
8206 syminsz = entry->d_un.d_val;
8207 else if (entry->d_tag == DT_SYMINFO)
8208 dynamic_syminfo_offset = offset_from_vma (file, entry->d_un.d_val,
8209 syminsz);
8210 }
8211
8212 if (dynamic_syminfo_offset != 0 && syminsz != 0)
8213 {
8214 Elf_External_Syminfo * extsyminfo;
8215 Elf_External_Syminfo * extsym;
8216 Elf_Internal_Syminfo * syminfo;
8217
8218 /* There is a syminfo section. Read the data. */
8219 extsyminfo = (Elf_External_Syminfo *)
8220 get_data (NULL, file, dynamic_syminfo_offset, 1, syminsz,
8221 _("symbol information"));
8222 if (!extsyminfo)
8223 return 0;
8224
8225 dynamic_syminfo = (Elf_Internal_Syminfo *) malloc (syminsz);
8226 if (dynamic_syminfo == NULL)
8227 {
8228 error (_("Out of memory\n"));
8229 return 0;
8230 }
8231
8232 dynamic_syminfo_nent = syminsz / sizeof (Elf_External_Syminfo);
8233 for (syminfo = dynamic_syminfo, extsym = extsyminfo;
8234 syminfo < dynamic_syminfo + dynamic_syminfo_nent;
8235 ++syminfo, ++extsym)
8236 {
8237 syminfo->si_boundto = BYTE_GET (extsym->si_boundto);
8238 syminfo->si_flags = BYTE_GET (extsym->si_flags);
8239 }
8240
8241 free (extsyminfo);
8242 }
8243 }
8244
8245 if (do_dynamic && dynamic_addr)
8246 printf (_("\nDynamic section at offset 0x%lx contains %u entries:\n"),
8247 dynamic_addr, dynamic_nent);
8248 if (do_dynamic)
8249 printf (_(" Tag Type Name/Value\n"));
8250
8251 for (entry = dynamic_section;
8252 entry < dynamic_section + dynamic_nent;
8253 entry++)
8254 {
8255 if (do_dynamic)
8256 {
8257 const char * dtype;
8258
8259 putchar (' ');
8260 print_vma (entry->d_tag, FULL_HEX);
8261 dtype = get_dynamic_type (entry->d_tag);
8262 printf (" (%s)%*s", dtype,
8263 ((is_32bit_elf ? 27 : 19)
8264 - (int) strlen (dtype)),
8265 " ");
8266 }
8267
8268 switch (entry->d_tag)
8269 {
8270 case DT_FLAGS:
8271 if (do_dynamic)
8272 print_dynamic_flags (entry->d_un.d_val);
8273 break;
8274
8275 case DT_AUXILIARY:
8276 case DT_FILTER:
8277 case DT_CONFIG:
8278 case DT_DEPAUDIT:
8279 case DT_AUDIT:
8280 if (do_dynamic)
8281 {
8282 switch (entry->d_tag)
8283 {
8284 case DT_AUXILIARY:
8285 printf (_("Auxiliary library"));
8286 break;
8287
8288 case DT_FILTER:
8289 printf (_("Filter library"));
8290 break;
8291
8292 case DT_CONFIG:
8293 printf (_("Configuration file"));
8294 break;
8295
8296 case DT_DEPAUDIT:
8297 printf (_("Dependency audit library"));
8298 break;
8299
8300 case DT_AUDIT:
8301 printf (_("Audit library"));
8302 break;
8303 }
8304
8305 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
8306 printf (": [%s]\n", GET_DYNAMIC_NAME (entry->d_un.d_val));
8307 else
8308 {
8309 printf (": ");
8310 print_vma (entry->d_un.d_val, PREFIX_HEX);
8311 putchar ('\n');
8312 }
8313 }
8314 break;
8315
8316 case DT_FEATURE:
8317 if (do_dynamic)
8318 {
8319 printf (_("Flags:"));
8320
8321 if (entry->d_un.d_val == 0)
8322 printf (_(" None\n"));
8323 else
8324 {
8325 unsigned long int val = entry->d_un.d_val;
8326
8327 if (val & DTF_1_PARINIT)
8328 {
8329 printf (" PARINIT");
8330 val ^= DTF_1_PARINIT;
8331 }
8332 if (val & DTF_1_CONFEXP)
8333 {
8334 printf (" CONFEXP");
8335 val ^= DTF_1_CONFEXP;
8336 }
8337 if (val != 0)
8338 printf (" %lx", val);
8339 puts ("");
8340 }
8341 }
8342 break;
8343
8344 case DT_POSFLAG_1:
8345 if (do_dynamic)
8346 {
8347 printf (_("Flags:"));
8348
8349 if (entry->d_un.d_val == 0)
8350 printf (_(" None\n"));
8351 else
8352 {
8353 unsigned long int val = entry->d_un.d_val;
8354
8355 if (val & DF_P1_LAZYLOAD)
8356 {
8357 printf (" LAZYLOAD");
8358 val ^= DF_P1_LAZYLOAD;
8359 }
8360 if (val & DF_P1_GROUPPERM)
8361 {
8362 printf (" GROUPPERM");
8363 val ^= DF_P1_GROUPPERM;
8364 }
8365 if (val != 0)
8366 printf (" %lx", val);
8367 puts ("");
8368 }
8369 }
8370 break;
8371
8372 case DT_FLAGS_1:
8373 if (do_dynamic)
8374 {
8375 printf (_("Flags:"));
8376 if (entry->d_un.d_val == 0)
8377 printf (_(" None\n"));
8378 else
8379 {
8380 unsigned long int val = entry->d_un.d_val;
8381
8382 if (val & DF_1_NOW)
8383 {
8384 printf (" NOW");
8385 val ^= DF_1_NOW;
8386 }
8387 if (val & DF_1_GLOBAL)
8388 {
8389 printf (" GLOBAL");
8390 val ^= DF_1_GLOBAL;
8391 }
8392 if (val & DF_1_GROUP)
8393 {
8394 printf (" GROUP");
8395 val ^= DF_1_GROUP;
8396 }
8397 if (val & DF_1_NODELETE)
8398 {
8399 printf (" NODELETE");
8400 val ^= DF_1_NODELETE;
8401 }
8402 if (val & DF_1_LOADFLTR)
8403 {
8404 printf (" LOADFLTR");
8405 val ^= DF_1_LOADFLTR;
8406 }
8407 if (val & DF_1_INITFIRST)
8408 {
8409 printf (" INITFIRST");
8410 val ^= DF_1_INITFIRST;
8411 }
8412 if (val & DF_1_NOOPEN)
8413 {
8414 printf (" NOOPEN");
8415 val ^= DF_1_NOOPEN;
8416 }
8417 if (val & DF_1_ORIGIN)
8418 {
8419 printf (" ORIGIN");
8420 val ^= DF_1_ORIGIN;
8421 }
8422 if (val & DF_1_DIRECT)
8423 {
8424 printf (" DIRECT");
8425 val ^= DF_1_DIRECT;
8426 }
8427 if (val & DF_1_TRANS)
8428 {
8429 printf (" TRANS");
8430 val ^= DF_1_TRANS;
8431 }
8432 if (val & DF_1_INTERPOSE)
8433 {
8434 printf (" INTERPOSE");
8435 val ^= DF_1_INTERPOSE;
8436 }
8437 if (val & DF_1_NODEFLIB)
8438 {
8439 printf (" NODEFLIB");
8440 val ^= DF_1_NODEFLIB;
8441 }
8442 if (val & DF_1_NODUMP)
8443 {
8444 printf (" NODUMP");
8445 val ^= DF_1_NODUMP;
8446 }
8447 if (val & DF_1_CONFALT)
8448 {
8449 printf (" CONFALT");
8450 val ^= DF_1_CONFALT;
8451 }
8452 if (val & DF_1_ENDFILTEE)
8453 {
8454 printf (" ENDFILTEE");
8455 val ^= DF_1_ENDFILTEE;
8456 }
8457 if (val & DF_1_DISPRELDNE)
8458 {
8459 printf (" DISPRELDNE");
8460 val ^= DF_1_DISPRELDNE;
8461 }
8462 if (val & DF_1_DISPRELPND)
8463 {
8464 printf (" DISPRELPND");
8465 val ^= DF_1_DISPRELPND;
8466 }
8467 if (val & DF_1_NODIRECT)
8468 {
8469 printf (" NODIRECT");
8470 val ^= DF_1_NODIRECT;
8471 }
8472 if (val & DF_1_IGNMULDEF)
8473 {
8474 printf (" IGNMULDEF");
8475 val ^= DF_1_IGNMULDEF;
8476 }
8477 if (val & DF_1_NOKSYMS)
8478 {
8479 printf (" NOKSYMS");
8480 val ^= DF_1_NOKSYMS;
8481 }
8482 if (val & DF_1_NOHDR)
8483 {
8484 printf (" NOHDR");
8485 val ^= DF_1_NOHDR;
8486 }
8487 if (val & DF_1_EDITED)
8488 {
8489 printf (" EDITED");
8490 val ^= DF_1_EDITED;
8491 }
8492 if (val & DF_1_NORELOC)
8493 {
8494 printf (" NORELOC");
8495 val ^= DF_1_NORELOC;
8496 }
8497 if (val & DF_1_SYMINTPOSE)
8498 {
8499 printf (" SYMINTPOSE");
8500 val ^= DF_1_SYMINTPOSE;
8501 }
8502 if (val & DF_1_GLOBAUDIT)
8503 {
8504 printf (" GLOBAUDIT");
8505 val ^= DF_1_GLOBAUDIT;
8506 }
8507 if (val & DF_1_SINGLETON)
8508 {
8509 printf (" SINGLETON");
8510 val ^= DF_1_SINGLETON;
8511 }
8512 if (val != 0)
8513 printf (" %lx", val);
8514 puts ("");
8515 }
8516 }
8517 break;
8518
8519 case DT_PLTREL:
8520 dynamic_info[entry->d_tag] = entry->d_un.d_val;
8521 if (do_dynamic)
8522 puts (get_dynamic_type (entry->d_un.d_val));
8523 break;
8524
8525 case DT_NULL :
8526 case DT_NEEDED :
8527 case DT_PLTGOT :
8528 case DT_HASH :
8529 case DT_STRTAB :
8530 case DT_SYMTAB :
8531 case DT_RELA :
8532 case DT_INIT :
8533 case DT_FINI :
8534 case DT_SONAME :
8535 case DT_RPATH :
8536 case DT_SYMBOLIC:
8537 case DT_REL :
8538 case DT_DEBUG :
8539 case DT_TEXTREL :
8540 case DT_JMPREL :
8541 case DT_RUNPATH :
8542 dynamic_info[entry->d_tag] = entry->d_un.d_val;
8543
8544 if (do_dynamic)
8545 {
8546 char * name;
8547
8548 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
8549 name = GET_DYNAMIC_NAME (entry->d_un.d_val);
8550 else
8551 name = NULL;
8552
8553 if (name)
8554 {
8555 switch (entry->d_tag)
8556 {
8557 case DT_NEEDED:
8558 printf (_("Shared library: [%s]"), name);
8559
8560 if (streq (name, program_interpreter))
8561 printf (_(" program interpreter"));
8562 break;
8563
8564 case DT_SONAME:
8565 printf (_("Library soname: [%s]"), name);
8566 break;
8567
8568 case DT_RPATH:
8569 printf (_("Library rpath: [%s]"), name);
8570 break;
8571
8572 case DT_RUNPATH:
8573 printf (_("Library runpath: [%s]"), name);
8574 break;
8575
8576 default:
8577 print_vma (entry->d_un.d_val, PREFIX_HEX);
8578 break;
8579 }
8580 }
8581 else
8582 print_vma (entry->d_un.d_val, PREFIX_HEX);
8583
8584 putchar ('\n');
8585 }
8586 break;
8587
8588 case DT_PLTRELSZ:
8589 case DT_RELASZ :
8590 case DT_STRSZ :
8591 case DT_RELSZ :
8592 case DT_RELAENT :
8593 case DT_SYMENT :
8594 case DT_RELENT :
8595 dynamic_info[entry->d_tag] = entry->d_un.d_val;
8596 case DT_PLTPADSZ:
8597 case DT_MOVEENT :
8598 case DT_MOVESZ :
8599 case DT_INIT_ARRAYSZ:
8600 case DT_FINI_ARRAYSZ:
8601 case DT_GNU_CONFLICTSZ:
8602 case DT_GNU_LIBLISTSZ:
8603 if (do_dynamic)
8604 {
8605 print_vma (entry->d_un.d_val, UNSIGNED);
8606 printf (_(" (bytes)\n"));
8607 }
8608 break;
8609
8610 case DT_VERDEFNUM:
8611 case DT_VERNEEDNUM:
8612 case DT_RELACOUNT:
8613 case DT_RELCOUNT:
8614 if (do_dynamic)
8615 {
8616 print_vma (entry->d_un.d_val, UNSIGNED);
8617 putchar ('\n');
8618 }
8619 break;
8620
8621 case DT_SYMINSZ:
8622 case DT_SYMINENT:
8623 case DT_SYMINFO:
8624 case DT_USED:
8625 case DT_INIT_ARRAY:
8626 case DT_FINI_ARRAY:
8627 if (do_dynamic)
8628 {
8629 if (entry->d_tag == DT_USED
8630 && VALID_DYNAMIC_NAME (entry->d_un.d_val))
8631 {
8632 char * name = GET_DYNAMIC_NAME (entry->d_un.d_val);
8633
8634 if (*name)
8635 {
8636 printf (_("Not needed object: [%s]\n"), name);
8637 break;
8638 }
8639 }
8640
8641 print_vma (entry->d_un.d_val, PREFIX_HEX);
8642 putchar ('\n');
8643 }
8644 break;
8645
8646 case DT_BIND_NOW:
8647 /* The value of this entry is ignored. */
8648 if (do_dynamic)
8649 putchar ('\n');
8650 break;
8651
8652 case DT_GNU_PRELINKED:
8653 if (do_dynamic)
8654 {
8655 struct tm * tmp;
8656 time_t atime = entry->d_un.d_val;
8657
8658 tmp = gmtime (&atime);
8659 printf ("%04u-%02u-%02uT%02u:%02u:%02u\n",
8660 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
8661 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
8662
8663 }
8664 break;
8665
8666 case DT_GNU_HASH:
8667 dynamic_info_DT_GNU_HASH = entry->d_un.d_val;
8668 if (do_dynamic)
8669 {
8670 print_vma (entry->d_un.d_val, PREFIX_HEX);
8671 putchar ('\n');
8672 }
8673 break;
8674
8675 default:
8676 if ((entry->d_tag >= DT_VERSYM) && (entry->d_tag <= DT_VERNEEDNUM))
8677 version_info[DT_VERSIONTAGIDX (entry->d_tag)] =
8678 entry->d_un.d_val;
8679
8680 if (do_dynamic)
8681 {
8682 switch (elf_header.e_machine)
8683 {
8684 case EM_MIPS:
8685 case EM_MIPS_RS3_LE:
8686 dynamic_section_mips_val (entry);
8687 break;
8688 case EM_PARISC:
8689 dynamic_section_parisc_val (entry);
8690 break;
8691 case EM_IA_64:
8692 dynamic_section_ia64_val (entry);
8693 break;
8694 default:
8695 print_vma (entry->d_un.d_val, PREFIX_HEX);
8696 putchar ('\n');
8697 }
8698 }
8699 break;
8700 }
8701 }
8702
8703 return 1;
8704 }
8705
8706 static char *
8707 get_ver_flags (unsigned int flags)
8708 {
8709 static char buff[32];
8710
8711 buff[0] = 0;
8712
8713 if (flags == 0)
8714 return _("none");
8715
8716 if (flags & VER_FLG_BASE)
8717 strcat (buff, "BASE ");
8718
8719 if (flags & VER_FLG_WEAK)
8720 {
8721 if (flags & VER_FLG_BASE)
8722 strcat (buff, "| ");
8723
8724 strcat (buff, "WEAK ");
8725 }
8726
8727 if (flags & VER_FLG_INFO)
8728 {
8729 if (flags & (VER_FLG_BASE|VER_FLG_WEAK))
8730 strcat (buff, "| ");
8731
8732 strcat (buff, "INFO ");
8733 }
8734
8735 if (flags & ~(VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
8736 strcat (buff, _("| <unknown>"));
8737
8738 return buff;
8739 }
8740
8741 /* Display the contents of the version sections. */
8742
8743 static int
8744 process_version_sections (FILE * file)
8745 {
8746 Elf_Internal_Shdr * section;
8747 unsigned i;
8748 int found = 0;
8749
8750 if (! do_version)
8751 return 1;
8752
8753 for (i = 0, section = section_headers;
8754 i < elf_header.e_shnum;
8755 i++, section++)
8756 {
8757 switch (section->sh_type)
8758 {
8759 case SHT_GNU_verdef:
8760 {
8761 Elf_External_Verdef * edefs;
8762 unsigned int idx;
8763 unsigned int cnt;
8764 char * endbuf;
8765
8766 found = 1;
8767
8768 printf
8769 (_("\nVersion definition section '%s' contains %u entries:\n"),
8770 SECTION_NAME (section), section->sh_info);
8771
8772 printf (_(" Addr: 0x"));
8773 printf_vma (section->sh_addr);
8774 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
8775 (unsigned long) section->sh_offset, section->sh_link,
8776 section->sh_link < elf_header.e_shnum
8777 ? SECTION_NAME (section_headers + section->sh_link)
8778 : _("<corrupt>"));
8779
8780 edefs = (Elf_External_Verdef *)
8781 get_data (NULL, file, section->sh_offset, 1,section->sh_size,
8782 _("version definition section"));
8783 if (!edefs)
8784 break;
8785 endbuf = (char *) edefs + section->sh_size;
8786
8787 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
8788 {
8789 char * vstart;
8790 Elf_External_Verdef * edef;
8791 Elf_Internal_Verdef ent;
8792 Elf_External_Verdaux * eaux;
8793 Elf_Internal_Verdaux aux;
8794 int j;
8795 int isum;
8796
8797 /* Check for very large indicies. */
8798 if (idx > (size_t) (endbuf - (char *) edefs))
8799 break;
8800
8801 vstart = ((char *) edefs) + idx;
8802 if (vstart + sizeof (*edef) > endbuf)
8803 break;
8804
8805 edef = (Elf_External_Verdef *) vstart;
8806
8807 ent.vd_version = BYTE_GET (edef->vd_version);
8808 ent.vd_flags = BYTE_GET (edef->vd_flags);
8809 ent.vd_ndx = BYTE_GET (edef->vd_ndx);
8810 ent.vd_cnt = BYTE_GET (edef->vd_cnt);
8811 ent.vd_hash = BYTE_GET (edef->vd_hash);
8812 ent.vd_aux = BYTE_GET (edef->vd_aux);
8813 ent.vd_next = BYTE_GET (edef->vd_next);
8814
8815 printf (_(" %#06x: Rev: %d Flags: %s"),
8816 idx, ent.vd_version, get_ver_flags (ent.vd_flags));
8817
8818 printf (_(" Index: %d Cnt: %d "),
8819 ent.vd_ndx, ent.vd_cnt);
8820
8821 /* Check for overflow. */
8822 if (ent.vd_aux > (size_t) (endbuf - vstart))
8823 break;
8824
8825 vstart += ent.vd_aux;
8826
8827 eaux = (Elf_External_Verdaux *) vstart;
8828
8829 aux.vda_name = BYTE_GET (eaux->vda_name);
8830 aux.vda_next = BYTE_GET (eaux->vda_next);
8831
8832 if (VALID_DYNAMIC_NAME (aux.vda_name))
8833 printf (_("Name: %s\n"), GET_DYNAMIC_NAME (aux.vda_name));
8834 else
8835 printf (_("Name index: %ld\n"), aux.vda_name);
8836
8837 isum = idx + ent.vd_aux;
8838
8839 for (j = 1; j < ent.vd_cnt; j++)
8840 {
8841 /* Check for overflow. */
8842 if (aux.vda_next > (size_t) (endbuf - vstart))
8843 break;
8844
8845 isum += aux.vda_next;
8846 vstart += aux.vda_next;
8847
8848 eaux = (Elf_External_Verdaux *) vstart;
8849 if (vstart + sizeof (*eaux) > endbuf)
8850 break;
8851
8852 aux.vda_name = BYTE_GET (eaux->vda_name);
8853 aux.vda_next = BYTE_GET (eaux->vda_next);
8854
8855 if (VALID_DYNAMIC_NAME (aux.vda_name))
8856 printf (_(" %#06x: Parent %d: %s\n"),
8857 isum, j, GET_DYNAMIC_NAME (aux.vda_name));
8858 else
8859 printf (_(" %#06x: Parent %d, name index: %ld\n"),
8860 isum, j, aux.vda_name);
8861 }
8862
8863 if (j < ent.vd_cnt)
8864 printf (_(" Version def aux past end of section\n"));
8865
8866 idx += ent.vd_next;
8867 }
8868
8869 if (cnt < section->sh_info)
8870 printf (_(" Version definition past end of section\n"));
8871
8872 free (edefs);
8873 }
8874 break;
8875
8876 case SHT_GNU_verneed:
8877 {
8878 Elf_External_Verneed * eneed;
8879 unsigned int idx;
8880 unsigned int cnt;
8881 char * endbuf;
8882
8883 found = 1;
8884
8885 printf (_("\nVersion needs section '%s' contains %u entries:\n"),
8886 SECTION_NAME (section), section->sh_info);
8887
8888 printf (_(" Addr: 0x"));
8889 printf_vma (section->sh_addr);
8890 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
8891 (unsigned long) section->sh_offset, section->sh_link,
8892 section->sh_link < elf_header.e_shnum
8893 ? SECTION_NAME (section_headers + section->sh_link)
8894 : _("<corrupt>"));
8895
8896 eneed = (Elf_External_Verneed *) get_data (NULL, file,
8897 section->sh_offset, 1,
8898 section->sh_size,
8899 _("Version Needs section"));
8900 if (!eneed)
8901 break;
8902 endbuf = (char *) eneed + section->sh_size;
8903
8904 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
8905 {
8906 Elf_External_Verneed * entry;
8907 Elf_Internal_Verneed ent;
8908 int j;
8909 int isum;
8910 char * vstart;
8911
8912 if (idx > (size_t) (endbuf - (char *) eneed))
8913 break;
8914
8915 vstart = ((char *) eneed) + idx;
8916 if (vstart + sizeof (*entry) > endbuf)
8917 break;
8918
8919 entry = (Elf_External_Verneed *) vstart;
8920
8921 ent.vn_version = BYTE_GET (entry->vn_version);
8922 ent.vn_cnt = BYTE_GET (entry->vn_cnt);
8923 ent.vn_file = BYTE_GET (entry->vn_file);
8924 ent.vn_aux = BYTE_GET (entry->vn_aux);
8925 ent.vn_next = BYTE_GET (entry->vn_next);
8926
8927 printf (_(" %#06x: Version: %d"), idx, ent.vn_version);
8928
8929 if (VALID_DYNAMIC_NAME (ent.vn_file))
8930 printf (_(" File: %s"), GET_DYNAMIC_NAME (ent.vn_file));
8931 else
8932 printf (_(" File: %lx"), ent.vn_file);
8933
8934 printf (_(" Cnt: %d\n"), ent.vn_cnt);
8935
8936 /* Check for overflow. */
8937 if (ent.vn_aux > (size_t) (endbuf - vstart))
8938 break;
8939
8940 vstart += ent.vn_aux;
8941
8942 for (j = 0, isum = idx + ent.vn_aux; j < ent.vn_cnt; ++j)
8943 {
8944 Elf_External_Vernaux * eaux;
8945 Elf_Internal_Vernaux aux;
8946
8947 if (vstart + sizeof (*eaux) > endbuf)
8948 break;
8949 eaux = (Elf_External_Vernaux *) vstart;
8950
8951 aux.vna_hash = BYTE_GET (eaux->vna_hash);
8952 aux.vna_flags = BYTE_GET (eaux->vna_flags);
8953 aux.vna_other = BYTE_GET (eaux->vna_other);
8954 aux.vna_name = BYTE_GET (eaux->vna_name);
8955 aux.vna_next = BYTE_GET (eaux->vna_next);
8956
8957 if (VALID_DYNAMIC_NAME (aux.vna_name))
8958 printf (_(" %#06x: Name: %s"),
8959 isum, GET_DYNAMIC_NAME (aux.vna_name));
8960 else
8961 printf (_(" %#06x: Name index: %lx"),
8962 isum, aux.vna_name);
8963
8964 printf (_(" Flags: %s Version: %d\n"),
8965 get_ver_flags (aux.vna_flags), aux.vna_other);
8966
8967 /* Check for overflow. */
8968 if (aux.vna_next > (size_t) (endbuf - vstart))
8969 break;
8970
8971 isum += aux.vna_next;
8972 vstart += aux.vna_next;
8973 }
8974
8975 if (j < ent.vn_cnt)
8976 warn (_("Missing Version Needs auxillary information\n"));
8977
8978 if (ent.vn_next == 0 && cnt < section->sh_info - 1)
8979 {
8980 warn (_("Corrupt Version Needs structure - offset to next structure is zero with entries still left to be processed\n"));
8981 cnt = section->sh_info;
8982 break;
8983 }
8984 idx += ent.vn_next;
8985 }
8986
8987 if (cnt < section->sh_info)
8988 warn (_("Missing Version Needs information\n"));
8989
8990 free (eneed);
8991 }
8992 break;
8993
8994 case SHT_GNU_versym:
8995 {
8996 Elf_Internal_Shdr * link_section;
8997 int total;
8998 int cnt;
8999 unsigned char * edata;
9000 unsigned short * data;
9001 char * strtab;
9002 Elf_Internal_Sym * symbols;
9003 Elf_Internal_Shdr * string_sec;
9004 unsigned long num_syms;
9005 long off;
9006
9007 if (section->sh_link >= elf_header.e_shnum)
9008 break;
9009
9010 link_section = section_headers + section->sh_link;
9011 total = section->sh_size / sizeof (Elf_External_Versym);
9012
9013 if (link_section->sh_link >= elf_header.e_shnum)
9014 break;
9015
9016 found = 1;
9017
9018 symbols = GET_ELF_SYMBOLS (file, link_section, & num_syms);
9019 if (symbols == NULL)
9020 break;
9021
9022 string_sec = section_headers + link_section->sh_link;
9023
9024 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
9025 string_sec->sh_size,
9026 _("version string table"));
9027 if (!strtab)
9028 {
9029 free (symbols);
9030 break;
9031 }
9032
9033 printf (_("\nVersion symbols section '%s' contains %d entries:\n"),
9034 SECTION_NAME (section), total);
9035
9036 printf (_(" Addr: "));
9037 printf_vma (section->sh_addr);
9038 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
9039 (unsigned long) section->sh_offset, section->sh_link,
9040 SECTION_NAME (link_section));
9041
9042 off = offset_from_vma (file,
9043 version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
9044 total * sizeof (short));
9045 edata = (unsigned char *) get_data (NULL, file, off, total,
9046 sizeof (short),
9047 _("version symbol data"));
9048 if (!edata)
9049 {
9050 free (strtab);
9051 free (symbols);
9052 break;
9053 }
9054
9055 data = (short unsigned int *) cmalloc (total, sizeof (short));
9056
9057 for (cnt = total; cnt --;)
9058 data[cnt] = byte_get (edata + cnt * sizeof (short),
9059 sizeof (short));
9060
9061 free (edata);
9062
9063 for (cnt = 0; cnt < total; cnt += 4)
9064 {
9065 int j, nn;
9066 int check_def, check_need;
9067 char * name;
9068
9069 printf (" %03x:", cnt);
9070
9071 for (j = 0; (j < 4) && (cnt + j) < total; ++j)
9072 switch (data[cnt + j])
9073 {
9074 case 0:
9075 fputs (_(" 0 (*local*) "), stdout);
9076 break;
9077
9078 case 1:
9079 fputs (_(" 1 (*global*) "), stdout);
9080 break;
9081
9082 default:
9083 nn = printf ("%4x%c", data[cnt + j] & VERSYM_VERSION,
9084 data[cnt + j] & VERSYM_HIDDEN ? 'h' : ' ');
9085
9086 /* If this index value is greater than the size of the symbols
9087 array, break to avoid an out-of-bounds read. */
9088 if ((unsigned long)(cnt + j) >= num_syms)
9089 {
9090 warn (_("invalid index into symbol array\n"));
9091 break;
9092 }
9093
9094 check_def = 1;
9095 check_need = 1;
9096 if (symbols[cnt + j].st_shndx >= elf_header.e_shnum
9097 || section_headers[symbols[cnt + j].st_shndx].sh_type
9098 != SHT_NOBITS)
9099 {
9100 if (symbols[cnt + j].st_shndx == SHN_UNDEF)
9101 check_def = 0;
9102 else
9103 check_need = 0;
9104 }
9105
9106 if (check_need
9107 && version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
9108 {
9109 Elf_Internal_Verneed ivn;
9110 unsigned long offset;
9111
9112 offset = offset_from_vma
9113 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
9114 sizeof (Elf_External_Verneed));
9115
9116 do
9117 {
9118 Elf_Internal_Vernaux ivna;
9119 Elf_External_Verneed evn;
9120 Elf_External_Vernaux evna;
9121 unsigned long a_off;
9122
9123 if (get_data (&evn, file, offset, sizeof (evn), 1,
9124 _("version need")) == NULL)
9125 break;
9126
9127 ivn.vn_aux = BYTE_GET (evn.vn_aux);
9128 ivn.vn_next = BYTE_GET (evn.vn_next);
9129
9130 a_off = offset + ivn.vn_aux;
9131
9132 do
9133 {
9134 if (get_data (&evna, file, a_off, sizeof (evna),
9135 1, _("version need aux (2)")) == NULL)
9136 {
9137 ivna.vna_next = 0;
9138 ivna.vna_other = 0;
9139 }
9140 else
9141 {
9142 ivna.vna_next = BYTE_GET (evna.vna_next);
9143 ivna.vna_other = BYTE_GET (evna.vna_other);
9144 }
9145
9146 a_off += ivna.vna_next;
9147 }
9148 while (ivna.vna_other != data[cnt + j]
9149 && ivna.vna_next != 0);
9150
9151 if (ivna.vna_other == data[cnt + j])
9152 {
9153 ivna.vna_name = BYTE_GET (evna.vna_name);
9154
9155 if (ivna.vna_name >= string_sec->sh_size)
9156 name = _("*invalid*");
9157 else
9158 name = strtab + ivna.vna_name;
9159 nn += printf ("(%s%-*s",
9160 name,
9161 12 - (int) strlen (name),
9162 ")");
9163 check_def = 0;
9164 break;
9165 }
9166
9167 offset += ivn.vn_next;
9168 }
9169 while (ivn.vn_next);
9170 }
9171
9172 if (check_def && data[cnt + j] != 0x8001
9173 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
9174 {
9175 Elf_Internal_Verdef ivd;
9176 Elf_External_Verdef evd;
9177 unsigned long offset;
9178
9179 offset = offset_from_vma
9180 (file, version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
9181 sizeof evd);
9182
9183 do
9184 {
9185 if (get_data (&evd, file, offset, sizeof (evd), 1,
9186 _("version def")) == NULL)
9187 {
9188 ivd.vd_next = 0;
9189 ivd.vd_ndx = 0;
9190 }
9191 else
9192 {
9193 ivd.vd_next = BYTE_GET (evd.vd_next);
9194 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
9195 }
9196
9197 offset += ivd.vd_next;
9198 }
9199 while (ivd.vd_ndx != (data[cnt + j] & VERSYM_VERSION)
9200 && ivd.vd_next != 0);
9201
9202 if (ivd.vd_ndx == (data[cnt + j] & VERSYM_VERSION))
9203 {
9204 Elf_External_Verdaux evda;
9205 Elf_Internal_Verdaux ivda;
9206
9207 ivd.vd_aux = BYTE_GET (evd.vd_aux);
9208
9209 if (get_data (&evda, file,
9210 offset - ivd.vd_next + ivd.vd_aux,
9211 sizeof (evda), 1,
9212 _("version def aux")) == NULL)
9213 break;
9214
9215 ivda.vda_name = BYTE_GET (evda.vda_name);
9216
9217 if (ivda.vda_name >= string_sec->sh_size)
9218 name = _("*invalid*");
9219 else
9220 name = strtab + ivda.vda_name;
9221 nn += printf ("(%s%-*s",
9222 name,
9223 12 - (int) strlen (name),
9224 ")");
9225 }
9226 }
9227
9228 if (nn < 18)
9229 printf ("%*c", 18 - nn, ' ');
9230 }
9231
9232 putchar ('\n');
9233 }
9234
9235 free (data);
9236 free (strtab);
9237 free (symbols);
9238 }
9239 break;
9240
9241 default:
9242 break;
9243 }
9244 }
9245
9246 if (! found)
9247 printf (_("\nNo version information found in this file.\n"));
9248
9249 return 1;
9250 }
9251
9252 static const char *
9253 get_symbol_binding (unsigned int binding)
9254 {
9255 static char buff[32];
9256
9257 switch (binding)
9258 {
9259 case STB_LOCAL: return "LOCAL";
9260 case STB_GLOBAL: return "GLOBAL";
9261 case STB_WEAK: return "WEAK";
9262 default:
9263 if (binding >= STB_LOPROC && binding <= STB_HIPROC)
9264 snprintf (buff, sizeof (buff), _("<processor specific>: %d"),
9265 binding);
9266 else if (binding >= STB_LOOS && binding <= STB_HIOS)
9267 {
9268 if (binding == STB_GNU_UNIQUE
9269 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
9270 /* GNU is still using the default value 0. */
9271 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
9272 return "UNIQUE";
9273 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), binding);
9274 }
9275 else
9276 snprintf (buff, sizeof (buff), _("<unknown>: %d"), binding);
9277 return buff;
9278 }
9279 }
9280
9281 static const char *
9282 get_symbol_type (unsigned int type)
9283 {
9284 static char buff[32];
9285
9286 switch (type)
9287 {
9288 case STT_NOTYPE: return "NOTYPE";
9289 case STT_OBJECT: return "OBJECT";
9290 case STT_FUNC: return "FUNC";
9291 case STT_SECTION: return "SECTION";
9292 case STT_FILE: return "FILE";
9293 case STT_COMMON: return "COMMON";
9294 case STT_TLS: return "TLS";
9295 case STT_RELC: return "RELC";
9296 case STT_SRELC: return "SRELC";
9297 default:
9298 if (type >= STT_LOPROC && type <= STT_HIPROC)
9299 {
9300 if (elf_header.e_machine == EM_ARM)
9301 {
9302 if (type == STT_ARM_TFUNC)
9303 return "THUMB_FUNC";
9304 if (type == STT_ARM_16BIT)
9305 return "THUMB_LABEL";
9306 }
9307
9308 if (elf_header.e_machine == EM_SPARCV9 && type == STT_REGISTER)
9309 return "REGISTER";
9310
9311 if (elf_header.e_machine == EM_PARISC && type == STT_PARISC_MILLI)
9312 return "PARISC_MILLI";
9313
9314 snprintf (buff, sizeof (buff), _("<processor specific>: %d"), type);
9315 }
9316 else if (type >= STT_LOOS && type <= STT_HIOS)
9317 {
9318 if (elf_header.e_machine == EM_PARISC)
9319 {
9320 if (type == STT_HP_OPAQUE)
9321 return "HP_OPAQUE";
9322 if (type == STT_HP_STUB)
9323 return "HP_STUB";
9324 }
9325
9326 if (type == STT_GNU_IFUNC
9327 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
9328 || elf_header.e_ident[EI_OSABI] == ELFOSABI_FREEBSD
9329 /* GNU is still using the default value 0. */
9330 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
9331 return "IFUNC";
9332
9333 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), type);
9334 }
9335 else
9336 snprintf (buff, sizeof (buff), _("<unknown>: %d"), type);
9337 return buff;
9338 }
9339 }
9340
9341 static const char *
9342 get_symbol_visibility (unsigned int visibility)
9343 {
9344 switch (visibility)
9345 {
9346 case STV_DEFAULT: return "DEFAULT";
9347 case STV_INTERNAL: return "INTERNAL";
9348 case STV_HIDDEN: return "HIDDEN";
9349 case STV_PROTECTED: return "PROTECTED";
9350 default: abort ();
9351 }
9352 }
9353
9354 static const char *
9355 get_mips_symbol_other (unsigned int other)
9356 {
9357 switch (other)
9358 {
9359 case STO_OPTIONAL:
9360 return "OPTIONAL";
9361 case STO_MIPS_PLT:
9362 return "MIPS PLT";
9363 case STO_MIPS_PIC:
9364 return "MIPS PIC";
9365 case STO_MICROMIPS:
9366 return "MICROMIPS";
9367 case STO_MICROMIPS | STO_MIPS_PIC:
9368 return "MICROMIPS, MIPS PIC";
9369 case STO_MIPS16:
9370 return "MIPS16";
9371 default:
9372 return NULL;
9373 }
9374 }
9375
9376 static const char *
9377 get_ia64_symbol_other (unsigned int other)
9378 {
9379 if (is_ia64_vms ())
9380 {
9381 static char res[32];
9382
9383 res[0] = 0;
9384
9385 /* Function types is for images and .STB files only. */
9386 switch (elf_header.e_type)
9387 {
9388 case ET_DYN:
9389 case ET_EXEC:
9390 switch (VMS_ST_FUNC_TYPE (other))
9391 {
9392 case VMS_SFT_CODE_ADDR:
9393 strcat (res, " CA");
9394 break;
9395 case VMS_SFT_SYMV_IDX:
9396 strcat (res, " VEC");
9397 break;
9398 case VMS_SFT_FD:
9399 strcat (res, " FD");
9400 break;
9401 case VMS_SFT_RESERVE:
9402 strcat (res, " RSV");
9403 break;
9404 default:
9405 abort ();
9406 }
9407 break;
9408 default:
9409 break;
9410 }
9411 switch (VMS_ST_LINKAGE (other))
9412 {
9413 case VMS_STL_IGNORE:
9414 strcat (res, " IGN");
9415 break;
9416 case VMS_STL_RESERVE:
9417 strcat (res, " RSV");
9418 break;
9419 case VMS_STL_STD:
9420 strcat (res, " STD");
9421 break;
9422 case VMS_STL_LNK:
9423 strcat (res, " LNK");
9424 break;
9425 default:
9426 abort ();
9427 }
9428
9429 if (res[0] != 0)
9430 return res + 1;
9431 else
9432 return res;
9433 }
9434 return NULL;
9435 }
9436
9437 static const char *
9438 get_ppc64_symbol_other (unsigned int other)
9439 {
9440 if (PPC64_LOCAL_ENTRY_OFFSET (other) != 0)
9441 {
9442 static char buf[32];
9443 snprintf (buf, sizeof buf, _("<localentry>: %d"),
9444 PPC64_LOCAL_ENTRY_OFFSET (other));
9445 return buf;
9446 }
9447 return NULL;
9448 }
9449
9450 static const char *
9451 get_symbol_other (unsigned int other)
9452 {
9453 const char * result = NULL;
9454 static char buff [32];
9455
9456 if (other == 0)
9457 return "";
9458
9459 switch (elf_header.e_machine)
9460 {
9461 case EM_MIPS:
9462 result = get_mips_symbol_other (other);
9463 break;
9464 case EM_IA_64:
9465 result = get_ia64_symbol_other (other);
9466 break;
9467 case EM_PPC64:
9468 result = get_ppc64_symbol_other (other);
9469 break;
9470 default:
9471 break;
9472 }
9473
9474 if (result)
9475 return result;
9476
9477 snprintf (buff, sizeof buff, _("<other>: %x"), other);
9478 return buff;
9479 }
9480
9481 static const char *
9482 get_symbol_index_type (unsigned int type)
9483 {
9484 static char buff[32];
9485
9486 switch (type)
9487 {
9488 case SHN_UNDEF: return "UND";
9489 case SHN_ABS: return "ABS";
9490 case SHN_COMMON: return "COM";
9491 default:
9492 if (type == SHN_IA_64_ANSI_COMMON
9493 && elf_header.e_machine == EM_IA_64
9494 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX)
9495 return "ANSI_COM";
9496 else if ((elf_header.e_machine == EM_X86_64
9497 || elf_header.e_machine == EM_L1OM
9498 || elf_header.e_machine == EM_K1OM)
9499 && type == SHN_X86_64_LCOMMON)
9500 return "LARGE_COM";
9501 else if ((type == SHN_MIPS_SCOMMON
9502 && elf_header.e_machine == EM_MIPS)
9503 || (type == SHN_TIC6X_SCOMMON
9504 && elf_header.e_machine == EM_TI_C6000))
9505 return "SCOM";
9506 else if (type == SHN_MIPS_SUNDEFINED
9507 && elf_header.e_machine == EM_MIPS)
9508 return "SUND";
9509 else if (type >= SHN_LOPROC && type <= SHN_HIPROC)
9510 sprintf (buff, "PRC[0x%04x]", type & 0xffff);
9511 else if (type >= SHN_LOOS && type <= SHN_HIOS)
9512 sprintf (buff, "OS [0x%04x]", type & 0xffff);
9513 else if (type >= SHN_LORESERVE)
9514 sprintf (buff, "RSV[0x%04x]", type & 0xffff);
9515 else if (type >= elf_header.e_shnum)
9516 sprintf (buff, "bad section index[%3d]", type);
9517 else
9518 sprintf (buff, "%3d", type);
9519 break;
9520 }
9521
9522 return buff;
9523 }
9524
9525 static bfd_vma *
9526 get_dynamic_data (FILE * file, unsigned int number, unsigned int ent_size)
9527 {
9528 unsigned char * e_data;
9529 bfd_vma * i_data;
9530
9531 e_data = (unsigned char *) cmalloc (number, ent_size);
9532
9533 if (e_data == NULL)
9534 {
9535 error (_("Out of memory\n"));
9536 return NULL;
9537 }
9538
9539 if (fread (e_data, ent_size, number, file) != number)
9540 {
9541 error (_("Unable to read in dynamic data\n"));
9542 return NULL;
9543 }
9544
9545 i_data = (bfd_vma *) cmalloc (number, sizeof (*i_data));
9546
9547 if (i_data == NULL)
9548 {
9549 error (_("Out of memory\n"));
9550 free (e_data);
9551 return NULL;
9552 }
9553
9554 while (number--)
9555 i_data[number] = byte_get (e_data + number * ent_size, ent_size);
9556
9557 free (e_data);
9558
9559 return i_data;
9560 }
9561
9562 static void
9563 print_dynamic_symbol (bfd_vma si, unsigned long hn)
9564 {
9565 Elf_Internal_Sym * psym;
9566 int n;
9567
9568 psym = dynamic_symbols + si;
9569
9570 n = print_vma (si, DEC_5);
9571 if (n < 5)
9572 fputs (&" "[n], stdout);
9573 printf (" %3lu: ", hn);
9574 print_vma (psym->st_value, LONG_HEX);
9575 putchar (' ');
9576 print_vma (psym->st_size, DEC_5);
9577
9578 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
9579 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
9580 printf (" %-7s", get_symbol_visibility (ELF_ST_VISIBILITY (psym->st_other)));
9581 /* Check to see if any other bits in the st_other field are set.
9582 Note - displaying this information disrupts the layout of the
9583 table being generated, but for the moment this case is very
9584 rare. */
9585 if (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other))
9586 printf (" [%s] ", get_symbol_other (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other)));
9587 printf (" %3.3s ", get_symbol_index_type (psym->st_shndx));
9588 if (VALID_DYNAMIC_NAME (psym->st_name))
9589 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
9590 else
9591 printf (_(" <corrupt: %14ld>"), psym->st_name);
9592 putchar ('\n');
9593 }
9594
9595 /* Dump the symbol table. */
9596 static int
9597 process_symbol_table (FILE * file)
9598 {
9599 Elf_Internal_Shdr * section;
9600 bfd_vma nbuckets = 0;
9601 bfd_vma nchains = 0;
9602 bfd_vma * buckets = NULL;
9603 bfd_vma * chains = NULL;
9604 bfd_vma ngnubuckets = 0;
9605 bfd_vma * gnubuckets = NULL;
9606 bfd_vma * gnuchains = NULL;
9607 bfd_vma gnusymidx = 0;
9608
9609 if (!do_syms && !do_dyn_syms && !do_histogram)
9610 return 1;
9611
9612 if (dynamic_info[DT_HASH]
9613 && (do_histogram
9614 || (do_using_dynamic
9615 && !do_dyn_syms
9616 && dynamic_strings != NULL)))
9617 {
9618 unsigned char nb[8];
9619 unsigned char nc[8];
9620 int hash_ent_size = 4;
9621
9622 if ((elf_header.e_machine == EM_ALPHA
9623 || elf_header.e_machine == EM_S390
9624 || elf_header.e_machine == EM_S390_OLD)
9625 && elf_header.e_ident[EI_CLASS] == ELFCLASS64)
9626 hash_ent_size = 8;
9627
9628 if (fseek (file,
9629 (archive_file_offset
9630 + offset_from_vma (file, dynamic_info[DT_HASH],
9631 sizeof nb + sizeof nc)),
9632 SEEK_SET))
9633 {
9634 error (_("Unable to seek to start of dynamic information\n"));
9635 goto no_hash;
9636 }
9637
9638 if (fread (nb, hash_ent_size, 1, file) != 1)
9639 {
9640 error (_("Failed to read in number of buckets\n"));
9641 goto no_hash;
9642 }
9643
9644 if (fread (nc, hash_ent_size, 1, file) != 1)
9645 {
9646 error (_("Failed to read in number of chains\n"));
9647 goto no_hash;
9648 }
9649
9650 nbuckets = byte_get (nb, hash_ent_size);
9651 nchains = byte_get (nc, hash_ent_size);
9652
9653 buckets = get_dynamic_data (file, nbuckets, hash_ent_size);
9654 chains = get_dynamic_data (file, nchains, hash_ent_size);
9655
9656 no_hash:
9657 if (buckets == NULL || chains == NULL)
9658 {
9659 if (do_using_dynamic)
9660 return 0;
9661 free (buckets);
9662 free (chains);
9663 buckets = NULL;
9664 chains = NULL;
9665 nbuckets = 0;
9666 nchains = 0;
9667 }
9668 }
9669
9670 if (dynamic_info_DT_GNU_HASH
9671 && (do_histogram
9672 || (do_using_dynamic
9673 && !do_dyn_syms
9674 && dynamic_strings != NULL)))
9675 {
9676 unsigned char nb[16];
9677 bfd_vma i, maxchain = 0xffffffff, bitmaskwords;
9678 bfd_vma buckets_vma;
9679
9680 if (fseek (file,
9681 (archive_file_offset
9682 + offset_from_vma (file, dynamic_info_DT_GNU_HASH,
9683 sizeof nb)),
9684 SEEK_SET))
9685 {
9686 error (_("Unable to seek to start of dynamic information\n"));
9687 goto no_gnu_hash;
9688 }
9689
9690 if (fread (nb, 16, 1, file) != 1)
9691 {
9692 error (_("Failed to read in number of buckets\n"));
9693 goto no_gnu_hash;
9694 }
9695
9696 ngnubuckets = byte_get (nb, 4);
9697 gnusymidx = byte_get (nb + 4, 4);
9698 bitmaskwords = byte_get (nb + 8, 4);
9699 buckets_vma = dynamic_info_DT_GNU_HASH + 16;
9700 if (is_32bit_elf)
9701 buckets_vma += bitmaskwords * 4;
9702 else
9703 buckets_vma += bitmaskwords * 8;
9704
9705 if (fseek (file,
9706 (archive_file_offset
9707 + offset_from_vma (file, buckets_vma, 4)),
9708 SEEK_SET))
9709 {
9710 error (_("Unable to seek to start of dynamic information\n"));
9711 goto no_gnu_hash;
9712 }
9713
9714 gnubuckets = get_dynamic_data (file, ngnubuckets, 4);
9715
9716 if (gnubuckets == NULL)
9717 goto no_gnu_hash;
9718
9719 for (i = 0; i < ngnubuckets; i++)
9720 if (gnubuckets[i] != 0)
9721 {
9722 if (gnubuckets[i] < gnusymidx)
9723 return 0;
9724
9725 if (maxchain == 0xffffffff || gnubuckets[i] > maxchain)
9726 maxchain = gnubuckets[i];
9727 }
9728
9729 if (maxchain == 0xffffffff)
9730 goto no_gnu_hash;
9731
9732 maxchain -= gnusymidx;
9733
9734 if (fseek (file,
9735 (archive_file_offset
9736 + offset_from_vma (file, buckets_vma
9737 + 4 * (ngnubuckets + maxchain), 4)),
9738 SEEK_SET))
9739 {
9740 error (_("Unable to seek to start of dynamic information\n"));
9741 goto no_gnu_hash;
9742 }
9743
9744 do
9745 {
9746 if (fread (nb, 4, 1, file) != 1)
9747 {
9748 error (_("Failed to determine last chain length\n"));
9749 goto no_gnu_hash;
9750 }
9751
9752 if (maxchain + 1 == 0)
9753 goto no_gnu_hash;
9754
9755 ++maxchain;
9756 }
9757 while ((byte_get (nb, 4) & 1) == 0);
9758
9759 if (fseek (file,
9760 (archive_file_offset
9761 + offset_from_vma (file, buckets_vma + 4 * ngnubuckets, 4)),
9762 SEEK_SET))
9763 {
9764 error (_("Unable to seek to start of dynamic information\n"));
9765 goto no_gnu_hash;
9766 }
9767
9768 gnuchains = get_dynamic_data (file, maxchain, 4);
9769
9770 no_gnu_hash:
9771 if (gnuchains == NULL)
9772 {
9773 free (gnubuckets);
9774 gnubuckets = NULL;
9775 ngnubuckets = 0;
9776 if (do_using_dynamic)
9777 return 0;
9778 }
9779 }
9780
9781 if ((dynamic_info[DT_HASH] || dynamic_info_DT_GNU_HASH)
9782 && do_syms
9783 && do_using_dynamic
9784 && dynamic_strings != NULL)
9785 {
9786 unsigned long hn;
9787
9788 if (dynamic_info[DT_HASH])
9789 {
9790 bfd_vma si;
9791
9792 printf (_("\nSymbol table for image:\n"));
9793 if (is_32bit_elf)
9794 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9795 else
9796 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9797
9798 for (hn = 0; hn < nbuckets; hn++)
9799 {
9800 if (! buckets[hn])
9801 continue;
9802
9803 for (si = buckets[hn]; si < nchains && si > 0; si = chains[si])
9804 print_dynamic_symbol (si, hn);
9805 }
9806 }
9807
9808 if (dynamic_info_DT_GNU_HASH)
9809 {
9810 printf (_("\nSymbol table of `.gnu.hash' for image:\n"));
9811 if (is_32bit_elf)
9812 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9813 else
9814 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9815
9816 for (hn = 0; hn < ngnubuckets; ++hn)
9817 if (gnubuckets[hn] != 0)
9818 {
9819 bfd_vma si = gnubuckets[hn];
9820 bfd_vma off = si - gnusymidx;
9821
9822 do
9823 {
9824 print_dynamic_symbol (si, hn);
9825 si++;
9826 }
9827 while ((gnuchains[off++] & 1) == 0);
9828 }
9829 }
9830 }
9831 else if (do_dyn_syms || (do_syms && !do_using_dynamic))
9832 {
9833 unsigned int i;
9834
9835 for (i = 0, section = section_headers;
9836 i < elf_header.e_shnum;
9837 i++, section++)
9838 {
9839 unsigned int si;
9840 char * strtab = NULL;
9841 unsigned long int strtab_size = 0;
9842 Elf_Internal_Sym * symtab;
9843 Elf_Internal_Sym * psym;
9844 unsigned long num_syms;
9845
9846 if ((section->sh_type != SHT_SYMTAB
9847 && section->sh_type != SHT_DYNSYM)
9848 || (!do_syms
9849 && section->sh_type == SHT_SYMTAB))
9850 continue;
9851
9852 if (section->sh_entsize == 0)
9853 {
9854 printf (_("\nSymbol table '%s' has a sh_entsize of zero!\n"),
9855 SECTION_NAME (section));
9856 continue;
9857 }
9858
9859 printf (_("\nSymbol table '%s' contains %lu entries:\n"),
9860 SECTION_NAME (section),
9861 (unsigned long) (section->sh_size / section->sh_entsize));
9862
9863 if (is_32bit_elf)
9864 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
9865 else
9866 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
9867
9868 symtab = GET_ELF_SYMBOLS (file, section, & num_syms);
9869 if (symtab == NULL)
9870 continue;
9871
9872 if (section->sh_link == elf_header.e_shstrndx)
9873 {
9874 strtab = string_table;
9875 strtab_size = string_table_length;
9876 }
9877 else if (section->sh_link < elf_header.e_shnum)
9878 {
9879 Elf_Internal_Shdr * string_sec;
9880
9881 string_sec = section_headers + section->sh_link;
9882
9883 strtab = (char *) get_data (NULL, file, string_sec->sh_offset,
9884 1, string_sec->sh_size,
9885 _("string table"));
9886 strtab_size = strtab != NULL ? string_sec->sh_size : 0;
9887 }
9888
9889 for (si = 0, psym = symtab; si < num_syms; si++, psym++)
9890 {
9891 printf ("%6d: ", si);
9892 print_vma (psym->st_value, LONG_HEX);
9893 putchar (' ');
9894 print_vma (psym->st_size, DEC_5);
9895 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
9896 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
9897 printf (" %-7s", get_symbol_visibility (ELF_ST_VISIBILITY (psym->st_other)));
9898 /* Check to see if any other bits in the st_other field are set.
9899 Note - displaying this information disrupts the layout of the
9900 table being generated, but for the moment this case is very rare. */
9901 if (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other))
9902 printf (" [%s] ", get_symbol_other (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other)));
9903 printf (" %4s ", get_symbol_index_type (psym->st_shndx));
9904 print_symbol (25, psym->st_name < strtab_size
9905 ? strtab + psym->st_name : _("<corrupt>"));
9906
9907 if (section->sh_type == SHT_DYNSYM
9908 && version_info[DT_VERSIONTAGIDX (DT_VERSYM)] != 0)
9909 {
9910 unsigned char data[2];
9911 unsigned short vers_data;
9912 unsigned long offset;
9913 int is_nobits;
9914 int check_def;
9915
9916 offset = offset_from_vma
9917 (file, version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
9918 sizeof data + si * sizeof (vers_data));
9919
9920 if (get_data (&data, file, offset + si * sizeof (vers_data),
9921 sizeof (data), 1, _("version data")) == NULL)
9922 break;
9923
9924 vers_data = byte_get (data, 2);
9925
9926 is_nobits = (psym->st_shndx < elf_header.e_shnum
9927 && section_headers[psym->st_shndx].sh_type
9928 == SHT_NOBITS);
9929
9930 check_def = (psym->st_shndx != SHN_UNDEF);
9931
9932 if ((vers_data & VERSYM_HIDDEN) || vers_data > 1)
9933 {
9934 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)]
9935 && (is_nobits || ! check_def))
9936 {
9937 Elf_External_Verneed evn;
9938 Elf_Internal_Verneed ivn;
9939 Elf_Internal_Vernaux ivna;
9940
9941 /* We must test both. */
9942 offset = offset_from_vma
9943 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
9944 sizeof evn);
9945
9946 do
9947 {
9948 unsigned long vna_off;
9949
9950 if (get_data (&evn, file, offset, sizeof (evn), 1,
9951 _("version need")) == NULL)
9952 {
9953 ivna.vna_next = 0;
9954 ivna.vna_other = 0;
9955 ivna.vna_name = 0;
9956 break;
9957 }
9958
9959 ivn.vn_aux = BYTE_GET (evn.vn_aux);
9960 ivn.vn_next = BYTE_GET (evn.vn_next);
9961
9962 vna_off = offset + ivn.vn_aux;
9963
9964 do
9965 {
9966 Elf_External_Vernaux evna;
9967
9968 if (get_data (&evna, file, vna_off,
9969 sizeof (evna), 1,
9970 _("version need aux (3)")) == NULL)
9971 {
9972 ivna.vna_next = 0;
9973 ivna.vna_other = 0;
9974 ivna.vna_name = 0;
9975 }
9976 else
9977 {
9978 ivna.vna_other = BYTE_GET (evna.vna_other);
9979 ivna.vna_next = BYTE_GET (evna.vna_next);
9980 ivna.vna_name = BYTE_GET (evna.vna_name);
9981 }
9982
9983 vna_off += ivna.vna_next;
9984 }
9985 while (ivna.vna_other != vers_data
9986 && ivna.vna_next != 0);
9987
9988 if (ivna.vna_other == vers_data)
9989 break;
9990
9991 offset += ivn.vn_next;
9992 }
9993 while (ivn.vn_next != 0);
9994
9995 if (ivna.vna_other == vers_data)
9996 {
9997 printf ("@%s (%d)",
9998 ivna.vna_name < strtab_size
9999 ? strtab + ivna.vna_name : _("<corrupt>"),
10000 ivna.vna_other);
10001 check_def = 0;
10002 }
10003 else if (! is_nobits)
10004 error (_("bad dynamic symbol\n"));
10005 else
10006 check_def = 1;
10007 }
10008
10009 if (check_def)
10010 {
10011 if (vers_data != 0x8001
10012 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
10013 {
10014 Elf_Internal_Verdef ivd;
10015 Elf_Internal_Verdaux ivda;
10016 Elf_External_Verdaux evda;
10017 unsigned long off;
10018
10019 off = offset_from_vma
10020 (file,
10021 version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
10022 sizeof (Elf_External_Verdef));
10023
10024 do
10025 {
10026 Elf_External_Verdef evd;
10027
10028 if (get_data (&evd, file, off, sizeof (evd),
10029 1, _("version def")) == NULL)
10030 {
10031 ivd.vd_ndx = 0;
10032 ivd.vd_aux = 0;
10033 ivd.vd_next = 0;
10034 }
10035 else
10036 {
10037 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
10038 ivd.vd_aux = BYTE_GET (evd.vd_aux);
10039 ivd.vd_next = BYTE_GET (evd.vd_next);
10040 }
10041
10042 off += ivd.vd_next;
10043 }
10044 while (ivd.vd_ndx != (vers_data & VERSYM_VERSION)
10045 && ivd.vd_next != 0);
10046
10047 off -= ivd.vd_next;
10048 off += ivd.vd_aux;
10049
10050 if (get_data (&evda, file, off, sizeof (evda),
10051 1, _("version def aux")) == NULL)
10052 break;
10053
10054 ivda.vda_name = BYTE_GET (evda.vda_name);
10055
10056 if (psym->st_name != ivda.vda_name)
10057 printf ((vers_data & VERSYM_HIDDEN)
10058 ? "@%s" : "@@%s",
10059 ivda.vda_name < strtab_size
10060 ? strtab + ivda.vda_name : _("<corrupt>"));
10061 }
10062 }
10063 }
10064 }
10065
10066 putchar ('\n');
10067 }
10068
10069 free (symtab);
10070 if (strtab != string_table)
10071 free (strtab);
10072 }
10073 }
10074 else if (do_syms)
10075 printf
10076 (_("\nDynamic symbol information is not available for displaying symbols.\n"));
10077
10078 if (do_histogram && buckets != NULL)
10079 {
10080 unsigned long * lengths;
10081 unsigned long * counts;
10082 unsigned long hn;
10083 bfd_vma si;
10084 unsigned long maxlength = 0;
10085 unsigned long nzero_counts = 0;
10086 unsigned long nsyms = 0;
10087
10088 printf (_("\nHistogram for bucket list length (total of %lu buckets):\n"),
10089 (unsigned long) nbuckets);
10090 printf (_(" Length Number %% of total Coverage\n"));
10091
10092 lengths = (unsigned long *) calloc (nbuckets, sizeof (*lengths));
10093 if (lengths == NULL)
10094 {
10095 error (_("Out of memory\n"));
10096 return 0;
10097 }
10098 for (hn = 0; hn < nbuckets; ++hn)
10099 {
10100 for (si = buckets[hn]; si > 0 && si < nchains; si = chains[si])
10101 {
10102 ++nsyms;
10103 if (maxlength < ++lengths[hn])
10104 ++maxlength;
10105 }
10106 }
10107
10108 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
10109 if (counts == NULL)
10110 {
10111 free (lengths);
10112 error (_("Out of memory\n"));
10113 return 0;
10114 }
10115
10116 for (hn = 0; hn < nbuckets; ++hn)
10117 ++counts[lengths[hn]];
10118
10119 if (nbuckets > 0)
10120 {
10121 unsigned long i;
10122 printf (" 0 %-10lu (%5.1f%%)\n",
10123 counts[0], (counts[0] * 100.0) / nbuckets);
10124 for (i = 1; i <= maxlength; ++i)
10125 {
10126 nzero_counts += counts[i] * i;
10127 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
10128 i, counts[i], (counts[i] * 100.0) / nbuckets,
10129 (nzero_counts * 100.0) / nsyms);
10130 }
10131 }
10132
10133 free (counts);
10134 free (lengths);
10135 }
10136
10137 if (buckets != NULL)
10138 {
10139 free (buckets);
10140 free (chains);
10141 }
10142
10143 if (do_histogram && gnubuckets != NULL)
10144 {
10145 unsigned long * lengths;
10146 unsigned long * counts;
10147 unsigned long hn;
10148 unsigned long maxlength = 0;
10149 unsigned long nzero_counts = 0;
10150 unsigned long nsyms = 0;
10151
10152 lengths = (unsigned long *) calloc (ngnubuckets, sizeof (*lengths));
10153 if (lengths == NULL)
10154 {
10155 error (_("Out of memory\n"));
10156 return 0;
10157 }
10158
10159 printf (_("\nHistogram for `.gnu.hash' bucket list length (total of %lu buckets):\n"),
10160 (unsigned long) ngnubuckets);
10161 printf (_(" Length Number %% of total Coverage\n"));
10162
10163 for (hn = 0; hn < ngnubuckets; ++hn)
10164 if (gnubuckets[hn] != 0)
10165 {
10166 bfd_vma off, length = 1;
10167
10168 for (off = gnubuckets[hn] - gnusymidx;
10169 (gnuchains[off] & 1) == 0; ++off)
10170 ++length;
10171 lengths[hn] = length;
10172 if (length > maxlength)
10173 maxlength = length;
10174 nsyms += length;
10175 }
10176
10177 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
10178 if (counts == NULL)
10179 {
10180 free (lengths);
10181 error (_("Out of memory\n"));
10182 return 0;
10183 }
10184
10185 for (hn = 0; hn < ngnubuckets; ++hn)
10186 ++counts[lengths[hn]];
10187
10188 if (ngnubuckets > 0)
10189 {
10190 unsigned long j;
10191 printf (" 0 %-10lu (%5.1f%%)\n",
10192 counts[0], (counts[0] * 100.0) / ngnubuckets);
10193 for (j = 1; j <= maxlength; ++j)
10194 {
10195 nzero_counts += counts[j] * j;
10196 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
10197 j, counts[j], (counts[j] * 100.0) / ngnubuckets,
10198 (nzero_counts * 100.0) / nsyms);
10199 }
10200 }
10201
10202 free (counts);
10203 free (lengths);
10204 free (gnubuckets);
10205 free (gnuchains);
10206 }
10207
10208 return 1;
10209 }
10210
10211 static int
10212 process_syminfo (FILE * file ATTRIBUTE_UNUSED)
10213 {
10214 unsigned int i;
10215
10216 if (dynamic_syminfo == NULL
10217 || !do_dynamic)
10218 /* No syminfo, this is ok. */
10219 return 1;
10220
10221 /* There better should be a dynamic symbol section. */
10222 if (dynamic_symbols == NULL || dynamic_strings == NULL)
10223 return 0;
10224
10225 if (dynamic_addr)
10226 printf (_("\nDynamic info segment at offset 0x%lx contains %d entries:\n"),
10227 dynamic_syminfo_offset, dynamic_syminfo_nent);
10228
10229 printf (_(" Num: Name BoundTo Flags\n"));
10230 for (i = 0; i < dynamic_syminfo_nent; ++i)
10231 {
10232 unsigned short int flags = dynamic_syminfo[i].si_flags;
10233
10234 printf ("%4d: ", i);
10235 if (VALID_DYNAMIC_NAME (dynamic_symbols[i].st_name))
10236 print_symbol (30, GET_DYNAMIC_NAME (dynamic_symbols[i].st_name));
10237 else
10238 printf (_("<corrupt: %19ld>"), dynamic_symbols[i].st_name);
10239 putchar (' ');
10240
10241 switch (dynamic_syminfo[i].si_boundto)
10242 {
10243 case SYMINFO_BT_SELF:
10244 fputs ("SELF ", stdout);
10245 break;
10246 case SYMINFO_BT_PARENT:
10247 fputs ("PARENT ", stdout);
10248 break;
10249 default:
10250 if (dynamic_syminfo[i].si_boundto > 0
10251 && dynamic_syminfo[i].si_boundto < dynamic_nent
10252 && VALID_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val))
10253 {
10254 print_symbol (10, GET_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val));
10255 putchar (' ' );
10256 }
10257 else
10258 printf ("%-10d ", dynamic_syminfo[i].si_boundto);
10259 break;
10260 }
10261
10262 if (flags & SYMINFO_FLG_DIRECT)
10263 printf (" DIRECT");
10264 if (flags & SYMINFO_FLG_PASSTHRU)
10265 printf (" PASSTHRU");
10266 if (flags & SYMINFO_FLG_COPY)
10267 printf (" COPY");
10268 if (flags & SYMINFO_FLG_LAZYLOAD)
10269 printf (" LAZYLOAD");
10270
10271 puts ("");
10272 }
10273
10274 return 1;
10275 }
10276
10277 /* Check to see if the given reloc needs to be handled in a target specific
10278 manner. If so then process the reloc and return TRUE otherwise return
10279 FALSE. */
10280
10281 static bfd_boolean
10282 target_specific_reloc_handling (Elf_Internal_Rela * reloc,
10283 unsigned char * start,
10284 Elf_Internal_Sym * symtab)
10285 {
10286 unsigned int reloc_type = get_reloc_type (reloc->r_info);
10287
10288 switch (elf_header.e_machine)
10289 {
10290 case EM_MSP430:
10291 case EM_MSP430_OLD:
10292 {
10293 static Elf_Internal_Sym * saved_sym = NULL;
10294
10295 switch (reloc_type)
10296 {
10297 case 10: /* R_MSP430_SYM_DIFF */
10298 if (uses_msp430x_relocs ())
10299 break;
10300 case 21: /* R_MSP430X_SYM_DIFF */
10301 saved_sym = symtab + get_reloc_symindex (reloc->r_info);
10302 return TRUE;
10303
10304 case 1: /* R_MSP430_32 or R_MSP430_ABS32 */
10305 case 3: /* R_MSP430_16 or R_MSP430_ABS8 */
10306 goto handle_sym_diff;
10307
10308 case 5: /* R_MSP430_16_BYTE */
10309 case 9: /* R_MSP430_8 */
10310 if (uses_msp430x_relocs ())
10311 break;
10312 goto handle_sym_diff;
10313
10314 case 2: /* R_MSP430_ABS16 */
10315 case 15: /* R_MSP430X_ABS16 */
10316 if (! uses_msp430x_relocs ())
10317 break;
10318 goto handle_sym_diff;
10319
10320 handle_sym_diff:
10321 if (saved_sym != NULL)
10322 {
10323 bfd_vma value;
10324
10325 value = reloc->r_addend
10326 + (symtab[get_reloc_symindex (reloc->r_info)].st_value
10327 - saved_sym->st_value);
10328
10329 byte_put (start + reloc->r_offset, value, reloc_type == 1 ? 4 : 2);
10330
10331 saved_sym = NULL;
10332 return TRUE;
10333 }
10334 break;
10335
10336 default:
10337 if (saved_sym != NULL)
10338 error (_("Unhandled MSP430 reloc type found after SYM_DIFF reloc"));
10339 break;
10340 }
10341 break;
10342 }
10343
10344 case EM_MN10300:
10345 case EM_CYGNUS_MN10300:
10346 {
10347 static Elf_Internal_Sym * saved_sym = NULL;
10348
10349 switch (reloc_type)
10350 {
10351 case 34: /* R_MN10300_ALIGN */
10352 return TRUE;
10353 case 33: /* R_MN10300_SYM_DIFF */
10354 saved_sym = symtab + get_reloc_symindex (reloc->r_info);
10355 return TRUE;
10356 case 1: /* R_MN10300_32 */
10357 case 2: /* R_MN10300_16 */
10358 if (saved_sym != NULL)
10359 {
10360 bfd_vma value;
10361
10362 value = reloc->r_addend
10363 + (symtab[get_reloc_symindex (reloc->r_info)].st_value
10364 - saved_sym->st_value);
10365
10366 byte_put (start + reloc->r_offset, value, reloc_type == 1 ? 4 : 2);
10367
10368 saved_sym = NULL;
10369 return TRUE;
10370 }
10371 break;
10372 default:
10373 if (saved_sym != NULL)
10374 error (_("Unhandled MN10300 reloc type found after SYM_DIFF reloc"));
10375 break;
10376 }
10377 break;
10378 }
10379 }
10380
10381 return FALSE;
10382 }
10383
10384 /* Returns TRUE iff RELOC_TYPE is a 32-bit absolute RELA relocation used in
10385 DWARF debug sections. This is a target specific test. Note - we do not
10386 go through the whole including-target-headers-multiple-times route, (as
10387 we have already done with <elf/h8.h>) because this would become very
10388 messy and even then this function would have to contain target specific
10389 information (the names of the relocs instead of their numeric values).
10390 FIXME: This is not the correct way to solve this problem. The proper way
10391 is to have target specific reloc sizing and typing functions created by
10392 the reloc-macros.h header, in the same way that it already creates the
10393 reloc naming functions. */
10394
10395 static bfd_boolean
10396 is_32bit_abs_reloc (unsigned int reloc_type)
10397 {
10398 switch (elf_header.e_machine)
10399 {
10400 case EM_386:
10401 case EM_486:
10402 return reloc_type == 1; /* R_386_32. */
10403 case EM_68K:
10404 return reloc_type == 1; /* R_68K_32. */
10405 case EM_860:
10406 return reloc_type == 1; /* R_860_32. */
10407 case EM_960:
10408 return reloc_type == 2; /* R_960_32. */
10409 case EM_AARCH64:
10410 return reloc_type == 258; /* R_AARCH64_ABS32 */
10411 case EM_ALPHA:
10412 return reloc_type == 1; /* R_ALPHA_REFLONG. */
10413 case EM_ARC:
10414 return reloc_type == 1; /* R_ARC_32. */
10415 case EM_ARM:
10416 return reloc_type == 2; /* R_ARM_ABS32 */
10417 case EM_AVR_OLD:
10418 case EM_AVR:
10419 return reloc_type == 1;
10420 case EM_ADAPTEVA_EPIPHANY:
10421 return reloc_type == 3;
10422 case EM_BLACKFIN:
10423 return reloc_type == 0x12; /* R_byte4_data. */
10424 case EM_CRIS:
10425 return reloc_type == 3; /* R_CRIS_32. */
10426 case EM_CR16:
10427 return reloc_type == 3; /* R_CR16_NUM32. */
10428 case EM_CRX:
10429 return reloc_type == 15; /* R_CRX_NUM32. */
10430 case EM_CYGNUS_FRV:
10431 return reloc_type == 1;
10432 case EM_CYGNUS_D10V:
10433 case EM_D10V:
10434 return reloc_type == 6; /* R_D10V_32. */
10435 case EM_CYGNUS_D30V:
10436 case EM_D30V:
10437 return reloc_type == 12; /* R_D30V_32_NORMAL. */
10438 case EM_DLX:
10439 return reloc_type == 3; /* R_DLX_RELOC_32. */
10440 case EM_CYGNUS_FR30:
10441 case EM_FR30:
10442 return reloc_type == 3; /* R_FR30_32. */
10443 case EM_H8S:
10444 case EM_H8_300:
10445 case EM_H8_300H:
10446 return reloc_type == 1; /* R_H8_DIR32. */
10447 case EM_IA_64:
10448 return reloc_type == 0x65; /* R_IA64_SECREL32LSB. */
10449 case EM_IP2K_OLD:
10450 case EM_IP2K:
10451 return reloc_type == 2; /* R_IP2K_32. */
10452 case EM_IQ2000:
10453 return reloc_type == 2; /* R_IQ2000_32. */
10454 case EM_LATTICEMICO32:
10455 return reloc_type == 3; /* R_LM32_32. */
10456 case EM_M32C_OLD:
10457 case EM_M32C:
10458 return reloc_type == 3; /* R_M32C_32. */
10459 case EM_M32R:
10460 return reloc_type == 34; /* R_M32R_32_RELA. */
10461 case EM_MCORE:
10462 return reloc_type == 1; /* R_MCORE_ADDR32. */
10463 case EM_CYGNUS_MEP:
10464 return reloc_type == 4; /* R_MEP_32. */
10465 case EM_METAG:
10466 return reloc_type == 2; /* R_METAG_ADDR32. */
10467 case EM_MICROBLAZE:
10468 return reloc_type == 1; /* R_MICROBLAZE_32. */
10469 case EM_MIPS:
10470 return reloc_type == 2; /* R_MIPS_32. */
10471 case EM_MMIX:
10472 return reloc_type == 4; /* R_MMIX_32. */
10473 case EM_CYGNUS_MN10200:
10474 case EM_MN10200:
10475 return reloc_type == 1; /* R_MN10200_32. */
10476 case EM_CYGNUS_MN10300:
10477 case EM_MN10300:
10478 return reloc_type == 1; /* R_MN10300_32. */
10479 case EM_MOXIE:
10480 return reloc_type == 1; /* R_MOXIE_32. */
10481 case EM_MSP430_OLD:
10482 case EM_MSP430:
10483 return reloc_type == 1; /* R_MSP430_32 or R_MSP320_ABS32. */
10484 case EM_MT:
10485 return reloc_type == 2; /* R_MT_32. */
10486 case EM_NDS32:
10487 return reloc_type == 20; /* R_NDS32_RELA. */
10488 case EM_ALTERA_NIOS2:
10489 return reloc_type == 12; /* R_NIOS2_BFD_RELOC_32. */
10490 case EM_NIOS32:
10491 return reloc_type == 1; /* R_NIOS_32. */
10492 case EM_OR1K:
10493 return reloc_type == 1; /* R_OR1K_32. */
10494 case EM_PARISC:
10495 return (reloc_type == 1 /* R_PARISC_DIR32. */
10496 || reloc_type == 41); /* R_PARISC_SECREL32. */
10497 case EM_PJ:
10498 case EM_PJ_OLD:
10499 return reloc_type == 1; /* R_PJ_DATA_DIR32. */
10500 case EM_PPC64:
10501 return reloc_type == 1; /* R_PPC64_ADDR32. */
10502 case EM_PPC:
10503 return reloc_type == 1; /* R_PPC_ADDR32. */
10504 case EM_RL78:
10505 return reloc_type == 1; /* R_RL78_DIR32. */
10506 case EM_RX:
10507 return reloc_type == 1; /* R_RX_DIR32. */
10508 case EM_S370:
10509 return reloc_type == 1; /* R_I370_ADDR31. */
10510 case EM_S390_OLD:
10511 case EM_S390:
10512 return reloc_type == 4; /* R_S390_32. */
10513 case EM_SCORE:
10514 return reloc_type == 8; /* R_SCORE_ABS32. */
10515 case EM_SH:
10516 return reloc_type == 1; /* R_SH_DIR32. */
10517 case EM_SPARC32PLUS:
10518 case EM_SPARCV9:
10519 case EM_SPARC:
10520 return reloc_type == 3 /* R_SPARC_32. */
10521 || reloc_type == 23; /* R_SPARC_UA32. */
10522 case EM_SPU:
10523 return reloc_type == 6; /* R_SPU_ADDR32 */
10524 case EM_TI_C6000:
10525 return reloc_type == 1; /* R_C6000_ABS32. */
10526 case EM_TILEGX:
10527 return reloc_type == 2; /* R_TILEGX_32. */
10528 case EM_TILEPRO:
10529 return reloc_type == 1; /* R_TILEPRO_32. */
10530 case EM_CYGNUS_V850:
10531 case EM_V850:
10532 return reloc_type == 6; /* R_V850_ABS32. */
10533 case EM_V800:
10534 return reloc_type == 0x33; /* R_V810_WORD. */
10535 case EM_VAX:
10536 return reloc_type == 1; /* R_VAX_32. */
10537 case EM_X86_64:
10538 case EM_L1OM:
10539 case EM_K1OM:
10540 return reloc_type == 10; /* R_X86_64_32. */
10541 case EM_XC16X:
10542 case EM_C166:
10543 return reloc_type == 3; /* R_XC16C_ABS_32. */
10544 case EM_XGATE:
10545 return reloc_type == 4; /* R_XGATE_32. */
10546 case EM_XSTORMY16:
10547 return reloc_type == 1; /* R_XSTROMY16_32. */
10548 case EM_XTENSA_OLD:
10549 case EM_XTENSA:
10550 return reloc_type == 1; /* R_XTENSA_32. */
10551 default:
10552 error (_("Missing knowledge of 32-bit reloc types used in DWARF sections of machine number %d\n"),
10553 elf_header.e_machine);
10554 abort ();
10555 }
10556 }
10557
10558 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
10559 a 32-bit pc-relative RELA relocation used in DWARF debug sections. */
10560
10561 static bfd_boolean
10562 is_32bit_pcrel_reloc (unsigned int reloc_type)
10563 {
10564 switch (elf_header.e_machine)
10565 {
10566 case EM_386:
10567 case EM_486:
10568 return reloc_type == 2; /* R_386_PC32. */
10569 case EM_68K:
10570 return reloc_type == 4; /* R_68K_PC32. */
10571 case EM_AARCH64:
10572 return reloc_type == 261; /* R_AARCH64_PREL32 */
10573 case EM_ADAPTEVA_EPIPHANY:
10574 return reloc_type == 6;
10575 case EM_ALPHA:
10576 return reloc_type == 10; /* R_ALPHA_SREL32. */
10577 case EM_ARM:
10578 return reloc_type == 3; /* R_ARM_REL32 */
10579 case EM_MICROBLAZE:
10580 return reloc_type == 2; /* R_MICROBLAZE_32_PCREL. */
10581 case EM_OR1K:
10582 return reloc_type == 9; /* R_OR1K_32_PCREL. */
10583 case EM_PARISC:
10584 return reloc_type == 9; /* R_PARISC_PCREL32. */
10585 case EM_PPC:
10586 return reloc_type == 26; /* R_PPC_REL32. */
10587 case EM_PPC64:
10588 return reloc_type == 26; /* R_PPC64_REL32. */
10589 case EM_S390_OLD:
10590 case EM_S390:
10591 return reloc_type == 5; /* R_390_PC32. */
10592 case EM_SH:
10593 return reloc_type == 2; /* R_SH_REL32. */
10594 case EM_SPARC32PLUS:
10595 case EM_SPARCV9:
10596 case EM_SPARC:
10597 return reloc_type == 6; /* R_SPARC_DISP32. */
10598 case EM_SPU:
10599 return reloc_type == 13; /* R_SPU_REL32. */
10600 case EM_TILEGX:
10601 return reloc_type == 6; /* R_TILEGX_32_PCREL. */
10602 case EM_TILEPRO:
10603 return reloc_type == 4; /* R_TILEPRO_32_PCREL. */
10604 case EM_X86_64:
10605 case EM_L1OM:
10606 case EM_K1OM:
10607 return reloc_type == 2; /* R_X86_64_PC32. */
10608 case EM_XTENSA_OLD:
10609 case EM_XTENSA:
10610 return reloc_type == 14; /* R_XTENSA_32_PCREL. */
10611 default:
10612 /* Do not abort or issue an error message here. Not all targets use
10613 pc-relative 32-bit relocs in their DWARF debug information and we
10614 have already tested for target coverage in is_32bit_abs_reloc. A
10615 more helpful warning message will be generated by apply_relocations
10616 anyway, so just return. */
10617 return FALSE;
10618 }
10619 }
10620
10621 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
10622 a 64-bit absolute RELA relocation used in DWARF debug sections. */
10623
10624 static bfd_boolean
10625 is_64bit_abs_reloc (unsigned int reloc_type)
10626 {
10627 switch (elf_header.e_machine)
10628 {
10629 case EM_AARCH64:
10630 return reloc_type == 257; /* R_AARCH64_ABS64. */
10631 case EM_ALPHA:
10632 return reloc_type == 2; /* R_ALPHA_REFQUAD. */
10633 case EM_IA_64:
10634 return reloc_type == 0x27; /* R_IA64_DIR64LSB. */
10635 case EM_PARISC:
10636 return reloc_type == 80; /* R_PARISC_DIR64. */
10637 case EM_PPC64:
10638 return reloc_type == 38; /* R_PPC64_ADDR64. */
10639 case EM_SPARC32PLUS:
10640 case EM_SPARCV9:
10641 case EM_SPARC:
10642 return reloc_type == 54; /* R_SPARC_UA64. */
10643 case EM_X86_64:
10644 case EM_L1OM:
10645 case EM_K1OM:
10646 return reloc_type == 1; /* R_X86_64_64. */
10647 case EM_S390_OLD:
10648 case EM_S390:
10649 return reloc_type == 22; /* R_S390_64. */
10650 case EM_TILEGX:
10651 return reloc_type == 1; /* R_TILEGX_64. */
10652 case EM_MIPS:
10653 return reloc_type == 18; /* R_MIPS_64. */
10654 default:
10655 return FALSE;
10656 }
10657 }
10658
10659 /* Like is_32bit_pcrel_reloc except that it returns TRUE iff RELOC_TYPE is
10660 a 64-bit pc-relative RELA relocation used in DWARF debug sections. */
10661
10662 static bfd_boolean
10663 is_64bit_pcrel_reloc (unsigned int reloc_type)
10664 {
10665 switch (elf_header.e_machine)
10666 {
10667 case EM_AARCH64:
10668 return reloc_type == 260; /* R_AARCH64_PREL64. */
10669 case EM_ALPHA:
10670 return reloc_type == 11; /* R_ALPHA_SREL64. */
10671 case EM_IA_64:
10672 return reloc_type == 0x4f; /* R_IA64_PCREL64LSB. */
10673 case EM_PARISC:
10674 return reloc_type == 72; /* R_PARISC_PCREL64. */
10675 case EM_PPC64:
10676 return reloc_type == 44; /* R_PPC64_REL64. */
10677 case EM_SPARC32PLUS:
10678 case EM_SPARCV9:
10679 case EM_SPARC:
10680 return reloc_type == 46; /* R_SPARC_DISP64. */
10681 case EM_X86_64:
10682 case EM_L1OM:
10683 case EM_K1OM:
10684 return reloc_type == 24; /* R_X86_64_PC64. */
10685 case EM_S390_OLD:
10686 case EM_S390:
10687 return reloc_type == 23; /* R_S390_PC64. */
10688 case EM_TILEGX:
10689 return reloc_type == 5; /* R_TILEGX_64_PCREL. */
10690 default:
10691 return FALSE;
10692 }
10693 }
10694
10695 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
10696 a 24-bit absolute RELA relocation used in DWARF debug sections. */
10697
10698 static bfd_boolean
10699 is_24bit_abs_reloc (unsigned int reloc_type)
10700 {
10701 switch (elf_header.e_machine)
10702 {
10703 case EM_CYGNUS_MN10200:
10704 case EM_MN10200:
10705 return reloc_type == 4; /* R_MN10200_24. */
10706 default:
10707 return FALSE;
10708 }
10709 }
10710
10711 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
10712 a 16-bit absolute RELA relocation used in DWARF debug sections. */
10713
10714 static bfd_boolean
10715 is_16bit_abs_reloc (unsigned int reloc_type)
10716 {
10717 switch (elf_header.e_machine)
10718 {
10719 case EM_AVR_OLD:
10720 case EM_AVR:
10721 return reloc_type == 4; /* R_AVR_16. */
10722 case EM_ADAPTEVA_EPIPHANY:
10723 return reloc_type == 5;
10724 case EM_CYGNUS_D10V:
10725 case EM_D10V:
10726 return reloc_type == 3; /* R_D10V_16. */
10727 case EM_H8S:
10728 case EM_H8_300:
10729 case EM_H8_300H:
10730 return reloc_type == R_H8_DIR16;
10731 case EM_IP2K_OLD:
10732 case EM_IP2K:
10733 return reloc_type == 1; /* R_IP2K_16. */
10734 case EM_M32C_OLD:
10735 case EM_M32C:
10736 return reloc_type == 1; /* R_M32C_16 */
10737 case EM_MSP430:
10738 if (uses_msp430x_relocs ())
10739 return reloc_type == 2; /* R_MSP430_ABS16. */
10740 case EM_MSP430_OLD:
10741 return reloc_type == 5; /* R_MSP430_16_BYTE. */
10742 case EM_NDS32:
10743 return reloc_type == 19; /* R_NDS32_RELA. */
10744 case EM_ALTERA_NIOS2:
10745 return reloc_type == 13; /* R_NIOS2_BFD_RELOC_16. */
10746 case EM_NIOS32:
10747 return reloc_type == 9; /* R_NIOS_16. */
10748 case EM_OR1K:
10749 return reloc_type == 2; /* R_OR1K_16. */
10750 case EM_TI_C6000:
10751 return reloc_type == 2; /* R_C6000_ABS16. */
10752 case EM_XC16X:
10753 case EM_C166:
10754 return reloc_type == 2; /* R_XC16C_ABS_16. */
10755 case EM_CYGNUS_MN10200:
10756 case EM_MN10200:
10757 return reloc_type == 2; /* R_MN10200_16. */
10758 case EM_CYGNUS_MN10300:
10759 case EM_MN10300:
10760 return reloc_type == 2; /* R_MN10300_16. */
10761 case EM_XGATE:
10762 return reloc_type == 3; /* R_XGATE_16. */
10763 default:
10764 return FALSE;
10765 }
10766 }
10767
10768 /* Returns TRUE iff RELOC_TYPE is a NONE relocation used for discarded
10769 relocation entries (possibly formerly used for SHT_GROUP sections). */
10770
10771 static bfd_boolean
10772 is_none_reloc (unsigned int reloc_type)
10773 {
10774 switch (elf_header.e_machine)
10775 {
10776 case EM_68K: /* R_68K_NONE. */
10777 case EM_386: /* R_386_NONE. */
10778 case EM_SPARC32PLUS:
10779 case EM_SPARCV9:
10780 case EM_SPARC: /* R_SPARC_NONE. */
10781 case EM_MIPS: /* R_MIPS_NONE. */
10782 case EM_PARISC: /* R_PARISC_NONE. */
10783 case EM_ALPHA: /* R_ALPHA_NONE. */
10784 case EM_ADAPTEVA_EPIPHANY:
10785 case EM_PPC: /* R_PPC_NONE. */
10786 case EM_PPC64: /* R_PPC64_NONE. */
10787 case EM_ARM: /* R_ARM_NONE. */
10788 case EM_IA_64: /* R_IA64_NONE. */
10789 case EM_SH: /* R_SH_NONE. */
10790 case EM_S390_OLD:
10791 case EM_S390: /* R_390_NONE. */
10792 case EM_CRIS: /* R_CRIS_NONE. */
10793 case EM_X86_64: /* R_X86_64_NONE. */
10794 case EM_L1OM: /* R_X86_64_NONE. */
10795 case EM_K1OM: /* R_X86_64_NONE. */
10796 case EM_MN10300: /* R_MN10300_NONE. */
10797 case EM_MOXIE: /* R_MOXIE_NONE. */
10798 case EM_M32R: /* R_M32R_NONE. */
10799 case EM_TI_C6000:/* R_C6000_NONE. */
10800 case EM_TILEGX: /* R_TILEGX_NONE. */
10801 case EM_TILEPRO: /* R_TILEPRO_NONE. */
10802 case EM_XC16X:
10803 case EM_C166: /* R_XC16X_NONE. */
10804 case EM_ALTERA_NIOS2: /* R_NIOS2_NONE. */
10805 case EM_NIOS32: /* R_NIOS_NONE. */
10806 case EM_OR1K: /* R_OR1K_NONE. */
10807 return reloc_type == 0;
10808 case EM_AARCH64:
10809 return reloc_type == 0 || reloc_type == 256;
10810 case EM_NDS32:
10811 return (reloc_type == 0 /* R_XTENSA_NONE. */
10812 || reloc_type == 204 /* R_NDS32_DIFF8. */
10813 || reloc_type == 205 /* R_NDS32_DIFF16. */
10814 || reloc_type == 206 /* R_NDS32_DIFF32. */
10815 || reloc_type == 207 /* R_NDS32_ULEB128. */);
10816 case EM_XTENSA_OLD:
10817 case EM_XTENSA:
10818 return (reloc_type == 0 /* R_XTENSA_NONE. */
10819 || reloc_type == 17 /* R_XTENSA_DIFF8. */
10820 || reloc_type == 18 /* R_XTENSA_DIFF16. */
10821 || reloc_type == 19 /* R_XTENSA_DIFF32. */);
10822 case EM_METAG:
10823 return reloc_type == 3; /* R_METAG_NONE. */
10824 }
10825 return FALSE;
10826 }
10827
10828 /* Apply relocations to a section.
10829 Note: So far support has been added only for those relocations
10830 which can be found in debug sections.
10831 FIXME: Add support for more relocations ? */
10832
10833 static void
10834 apply_relocations (void * file,
10835 Elf_Internal_Shdr * section,
10836 unsigned char * start)
10837 {
10838 Elf_Internal_Shdr * relsec;
10839 unsigned char * end = start + section->sh_size;
10840
10841 if (elf_header.e_type != ET_REL)
10842 return;
10843
10844 /* Find the reloc section associated with the section. */
10845 for (relsec = section_headers;
10846 relsec < section_headers + elf_header.e_shnum;
10847 ++relsec)
10848 {
10849 bfd_boolean is_rela;
10850 unsigned long num_relocs;
10851 Elf_Internal_Rela * relocs;
10852 Elf_Internal_Rela * rp;
10853 Elf_Internal_Shdr * symsec;
10854 Elf_Internal_Sym * symtab;
10855 unsigned long num_syms;
10856 Elf_Internal_Sym * sym;
10857
10858 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
10859 || relsec->sh_info >= elf_header.e_shnum
10860 || section_headers + relsec->sh_info != section
10861 || relsec->sh_size == 0
10862 || relsec->sh_link >= elf_header.e_shnum)
10863 continue;
10864
10865 is_rela = relsec->sh_type == SHT_RELA;
10866
10867 if (is_rela)
10868 {
10869 if (!slurp_rela_relocs ((FILE *) file, relsec->sh_offset,
10870 relsec->sh_size, & relocs, & num_relocs))
10871 return;
10872 }
10873 else
10874 {
10875 if (!slurp_rel_relocs ((FILE *) file, relsec->sh_offset,
10876 relsec->sh_size, & relocs, & num_relocs))
10877 return;
10878 }
10879
10880 /* SH uses RELA but uses in place value instead of the addend field. */
10881 if (elf_header.e_machine == EM_SH)
10882 is_rela = FALSE;
10883
10884 symsec = section_headers + relsec->sh_link;
10885 symtab = GET_ELF_SYMBOLS ((FILE *) file, symsec, & num_syms);
10886
10887 for (rp = relocs; rp < relocs + num_relocs; ++rp)
10888 {
10889 bfd_vma addend;
10890 unsigned int reloc_type;
10891 unsigned int reloc_size;
10892 unsigned char * rloc;
10893 unsigned long sym_index;
10894
10895 reloc_type = get_reloc_type (rp->r_info);
10896
10897 if (target_specific_reloc_handling (rp, start, symtab))
10898 continue;
10899 else if (is_none_reloc (reloc_type))
10900 continue;
10901 else if (is_32bit_abs_reloc (reloc_type)
10902 || is_32bit_pcrel_reloc (reloc_type))
10903 reloc_size = 4;
10904 else if (is_64bit_abs_reloc (reloc_type)
10905 || is_64bit_pcrel_reloc (reloc_type))
10906 reloc_size = 8;
10907 else if (is_24bit_abs_reloc (reloc_type))
10908 reloc_size = 3;
10909 else if (is_16bit_abs_reloc (reloc_type))
10910 reloc_size = 2;
10911 else
10912 {
10913 warn (_("unable to apply unsupported reloc type %d to section %s\n"),
10914 reloc_type, SECTION_NAME (section));
10915 continue;
10916 }
10917
10918 rloc = start + rp->r_offset;
10919 if ((rloc + reloc_size) > end || (rloc < start))
10920 {
10921 warn (_("skipping invalid relocation offset 0x%lx in section %s\n"),
10922 (unsigned long) rp->r_offset,
10923 SECTION_NAME (section));
10924 continue;
10925 }
10926
10927 sym_index = (unsigned long) get_reloc_symindex (rp->r_info);
10928 if (sym_index >= num_syms)
10929 {
10930 warn (_("skipping invalid relocation symbol index 0x%lx in section %s\n"),
10931 sym_index, SECTION_NAME (section));
10932 continue;
10933 }
10934 sym = symtab + sym_index;
10935
10936 /* If the reloc has a symbol associated with it,
10937 make sure that it is of an appropriate type.
10938
10939 Relocations against symbols without type can happen.
10940 Gcc -feliminate-dwarf2-dups may generate symbols
10941 without type for debug info.
10942
10943 Icc generates relocations against function symbols
10944 instead of local labels.
10945
10946 Relocations against object symbols can happen, eg when
10947 referencing a global array. For an example of this see
10948 the _clz.o binary in libgcc.a. */
10949 if (sym != symtab
10950 && ELF_ST_TYPE (sym->st_info) > STT_SECTION)
10951 {
10952 warn (_("skipping unexpected symbol type %s in %ld'th relocation in section %s\n"),
10953 get_symbol_type (ELF_ST_TYPE (sym->st_info)),
10954 (long int)(rp - relocs),
10955 SECTION_NAME (relsec));
10956 continue;
10957 }
10958
10959 addend = 0;
10960 if (is_rela)
10961 addend += rp->r_addend;
10962 /* R_XTENSA_32, R_PJ_DATA_DIR32 and R_D30V_32_NORMAL are
10963 partial_inplace. */
10964 if (!is_rela
10965 || (elf_header.e_machine == EM_XTENSA
10966 && reloc_type == 1)
10967 || ((elf_header.e_machine == EM_PJ
10968 || elf_header.e_machine == EM_PJ_OLD)
10969 && reloc_type == 1)
10970 || ((elf_header.e_machine == EM_D30V
10971 || elf_header.e_machine == EM_CYGNUS_D30V)
10972 && reloc_type == 12))
10973 addend += byte_get (rloc, reloc_size);
10974
10975 if (is_32bit_pcrel_reloc (reloc_type)
10976 || is_64bit_pcrel_reloc (reloc_type))
10977 {
10978 /* On HPPA, all pc-relative relocations are biased by 8. */
10979 if (elf_header.e_machine == EM_PARISC)
10980 addend -= 8;
10981 byte_put (rloc, (addend + sym->st_value) - rp->r_offset,
10982 reloc_size);
10983 }
10984 else
10985 byte_put (rloc, addend + sym->st_value, reloc_size);
10986 }
10987
10988 free (symtab);
10989 free (relocs);
10990 break;
10991 }
10992 }
10993
10994 #ifdef SUPPORT_DISASSEMBLY
10995 static int
10996 disassemble_section (Elf_Internal_Shdr * section, FILE * file)
10997 {
10998 printf (_("\nAssembly dump of section %s\n"),
10999 SECTION_NAME (section));
11000
11001 /* XXX -- to be done --- XXX */
11002
11003 return 1;
11004 }
11005 #endif
11006
11007 /* Reads in the contents of SECTION from FILE, returning a pointer
11008 to a malloc'ed buffer or NULL if something went wrong. */
11009
11010 static char *
11011 get_section_contents (Elf_Internal_Shdr * section, FILE * file)
11012 {
11013 bfd_size_type num_bytes;
11014
11015 num_bytes = section->sh_size;
11016
11017 if (num_bytes == 0 || section->sh_type == SHT_NOBITS)
11018 {
11019 printf (_("\nSection '%s' has no data to dump.\n"),
11020 SECTION_NAME (section));
11021 return NULL;
11022 }
11023
11024 return (char *) get_data (NULL, file, section->sh_offset, 1, num_bytes,
11025 _("section contents"));
11026 }
11027
11028
11029 static void
11030 dump_section_as_strings (Elf_Internal_Shdr * section, FILE * file)
11031 {
11032 Elf_Internal_Shdr * relsec;
11033 bfd_size_type num_bytes;
11034 char * data;
11035 char * end;
11036 char * start;
11037 char * name = SECTION_NAME (section);
11038 bfd_boolean some_strings_shown;
11039
11040 start = get_section_contents (section, file);
11041 if (start == NULL)
11042 return;
11043
11044 printf (_("\nString dump of section '%s':\n"), name);
11045
11046 /* If the section being dumped has relocations against it the user might
11047 be expecting these relocations to have been applied. Check for this
11048 case and issue a warning message in order to avoid confusion.
11049 FIXME: Maybe we ought to have an option that dumps a section with
11050 relocs applied ? */
11051 for (relsec = section_headers;
11052 relsec < section_headers + elf_header.e_shnum;
11053 ++relsec)
11054 {
11055 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
11056 || relsec->sh_info >= elf_header.e_shnum
11057 || section_headers + relsec->sh_info != section
11058 || relsec->sh_size == 0
11059 || relsec->sh_link >= elf_header.e_shnum)
11060 continue;
11061
11062 printf (_(" Note: This section has relocations against it, but these have NOT been applied to this dump.\n"));
11063 break;
11064 }
11065
11066 num_bytes = section->sh_size;
11067 data = start;
11068 end = start + num_bytes;
11069 some_strings_shown = FALSE;
11070
11071 while (data < end)
11072 {
11073 while (!ISPRINT (* data))
11074 if (++ data >= end)
11075 break;
11076
11077 if (data < end)
11078 {
11079 #ifndef __MSVCRT__
11080 /* PR 11128: Use two separate invocations in order to work
11081 around bugs in the Solaris 8 implementation of printf. */
11082 printf (" [%6tx] ", data - start);
11083 printf ("%s\n", data);
11084 #else
11085 printf (" [%6Ix] %s\n", (size_t) (data - start), data);
11086 #endif
11087 data += strlen (data);
11088 some_strings_shown = TRUE;
11089 }
11090 }
11091
11092 if (! some_strings_shown)
11093 printf (_(" No strings found in this section."));
11094
11095 free (start);
11096
11097 putchar ('\n');
11098 }
11099
11100 static void
11101 dump_section_as_bytes (Elf_Internal_Shdr * section,
11102 FILE * file,
11103 bfd_boolean relocate)
11104 {
11105 Elf_Internal_Shdr * relsec;
11106 bfd_size_type bytes;
11107 bfd_vma addr;
11108 unsigned char * data;
11109 unsigned char * start;
11110
11111 start = (unsigned char *) get_section_contents (section, file);
11112 if (start == NULL)
11113 return;
11114
11115 printf (_("\nHex dump of section '%s':\n"), SECTION_NAME (section));
11116
11117 if (relocate)
11118 {
11119 apply_relocations (file, section, start);
11120 }
11121 else
11122 {
11123 /* If the section being dumped has relocations against it the user might
11124 be expecting these relocations to have been applied. Check for this
11125 case and issue a warning message in order to avoid confusion.
11126 FIXME: Maybe we ought to have an option that dumps a section with
11127 relocs applied ? */
11128 for (relsec = section_headers;
11129 relsec < section_headers + elf_header.e_shnum;
11130 ++relsec)
11131 {
11132 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
11133 || relsec->sh_info >= elf_header.e_shnum
11134 || section_headers + relsec->sh_info != section
11135 || relsec->sh_size == 0
11136 || relsec->sh_link >= elf_header.e_shnum)
11137 continue;
11138
11139 printf (_(" NOTE: This section has relocations against it, but these have NOT been applied to this dump.\n"));
11140 break;
11141 }
11142 }
11143
11144 addr = section->sh_addr;
11145 bytes = section->sh_size;
11146 data = start;
11147
11148 while (bytes)
11149 {
11150 int j;
11151 int k;
11152 int lbytes;
11153
11154 lbytes = (bytes > 16 ? 16 : bytes);
11155
11156 printf (" 0x%8.8lx ", (unsigned long) addr);
11157
11158 for (j = 0; j < 16; j++)
11159 {
11160 if (j < lbytes)
11161 printf ("%2.2x", data[j]);
11162 else
11163 printf (" ");
11164
11165 if ((j & 3) == 3)
11166 printf (" ");
11167 }
11168
11169 for (j = 0; j < lbytes; j++)
11170 {
11171 k = data[j];
11172 if (k >= ' ' && k < 0x7f)
11173 printf ("%c", k);
11174 else
11175 printf (".");
11176 }
11177
11178 putchar ('\n');
11179
11180 data += lbytes;
11181 addr += lbytes;
11182 bytes -= lbytes;
11183 }
11184
11185 free (start);
11186
11187 putchar ('\n');
11188 }
11189
11190 /* Uncompresses a section that was compressed using zlib, in place. */
11191
11192 static int
11193 uncompress_section_contents (unsigned char **buffer ATTRIBUTE_UNUSED,
11194 dwarf_size_type *size ATTRIBUTE_UNUSED)
11195 {
11196 #ifndef HAVE_ZLIB_H
11197 return FALSE;
11198 #else
11199 dwarf_size_type compressed_size = *size;
11200 unsigned char * compressed_buffer = *buffer;
11201 dwarf_size_type uncompressed_size;
11202 unsigned char * uncompressed_buffer;
11203 z_stream strm;
11204 int rc;
11205 dwarf_size_type header_size = 12;
11206
11207 /* Read the zlib header. In this case, it should be "ZLIB" followed
11208 by the uncompressed section size, 8 bytes in big-endian order. */
11209 if (compressed_size < header_size
11210 || ! streq ((char *) compressed_buffer, "ZLIB"))
11211 return 0;
11212
11213 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
11214 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
11215 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
11216 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
11217 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
11218 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
11219 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
11220 uncompressed_size += compressed_buffer[11];
11221
11222 /* It is possible the section consists of several compressed
11223 buffers concatenated together, so we uncompress in a loop. */
11224 strm.zalloc = NULL;
11225 strm.zfree = NULL;
11226 strm.opaque = NULL;
11227 strm.avail_in = compressed_size - header_size;
11228 strm.next_in = (Bytef *) compressed_buffer + header_size;
11229 strm.avail_out = uncompressed_size;
11230 uncompressed_buffer = (unsigned char *) xmalloc (uncompressed_size);
11231
11232 rc = inflateInit (& strm);
11233 while (strm.avail_in > 0)
11234 {
11235 if (rc != Z_OK)
11236 goto fail;
11237 strm.next_out = ((Bytef *) uncompressed_buffer
11238 + (uncompressed_size - strm.avail_out));
11239 rc = inflate (&strm, Z_FINISH);
11240 if (rc != Z_STREAM_END)
11241 goto fail;
11242 rc = inflateReset (& strm);
11243 }
11244 rc = inflateEnd (& strm);
11245 if (rc != Z_OK
11246 || strm.avail_out != 0)
11247 goto fail;
11248
11249 free (compressed_buffer);
11250 *buffer = uncompressed_buffer;
11251 *size = uncompressed_size;
11252 return 1;
11253
11254 fail:
11255 free (uncompressed_buffer);
11256 /* Indicate decompression failure. */
11257 *buffer = NULL;
11258 return 0;
11259 #endif /* HAVE_ZLIB_H */
11260 }
11261
11262 static int
11263 load_specific_debug_section (enum dwarf_section_display_enum debug,
11264 Elf_Internal_Shdr * sec, void * file)
11265 {
11266 struct dwarf_section * section = &debug_displays [debug].section;
11267 char buf [64];
11268
11269 /* If it is already loaded, do nothing. */
11270 if (section->start != NULL)
11271 return 1;
11272
11273 snprintf (buf, sizeof (buf), _("%s section data"), section->name);
11274 section->address = sec->sh_addr;
11275 section->start = (unsigned char *) get_data (NULL, (FILE *) file,
11276 sec->sh_offset, 1,
11277 sec->sh_size, buf);
11278 if (section->start == NULL)
11279 section->size = 0;
11280 else
11281 {
11282 section->size = sec->sh_size;
11283 if (uncompress_section_contents (&section->start, &section->size))
11284 sec->sh_size = section->size;
11285 }
11286
11287 if (section->start == NULL)
11288 return 0;
11289
11290 if (debug_displays [debug].relocate)
11291 apply_relocations ((FILE *) file, sec, section->start);
11292
11293 return 1;
11294 }
11295
11296 /* If this is not NULL, load_debug_section will only look for sections
11297 within the list of sections given here. */
11298 unsigned int *section_subset = NULL;
11299
11300 int
11301 load_debug_section (enum dwarf_section_display_enum debug, void * file)
11302 {
11303 struct dwarf_section * section = &debug_displays [debug].section;
11304 Elf_Internal_Shdr * sec;
11305
11306 /* Locate the debug section. */
11307 sec = find_section_in_set (section->uncompressed_name, section_subset);
11308 if (sec != NULL)
11309 section->name = section->uncompressed_name;
11310 else
11311 {
11312 sec = find_section_in_set (section->compressed_name, section_subset);
11313 if (sec != NULL)
11314 section->name = section->compressed_name;
11315 }
11316 if (sec == NULL)
11317 return 0;
11318
11319 /* If we're loading from a subset of sections, and we've loaded
11320 a section matching this name before, it's likely that it's a
11321 different one. */
11322 if (section_subset != NULL)
11323 free_debug_section (debug);
11324
11325 return load_specific_debug_section (debug, sec, (FILE *) file);
11326 }
11327
11328 void
11329 free_debug_section (enum dwarf_section_display_enum debug)
11330 {
11331 struct dwarf_section * section = &debug_displays [debug].section;
11332
11333 if (section->start == NULL)
11334 return;
11335
11336 free ((char *) section->start);
11337 section->start = NULL;
11338 section->address = 0;
11339 section->size = 0;
11340 }
11341
11342 static int
11343 display_debug_section (int shndx, Elf_Internal_Shdr * section, FILE * file)
11344 {
11345 char * name = SECTION_NAME (section);
11346 bfd_size_type length;
11347 int result = 1;
11348 int i;
11349
11350 length = section->sh_size;
11351 if (length == 0)
11352 {
11353 printf (_("\nSection '%s' has no debugging data.\n"), name);
11354 return 0;
11355 }
11356 if (section->sh_type == SHT_NOBITS)
11357 {
11358 /* There is no point in dumping the contents of a debugging section
11359 which has the NOBITS type - the bits in the file will be random.
11360 This can happen when a file containing a .eh_frame section is
11361 stripped with the --only-keep-debug command line option. */
11362 printf (_("section '%s' has the NOBITS type - its contents are unreliable.\n"), name);
11363 return 0;
11364 }
11365
11366 if (const_strneq (name, ".gnu.linkonce.wi."))
11367 name = ".debug_info";
11368
11369 /* See if we know how to display the contents of this section. */
11370 for (i = 0; i < max; i++)
11371 if (streq (debug_displays[i].section.uncompressed_name, name)
11372 || (i == line && const_strneq (name, ".debug_line."))
11373 || streq (debug_displays[i].section.compressed_name, name))
11374 {
11375 struct dwarf_section * sec = &debug_displays [i].section;
11376 int secondary = (section != find_section (name));
11377
11378 if (secondary)
11379 free_debug_section ((enum dwarf_section_display_enum) i);
11380
11381 if (i == line && const_strneq (name, ".debug_line."))
11382 sec->name = name;
11383 else if (streq (sec->uncompressed_name, name))
11384 sec->name = sec->uncompressed_name;
11385 else
11386 sec->name = sec->compressed_name;
11387 if (load_specific_debug_section ((enum dwarf_section_display_enum) i,
11388 section, file))
11389 {
11390 /* If this debug section is part of a CU/TU set in a .dwp file,
11391 restrict load_debug_section to the sections in that set. */
11392 section_subset = find_cu_tu_set (file, shndx);
11393
11394 result &= debug_displays[i].display (sec, file);
11395
11396 section_subset = NULL;
11397
11398 if (secondary || (i != info && i != abbrev))
11399 free_debug_section ((enum dwarf_section_display_enum) i);
11400 }
11401
11402 break;
11403 }
11404
11405 if (i == max)
11406 {
11407 printf (_("Unrecognized debug section: %s\n"), name);
11408 result = 0;
11409 }
11410
11411 return result;
11412 }
11413
11414 /* Set DUMP_SECTS for all sections where dumps were requested
11415 based on section name. */
11416
11417 static void
11418 initialise_dumps_byname (void)
11419 {
11420 struct dump_list_entry * cur;
11421
11422 for (cur = dump_sects_byname; cur; cur = cur->next)
11423 {
11424 unsigned int i;
11425 int any;
11426
11427 for (i = 0, any = 0; i < elf_header.e_shnum; i++)
11428 if (streq (SECTION_NAME (section_headers + i), cur->name))
11429 {
11430 request_dump_bynumber (i, cur->type);
11431 any = 1;
11432 }
11433
11434 if (!any)
11435 warn (_("Section '%s' was not dumped because it does not exist!\n"),
11436 cur->name);
11437 }
11438 }
11439
11440 static void
11441 process_section_contents (FILE * file)
11442 {
11443 Elf_Internal_Shdr * section;
11444 unsigned int i;
11445
11446 if (! do_dump)
11447 return;
11448
11449 initialise_dumps_byname ();
11450
11451 for (i = 0, section = section_headers;
11452 i < elf_header.e_shnum && i < num_dump_sects;
11453 i++, section++)
11454 {
11455 #ifdef SUPPORT_DISASSEMBLY
11456 if (dump_sects[i] & DISASS_DUMP)
11457 disassemble_section (section, file);
11458 #endif
11459 if (dump_sects[i] & HEX_DUMP)
11460 dump_section_as_bytes (section, file, FALSE);
11461
11462 if (dump_sects[i] & RELOC_DUMP)
11463 dump_section_as_bytes (section, file, TRUE);
11464
11465 if (dump_sects[i] & STRING_DUMP)
11466 dump_section_as_strings (section, file);
11467
11468 if (dump_sects[i] & DEBUG_DUMP)
11469 display_debug_section (i, section, file);
11470 }
11471
11472 /* Check to see if the user requested a
11473 dump of a section that does not exist. */
11474 while (i++ < num_dump_sects)
11475 if (dump_sects[i])
11476 warn (_("Section %d was not dumped because it does not exist!\n"), i);
11477 }
11478
11479 static void
11480 process_mips_fpe_exception (int mask)
11481 {
11482 if (mask)
11483 {
11484 int first = 1;
11485 if (mask & OEX_FPU_INEX)
11486 fputs ("INEX", stdout), first = 0;
11487 if (mask & OEX_FPU_UFLO)
11488 printf ("%sUFLO", first ? "" : "|"), first = 0;
11489 if (mask & OEX_FPU_OFLO)
11490 printf ("%sOFLO", first ? "" : "|"), first = 0;
11491 if (mask & OEX_FPU_DIV0)
11492 printf ("%sDIV0", first ? "" : "|"), first = 0;
11493 if (mask & OEX_FPU_INVAL)
11494 printf ("%sINVAL", first ? "" : "|");
11495 }
11496 else
11497 fputs ("0", stdout);
11498 }
11499
11500 /* Display's the value of TAG at location P. If TAG is
11501 greater than 0 it is assumed to be an unknown tag, and
11502 a message is printed to this effect. Otherwise it is
11503 assumed that a message has already been printed.
11504
11505 If the bottom bit of TAG is set it assumed to have a
11506 string value, otherwise it is assumed to have an integer
11507 value.
11508
11509 Returns an updated P pointing to the first unread byte
11510 beyond the end of TAG's value.
11511
11512 Reads at or beyond END will not be made. */
11513
11514 static unsigned char *
11515 display_tag_value (int tag,
11516 unsigned char * p,
11517 const unsigned char * const end)
11518 {
11519 unsigned long val;
11520
11521 if (tag > 0)
11522 printf (" Tag_unknown_%d: ", tag);
11523
11524 if (p >= end)
11525 {
11526 warn (_("corrupt tag\n"));
11527 }
11528 else if (tag & 1)
11529 {
11530 /* FIXME: we could read beyond END here. */
11531 printf ("\"%s\"\n", p);
11532 p += strlen ((char *) p) + 1;
11533 }
11534 else
11535 {
11536 unsigned int len;
11537
11538 val = read_uleb128 (p, &len, end);
11539 p += len;
11540 printf ("%ld (0x%lx)\n", val, val);
11541 }
11542
11543 return p;
11544 }
11545
11546 /* ARM EABI attributes section. */
11547 typedef struct
11548 {
11549 int tag;
11550 const char * name;
11551 /* 0 = special, 1 = string, 2 = uleb123, > 0x80 == table lookup. */
11552 int type;
11553 const char ** table;
11554 } arm_attr_public_tag;
11555
11556 static const char * arm_attr_tag_CPU_arch[] =
11557 {"Pre-v4", "v4", "v4T", "v5T", "v5TE", "v5TEJ", "v6", "v6KZ", "v6T2",
11558 "v6K", "v7", "v6-M", "v6S-M", "v7E-M", "v8"};
11559 static const char * arm_attr_tag_ARM_ISA_use[] = {"No", "Yes"};
11560 static const char * arm_attr_tag_THUMB_ISA_use[] =
11561 {"No", "Thumb-1", "Thumb-2"};
11562 static const char * arm_attr_tag_FP_arch[] =
11563 {"No", "VFPv1", "VFPv2", "VFPv3", "VFPv3-D16", "VFPv4", "VFPv4-D16",
11564 "FP for ARMv8"};
11565 static const char * arm_attr_tag_WMMX_arch[] = {"No", "WMMXv1", "WMMXv2"};
11566 static const char * arm_attr_tag_Advanced_SIMD_arch[] =
11567 {"No", "NEONv1", "NEONv1 with Fused-MAC", "NEON for ARMv8"};
11568 static const char * arm_attr_tag_PCS_config[] =
11569 {"None", "Bare platform", "Linux application", "Linux DSO", "PalmOS 2004",
11570 "PalmOS (reserved)", "SymbianOS 2004", "SymbianOS (reserved)"};
11571 static const char * arm_attr_tag_ABI_PCS_R9_use[] =
11572 {"V6", "SB", "TLS", "Unused"};
11573 static const char * arm_attr_tag_ABI_PCS_RW_data[] =
11574 {"Absolute", "PC-relative", "SB-relative", "None"};
11575 static const char * arm_attr_tag_ABI_PCS_RO_data[] =
11576 {"Absolute", "PC-relative", "None"};
11577 static const char * arm_attr_tag_ABI_PCS_GOT_use[] =
11578 {"None", "direct", "GOT-indirect"};
11579 static const char * arm_attr_tag_ABI_PCS_wchar_t[] =
11580 {"None", "??? 1", "2", "??? 3", "4"};
11581 static const char * arm_attr_tag_ABI_FP_rounding[] = {"Unused", "Needed"};
11582 static const char * arm_attr_tag_ABI_FP_denormal[] =
11583 {"Unused", "Needed", "Sign only"};
11584 static const char * arm_attr_tag_ABI_FP_exceptions[] = {"Unused", "Needed"};
11585 static const char * arm_attr_tag_ABI_FP_user_exceptions[] = {"Unused", "Needed"};
11586 static const char * arm_attr_tag_ABI_FP_number_model[] =
11587 {"Unused", "Finite", "RTABI", "IEEE 754"};
11588 static const char * arm_attr_tag_ABI_enum_size[] =
11589 {"Unused", "small", "int", "forced to int"};
11590 static const char * arm_attr_tag_ABI_HardFP_use[] =
11591 {"As Tag_FP_arch", "SP only", "DP only", "SP and DP"};
11592 static const char * arm_attr_tag_ABI_VFP_args[] =
11593 {"AAPCS", "VFP registers", "custom"};
11594 static const char * arm_attr_tag_ABI_WMMX_args[] =
11595 {"AAPCS", "WMMX registers", "custom"};
11596 static const char * arm_attr_tag_ABI_optimization_goals[] =
11597 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
11598 "Aggressive Size", "Prefer Debug", "Aggressive Debug"};
11599 static const char * arm_attr_tag_ABI_FP_optimization_goals[] =
11600 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
11601 "Aggressive Size", "Prefer Accuracy", "Aggressive Accuracy"};
11602 static const char * arm_attr_tag_CPU_unaligned_access[] = {"None", "v6"};
11603 static const char * arm_attr_tag_FP_HP_extension[] =
11604 {"Not Allowed", "Allowed"};
11605 static const char * arm_attr_tag_ABI_FP_16bit_format[] =
11606 {"None", "IEEE 754", "Alternative Format"};
11607 static const char * arm_attr_tag_MPextension_use[] =
11608 {"Not Allowed", "Allowed"};
11609 static const char * arm_attr_tag_DIV_use[] =
11610 {"Allowed in Thumb-ISA, v7-R or v7-M", "Not allowed",
11611 "Allowed in v7-A with integer division extension"};
11612 static const char * arm_attr_tag_T2EE_use[] = {"Not Allowed", "Allowed"};
11613 static const char * arm_attr_tag_Virtualization_use[] =
11614 {"Not Allowed", "TrustZone", "Virtualization Extensions",
11615 "TrustZone and Virtualization Extensions"};
11616 static const char * arm_attr_tag_MPextension_use_legacy[] =
11617 {"Not Allowed", "Allowed"};
11618
11619 #define LOOKUP(id, name) \
11620 {id, #name, 0x80 | ARRAY_SIZE(arm_attr_tag_##name), arm_attr_tag_##name}
11621 static arm_attr_public_tag arm_attr_public_tags[] =
11622 {
11623 {4, "CPU_raw_name", 1, NULL},
11624 {5, "CPU_name", 1, NULL},
11625 LOOKUP(6, CPU_arch),
11626 {7, "CPU_arch_profile", 0, NULL},
11627 LOOKUP(8, ARM_ISA_use),
11628 LOOKUP(9, THUMB_ISA_use),
11629 LOOKUP(10, FP_arch),
11630 LOOKUP(11, WMMX_arch),
11631 LOOKUP(12, Advanced_SIMD_arch),
11632 LOOKUP(13, PCS_config),
11633 LOOKUP(14, ABI_PCS_R9_use),
11634 LOOKUP(15, ABI_PCS_RW_data),
11635 LOOKUP(16, ABI_PCS_RO_data),
11636 LOOKUP(17, ABI_PCS_GOT_use),
11637 LOOKUP(18, ABI_PCS_wchar_t),
11638 LOOKUP(19, ABI_FP_rounding),
11639 LOOKUP(20, ABI_FP_denormal),
11640 LOOKUP(21, ABI_FP_exceptions),
11641 LOOKUP(22, ABI_FP_user_exceptions),
11642 LOOKUP(23, ABI_FP_number_model),
11643 {24, "ABI_align_needed", 0, NULL},
11644 {25, "ABI_align_preserved", 0, NULL},
11645 LOOKUP(26, ABI_enum_size),
11646 LOOKUP(27, ABI_HardFP_use),
11647 LOOKUP(28, ABI_VFP_args),
11648 LOOKUP(29, ABI_WMMX_args),
11649 LOOKUP(30, ABI_optimization_goals),
11650 LOOKUP(31, ABI_FP_optimization_goals),
11651 {32, "compatibility", 0, NULL},
11652 LOOKUP(34, CPU_unaligned_access),
11653 LOOKUP(36, FP_HP_extension),
11654 LOOKUP(38, ABI_FP_16bit_format),
11655 LOOKUP(42, MPextension_use),
11656 LOOKUP(44, DIV_use),
11657 {64, "nodefaults", 0, NULL},
11658 {65, "also_compatible_with", 0, NULL},
11659 LOOKUP(66, T2EE_use),
11660 {67, "conformance", 1, NULL},
11661 LOOKUP(68, Virtualization_use),
11662 LOOKUP(70, MPextension_use_legacy)
11663 };
11664 #undef LOOKUP
11665
11666 static unsigned char *
11667 display_arm_attribute (unsigned char * p,
11668 const unsigned char * const end)
11669 {
11670 int tag;
11671 unsigned int len;
11672 int val;
11673 arm_attr_public_tag * attr;
11674 unsigned i;
11675 int type;
11676
11677 tag = read_uleb128 (p, &len, end);
11678 p += len;
11679 attr = NULL;
11680 for (i = 0; i < ARRAY_SIZE (arm_attr_public_tags); i++)
11681 {
11682 if (arm_attr_public_tags[i].tag == tag)
11683 {
11684 attr = &arm_attr_public_tags[i];
11685 break;
11686 }
11687 }
11688
11689 if (attr)
11690 {
11691 printf (" Tag_%s: ", attr->name);
11692 switch (attr->type)
11693 {
11694 case 0:
11695 switch (tag)
11696 {
11697 case 7: /* Tag_CPU_arch_profile. */
11698 val = read_uleb128 (p, &len, end);
11699 p += len;
11700 switch (val)
11701 {
11702 case 0: printf (_("None\n")); break;
11703 case 'A': printf (_("Application\n")); break;
11704 case 'R': printf (_("Realtime\n")); break;
11705 case 'M': printf (_("Microcontroller\n")); break;
11706 case 'S': printf (_("Application or Realtime\n")); break;
11707 default: printf ("??? (%d)\n", val); break;
11708 }
11709 break;
11710
11711 case 24: /* Tag_align_needed. */
11712 val = read_uleb128 (p, &len, end);
11713 p += len;
11714 switch (val)
11715 {
11716 case 0: printf (_("None\n")); break;
11717 case 1: printf (_("8-byte\n")); break;
11718 case 2: printf (_("4-byte\n")); break;
11719 case 3: printf ("??? 3\n"); break;
11720 default:
11721 if (val <= 12)
11722 printf (_("8-byte and up to %d-byte extended\n"),
11723 1 << val);
11724 else
11725 printf ("??? (%d)\n", val);
11726 break;
11727 }
11728 break;
11729
11730 case 25: /* Tag_align_preserved. */
11731 val = read_uleb128 (p, &len, end);
11732 p += len;
11733 switch (val)
11734 {
11735 case 0: printf (_("None\n")); break;
11736 case 1: printf (_("8-byte, except leaf SP\n")); break;
11737 case 2: printf (_("8-byte\n")); break;
11738 case 3: printf ("??? 3\n"); break;
11739 default:
11740 if (val <= 12)
11741 printf (_("8-byte and up to %d-byte extended\n"),
11742 1 << val);
11743 else
11744 printf ("??? (%d)\n", val);
11745 break;
11746 }
11747 break;
11748
11749 case 32: /* Tag_compatibility. */
11750 val = read_uleb128 (p, &len, end);
11751 p += len;
11752 printf (_("flag = %d, vendor = %s\n"), val, p);
11753 p += strlen ((char *) p) + 1;
11754 break;
11755
11756 case 64: /* Tag_nodefaults. */
11757 p++;
11758 printf (_("True\n"));
11759 break;
11760
11761 case 65: /* Tag_also_compatible_with. */
11762 val = read_uleb128 (p, &len, end);
11763 p += len;
11764 if (val == 6 /* Tag_CPU_arch. */)
11765 {
11766 val = read_uleb128 (p, &len, end);
11767 p += len;
11768 if ((unsigned int)val >= ARRAY_SIZE (arm_attr_tag_CPU_arch))
11769 printf ("??? (%d)\n", val);
11770 else
11771 printf ("%s\n", arm_attr_tag_CPU_arch[val]);
11772 }
11773 else
11774 printf ("???\n");
11775 while (*(p++) != '\0' /* NUL terminator. */);
11776 break;
11777
11778 default:
11779 abort ();
11780 }
11781 return p;
11782
11783 case 1:
11784 return display_tag_value (-1, p, end);
11785 case 2:
11786 return display_tag_value (0, p, end);
11787
11788 default:
11789 assert (attr->type & 0x80);
11790 val = read_uleb128 (p, &len, end);
11791 p += len;
11792 type = attr->type & 0x7f;
11793 if (val >= type)
11794 printf ("??? (%d)\n", val);
11795 else
11796 printf ("%s\n", attr->table[val]);
11797 return p;
11798 }
11799 }
11800
11801 return display_tag_value (tag, p, end);
11802 }
11803
11804 static unsigned char *
11805 display_gnu_attribute (unsigned char * p,
11806 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, int, const unsigned char * const),
11807 const unsigned char * const end)
11808 {
11809 int tag;
11810 unsigned int len;
11811 int val;
11812
11813 tag = read_uleb128 (p, &len, end);
11814 p += len;
11815
11816 /* Tag_compatibility is the only generic GNU attribute defined at
11817 present. */
11818 if (tag == 32)
11819 {
11820 val = read_uleb128 (p, &len, end);
11821 p += len;
11822 if (p == end)
11823 {
11824 printf (_("flag = %d, vendor = <corrupt>\n"), val);
11825 warn (_("corrupt vendor attribute\n"));
11826 }
11827 else
11828 {
11829 printf (_("flag = %d, vendor = %s\n"), val, p);
11830 p += strlen ((char *) p) + 1;
11831 }
11832 return p;
11833 }
11834
11835 if ((tag & 2) == 0 && display_proc_gnu_attribute)
11836 return display_proc_gnu_attribute (p, tag, end);
11837
11838 return display_tag_value (tag, p, end);
11839 }
11840
11841 static unsigned char *
11842 display_power_gnu_attribute (unsigned char * p,
11843 int tag,
11844 const unsigned char * const end)
11845 {
11846 unsigned int len;
11847 int val;
11848
11849 if (tag == Tag_GNU_Power_ABI_FP)
11850 {
11851 val = read_uleb128 (p, &len, end);
11852 p += len;
11853 printf (" Tag_GNU_Power_ABI_FP: ");
11854
11855 switch (val)
11856 {
11857 case 0:
11858 printf (_("Hard or soft float\n"));
11859 break;
11860 case 1:
11861 printf (_("Hard float\n"));
11862 break;
11863 case 2:
11864 printf (_("Soft float\n"));
11865 break;
11866 case 3:
11867 printf (_("Single-precision hard float\n"));
11868 break;
11869 default:
11870 printf ("??? (%d)\n", val);
11871 break;
11872 }
11873 return p;
11874 }
11875
11876 if (tag == Tag_GNU_Power_ABI_Vector)
11877 {
11878 val = read_uleb128 (p, &len, end);
11879 p += len;
11880 printf (" Tag_GNU_Power_ABI_Vector: ");
11881 switch (val)
11882 {
11883 case 0:
11884 printf (_("Any\n"));
11885 break;
11886 case 1:
11887 printf (_("Generic\n"));
11888 break;
11889 case 2:
11890 printf ("AltiVec\n");
11891 break;
11892 case 3:
11893 printf ("SPE\n");
11894 break;
11895 default:
11896 printf ("??? (%d)\n", val);
11897 break;
11898 }
11899 return p;
11900 }
11901
11902 if (tag == Tag_GNU_Power_ABI_Struct_Return)
11903 {
11904 if (p == end)
11905 {
11906 warn (_("corrupt Tag_GNU_Power_ABI_Struct_Return"));
11907 return p;
11908 }
11909
11910 val = read_uleb128 (p, &len, end);
11911 p += len;
11912 printf (" Tag_GNU_Power_ABI_Struct_Return: ");
11913 switch (val)
11914 {
11915 case 0:
11916 printf (_("Any\n"));
11917 break;
11918 case 1:
11919 printf ("r3/r4\n");
11920 break;
11921 case 2:
11922 printf (_("Memory\n"));
11923 break;
11924 default:
11925 printf ("??? (%d)\n", val);
11926 break;
11927 }
11928 return p;
11929 }
11930
11931 return display_tag_value (tag & 1, p, end);
11932 }
11933
11934 static void
11935 display_sparc_hwcaps (int mask)
11936 {
11937 if (mask)
11938 {
11939 int first = 1;
11940 if (mask & ELF_SPARC_HWCAP_MUL32)
11941 fputs ("mul32", stdout), first = 0;
11942 if (mask & ELF_SPARC_HWCAP_DIV32)
11943 printf ("%sdiv32", first ? "" : "|"), first = 0;
11944 if (mask & ELF_SPARC_HWCAP_FSMULD)
11945 printf ("%sfsmuld", first ? "" : "|"), first = 0;
11946 if (mask & ELF_SPARC_HWCAP_V8PLUS)
11947 printf ("%sv8plus", first ? "" : "|"), first = 0;
11948 if (mask & ELF_SPARC_HWCAP_POPC)
11949 printf ("%spopc", first ? "" : "|"), first = 0;
11950 if (mask & ELF_SPARC_HWCAP_VIS)
11951 printf ("%svis", first ? "" : "|"), first = 0;
11952 if (mask & ELF_SPARC_HWCAP_VIS2)
11953 printf ("%svis2", first ? "" : "|"), first = 0;
11954 if (mask & ELF_SPARC_HWCAP_ASI_BLK_INIT)
11955 printf ("%sASIBlkInit", first ? "" : "|"), first = 0;
11956 if (mask & ELF_SPARC_HWCAP_FMAF)
11957 printf ("%sfmaf", first ? "" : "|"), first = 0;
11958 if (mask & ELF_SPARC_HWCAP_VIS3)
11959 printf ("%svis3", first ? "" : "|"), first = 0;
11960 if (mask & ELF_SPARC_HWCAP_HPC)
11961 printf ("%shpc", first ? "" : "|"), first = 0;
11962 if (mask & ELF_SPARC_HWCAP_RANDOM)
11963 printf ("%srandom", first ? "" : "|"), first = 0;
11964 if (mask & ELF_SPARC_HWCAP_TRANS)
11965 printf ("%strans", first ? "" : "|"), first = 0;
11966 if (mask & ELF_SPARC_HWCAP_FJFMAU)
11967 printf ("%sfjfmau", first ? "" : "|"), first = 0;
11968 if (mask & ELF_SPARC_HWCAP_IMA)
11969 printf ("%sima", first ? "" : "|"), first = 0;
11970 if (mask & ELF_SPARC_HWCAP_ASI_CACHE_SPARING)
11971 printf ("%scspare", first ? "" : "|"), first = 0;
11972 }
11973 else
11974 fputc('0', stdout);
11975 fputc('\n', stdout);
11976 }
11977
11978 static unsigned char *
11979 display_sparc_gnu_attribute (unsigned char * p,
11980 int tag,
11981 const unsigned char * const end)
11982 {
11983 if (tag == Tag_GNU_Sparc_HWCAPS)
11984 {
11985 unsigned int len;
11986 int val;
11987
11988 val = read_uleb128 (p, &len, end);
11989 p += len;
11990 printf (" Tag_GNU_Sparc_HWCAPS: ");
11991 display_sparc_hwcaps (val);
11992 return p;
11993 }
11994
11995 return display_tag_value (tag, p, end);
11996 }
11997
11998 static unsigned char *
11999 display_mips_gnu_attribute (unsigned char * p,
12000 int tag,
12001 const unsigned char * const end)
12002 {
12003 if (tag == Tag_GNU_MIPS_ABI_FP)
12004 {
12005 unsigned int len;
12006 int val;
12007
12008 val = read_uleb128 (p, &len, end);
12009 p += len;
12010 printf (" Tag_GNU_MIPS_ABI_FP: ");
12011
12012 switch (val)
12013 {
12014 case Val_GNU_MIPS_ABI_FP_ANY:
12015 printf (_("Hard or soft float\n"));
12016 break;
12017 case Val_GNU_MIPS_ABI_FP_DOUBLE:
12018 printf (_("Hard float (double precision)\n"));
12019 break;
12020 case Val_GNU_MIPS_ABI_FP_SINGLE:
12021 printf (_("Hard float (single precision)\n"));
12022 break;
12023 case Val_GNU_MIPS_ABI_FP_SOFT:
12024 printf (_("Soft float\n"));
12025 break;
12026 case Val_GNU_MIPS_ABI_FP_64:
12027 printf (_("Hard float (MIPS32r2 64-bit FPU)\n"));
12028 break;
12029 default:
12030 printf ("??? (%d)\n", val);
12031 break;
12032 }
12033 return p;
12034 }
12035
12036 if (tag == Tag_GNU_MIPS_ABI_MSA)
12037 {
12038 unsigned int len;
12039 int val;
12040
12041 val = read_uleb128 (p, &len, end);
12042 p += len;
12043 printf (" Tag_GNU_MIPS_ABI_MSA: ");
12044
12045 switch (val)
12046 {
12047 case Val_GNU_MIPS_ABI_MSA_ANY:
12048 printf (_("Any MSA or not\n"));
12049 break;
12050 case Val_GNU_MIPS_ABI_MSA_128:
12051 printf (_("128-bit MSA\n"));
12052 break;
12053 default:
12054 printf ("??? (%d)\n", val);
12055 break;
12056 }
12057 return p;
12058 }
12059
12060 return display_tag_value (tag & 1, p, end);
12061 }
12062
12063 static unsigned char *
12064 display_tic6x_attribute (unsigned char * p,
12065 const unsigned char * const end)
12066 {
12067 int tag;
12068 unsigned int len;
12069 int val;
12070
12071 tag = read_uleb128 (p, &len, end);
12072 p += len;
12073
12074 switch (tag)
12075 {
12076 case Tag_ISA:
12077 val = read_uleb128 (p, &len, end);
12078 p += len;
12079 printf (" Tag_ISA: ");
12080
12081 switch (val)
12082 {
12083 case C6XABI_Tag_ISA_none:
12084 printf (_("None\n"));
12085 break;
12086 case C6XABI_Tag_ISA_C62X:
12087 printf ("C62x\n");
12088 break;
12089 case C6XABI_Tag_ISA_C67X:
12090 printf ("C67x\n");
12091 break;
12092 case C6XABI_Tag_ISA_C67XP:
12093 printf ("C67x+\n");
12094 break;
12095 case C6XABI_Tag_ISA_C64X:
12096 printf ("C64x\n");
12097 break;
12098 case C6XABI_Tag_ISA_C64XP:
12099 printf ("C64x+\n");
12100 break;
12101 case C6XABI_Tag_ISA_C674X:
12102 printf ("C674x\n");
12103 break;
12104 default:
12105 printf ("??? (%d)\n", val);
12106 break;
12107 }
12108 return p;
12109
12110 case Tag_ABI_wchar_t:
12111 val = read_uleb128 (p, &len, end);
12112 p += len;
12113 printf (" Tag_ABI_wchar_t: ");
12114 switch (val)
12115 {
12116 case 0:
12117 printf (_("Not used\n"));
12118 break;
12119 case 1:
12120 printf (_("2 bytes\n"));
12121 break;
12122 case 2:
12123 printf (_("4 bytes\n"));
12124 break;
12125 default:
12126 printf ("??? (%d)\n", val);
12127 break;
12128 }
12129 return p;
12130
12131 case Tag_ABI_stack_align_needed:
12132 val = read_uleb128 (p, &len, end);
12133 p += len;
12134 printf (" Tag_ABI_stack_align_needed: ");
12135 switch (val)
12136 {
12137 case 0:
12138 printf (_("8-byte\n"));
12139 break;
12140 case 1:
12141 printf (_("16-byte\n"));
12142 break;
12143 default:
12144 printf ("??? (%d)\n", val);
12145 break;
12146 }
12147 return p;
12148
12149 case Tag_ABI_stack_align_preserved:
12150 val = read_uleb128 (p, &len, end);
12151 p += len;
12152 printf (" Tag_ABI_stack_align_preserved: ");
12153 switch (val)
12154 {
12155 case 0:
12156 printf (_("8-byte\n"));
12157 break;
12158 case 1:
12159 printf (_("16-byte\n"));
12160 break;
12161 default:
12162 printf ("??? (%d)\n", val);
12163 break;
12164 }
12165 return p;
12166
12167 case Tag_ABI_DSBT:
12168 val = read_uleb128 (p, &len, end);
12169 p += len;
12170 printf (" Tag_ABI_DSBT: ");
12171 switch (val)
12172 {
12173 case 0:
12174 printf (_("DSBT addressing not used\n"));
12175 break;
12176 case 1:
12177 printf (_("DSBT addressing used\n"));
12178 break;
12179 default:
12180 printf ("??? (%d)\n", val);
12181 break;
12182 }
12183 return p;
12184
12185 case Tag_ABI_PID:
12186 val = read_uleb128 (p, &len, end);
12187 p += len;
12188 printf (" Tag_ABI_PID: ");
12189 switch (val)
12190 {
12191 case 0:
12192 printf (_("Data addressing position-dependent\n"));
12193 break;
12194 case 1:
12195 printf (_("Data addressing position-independent, GOT near DP\n"));
12196 break;
12197 case 2:
12198 printf (_("Data addressing position-independent, GOT far from DP\n"));
12199 break;
12200 default:
12201 printf ("??? (%d)\n", val);
12202 break;
12203 }
12204 return p;
12205
12206 case Tag_ABI_PIC:
12207 val = read_uleb128 (p, &len, end);
12208 p += len;
12209 printf (" Tag_ABI_PIC: ");
12210 switch (val)
12211 {
12212 case 0:
12213 printf (_("Code addressing position-dependent\n"));
12214 break;
12215 case 1:
12216 printf (_("Code addressing position-independent\n"));
12217 break;
12218 default:
12219 printf ("??? (%d)\n", val);
12220 break;
12221 }
12222 return p;
12223
12224 case Tag_ABI_array_object_alignment:
12225 val = read_uleb128 (p, &len, end);
12226 p += len;
12227 printf (" Tag_ABI_array_object_alignment: ");
12228 switch (val)
12229 {
12230 case 0:
12231 printf (_("8-byte\n"));
12232 break;
12233 case 1:
12234 printf (_("4-byte\n"));
12235 break;
12236 case 2:
12237 printf (_("16-byte\n"));
12238 break;
12239 default:
12240 printf ("??? (%d)\n", val);
12241 break;
12242 }
12243 return p;
12244
12245 case Tag_ABI_array_object_align_expected:
12246 val = read_uleb128 (p, &len, end);
12247 p += len;
12248 printf (" Tag_ABI_array_object_align_expected: ");
12249 switch (val)
12250 {
12251 case 0:
12252 printf (_("8-byte\n"));
12253 break;
12254 case 1:
12255 printf (_("4-byte\n"));
12256 break;
12257 case 2:
12258 printf (_("16-byte\n"));
12259 break;
12260 default:
12261 printf ("??? (%d)\n", val);
12262 break;
12263 }
12264 return p;
12265
12266 case Tag_ABI_compatibility:
12267 val = read_uleb128 (p, &len, end);
12268 p += len;
12269 printf (" Tag_ABI_compatibility: ");
12270 printf (_("flag = %d, vendor = %s\n"), val, p);
12271 p += strlen ((char *) p) + 1;
12272 return p;
12273
12274 case Tag_ABI_conformance:
12275 printf (" Tag_ABI_conformance: ");
12276 printf ("\"%s\"\n", p);
12277 p += strlen ((char *) p) + 1;
12278 return p;
12279 }
12280
12281 return display_tag_value (tag, p, end);
12282 }
12283
12284 static void
12285 display_raw_attribute (unsigned char * p, unsigned char * end)
12286 {
12287 unsigned long addr = 0;
12288 size_t bytes = end - p;
12289
12290 while (bytes)
12291 {
12292 int j;
12293 int k;
12294 int lbytes = (bytes > 16 ? 16 : bytes);
12295
12296 printf (" 0x%8.8lx ", addr);
12297
12298 for (j = 0; j < 16; j++)
12299 {
12300 if (j < lbytes)
12301 printf ("%2.2x", p[j]);
12302 else
12303 printf (" ");
12304
12305 if ((j & 3) == 3)
12306 printf (" ");
12307 }
12308
12309 for (j = 0; j < lbytes; j++)
12310 {
12311 k = p[j];
12312 if (k >= ' ' && k < 0x7f)
12313 printf ("%c", k);
12314 else
12315 printf (".");
12316 }
12317
12318 putchar ('\n');
12319
12320 p += lbytes;
12321 bytes -= lbytes;
12322 addr += lbytes;
12323 }
12324
12325 putchar ('\n');
12326 }
12327
12328 static unsigned char *
12329 display_msp430x_attribute (unsigned char * p,
12330 const unsigned char * const end)
12331 {
12332 unsigned int len;
12333 int val;
12334 int tag;
12335
12336 tag = read_uleb128 (p, & len, end);
12337 p += len;
12338
12339 switch (tag)
12340 {
12341 case OFBA_MSPABI_Tag_ISA:
12342 val = read_uleb128 (p, &len, end);
12343 p += len;
12344 printf (" Tag_ISA: ");
12345 switch (val)
12346 {
12347 case 0: printf (_("None\n")); break;
12348 case 1: printf (_("MSP430\n")); break;
12349 case 2: printf (_("MSP430X\n")); break;
12350 default: printf ("??? (%d)\n", val); break;
12351 }
12352 break;
12353
12354 case OFBA_MSPABI_Tag_Code_Model:
12355 val = read_uleb128 (p, &len, end);
12356 p += len;
12357 printf (" Tag_Code_Model: ");
12358 switch (val)
12359 {
12360 case 0: printf (_("None\n")); break;
12361 case 1: printf (_("Small\n")); break;
12362 case 2: printf (_("Large\n")); break;
12363 default: printf ("??? (%d)\n", val); break;
12364 }
12365 break;
12366
12367 case OFBA_MSPABI_Tag_Data_Model:
12368 val = read_uleb128 (p, &len, end);
12369 p += len;
12370 printf (" Tag_Data_Model: ");
12371 switch (val)
12372 {
12373 case 0: printf (_("None\n")); break;
12374 case 1: printf (_("Small\n")); break;
12375 case 2: printf (_("Large\n")); break;
12376 case 3: printf (_("Restricted Large\n")); break;
12377 default: printf ("??? (%d)\n", val); break;
12378 }
12379 break;
12380
12381 default:
12382 printf (_(" <unknown tag %d>: "), tag);
12383
12384 if (tag & 1)
12385 {
12386 printf ("\"%s\"\n", p);
12387 p += strlen ((char *) p) + 1;
12388 }
12389 else
12390 {
12391 val = read_uleb128 (p, &len, end);
12392 p += len;
12393 printf ("%d (0x%x)\n", val, val);
12394 }
12395 break;
12396 }
12397
12398 return p;
12399 }
12400
12401 static int
12402 process_attributes (FILE * file,
12403 const char * public_name,
12404 unsigned int proc_type,
12405 unsigned char * (* display_pub_attribute) (unsigned char *, const unsigned char * const),
12406 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, int, const unsigned char * const))
12407 {
12408 Elf_Internal_Shdr * sect;
12409 unsigned char * contents;
12410 unsigned char * p;
12411 unsigned char * end;
12412 bfd_vma section_len;
12413 bfd_vma len;
12414 unsigned i;
12415
12416 /* Find the section header so that we get the size. */
12417 for (i = 0, sect = section_headers;
12418 i < elf_header.e_shnum;
12419 i++, sect++)
12420 {
12421 if (sect->sh_type != proc_type && sect->sh_type != SHT_GNU_ATTRIBUTES)
12422 continue;
12423
12424 contents = (unsigned char *) get_data (NULL, file, sect->sh_offset, 1,
12425 sect->sh_size, _("attributes"));
12426 if (contents == NULL)
12427 continue;
12428
12429 p = contents;
12430 if (*p == 'A')
12431 {
12432 len = sect->sh_size - 1;
12433 p++;
12434
12435 while (len > 0)
12436 {
12437 unsigned int namelen;
12438 bfd_boolean public_section;
12439 bfd_boolean gnu_section;
12440
12441 section_len = byte_get (p, 4);
12442 p += 4;
12443
12444 if (section_len > len)
12445 {
12446 error (_("Length of attribute (%u) greater than length of section (%u)\n"),
12447 (unsigned) section_len, (unsigned) len);
12448 section_len = len;
12449 }
12450
12451 len -= section_len;
12452 section_len -= 4;
12453
12454 namelen = strnlen ((char *) p, section_len) + 1;
12455 if (namelen == 0 || namelen >= section_len)
12456 {
12457 error (_("Corrupt attribute section name\n"));
12458 break;
12459 }
12460
12461 printf (_("Attribute Section: %s\n"), p);
12462
12463 if (public_name && streq ((char *) p, public_name))
12464 public_section = TRUE;
12465 else
12466 public_section = FALSE;
12467
12468 if (streq ((char *) p, "gnu"))
12469 gnu_section = TRUE;
12470 else
12471 gnu_section = FALSE;
12472
12473 p += namelen;
12474 section_len -= namelen;
12475 while (section_len > 0)
12476 {
12477 int tag = *(p++);
12478 int val;
12479 bfd_vma size;
12480
12481 size = byte_get (p, 4);
12482 if (size > section_len)
12483 {
12484 error (_("Bad subsection length (%u > %u)\n"),
12485 (unsigned) size, (unsigned) section_len);
12486 size = section_len;
12487 }
12488
12489 section_len -= size;
12490 end = p + size - 1;
12491 p += 4;
12492
12493 switch (tag)
12494 {
12495 case 1:
12496 printf (_("File Attributes\n"));
12497 break;
12498 case 2:
12499 printf (_("Section Attributes:"));
12500 goto do_numlist;
12501 case 3:
12502 printf (_("Symbol Attributes:"));
12503 do_numlist:
12504 for (;;)
12505 {
12506 unsigned int j;
12507
12508 val = read_uleb128 (p, &j, end);
12509 p += j;
12510 if (val == 0)
12511 break;
12512 printf (" %d", val);
12513 }
12514 printf ("\n");
12515 break;
12516 default:
12517 printf (_("Unknown tag: %d\n"), tag);
12518 public_section = FALSE;
12519 break;
12520 }
12521
12522 if (public_section)
12523 {
12524 while (p < end)
12525 p = display_pub_attribute (p, end);
12526 }
12527 else if (gnu_section)
12528 {
12529 while (p < end)
12530 p = display_gnu_attribute (p,
12531 display_proc_gnu_attribute,
12532 end);
12533 }
12534 else
12535 {
12536 printf (_(" Unknown section contexts\n"));
12537 display_raw_attribute (p, end);
12538 p = end;
12539 }
12540 }
12541 }
12542 }
12543 else
12544 printf (_("Unknown format '%c' (%d)\n"), *p, *p);
12545
12546 free (contents);
12547 }
12548 return 1;
12549 }
12550
12551 static int
12552 process_arm_specific (FILE * file)
12553 {
12554 return process_attributes (file, "aeabi", SHT_ARM_ATTRIBUTES,
12555 display_arm_attribute, NULL);
12556 }
12557
12558 static int
12559 process_power_specific (FILE * file)
12560 {
12561 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
12562 display_power_gnu_attribute);
12563 }
12564
12565 static int
12566 process_sparc_specific (FILE * file)
12567 {
12568 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
12569 display_sparc_gnu_attribute);
12570 }
12571
12572 static int
12573 process_tic6x_specific (FILE * file)
12574 {
12575 return process_attributes (file, "c6xabi", SHT_C6000_ATTRIBUTES,
12576 display_tic6x_attribute, NULL);
12577 }
12578
12579 static int
12580 process_msp430x_specific (FILE * file)
12581 {
12582 return process_attributes (file, "mspabi", SHT_MSP430_ATTRIBUTES,
12583 display_msp430x_attribute, NULL);
12584 }
12585
12586 /* DATA points to the contents of a MIPS GOT that starts at VMA PLTGOT.
12587 Print the Address, Access and Initial fields of an entry at VMA ADDR
12588 and return the VMA of the next entry. */
12589
12590 static bfd_vma
12591 print_mips_got_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
12592 {
12593 printf (" ");
12594 print_vma (addr, LONG_HEX);
12595 printf (" ");
12596 if (addr < pltgot + 0xfff0)
12597 printf ("%6d(gp)", (int) (addr - pltgot - 0x7ff0));
12598 else
12599 printf ("%10s", "");
12600 printf (" ");
12601 if (data == NULL)
12602 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
12603 else
12604 {
12605 bfd_vma entry;
12606
12607 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
12608 print_vma (entry, LONG_HEX);
12609 }
12610 return addr + (is_32bit_elf ? 4 : 8);
12611 }
12612
12613 /* DATA points to the contents of a MIPS PLT GOT that starts at VMA
12614 PLTGOT. Print the Address and Initial fields of an entry at VMA
12615 ADDR and return the VMA of the next entry. */
12616
12617 static bfd_vma
12618 print_mips_pltgot_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
12619 {
12620 printf (" ");
12621 print_vma (addr, LONG_HEX);
12622 printf (" ");
12623 if (data == NULL)
12624 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
12625 else
12626 {
12627 bfd_vma entry;
12628
12629 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
12630 print_vma (entry, LONG_HEX);
12631 }
12632 return addr + (is_32bit_elf ? 4 : 8);
12633 }
12634
12635 static int
12636 process_mips_specific (FILE * file)
12637 {
12638 Elf_Internal_Dyn * entry;
12639 size_t liblist_offset = 0;
12640 size_t liblistno = 0;
12641 size_t conflictsno = 0;
12642 size_t options_offset = 0;
12643 size_t conflicts_offset = 0;
12644 size_t pltrelsz = 0;
12645 size_t pltrel = 0;
12646 bfd_vma pltgot = 0;
12647 bfd_vma mips_pltgot = 0;
12648 bfd_vma jmprel = 0;
12649 bfd_vma local_gotno = 0;
12650 bfd_vma gotsym = 0;
12651 bfd_vma symtabno = 0;
12652
12653 process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
12654 display_mips_gnu_attribute);
12655
12656 /* We have a lot of special sections. Thanks SGI! */
12657 if (dynamic_section == NULL)
12658 /* No information available. */
12659 return 0;
12660
12661 for (entry = dynamic_section; entry->d_tag != DT_NULL; ++entry)
12662 switch (entry->d_tag)
12663 {
12664 case DT_MIPS_LIBLIST:
12665 liblist_offset
12666 = offset_from_vma (file, entry->d_un.d_val,
12667 liblistno * sizeof (Elf32_External_Lib));
12668 break;
12669 case DT_MIPS_LIBLISTNO:
12670 liblistno = entry->d_un.d_val;
12671 break;
12672 case DT_MIPS_OPTIONS:
12673 options_offset = offset_from_vma (file, entry->d_un.d_val, 0);
12674 break;
12675 case DT_MIPS_CONFLICT:
12676 conflicts_offset
12677 = offset_from_vma (file, entry->d_un.d_val,
12678 conflictsno * sizeof (Elf32_External_Conflict));
12679 break;
12680 case DT_MIPS_CONFLICTNO:
12681 conflictsno = entry->d_un.d_val;
12682 break;
12683 case DT_PLTGOT:
12684 pltgot = entry->d_un.d_ptr;
12685 break;
12686 case DT_MIPS_LOCAL_GOTNO:
12687 local_gotno = entry->d_un.d_val;
12688 break;
12689 case DT_MIPS_GOTSYM:
12690 gotsym = entry->d_un.d_val;
12691 break;
12692 case DT_MIPS_SYMTABNO:
12693 symtabno = entry->d_un.d_val;
12694 break;
12695 case DT_MIPS_PLTGOT:
12696 mips_pltgot = entry->d_un.d_ptr;
12697 break;
12698 case DT_PLTREL:
12699 pltrel = entry->d_un.d_val;
12700 break;
12701 case DT_PLTRELSZ:
12702 pltrelsz = entry->d_un.d_val;
12703 break;
12704 case DT_JMPREL:
12705 jmprel = entry->d_un.d_ptr;
12706 break;
12707 default:
12708 break;
12709 }
12710
12711 if (liblist_offset != 0 && liblistno != 0 && do_dynamic)
12712 {
12713 Elf32_External_Lib * elib;
12714 size_t cnt;
12715
12716 elib = (Elf32_External_Lib *) get_data (NULL, file, liblist_offset,
12717 liblistno,
12718 sizeof (Elf32_External_Lib),
12719 _("liblist section data"));
12720 if (elib)
12721 {
12722 printf (_("\nSection '.liblist' contains %lu entries:\n"),
12723 (unsigned long) liblistno);
12724 fputs (_(" Library Time Stamp Checksum Version Flags\n"),
12725 stdout);
12726
12727 for (cnt = 0; cnt < liblistno; ++cnt)
12728 {
12729 Elf32_Lib liblist;
12730 time_t atime;
12731 char timebuf[20];
12732 struct tm * tmp;
12733
12734 liblist.l_name = BYTE_GET (elib[cnt].l_name);
12735 atime = BYTE_GET (elib[cnt].l_time_stamp);
12736 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
12737 liblist.l_version = BYTE_GET (elib[cnt].l_version);
12738 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
12739
12740 tmp = gmtime (&atime);
12741 snprintf (timebuf, sizeof (timebuf),
12742 "%04u-%02u-%02uT%02u:%02u:%02u",
12743 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
12744 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
12745
12746 printf ("%3lu: ", (unsigned long) cnt);
12747 if (VALID_DYNAMIC_NAME (liblist.l_name))
12748 print_symbol (20, GET_DYNAMIC_NAME (liblist.l_name));
12749 else
12750 printf (_("<corrupt: %9ld>"), liblist.l_name);
12751 printf (" %s %#10lx %-7ld", timebuf, liblist.l_checksum,
12752 liblist.l_version);
12753
12754 if (liblist.l_flags == 0)
12755 puts (_(" NONE"));
12756 else
12757 {
12758 static const struct
12759 {
12760 const char * name;
12761 int bit;
12762 }
12763 l_flags_vals[] =
12764 {
12765 { " EXACT_MATCH", LL_EXACT_MATCH },
12766 { " IGNORE_INT_VER", LL_IGNORE_INT_VER },
12767 { " REQUIRE_MINOR", LL_REQUIRE_MINOR },
12768 { " EXPORTS", LL_EXPORTS },
12769 { " DELAY_LOAD", LL_DELAY_LOAD },
12770 { " DELTA", LL_DELTA }
12771 };
12772 int flags = liblist.l_flags;
12773 size_t fcnt;
12774
12775 for (fcnt = 0; fcnt < ARRAY_SIZE (l_flags_vals); ++fcnt)
12776 if ((flags & l_flags_vals[fcnt].bit) != 0)
12777 {
12778 fputs (l_flags_vals[fcnt].name, stdout);
12779 flags ^= l_flags_vals[fcnt].bit;
12780 }
12781 if (flags != 0)
12782 printf (" %#x", (unsigned int) flags);
12783
12784 puts ("");
12785 }
12786 }
12787
12788 free (elib);
12789 }
12790 }
12791
12792 if (options_offset != 0)
12793 {
12794 Elf_External_Options * eopt;
12795 Elf_Internal_Shdr * sect = section_headers;
12796 Elf_Internal_Options * iopt;
12797 Elf_Internal_Options * option;
12798 size_t offset;
12799 int cnt;
12800
12801 /* Find the section header so that we get the size. */
12802 while (sect->sh_type != SHT_MIPS_OPTIONS)
12803 ++sect;
12804
12805 eopt = (Elf_External_Options *) get_data (NULL, file, options_offset, 1,
12806 sect->sh_size, _("options"));
12807 if (eopt)
12808 {
12809 iopt = (Elf_Internal_Options *)
12810 cmalloc ((sect->sh_size / sizeof (eopt)), sizeof (* iopt));
12811 if (iopt == NULL)
12812 {
12813 error (_("Out of memory\n"));
12814 return 0;
12815 }
12816
12817 offset = cnt = 0;
12818 option = iopt;
12819
12820 while (offset < sect->sh_size)
12821 {
12822 Elf_External_Options * eoption;
12823
12824 eoption = (Elf_External_Options *) ((char *) eopt + offset);
12825
12826 option->kind = BYTE_GET (eoption->kind);
12827 option->size = BYTE_GET (eoption->size);
12828 option->section = BYTE_GET (eoption->section);
12829 option->info = BYTE_GET (eoption->info);
12830
12831 offset += option->size;
12832
12833 ++option;
12834 ++cnt;
12835 }
12836
12837 printf (_("\nSection '%s' contains %d entries:\n"),
12838 SECTION_NAME (sect), cnt);
12839
12840 option = iopt;
12841
12842 while (cnt-- > 0)
12843 {
12844 size_t len;
12845
12846 switch (option->kind)
12847 {
12848 case ODK_NULL:
12849 /* This shouldn't happen. */
12850 printf (" NULL %d %lx", option->section, option->info);
12851 break;
12852 case ODK_REGINFO:
12853 printf (" REGINFO ");
12854 if (elf_header.e_machine == EM_MIPS)
12855 {
12856 /* 32bit form. */
12857 Elf32_External_RegInfo * ereg;
12858 Elf32_RegInfo reginfo;
12859
12860 ereg = (Elf32_External_RegInfo *) (option + 1);
12861 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
12862 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
12863 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
12864 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
12865 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
12866 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
12867
12868 printf ("GPR %08lx GP 0x%lx\n",
12869 reginfo.ri_gprmask,
12870 (unsigned long) reginfo.ri_gp_value);
12871 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
12872 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
12873 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
12874 }
12875 else
12876 {
12877 /* 64 bit form. */
12878 Elf64_External_RegInfo * ereg;
12879 Elf64_Internal_RegInfo reginfo;
12880
12881 ereg = (Elf64_External_RegInfo *) (option + 1);
12882 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
12883 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
12884 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
12885 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
12886 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
12887 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
12888
12889 printf ("GPR %08lx GP 0x",
12890 reginfo.ri_gprmask);
12891 printf_vma (reginfo.ri_gp_value);
12892 printf ("\n");
12893
12894 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
12895 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
12896 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
12897 }
12898 ++option;
12899 continue;
12900 case ODK_EXCEPTIONS:
12901 fputs (" EXCEPTIONS fpe_min(", stdout);
12902 process_mips_fpe_exception (option->info & OEX_FPU_MIN);
12903 fputs (") fpe_max(", stdout);
12904 process_mips_fpe_exception ((option->info & OEX_FPU_MAX) >> 8);
12905 fputs (")", stdout);
12906
12907 if (option->info & OEX_PAGE0)
12908 fputs (" PAGE0", stdout);
12909 if (option->info & OEX_SMM)
12910 fputs (" SMM", stdout);
12911 if (option->info & OEX_FPDBUG)
12912 fputs (" FPDBUG", stdout);
12913 if (option->info & OEX_DISMISS)
12914 fputs (" DISMISS", stdout);
12915 break;
12916 case ODK_PAD:
12917 fputs (" PAD ", stdout);
12918 if (option->info & OPAD_PREFIX)
12919 fputs (" PREFIX", stdout);
12920 if (option->info & OPAD_POSTFIX)
12921 fputs (" POSTFIX", stdout);
12922 if (option->info & OPAD_SYMBOL)
12923 fputs (" SYMBOL", stdout);
12924 break;
12925 case ODK_HWPATCH:
12926 fputs (" HWPATCH ", stdout);
12927 if (option->info & OHW_R4KEOP)
12928 fputs (" R4KEOP", stdout);
12929 if (option->info & OHW_R8KPFETCH)
12930 fputs (" R8KPFETCH", stdout);
12931 if (option->info & OHW_R5KEOP)
12932 fputs (" R5KEOP", stdout);
12933 if (option->info & OHW_R5KCVTL)
12934 fputs (" R5KCVTL", stdout);
12935 break;
12936 case ODK_FILL:
12937 fputs (" FILL ", stdout);
12938 /* XXX Print content of info word? */
12939 break;
12940 case ODK_TAGS:
12941 fputs (" TAGS ", stdout);
12942 /* XXX Print content of info word? */
12943 break;
12944 case ODK_HWAND:
12945 fputs (" HWAND ", stdout);
12946 if (option->info & OHWA0_R4KEOP_CHECKED)
12947 fputs (" R4KEOP_CHECKED", stdout);
12948 if (option->info & OHWA0_R4KEOP_CLEAN)
12949 fputs (" R4KEOP_CLEAN", stdout);
12950 break;
12951 case ODK_HWOR:
12952 fputs (" HWOR ", stdout);
12953 if (option->info & OHWA0_R4KEOP_CHECKED)
12954 fputs (" R4KEOP_CHECKED", stdout);
12955 if (option->info & OHWA0_R4KEOP_CLEAN)
12956 fputs (" R4KEOP_CLEAN", stdout);
12957 break;
12958 case ODK_GP_GROUP:
12959 printf (" GP_GROUP %#06lx self-contained %#06lx",
12960 option->info & OGP_GROUP,
12961 (option->info & OGP_SELF) >> 16);
12962 break;
12963 case ODK_IDENT:
12964 printf (" IDENT %#06lx self-contained %#06lx",
12965 option->info & OGP_GROUP,
12966 (option->info & OGP_SELF) >> 16);
12967 break;
12968 default:
12969 /* This shouldn't happen. */
12970 printf (" %3d ??? %d %lx",
12971 option->kind, option->section, option->info);
12972 break;
12973 }
12974
12975 len = sizeof (* eopt);
12976 while (len < option->size)
12977 if (((char *) option)[len] >= ' '
12978 && ((char *) option)[len] < 0x7f)
12979 printf ("%c", ((char *) option)[len++]);
12980 else
12981 printf ("\\%03o", ((char *) option)[len++]);
12982
12983 fputs ("\n", stdout);
12984 ++option;
12985 }
12986
12987 free (eopt);
12988 }
12989 }
12990
12991 if (conflicts_offset != 0 && conflictsno != 0)
12992 {
12993 Elf32_Conflict * iconf;
12994 size_t cnt;
12995
12996 if (dynamic_symbols == NULL)
12997 {
12998 error (_("conflict list found without a dynamic symbol table\n"));
12999 return 0;
13000 }
13001
13002 iconf = (Elf32_Conflict *) cmalloc (conflictsno, sizeof (* iconf));
13003 if (iconf == NULL)
13004 {
13005 error (_("Out of memory\n"));
13006 return 0;
13007 }
13008
13009 if (is_32bit_elf)
13010 {
13011 Elf32_External_Conflict * econf32;
13012
13013 econf32 = (Elf32_External_Conflict *)
13014 get_data (NULL, file, conflicts_offset, conflictsno,
13015 sizeof (* econf32), _("conflict"));
13016 if (!econf32)
13017 return 0;
13018
13019 for (cnt = 0; cnt < conflictsno; ++cnt)
13020 iconf[cnt] = BYTE_GET (econf32[cnt]);
13021
13022 free (econf32);
13023 }
13024 else
13025 {
13026 Elf64_External_Conflict * econf64;
13027
13028 econf64 = (Elf64_External_Conflict *)
13029 get_data (NULL, file, conflicts_offset, conflictsno,
13030 sizeof (* econf64), _("conflict"));
13031 if (!econf64)
13032 return 0;
13033
13034 for (cnt = 0; cnt < conflictsno; ++cnt)
13035 iconf[cnt] = BYTE_GET (econf64[cnt]);
13036
13037 free (econf64);
13038 }
13039
13040 printf (_("\nSection '.conflict' contains %lu entries:\n"),
13041 (unsigned long) conflictsno);
13042 puts (_(" Num: Index Value Name"));
13043
13044 for (cnt = 0; cnt < conflictsno; ++cnt)
13045 {
13046 Elf_Internal_Sym * psym = & dynamic_symbols[iconf[cnt]];
13047
13048 printf ("%5lu: %8lu ", (unsigned long) cnt, iconf[cnt]);
13049 print_vma (psym->st_value, FULL_HEX);
13050 putchar (' ');
13051 if (VALID_DYNAMIC_NAME (psym->st_name))
13052 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
13053 else
13054 printf (_("<corrupt: %14ld>"), psym->st_name);
13055 putchar ('\n');
13056 }
13057
13058 free (iconf);
13059 }
13060
13061 if (pltgot != 0 && local_gotno != 0)
13062 {
13063 bfd_vma ent, local_end, global_end;
13064 size_t i, offset;
13065 unsigned char * data;
13066 int addr_size;
13067
13068 ent = pltgot;
13069 addr_size = (is_32bit_elf ? 4 : 8);
13070 local_end = pltgot + local_gotno * addr_size;
13071 global_end = local_end + (symtabno - gotsym) * addr_size;
13072
13073 offset = offset_from_vma (file, pltgot, global_end - pltgot);
13074 data = (unsigned char *) get_data (NULL, file, offset,
13075 global_end - pltgot, 1,
13076 _("Global Offset Table data"));
13077 if (data == NULL)
13078 return 0;
13079
13080 printf (_("\nPrimary GOT:\n"));
13081 printf (_(" Canonical gp value: "));
13082 print_vma (pltgot + 0x7ff0, LONG_HEX);
13083 printf ("\n\n");
13084
13085 printf (_(" Reserved entries:\n"));
13086 printf (_(" %*s %10s %*s Purpose\n"),
13087 addr_size * 2, _("Address"), _("Access"),
13088 addr_size * 2, _("Initial"));
13089 ent = print_mips_got_entry (data, pltgot, ent);
13090 printf (_(" Lazy resolver\n"));
13091 if (data
13092 && (byte_get (data + ent - pltgot, addr_size)
13093 >> (addr_size * 8 - 1)) != 0)
13094 {
13095 ent = print_mips_got_entry (data, pltgot, ent);
13096 printf (_(" Module pointer (GNU extension)\n"));
13097 }
13098 printf ("\n");
13099
13100 if (ent < local_end)
13101 {
13102 printf (_(" Local entries:\n"));
13103 printf (" %*s %10s %*s\n",
13104 addr_size * 2, _("Address"), _("Access"),
13105 addr_size * 2, _("Initial"));
13106 while (ent < local_end)
13107 {
13108 ent = print_mips_got_entry (data, pltgot, ent);
13109 printf ("\n");
13110 }
13111 printf ("\n");
13112 }
13113
13114 if (gotsym < symtabno)
13115 {
13116 int sym_width;
13117
13118 printf (_(" Global entries:\n"));
13119 printf (" %*s %10s %*s %*s %-7s %3s %s\n",
13120 addr_size * 2, _("Address"),
13121 _("Access"),
13122 addr_size * 2, _("Initial"),
13123 addr_size * 2, _("Sym.Val."),
13124 _("Type"),
13125 /* Note for translators: "Ndx" = abbreviated form of "Index". */
13126 _("Ndx"), _("Name"));
13127
13128 sym_width = (is_32bit_elf ? 80 : 160) - 28 - addr_size * 6 - 1;
13129 for (i = gotsym; i < symtabno; i++)
13130 {
13131 Elf_Internal_Sym * psym;
13132
13133 psym = dynamic_symbols + i;
13134 ent = print_mips_got_entry (data, pltgot, ent);
13135 printf (" ");
13136 print_vma (psym->st_value, LONG_HEX);
13137 printf (" %-7s %3s ",
13138 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
13139 get_symbol_index_type (psym->st_shndx));
13140 if (VALID_DYNAMIC_NAME (psym->st_name))
13141 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
13142 else
13143 printf (_("<corrupt: %14ld>"), psym->st_name);
13144 printf ("\n");
13145 }
13146 printf ("\n");
13147 }
13148
13149 if (data)
13150 free (data);
13151 }
13152
13153 if (mips_pltgot != 0 && jmprel != 0 && pltrel != 0 && pltrelsz != 0)
13154 {
13155 bfd_vma ent, end;
13156 size_t offset, rel_offset;
13157 unsigned long count, i;
13158 unsigned char * data;
13159 int addr_size, sym_width;
13160 Elf_Internal_Rela * rels;
13161
13162 rel_offset = offset_from_vma (file, jmprel, pltrelsz);
13163 if (pltrel == DT_RELA)
13164 {
13165 if (!slurp_rela_relocs (file, rel_offset, pltrelsz, &rels, &count))
13166 return 0;
13167 }
13168 else
13169 {
13170 if (!slurp_rel_relocs (file, rel_offset, pltrelsz, &rels, &count))
13171 return 0;
13172 }
13173
13174 ent = mips_pltgot;
13175 addr_size = (is_32bit_elf ? 4 : 8);
13176 end = mips_pltgot + (2 + count) * addr_size;
13177
13178 offset = offset_from_vma (file, mips_pltgot, end - mips_pltgot);
13179 data = (unsigned char *) get_data (NULL, file, offset, end - mips_pltgot,
13180 1, _("Procedure Linkage Table data"));
13181 if (data == NULL)
13182 return 0;
13183
13184 printf ("\nPLT GOT:\n\n");
13185 printf (_(" Reserved entries:\n"));
13186 printf (_(" %*s %*s Purpose\n"),
13187 addr_size * 2, _("Address"), addr_size * 2, _("Initial"));
13188 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
13189 printf (_(" PLT lazy resolver\n"));
13190 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
13191 printf (_(" Module pointer\n"));
13192 printf ("\n");
13193
13194 printf (_(" Entries:\n"));
13195 printf (" %*s %*s %*s %-7s %3s %s\n",
13196 addr_size * 2, _("Address"),
13197 addr_size * 2, _("Initial"),
13198 addr_size * 2, _("Sym.Val."), _("Type"), _("Ndx"), _("Name"));
13199 sym_width = (is_32bit_elf ? 80 : 160) - 17 - addr_size * 6 - 1;
13200 for (i = 0; i < count; i++)
13201 {
13202 Elf_Internal_Sym * psym;
13203
13204 psym = dynamic_symbols + get_reloc_symindex (rels[i].r_info);
13205 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
13206 printf (" ");
13207 print_vma (psym->st_value, LONG_HEX);
13208 printf (" %-7s %3s ",
13209 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
13210 get_symbol_index_type (psym->st_shndx));
13211 if (VALID_DYNAMIC_NAME (psym->st_name))
13212 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
13213 else
13214 printf (_("<corrupt: %14ld>"), psym->st_name);
13215 printf ("\n");
13216 }
13217 printf ("\n");
13218
13219 if (data)
13220 free (data);
13221 free (rels);
13222 }
13223
13224 return 1;
13225 }
13226
13227 static int
13228 process_nds32_specific (FILE * file)
13229 {
13230 Elf_Internal_Shdr *sect = NULL;
13231
13232 sect = find_section (".nds32_e_flags");
13233 if (sect != NULL)
13234 {
13235 unsigned int *flag;
13236
13237 printf ("\nNDS32 elf flags section:\n");
13238 flag = get_data (NULL, file, sect->sh_offset, 1,
13239 sect->sh_size, _("NDS32 elf flags section"));
13240
13241 switch ((*flag) & 0x3)
13242 {
13243 case 0:
13244 printf ("(VEC_SIZE):\tNo entry.\n");
13245 break;
13246 case 1:
13247 printf ("(VEC_SIZE):\t4 bytes\n");
13248 break;
13249 case 2:
13250 printf ("(VEC_SIZE):\t16 bytes\n");
13251 break;
13252 case 3:
13253 printf ("(VEC_SIZE):\treserved\n");
13254 break;
13255 }
13256 }
13257
13258 return TRUE;
13259 }
13260
13261 static int
13262 process_gnu_liblist (FILE * file)
13263 {
13264 Elf_Internal_Shdr * section;
13265 Elf_Internal_Shdr * string_sec;
13266 Elf32_External_Lib * elib;
13267 char * strtab;
13268 size_t strtab_size;
13269 size_t cnt;
13270 unsigned i;
13271
13272 if (! do_arch)
13273 return 0;
13274
13275 for (i = 0, section = section_headers;
13276 i < elf_header.e_shnum;
13277 i++, section++)
13278 {
13279 switch (section->sh_type)
13280 {
13281 case SHT_GNU_LIBLIST:
13282 if (section->sh_link >= elf_header.e_shnum)
13283 break;
13284
13285 elib = (Elf32_External_Lib *)
13286 get_data (NULL, file, section->sh_offset, 1, section->sh_size,
13287 _("liblist section data"));
13288
13289 if (elib == NULL)
13290 break;
13291 string_sec = section_headers + section->sh_link;
13292
13293 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
13294 string_sec->sh_size,
13295 _("liblist string table"));
13296 if (strtab == NULL
13297 || section->sh_entsize != sizeof (Elf32_External_Lib))
13298 {
13299 free (elib);
13300 free (strtab);
13301 break;
13302 }
13303 strtab_size = string_sec->sh_size;
13304
13305 printf (_("\nLibrary list section '%s' contains %lu entries:\n"),
13306 SECTION_NAME (section),
13307 (unsigned long) (section->sh_size / sizeof (Elf32_External_Lib)));
13308
13309 puts (_(" Library Time Stamp Checksum Version Flags"));
13310
13311 for (cnt = 0; cnt < section->sh_size / sizeof (Elf32_External_Lib);
13312 ++cnt)
13313 {
13314 Elf32_Lib liblist;
13315 time_t atime;
13316 char timebuf[20];
13317 struct tm * tmp;
13318
13319 liblist.l_name = BYTE_GET (elib[cnt].l_name);
13320 atime = BYTE_GET (elib[cnt].l_time_stamp);
13321 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
13322 liblist.l_version = BYTE_GET (elib[cnt].l_version);
13323 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
13324
13325 tmp = gmtime (&atime);
13326 snprintf (timebuf, sizeof (timebuf),
13327 "%04u-%02u-%02uT%02u:%02u:%02u",
13328 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
13329 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
13330
13331 printf ("%3lu: ", (unsigned long) cnt);
13332 if (do_wide)
13333 printf ("%-20s", liblist.l_name < strtab_size
13334 ? strtab + liblist.l_name : _("<corrupt>"));
13335 else
13336 printf ("%-20.20s", liblist.l_name < strtab_size
13337 ? strtab + liblist.l_name : _("<corrupt>"));
13338 printf (" %s %#010lx %-7ld %-7ld\n", timebuf, liblist.l_checksum,
13339 liblist.l_version, liblist.l_flags);
13340 }
13341
13342 free (elib);
13343 free (strtab);
13344 }
13345 }
13346
13347 return 1;
13348 }
13349
13350 static const char *
13351 get_note_type (unsigned e_type)
13352 {
13353 static char buff[64];
13354
13355 if (elf_header.e_type == ET_CORE)
13356 switch (e_type)
13357 {
13358 case NT_AUXV:
13359 return _("NT_AUXV (auxiliary vector)");
13360 case NT_PRSTATUS:
13361 return _("NT_PRSTATUS (prstatus structure)");
13362 case NT_FPREGSET:
13363 return _("NT_FPREGSET (floating point registers)");
13364 case NT_PRPSINFO:
13365 return _("NT_PRPSINFO (prpsinfo structure)");
13366 case NT_TASKSTRUCT:
13367 return _("NT_TASKSTRUCT (task structure)");
13368 case NT_PRXFPREG:
13369 return _("NT_PRXFPREG (user_xfpregs structure)");
13370 case NT_PPC_VMX:
13371 return _("NT_PPC_VMX (ppc Altivec registers)");
13372 case NT_PPC_VSX:
13373 return _("NT_PPC_VSX (ppc VSX registers)");
13374 case NT_386_TLS:
13375 return _("NT_386_TLS (x86 TLS information)");
13376 case NT_386_IOPERM:
13377 return _("NT_386_IOPERM (x86 I/O permissions)");
13378 case NT_X86_XSTATE:
13379 return _("NT_X86_XSTATE (x86 XSAVE extended state)");
13380 case NT_S390_HIGH_GPRS:
13381 return _("NT_S390_HIGH_GPRS (s390 upper register halves)");
13382 case NT_S390_TIMER:
13383 return _("NT_S390_TIMER (s390 timer register)");
13384 case NT_S390_TODCMP:
13385 return _("NT_S390_TODCMP (s390 TOD comparator register)");
13386 case NT_S390_TODPREG:
13387 return _("NT_S390_TODPREG (s390 TOD programmable register)");
13388 case NT_S390_CTRS:
13389 return _("NT_S390_CTRS (s390 control registers)");
13390 case NT_S390_PREFIX:
13391 return _("NT_S390_PREFIX (s390 prefix register)");
13392 case NT_S390_LAST_BREAK:
13393 return _("NT_S390_LAST_BREAK (s390 last breaking event address)");
13394 case NT_S390_SYSTEM_CALL:
13395 return _("NT_S390_SYSTEM_CALL (s390 system call restart data)");
13396 case NT_S390_TDB:
13397 return _("NT_S390_TDB (s390 transaction diagnostic block)");
13398 case NT_ARM_VFP:
13399 return _("NT_ARM_VFP (arm VFP registers)");
13400 case NT_ARM_TLS:
13401 return _("NT_ARM_TLS (AArch TLS registers)");
13402 case NT_ARM_HW_BREAK:
13403 return _("NT_ARM_HW_BREAK (AArch hardware breakpoint registers)");
13404 case NT_ARM_HW_WATCH:
13405 return _("NT_ARM_HW_WATCH (AArch hardware watchpoint registers)");
13406 case NT_PSTATUS:
13407 return _("NT_PSTATUS (pstatus structure)");
13408 case NT_FPREGS:
13409 return _("NT_FPREGS (floating point registers)");
13410 case NT_PSINFO:
13411 return _("NT_PSINFO (psinfo structure)");
13412 case NT_LWPSTATUS:
13413 return _("NT_LWPSTATUS (lwpstatus_t structure)");
13414 case NT_LWPSINFO:
13415 return _("NT_LWPSINFO (lwpsinfo_t structure)");
13416 case NT_WIN32PSTATUS:
13417 return _("NT_WIN32PSTATUS (win32_pstatus structure)");
13418 case NT_SIGINFO:
13419 return _("NT_SIGINFO (siginfo_t data)");
13420 case NT_FILE:
13421 return _("NT_FILE (mapped files)");
13422 default:
13423 break;
13424 }
13425 else
13426 switch (e_type)
13427 {
13428 case NT_VERSION:
13429 return _("NT_VERSION (version)");
13430 case NT_ARCH:
13431 return _("NT_ARCH (architecture)");
13432 default:
13433 break;
13434 }
13435
13436 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
13437 return buff;
13438 }
13439
13440 static int
13441 print_core_note (Elf_Internal_Note *pnote)
13442 {
13443 unsigned int addr_size = is_32bit_elf ? 4 : 8;
13444 bfd_vma count, page_size;
13445 unsigned char *descdata, *filenames, *descend;
13446
13447 if (pnote->type != NT_FILE)
13448 return 1;
13449
13450 #ifndef BFD64
13451 if (!is_32bit_elf)
13452 {
13453 printf (_(" Cannot decode 64-bit note in 32-bit build\n"));
13454 /* Still "successful". */
13455 return 1;
13456 }
13457 #endif
13458
13459 if (pnote->descsz < 2 * addr_size)
13460 {
13461 printf (_(" Malformed note - too short for header\n"));
13462 return 0;
13463 }
13464
13465 descdata = (unsigned char *) pnote->descdata;
13466 descend = descdata + pnote->descsz;
13467
13468 if (descdata[pnote->descsz - 1] != '\0')
13469 {
13470 printf (_(" Malformed note - does not end with \\0\n"));
13471 return 0;
13472 }
13473
13474 count = byte_get (descdata, addr_size);
13475 descdata += addr_size;
13476
13477 page_size = byte_get (descdata, addr_size);
13478 descdata += addr_size;
13479
13480 if (pnote->descsz < 2 * addr_size + count * 3 * addr_size)
13481 {
13482 printf (_(" Malformed note - too short for supplied file count\n"));
13483 return 0;
13484 }
13485
13486 printf (_(" Page size: "));
13487 print_vma (page_size, DEC);
13488 printf ("\n");
13489
13490 printf (_(" %*s%*s%*s\n"),
13491 (int) (2 + 2 * addr_size), _("Start"),
13492 (int) (4 + 2 * addr_size), _("End"),
13493 (int) (4 + 2 * addr_size), _("Page Offset"));
13494 filenames = descdata + count * 3 * addr_size;
13495 while (--count > 0)
13496 {
13497 bfd_vma start, end, file_ofs;
13498
13499 if (filenames == descend)
13500 {
13501 printf (_(" Malformed note - filenames end too early\n"));
13502 return 0;
13503 }
13504
13505 start = byte_get (descdata, addr_size);
13506 descdata += addr_size;
13507 end = byte_get (descdata, addr_size);
13508 descdata += addr_size;
13509 file_ofs = byte_get (descdata, addr_size);
13510 descdata += addr_size;
13511
13512 printf (" ");
13513 print_vma (start, FULL_HEX);
13514 printf (" ");
13515 print_vma (end, FULL_HEX);
13516 printf (" ");
13517 print_vma (file_ofs, FULL_HEX);
13518 printf ("\n %s\n", filenames);
13519
13520 filenames += 1 + strlen ((char *) filenames);
13521 }
13522
13523 return 1;
13524 }
13525
13526 static const char *
13527 get_gnu_elf_note_type (unsigned e_type)
13528 {
13529 static char buff[64];
13530
13531 switch (e_type)
13532 {
13533 case NT_GNU_ABI_TAG:
13534 return _("NT_GNU_ABI_TAG (ABI version tag)");
13535 case NT_GNU_HWCAP:
13536 return _("NT_GNU_HWCAP (DSO-supplied software HWCAP info)");
13537 case NT_GNU_BUILD_ID:
13538 return _("NT_GNU_BUILD_ID (unique build ID bitstring)");
13539 case NT_GNU_GOLD_VERSION:
13540 return _("NT_GNU_GOLD_VERSION (gold version)");
13541 default:
13542 break;
13543 }
13544
13545 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
13546 return buff;
13547 }
13548
13549 static int
13550 print_gnu_note (Elf_Internal_Note *pnote)
13551 {
13552 switch (pnote->type)
13553 {
13554 case NT_GNU_BUILD_ID:
13555 {
13556 unsigned long i;
13557
13558 printf (_(" Build ID: "));
13559 for (i = 0; i < pnote->descsz; ++i)
13560 printf ("%02x", pnote->descdata[i] & 0xff);
13561 printf ("\n");
13562 }
13563 break;
13564
13565 case NT_GNU_ABI_TAG:
13566 {
13567 unsigned long os, major, minor, subminor;
13568 const char *osname;
13569
13570 os = byte_get ((unsigned char *) pnote->descdata, 4);
13571 major = byte_get ((unsigned char *) pnote->descdata + 4, 4);
13572 minor = byte_get ((unsigned char *) pnote->descdata + 8, 4);
13573 subminor = byte_get ((unsigned char *) pnote->descdata + 12, 4);
13574
13575 switch (os)
13576 {
13577 case GNU_ABI_TAG_LINUX:
13578 osname = "Linux";
13579 break;
13580 case GNU_ABI_TAG_HURD:
13581 osname = "Hurd";
13582 break;
13583 case GNU_ABI_TAG_SOLARIS:
13584 osname = "Solaris";
13585 break;
13586 case GNU_ABI_TAG_FREEBSD:
13587 osname = "FreeBSD";
13588 break;
13589 case GNU_ABI_TAG_NETBSD:
13590 osname = "NetBSD";
13591 break;
13592 default:
13593 osname = "Unknown";
13594 break;
13595 }
13596
13597 printf (_(" OS: %s, ABI: %ld.%ld.%ld\n"), osname,
13598 major, minor, subminor);
13599 }
13600 break;
13601
13602 case NT_GNU_GOLD_VERSION:
13603 {
13604 unsigned long i;
13605
13606 printf (_(" Version: "));
13607 for (i = 0; i < pnote->descsz && pnote->descdata[i] != '\0'; ++i)
13608 printf ("%c", pnote->descdata[i]);
13609 printf ("\n");
13610 }
13611 break;
13612 }
13613
13614 return 1;
13615 }
13616
13617 static const char *
13618 get_netbsd_elfcore_note_type (unsigned e_type)
13619 {
13620 static char buff[64];
13621
13622 if (e_type == NT_NETBSDCORE_PROCINFO)
13623 {
13624 /* NetBSD core "procinfo" structure. */
13625 return _("NetBSD procinfo structure");
13626 }
13627
13628 /* As of Jan 2002 there are no other machine-independent notes
13629 defined for NetBSD core files. If the note type is less
13630 than the start of the machine-dependent note types, we don't
13631 understand it. */
13632
13633 if (e_type < NT_NETBSDCORE_FIRSTMACH)
13634 {
13635 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
13636 return buff;
13637 }
13638
13639 switch (elf_header.e_machine)
13640 {
13641 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0
13642 and PT_GETFPREGS == mach+2. */
13643
13644 case EM_OLD_ALPHA:
13645 case EM_ALPHA:
13646 case EM_SPARC:
13647 case EM_SPARC32PLUS:
13648 case EM_SPARCV9:
13649 switch (e_type)
13650 {
13651 case NT_NETBSDCORE_FIRSTMACH + 0:
13652 return _("PT_GETREGS (reg structure)");
13653 case NT_NETBSDCORE_FIRSTMACH + 2:
13654 return _("PT_GETFPREGS (fpreg structure)");
13655 default:
13656 break;
13657 }
13658 break;
13659
13660 /* On all other arch's, PT_GETREGS == mach+1 and
13661 PT_GETFPREGS == mach+3. */
13662 default:
13663 switch (e_type)
13664 {
13665 case NT_NETBSDCORE_FIRSTMACH + 1:
13666 return _("PT_GETREGS (reg structure)");
13667 case NT_NETBSDCORE_FIRSTMACH + 3:
13668 return _("PT_GETFPREGS (fpreg structure)");
13669 default:
13670 break;
13671 }
13672 }
13673
13674 snprintf (buff, sizeof (buff), "PT_FIRSTMACH+%d",
13675 e_type - NT_NETBSDCORE_FIRSTMACH);
13676 return buff;
13677 }
13678
13679 static const char *
13680 get_stapsdt_note_type (unsigned e_type)
13681 {
13682 static char buff[64];
13683
13684 switch (e_type)
13685 {
13686 case NT_STAPSDT:
13687 return _("NT_STAPSDT (SystemTap probe descriptors)");
13688
13689 default:
13690 break;
13691 }
13692
13693 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
13694 return buff;
13695 }
13696
13697 static int
13698 print_stapsdt_note (Elf_Internal_Note *pnote)
13699 {
13700 int addr_size = is_32bit_elf ? 4 : 8;
13701 char *data = pnote->descdata;
13702 char *data_end = pnote->descdata + pnote->descsz;
13703 bfd_vma pc, base_addr, semaphore;
13704 char *provider, *probe, *arg_fmt;
13705
13706 pc = byte_get ((unsigned char *) data, addr_size);
13707 data += addr_size;
13708 base_addr = byte_get ((unsigned char *) data, addr_size);
13709 data += addr_size;
13710 semaphore = byte_get ((unsigned char *) data, addr_size);
13711 data += addr_size;
13712
13713 provider = data;
13714 data += strlen (data) + 1;
13715 probe = data;
13716 data += strlen (data) + 1;
13717 arg_fmt = data;
13718 data += strlen (data) + 1;
13719
13720 printf (_(" Provider: %s\n"), provider);
13721 printf (_(" Name: %s\n"), probe);
13722 printf (_(" Location: "));
13723 print_vma (pc, FULL_HEX);
13724 printf (_(", Base: "));
13725 print_vma (base_addr, FULL_HEX);
13726 printf (_(", Semaphore: "));
13727 print_vma (semaphore, FULL_HEX);
13728 printf ("\n");
13729 printf (_(" Arguments: %s\n"), arg_fmt);
13730
13731 return data == data_end;
13732 }
13733
13734 static const char *
13735 get_ia64_vms_note_type (unsigned e_type)
13736 {
13737 static char buff[64];
13738
13739 switch (e_type)
13740 {
13741 case NT_VMS_MHD:
13742 return _("NT_VMS_MHD (module header)");
13743 case NT_VMS_LNM:
13744 return _("NT_VMS_LNM (language name)");
13745 case NT_VMS_SRC:
13746 return _("NT_VMS_SRC (source files)");
13747 case NT_VMS_TITLE:
13748 return "NT_VMS_TITLE";
13749 case NT_VMS_EIDC:
13750 return _("NT_VMS_EIDC (consistency check)");
13751 case NT_VMS_FPMODE:
13752 return _("NT_VMS_FPMODE (FP mode)");
13753 case NT_VMS_LINKTIME:
13754 return "NT_VMS_LINKTIME";
13755 case NT_VMS_IMGNAM:
13756 return _("NT_VMS_IMGNAM (image name)");
13757 case NT_VMS_IMGID:
13758 return _("NT_VMS_IMGID (image id)");
13759 case NT_VMS_LINKID:
13760 return _("NT_VMS_LINKID (link id)");
13761 case NT_VMS_IMGBID:
13762 return _("NT_VMS_IMGBID (build id)");
13763 case NT_VMS_GSTNAM:
13764 return _("NT_VMS_GSTNAM (sym table name)");
13765 case NT_VMS_ORIG_DYN:
13766 return "NT_VMS_ORIG_DYN";
13767 case NT_VMS_PATCHTIME:
13768 return "NT_VMS_PATCHTIME";
13769 default:
13770 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
13771 return buff;
13772 }
13773 }
13774
13775 static int
13776 print_ia64_vms_note (Elf_Internal_Note * pnote)
13777 {
13778 switch (pnote->type)
13779 {
13780 case NT_VMS_MHD:
13781 if (pnote->descsz > 36)
13782 {
13783 size_t l = strlen (pnote->descdata + 34);
13784 printf (_(" Creation date : %.17s\n"), pnote->descdata);
13785 printf (_(" Last patch date: %.17s\n"), pnote->descdata + 17);
13786 printf (_(" Module name : %s\n"), pnote->descdata + 34);
13787 printf (_(" Module version : %s\n"), pnote->descdata + 34 + l + 1);
13788 }
13789 else
13790 printf (_(" Invalid size\n"));
13791 break;
13792 case NT_VMS_LNM:
13793 printf (_(" Language: %s\n"), pnote->descdata);
13794 break;
13795 #ifdef BFD64
13796 case NT_VMS_FPMODE:
13797 printf (_(" Floating Point mode: "));
13798 printf ("0x%016" BFD_VMA_FMT "x\n",
13799 (bfd_vma)byte_get ((unsigned char *)pnote->descdata, 8));
13800 break;
13801 case NT_VMS_LINKTIME:
13802 printf (_(" Link time: "));
13803 print_vms_time
13804 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
13805 printf ("\n");
13806 break;
13807 case NT_VMS_PATCHTIME:
13808 printf (_(" Patch time: "));
13809 print_vms_time
13810 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
13811 printf ("\n");
13812 break;
13813 case NT_VMS_ORIG_DYN:
13814 printf (_(" Major id: %u, minor id: %u\n"),
13815 (unsigned) byte_get ((unsigned char *)pnote->descdata, 4),
13816 (unsigned) byte_get ((unsigned char *)pnote->descdata + 4, 4));
13817 printf (_(" Last modified : "));
13818 print_vms_time
13819 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata + 8, 8));
13820 printf (_("\n Link flags : "));
13821 printf ("0x%016" BFD_VMA_FMT "x\n",
13822 (bfd_vma)byte_get ((unsigned char *)pnote->descdata + 16, 8));
13823 printf (_(" Header flags: 0x%08x\n"),
13824 (unsigned)byte_get ((unsigned char *)pnote->descdata + 24, 4));
13825 printf (_(" Image id : %s\n"), pnote->descdata + 32);
13826 break;
13827 #endif
13828 case NT_VMS_IMGNAM:
13829 printf (_(" Image name: %s\n"), pnote->descdata);
13830 break;
13831 case NT_VMS_GSTNAM:
13832 printf (_(" Global symbol table name: %s\n"), pnote->descdata);
13833 break;
13834 case NT_VMS_IMGID:
13835 printf (_(" Image id: %s\n"), pnote->descdata);
13836 break;
13837 case NT_VMS_LINKID:
13838 printf (_(" Linker id: %s\n"), pnote->descdata);
13839 break;
13840 default:
13841 break;
13842 }
13843 return 1;
13844 }
13845
13846 /* Note that by the ELF standard, the name field is already null byte
13847 terminated, and namesz includes the terminating null byte.
13848 I.E. the value of namesz for the name "FSF" is 4.
13849
13850 If the value of namesz is zero, there is no name present. */
13851 static int
13852 process_note (Elf_Internal_Note * pnote)
13853 {
13854 const char * name = pnote->namesz ? pnote->namedata : "(NONE)";
13855 const char * nt;
13856
13857 if (pnote->namesz == 0)
13858 /* If there is no note name, then use the default set of
13859 note type strings. */
13860 nt = get_note_type (pnote->type);
13861
13862 else if (const_strneq (pnote->namedata, "GNU"))
13863 /* GNU-specific object file notes. */
13864 nt = get_gnu_elf_note_type (pnote->type);
13865
13866 else if (const_strneq (pnote->namedata, "NetBSD-CORE"))
13867 /* NetBSD-specific core file notes. */
13868 nt = get_netbsd_elfcore_note_type (pnote->type);
13869
13870 else if (strneq (pnote->namedata, "SPU/", 4))
13871 {
13872 /* SPU-specific core file notes. */
13873 nt = pnote->namedata + 4;
13874 name = "SPU";
13875 }
13876
13877 else if (const_strneq (pnote->namedata, "IPF/VMS"))
13878 /* VMS/ia64-specific file notes. */
13879 nt = get_ia64_vms_note_type (pnote->type);
13880
13881 else if (const_strneq (pnote->namedata, "stapsdt"))
13882 nt = get_stapsdt_note_type (pnote->type);
13883
13884 else
13885 /* Don't recognize this note name; just use the default set of
13886 note type strings. */
13887 nt = get_note_type (pnote->type);
13888
13889 printf (" %-20s 0x%08lx\t%s\n", name, pnote->descsz, nt);
13890
13891 if (const_strneq (pnote->namedata, "IPF/VMS"))
13892 return print_ia64_vms_note (pnote);
13893 else if (const_strneq (pnote->namedata, "GNU"))
13894 return print_gnu_note (pnote);
13895 else if (const_strneq (pnote->namedata, "stapsdt"))
13896 return print_stapsdt_note (pnote);
13897 else if (const_strneq (pnote->namedata, "CORE"))
13898 return print_core_note (pnote);
13899 else
13900 return 1;
13901 }
13902
13903
13904 static int
13905 process_corefile_note_segment (FILE * file, bfd_vma offset, bfd_vma length)
13906 {
13907 Elf_External_Note * pnotes;
13908 Elf_External_Note * external;
13909 int res = 1;
13910
13911 if (length <= 0)
13912 return 0;
13913
13914 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
13915 _("notes"));
13916 if (pnotes == NULL)
13917 return 0;
13918
13919 external = pnotes;
13920
13921 printf (_("\nDisplaying notes found at file offset 0x%08lx with length 0x%08lx:\n"),
13922 (unsigned long) offset, (unsigned long) length);
13923 printf (_(" %-20s %10s\tDescription\n"), _("Owner"), _("Data size"));
13924
13925 while ((char *) external < (char *) pnotes + length)
13926 {
13927 Elf_Internal_Note inote;
13928 size_t min_notesz;
13929 char *next;
13930 char * temp = NULL;
13931 size_t data_remaining = ((char *) pnotes + length) - (char *) external;
13932
13933 if (!is_ia64_vms ())
13934 {
13935 /* PR binutils/15191
13936 Make sure that there is enough data to read. */
13937 min_notesz = offsetof (Elf_External_Note, name);
13938 if (data_remaining < min_notesz)
13939 {
13940 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
13941 (int) data_remaining);
13942 break;
13943 }
13944 inote.type = BYTE_GET (external->type);
13945 inote.namesz = BYTE_GET (external->namesz);
13946 inote.namedata = external->name;
13947 inote.descsz = BYTE_GET (external->descsz);
13948 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
13949 inote.descpos = offset + (inote.descdata - (char *) pnotes);
13950 next = inote.descdata + align_power (inote.descsz, 2);
13951 }
13952 else
13953 {
13954 Elf64_External_VMS_Note *vms_external;
13955
13956 /* PR binutils/15191
13957 Make sure that there is enough data to read. */
13958 min_notesz = offsetof (Elf64_External_VMS_Note, name);
13959 if (data_remaining < min_notesz)
13960 {
13961 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
13962 (int) data_remaining);
13963 break;
13964 }
13965
13966 vms_external = (Elf64_External_VMS_Note *) external;
13967 inote.type = BYTE_GET (vms_external->type);
13968 inote.namesz = BYTE_GET (vms_external->namesz);
13969 inote.namedata = vms_external->name;
13970 inote.descsz = BYTE_GET (vms_external->descsz);
13971 inote.descdata = inote.namedata + align_power (inote.namesz, 3);
13972 inote.descpos = offset + (inote.descdata - (char *) pnotes);
13973 next = inote.descdata + align_power (inote.descsz, 3);
13974 }
13975
13976 if (inote.descdata < (char *) external + min_notesz
13977 || next < (char *) external + min_notesz
13978 || data_remaining < (size_t)(next - (char *) external))
13979 {
13980 warn (_("note with invalid namesz and/or descsz found at offset 0x%lx\n"),
13981 (unsigned long) ((char *) external - (char *) pnotes));
13982 warn (_(" type: 0x%lx, namesize: 0x%08lx, descsize: 0x%08lx\n"),
13983 inote.type, inote.namesz, inote.descsz);
13984 break;
13985 }
13986
13987 external = (Elf_External_Note *) next;
13988
13989 /* Verify that name is null terminated. It appears that at least
13990 one version of Linux (RedHat 6.0) generates corefiles that don't
13991 comply with the ELF spec by failing to include the null byte in
13992 namesz. */
13993 if (inote.namedata[inote.namesz - 1] != '\0')
13994 {
13995 temp = (char *) malloc (inote.namesz + 1);
13996
13997 if (temp == NULL)
13998 {
13999 error (_("Out of memory\n"));
14000 res = 0;
14001 break;
14002 }
14003
14004 strncpy (temp, inote.namedata, inote.namesz);
14005 temp[inote.namesz] = 0;
14006
14007 /* warn (_("'%s' NOTE name not properly null terminated\n"), temp); */
14008 inote.namedata = temp;
14009 }
14010
14011 res &= process_note (& inote);
14012
14013 if (temp != NULL)
14014 {
14015 free (temp);
14016 temp = NULL;
14017 }
14018 }
14019
14020 free (pnotes);
14021
14022 return res;
14023 }
14024
14025 static int
14026 process_corefile_note_segments (FILE * file)
14027 {
14028 Elf_Internal_Phdr * segment;
14029 unsigned int i;
14030 int res = 1;
14031
14032 if (! get_program_headers (file))
14033 return 0;
14034
14035 for (i = 0, segment = program_headers;
14036 i < elf_header.e_phnum;
14037 i++, segment++)
14038 {
14039 if (segment->p_type == PT_NOTE)
14040 res &= process_corefile_note_segment (file,
14041 (bfd_vma) segment->p_offset,
14042 (bfd_vma) segment->p_filesz);
14043 }
14044
14045 return res;
14046 }
14047
14048 static int
14049 process_note_sections (FILE * file)
14050 {
14051 Elf_Internal_Shdr * section;
14052 unsigned long i;
14053 int n = 0;
14054 int res = 1;
14055
14056 for (i = 0, section = section_headers;
14057 i < elf_header.e_shnum && section != NULL;
14058 i++, section++)
14059 if (section->sh_type == SHT_NOTE)
14060 {
14061 res &= process_corefile_note_segment (file,
14062 (bfd_vma) section->sh_offset,
14063 (bfd_vma) section->sh_size);
14064 n++;
14065 }
14066
14067 if (n == 0)
14068 /* Try processing NOTE segments instead. */
14069 return process_corefile_note_segments (file);
14070
14071 return res;
14072 }
14073
14074 static int
14075 process_notes (FILE * file)
14076 {
14077 /* If we have not been asked to display the notes then do nothing. */
14078 if (! do_notes)
14079 return 1;
14080
14081 if (elf_header.e_type != ET_CORE)
14082 return process_note_sections (file);
14083
14084 /* No program headers means no NOTE segment. */
14085 if (elf_header.e_phnum > 0)
14086 return process_corefile_note_segments (file);
14087
14088 printf (_("No note segments present in the core file.\n"));
14089 return 1;
14090 }
14091
14092 static int
14093 process_arch_specific (FILE * file)
14094 {
14095 if (! do_arch)
14096 return 1;
14097
14098 switch (elf_header.e_machine)
14099 {
14100 case EM_ARM:
14101 return process_arm_specific (file);
14102 case EM_MIPS:
14103 case EM_MIPS_RS3_LE:
14104 return process_mips_specific (file);
14105 break;
14106 case EM_NDS32:
14107 return process_nds32_specific (file);
14108 break;
14109 case EM_PPC:
14110 return process_power_specific (file);
14111 break;
14112 case EM_SPARC:
14113 case EM_SPARC32PLUS:
14114 case EM_SPARCV9:
14115 return process_sparc_specific (file);
14116 break;
14117 case EM_TI_C6000:
14118 return process_tic6x_specific (file);
14119 break;
14120 case EM_MSP430:
14121 return process_msp430x_specific (file);
14122 default:
14123 break;
14124 }
14125 return 1;
14126 }
14127
14128 static int
14129 get_file_header (FILE * file)
14130 {
14131 /* Read in the identity array. */
14132 if (fread (elf_header.e_ident, EI_NIDENT, 1, file) != 1)
14133 return 0;
14134
14135 /* Determine how to read the rest of the header. */
14136 switch (elf_header.e_ident[EI_DATA])
14137 {
14138 default: /* fall through */
14139 case ELFDATANONE: /* fall through */
14140 case ELFDATA2LSB:
14141 byte_get = byte_get_little_endian;
14142 byte_put = byte_put_little_endian;
14143 break;
14144 case ELFDATA2MSB:
14145 byte_get = byte_get_big_endian;
14146 byte_put = byte_put_big_endian;
14147 break;
14148 }
14149
14150 /* For now we only support 32 bit and 64 bit ELF files. */
14151 is_32bit_elf = (elf_header.e_ident[EI_CLASS] != ELFCLASS64);
14152
14153 /* Read in the rest of the header. */
14154 if (is_32bit_elf)
14155 {
14156 Elf32_External_Ehdr ehdr32;
14157
14158 if (fread (ehdr32.e_type, sizeof (ehdr32) - EI_NIDENT, 1, file) != 1)
14159 return 0;
14160
14161 elf_header.e_type = BYTE_GET (ehdr32.e_type);
14162 elf_header.e_machine = BYTE_GET (ehdr32.e_machine);
14163 elf_header.e_version = BYTE_GET (ehdr32.e_version);
14164 elf_header.e_entry = BYTE_GET (ehdr32.e_entry);
14165 elf_header.e_phoff = BYTE_GET (ehdr32.e_phoff);
14166 elf_header.e_shoff = BYTE_GET (ehdr32.e_shoff);
14167 elf_header.e_flags = BYTE_GET (ehdr32.e_flags);
14168 elf_header.e_ehsize = BYTE_GET (ehdr32.e_ehsize);
14169 elf_header.e_phentsize = BYTE_GET (ehdr32.e_phentsize);
14170 elf_header.e_phnum = BYTE_GET (ehdr32.e_phnum);
14171 elf_header.e_shentsize = BYTE_GET (ehdr32.e_shentsize);
14172 elf_header.e_shnum = BYTE_GET (ehdr32.e_shnum);
14173 elf_header.e_shstrndx = BYTE_GET (ehdr32.e_shstrndx);
14174 }
14175 else
14176 {
14177 Elf64_External_Ehdr ehdr64;
14178
14179 /* If we have been compiled with sizeof (bfd_vma) == 4, then
14180 we will not be able to cope with the 64bit data found in
14181 64 ELF files. Detect this now and abort before we start
14182 overwriting things. */
14183 if (sizeof (bfd_vma) < 8)
14184 {
14185 error (_("This instance of readelf has been built without support for a\n\
14186 64 bit data type and so it cannot read 64 bit ELF files.\n"));
14187 return 0;
14188 }
14189
14190 if (fread (ehdr64.e_type, sizeof (ehdr64) - EI_NIDENT, 1, file) != 1)
14191 return 0;
14192
14193 elf_header.e_type = BYTE_GET (ehdr64.e_type);
14194 elf_header.e_machine = BYTE_GET (ehdr64.e_machine);
14195 elf_header.e_version = BYTE_GET (ehdr64.e_version);
14196 elf_header.e_entry = BYTE_GET (ehdr64.e_entry);
14197 elf_header.e_phoff = BYTE_GET (ehdr64.e_phoff);
14198 elf_header.e_shoff = BYTE_GET (ehdr64.e_shoff);
14199 elf_header.e_flags = BYTE_GET (ehdr64.e_flags);
14200 elf_header.e_ehsize = BYTE_GET (ehdr64.e_ehsize);
14201 elf_header.e_phentsize = BYTE_GET (ehdr64.e_phentsize);
14202 elf_header.e_phnum = BYTE_GET (ehdr64.e_phnum);
14203 elf_header.e_shentsize = BYTE_GET (ehdr64.e_shentsize);
14204 elf_header.e_shnum = BYTE_GET (ehdr64.e_shnum);
14205 elf_header.e_shstrndx = BYTE_GET (ehdr64.e_shstrndx);
14206 }
14207
14208 if (elf_header.e_shoff)
14209 {
14210 /* There may be some extensions in the first section header. Don't
14211 bomb if we can't read it. */
14212 if (is_32bit_elf)
14213 get_32bit_section_headers (file, 1);
14214 else
14215 get_64bit_section_headers (file, 1);
14216 }
14217
14218 return 1;
14219 }
14220
14221 /* Process one ELF object file according to the command line options.
14222 This file may actually be stored in an archive. The file is
14223 positioned at the start of the ELF object. */
14224
14225 static int
14226 process_object (char * file_name, FILE * file)
14227 {
14228 unsigned int i;
14229
14230 if (! get_file_header (file))
14231 {
14232 error (_("%s: Failed to read file header\n"), file_name);
14233 return 1;
14234 }
14235
14236 /* Initialise per file variables. */
14237 for (i = ARRAY_SIZE (version_info); i--;)
14238 version_info[i] = 0;
14239
14240 for (i = ARRAY_SIZE (dynamic_info); i--;)
14241 dynamic_info[i] = 0;
14242 dynamic_info_DT_GNU_HASH = 0;
14243
14244 /* Process the file. */
14245 if (show_name)
14246 printf (_("\nFile: %s\n"), file_name);
14247
14248 /* Initialise the dump_sects array from the cmdline_dump_sects array.
14249 Note we do this even if cmdline_dump_sects is empty because we
14250 must make sure that the dump_sets array is zeroed out before each
14251 object file is processed. */
14252 if (num_dump_sects > num_cmdline_dump_sects)
14253 memset (dump_sects, 0, num_dump_sects * sizeof (* dump_sects));
14254
14255 if (num_cmdline_dump_sects > 0)
14256 {
14257 if (num_dump_sects == 0)
14258 /* A sneaky way of allocating the dump_sects array. */
14259 request_dump_bynumber (num_cmdline_dump_sects, 0);
14260
14261 assert (num_dump_sects >= num_cmdline_dump_sects);
14262 memcpy (dump_sects, cmdline_dump_sects,
14263 num_cmdline_dump_sects * sizeof (* dump_sects));
14264 }
14265
14266 if (! process_file_header ())
14267 return 1;
14268
14269 if (! process_section_headers (file))
14270 {
14271 /* Without loaded section headers we cannot process lots of
14272 things. */
14273 do_unwind = do_version = do_dump = do_arch = 0;
14274
14275 if (! do_using_dynamic)
14276 do_syms = do_dyn_syms = do_reloc = 0;
14277 }
14278
14279 if (! process_section_groups (file))
14280 {
14281 /* Without loaded section groups we cannot process unwind. */
14282 do_unwind = 0;
14283 }
14284
14285 if (process_program_headers (file))
14286 process_dynamic_section (file);
14287
14288 process_relocs (file);
14289
14290 process_unwind (file);
14291
14292 process_symbol_table (file);
14293
14294 process_syminfo (file);
14295
14296 process_version_sections (file);
14297
14298 process_section_contents (file);
14299
14300 process_notes (file);
14301
14302 process_gnu_liblist (file);
14303
14304 process_arch_specific (file);
14305
14306 if (program_headers)
14307 {
14308 free (program_headers);
14309 program_headers = NULL;
14310 }
14311
14312 if (section_headers)
14313 {
14314 free (section_headers);
14315 section_headers = NULL;
14316 }
14317
14318 if (string_table)
14319 {
14320 free (string_table);
14321 string_table = NULL;
14322 string_table_length = 0;
14323 }
14324
14325 if (dynamic_strings)
14326 {
14327 free (dynamic_strings);
14328 dynamic_strings = NULL;
14329 dynamic_strings_length = 0;
14330 }
14331
14332 if (dynamic_symbols)
14333 {
14334 free (dynamic_symbols);
14335 dynamic_symbols = NULL;
14336 num_dynamic_syms = 0;
14337 }
14338
14339 if (dynamic_syminfo)
14340 {
14341 free (dynamic_syminfo);
14342 dynamic_syminfo = NULL;
14343 }
14344
14345 if (dynamic_section)
14346 {
14347 free (dynamic_section);
14348 dynamic_section = NULL;
14349 }
14350
14351 if (section_headers_groups)
14352 {
14353 free (section_headers_groups);
14354 section_headers_groups = NULL;
14355 }
14356
14357 if (section_groups)
14358 {
14359 struct group_list * g;
14360 struct group_list * next;
14361
14362 for (i = 0; i < group_count; i++)
14363 {
14364 for (g = section_groups [i].root; g != NULL; g = next)
14365 {
14366 next = g->next;
14367 free (g);
14368 }
14369 }
14370
14371 free (section_groups);
14372 section_groups = NULL;
14373 }
14374
14375 free_debug_memory ();
14376
14377 return 0;
14378 }
14379
14380 /* Process an ELF archive.
14381 On entry the file is positioned just after the ARMAG string. */
14382
14383 static int
14384 process_archive (char * file_name, FILE * file, bfd_boolean is_thin_archive)
14385 {
14386 struct archive_info arch;
14387 struct archive_info nested_arch;
14388 size_t got;
14389 int ret;
14390
14391 show_name = 1;
14392
14393 /* The ARCH structure is used to hold information about this archive. */
14394 arch.file_name = NULL;
14395 arch.file = NULL;
14396 arch.index_array = NULL;
14397 arch.sym_table = NULL;
14398 arch.longnames = NULL;
14399
14400 /* The NESTED_ARCH structure is used as a single-item cache of information
14401 about a nested archive (when members of a thin archive reside within
14402 another regular archive file). */
14403 nested_arch.file_name = NULL;
14404 nested_arch.file = NULL;
14405 nested_arch.index_array = NULL;
14406 nested_arch.sym_table = NULL;
14407 nested_arch.longnames = NULL;
14408
14409 if (setup_archive (&arch, file_name, file, is_thin_archive, do_archive_index) != 0)
14410 {
14411 ret = 1;
14412 goto out;
14413 }
14414
14415 if (do_archive_index)
14416 {
14417 if (arch.sym_table == NULL)
14418 error (_("%s: unable to dump the index as none was found\n"), file_name);
14419 else
14420 {
14421 unsigned int i, l;
14422 unsigned long current_pos;
14423
14424 printf (_("Index of archive %s: (%ld entries, 0x%lx bytes in the symbol table)\n"),
14425 file_name, (long) arch.index_num, arch.sym_size);
14426 current_pos = ftell (file);
14427
14428 for (i = l = 0; i < arch.index_num; i++)
14429 {
14430 if ((i == 0) || ((i > 0) && (arch.index_array[i] != arch.index_array[i - 1])))
14431 {
14432 char * member_name;
14433
14434 member_name = get_archive_member_name_at (&arch, arch.index_array[i], &nested_arch);
14435
14436 if (member_name != NULL)
14437 {
14438 char * qualified_name = make_qualified_name (&arch, &nested_arch, member_name);
14439
14440 if (qualified_name != NULL)
14441 {
14442 printf (_("Contents of binary %s at offset "), qualified_name);
14443 (void) print_vma (arch.index_array[i], PREFIX_HEX);
14444 putchar ('\n');
14445 free (qualified_name);
14446 }
14447 }
14448 }
14449
14450 if (l >= arch.sym_size)
14451 {
14452 error (_("%s: end of the symbol table reached before the end of the index\n"),
14453 file_name);
14454 break;
14455 }
14456 printf ("\t%s\n", arch.sym_table + l);
14457 l += strlen (arch.sym_table + l) + 1;
14458 }
14459
14460 if (arch.uses_64bit_indicies)
14461 l = (l + 7) & ~ 7;
14462 else
14463 l += l & 1;
14464
14465 if (l < arch.sym_size)
14466 error (_("%s: %ld bytes remain in the symbol table, but without corresponding entries in the index table\n"),
14467 file_name, arch.sym_size - l);
14468
14469 if (fseek (file, current_pos, SEEK_SET) != 0)
14470 {
14471 error (_("%s: failed to seek back to start of object files in the archive\n"), file_name);
14472 ret = 1;
14473 goto out;
14474 }
14475 }
14476
14477 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
14478 && !do_segments && !do_header && !do_dump && !do_version
14479 && !do_histogram && !do_debugging && !do_arch && !do_notes
14480 && !do_section_groups && !do_dyn_syms)
14481 {
14482 ret = 0; /* Archive index only. */
14483 goto out;
14484 }
14485 }
14486
14487 ret = 0;
14488
14489 while (1)
14490 {
14491 char * name;
14492 size_t namelen;
14493 char * qualified_name;
14494
14495 /* Read the next archive header. */
14496 if (fseek (file, arch.next_arhdr_offset, SEEK_SET) != 0)
14497 {
14498 error (_("%s: failed to seek to next archive header\n"), file_name);
14499 return 1;
14500 }
14501 got = fread (&arch.arhdr, 1, sizeof arch.arhdr, file);
14502 if (got != sizeof arch.arhdr)
14503 {
14504 if (got == 0)
14505 break;
14506 error (_("%s: failed to read archive header\n"), file_name);
14507 ret = 1;
14508 break;
14509 }
14510 if (memcmp (arch.arhdr.ar_fmag, ARFMAG, 2) != 0)
14511 {
14512 error (_("%s: did not find a valid archive header\n"), arch.file_name);
14513 ret = 1;
14514 break;
14515 }
14516
14517 arch.next_arhdr_offset += sizeof arch.arhdr;
14518
14519 archive_file_size = strtoul (arch.arhdr.ar_size, NULL, 10);
14520 if (archive_file_size & 01)
14521 ++archive_file_size;
14522
14523 name = get_archive_member_name (&arch, &nested_arch);
14524 if (name == NULL)
14525 {
14526 error (_("%s: bad archive file name\n"), file_name);
14527 ret = 1;
14528 break;
14529 }
14530 namelen = strlen (name);
14531
14532 qualified_name = make_qualified_name (&arch, &nested_arch, name);
14533 if (qualified_name == NULL)
14534 {
14535 error (_("%s: bad archive file name\n"), file_name);
14536 ret = 1;
14537 break;
14538 }
14539
14540 if (is_thin_archive && arch.nested_member_origin == 0)
14541 {
14542 /* This is a proxy for an external member of a thin archive. */
14543 FILE * member_file;
14544 char * member_file_name = adjust_relative_path (file_name, name, namelen);
14545 if (member_file_name == NULL)
14546 {
14547 ret = 1;
14548 break;
14549 }
14550
14551 member_file = fopen (member_file_name, "rb");
14552 if (member_file == NULL)
14553 {
14554 error (_("Input file '%s' is not readable.\n"), member_file_name);
14555 free (member_file_name);
14556 ret = 1;
14557 break;
14558 }
14559
14560 archive_file_offset = arch.nested_member_origin;
14561
14562 ret |= process_object (qualified_name, member_file);
14563
14564 fclose (member_file);
14565 free (member_file_name);
14566 }
14567 else if (is_thin_archive)
14568 {
14569 /* PR 15140: Allow for corrupt thin archives. */
14570 if (nested_arch.file == NULL)
14571 {
14572 error (_("%s: contains corrupt thin archive: %s\n"),
14573 file_name, name);
14574 ret = 1;
14575 break;
14576 }
14577
14578 /* This is a proxy for a member of a nested archive. */
14579 archive_file_offset = arch.nested_member_origin + sizeof arch.arhdr;
14580
14581 /* The nested archive file will have been opened and setup by
14582 get_archive_member_name. */
14583 if (fseek (nested_arch.file, archive_file_offset, SEEK_SET) != 0)
14584 {
14585 error (_("%s: failed to seek to archive member.\n"), nested_arch.file_name);
14586 ret = 1;
14587 break;
14588 }
14589
14590 ret |= process_object (qualified_name, nested_arch.file);
14591 }
14592 else
14593 {
14594 archive_file_offset = arch.next_arhdr_offset;
14595 arch.next_arhdr_offset += archive_file_size;
14596
14597 ret |= process_object (qualified_name, file);
14598 }
14599
14600 if (dump_sects != NULL)
14601 {
14602 free (dump_sects);
14603 dump_sects = NULL;
14604 num_dump_sects = 0;
14605 }
14606
14607 free (qualified_name);
14608 }
14609
14610 out:
14611 if (nested_arch.file != NULL)
14612 fclose (nested_arch.file);
14613 release_archive (&nested_arch);
14614 release_archive (&arch);
14615
14616 return ret;
14617 }
14618
14619 static int
14620 process_file (char * file_name)
14621 {
14622 FILE * file;
14623 struct stat statbuf;
14624 char armag[SARMAG];
14625 int ret;
14626
14627 if (stat (file_name, &statbuf) < 0)
14628 {
14629 if (errno == ENOENT)
14630 error (_("'%s': No such file\n"), file_name);
14631 else
14632 error (_("Could not locate '%s'. System error message: %s\n"),
14633 file_name, strerror (errno));
14634 return 1;
14635 }
14636
14637 if (! S_ISREG (statbuf.st_mode))
14638 {
14639 error (_("'%s' is not an ordinary file\n"), file_name);
14640 return 1;
14641 }
14642
14643 file = fopen (file_name, "rb");
14644 if (file == NULL)
14645 {
14646 error (_("Input file '%s' is not readable.\n"), file_name);
14647 return 1;
14648 }
14649
14650 if (fread (armag, SARMAG, 1, file) != 1)
14651 {
14652 error (_("%s: Failed to read file's magic number\n"), file_name);
14653 fclose (file);
14654 return 1;
14655 }
14656
14657 if (memcmp (armag, ARMAG, SARMAG) == 0)
14658 ret = process_archive (file_name, file, FALSE);
14659 else if (memcmp (armag, ARMAGT, SARMAG) == 0)
14660 ret = process_archive (file_name, file, TRUE);
14661 else
14662 {
14663 if (do_archive_index)
14664 error (_("File %s is not an archive so its index cannot be displayed.\n"),
14665 file_name);
14666
14667 rewind (file);
14668 archive_file_size = archive_file_offset = 0;
14669 ret = process_object (file_name, file);
14670 }
14671
14672 fclose (file);
14673
14674 return ret;
14675 }
14676
14677 #ifdef SUPPORT_DISASSEMBLY
14678 /* Needed by the i386 disassembler. For extra credit, someone could
14679 fix this so that we insert symbolic addresses here, esp for GOT/PLT
14680 symbols. */
14681
14682 void
14683 print_address (unsigned int addr, FILE * outfile)
14684 {
14685 fprintf (outfile,"0x%8.8x", addr);
14686 }
14687
14688 /* Needed by the i386 disassembler. */
14689 void
14690 db_task_printsym (unsigned int addr)
14691 {
14692 print_address (addr, stderr);
14693 }
14694 #endif
14695
14696 int
14697 main (int argc, char ** argv)
14698 {
14699 int err;
14700
14701 #if defined (HAVE_SETLOCALE) && defined (HAVE_LC_MESSAGES)
14702 setlocale (LC_MESSAGES, "");
14703 #endif
14704 #if defined (HAVE_SETLOCALE)
14705 setlocale (LC_CTYPE, "");
14706 #endif
14707 bindtextdomain (PACKAGE, LOCALEDIR);
14708 textdomain (PACKAGE);
14709
14710 expandargv (&argc, &argv);
14711
14712 parse_args (argc, argv);
14713
14714 if (num_dump_sects > 0)
14715 {
14716 /* Make a copy of the dump_sects array. */
14717 cmdline_dump_sects = (dump_type *)
14718 malloc (num_dump_sects * sizeof (* dump_sects));
14719 if (cmdline_dump_sects == NULL)
14720 error (_("Out of memory allocating dump request table.\n"));
14721 else
14722 {
14723 memcpy (cmdline_dump_sects, dump_sects,
14724 num_dump_sects * sizeof (* dump_sects));
14725 num_cmdline_dump_sects = num_dump_sects;
14726 }
14727 }
14728
14729 if (optind < (argc - 1))
14730 show_name = 1;
14731
14732 err = 0;
14733 while (optind < argc)
14734 err |= process_file (argv[optind++]);
14735
14736 if (dump_sects != NULL)
14737 free (dump_sects);
14738 if (cmdline_dump_sects != NULL)
14739 free (cmdline_dump_sects);
14740
14741 return err;
14742 }
This page took 0.415374 seconds and 5 git commands to generate.