block: add a bi_error field to struct bio
[deliverable/linux.git] / block / bio.c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31
32 #include <trace/events/block.h>
33
34 /*
35 * Test patch to inline a certain number of bi_io_vec's inside the bio
36 * itself, to shrink a bio data allocation from two mempool calls to one
37 */
38 #define BIO_INLINE_VECS 4
39
40 /*
41 * if you change this list, also change bvec_alloc or things will
42 * break badly! cannot be bigger than what you can fit into an
43 * unsigned short
44 */
45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48 };
49 #undef BV
50
51 /*
52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53 * IO code that does not need private memory pools.
54 */
55 struct bio_set *fs_bio_set;
56 EXPORT_SYMBOL(fs_bio_set);
57
58 /*
59 * Our slab pool management
60 */
61 struct bio_slab {
62 struct kmem_cache *slab;
63 unsigned int slab_ref;
64 unsigned int slab_size;
65 char name[8];
66 };
67 static DEFINE_MUTEX(bio_slab_lock);
68 static struct bio_slab *bio_slabs;
69 static unsigned int bio_slab_nr, bio_slab_max;
70
71 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72 {
73 unsigned int sz = sizeof(struct bio) + extra_size;
74 struct kmem_cache *slab = NULL;
75 struct bio_slab *bslab, *new_bio_slabs;
76 unsigned int new_bio_slab_max;
77 unsigned int i, entry = -1;
78
79 mutex_lock(&bio_slab_lock);
80
81 i = 0;
82 while (i < bio_slab_nr) {
83 bslab = &bio_slabs[i];
84
85 if (!bslab->slab && entry == -1)
86 entry = i;
87 else if (bslab->slab_size == sz) {
88 slab = bslab->slab;
89 bslab->slab_ref++;
90 break;
91 }
92 i++;
93 }
94
95 if (slab)
96 goto out_unlock;
97
98 if (bio_slab_nr == bio_slab_max && entry == -1) {
99 new_bio_slab_max = bio_slab_max << 1;
100 new_bio_slabs = krealloc(bio_slabs,
101 new_bio_slab_max * sizeof(struct bio_slab),
102 GFP_KERNEL);
103 if (!new_bio_slabs)
104 goto out_unlock;
105 bio_slab_max = new_bio_slab_max;
106 bio_slabs = new_bio_slabs;
107 }
108 if (entry == -1)
109 entry = bio_slab_nr++;
110
111 bslab = &bio_slabs[entry];
112
113 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
114 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
115 SLAB_HWCACHE_ALIGN, NULL);
116 if (!slab)
117 goto out_unlock;
118
119 bslab->slab = slab;
120 bslab->slab_ref = 1;
121 bslab->slab_size = sz;
122 out_unlock:
123 mutex_unlock(&bio_slab_lock);
124 return slab;
125 }
126
127 static void bio_put_slab(struct bio_set *bs)
128 {
129 struct bio_slab *bslab = NULL;
130 unsigned int i;
131
132 mutex_lock(&bio_slab_lock);
133
134 for (i = 0; i < bio_slab_nr; i++) {
135 if (bs->bio_slab == bio_slabs[i].slab) {
136 bslab = &bio_slabs[i];
137 break;
138 }
139 }
140
141 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 goto out;
143
144 WARN_ON(!bslab->slab_ref);
145
146 if (--bslab->slab_ref)
147 goto out;
148
149 kmem_cache_destroy(bslab->slab);
150 bslab->slab = NULL;
151
152 out:
153 mutex_unlock(&bio_slab_lock);
154 }
155
156 unsigned int bvec_nr_vecs(unsigned short idx)
157 {
158 return bvec_slabs[idx].nr_vecs;
159 }
160
161 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
162 {
163 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
164
165 if (idx == BIOVEC_MAX_IDX)
166 mempool_free(bv, pool);
167 else {
168 struct biovec_slab *bvs = bvec_slabs + idx;
169
170 kmem_cache_free(bvs->slab, bv);
171 }
172 }
173
174 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
175 mempool_t *pool)
176 {
177 struct bio_vec *bvl;
178
179 /*
180 * see comment near bvec_array define!
181 */
182 switch (nr) {
183 case 1:
184 *idx = 0;
185 break;
186 case 2 ... 4:
187 *idx = 1;
188 break;
189 case 5 ... 16:
190 *idx = 2;
191 break;
192 case 17 ... 64:
193 *idx = 3;
194 break;
195 case 65 ... 128:
196 *idx = 4;
197 break;
198 case 129 ... BIO_MAX_PAGES:
199 *idx = 5;
200 break;
201 default:
202 return NULL;
203 }
204
205 /*
206 * idx now points to the pool we want to allocate from. only the
207 * 1-vec entry pool is mempool backed.
208 */
209 if (*idx == BIOVEC_MAX_IDX) {
210 fallback:
211 bvl = mempool_alloc(pool, gfp_mask);
212 } else {
213 struct biovec_slab *bvs = bvec_slabs + *idx;
214 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
215
216 /*
217 * Make this allocation restricted and don't dump info on
218 * allocation failures, since we'll fallback to the mempool
219 * in case of failure.
220 */
221 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
222
223 /*
224 * Try a slab allocation. If this fails and __GFP_WAIT
225 * is set, retry with the 1-entry mempool
226 */
227 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
228 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
229 *idx = BIOVEC_MAX_IDX;
230 goto fallback;
231 }
232 }
233
234 return bvl;
235 }
236
237 static void __bio_free(struct bio *bio)
238 {
239 bio_disassociate_task(bio);
240
241 if (bio_integrity(bio))
242 bio_integrity_free(bio);
243 }
244
245 static void bio_free(struct bio *bio)
246 {
247 struct bio_set *bs = bio->bi_pool;
248 void *p;
249
250 __bio_free(bio);
251
252 if (bs) {
253 if (bio_flagged(bio, BIO_OWNS_VEC))
254 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
255
256 /*
257 * If we have front padding, adjust the bio pointer before freeing
258 */
259 p = bio;
260 p -= bs->front_pad;
261
262 mempool_free(p, bs->bio_pool);
263 } else {
264 /* Bio was allocated by bio_kmalloc() */
265 kfree(bio);
266 }
267 }
268
269 void bio_init(struct bio *bio)
270 {
271 memset(bio, 0, sizeof(*bio));
272 atomic_set(&bio->__bi_remaining, 1);
273 atomic_set(&bio->__bi_cnt, 1);
274 }
275 EXPORT_SYMBOL(bio_init);
276
277 /**
278 * bio_reset - reinitialize a bio
279 * @bio: bio to reset
280 *
281 * Description:
282 * After calling bio_reset(), @bio will be in the same state as a freshly
283 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
284 * preserved are the ones that are initialized by bio_alloc_bioset(). See
285 * comment in struct bio.
286 */
287 void bio_reset(struct bio *bio)
288 {
289 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
290
291 __bio_free(bio);
292
293 memset(bio, 0, BIO_RESET_BYTES);
294 bio->bi_flags = flags;
295 atomic_set(&bio->__bi_remaining, 1);
296 }
297 EXPORT_SYMBOL(bio_reset);
298
299 static void bio_chain_endio(struct bio *bio)
300 {
301 struct bio *parent = bio->bi_private;
302
303 parent->bi_error = bio->bi_error;
304 bio_endio(parent);
305 bio_put(bio);
306 }
307
308 /*
309 * Increment chain count for the bio. Make sure the CHAIN flag update
310 * is visible before the raised count.
311 */
312 static inline void bio_inc_remaining(struct bio *bio)
313 {
314 bio->bi_flags |= (1 << BIO_CHAIN);
315 smp_mb__before_atomic();
316 atomic_inc(&bio->__bi_remaining);
317 }
318
319 /**
320 * bio_chain - chain bio completions
321 * @bio: the target bio
322 * @parent: the @bio's parent bio
323 *
324 * The caller won't have a bi_end_io called when @bio completes - instead,
325 * @parent's bi_end_io won't be called until both @parent and @bio have
326 * completed; the chained bio will also be freed when it completes.
327 *
328 * The caller must not set bi_private or bi_end_io in @bio.
329 */
330 void bio_chain(struct bio *bio, struct bio *parent)
331 {
332 BUG_ON(bio->bi_private || bio->bi_end_io);
333
334 bio->bi_private = parent;
335 bio->bi_end_io = bio_chain_endio;
336 bio_inc_remaining(parent);
337 }
338 EXPORT_SYMBOL(bio_chain);
339
340 static void bio_alloc_rescue(struct work_struct *work)
341 {
342 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
343 struct bio *bio;
344
345 while (1) {
346 spin_lock(&bs->rescue_lock);
347 bio = bio_list_pop(&bs->rescue_list);
348 spin_unlock(&bs->rescue_lock);
349
350 if (!bio)
351 break;
352
353 generic_make_request(bio);
354 }
355 }
356
357 static void punt_bios_to_rescuer(struct bio_set *bs)
358 {
359 struct bio_list punt, nopunt;
360 struct bio *bio;
361
362 /*
363 * In order to guarantee forward progress we must punt only bios that
364 * were allocated from this bio_set; otherwise, if there was a bio on
365 * there for a stacking driver higher up in the stack, processing it
366 * could require allocating bios from this bio_set, and doing that from
367 * our own rescuer would be bad.
368 *
369 * Since bio lists are singly linked, pop them all instead of trying to
370 * remove from the middle of the list:
371 */
372
373 bio_list_init(&punt);
374 bio_list_init(&nopunt);
375
376 while ((bio = bio_list_pop(current->bio_list)))
377 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
378
379 *current->bio_list = nopunt;
380
381 spin_lock(&bs->rescue_lock);
382 bio_list_merge(&bs->rescue_list, &punt);
383 spin_unlock(&bs->rescue_lock);
384
385 queue_work(bs->rescue_workqueue, &bs->rescue_work);
386 }
387
388 /**
389 * bio_alloc_bioset - allocate a bio for I/O
390 * @gfp_mask: the GFP_ mask given to the slab allocator
391 * @nr_iovecs: number of iovecs to pre-allocate
392 * @bs: the bio_set to allocate from.
393 *
394 * Description:
395 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
396 * backed by the @bs's mempool.
397 *
398 * When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
399 * able to allocate a bio. This is due to the mempool guarantees. To make this
400 * work, callers must never allocate more than 1 bio at a time from this pool.
401 * Callers that need to allocate more than 1 bio must always submit the
402 * previously allocated bio for IO before attempting to allocate a new one.
403 * Failure to do so can cause deadlocks under memory pressure.
404 *
405 * Note that when running under generic_make_request() (i.e. any block
406 * driver), bios are not submitted until after you return - see the code in
407 * generic_make_request() that converts recursion into iteration, to prevent
408 * stack overflows.
409 *
410 * This would normally mean allocating multiple bios under
411 * generic_make_request() would be susceptible to deadlocks, but we have
412 * deadlock avoidance code that resubmits any blocked bios from a rescuer
413 * thread.
414 *
415 * However, we do not guarantee forward progress for allocations from other
416 * mempools. Doing multiple allocations from the same mempool under
417 * generic_make_request() should be avoided - instead, use bio_set's front_pad
418 * for per bio allocations.
419 *
420 * RETURNS:
421 * Pointer to new bio on success, NULL on failure.
422 */
423 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
424 {
425 gfp_t saved_gfp = gfp_mask;
426 unsigned front_pad;
427 unsigned inline_vecs;
428 unsigned long idx = BIO_POOL_NONE;
429 struct bio_vec *bvl = NULL;
430 struct bio *bio;
431 void *p;
432
433 if (!bs) {
434 if (nr_iovecs > UIO_MAXIOV)
435 return NULL;
436
437 p = kmalloc(sizeof(struct bio) +
438 nr_iovecs * sizeof(struct bio_vec),
439 gfp_mask);
440 front_pad = 0;
441 inline_vecs = nr_iovecs;
442 } else {
443 /* should not use nobvec bioset for nr_iovecs > 0 */
444 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
445 return NULL;
446 /*
447 * generic_make_request() converts recursion to iteration; this
448 * means if we're running beneath it, any bios we allocate and
449 * submit will not be submitted (and thus freed) until after we
450 * return.
451 *
452 * This exposes us to a potential deadlock if we allocate
453 * multiple bios from the same bio_set() while running
454 * underneath generic_make_request(). If we were to allocate
455 * multiple bios (say a stacking block driver that was splitting
456 * bios), we would deadlock if we exhausted the mempool's
457 * reserve.
458 *
459 * We solve this, and guarantee forward progress, with a rescuer
460 * workqueue per bio_set. If we go to allocate and there are
461 * bios on current->bio_list, we first try the allocation
462 * without __GFP_WAIT; if that fails, we punt those bios we
463 * would be blocking to the rescuer workqueue before we retry
464 * with the original gfp_flags.
465 */
466
467 if (current->bio_list && !bio_list_empty(current->bio_list))
468 gfp_mask &= ~__GFP_WAIT;
469
470 p = mempool_alloc(bs->bio_pool, gfp_mask);
471 if (!p && gfp_mask != saved_gfp) {
472 punt_bios_to_rescuer(bs);
473 gfp_mask = saved_gfp;
474 p = mempool_alloc(bs->bio_pool, gfp_mask);
475 }
476
477 front_pad = bs->front_pad;
478 inline_vecs = BIO_INLINE_VECS;
479 }
480
481 if (unlikely(!p))
482 return NULL;
483
484 bio = p + front_pad;
485 bio_init(bio);
486
487 if (nr_iovecs > inline_vecs) {
488 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
489 if (!bvl && gfp_mask != saved_gfp) {
490 punt_bios_to_rescuer(bs);
491 gfp_mask = saved_gfp;
492 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
493 }
494
495 if (unlikely(!bvl))
496 goto err_free;
497
498 bio->bi_flags |= 1 << BIO_OWNS_VEC;
499 } else if (nr_iovecs) {
500 bvl = bio->bi_inline_vecs;
501 }
502
503 bio->bi_pool = bs;
504 bio->bi_flags |= idx << BIO_POOL_OFFSET;
505 bio->bi_max_vecs = nr_iovecs;
506 bio->bi_io_vec = bvl;
507 return bio;
508
509 err_free:
510 mempool_free(p, bs->bio_pool);
511 return NULL;
512 }
513 EXPORT_SYMBOL(bio_alloc_bioset);
514
515 void zero_fill_bio(struct bio *bio)
516 {
517 unsigned long flags;
518 struct bio_vec bv;
519 struct bvec_iter iter;
520
521 bio_for_each_segment(bv, bio, iter) {
522 char *data = bvec_kmap_irq(&bv, &flags);
523 memset(data, 0, bv.bv_len);
524 flush_dcache_page(bv.bv_page);
525 bvec_kunmap_irq(data, &flags);
526 }
527 }
528 EXPORT_SYMBOL(zero_fill_bio);
529
530 /**
531 * bio_put - release a reference to a bio
532 * @bio: bio to release reference to
533 *
534 * Description:
535 * Put a reference to a &struct bio, either one you have gotten with
536 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
537 **/
538 void bio_put(struct bio *bio)
539 {
540 if (!bio_flagged(bio, BIO_REFFED))
541 bio_free(bio);
542 else {
543 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
544
545 /*
546 * last put frees it
547 */
548 if (atomic_dec_and_test(&bio->__bi_cnt))
549 bio_free(bio);
550 }
551 }
552 EXPORT_SYMBOL(bio_put);
553
554 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
555 {
556 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
557 blk_recount_segments(q, bio);
558
559 return bio->bi_phys_segments;
560 }
561 EXPORT_SYMBOL(bio_phys_segments);
562
563 /**
564 * __bio_clone_fast - clone a bio that shares the original bio's biovec
565 * @bio: destination bio
566 * @bio_src: bio to clone
567 *
568 * Clone a &bio. Caller will own the returned bio, but not
569 * the actual data it points to. Reference count of returned
570 * bio will be one.
571 *
572 * Caller must ensure that @bio_src is not freed before @bio.
573 */
574 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
575 {
576 BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
577
578 /*
579 * most users will be overriding ->bi_bdev with a new target,
580 * so we don't set nor calculate new physical/hw segment counts here
581 */
582 bio->bi_bdev = bio_src->bi_bdev;
583 bio->bi_flags |= 1 << BIO_CLONED;
584 bio->bi_rw = bio_src->bi_rw;
585 bio->bi_iter = bio_src->bi_iter;
586 bio->bi_io_vec = bio_src->bi_io_vec;
587 }
588 EXPORT_SYMBOL(__bio_clone_fast);
589
590 /**
591 * bio_clone_fast - clone a bio that shares the original bio's biovec
592 * @bio: bio to clone
593 * @gfp_mask: allocation priority
594 * @bs: bio_set to allocate from
595 *
596 * Like __bio_clone_fast, only also allocates the returned bio
597 */
598 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
599 {
600 struct bio *b;
601
602 b = bio_alloc_bioset(gfp_mask, 0, bs);
603 if (!b)
604 return NULL;
605
606 __bio_clone_fast(b, bio);
607
608 if (bio_integrity(bio)) {
609 int ret;
610
611 ret = bio_integrity_clone(b, bio, gfp_mask);
612
613 if (ret < 0) {
614 bio_put(b);
615 return NULL;
616 }
617 }
618
619 return b;
620 }
621 EXPORT_SYMBOL(bio_clone_fast);
622
623 /**
624 * bio_clone_bioset - clone a bio
625 * @bio_src: bio to clone
626 * @gfp_mask: allocation priority
627 * @bs: bio_set to allocate from
628 *
629 * Clone bio. Caller will own the returned bio, but not the actual data it
630 * points to. Reference count of returned bio will be one.
631 */
632 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
633 struct bio_set *bs)
634 {
635 struct bvec_iter iter;
636 struct bio_vec bv;
637 struct bio *bio;
638
639 /*
640 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
641 * bio_src->bi_io_vec to bio->bi_io_vec.
642 *
643 * We can't do that anymore, because:
644 *
645 * - The point of cloning the biovec is to produce a bio with a biovec
646 * the caller can modify: bi_idx and bi_bvec_done should be 0.
647 *
648 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
649 * we tried to clone the whole thing bio_alloc_bioset() would fail.
650 * But the clone should succeed as long as the number of biovecs we
651 * actually need to allocate is fewer than BIO_MAX_PAGES.
652 *
653 * - Lastly, bi_vcnt should not be looked at or relied upon by code
654 * that does not own the bio - reason being drivers don't use it for
655 * iterating over the biovec anymore, so expecting it to be kept up
656 * to date (i.e. for clones that share the parent biovec) is just
657 * asking for trouble and would force extra work on
658 * __bio_clone_fast() anyways.
659 */
660
661 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
662 if (!bio)
663 return NULL;
664
665 bio->bi_bdev = bio_src->bi_bdev;
666 bio->bi_rw = bio_src->bi_rw;
667 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
668 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
669
670 if (bio->bi_rw & REQ_DISCARD)
671 goto integrity_clone;
672
673 if (bio->bi_rw & REQ_WRITE_SAME) {
674 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
675 goto integrity_clone;
676 }
677
678 bio_for_each_segment(bv, bio_src, iter)
679 bio->bi_io_vec[bio->bi_vcnt++] = bv;
680
681 integrity_clone:
682 if (bio_integrity(bio_src)) {
683 int ret;
684
685 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
686 if (ret < 0) {
687 bio_put(bio);
688 return NULL;
689 }
690 }
691
692 return bio;
693 }
694 EXPORT_SYMBOL(bio_clone_bioset);
695
696 /**
697 * bio_get_nr_vecs - return approx number of vecs
698 * @bdev: I/O target
699 *
700 * Return the approximate number of pages we can send to this target.
701 * There's no guarantee that you will be able to fit this number of pages
702 * into a bio, it does not account for dynamic restrictions that vary
703 * on offset.
704 */
705 int bio_get_nr_vecs(struct block_device *bdev)
706 {
707 struct request_queue *q = bdev_get_queue(bdev);
708 int nr_pages;
709
710 nr_pages = min_t(unsigned,
711 queue_max_segments(q),
712 queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
713
714 return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
715
716 }
717 EXPORT_SYMBOL(bio_get_nr_vecs);
718
719 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
720 *page, unsigned int len, unsigned int offset,
721 unsigned int max_sectors)
722 {
723 int retried_segments = 0;
724 struct bio_vec *bvec;
725
726 /*
727 * cloned bio must not modify vec list
728 */
729 if (unlikely(bio_flagged(bio, BIO_CLONED)))
730 return 0;
731
732 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
733 return 0;
734
735 /*
736 * For filesystems with a blocksize smaller than the pagesize
737 * we will often be called with the same page as last time and
738 * a consecutive offset. Optimize this special case.
739 */
740 if (bio->bi_vcnt > 0) {
741 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
742
743 if (page == prev->bv_page &&
744 offset == prev->bv_offset + prev->bv_len) {
745 unsigned int prev_bv_len = prev->bv_len;
746 prev->bv_len += len;
747
748 if (q->merge_bvec_fn) {
749 struct bvec_merge_data bvm = {
750 /* prev_bvec is already charged in
751 bi_size, discharge it in order to
752 simulate merging updated prev_bvec
753 as new bvec. */
754 .bi_bdev = bio->bi_bdev,
755 .bi_sector = bio->bi_iter.bi_sector,
756 .bi_size = bio->bi_iter.bi_size -
757 prev_bv_len,
758 .bi_rw = bio->bi_rw,
759 };
760
761 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
762 prev->bv_len -= len;
763 return 0;
764 }
765 }
766
767 bio->bi_iter.bi_size += len;
768 goto done;
769 }
770
771 /*
772 * If the queue doesn't support SG gaps and adding this
773 * offset would create a gap, disallow it.
774 */
775 if (q->queue_flags & (1 << QUEUE_FLAG_SG_GAPS) &&
776 bvec_gap_to_prev(prev, offset))
777 return 0;
778 }
779
780 if (bio->bi_vcnt >= bio->bi_max_vecs)
781 return 0;
782
783 /*
784 * setup the new entry, we might clear it again later if we
785 * cannot add the page
786 */
787 bvec = &bio->bi_io_vec[bio->bi_vcnt];
788 bvec->bv_page = page;
789 bvec->bv_len = len;
790 bvec->bv_offset = offset;
791 bio->bi_vcnt++;
792 bio->bi_phys_segments++;
793 bio->bi_iter.bi_size += len;
794
795 /*
796 * Perform a recount if the number of segments is greater
797 * than queue_max_segments(q).
798 */
799
800 while (bio->bi_phys_segments > queue_max_segments(q)) {
801
802 if (retried_segments)
803 goto failed;
804
805 retried_segments = 1;
806 blk_recount_segments(q, bio);
807 }
808
809 /*
810 * if queue has other restrictions (eg varying max sector size
811 * depending on offset), it can specify a merge_bvec_fn in the
812 * queue to get further control
813 */
814 if (q->merge_bvec_fn) {
815 struct bvec_merge_data bvm = {
816 .bi_bdev = bio->bi_bdev,
817 .bi_sector = bio->bi_iter.bi_sector,
818 .bi_size = bio->bi_iter.bi_size - len,
819 .bi_rw = bio->bi_rw,
820 };
821
822 /*
823 * merge_bvec_fn() returns number of bytes it can accept
824 * at this offset
825 */
826 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len)
827 goto failed;
828 }
829
830 /* If we may be able to merge these biovecs, force a recount */
831 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
832 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
833
834 done:
835 return len;
836
837 failed:
838 bvec->bv_page = NULL;
839 bvec->bv_len = 0;
840 bvec->bv_offset = 0;
841 bio->bi_vcnt--;
842 bio->bi_iter.bi_size -= len;
843 blk_recount_segments(q, bio);
844 return 0;
845 }
846
847 /**
848 * bio_add_pc_page - attempt to add page to bio
849 * @q: the target queue
850 * @bio: destination bio
851 * @page: page to add
852 * @len: vec entry length
853 * @offset: vec entry offset
854 *
855 * Attempt to add a page to the bio_vec maplist. This can fail for a
856 * number of reasons, such as the bio being full or target block device
857 * limitations. The target block device must allow bio's up to PAGE_SIZE,
858 * so it is always possible to add a single page to an empty bio.
859 *
860 * This should only be used by REQ_PC bios.
861 */
862 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
863 unsigned int len, unsigned int offset)
864 {
865 return __bio_add_page(q, bio, page, len, offset,
866 queue_max_hw_sectors(q));
867 }
868 EXPORT_SYMBOL(bio_add_pc_page);
869
870 /**
871 * bio_add_page - attempt to add page to bio
872 * @bio: destination bio
873 * @page: page to add
874 * @len: vec entry length
875 * @offset: vec entry offset
876 *
877 * Attempt to add a page to the bio_vec maplist. This can fail for a
878 * number of reasons, such as the bio being full or target block device
879 * limitations. The target block device must allow bio's up to PAGE_SIZE,
880 * so it is always possible to add a single page to an empty bio.
881 */
882 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
883 unsigned int offset)
884 {
885 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
886 unsigned int max_sectors;
887
888 max_sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
889 if ((max_sectors < (len >> 9)) && !bio->bi_iter.bi_size)
890 max_sectors = len >> 9;
891
892 return __bio_add_page(q, bio, page, len, offset, max_sectors);
893 }
894 EXPORT_SYMBOL(bio_add_page);
895
896 struct submit_bio_ret {
897 struct completion event;
898 int error;
899 };
900
901 static void submit_bio_wait_endio(struct bio *bio)
902 {
903 struct submit_bio_ret *ret = bio->bi_private;
904
905 ret->error = bio->bi_error;
906 complete(&ret->event);
907 }
908
909 /**
910 * submit_bio_wait - submit a bio, and wait until it completes
911 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
912 * @bio: The &struct bio which describes the I/O
913 *
914 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
915 * bio_endio() on failure.
916 */
917 int submit_bio_wait(int rw, struct bio *bio)
918 {
919 struct submit_bio_ret ret;
920
921 rw |= REQ_SYNC;
922 init_completion(&ret.event);
923 bio->bi_private = &ret;
924 bio->bi_end_io = submit_bio_wait_endio;
925 submit_bio(rw, bio);
926 wait_for_completion(&ret.event);
927
928 return ret.error;
929 }
930 EXPORT_SYMBOL(submit_bio_wait);
931
932 /**
933 * bio_advance - increment/complete a bio by some number of bytes
934 * @bio: bio to advance
935 * @bytes: number of bytes to complete
936 *
937 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
938 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
939 * be updated on the last bvec as well.
940 *
941 * @bio will then represent the remaining, uncompleted portion of the io.
942 */
943 void bio_advance(struct bio *bio, unsigned bytes)
944 {
945 if (bio_integrity(bio))
946 bio_integrity_advance(bio, bytes);
947
948 bio_advance_iter(bio, &bio->bi_iter, bytes);
949 }
950 EXPORT_SYMBOL(bio_advance);
951
952 /**
953 * bio_alloc_pages - allocates a single page for each bvec in a bio
954 * @bio: bio to allocate pages for
955 * @gfp_mask: flags for allocation
956 *
957 * Allocates pages up to @bio->bi_vcnt.
958 *
959 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
960 * freed.
961 */
962 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
963 {
964 int i;
965 struct bio_vec *bv;
966
967 bio_for_each_segment_all(bv, bio, i) {
968 bv->bv_page = alloc_page(gfp_mask);
969 if (!bv->bv_page) {
970 while (--bv >= bio->bi_io_vec)
971 __free_page(bv->bv_page);
972 return -ENOMEM;
973 }
974 }
975
976 return 0;
977 }
978 EXPORT_SYMBOL(bio_alloc_pages);
979
980 /**
981 * bio_copy_data - copy contents of data buffers from one chain of bios to
982 * another
983 * @src: source bio list
984 * @dst: destination bio list
985 *
986 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
987 * @src and @dst as linked lists of bios.
988 *
989 * Stops when it reaches the end of either @src or @dst - that is, copies
990 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
991 */
992 void bio_copy_data(struct bio *dst, struct bio *src)
993 {
994 struct bvec_iter src_iter, dst_iter;
995 struct bio_vec src_bv, dst_bv;
996 void *src_p, *dst_p;
997 unsigned bytes;
998
999 src_iter = src->bi_iter;
1000 dst_iter = dst->bi_iter;
1001
1002 while (1) {
1003 if (!src_iter.bi_size) {
1004 src = src->bi_next;
1005 if (!src)
1006 break;
1007
1008 src_iter = src->bi_iter;
1009 }
1010
1011 if (!dst_iter.bi_size) {
1012 dst = dst->bi_next;
1013 if (!dst)
1014 break;
1015
1016 dst_iter = dst->bi_iter;
1017 }
1018
1019 src_bv = bio_iter_iovec(src, src_iter);
1020 dst_bv = bio_iter_iovec(dst, dst_iter);
1021
1022 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1023
1024 src_p = kmap_atomic(src_bv.bv_page);
1025 dst_p = kmap_atomic(dst_bv.bv_page);
1026
1027 memcpy(dst_p + dst_bv.bv_offset,
1028 src_p + src_bv.bv_offset,
1029 bytes);
1030
1031 kunmap_atomic(dst_p);
1032 kunmap_atomic(src_p);
1033
1034 bio_advance_iter(src, &src_iter, bytes);
1035 bio_advance_iter(dst, &dst_iter, bytes);
1036 }
1037 }
1038 EXPORT_SYMBOL(bio_copy_data);
1039
1040 struct bio_map_data {
1041 int is_our_pages;
1042 struct iov_iter iter;
1043 struct iovec iov[];
1044 };
1045
1046 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1047 gfp_t gfp_mask)
1048 {
1049 if (iov_count > UIO_MAXIOV)
1050 return NULL;
1051
1052 return kmalloc(sizeof(struct bio_map_data) +
1053 sizeof(struct iovec) * iov_count, gfp_mask);
1054 }
1055
1056 /**
1057 * bio_copy_from_iter - copy all pages from iov_iter to bio
1058 * @bio: The &struct bio which describes the I/O as destination
1059 * @iter: iov_iter as source
1060 *
1061 * Copy all pages from iov_iter to bio.
1062 * Returns 0 on success, or error on failure.
1063 */
1064 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1065 {
1066 int i;
1067 struct bio_vec *bvec;
1068
1069 bio_for_each_segment_all(bvec, bio, i) {
1070 ssize_t ret;
1071
1072 ret = copy_page_from_iter(bvec->bv_page,
1073 bvec->bv_offset,
1074 bvec->bv_len,
1075 &iter);
1076
1077 if (!iov_iter_count(&iter))
1078 break;
1079
1080 if (ret < bvec->bv_len)
1081 return -EFAULT;
1082 }
1083
1084 return 0;
1085 }
1086
1087 /**
1088 * bio_copy_to_iter - copy all pages from bio to iov_iter
1089 * @bio: The &struct bio which describes the I/O as source
1090 * @iter: iov_iter as destination
1091 *
1092 * Copy all pages from bio to iov_iter.
1093 * Returns 0 on success, or error on failure.
1094 */
1095 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1096 {
1097 int i;
1098 struct bio_vec *bvec;
1099
1100 bio_for_each_segment_all(bvec, bio, i) {
1101 ssize_t ret;
1102
1103 ret = copy_page_to_iter(bvec->bv_page,
1104 bvec->bv_offset,
1105 bvec->bv_len,
1106 &iter);
1107
1108 if (!iov_iter_count(&iter))
1109 break;
1110
1111 if (ret < bvec->bv_len)
1112 return -EFAULT;
1113 }
1114
1115 return 0;
1116 }
1117
1118 static void bio_free_pages(struct bio *bio)
1119 {
1120 struct bio_vec *bvec;
1121 int i;
1122
1123 bio_for_each_segment_all(bvec, bio, i)
1124 __free_page(bvec->bv_page);
1125 }
1126
1127 /**
1128 * bio_uncopy_user - finish previously mapped bio
1129 * @bio: bio being terminated
1130 *
1131 * Free pages allocated from bio_copy_user_iov() and write back data
1132 * to user space in case of a read.
1133 */
1134 int bio_uncopy_user(struct bio *bio)
1135 {
1136 struct bio_map_data *bmd = bio->bi_private;
1137 int ret = 0;
1138
1139 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1140 /*
1141 * if we're in a workqueue, the request is orphaned, so
1142 * don't copy into a random user address space, just free.
1143 */
1144 if (current->mm && bio_data_dir(bio) == READ)
1145 ret = bio_copy_to_iter(bio, bmd->iter);
1146 if (bmd->is_our_pages)
1147 bio_free_pages(bio);
1148 }
1149 kfree(bmd);
1150 bio_put(bio);
1151 return ret;
1152 }
1153 EXPORT_SYMBOL(bio_uncopy_user);
1154
1155 /**
1156 * bio_copy_user_iov - copy user data to bio
1157 * @q: destination block queue
1158 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1159 * @iter: iovec iterator
1160 * @gfp_mask: memory allocation flags
1161 *
1162 * Prepares and returns a bio for indirect user io, bouncing data
1163 * to/from kernel pages as necessary. Must be paired with
1164 * call bio_uncopy_user() on io completion.
1165 */
1166 struct bio *bio_copy_user_iov(struct request_queue *q,
1167 struct rq_map_data *map_data,
1168 const struct iov_iter *iter,
1169 gfp_t gfp_mask)
1170 {
1171 struct bio_map_data *bmd;
1172 struct page *page;
1173 struct bio *bio;
1174 int i, ret;
1175 int nr_pages = 0;
1176 unsigned int len = iter->count;
1177 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1178
1179 for (i = 0; i < iter->nr_segs; i++) {
1180 unsigned long uaddr;
1181 unsigned long end;
1182 unsigned long start;
1183
1184 uaddr = (unsigned long) iter->iov[i].iov_base;
1185 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1186 >> PAGE_SHIFT;
1187 start = uaddr >> PAGE_SHIFT;
1188
1189 /*
1190 * Overflow, abort
1191 */
1192 if (end < start)
1193 return ERR_PTR(-EINVAL);
1194
1195 nr_pages += end - start;
1196 }
1197
1198 if (offset)
1199 nr_pages++;
1200
1201 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1202 if (!bmd)
1203 return ERR_PTR(-ENOMEM);
1204
1205 /*
1206 * We need to do a deep copy of the iov_iter including the iovecs.
1207 * The caller provided iov might point to an on-stack or otherwise
1208 * shortlived one.
1209 */
1210 bmd->is_our_pages = map_data ? 0 : 1;
1211 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1212 iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1213 iter->nr_segs, iter->count);
1214
1215 ret = -ENOMEM;
1216 bio = bio_kmalloc(gfp_mask, nr_pages);
1217 if (!bio)
1218 goto out_bmd;
1219
1220 if (iter->type & WRITE)
1221 bio->bi_rw |= REQ_WRITE;
1222
1223 ret = 0;
1224
1225 if (map_data) {
1226 nr_pages = 1 << map_data->page_order;
1227 i = map_data->offset / PAGE_SIZE;
1228 }
1229 while (len) {
1230 unsigned int bytes = PAGE_SIZE;
1231
1232 bytes -= offset;
1233
1234 if (bytes > len)
1235 bytes = len;
1236
1237 if (map_data) {
1238 if (i == map_data->nr_entries * nr_pages) {
1239 ret = -ENOMEM;
1240 break;
1241 }
1242
1243 page = map_data->pages[i / nr_pages];
1244 page += (i % nr_pages);
1245
1246 i++;
1247 } else {
1248 page = alloc_page(q->bounce_gfp | gfp_mask);
1249 if (!page) {
1250 ret = -ENOMEM;
1251 break;
1252 }
1253 }
1254
1255 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1256 break;
1257
1258 len -= bytes;
1259 offset = 0;
1260 }
1261
1262 if (ret)
1263 goto cleanup;
1264
1265 /*
1266 * success
1267 */
1268 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1269 (map_data && map_data->from_user)) {
1270 ret = bio_copy_from_iter(bio, *iter);
1271 if (ret)
1272 goto cleanup;
1273 }
1274
1275 bio->bi_private = bmd;
1276 return bio;
1277 cleanup:
1278 if (!map_data)
1279 bio_free_pages(bio);
1280 bio_put(bio);
1281 out_bmd:
1282 kfree(bmd);
1283 return ERR_PTR(ret);
1284 }
1285
1286 /**
1287 * bio_map_user_iov - map user iovec into bio
1288 * @q: the struct request_queue for the bio
1289 * @iter: iovec iterator
1290 * @gfp_mask: memory allocation flags
1291 *
1292 * Map the user space address into a bio suitable for io to a block
1293 * device. Returns an error pointer in case of error.
1294 */
1295 struct bio *bio_map_user_iov(struct request_queue *q,
1296 const struct iov_iter *iter,
1297 gfp_t gfp_mask)
1298 {
1299 int j;
1300 int nr_pages = 0;
1301 struct page **pages;
1302 struct bio *bio;
1303 int cur_page = 0;
1304 int ret, offset;
1305 struct iov_iter i;
1306 struct iovec iov;
1307
1308 iov_for_each(iov, i, *iter) {
1309 unsigned long uaddr = (unsigned long) iov.iov_base;
1310 unsigned long len = iov.iov_len;
1311 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1312 unsigned long start = uaddr >> PAGE_SHIFT;
1313
1314 /*
1315 * Overflow, abort
1316 */
1317 if (end < start)
1318 return ERR_PTR(-EINVAL);
1319
1320 nr_pages += end - start;
1321 /*
1322 * buffer must be aligned to at least hardsector size for now
1323 */
1324 if (uaddr & queue_dma_alignment(q))
1325 return ERR_PTR(-EINVAL);
1326 }
1327
1328 if (!nr_pages)
1329 return ERR_PTR(-EINVAL);
1330
1331 bio = bio_kmalloc(gfp_mask, nr_pages);
1332 if (!bio)
1333 return ERR_PTR(-ENOMEM);
1334
1335 ret = -ENOMEM;
1336 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1337 if (!pages)
1338 goto out;
1339
1340 iov_for_each(iov, i, *iter) {
1341 unsigned long uaddr = (unsigned long) iov.iov_base;
1342 unsigned long len = iov.iov_len;
1343 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1344 unsigned long start = uaddr >> PAGE_SHIFT;
1345 const int local_nr_pages = end - start;
1346 const int page_limit = cur_page + local_nr_pages;
1347
1348 ret = get_user_pages_fast(uaddr, local_nr_pages,
1349 (iter->type & WRITE) != WRITE,
1350 &pages[cur_page]);
1351 if (ret < local_nr_pages) {
1352 ret = -EFAULT;
1353 goto out_unmap;
1354 }
1355
1356 offset = uaddr & ~PAGE_MASK;
1357 for (j = cur_page; j < page_limit; j++) {
1358 unsigned int bytes = PAGE_SIZE - offset;
1359
1360 if (len <= 0)
1361 break;
1362
1363 if (bytes > len)
1364 bytes = len;
1365
1366 /*
1367 * sorry...
1368 */
1369 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1370 bytes)
1371 break;
1372
1373 len -= bytes;
1374 offset = 0;
1375 }
1376
1377 cur_page = j;
1378 /*
1379 * release the pages we didn't map into the bio, if any
1380 */
1381 while (j < page_limit)
1382 page_cache_release(pages[j++]);
1383 }
1384
1385 kfree(pages);
1386
1387 /*
1388 * set data direction, and check if mapped pages need bouncing
1389 */
1390 if (iter->type & WRITE)
1391 bio->bi_rw |= REQ_WRITE;
1392
1393 bio->bi_flags |= (1 << BIO_USER_MAPPED);
1394
1395 /*
1396 * subtle -- if __bio_map_user() ended up bouncing a bio,
1397 * it would normally disappear when its bi_end_io is run.
1398 * however, we need it for the unmap, so grab an extra
1399 * reference to it
1400 */
1401 bio_get(bio);
1402 return bio;
1403
1404 out_unmap:
1405 for (j = 0; j < nr_pages; j++) {
1406 if (!pages[j])
1407 break;
1408 page_cache_release(pages[j]);
1409 }
1410 out:
1411 kfree(pages);
1412 bio_put(bio);
1413 return ERR_PTR(ret);
1414 }
1415
1416 static void __bio_unmap_user(struct bio *bio)
1417 {
1418 struct bio_vec *bvec;
1419 int i;
1420
1421 /*
1422 * make sure we dirty pages we wrote to
1423 */
1424 bio_for_each_segment_all(bvec, bio, i) {
1425 if (bio_data_dir(bio) == READ)
1426 set_page_dirty_lock(bvec->bv_page);
1427
1428 page_cache_release(bvec->bv_page);
1429 }
1430
1431 bio_put(bio);
1432 }
1433
1434 /**
1435 * bio_unmap_user - unmap a bio
1436 * @bio: the bio being unmapped
1437 *
1438 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1439 * a process context.
1440 *
1441 * bio_unmap_user() may sleep.
1442 */
1443 void bio_unmap_user(struct bio *bio)
1444 {
1445 __bio_unmap_user(bio);
1446 bio_put(bio);
1447 }
1448 EXPORT_SYMBOL(bio_unmap_user);
1449
1450 static void bio_map_kern_endio(struct bio *bio)
1451 {
1452 bio_put(bio);
1453 }
1454
1455 /**
1456 * bio_map_kern - map kernel address into bio
1457 * @q: the struct request_queue for the bio
1458 * @data: pointer to buffer to map
1459 * @len: length in bytes
1460 * @gfp_mask: allocation flags for bio allocation
1461 *
1462 * Map the kernel address into a bio suitable for io to a block
1463 * device. Returns an error pointer in case of error.
1464 */
1465 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1466 gfp_t gfp_mask)
1467 {
1468 unsigned long kaddr = (unsigned long)data;
1469 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1470 unsigned long start = kaddr >> PAGE_SHIFT;
1471 const int nr_pages = end - start;
1472 int offset, i;
1473 struct bio *bio;
1474
1475 bio = bio_kmalloc(gfp_mask, nr_pages);
1476 if (!bio)
1477 return ERR_PTR(-ENOMEM);
1478
1479 offset = offset_in_page(kaddr);
1480 for (i = 0; i < nr_pages; i++) {
1481 unsigned int bytes = PAGE_SIZE - offset;
1482
1483 if (len <= 0)
1484 break;
1485
1486 if (bytes > len)
1487 bytes = len;
1488
1489 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1490 offset) < bytes) {
1491 /* we don't support partial mappings */
1492 bio_put(bio);
1493 return ERR_PTR(-EINVAL);
1494 }
1495
1496 data += bytes;
1497 len -= bytes;
1498 offset = 0;
1499 }
1500
1501 bio->bi_end_io = bio_map_kern_endio;
1502 return bio;
1503 }
1504 EXPORT_SYMBOL(bio_map_kern);
1505
1506 static void bio_copy_kern_endio(struct bio *bio)
1507 {
1508 bio_free_pages(bio);
1509 bio_put(bio);
1510 }
1511
1512 static void bio_copy_kern_endio_read(struct bio *bio)
1513 {
1514 char *p = bio->bi_private;
1515 struct bio_vec *bvec;
1516 int i;
1517
1518 bio_for_each_segment_all(bvec, bio, i) {
1519 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1520 p += bvec->bv_len;
1521 }
1522
1523 bio_copy_kern_endio(bio);
1524 }
1525
1526 /**
1527 * bio_copy_kern - copy kernel address into bio
1528 * @q: the struct request_queue for the bio
1529 * @data: pointer to buffer to copy
1530 * @len: length in bytes
1531 * @gfp_mask: allocation flags for bio and page allocation
1532 * @reading: data direction is READ
1533 *
1534 * copy the kernel address into a bio suitable for io to a block
1535 * device. Returns an error pointer in case of error.
1536 */
1537 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1538 gfp_t gfp_mask, int reading)
1539 {
1540 unsigned long kaddr = (unsigned long)data;
1541 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1542 unsigned long start = kaddr >> PAGE_SHIFT;
1543 struct bio *bio;
1544 void *p = data;
1545 int nr_pages = 0;
1546
1547 /*
1548 * Overflow, abort
1549 */
1550 if (end < start)
1551 return ERR_PTR(-EINVAL);
1552
1553 nr_pages = end - start;
1554 bio = bio_kmalloc(gfp_mask, nr_pages);
1555 if (!bio)
1556 return ERR_PTR(-ENOMEM);
1557
1558 while (len) {
1559 struct page *page;
1560 unsigned int bytes = PAGE_SIZE;
1561
1562 if (bytes > len)
1563 bytes = len;
1564
1565 page = alloc_page(q->bounce_gfp | gfp_mask);
1566 if (!page)
1567 goto cleanup;
1568
1569 if (!reading)
1570 memcpy(page_address(page), p, bytes);
1571
1572 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1573 break;
1574
1575 len -= bytes;
1576 p += bytes;
1577 }
1578
1579 if (reading) {
1580 bio->bi_end_io = bio_copy_kern_endio_read;
1581 bio->bi_private = data;
1582 } else {
1583 bio->bi_end_io = bio_copy_kern_endio;
1584 bio->bi_rw |= REQ_WRITE;
1585 }
1586
1587 return bio;
1588
1589 cleanup:
1590 bio_free_pages(bio);
1591 bio_put(bio);
1592 return ERR_PTR(-ENOMEM);
1593 }
1594 EXPORT_SYMBOL(bio_copy_kern);
1595
1596 /*
1597 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1598 * for performing direct-IO in BIOs.
1599 *
1600 * The problem is that we cannot run set_page_dirty() from interrupt context
1601 * because the required locks are not interrupt-safe. So what we can do is to
1602 * mark the pages dirty _before_ performing IO. And in interrupt context,
1603 * check that the pages are still dirty. If so, fine. If not, redirty them
1604 * in process context.
1605 *
1606 * We special-case compound pages here: normally this means reads into hugetlb
1607 * pages. The logic in here doesn't really work right for compound pages
1608 * because the VM does not uniformly chase down the head page in all cases.
1609 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1610 * handle them at all. So we skip compound pages here at an early stage.
1611 *
1612 * Note that this code is very hard to test under normal circumstances because
1613 * direct-io pins the pages with get_user_pages(). This makes
1614 * is_page_cache_freeable return false, and the VM will not clean the pages.
1615 * But other code (eg, flusher threads) could clean the pages if they are mapped
1616 * pagecache.
1617 *
1618 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1619 * deferred bio dirtying paths.
1620 */
1621
1622 /*
1623 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1624 */
1625 void bio_set_pages_dirty(struct bio *bio)
1626 {
1627 struct bio_vec *bvec;
1628 int i;
1629
1630 bio_for_each_segment_all(bvec, bio, i) {
1631 struct page *page = bvec->bv_page;
1632
1633 if (page && !PageCompound(page))
1634 set_page_dirty_lock(page);
1635 }
1636 }
1637
1638 static void bio_release_pages(struct bio *bio)
1639 {
1640 struct bio_vec *bvec;
1641 int i;
1642
1643 bio_for_each_segment_all(bvec, bio, i) {
1644 struct page *page = bvec->bv_page;
1645
1646 if (page)
1647 put_page(page);
1648 }
1649 }
1650
1651 /*
1652 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1653 * If they are, then fine. If, however, some pages are clean then they must
1654 * have been written out during the direct-IO read. So we take another ref on
1655 * the BIO and the offending pages and re-dirty the pages in process context.
1656 *
1657 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1658 * here on. It will run one page_cache_release() against each page and will
1659 * run one bio_put() against the BIO.
1660 */
1661
1662 static void bio_dirty_fn(struct work_struct *work);
1663
1664 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1665 static DEFINE_SPINLOCK(bio_dirty_lock);
1666 static struct bio *bio_dirty_list;
1667
1668 /*
1669 * This runs in process context
1670 */
1671 static void bio_dirty_fn(struct work_struct *work)
1672 {
1673 unsigned long flags;
1674 struct bio *bio;
1675
1676 spin_lock_irqsave(&bio_dirty_lock, flags);
1677 bio = bio_dirty_list;
1678 bio_dirty_list = NULL;
1679 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1680
1681 while (bio) {
1682 struct bio *next = bio->bi_private;
1683
1684 bio_set_pages_dirty(bio);
1685 bio_release_pages(bio);
1686 bio_put(bio);
1687 bio = next;
1688 }
1689 }
1690
1691 void bio_check_pages_dirty(struct bio *bio)
1692 {
1693 struct bio_vec *bvec;
1694 int nr_clean_pages = 0;
1695 int i;
1696
1697 bio_for_each_segment_all(bvec, bio, i) {
1698 struct page *page = bvec->bv_page;
1699
1700 if (PageDirty(page) || PageCompound(page)) {
1701 page_cache_release(page);
1702 bvec->bv_page = NULL;
1703 } else {
1704 nr_clean_pages++;
1705 }
1706 }
1707
1708 if (nr_clean_pages) {
1709 unsigned long flags;
1710
1711 spin_lock_irqsave(&bio_dirty_lock, flags);
1712 bio->bi_private = bio_dirty_list;
1713 bio_dirty_list = bio;
1714 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1715 schedule_work(&bio_dirty_work);
1716 } else {
1717 bio_put(bio);
1718 }
1719 }
1720
1721 void generic_start_io_acct(int rw, unsigned long sectors,
1722 struct hd_struct *part)
1723 {
1724 int cpu = part_stat_lock();
1725
1726 part_round_stats(cpu, part);
1727 part_stat_inc(cpu, part, ios[rw]);
1728 part_stat_add(cpu, part, sectors[rw], sectors);
1729 part_inc_in_flight(part, rw);
1730
1731 part_stat_unlock();
1732 }
1733 EXPORT_SYMBOL(generic_start_io_acct);
1734
1735 void generic_end_io_acct(int rw, struct hd_struct *part,
1736 unsigned long start_time)
1737 {
1738 unsigned long duration = jiffies - start_time;
1739 int cpu = part_stat_lock();
1740
1741 part_stat_add(cpu, part, ticks[rw], duration);
1742 part_round_stats(cpu, part);
1743 part_dec_in_flight(part, rw);
1744
1745 part_stat_unlock();
1746 }
1747 EXPORT_SYMBOL(generic_end_io_acct);
1748
1749 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1750 void bio_flush_dcache_pages(struct bio *bi)
1751 {
1752 struct bio_vec bvec;
1753 struct bvec_iter iter;
1754
1755 bio_for_each_segment(bvec, bi, iter)
1756 flush_dcache_page(bvec.bv_page);
1757 }
1758 EXPORT_SYMBOL(bio_flush_dcache_pages);
1759 #endif
1760
1761 static inline bool bio_remaining_done(struct bio *bio)
1762 {
1763 /*
1764 * If we're not chaining, then ->__bi_remaining is always 1 and
1765 * we always end io on the first invocation.
1766 */
1767 if (!bio_flagged(bio, BIO_CHAIN))
1768 return true;
1769
1770 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1771
1772 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1773 clear_bit(BIO_CHAIN, &bio->bi_flags);
1774 return true;
1775 }
1776
1777 return false;
1778 }
1779
1780 /**
1781 * bio_endio - end I/O on a bio
1782 * @bio: bio
1783 *
1784 * Description:
1785 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1786 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1787 * bio unless they own it and thus know that it has an end_io function.
1788 **/
1789 void bio_endio(struct bio *bio)
1790 {
1791 while (bio) {
1792 if (unlikely(!bio_remaining_done(bio)))
1793 break;
1794
1795 /*
1796 * Need to have a real endio function for chained bios,
1797 * otherwise various corner cases will break (like stacking
1798 * block devices that save/restore bi_end_io) - however, we want
1799 * to avoid unbounded recursion and blowing the stack. Tail call
1800 * optimization would handle this, but compiling with frame
1801 * pointers also disables gcc's sibling call optimization.
1802 */
1803 if (bio->bi_end_io == bio_chain_endio) {
1804 struct bio *parent = bio->bi_private;
1805 parent->bi_error = bio->bi_error;
1806 bio_put(bio);
1807 bio = parent;
1808 } else {
1809 if (bio->bi_end_io)
1810 bio->bi_end_io(bio);
1811 bio = NULL;
1812 }
1813 }
1814 }
1815 EXPORT_SYMBOL(bio_endio);
1816
1817 /**
1818 * bio_split - split a bio
1819 * @bio: bio to split
1820 * @sectors: number of sectors to split from the front of @bio
1821 * @gfp: gfp mask
1822 * @bs: bio set to allocate from
1823 *
1824 * Allocates and returns a new bio which represents @sectors from the start of
1825 * @bio, and updates @bio to represent the remaining sectors.
1826 *
1827 * The newly allocated bio will point to @bio's bi_io_vec; it is the caller's
1828 * responsibility to ensure that @bio is not freed before the split.
1829 */
1830 struct bio *bio_split(struct bio *bio, int sectors,
1831 gfp_t gfp, struct bio_set *bs)
1832 {
1833 struct bio *split = NULL;
1834
1835 BUG_ON(sectors <= 0);
1836 BUG_ON(sectors >= bio_sectors(bio));
1837
1838 split = bio_clone_fast(bio, gfp, bs);
1839 if (!split)
1840 return NULL;
1841
1842 split->bi_iter.bi_size = sectors << 9;
1843
1844 if (bio_integrity(split))
1845 bio_integrity_trim(split, 0, sectors);
1846
1847 bio_advance(bio, split->bi_iter.bi_size);
1848
1849 return split;
1850 }
1851 EXPORT_SYMBOL(bio_split);
1852
1853 /**
1854 * bio_trim - trim a bio
1855 * @bio: bio to trim
1856 * @offset: number of sectors to trim from the front of @bio
1857 * @size: size we want to trim @bio to, in sectors
1858 */
1859 void bio_trim(struct bio *bio, int offset, int size)
1860 {
1861 /* 'bio' is a cloned bio which we need to trim to match
1862 * the given offset and size.
1863 */
1864
1865 size <<= 9;
1866 if (offset == 0 && size == bio->bi_iter.bi_size)
1867 return;
1868
1869 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1870
1871 bio_advance(bio, offset << 9);
1872
1873 bio->bi_iter.bi_size = size;
1874 }
1875 EXPORT_SYMBOL_GPL(bio_trim);
1876
1877 /*
1878 * create memory pools for biovec's in a bio_set.
1879 * use the global biovec slabs created for general use.
1880 */
1881 mempool_t *biovec_create_pool(int pool_entries)
1882 {
1883 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1884
1885 return mempool_create_slab_pool(pool_entries, bp->slab);
1886 }
1887
1888 void bioset_free(struct bio_set *bs)
1889 {
1890 if (bs->rescue_workqueue)
1891 destroy_workqueue(bs->rescue_workqueue);
1892
1893 if (bs->bio_pool)
1894 mempool_destroy(bs->bio_pool);
1895
1896 if (bs->bvec_pool)
1897 mempool_destroy(bs->bvec_pool);
1898
1899 bioset_integrity_free(bs);
1900 bio_put_slab(bs);
1901
1902 kfree(bs);
1903 }
1904 EXPORT_SYMBOL(bioset_free);
1905
1906 static struct bio_set *__bioset_create(unsigned int pool_size,
1907 unsigned int front_pad,
1908 bool create_bvec_pool)
1909 {
1910 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1911 struct bio_set *bs;
1912
1913 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1914 if (!bs)
1915 return NULL;
1916
1917 bs->front_pad = front_pad;
1918
1919 spin_lock_init(&bs->rescue_lock);
1920 bio_list_init(&bs->rescue_list);
1921 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1922
1923 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1924 if (!bs->bio_slab) {
1925 kfree(bs);
1926 return NULL;
1927 }
1928
1929 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1930 if (!bs->bio_pool)
1931 goto bad;
1932
1933 if (create_bvec_pool) {
1934 bs->bvec_pool = biovec_create_pool(pool_size);
1935 if (!bs->bvec_pool)
1936 goto bad;
1937 }
1938
1939 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1940 if (!bs->rescue_workqueue)
1941 goto bad;
1942
1943 return bs;
1944 bad:
1945 bioset_free(bs);
1946 return NULL;
1947 }
1948
1949 /**
1950 * bioset_create - Create a bio_set
1951 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1952 * @front_pad: Number of bytes to allocate in front of the returned bio
1953 *
1954 * Description:
1955 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1956 * to ask for a number of bytes to be allocated in front of the bio.
1957 * Front pad allocation is useful for embedding the bio inside
1958 * another structure, to avoid allocating extra data to go with the bio.
1959 * Note that the bio must be embedded at the END of that structure always,
1960 * or things will break badly.
1961 */
1962 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1963 {
1964 return __bioset_create(pool_size, front_pad, true);
1965 }
1966 EXPORT_SYMBOL(bioset_create);
1967
1968 /**
1969 * bioset_create_nobvec - Create a bio_set without bio_vec mempool
1970 * @pool_size: Number of bio to cache in the mempool
1971 * @front_pad: Number of bytes to allocate in front of the returned bio
1972 *
1973 * Description:
1974 * Same functionality as bioset_create() except that mempool is not
1975 * created for bio_vecs. Saving some memory for bio_clone_fast() users.
1976 */
1977 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
1978 {
1979 return __bioset_create(pool_size, front_pad, false);
1980 }
1981 EXPORT_SYMBOL(bioset_create_nobvec);
1982
1983 #ifdef CONFIG_BLK_CGROUP
1984
1985 /**
1986 * bio_associate_blkcg - associate a bio with the specified blkcg
1987 * @bio: target bio
1988 * @blkcg_css: css of the blkcg to associate
1989 *
1990 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
1991 * treat @bio as if it were issued by a task which belongs to the blkcg.
1992 *
1993 * This function takes an extra reference of @blkcg_css which will be put
1994 * when @bio is released. The caller must own @bio and is responsible for
1995 * synchronizing calls to this function.
1996 */
1997 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
1998 {
1999 if (unlikely(bio->bi_css))
2000 return -EBUSY;
2001 css_get(blkcg_css);
2002 bio->bi_css = blkcg_css;
2003 return 0;
2004 }
2005
2006 /**
2007 * bio_associate_current - associate a bio with %current
2008 * @bio: target bio
2009 *
2010 * Associate @bio with %current if it hasn't been associated yet. Block
2011 * layer will treat @bio as if it were issued by %current no matter which
2012 * task actually issues it.
2013 *
2014 * This function takes an extra reference of @task's io_context and blkcg
2015 * which will be put when @bio is released. The caller must own @bio,
2016 * ensure %current->io_context exists, and is responsible for synchronizing
2017 * calls to this function.
2018 */
2019 int bio_associate_current(struct bio *bio)
2020 {
2021 struct io_context *ioc;
2022
2023 if (bio->bi_css)
2024 return -EBUSY;
2025
2026 ioc = current->io_context;
2027 if (!ioc)
2028 return -ENOENT;
2029
2030 get_io_context_active(ioc);
2031 bio->bi_ioc = ioc;
2032 bio->bi_css = task_get_css(current, blkio_cgrp_id);
2033 return 0;
2034 }
2035
2036 /**
2037 * bio_disassociate_task - undo bio_associate_current()
2038 * @bio: target bio
2039 */
2040 void bio_disassociate_task(struct bio *bio)
2041 {
2042 if (bio->bi_ioc) {
2043 put_io_context(bio->bi_ioc);
2044 bio->bi_ioc = NULL;
2045 }
2046 if (bio->bi_css) {
2047 css_put(bio->bi_css);
2048 bio->bi_css = NULL;
2049 }
2050 }
2051
2052 #endif /* CONFIG_BLK_CGROUP */
2053
2054 static void __init biovec_init_slabs(void)
2055 {
2056 int i;
2057
2058 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2059 int size;
2060 struct biovec_slab *bvs = bvec_slabs + i;
2061
2062 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2063 bvs->slab = NULL;
2064 continue;
2065 }
2066
2067 size = bvs->nr_vecs * sizeof(struct bio_vec);
2068 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2069 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2070 }
2071 }
2072
2073 static int __init init_bio(void)
2074 {
2075 bio_slab_max = 2;
2076 bio_slab_nr = 0;
2077 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2078 if (!bio_slabs)
2079 panic("bio: can't allocate bios\n");
2080
2081 bio_integrity_init();
2082 biovec_init_slabs();
2083
2084 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2085 if (!fs_bio_set)
2086 panic("bio: can't allocate bios\n");
2087
2088 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2089 panic("bio: can't create integrity pool\n");
2090
2091 return 0;
2092 }
2093 subsys_initcall(init_bio);
This page took 0.191988 seconds and 5 git commands to generate.