writeback: move backing_dev_info->state into bdi_writeback
[deliverable/linux.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/block.h>
39
40 #include "blk.h"
41 #include "blk-mq.h"
42
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
48
49 DEFINE_IDA(blk_queue_ida);
50
51 /*
52 * For the allocated request tables
53 */
54 struct kmem_cache *request_cachep = NULL;
55
56 /*
57 * For queue allocation
58 */
59 struct kmem_cache *blk_requestq_cachep;
60
61 /*
62 * Controlling structure to kblockd
63 */
64 static struct workqueue_struct *kblockd_workqueue;
65
66 void blk_queue_congestion_threshold(struct request_queue *q)
67 {
68 int nr;
69
70 nr = q->nr_requests - (q->nr_requests / 8) + 1;
71 if (nr > q->nr_requests)
72 nr = q->nr_requests;
73 q->nr_congestion_on = nr;
74
75 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
76 if (nr < 1)
77 nr = 1;
78 q->nr_congestion_off = nr;
79 }
80
81 /**
82 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
83 * @bdev: device
84 *
85 * Locates the passed device's request queue and returns the address of its
86 * backing_dev_info. This function can only be called if @bdev is opened
87 * and the return value is never NULL.
88 */
89 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
90 {
91 struct request_queue *q = bdev_get_queue(bdev);
92
93 return &q->backing_dev_info;
94 }
95 EXPORT_SYMBOL(blk_get_backing_dev_info);
96
97 void blk_rq_init(struct request_queue *q, struct request *rq)
98 {
99 memset(rq, 0, sizeof(*rq));
100
101 INIT_LIST_HEAD(&rq->queuelist);
102 INIT_LIST_HEAD(&rq->timeout_list);
103 rq->cpu = -1;
104 rq->q = q;
105 rq->__sector = (sector_t) -1;
106 INIT_HLIST_NODE(&rq->hash);
107 RB_CLEAR_NODE(&rq->rb_node);
108 rq->cmd = rq->__cmd;
109 rq->cmd_len = BLK_MAX_CDB;
110 rq->tag = -1;
111 rq->start_time = jiffies;
112 set_start_time_ns(rq);
113 rq->part = NULL;
114 }
115 EXPORT_SYMBOL(blk_rq_init);
116
117 static void req_bio_endio(struct request *rq, struct bio *bio,
118 unsigned int nbytes, int error)
119 {
120 if (error && !(rq->cmd_flags & REQ_CLONE))
121 clear_bit(BIO_UPTODATE, &bio->bi_flags);
122 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
123 error = -EIO;
124
125 if (unlikely(rq->cmd_flags & REQ_QUIET))
126 set_bit(BIO_QUIET, &bio->bi_flags);
127
128 bio_advance(bio, nbytes);
129
130 /* don't actually finish bio if it's part of flush sequence */
131 if (bio->bi_iter.bi_size == 0 &&
132 !(rq->cmd_flags & (REQ_FLUSH_SEQ|REQ_CLONE)))
133 bio_endio(bio, error);
134 }
135
136 void blk_dump_rq_flags(struct request *rq, char *msg)
137 {
138 int bit;
139
140 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
141 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
142 (unsigned long long) rq->cmd_flags);
143
144 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
145 (unsigned long long)blk_rq_pos(rq),
146 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
147 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
148 rq->bio, rq->biotail, blk_rq_bytes(rq));
149
150 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
151 printk(KERN_INFO " cdb: ");
152 for (bit = 0; bit < BLK_MAX_CDB; bit++)
153 printk("%02x ", rq->cmd[bit]);
154 printk("\n");
155 }
156 }
157 EXPORT_SYMBOL(blk_dump_rq_flags);
158
159 static void blk_delay_work(struct work_struct *work)
160 {
161 struct request_queue *q;
162
163 q = container_of(work, struct request_queue, delay_work.work);
164 spin_lock_irq(q->queue_lock);
165 __blk_run_queue(q);
166 spin_unlock_irq(q->queue_lock);
167 }
168
169 /**
170 * blk_delay_queue - restart queueing after defined interval
171 * @q: The &struct request_queue in question
172 * @msecs: Delay in msecs
173 *
174 * Description:
175 * Sometimes queueing needs to be postponed for a little while, to allow
176 * resources to come back. This function will make sure that queueing is
177 * restarted around the specified time. Queue lock must be held.
178 */
179 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
180 {
181 if (likely(!blk_queue_dead(q)))
182 queue_delayed_work(kblockd_workqueue, &q->delay_work,
183 msecs_to_jiffies(msecs));
184 }
185 EXPORT_SYMBOL(blk_delay_queue);
186
187 /**
188 * blk_start_queue - restart a previously stopped queue
189 * @q: The &struct request_queue in question
190 *
191 * Description:
192 * blk_start_queue() will clear the stop flag on the queue, and call
193 * the request_fn for the queue if it was in a stopped state when
194 * entered. Also see blk_stop_queue(). Queue lock must be held.
195 **/
196 void blk_start_queue(struct request_queue *q)
197 {
198 WARN_ON(!irqs_disabled());
199
200 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
201 __blk_run_queue(q);
202 }
203 EXPORT_SYMBOL(blk_start_queue);
204
205 /**
206 * blk_stop_queue - stop a queue
207 * @q: The &struct request_queue in question
208 *
209 * Description:
210 * The Linux block layer assumes that a block driver will consume all
211 * entries on the request queue when the request_fn strategy is called.
212 * Often this will not happen, because of hardware limitations (queue
213 * depth settings). If a device driver gets a 'queue full' response,
214 * or if it simply chooses not to queue more I/O at one point, it can
215 * call this function to prevent the request_fn from being called until
216 * the driver has signalled it's ready to go again. This happens by calling
217 * blk_start_queue() to restart queue operations. Queue lock must be held.
218 **/
219 void blk_stop_queue(struct request_queue *q)
220 {
221 cancel_delayed_work(&q->delay_work);
222 queue_flag_set(QUEUE_FLAG_STOPPED, q);
223 }
224 EXPORT_SYMBOL(blk_stop_queue);
225
226 /**
227 * blk_sync_queue - cancel any pending callbacks on a queue
228 * @q: the queue
229 *
230 * Description:
231 * The block layer may perform asynchronous callback activity
232 * on a queue, such as calling the unplug function after a timeout.
233 * A block device may call blk_sync_queue to ensure that any
234 * such activity is cancelled, thus allowing it to release resources
235 * that the callbacks might use. The caller must already have made sure
236 * that its ->make_request_fn will not re-add plugging prior to calling
237 * this function.
238 *
239 * This function does not cancel any asynchronous activity arising
240 * out of elevator or throttling code. That would require elevator_exit()
241 * and blkcg_exit_queue() to be called with queue lock initialized.
242 *
243 */
244 void blk_sync_queue(struct request_queue *q)
245 {
246 del_timer_sync(&q->timeout);
247
248 if (q->mq_ops) {
249 struct blk_mq_hw_ctx *hctx;
250 int i;
251
252 queue_for_each_hw_ctx(q, hctx, i) {
253 cancel_delayed_work_sync(&hctx->run_work);
254 cancel_delayed_work_sync(&hctx->delay_work);
255 }
256 } else {
257 cancel_delayed_work_sync(&q->delay_work);
258 }
259 }
260 EXPORT_SYMBOL(blk_sync_queue);
261
262 /**
263 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
264 * @q: The queue to run
265 *
266 * Description:
267 * Invoke request handling on a queue if there are any pending requests.
268 * May be used to restart request handling after a request has completed.
269 * This variant runs the queue whether or not the queue has been
270 * stopped. Must be called with the queue lock held and interrupts
271 * disabled. See also @blk_run_queue.
272 */
273 inline void __blk_run_queue_uncond(struct request_queue *q)
274 {
275 if (unlikely(blk_queue_dead(q)))
276 return;
277
278 /*
279 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
280 * the queue lock internally. As a result multiple threads may be
281 * running such a request function concurrently. Keep track of the
282 * number of active request_fn invocations such that blk_drain_queue()
283 * can wait until all these request_fn calls have finished.
284 */
285 q->request_fn_active++;
286 q->request_fn(q);
287 q->request_fn_active--;
288 }
289 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
290
291 /**
292 * __blk_run_queue - run a single device queue
293 * @q: The queue to run
294 *
295 * Description:
296 * See @blk_run_queue. This variant must be called with the queue lock
297 * held and interrupts disabled.
298 */
299 void __blk_run_queue(struct request_queue *q)
300 {
301 if (unlikely(blk_queue_stopped(q)))
302 return;
303
304 __blk_run_queue_uncond(q);
305 }
306 EXPORT_SYMBOL(__blk_run_queue);
307
308 /**
309 * blk_run_queue_async - run a single device queue in workqueue context
310 * @q: The queue to run
311 *
312 * Description:
313 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
314 * of us. The caller must hold the queue lock.
315 */
316 void blk_run_queue_async(struct request_queue *q)
317 {
318 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
319 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
320 }
321 EXPORT_SYMBOL(blk_run_queue_async);
322
323 /**
324 * blk_run_queue - run a single device queue
325 * @q: The queue to run
326 *
327 * Description:
328 * Invoke request handling on this queue, if it has pending work to do.
329 * May be used to restart queueing when a request has completed.
330 */
331 void blk_run_queue(struct request_queue *q)
332 {
333 unsigned long flags;
334
335 spin_lock_irqsave(q->queue_lock, flags);
336 __blk_run_queue(q);
337 spin_unlock_irqrestore(q->queue_lock, flags);
338 }
339 EXPORT_SYMBOL(blk_run_queue);
340
341 void blk_put_queue(struct request_queue *q)
342 {
343 kobject_put(&q->kobj);
344 }
345 EXPORT_SYMBOL(blk_put_queue);
346
347 /**
348 * __blk_drain_queue - drain requests from request_queue
349 * @q: queue to drain
350 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
351 *
352 * Drain requests from @q. If @drain_all is set, all requests are drained.
353 * If not, only ELVPRIV requests are drained. The caller is responsible
354 * for ensuring that no new requests which need to be drained are queued.
355 */
356 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
357 __releases(q->queue_lock)
358 __acquires(q->queue_lock)
359 {
360 int i;
361
362 lockdep_assert_held(q->queue_lock);
363
364 while (true) {
365 bool drain = false;
366
367 /*
368 * The caller might be trying to drain @q before its
369 * elevator is initialized.
370 */
371 if (q->elevator)
372 elv_drain_elevator(q);
373
374 blkcg_drain_queue(q);
375
376 /*
377 * This function might be called on a queue which failed
378 * driver init after queue creation or is not yet fully
379 * active yet. Some drivers (e.g. fd and loop) get unhappy
380 * in such cases. Kick queue iff dispatch queue has
381 * something on it and @q has request_fn set.
382 */
383 if (!list_empty(&q->queue_head) && q->request_fn)
384 __blk_run_queue(q);
385
386 drain |= q->nr_rqs_elvpriv;
387 drain |= q->request_fn_active;
388
389 /*
390 * Unfortunately, requests are queued at and tracked from
391 * multiple places and there's no single counter which can
392 * be drained. Check all the queues and counters.
393 */
394 if (drain_all) {
395 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
396 drain |= !list_empty(&q->queue_head);
397 for (i = 0; i < 2; i++) {
398 drain |= q->nr_rqs[i];
399 drain |= q->in_flight[i];
400 if (fq)
401 drain |= !list_empty(&fq->flush_queue[i]);
402 }
403 }
404
405 if (!drain)
406 break;
407
408 spin_unlock_irq(q->queue_lock);
409
410 msleep(10);
411
412 spin_lock_irq(q->queue_lock);
413 }
414
415 /*
416 * With queue marked dead, any woken up waiter will fail the
417 * allocation path, so the wakeup chaining is lost and we're
418 * left with hung waiters. We need to wake up those waiters.
419 */
420 if (q->request_fn) {
421 struct request_list *rl;
422
423 blk_queue_for_each_rl(rl, q)
424 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
425 wake_up_all(&rl->wait[i]);
426 }
427 }
428
429 /**
430 * blk_queue_bypass_start - enter queue bypass mode
431 * @q: queue of interest
432 *
433 * In bypass mode, only the dispatch FIFO queue of @q is used. This
434 * function makes @q enter bypass mode and drains all requests which were
435 * throttled or issued before. On return, it's guaranteed that no request
436 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
437 * inside queue or RCU read lock.
438 */
439 void blk_queue_bypass_start(struct request_queue *q)
440 {
441 spin_lock_irq(q->queue_lock);
442 q->bypass_depth++;
443 queue_flag_set(QUEUE_FLAG_BYPASS, q);
444 spin_unlock_irq(q->queue_lock);
445
446 /*
447 * Queues start drained. Skip actual draining till init is
448 * complete. This avoids lenghty delays during queue init which
449 * can happen many times during boot.
450 */
451 if (blk_queue_init_done(q)) {
452 spin_lock_irq(q->queue_lock);
453 __blk_drain_queue(q, false);
454 spin_unlock_irq(q->queue_lock);
455
456 /* ensure blk_queue_bypass() is %true inside RCU read lock */
457 synchronize_rcu();
458 }
459 }
460 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
461
462 /**
463 * blk_queue_bypass_end - leave queue bypass mode
464 * @q: queue of interest
465 *
466 * Leave bypass mode and restore the normal queueing behavior.
467 */
468 void blk_queue_bypass_end(struct request_queue *q)
469 {
470 spin_lock_irq(q->queue_lock);
471 if (!--q->bypass_depth)
472 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
473 WARN_ON_ONCE(q->bypass_depth < 0);
474 spin_unlock_irq(q->queue_lock);
475 }
476 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
477
478 void blk_set_queue_dying(struct request_queue *q)
479 {
480 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
481
482 if (q->mq_ops)
483 blk_mq_wake_waiters(q);
484 else {
485 struct request_list *rl;
486
487 blk_queue_for_each_rl(rl, q) {
488 if (rl->rq_pool) {
489 wake_up(&rl->wait[BLK_RW_SYNC]);
490 wake_up(&rl->wait[BLK_RW_ASYNC]);
491 }
492 }
493 }
494 }
495 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
496
497 /**
498 * blk_cleanup_queue - shutdown a request queue
499 * @q: request queue to shutdown
500 *
501 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
502 * put it. All future requests will be failed immediately with -ENODEV.
503 */
504 void blk_cleanup_queue(struct request_queue *q)
505 {
506 spinlock_t *lock = q->queue_lock;
507
508 /* mark @q DYING, no new request or merges will be allowed afterwards */
509 mutex_lock(&q->sysfs_lock);
510 blk_set_queue_dying(q);
511 spin_lock_irq(lock);
512
513 /*
514 * A dying queue is permanently in bypass mode till released. Note
515 * that, unlike blk_queue_bypass_start(), we aren't performing
516 * synchronize_rcu() after entering bypass mode to avoid the delay
517 * as some drivers create and destroy a lot of queues while
518 * probing. This is still safe because blk_release_queue() will be
519 * called only after the queue refcnt drops to zero and nothing,
520 * RCU or not, would be traversing the queue by then.
521 */
522 q->bypass_depth++;
523 queue_flag_set(QUEUE_FLAG_BYPASS, q);
524
525 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
526 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
527 queue_flag_set(QUEUE_FLAG_DYING, q);
528 spin_unlock_irq(lock);
529 mutex_unlock(&q->sysfs_lock);
530
531 /*
532 * Drain all requests queued before DYING marking. Set DEAD flag to
533 * prevent that q->request_fn() gets invoked after draining finished.
534 */
535 if (q->mq_ops) {
536 blk_mq_freeze_queue(q);
537 spin_lock_irq(lock);
538 } else {
539 spin_lock_irq(lock);
540 __blk_drain_queue(q, true);
541 }
542 queue_flag_set(QUEUE_FLAG_DEAD, q);
543 spin_unlock_irq(lock);
544
545 /* @q won't process any more request, flush async actions */
546 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
547 blk_sync_queue(q);
548
549 if (q->mq_ops)
550 blk_mq_free_queue(q);
551
552 spin_lock_irq(lock);
553 if (q->queue_lock != &q->__queue_lock)
554 q->queue_lock = &q->__queue_lock;
555 spin_unlock_irq(lock);
556
557 /* @q is and will stay empty, shutdown and put */
558 blk_put_queue(q);
559 }
560 EXPORT_SYMBOL(blk_cleanup_queue);
561
562 /* Allocate memory local to the request queue */
563 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
564 {
565 int nid = (int)(long)data;
566 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
567 }
568
569 static void free_request_struct(void *element, void *unused)
570 {
571 kmem_cache_free(request_cachep, element);
572 }
573
574 int blk_init_rl(struct request_list *rl, struct request_queue *q,
575 gfp_t gfp_mask)
576 {
577 if (unlikely(rl->rq_pool))
578 return 0;
579
580 rl->q = q;
581 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
582 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
583 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
584 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
585
586 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
587 free_request_struct,
588 (void *)(long)q->node, gfp_mask,
589 q->node);
590 if (!rl->rq_pool)
591 return -ENOMEM;
592
593 return 0;
594 }
595
596 void blk_exit_rl(struct request_list *rl)
597 {
598 if (rl->rq_pool)
599 mempool_destroy(rl->rq_pool);
600 }
601
602 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
603 {
604 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
605 }
606 EXPORT_SYMBOL(blk_alloc_queue);
607
608 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
609 {
610 struct request_queue *q;
611 int err;
612
613 q = kmem_cache_alloc_node(blk_requestq_cachep,
614 gfp_mask | __GFP_ZERO, node_id);
615 if (!q)
616 return NULL;
617
618 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
619 if (q->id < 0)
620 goto fail_q;
621
622 q->backing_dev_info.ra_pages =
623 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
624 q->backing_dev_info.capabilities = 0;
625 q->backing_dev_info.name = "block";
626 q->node = node_id;
627
628 err = bdi_init(&q->backing_dev_info);
629 if (err)
630 goto fail_id;
631
632 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
633 laptop_mode_timer_fn, (unsigned long) q);
634 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
635 INIT_LIST_HEAD(&q->queue_head);
636 INIT_LIST_HEAD(&q->timeout_list);
637 INIT_LIST_HEAD(&q->icq_list);
638 #ifdef CONFIG_BLK_CGROUP
639 INIT_LIST_HEAD(&q->blkg_list);
640 #endif
641 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
642
643 kobject_init(&q->kobj, &blk_queue_ktype);
644
645 mutex_init(&q->sysfs_lock);
646 spin_lock_init(&q->__queue_lock);
647
648 /*
649 * By default initialize queue_lock to internal lock and driver can
650 * override it later if need be.
651 */
652 q->queue_lock = &q->__queue_lock;
653
654 /*
655 * A queue starts its life with bypass turned on to avoid
656 * unnecessary bypass on/off overhead and nasty surprises during
657 * init. The initial bypass will be finished when the queue is
658 * registered by blk_register_queue().
659 */
660 q->bypass_depth = 1;
661 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
662
663 init_waitqueue_head(&q->mq_freeze_wq);
664
665 if (blkcg_init_queue(q))
666 goto fail_bdi;
667
668 return q;
669
670 fail_bdi:
671 bdi_destroy(&q->backing_dev_info);
672 fail_id:
673 ida_simple_remove(&blk_queue_ida, q->id);
674 fail_q:
675 kmem_cache_free(blk_requestq_cachep, q);
676 return NULL;
677 }
678 EXPORT_SYMBOL(blk_alloc_queue_node);
679
680 /**
681 * blk_init_queue - prepare a request queue for use with a block device
682 * @rfn: The function to be called to process requests that have been
683 * placed on the queue.
684 * @lock: Request queue spin lock
685 *
686 * Description:
687 * If a block device wishes to use the standard request handling procedures,
688 * which sorts requests and coalesces adjacent requests, then it must
689 * call blk_init_queue(). The function @rfn will be called when there
690 * are requests on the queue that need to be processed. If the device
691 * supports plugging, then @rfn may not be called immediately when requests
692 * are available on the queue, but may be called at some time later instead.
693 * Plugged queues are generally unplugged when a buffer belonging to one
694 * of the requests on the queue is needed, or due to memory pressure.
695 *
696 * @rfn is not required, or even expected, to remove all requests off the
697 * queue, but only as many as it can handle at a time. If it does leave
698 * requests on the queue, it is responsible for arranging that the requests
699 * get dealt with eventually.
700 *
701 * The queue spin lock must be held while manipulating the requests on the
702 * request queue; this lock will be taken also from interrupt context, so irq
703 * disabling is needed for it.
704 *
705 * Function returns a pointer to the initialized request queue, or %NULL if
706 * it didn't succeed.
707 *
708 * Note:
709 * blk_init_queue() must be paired with a blk_cleanup_queue() call
710 * when the block device is deactivated (such as at module unload).
711 **/
712
713 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
714 {
715 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
716 }
717 EXPORT_SYMBOL(blk_init_queue);
718
719 struct request_queue *
720 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
721 {
722 struct request_queue *uninit_q, *q;
723
724 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
725 if (!uninit_q)
726 return NULL;
727
728 q = blk_init_allocated_queue(uninit_q, rfn, lock);
729 if (!q)
730 blk_cleanup_queue(uninit_q);
731
732 return q;
733 }
734 EXPORT_SYMBOL(blk_init_queue_node);
735
736 struct request_queue *
737 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
738 spinlock_t *lock)
739 {
740 if (!q)
741 return NULL;
742
743 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
744 if (!q->fq)
745 return NULL;
746
747 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
748 goto fail;
749
750 q->request_fn = rfn;
751 q->prep_rq_fn = NULL;
752 q->unprep_rq_fn = NULL;
753 q->queue_flags |= QUEUE_FLAG_DEFAULT;
754
755 /* Override internal queue lock with supplied lock pointer */
756 if (lock)
757 q->queue_lock = lock;
758
759 /*
760 * This also sets hw/phys segments, boundary and size
761 */
762 blk_queue_make_request(q, blk_queue_bio);
763
764 q->sg_reserved_size = INT_MAX;
765
766 /* Protect q->elevator from elevator_change */
767 mutex_lock(&q->sysfs_lock);
768
769 /* init elevator */
770 if (elevator_init(q, NULL)) {
771 mutex_unlock(&q->sysfs_lock);
772 goto fail;
773 }
774
775 mutex_unlock(&q->sysfs_lock);
776
777 return q;
778
779 fail:
780 blk_free_flush_queue(q->fq);
781 return NULL;
782 }
783 EXPORT_SYMBOL(blk_init_allocated_queue);
784
785 bool blk_get_queue(struct request_queue *q)
786 {
787 if (likely(!blk_queue_dying(q))) {
788 __blk_get_queue(q);
789 return true;
790 }
791
792 return false;
793 }
794 EXPORT_SYMBOL(blk_get_queue);
795
796 static inline void blk_free_request(struct request_list *rl, struct request *rq)
797 {
798 if (rq->cmd_flags & REQ_ELVPRIV) {
799 elv_put_request(rl->q, rq);
800 if (rq->elv.icq)
801 put_io_context(rq->elv.icq->ioc);
802 }
803
804 mempool_free(rq, rl->rq_pool);
805 }
806
807 /*
808 * ioc_batching returns true if the ioc is a valid batching request and
809 * should be given priority access to a request.
810 */
811 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
812 {
813 if (!ioc)
814 return 0;
815
816 /*
817 * Make sure the process is able to allocate at least 1 request
818 * even if the batch times out, otherwise we could theoretically
819 * lose wakeups.
820 */
821 return ioc->nr_batch_requests == q->nr_batching ||
822 (ioc->nr_batch_requests > 0
823 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
824 }
825
826 /*
827 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
828 * will cause the process to be a "batcher" on all queues in the system. This
829 * is the behaviour we want though - once it gets a wakeup it should be given
830 * a nice run.
831 */
832 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
833 {
834 if (!ioc || ioc_batching(q, ioc))
835 return;
836
837 ioc->nr_batch_requests = q->nr_batching;
838 ioc->last_waited = jiffies;
839 }
840
841 static void __freed_request(struct request_list *rl, int sync)
842 {
843 struct request_queue *q = rl->q;
844
845 /*
846 * bdi isn't aware of blkcg yet. As all async IOs end up root
847 * blkcg anyway, just use root blkcg state.
848 */
849 if (rl == &q->root_rl &&
850 rl->count[sync] < queue_congestion_off_threshold(q))
851 blk_clear_queue_congested(q, sync);
852
853 if (rl->count[sync] + 1 <= q->nr_requests) {
854 if (waitqueue_active(&rl->wait[sync]))
855 wake_up(&rl->wait[sync]);
856
857 blk_clear_rl_full(rl, sync);
858 }
859 }
860
861 /*
862 * A request has just been released. Account for it, update the full and
863 * congestion status, wake up any waiters. Called under q->queue_lock.
864 */
865 static void freed_request(struct request_list *rl, unsigned int flags)
866 {
867 struct request_queue *q = rl->q;
868 int sync = rw_is_sync(flags);
869
870 q->nr_rqs[sync]--;
871 rl->count[sync]--;
872 if (flags & REQ_ELVPRIV)
873 q->nr_rqs_elvpriv--;
874
875 __freed_request(rl, sync);
876
877 if (unlikely(rl->starved[sync ^ 1]))
878 __freed_request(rl, sync ^ 1);
879 }
880
881 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
882 {
883 struct request_list *rl;
884
885 spin_lock_irq(q->queue_lock);
886 q->nr_requests = nr;
887 blk_queue_congestion_threshold(q);
888
889 /* congestion isn't cgroup aware and follows root blkcg for now */
890 rl = &q->root_rl;
891
892 if (rl->count[BLK_RW_SYNC] >= queue_congestion_on_threshold(q))
893 blk_set_queue_congested(q, BLK_RW_SYNC);
894 else if (rl->count[BLK_RW_SYNC] < queue_congestion_off_threshold(q))
895 blk_clear_queue_congested(q, BLK_RW_SYNC);
896
897 if (rl->count[BLK_RW_ASYNC] >= queue_congestion_on_threshold(q))
898 blk_set_queue_congested(q, BLK_RW_ASYNC);
899 else if (rl->count[BLK_RW_ASYNC] < queue_congestion_off_threshold(q))
900 blk_clear_queue_congested(q, BLK_RW_ASYNC);
901
902 blk_queue_for_each_rl(rl, q) {
903 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
904 blk_set_rl_full(rl, BLK_RW_SYNC);
905 } else {
906 blk_clear_rl_full(rl, BLK_RW_SYNC);
907 wake_up(&rl->wait[BLK_RW_SYNC]);
908 }
909
910 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
911 blk_set_rl_full(rl, BLK_RW_ASYNC);
912 } else {
913 blk_clear_rl_full(rl, BLK_RW_ASYNC);
914 wake_up(&rl->wait[BLK_RW_ASYNC]);
915 }
916 }
917
918 spin_unlock_irq(q->queue_lock);
919 return 0;
920 }
921
922 /*
923 * Determine if elevator data should be initialized when allocating the
924 * request associated with @bio.
925 */
926 static bool blk_rq_should_init_elevator(struct bio *bio)
927 {
928 if (!bio)
929 return true;
930
931 /*
932 * Flush requests do not use the elevator so skip initialization.
933 * This allows a request to share the flush and elevator data.
934 */
935 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
936 return false;
937
938 return true;
939 }
940
941 /**
942 * rq_ioc - determine io_context for request allocation
943 * @bio: request being allocated is for this bio (can be %NULL)
944 *
945 * Determine io_context to use for request allocation for @bio. May return
946 * %NULL if %current->io_context doesn't exist.
947 */
948 static struct io_context *rq_ioc(struct bio *bio)
949 {
950 #ifdef CONFIG_BLK_CGROUP
951 if (bio && bio->bi_ioc)
952 return bio->bi_ioc;
953 #endif
954 return current->io_context;
955 }
956
957 /**
958 * __get_request - get a free request
959 * @rl: request list to allocate from
960 * @rw_flags: RW and SYNC flags
961 * @bio: bio to allocate request for (can be %NULL)
962 * @gfp_mask: allocation mask
963 *
964 * Get a free request from @q. This function may fail under memory
965 * pressure or if @q is dead.
966 *
967 * Must be called with @q->queue_lock held and,
968 * Returns ERR_PTR on failure, with @q->queue_lock held.
969 * Returns request pointer on success, with @q->queue_lock *not held*.
970 */
971 static struct request *__get_request(struct request_list *rl, int rw_flags,
972 struct bio *bio, gfp_t gfp_mask)
973 {
974 struct request_queue *q = rl->q;
975 struct request *rq;
976 struct elevator_type *et = q->elevator->type;
977 struct io_context *ioc = rq_ioc(bio);
978 struct io_cq *icq = NULL;
979 const bool is_sync = rw_is_sync(rw_flags) != 0;
980 int may_queue;
981
982 if (unlikely(blk_queue_dying(q)))
983 return ERR_PTR(-ENODEV);
984
985 may_queue = elv_may_queue(q, rw_flags);
986 if (may_queue == ELV_MQUEUE_NO)
987 goto rq_starved;
988
989 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
990 if (rl->count[is_sync]+1 >= q->nr_requests) {
991 /*
992 * The queue will fill after this allocation, so set
993 * it as full, and mark this process as "batching".
994 * This process will be allowed to complete a batch of
995 * requests, others will be blocked.
996 */
997 if (!blk_rl_full(rl, is_sync)) {
998 ioc_set_batching(q, ioc);
999 blk_set_rl_full(rl, is_sync);
1000 } else {
1001 if (may_queue != ELV_MQUEUE_MUST
1002 && !ioc_batching(q, ioc)) {
1003 /*
1004 * The queue is full and the allocating
1005 * process is not a "batcher", and not
1006 * exempted by the IO scheduler
1007 */
1008 return ERR_PTR(-ENOMEM);
1009 }
1010 }
1011 }
1012 /*
1013 * bdi isn't aware of blkcg yet. As all async IOs end up
1014 * root blkcg anyway, just use root blkcg state.
1015 */
1016 if (rl == &q->root_rl)
1017 blk_set_queue_congested(q, is_sync);
1018 }
1019
1020 /*
1021 * Only allow batching queuers to allocate up to 50% over the defined
1022 * limit of requests, otherwise we could have thousands of requests
1023 * allocated with any setting of ->nr_requests
1024 */
1025 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1026 return ERR_PTR(-ENOMEM);
1027
1028 q->nr_rqs[is_sync]++;
1029 rl->count[is_sync]++;
1030 rl->starved[is_sync] = 0;
1031
1032 /*
1033 * Decide whether the new request will be managed by elevator. If
1034 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1035 * prevent the current elevator from being destroyed until the new
1036 * request is freed. This guarantees icq's won't be destroyed and
1037 * makes creating new ones safe.
1038 *
1039 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1040 * it will be created after releasing queue_lock.
1041 */
1042 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1043 rw_flags |= REQ_ELVPRIV;
1044 q->nr_rqs_elvpriv++;
1045 if (et->icq_cache && ioc)
1046 icq = ioc_lookup_icq(ioc, q);
1047 }
1048
1049 if (blk_queue_io_stat(q))
1050 rw_flags |= REQ_IO_STAT;
1051 spin_unlock_irq(q->queue_lock);
1052
1053 /* allocate and init request */
1054 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1055 if (!rq)
1056 goto fail_alloc;
1057
1058 blk_rq_init(q, rq);
1059 blk_rq_set_rl(rq, rl);
1060 rq->cmd_flags = rw_flags | REQ_ALLOCED;
1061
1062 /* init elvpriv */
1063 if (rw_flags & REQ_ELVPRIV) {
1064 if (unlikely(et->icq_cache && !icq)) {
1065 if (ioc)
1066 icq = ioc_create_icq(ioc, q, gfp_mask);
1067 if (!icq)
1068 goto fail_elvpriv;
1069 }
1070
1071 rq->elv.icq = icq;
1072 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1073 goto fail_elvpriv;
1074
1075 /* @rq->elv.icq holds io_context until @rq is freed */
1076 if (icq)
1077 get_io_context(icq->ioc);
1078 }
1079 out:
1080 /*
1081 * ioc may be NULL here, and ioc_batching will be false. That's
1082 * OK, if the queue is under the request limit then requests need
1083 * not count toward the nr_batch_requests limit. There will always
1084 * be some limit enforced by BLK_BATCH_TIME.
1085 */
1086 if (ioc_batching(q, ioc))
1087 ioc->nr_batch_requests--;
1088
1089 trace_block_getrq(q, bio, rw_flags & 1);
1090 return rq;
1091
1092 fail_elvpriv:
1093 /*
1094 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1095 * and may fail indefinitely under memory pressure and thus
1096 * shouldn't stall IO. Treat this request as !elvpriv. This will
1097 * disturb iosched and blkcg but weird is bettern than dead.
1098 */
1099 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1100 __func__, dev_name(q->backing_dev_info.dev));
1101
1102 rq->cmd_flags &= ~REQ_ELVPRIV;
1103 rq->elv.icq = NULL;
1104
1105 spin_lock_irq(q->queue_lock);
1106 q->nr_rqs_elvpriv--;
1107 spin_unlock_irq(q->queue_lock);
1108 goto out;
1109
1110 fail_alloc:
1111 /*
1112 * Allocation failed presumably due to memory. Undo anything we
1113 * might have messed up.
1114 *
1115 * Allocating task should really be put onto the front of the wait
1116 * queue, but this is pretty rare.
1117 */
1118 spin_lock_irq(q->queue_lock);
1119 freed_request(rl, rw_flags);
1120
1121 /*
1122 * in the very unlikely event that allocation failed and no
1123 * requests for this direction was pending, mark us starved so that
1124 * freeing of a request in the other direction will notice
1125 * us. another possible fix would be to split the rq mempool into
1126 * READ and WRITE
1127 */
1128 rq_starved:
1129 if (unlikely(rl->count[is_sync] == 0))
1130 rl->starved[is_sync] = 1;
1131 return ERR_PTR(-ENOMEM);
1132 }
1133
1134 /**
1135 * get_request - get a free request
1136 * @q: request_queue to allocate request from
1137 * @rw_flags: RW and SYNC flags
1138 * @bio: bio to allocate request for (can be %NULL)
1139 * @gfp_mask: allocation mask
1140 *
1141 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1142 * function keeps retrying under memory pressure and fails iff @q is dead.
1143 *
1144 * Must be called with @q->queue_lock held and,
1145 * Returns ERR_PTR on failure, with @q->queue_lock held.
1146 * Returns request pointer on success, with @q->queue_lock *not held*.
1147 */
1148 static struct request *get_request(struct request_queue *q, int rw_flags,
1149 struct bio *bio, gfp_t gfp_mask)
1150 {
1151 const bool is_sync = rw_is_sync(rw_flags) != 0;
1152 DEFINE_WAIT(wait);
1153 struct request_list *rl;
1154 struct request *rq;
1155
1156 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1157 retry:
1158 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1159 if (!IS_ERR(rq))
1160 return rq;
1161
1162 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1163 blk_put_rl(rl);
1164 return rq;
1165 }
1166
1167 /* wait on @rl and retry */
1168 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1169 TASK_UNINTERRUPTIBLE);
1170
1171 trace_block_sleeprq(q, bio, rw_flags & 1);
1172
1173 spin_unlock_irq(q->queue_lock);
1174 io_schedule();
1175
1176 /*
1177 * After sleeping, we become a "batching" process and will be able
1178 * to allocate at least one request, and up to a big batch of them
1179 * for a small period time. See ioc_batching, ioc_set_batching
1180 */
1181 ioc_set_batching(q, current->io_context);
1182
1183 spin_lock_irq(q->queue_lock);
1184 finish_wait(&rl->wait[is_sync], &wait);
1185
1186 goto retry;
1187 }
1188
1189 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1190 gfp_t gfp_mask)
1191 {
1192 struct request *rq;
1193
1194 BUG_ON(rw != READ && rw != WRITE);
1195
1196 /* create ioc upfront */
1197 create_io_context(gfp_mask, q->node);
1198
1199 spin_lock_irq(q->queue_lock);
1200 rq = get_request(q, rw, NULL, gfp_mask);
1201 if (IS_ERR(rq))
1202 spin_unlock_irq(q->queue_lock);
1203 /* q->queue_lock is unlocked at this point */
1204
1205 return rq;
1206 }
1207
1208 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1209 {
1210 if (q->mq_ops)
1211 return blk_mq_alloc_request(q, rw, gfp_mask, false);
1212 else
1213 return blk_old_get_request(q, rw, gfp_mask);
1214 }
1215 EXPORT_SYMBOL(blk_get_request);
1216
1217 /**
1218 * blk_make_request - given a bio, allocate a corresponding struct request.
1219 * @q: target request queue
1220 * @bio: The bio describing the memory mappings that will be submitted for IO.
1221 * It may be a chained-bio properly constructed by block/bio layer.
1222 * @gfp_mask: gfp flags to be used for memory allocation
1223 *
1224 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1225 * type commands. Where the struct request needs to be farther initialized by
1226 * the caller. It is passed a &struct bio, which describes the memory info of
1227 * the I/O transfer.
1228 *
1229 * The caller of blk_make_request must make sure that bi_io_vec
1230 * are set to describe the memory buffers. That bio_data_dir() will return
1231 * the needed direction of the request. (And all bio's in the passed bio-chain
1232 * are properly set accordingly)
1233 *
1234 * If called under none-sleepable conditions, mapped bio buffers must not
1235 * need bouncing, by calling the appropriate masked or flagged allocator,
1236 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1237 * BUG.
1238 *
1239 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1240 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1241 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1242 * completion of a bio that hasn't been submitted yet, thus resulting in a
1243 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1244 * of bio_alloc(), as that avoids the mempool deadlock.
1245 * If possible a big IO should be split into smaller parts when allocation
1246 * fails. Partial allocation should not be an error, or you risk a live-lock.
1247 */
1248 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1249 gfp_t gfp_mask)
1250 {
1251 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1252
1253 if (IS_ERR(rq))
1254 return rq;
1255
1256 blk_rq_set_block_pc(rq);
1257
1258 for_each_bio(bio) {
1259 struct bio *bounce_bio = bio;
1260 int ret;
1261
1262 blk_queue_bounce(q, &bounce_bio);
1263 ret = blk_rq_append_bio(q, rq, bounce_bio);
1264 if (unlikely(ret)) {
1265 blk_put_request(rq);
1266 return ERR_PTR(ret);
1267 }
1268 }
1269
1270 return rq;
1271 }
1272 EXPORT_SYMBOL(blk_make_request);
1273
1274 /**
1275 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1276 * @rq: request to be initialized
1277 *
1278 */
1279 void blk_rq_set_block_pc(struct request *rq)
1280 {
1281 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1282 rq->__data_len = 0;
1283 rq->__sector = (sector_t) -1;
1284 rq->bio = rq->biotail = NULL;
1285 memset(rq->__cmd, 0, sizeof(rq->__cmd));
1286 }
1287 EXPORT_SYMBOL(blk_rq_set_block_pc);
1288
1289 /**
1290 * blk_requeue_request - put a request back on queue
1291 * @q: request queue where request should be inserted
1292 * @rq: request to be inserted
1293 *
1294 * Description:
1295 * Drivers often keep queueing requests until the hardware cannot accept
1296 * more, when that condition happens we need to put the request back
1297 * on the queue. Must be called with queue lock held.
1298 */
1299 void blk_requeue_request(struct request_queue *q, struct request *rq)
1300 {
1301 blk_delete_timer(rq);
1302 blk_clear_rq_complete(rq);
1303 trace_block_rq_requeue(q, rq);
1304
1305 if (rq->cmd_flags & REQ_QUEUED)
1306 blk_queue_end_tag(q, rq);
1307
1308 BUG_ON(blk_queued_rq(rq));
1309
1310 elv_requeue_request(q, rq);
1311 }
1312 EXPORT_SYMBOL(blk_requeue_request);
1313
1314 static void add_acct_request(struct request_queue *q, struct request *rq,
1315 int where)
1316 {
1317 blk_account_io_start(rq, true);
1318 __elv_add_request(q, rq, where);
1319 }
1320
1321 static void part_round_stats_single(int cpu, struct hd_struct *part,
1322 unsigned long now)
1323 {
1324 int inflight;
1325
1326 if (now == part->stamp)
1327 return;
1328
1329 inflight = part_in_flight(part);
1330 if (inflight) {
1331 __part_stat_add(cpu, part, time_in_queue,
1332 inflight * (now - part->stamp));
1333 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1334 }
1335 part->stamp = now;
1336 }
1337
1338 /**
1339 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1340 * @cpu: cpu number for stats access
1341 * @part: target partition
1342 *
1343 * The average IO queue length and utilisation statistics are maintained
1344 * by observing the current state of the queue length and the amount of
1345 * time it has been in this state for.
1346 *
1347 * Normally, that accounting is done on IO completion, but that can result
1348 * in more than a second's worth of IO being accounted for within any one
1349 * second, leading to >100% utilisation. To deal with that, we call this
1350 * function to do a round-off before returning the results when reading
1351 * /proc/diskstats. This accounts immediately for all queue usage up to
1352 * the current jiffies and restarts the counters again.
1353 */
1354 void part_round_stats(int cpu, struct hd_struct *part)
1355 {
1356 unsigned long now = jiffies;
1357
1358 if (part->partno)
1359 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1360 part_round_stats_single(cpu, part, now);
1361 }
1362 EXPORT_SYMBOL_GPL(part_round_stats);
1363
1364 #ifdef CONFIG_PM
1365 static void blk_pm_put_request(struct request *rq)
1366 {
1367 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1368 pm_runtime_mark_last_busy(rq->q->dev);
1369 }
1370 #else
1371 static inline void blk_pm_put_request(struct request *rq) {}
1372 #endif
1373
1374 /*
1375 * queue lock must be held
1376 */
1377 void __blk_put_request(struct request_queue *q, struct request *req)
1378 {
1379 if (unlikely(!q))
1380 return;
1381
1382 if (q->mq_ops) {
1383 blk_mq_free_request(req);
1384 return;
1385 }
1386
1387 blk_pm_put_request(req);
1388
1389 elv_completed_request(q, req);
1390
1391 /* this is a bio leak */
1392 WARN_ON(req->bio != NULL);
1393
1394 /*
1395 * Request may not have originated from ll_rw_blk. if not,
1396 * it didn't come out of our reserved rq pools
1397 */
1398 if (req->cmd_flags & REQ_ALLOCED) {
1399 unsigned int flags = req->cmd_flags;
1400 struct request_list *rl = blk_rq_rl(req);
1401
1402 BUG_ON(!list_empty(&req->queuelist));
1403 BUG_ON(ELV_ON_HASH(req));
1404
1405 blk_free_request(rl, req);
1406 freed_request(rl, flags);
1407 blk_put_rl(rl);
1408 }
1409 }
1410 EXPORT_SYMBOL_GPL(__blk_put_request);
1411
1412 void blk_put_request(struct request *req)
1413 {
1414 struct request_queue *q = req->q;
1415
1416 if (q->mq_ops)
1417 blk_mq_free_request(req);
1418 else {
1419 unsigned long flags;
1420
1421 spin_lock_irqsave(q->queue_lock, flags);
1422 __blk_put_request(q, req);
1423 spin_unlock_irqrestore(q->queue_lock, flags);
1424 }
1425 }
1426 EXPORT_SYMBOL(blk_put_request);
1427
1428 /**
1429 * blk_add_request_payload - add a payload to a request
1430 * @rq: request to update
1431 * @page: page backing the payload
1432 * @len: length of the payload.
1433 *
1434 * This allows to later add a payload to an already submitted request by
1435 * a block driver. The driver needs to take care of freeing the payload
1436 * itself.
1437 *
1438 * Note that this is a quite horrible hack and nothing but handling of
1439 * discard requests should ever use it.
1440 */
1441 void blk_add_request_payload(struct request *rq, struct page *page,
1442 unsigned int len)
1443 {
1444 struct bio *bio = rq->bio;
1445
1446 bio->bi_io_vec->bv_page = page;
1447 bio->bi_io_vec->bv_offset = 0;
1448 bio->bi_io_vec->bv_len = len;
1449
1450 bio->bi_iter.bi_size = len;
1451 bio->bi_vcnt = 1;
1452 bio->bi_phys_segments = 1;
1453
1454 rq->__data_len = rq->resid_len = len;
1455 rq->nr_phys_segments = 1;
1456 }
1457 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1458
1459 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1460 struct bio *bio)
1461 {
1462 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1463
1464 if (!ll_back_merge_fn(q, req, bio))
1465 return false;
1466
1467 trace_block_bio_backmerge(q, req, bio);
1468
1469 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1470 blk_rq_set_mixed_merge(req);
1471
1472 req->biotail->bi_next = bio;
1473 req->biotail = bio;
1474 req->__data_len += bio->bi_iter.bi_size;
1475 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1476
1477 blk_account_io_start(req, false);
1478 return true;
1479 }
1480
1481 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1482 struct bio *bio)
1483 {
1484 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1485
1486 if (!ll_front_merge_fn(q, req, bio))
1487 return false;
1488
1489 trace_block_bio_frontmerge(q, req, bio);
1490
1491 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1492 blk_rq_set_mixed_merge(req);
1493
1494 bio->bi_next = req->bio;
1495 req->bio = bio;
1496
1497 req->__sector = bio->bi_iter.bi_sector;
1498 req->__data_len += bio->bi_iter.bi_size;
1499 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1500
1501 blk_account_io_start(req, false);
1502 return true;
1503 }
1504
1505 /**
1506 * blk_attempt_plug_merge - try to merge with %current's plugged list
1507 * @q: request_queue new bio is being queued at
1508 * @bio: new bio being queued
1509 * @request_count: out parameter for number of traversed plugged requests
1510 *
1511 * Determine whether @bio being queued on @q can be merged with a request
1512 * on %current's plugged list. Returns %true if merge was successful,
1513 * otherwise %false.
1514 *
1515 * Plugging coalesces IOs from the same issuer for the same purpose without
1516 * going through @q->queue_lock. As such it's more of an issuing mechanism
1517 * than scheduling, and the request, while may have elvpriv data, is not
1518 * added on the elevator at this point. In addition, we don't have
1519 * reliable access to the elevator outside queue lock. Only check basic
1520 * merging parameters without querying the elevator.
1521 *
1522 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1523 */
1524 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1525 unsigned int *request_count,
1526 struct request **same_queue_rq)
1527 {
1528 struct blk_plug *plug;
1529 struct request *rq;
1530 bool ret = false;
1531 struct list_head *plug_list;
1532
1533 plug = current->plug;
1534 if (!plug)
1535 goto out;
1536 *request_count = 0;
1537
1538 if (q->mq_ops)
1539 plug_list = &plug->mq_list;
1540 else
1541 plug_list = &plug->list;
1542
1543 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1544 int el_ret;
1545
1546 if (rq->q == q) {
1547 (*request_count)++;
1548 /*
1549 * Only blk-mq multiple hardware queues case checks the
1550 * rq in the same queue, there should be only one such
1551 * rq in a queue
1552 **/
1553 if (same_queue_rq)
1554 *same_queue_rq = rq;
1555 }
1556
1557 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1558 continue;
1559
1560 el_ret = blk_try_merge(rq, bio);
1561 if (el_ret == ELEVATOR_BACK_MERGE) {
1562 ret = bio_attempt_back_merge(q, rq, bio);
1563 if (ret)
1564 break;
1565 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1566 ret = bio_attempt_front_merge(q, rq, bio);
1567 if (ret)
1568 break;
1569 }
1570 }
1571 out:
1572 return ret;
1573 }
1574
1575 void init_request_from_bio(struct request *req, struct bio *bio)
1576 {
1577 req->cmd_type = REQ_TYPE_FS;
1578
1579 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1580 if (bio->bi_rw & REQ_RAHEAD)
1581 req->cmd_flags |= REQ_FAILFAST_MASK;
1582
1583 req->errors = 0;
1584 req->__sector = bio->bi_iter.bi_sector;
1585 req->ioprio = bio_prio(bio);
1586 blk_rq_bio_prep(req->q, req, bio);
1587 }
1588
1589 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1590 {
1591 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1592 struct blk_plug *plug;
1593 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1594 struct request *req;
1595 unsigned int request_count = 0;
1596
1597 /*
1598 * low level driver can indicate that it wants pages above a
1599 * certain limit bounced to low memory (ie for highmem, or even
1600 * ISA dma in theory)
1601 */
1602 blk_queue_bounce(q, &bio);
1603
1604 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1605 bio_endio(bio, -EIO);
1606 return;
1607 }
1608
1609 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1610 spin_lock_irq(q->queue_lock);
1611 where = ELEVATOR_INSERT_FLUSH;
1612 goto get_rq;
1613 }
1614
1615 /*
1616 * Check if we can merge with the plugged list before grabbing
1617 * any locks.
1618 */
1619 if (!blk_queue_nomerges(q) &&
1620 blk_attempt_plug_merge(q, bio, &request_count, NULL))
1621 return;
1622
1623 spin_lock_irq(q->queue_lock);
1624
1625 el_ret = elv_merge(q, &req, bio);
1626 if (el_ret == ELEVATOR_BACK_MERGE) {
1627 if (bio_attempt_back_merge(q, req, bio)) {
1628 elv_bio_merged(q, req, bio);
1629 if (!attempt_back_merge(q, req))
1630 elv_merged_request(q, req, el_ret);
1631 goto out_unlock;
1632 }
1633 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1634 if (bio_attempt_front_merge(q, req, bio)) {
1635 elv_bio_merged(q, req, bio);
1636 if (!attempt_front_merge(q, req))
1637 elv_merged_request(q, req, el_ret);
1638 goto out_unlock;
1639 }
1640 }
1641
1642 get_rq:
1643 /*
1644 * This sync check and mask will be re-done in init_request_from_bio(),
1645 * but we need to set it earlier to expose the sync flag to the
1646 * rq allocator and io schedulers.
1647 */
1648 rw_flags = bio_data_dir(bio);
1649 if (sync)
1650 rw_flags |= REQ_SYNC;
1651
1652 /*
1653 * Grab a free request. This is might sleep but can not fail.
1654 * Returns with the queue unlocked.
1655 */
1656 req = get_request(q, rw_flags, bio, GFP_NOIO);
1657 if (IS_ERR(req)) {
1658 bio_endio(bio, PTR_ERR(req)); /* @q is dead */
1659 goto out_unlock;
1660 }
1661
1662 /*
1663 * After dropping the lock and possibly sleeping here, our request
1664 * may now be mergeable after it had proven unmergeable (above).
1665 * We don't worry about that case for efficiency. It won't happen
1666 * often, and the elevators are able to handle it.
1667 */
1668 init_request_from_bio(req, bio);
1669
1670 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1671 req->cpu = raw_smp_processor_id();
1672
1673 plug = current->plug;
1674 if (plug) {
1675 /*
1676 * If this is the first request added after a plug, fire
1677 * of a plug trace.
1678 */
1679 if (!request_count)
1680 trace_block_plug(q);
1681 else {
1682 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1683 blk_flush_plug_list(plug, false);
1684 trace_block_plug(q);
1685 }
1686 }
1687 list_add_tail(&req->queuelist, &plug->list);
1688 blk_account_io_start(req, true);
1689 } else {
1690 spin_lock_irq(q->queue_lock);
1691 add_acct_request(q, req, where);
1692 __blk_run_queue(q);
1693 out_unlock:
1694 spin_unlock_irq(q->queue_lock);
1695 }
1696 }
1697 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1698
1699 /*
1700 * If bio->bi_dev is a partition, remap the location
1701 */
1702 static inline void blk_partition_remap(struct bio *bio)
1703 {
1704 struct block_device *bdev = bio->bi_bdev;
1705
1706 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1707 struct hd_struct *p = bdev->bd_part;
1708
1709 bio->bi_iter.bi_sector += p->start_sect;
1710 bio->bi_bdev = bdev->bd_contains;
1711
1712 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1713 bdev->bd_dev,
1714 bio->bi_iter.bi_sector - p->start_sect);
1715 }
1716 }
1717
1718 static void handle_bad_sector(struct bio *bio)
1719 {
1720 char b[BDEVNAME_SIZE];
1721
1722 printk(KERN_INFO "attempt to access beyond end of device\n");
1723 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1724 bdevname(bio->bi_bdev, b),
1725 bio->bi_rw,
1726 (unsigned long long)bio_end_sector(bio),
1727 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1728 }
1729
1730 #ifdef CONFIG_FAIL_MAKE_REQUEST
1731
1732 static DECLARE_FAULT_ATTR(fail_make_request);
1733
1734 static int __init setup_fail_make_request(char *str)
1735 {
1736 return setup_fault_attr(&fail_make_request, str);
1737 }
1738 __setup("fail_make_request=", setup_fail_make_request);
1739
1740 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1741 {
1742 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1743 }
1744
1745 static int __init fail_make_request_debugfs(void)
1746 {
1747 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1748 NULL, &fail_make_request);
1749
1750 return PTR_ERR_OR_ZERO(dir);
1751 }
1752
1753 late_initcall(fail_make_request_debugfs);
1754
1755 #else /* CONFIG_FAIL_MAKE_REQUEST */
1756
1757 static inline bool should_fail_request(struct hd_struct *part,
1758 unsigned int bytes)
1759 {
1760 return false;
1761 }
1762
1763 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1764
1765 /*
1766 * Check whether this bio extends beyond the end of the device.
1767 */
1768 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1769 {
1770 sector_t maxsector;
1771
1772 if (!nr_sectors)
1773 return 0;
1774
1775 /* Test device or partition size, when known. */
1776 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1777 if (maxsector) {
1778 sector_t sector = bio->bi_iter.bi_sector;
1779
1780 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1781 /*
1782 * This may well happen - the kernel calls bread()
1783 * without checking the size of the device, e.g., when
1784 * mounting a device.
1785 */
1786 handle_bad_sector(bio);
1787 return 1;
1788 }
1789 }
1790
1791 return 0;
1792 }
1793
1794 static noinline_for_stack bool
1795 generic_make_request_checks(struct bio *bio)
1796 {
1797 struct request_queue *q;
1798 int nr_sectors = bio_sectors(bio);
1799 int err = -EIO;
1800 char b[BDEVNAME_SIZE];
1801 struct hd_struct *part;
1802
1803 might_sleep();
1804
1805 if (bio_check_eod(bio, nr_sectors))
1806 goto end_io;
1807
1808 q = bdev_get_queue(bio->bi_bdev);
1809 if (unlikely(!q)) {
1810 printk(KERN_ERR
1811 "generic_make_request: Trying to access "
1812 "nonexistent block-device %s (%Lu)\n",
1813 bdevname(bio->bi_bdev, b),
1814 (long long) bio->bi_iter.bi_sector);
1815 goto end_io;
1816 }
1817
1818 if (likely(bio_is_rw(bio) &&
1819 nr_sectors > queue_max_hw_sectors(q))) {
1820 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1821 bdevname(bio->bi_bdev, b),
1822 bio_sectors(bio),
1823 queue_max_hw_sectors(q));
1824 goto end_io;
1825 }
1826
1827 part = bio->bi_bdev->bd_part;
1828 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1829 should_fail_request(&part_to_disk(part)->part0,
1830 bio->bi_iter.bi_size))
1831 goto end_io;
1832
1833 /*
1834 * If this device has partitions, remap block n
1835 * of partition p to block n+start(p) of the disk.
1836 */
1837 blk_partition_remap(bio);
1838
1839 if (bio_check_eod(bio, nr_sectors))
1840 goto end_io;
1841
1842 /*
1843 * Filter flush bio's early so that make_request based
1844 * drivers without flush support don't have to worry
1845 * about them.
1846 */
1847 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1848 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1849 if (!nr_sectors) {
1850 err = 0;
1851 goto end_io;
1852 }
1853 }
1854
1855 if ((bio->bi_rw & REQ_DISCARD) &&
1856 (!blk_queue_discard(q) ||
1857 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1858 err = -EOPNOTSUPP;
1859 goto end_io;
1860 }
1861
1862 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1863 err = -EOPNOTSUPP;
1864 goto end_io;
1865 }
1866
1867 /*
1868 * Various block parts want %current->io_context and lazy ioc
1869 * allocation ends up trading a lot of pain for a small amount of
1870 * memory. Just allocate it upfront. This may fail and block
1871 * layer knows how to live with it.
1872 */
1873 create_io_context(GFP_ATOMIC, q->node);
1874
1875 if (blk_throtl_bio(q, bio))
1876 return false; /* throttled, will be resubmitted later */
1877
1878 trace_block_bio_queue(q, bio);
1879 return true;
1880
1881 end_io:
1882 bio_endio(bio, err);
1883 return false;
1884 }
1885
1886 /**
1887 * generic_make_request - hand a buffer to its device driver for I/O
1888 * @bio: The bio describing the location in memory and on the device.
1889 *
1890 * generic_make_request() is used to make I/O requests of block
1891 * devices. It is passed a &struct bio, which describes the I/O that needs
1892 * to be done.
1893 *
1894 * generic_make_request() does not return any status. The
1895 * success/failure status of the request, along with notification of
1896 * completion, is delivered asynchronously through the bio->bi_end_io
1897 * function described (one day) else where.
1898 *
1899 * The caller of generic_make_request must make sure that bi_io_vec
1900 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1901 * set to describe the device address, and the
1902 * bi_end_io and optionally bi_private are set to describe how
1903 * completion notification should be signaled.
1904 *
1905 * generic_make_request and the drivers it calls may use bi_next if this
1906 * bio happens to be merged with someone else, and may resubmit the bio to
1907 * a lower device by calling into generic_make_request recursively, which
1908 * means the bio should NOT be touched after the call to ->make_request_fn.
1909 */
1910 void generic_make_request(struct bio *bio)
1911 {
1912 struct bio_list bio_list_on_stack;
1913
1914 if (!generic_make_request_checks(bio))
1915 return;
1916
1917 /*
1918 * We only want one ->make_request_fn to be active at a time, else
1919 * stack usage with stacked devices could be a problem. So use
1920 * current->bio_list to keep a list of requests submited by a
1921 * make_request_fn function. current->bio_list is also used as a
1922 * flag to say if generic_make_request is currently active in this
1923 * task or not. If it is NULL, then no make_request is active. If
1924 * it is non-NULL, then a make_request is active, and new requests
1925 * should be added at the tail
1926 */
1927 if (current->bio_list) {
1928 bio_list_add(current->bio_list, bio);
1929 return;
1930 }
1931
1932 /* following loop may be a bit non-obvious, and so deserves some
1933 * explanation.
1934 * Before entering the loop, bio->bi_next is NULL (as all callers
1935 * ensure that) so we have a list with a single bio.
1936 * We pretend that we have just taken it off a longer list, so
1937 * we assign bio_list to a pointer to the bio_list_on_stack,
1938 * thus initialising the bio_list of new bios to be
1939 * added. ->make_request() may indeed add some more bios
1940 * through a recursive call to generic_make_request. If it
1941 * did, we find a non-NULL value in bio_list and re-enter the loop
1942 * from the top. In this case we really did just take the bio
1943 * of the top of the list (no pretending) and so remove it from
1944 * bio_list, and call into ->make_request() again.
1945 */
1946 BUG_ON(bio->bi_next);
1947 bio_list_init(&bio_list_on_stack);
1948 current->bio_list = &bio_list_on_stack;
1949 do {
1950 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1951
1952 q->make_request_fn(q, bio);
1953
1954 bio = bio_list_pop(current->bio_list);
1955 } while (bio);
1956 current->bio_list = NULL; /* deactivate */
1957 }
1958 EXPORT_SYMBOL(generic_make_request);
1959
1960 /**
1961 * submit_bio - submit a bio to the block device layer for I/O
1962 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1963 * @bio: The &struct bio which describes the I/O
1964 *
1965 * submit_bio() is very similar in purpose to generic_make_request(), and
1966 * uses that function to do most of the work. Both are fairly rough
1967 * interfaces; @bio must be presetup and ready for I/O.
1968 *
1969 */
1970 void submit_bio(int rw, struct bio *bio)
1971 {
1972 bio->bi_rw |= rw;
1973
1974 /*
1975 * If it's a regular read/write or a barrier with data attached,
1976 * go through the normal accounting stuff before submission.
1977 */
1978 if (bio_has_data(bio)) {
1979 unsigned int count;
1980
1981 if (unlikely(rw & REQ_WRITE_SAME))
1982 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1983 else
1984 count = bio_sectors(bio);
1985
1986 if (rw & WRITE) {
1987 count_vm_events(PGPGOUT, count);
1988 } else {
1989 task_io_account_read(bio->bi_iter.bi_size);
1990 count_vm_events(PGPGIN, count);
1991 }
1992
1993 if (unlikely(block_dump)) {
1994 char b[BDEVNAME_SIZE];
1995 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1996 current->comm, task_pid_nr(current),
1997 (rw & WRITE) ? "WRITE" : "READ",
1998 (unsigned long long)bio->bi_iter.bi_sector,
1999 bdevname(bio->bi_bdev, b),
2000 count);
2001 }
2002 }
2003
2004 generic_make_request(bio);
2005 }
2006 EXPORT_SYMBOL(submit_bio);
2007
2008 /**
2009 * blk_rq_check_limits - Helper function to check a request for the queue limit
2010 * @q: the queue
2011 * @rq: the request being checked
2012 *
2013 * Description:
2014 * @rq may have been made based on weaker limitations of upper-level queues
2015 * in request stacking drivers, and it may violate the limitation of @q.
2016 * Since the block layer and the underlying device driver trust @rq
2017 * after it is inserted to @q, it should be checked against @q before
2018 * the insertion using this generic function.
2019 *
2020 * This function should also be useful for request stacking drivers
2021 * in some cases below, so export this function.
2022 * Request stacking drivers like request-based dm may change the queue
2023 * limits while requests are in the queue (e.g. dm's table swapping).
2024 * Such request stacking drivers should check those requests against
2025 * the new queue limits again when they dispatch those requests,
2026 * although such checkings are also done against the old queue limits
2027 * when submitting requests.
2028 */
2029 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
2030 {
2031 if (!rq_mergeable(rq))
2032 return 0;
2033
2034 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
2035 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2036 return -EIO;
2037 }
2038
2039 /*
2040 * queue's settings related to segment counting like q->bounce_pfn
2041 * may differ from that of other stacking queues.
2042 * Recalculate it to check the request correctly on this queue's
2043 * limitation.
2044 */
2045 blk_recalc_rq_segments(rq);
2046 if (rq->nr_phys_segments > queue_max_segments(q)) {
2047 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2048 return -EIO;
2049 }
2050
2051 return 0;
2052 }
2053 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
2054
2055 /**
2056 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2057 * @q: the queue to submit the request
2058 * @rq: the request being queued
2059 */
2060 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2061 {
2062 unsigned long flags;
2063 int where = ELEVATOR_INSERT_BACK;
2064
2065 if (blk_rq_check_limits(q, rq))
2066 return -EIO;
2067
2068 if (rq->rq_disk &&
2069 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2070 return -EIO;
2071
2072 if (q->mq_ops) {
2073 if (blk_queue_io_stat(q))
2074 blk_account_io_start(rq, true);
2075 blk_mq_insert_request(rq, false, true, true);
2076 return 0;
2077 }
2078
2079 spin_lock_irqsave(q->queue_lock, flags);
2080 if (unlikely(blk_queue_dying(q))) {
2081 spin_unlock_irqrestore(q->queue_lock, flags);
2082 return -ENODEV;
2083 }
2084
2085 /*
2086 * Submitting request must be dequeued before calling this function
2087 * because it will be linked to another request_queue
2088 */
2089 BUG_ON(blk_queued_rq(rq));
2090
2091 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2092 where = ELEVATOR_INSERT_FLUSH;
2093
2094 add_acct_request(q, rq, where);
2095 if (where == ELEVATOR_INSERT_FLUSH)
2096 __blk_run_queue(q);
2097 spin_unlock_irqrestore(q->queue_lock, flags);
2098
2099 return 0;
2100 }
2101 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2102
2103 /**
2104 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2105 * @rq: request to examine
2106 *
2107 * Description:
2108 * A request could be merge of IOs which require different failure
2109 * handling. This function determines the number of bytes which
2110 * can be failed from the beginning of the request without
2111 * crossing into area which need to be retried further.
2112 *
2113 * Return:
2114 * The number of bytes to fail.
2115 *
2116 * Context:
2117 * queue_lock must be held.
2118 */
2119 unsigned int blk_rq_err_bytes(const struct request *rq)
2120 {
2121 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2122 unsigned int bytes = 0;
2123 struct bio *bio;
2124
2125 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2126 return blk_rq_bytes(rq);
2127
2128 /*
2129 * Currently the only 'mixing' which can happen is between
2130 * different fastfail types. We can safely fail portions
2131 * which have all the failfast bits that the first one has -
2132 * the ones which are at least as eager to fail as the first
2133 * one.
2134 */
2135 for (bio = rq->bio; bio; bio = bio->bi_next) {
2136 if ((bio->bi_rw & ff) != ff)
2137 break;
2138 bytes += bio->bi_iter.bi_size;
2139 }
2140
2141 /* this could lead to infinite loop */
2142 BUG_ON(blk_rq_bytes(rq) && !bytes);
2143 return bytes;
2144 }
2145 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2146
2147 void blk_account_io_completion(struct request *req, unsigned int bytes)
2148 {
2149 if (blk_do_io_stat(req)) {
2150 const int rw = rq_data_dir(req);
2151 struct hd_struct *part;
2152 int cpu;
2153
2154 cpu = part_stat_lock();
2155 part = req->part;
2156 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2157 part_stat_unlock();
2158 }
2159 }
2160
2161 void blk_account_io_done(struct request *req)
2162 {
2163 /*
2164 * Account IO completion. flush_rq isn't accounted as a
2165 * normal IO on queueing nor completion. Accounting the
2166 * containing request is enough.
2167 */
2168 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2169 unsigned long duration = jiffies - req->start_time;
2170 const int rw = rq_data_dir(req);
2171 struct hd_struct *part;
2172 int cpu;
2173
2174 cpu = part_stat_lock();
2175 part = req->part;
2176
2177 part_stat_inc(cpu, part, ios[rw]);
2178 part_stat_add(cpu, part, ticks[rw], duration);
2179 part_round_stats(cpu, part);
2180 part_dec_in_flight(part, rw);
2181
2182 hd_struct_put(part);
2183 part_stat_unlock();
2184 }
2185 }
2186
2187 #ifdef CONFIG_PM
2188 /*
2189 * Don't process normal requests when queue is suspended
2190 * or in the process of suspending/resuming
2191 */
2192 static struct request *blk_pm_peek_request(struct request_queue *q,
2193 struct request *rq)
2194 {
2195 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2196 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2197 return NULL;
2198 else
2199 return rq;
2200 }
2201 #else
2202 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2203 struct request *rq)
2204 {
2205 return rq;
2206 }
2207 #endif
2208
2209 void blk_account_io_start(struct request *rq, bool new_io)
2210 {
2211 struct hd_struct *part;
2212 int rw = rq_data_dir(rq);
2213 int cpu;
2214
2215 if (!blk_do_io_stat(rq))
2216 return;
2217
2218 cpu = part_stat_lock();
2219
2220 if (!new_io) {
2221 part = rq->part;
2222 part_stat_inc(cpu, part, merges[rw]);
2223 } else {
2224 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2225 if (!hd_struct_try_get(part)) {
2226 /*
2227 * The partition is already being removed,
2228 * the request will be accounted on the disk only
2229 *
2230 * We take a reference on disk->part0 although that
2231 * partition will never be deleted, so we can treat
2232 * it as any other partition.
2233 */
2234 part = &rq->rq_disk->part0;
2235 hd_struct_get(part);
2236 }
2237 part_round_stats(cpu, part);
2238 part_inc_in_flight(part, rw);
2239 rq->part = part;
2240 }
2241
2242 part_stat_unlock();
2243 }
2244
2245 /**
2246 * blk_peek_request - peek at the top of a request queue
2247 * @q: request queue to peek at
2248 *
2249 * Description:
2250 * Return the request at the top of @q. The returned request
2251 * should be started using blk_start_request() before LLD starts
2252 * processing it.
2253 *
2254 * Return:
2255 * Pointer to the request at the top of @q if available. Null
2256 * otherwise.
2257 *
2258 * Context:
2259 * queue_lock must be held.
2260 */
2261 struct request *blk_peek_request(struct request_queue *q)
2262 {
2263 struct request *rq;
2264 int ret;
2265
2266 while ((rq = __elv_next_request(q)) != NULL) {
2267
2268 rq = blk_pm_peek_request(q, rq);
2269 if (!rq)
2270 break;
2271
2272 if (!(rq->cmd_flags & REQ_STARTED)) {
2273 /*
2274 * This is the first time the device driver
2275 * sees this request (possibly after
2276 * requeueing). Notify IO scheduler.
2277 */
2278 if (rq->cmd_flags & REQ_SORTED)
2279 elv_activate_rq(q, rq);
2280
2281 /*
2282 * just mark as started even if we don't start
2283 * it, a request that has been delayed should
2284 * not be passed by new incoming requests
2285 */
2286 rq->cmd_flags |= REQ_STARTED;
2287 trace_block_rq_issue(q, rq);
2288 }
2289
2290 if (!q->boundary_rq || q->boundary_rq == rq) {
2291 q->end_sector = rq_end_sector(rq);
2292 q->boundary_rq = NULL;
2293 }
2294
2295 if (rq->cmd_flags & REQ_DONTPREP)
2296 break;
2297
2298 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2299 /*
2300 * make sure space for the drain appears we
2301 * know we can do this because max_hw_segments
2302 * has been adjusted to be one fewer than the
2303 * device can handle
2304 */
2305 rq->nr_phys_segments++;
2306 }
2307
2308 if (!q->prep_rq_fn)
2309 break;
2310
2311 ret = q->prep_rq_fn(q, rq);
2312 if (ret == BLKPREP_OK) {
2313 break;
2314 } else if (ret == BLKPREP_DEFER) {
2315 /*
2316 * the request may have been (partially) prepped.
2317 * we need to keep this request in the front to
2318 * avoid resource deadlock. REQ_STARTED will
2319 * prevent other fs requests from passing this one.
2320 */
2321 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2322 !(rq->cmd_flags & REQ_DONTPREP)) {
2323 /*
2324 * remove the space for the drain we added
2325 * so that we don't add it again
2326 */
2327 --rq->nr_phys_segments;
2328 }
2329
2330 rq = NULL;
2331 break;
2332 } else if (ret == BLKPREP_KILL) {
2333 rq->cmd_flags |= REQ_QUIET;
2334 /*
2335 * Mark this request as started so we don't trigger
2336 * any debug logic in the end I/O path.
2337 */
2338 blk_start_request(rq);
2339 __blk_end_request_all(rq, -EIO);
2340 } else {
2341 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2342 break;
2343 }
2344 }
2345
2346 return rq;
2347 }
2348 EXPORT_SYMBOL(blk_peek_request);
2349
2350 void blk_dequeue_request(struct request *rq)
2351 {
2352 struct request_queue *q = rq->q;
2353
2354 BUG_ON(list_empty(&rq->queuelist));
2355 BUG_ON(ELV_ON_HASH(rq));
2356
2357 list_del_init(&rq->queuelist);
2358
2359 /*
2360 * the time frame between a request being removed from the lists
2361 * and to it is freed is accounted as io that is in progress at
2362 * the driver side.
2363 */
2364 if (blk_account_rq(rq)) {
2365 q->in_flight[rq_is_sync(rq)]++;
2366 set_io_start_time_ns(rq);
2367 }
2368 }
2369
2370 /**
2371 * blk_start_request - start request processing on the driver
2372 * @req: request to dequeue
2373 *
2374 * Description:
2375 * Dequeue @req and start timeout timer on it. This hands off the
2376 * request to the driver.
2377 *
2378 * Block internal functions which don't want to start timer should
2379 * call blk_dequeue_request().
2380 *
2381 * Context:
2382 * queue_lock must be held.
2383 */
2384 void blk_start_request(struct request *req)
2385 {
2386 blk_dequeue_request(req);
2387
2388 /*
2389 * We are now handing the request to the hardware, initialize
2390 * resid_len to full count and add the timeout handler.
2391 */
2392 req->resid_len = blk_rq_bytes(req);
2393 if (unlikely(blk_bidi_rq(req)))
2394 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2395
2396 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2397 blk_add_timer(req);
2398 }
2399 EXPORT_SYMBOL(blk_start_request);
2400
2401 /**
2402 * blk_fetch_request - fetch a request from a request queue
2403 * @q: request queue to fetch a request from
2404 *
2405 * Description:
2406 * Return the request at the top of @q. The request is started on
2407 * return and LLD can start processing it immediately.
2408 *
2409 * Return:
2410 * Pointer to the request at the top of @q if available. Null
2411 * otherwise.
2412 *
2413 * Context:
2414 * queue_lock must be held.
2415 */
2416 struct request *blk_fetch_request(struct request_queue *q)
2417 {
2418 struct request *rq;
2419
2420 rq = blk_peek_request(q);
2421 if (rq)
2422 blk_start_request(rq);
2423 return rq;
2424 }
2425 EXPORT_SYMBOL(blk_fetch_request);
2426
2427 /**
2428 * blk_update_request - Special helper function for request stacking drivers
2429 * @req: the request being processed
2430 * @error: %0 for success, < %0 for error
2431 * @nr_bytes: number of bytes to complete @req
2432 *
2433 * Description:
2434 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2435 * the request structure even if @req doesn't have leftover.
2436 * If @req has leftover, sets it up for the next range of segments.
2437 *
2438 * This special helper function is only for request stacking drivers
2439 * (e.g. request-based dm) so that they can handle partial completion.
2440 * Actual device drivers should use blk_end_request instead.
2441 *
2442 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2443 * %false return from this function.
2444 *
2445 * Return:
2446 * %false - this request doesn't have any more data
2447 * %true - this request has more data
2448 **/
2449 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2450 {
2451 int total_bytes;
2452
2453 trace_block_rq_complete(req->q, req, nr_bytes);
2454
2455 if (!req->bio)
2456 return false;
2457
2458 /*
2459 * For fs requests, rq is just carrier of independent bio's
2460 * and each partial completion should be handled separately.
2461 * Reset per-request error on each partial completion.
2462 *
2463 * TODO: tj: This is too subtle. It would be better to let
2464 * low level drivers do what they see fit.
2465 */
2466 if (req->cmd_type == REQ_TYPE_FS)
2467 req->errors = 0;
2468
2469 if (error && req->cmd_type == REQ_TYPE_FS &&
2470 !(req->cmd_flags & REQ_QUIET)) {
2471 char *error_type;
2472
2473 switch (error) {
2474 case -ENOLINK:
2475 error_type = "recoverable transport";
2476 break;
2477 case -EREMOTEIO:
2478 error_type = "critical target";
2479 break;
2480 case -EBADE:
2481 error_type = "critical nexus";
2482 break;
2483 case -ETIMEDOUT:
2484 error_type = "timeout";
2485 break;
2486 case -ENOSPC:
2487 error_type = "critical space allocation";
2488 break;
2489 case -ENODATA:
2490 error_type = "critical medium";
2491 break;
2492 case -EIO:
2493 default:
2494 error_type = "I/O";
2495 break;
2496 }
2497 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2498 __func__, error_type, req->rq_disk ?
2499 req->rq_disk->disk_name : "?",
2500 (unsigned long long)blk_rq_pos(req));
2501
2502 }
2503
2504 blk_account_io_completion(req, nr_bytes);
2505
2506 total_bytes = 0;
2507 while (req->bio) {
2508 struct bio *bio = req->bio;
2509 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2510
2511 if (bio_bytes == bio->bi_iter.bi_size)
2512 req->bio = bio->bi_next;
2513
2514 req_bio_endio(req, bio, bio_bytes, error);
2515
2516 total_bytes += bio_bytes;
2517 nr_bytes -= bio_bytes;
2518
2519 if (!nr_bytes)
2520 break;
2521 }
2522
2523 /*
2524 * completely done
2525 */
2526 if (!req->bio) {
2527 /*
2528 * Reset counters so that the request stacking driver
2529 * can find how many bytes remain in the request
2530 * later.
2531 */
2532 req->__data_len = 0;
2533 return false;
2534 }
2535
2536 req->__data_len -= total_bytes;
2537
2538 /* update sector only for requests with clear definition of sector */
2539 if (req->cmd_type == REQ_TYPE_FS)
2540 req->__sector += total_bytes >> 9;
2541
2542 /* mixed attributes always follow the first bio */
2543 if (req->cmd_flags & REQ_MIXED_MERGE) {
2544 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2545 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2546 }
2547
2548 /*
2549 * If total number of sectors is less than the first segment
2550 * size, something has gone terribly wrong.
2551 */
2552 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2553 blk_dump_rq_flags(req, "request botched");
2554 req->__data_len = blk_rq_cur_bytes(req);
2555 }
2556
2557 /* recalculate the number of segments */
2558 blk_recalc_rq_segments(req);
2559
2560 return true;
2561 }
2562 EXPORT_SYMBOL_GPL(blk_update_request);
2563
2564 static bool blk_update_bidi_request(struct request *rq, int error,
2565 unsigned int nr_bytes,
2566 unsigned int bidi_bytes)
2567 {
2568 if (blk_update_request(rq, error, nr_bytes))
2569 return true;
2570
2571 /* Bidi request must be completed as a whole */
2572 if (unlikely(blk_bidi_rq(rq)) &&
2573 blk_update_request(rq->next_rq, error, bidi_bytes))
2574 return true;
2575
2576 if (blk_queue_add_random(rq->q))
2577 add_disk_randomness(rq->rq_disk);
2578
2579 return false;
2580 }
2581
2582 /**
2583 * blk_unprep_request - unprepare a request
2584 * @req: the request
2585 *
2586 * This function makes a request ready for complete resubmission (or
2587 * completion). It happens only after all error handling is complete,
2588 * so represents the appropriate moment to deallocate any resources
2589 * that were allocated to the request in the prep_rq_fn. The queue
2590 * lock is held when calling this.
2591 */
2592 void blk_unprep_request(struct request *req)
2593 {
2594 struct request_queue *q = req->q;
2595
2596 req->cmd_flags &= ~REQ_DONTPREP;
2597 if (q->unprep_rq_fn)
2598 q->unprep_rq_fn(q, req);
2599 }
2600 EXPORT_SYMBOL_GPL(blk_unprep_request);
2601
2602 /*
2603 * queue lock must be held
2604 */
2605 void blk_finish_request(struct request *req, int error)
2606 {
2607 if (req->cmd_flags & REQ_QUEUED)
2608 blk_queue_end_tag(req->q, req);
2609
2610 BUG_ON(blk_queued_rq(req));
2611
2612 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2613 laptop_io_completion(&req->q->backing_dev_info);
2614
2615 blk_delete_timer(req);
2616
2617 if (req->cmd_flags & REQ_DONTPREP)
2618 blk_unprep_request(req);
2619
2620 blk_account_io_done(req);
2621
2622 if (req->end_io)
2623 req->end_io(req, error);
2624 else {
2625 if (blk_bidi_rq(req))
2626 __blk_put_request(req->next_rq->q, req->next_rq);
2627
2628 __blk_put_request(req->q, req);
2629 }
2630 }
2631 EXPORT_SYMBOL(blk_finish_request);
2632
2633 /**
2634 * blk_end_bidi_request - Complete a bidi request
2635 * @rq: the request to complete
2636 * @error: %0 for success, < %0 for error
2637 * @nr_bytes: number of bytes to complete @rq
2638 * @bidi_bytes: number of bytes to complete @rq->next_rq
2639 *
2640 * Description:
2641 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2642 * Drivers that supports bidi can safely call this member for any
2643 * type of request, bidi or uni. In the later case @bidi_bytes is
2644 * just ignored.
2645 *
2646 * Return:
2647 * %false - we are done with this request
2648 * %true - still buffers pending for this request
2649 **/
2650 static bool blk_end_bidi_request(struct request *rq, int error,
2651 unsigned int nr_bytes, unsigned int bidi_bytes)
2652 {
2653 struct request_queue *q = rq->q;
2654 unsigned long flags;
2655
2656 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2657 return true;
2658
2659 spin_lock_irqsave(q->queue_lock, flags);
2660 blk_finish_request(rq, error);
2661 spin_unlock_irqrestore(q->queue_lock, flags);
2662
2663 return false;
2664 }
2665
2666 /**
2667 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2668 * @rq: the request to complete
2669 * @error: %0 for success, < %0 for error
2670 * @nr_bytes: number of bytes to complete @rq
2671 * @bidi_bytes: number of bytes to complete @rq->next_rq
2672 *
2673 * Description:
2674 * Identical to blk_end_bidi_request() except that queue lock is
2675 * assumed to be locked on entry and remains so on return.
2676 *
2677 * Return:
2678 * %false - we are done with this request
2679 * %true - still buffers pending for this request
2680 **/
2681 bool __blk_end_bidi_request(struct request *rq, int error,
2682 unsigned int nr_bytes, unsigned int bidi_bytes)
2683 {
2684 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2685 return true;
2686
2687 blk_finish_request(rq, error);
2688
2689 return false;
2690 }
2691
2692 /**
2693 * blk_end_request - Helper function for drivers to complete the request.
2694 * @rq: the request being processed
2695 * @error: %0 for success, < %0 for error
2696 * @nr_bytes: number of bytes to complete
2697 *
2698 * Description:
2699 * Ends I/O on a number of bytes attached to @rq.
2700 * If @rq has leftover, sets it up for the next range of segments.
2701 *
2702 * Return:
2703 * %false - we are done with this request
2704 * %true - still buffers pending for this request
2705 **/
2706 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2707 {
2708 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2709 }
2710 EXPORT_SYMBOL(blk_end_request);
2711
2712 /**
2713 * blk_end_request_all - Helper function for drives to finish the request.
2714 * @rq: the request to finish
2715 * @error: %0 for success, < %0 for error
2716 *
2717 * Description:
2718 * Completely finish @rq.
2719 */
2720 void blk_end_request_all(struct request *rq, int error)
2721 {
2722 bool pending;
2723 unsigned int bidi_bytes = 0;
2724
2725 if (unlikely(blk_bidi_rq(rq)))
2726 bidi_bytes = blk_rq_bytes(rq->next_rq);
2727
2728 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2729 BUG_ON(pending);
2730 }
2731 EXPORT_SYMBOL(blk_end_request_all);
2732
2733 /**
2734 * blk_end_request_cur - Helper function to finish the current request chunk.
2735 * @rq: the request to finish the current chunk for
2736 * @error: %0 for success, < %0 for error
2737 *
2738 * Description:
2739 * Complete the current consecutively mapped chunk from @rq.
2740 *
2741 * Return:
2742 * %false - we are done with this request
2743 * %true - still buffers pending for this request
2744 */
2745 bool blk_end_request_cur(struct request *rq, int error)
2746 {
2747 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2748 }
2749 EXPORT_SYMBOL(blk_end_request_cur);
2750
2751 /**
2752 * blk_end_request_err - Finish a request till the next failure boundary.
2753 * @rq: the request to finish till the next failure boundary for
2754 * @error: must be negative errno
2755 *
2756 * Description:
2757 * Complete @rq till the next failure boundary.
2758 *
2759 * Return:
2760 * %false - we are done with this request
2761 * %true - still buffers pending for this request
2762 */
2763 bool blk_end_request_err(struct request *rq, int error)
2764 {
2765 WARN_ON(error >= 0);
2766 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2767 }
2768 EXPORT_SYMBOL_GPL(blk_end_request_err);
2769
2770 /**
2771 * __blk_end_request - Helper function for drivers to complete the request.
2772 * @rq: the request being processed
2773 * @error: %0 for success, < %0 for error
2774 * @nr_bytes: number of bytes to complete
2775 *
2776 * Description:
2777 * Must be called with queue lock held unlike blk_end_request().
2778 *
2779 * Return:
2780 * %false - we are done with this request
2781 * %true - still buffers pending for this request
2782 **/
2783 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2784 {
2785 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2786 }
2787 EXPORT_SYMBOL(__blk_end_request);
2788
2789 /**
2790 * __blk_end_request_all - Helper function for drives to finish the request.
2791 * @rq: the request to finish
2792 * @error: %0 for success, < %0 for error
2793 *
2794 * Description:
2795 * Completely finish @rq. Must be called with queue lock held.
2796 */
2797 void __blk_end_request_all(struct request *rq, int error)
2798 {
2799 bool pending;
2800 unsigned int bidi_bytes = 0;
2801
2802 if (unlikely(blk_bidi_rq(rq)))
2803 bidi_bytes = blk_rq_bytes(rq->next_rq);
2804
2805 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2806 BUG_ON(pending);
2807 }
2808 EXPORT_SYMBOL(__blk_end_request_all);
2809
2810 /**
2811 * __blk_end_request_cur - Helper function to finish the current request chunk.
2812 * @rq: the request to finish the current chunk for
2813 * @error: %0 for success, < %0 for error
2814 *
2815 * Description:
2816 * Complete the current consecutively mapped chunk from @rq. Must
2817 * be called with queue lock held.
2818 *
2819 * Return:
2820 * %false - we are done with this request
2821 * %true - still buffers pending for this request
2822 */
2823 bool __blk_end_request_cur(struct request *rq, int error)
2824 {
2825 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2826 }
2827 EXPORT_SYMBOL(__blk_end_request_cur);
2828
2829 /**
2830 * __blk_end_request_err - Finish a request till the next failure boundary.
2831 * @rq: the request to finish till the next failure boundary for
2832 * @error: must be negative errno
2833 *
2834 * Description:
2835 * Complete @rq till the next failure boundary. Must be called
2836 * with queue lock held.
2837 *
2838 * Return:
2839 * %false - we are done with this request
2840 * %true - still buffers pending for this request
2841 */
2842 bool __blk_end_request_err(struct request *rq, int error)
2843 {
2844 WARN_ON(error >= 0);
2845 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2846 }
2847 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2848
2849 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2850 struct bio *bio)
2851 {
2852 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2853 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2854
2855 if (bio_has_data(bio))
2856 rq->nr_phys_segments = bio_phys_segments(q, bio);
2857
2858 rq->__data_len = bio->bi_iter.bi_size;
2859 rq->bio = rq->biotail = bio;
2860
2861 if (bio->bi_bdev)
2862 rq->rq_disk = bio->bi_bdev->bd_disk;
2863 }
2864
2865 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2866 /**
2867 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2868 * @rq: the request to be flushed
2869 *
2870 * Description:
2871 * Flush all pages in @rq.
2872 */
2873 void rq_flush_dcache_pages(struct request *rq)
2874 {
2875 struct req_iterator iter;
2876 struct bio_vec bvec;
2877
2878 rq_for_each_segment(bvec, rq, iter)
2879 flush_dcache_page(bvec.bv_page);
2880 }
2881 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2882 #endif
2883
2884 /**
2885 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2886 * @q : the queue of the device being checked
2887 *
2888 * Description:
2889 * Check if underlying low-level drivers of a device are busy.
2890 * If the drivers want to export their busy state, they must set own
2891 * exporting function using blk_queue_lld_busy() first.
2892 *
2893 * Basically, this function is used only by request stacking drivers
2894 * to stop dispatching requests to underlying devices when underlying
2895 * devices are busy. This behavior helps more I/O merging on the queue
2896 * of the request stacking driver and prevents I/O throughput regression
2897 * on burst I/O load.
2898 *
2899 * Return:
2900 * 0 - Not busy (The request stacking driver should dispatch request)
2901 * 1 - Busy (The request stacking driver should stop dispatching request)
2902 */
2903 int blk_lld_busy(struct request_queue *q)
2904 {
2905 if (q->lld_busy_fn)
2906 return q->lld_busy_fn(q);
2907
2908 return 0;
2909 }
2910 EXPORT_SYMBOL_GPL(blk_lld_busy);
2911
2912 void blk_rq_prep_clone(struct request *dst, struct request *src)
2913 {
2914 dst->cpu = src->cpu;
2915 dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK);
2916 dst->cmd_flags |= REQ_NOMERGE | REQ_CLONE;
2917 dst->cmd_type = src->cmd_type;
2918 dst->__sector = blk_rq_pos(src);
2919 dst->__data_len = blk_rq_bytes(src);
2920 dst->nr_phys_segments = src->nr_phys_segments;
2921 dst->ioprio = src->ioprio;
2922 dst->extra_len = src->extra_len;
2923 dst->bio = src->bio;
2924 dst->biotail = src->biotail;
2925 dst->cmd = src->cmd;
2926 dst->cmd_len = src->cmd_len;
2927 dst->sense = src->sense;
2928 }
2929 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2930
2931 int kblockd_schedule_work(struct work_struct *work)
2932 {
2933 return queue_work(kblockd_workqueue, work);
2934 }
2935 EXPORT_SYMBOL(kblockd_schedule_work);
2936
2937 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
2938 unsigned long delay)
2939 {
2940 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2941 }
2942 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2943
2944 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2945 unsigned long delay)
2946 {
2947 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
2948 }
2949 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
2950
2951 /**
2952 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2953 * @plug: The &struct blk_plug that needs to be initialized
2954 *
2955 * Description:
2956 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2957 * pending I/O should the task end up blocking between blk_start_plug() and
2958 * blk_finish_plug(). This is important from a performance perspective, but
2959 * also ensures that we don't deadlock. For instance, if the task is blocking
2960 * for a memory allocation, memory reclaim could end up wanting to free a
2961 * page belonging to that request that is currently residing in our private
2962 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2963 * this kind of deadlock.
2964 */
2965 void blk_start_plug(struct blk_plug *plug)
2966 {
2967 struct task_struct *tsk = current;
2968
2969 /*
2970 * If this is a nested plug, don't actually assign it.
2971 */
2972 if (tsk->plug)
2973 return;
2974
2975 INIT_LIST_HEAD(&plug->list);
2976 INIT_LIST_HEAD(&plug->mq_list);
2977 INIT_LIST_HEAD(&plug->cb_list);
2978 /*
2979 * Store ordering should not be needed here, since a potential
2980 * preempt will imply a full memory barrier
2981 */
2982 tsk->plug = plug;
2983 }
2984 EXPORT_SYMBOL(blk_start_plug);
2985
2986 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2987 {
2988 struct request *rqa = container_of(a, struct request, queuelist);
2989 struct request *rqb = container_of(b, struct request, queuelist);
2990
2991 return !(rqa->q < rqb->q ||
2992 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
2993 }
2994
2995 /*
2996 * If 'from_schedule' is true, then postpone the dispatch of requests
2997 * until a safe kblockd context. We due this to avoid accidental big
2998 * additional stack usage in driver dispatch, in places where the originally
2999 * plugger did not intend it.
3000 */
3001 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3002 bool from_schedule)
3003 __releases(q->queue_lock)
3004 {
3005 trace_block_unplug(q, depth, !from_schedule);
3006
3007 if (from_schedule)
3008 blk_run_queue_async(q);
3009 else
3010 __blk_run_queue(q);
3011 spin_unlock(q->queue_lock);
3012 }
3013
3014 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3015 {
3016 LIST_HEAD(callbacks);
3017
3018 while (!list_empty(&plug->cb_list)) {
3019 list_splice_init(&plug->cb_list, &callbacks);
3020
3021 while (!list_empty(&callbacks)) {
3022 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3023 struct blk_plug_cb,
3024 list);
3025 list_del(&cb->list);
3026 cb->callback(cb, from_schedule);
3027 }
3028 }
3029 }
3030
3031 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3032 int size)
3033 {
3034 struct blk_plug *plug = current->plug;
3035 struct blk_plug_cb *cb;
3036
3037 if (!plug)
3038 return NULL;
3039
3040 list_for_each_entry(cb, &plug->cb_list, list)
3041 if (cb->callback == unplug && cb->data == data)
3042 return cb;
3043
3044 /* Not currently on the callback list */
3045 BUG_ON(size < sizeof(*cb));
3046 cb = kzalloc(size, GFP_ATOMIC);
3047 if (cb) {
3048 cb->data = data;
3049 cb->callback = unplug;
3050 list_add(&cb->list, &plug->cb_list);
3051 }
3052 return cb;
3053 }
3054 EXPORT_SYMBOL(blk_check_plugged);
3055
3056 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3057 {
3058 struct request_queue *q;
3059 unsigned long flags;
3060 struct request *rq;
3061 LIST_HEAD(list);
3062 unsigned int depth;
3063
3064 flush_plug_callbacks(plug, from_schedule);
3065
3066 if (!list_empty(&plug->mq_list))
3067 blk_mq_flush_plug_list(plug, from_schedule);
3068
3069 if (list_empty(&plug->list))
3070 return;
3071
3072 list_splice_init(&plug->list, &list);
3073
3074 list_sort(NULL, &list, plug_rq_cmp);
3075
3076 q = NULL;
3077 depth = 0;
3078
3079 /*
3080 * Save and disable interrupts here, to avoid doing it for every
3081 * queue lock we have to take.
3082 */
3083 local_irq_save(flags);
3084 while (!list_empty(&list)) {
3085 rq = list_entry_rq(list.next);
3086 list_del_init(&rq->queuelist);
3087 BUG_ON(!rq->q);
3088 if (rq->q != q) {
3089 /*
3090 * This drops the queue lock
3091 */
3092 if (q)
3093 queue_unplugged(q, depth, from_schedule);
3094 q = rq->q;
3095 depth = 0;
3096 spin_lock(q->queue_lock);
3097 }
3098
3099 /*
3100 * Short-circuit if @q is dead
3101 */
3102 if (unlikely(blk_queue_dying(q))) {
3103 __blk_end_request_all(rq, -ENODEV);
3104 continue;
3105 }
3106
3107 /*
3108 * rq is already accounted, so use raw insert
3109 */
3110 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3111 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3112 else
3113 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3114
3115 depth++;
3116 }
3117
3118 /*
3119 * This drops the queue lock
3120 */
3121 if (q)
3122 queue_unplugged(q, depth, from_schedule);
3123
3124 local_irq_restore(flags);
3125 }
3126
3127 void blk_finish_plug(struct blk_plug *plug)
3128 {
3129 if (plug != current->plug)
3130 return;
3131 blk_flush_plug_list(plug, false);
3132
3133 current->plug = NULL;
3134 }
3135 EXPORT_SYMBOL(blk_finish_plug);
3136
3137 #ifdef CONFIG_PM
3138 /**
3139 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3140 * @q: the queue of the device
3141 * @dev: the device the queue belongs to
3142 *
3143 * Description:
3144 * Initialize runtime-PM-related fields for @q and start auto suspend for
3145 * @dev. Drivers that want to take advantage of request-based runtime PM
3146 * should call this function after @dev has been initialized, and its
3147 * request queue @q has been allocated, and runtime PM for it can not happen
3148 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3149 * cases, driver should call this function before any I/O has taken place.
3150 *
3151 * This function takes care of setting up using auto suspend for the device,
3152 * the autosuspend delay is set to -1 to make runtime suspend impossible
3153 * until an updated value is either set by user or by driver. Drivers do
3154 * not need to touch other autosuspend settings.
3155 *
3156 * The block layer runtime PM is request based, so only works for drivers
3157 * that use request as their IO unit instead of those directly use bio's.
3158 */
3159 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3160 {
3161 q->dev = dev;
3162 q->rpm_status = RPM_ACTIVE;
3163 pm_runtime_set_autosuspend_delay(q->dev, -1);
3164 pm_runtime_use_autosuspend(q->dev);
3165 }
3166 EXPORT_SYMBOL(blk_pm_runtime_init);
3167
3168 /**
3169 * blk_pre_runtime_suspend - Pre runtime suspend check
3170 * @q: the queue of the device
3171 *
3172 * Description:
3173 * This function will check if runtime suspend is allowed for the device
3174 * by examining if there are any requests pending in the queue. If there
3175 * are requests pending, the device can not be runtime suspended; otherwise,
3176 * the queue's status will be updated to SUSPENDING and the driver can
3177 * proceed to suspend the device.
3178 *
3179 * For the not allowed case, we mark last busy for the device so that
3180 * runtime PM core will try to autosuspend it some time later.
3181 *
3182 * This function should be called near the start of the device's
3183 * runtime_suspend callback.
3184 *
3185 * Return:
3186 * 0 - OK to runtime suspend the device
3187 * -EBUSY - Device should not be runtime suspended
3188 */
3189 int blk_pre_runtime_suspend(struct request_queue *q)
3190 {
3191 int ret = 0;
3192
3193 spin_lock_irq(q->queue_lock);
3194 if (q->nr_pending) {
3195 ret = -EBUSY;
3196 pm_runtime_mark_last_busy(q->dev);
3197 } else {
3198 q->rpm_status = RPM_SUSPENDING;
3199 }
3200 spin_unlock_irq(q->queue_lock);
3201 return ret;
3202 }
3203 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3204
3205 /**
3206 * blk_post_runtime_suspend - Post runtime suspend processing
3207 * @q: the queue of the device
3208 * @err: return value of the device's runtime_suspend function
3209 *
3210 * Description:
3211 * Update the queue's runtime status according to the return value of the
3212 * device's runtime suspend function and mark last busy for the device so
3213 * that PM core will try to auto suspend the device at a later time.
3214 *
3215 * This function should be called near the end of the device's
3216 * runtime_suspend callback.
3217 */
3218 void blk_post_runtime_suspend(struct request_queue *q, int err)
3219 {
3220 spin_lock_irq(q->queue_lock);
3221 if (!err) {
3222 q->rpm_status = RPM_SUSPENDED;
3223 } else {
3224 q->rpm_status = RPM_ACTIVE;
3225 pm_runtime_mark_last_busy(q->dev);
3226 }
3227 spin_unlock_irq(q->queue_lock);
3228 }
3229 EXPORT_SYMBOL(blk_post_runtime_suspend);
3230
3231 /**
3232 * blk_pre_runtime_resume - Pre runtime resume processing
3233 * @q: the queue of the device
3234 *
3235 * Description:
3236 * Update the queue's runtime status to RESUMING in preparation for the
3237 * runtime resume of the device.
3238 *
3239 * This function should be called near the start of the device's
3240 * runtime_resume callback.
3241 */
3242 void blk_pre_runtime_resume(struct request_queue *q)
3243 {
3244 spin_lock_irq(q->queue_lock);
3245 q->rpm_status = RPM_RESUMING;
3246 spin_unlock_irq(q->queue_lock);
3247 }
3248 EXPORT_SYMBOL(blk_pre_runtime_resume);
3249
3250 /**
3251 * blk_post_runtime_resume - Post runtime resume processing
3252 * @q: the queue of the device
3253 * @err: return value of the device's runtime_resume function
3254 *
3255 * Description:
3256 * Update the queue's runtime status according to the return value of the
3257 * device's runtime_resume function. If it is successfully resumed, process
3258 * the requests that are queued into the device's queue when it is resuming
3259 * and then mark last busy and initiate autosuspend for it.
3260 *
3261 * This function should be called near the end of the device's
3262 * runtime_resume callback.
3263 */
3264 void blk_post_runtime_resume(struct request_queue *q, int err)
3265 {
3266 spin_lock_irq(q->queue_lock);
3267 if (!err) {
3268 q->rpm_status = RPM_ACTIVE;
3269 __blk_run_queue(q);
3270 pm_runtime_mark_last_busy(q->dev);
3271 pm_request_autosuspend(q->dev);
3272 } else {
3273 q->rpm_status = RPM_SUSPENDED;
3274 }
3275 spin_unlock_irq(q->queue_lock);
3276 }
3277 EXPORT_SYMBOL(blk_post_runtime_resume);
3278 #endif
3279
3280 int __init blk_dev_init(void)
3281 {
3282 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3283 sizeof(((struct request *)0)->cmd_flags));
3284
3285 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3286 kblockd_workqueue = alloc_workqueue("kblockd",
3287 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3288 if (!kblockd_workqueue)
3289 panic("Failed to create kblockd\n");
3290
3291 request_cachep = kmem_cache_create("blkdev_requests",
3292 sizeof(struct request), 0, SLAB_PANIC, NULL);
3293
3294 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3295 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3296
3297 return 0;
3298 }
This page took 0.104317 seconds and 5 git commands to generate.