block: Export blk_poll
[deliverable/linux.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/block.h>
39
40 #include "blk.h"
41 #include "blk-mq.h"
42
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
48
49 DEFINE_IDA(blk_queue_ida);
50
51 /*
52 * For the allocated request tables
53 */
54 struct kmem_cache *request_cachep;
55
56 /*
57 * For queue allocation
58 */
59 struct kmem_cache *blk_requestq_cachep;
60
61 /*
62 * Controlling structure to kblockd
63 */
64 static struct workqueue_struct *kblockd_workqueue;
65
66 static void blk_clear_congested(struct request_list *rl, int sync)
67 {
68 #ifdef CONFIG_CGROUP_WRITEBACK
69 clear_wb_congested(rl->blkg->wb_congested, sync);
70 #else
71 /*
72 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
73 * flip its congestion state for events on other blkcgs.
74 */
75 if (rl == &rl->q->root_rl)
76 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
77 #endif
78 }
79
80 static void blk_set_congested(struct request_list *rl, int sync)
81 {
82 #ifdef CONFIG_CGROUP_WRITEBACK
83 set_wb_congested(rl->blkg->wb_congested, sync);
84 #else
85 /* see blk_clear_congested() */
86 if (rl == &rl->q->root_rl)
87 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
88 #endif
89 }
90
91 void blk_queue_congestion_threshold(struct request_queue *q)
92 {
93 int nr;
94
95 nr = q->nr_requests - (q->nr_requests / 8) + 1;
96 if (nr > q->nr_requests)
97 nr = q->nr_requests;
98 q->nr_congestion_on = nr;
99
100 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
101 if (nr < 1)
102 nr = 1;
103 q->nr_congestion_off = nr;
104 }
105
106 /**
107 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
108 * @bdev: device
109 *
110 * Locates the passed device's request queue and returns the address of its
111 * backing_dev_info. This function can only be called if @bdev is opened
112 * and the return value is never NULL.
113 */
114 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
115 {
116 struct request_queue *q = bdev_get_queue(bdev);
117
118 return &q->backing_dev_info;
119 }
120 EXPORT_SYMBOL(blk_get_backing_dev_info);
121
122 void blk_rq_init(struct request_queue *q, struct request *rq)
123 {
124 memset(rq, 0, sizeof(*rq));
125
126 INIT_LIST_HEAD(&rq->queuelist);
127 INIT_LIST_HEAD(&rq->timeout_list);
128 rq->cpu = -1;
129 rq->q = q;
130 rq->__sector = (sector_t) -1;
131 INIT_HLIST_NODE(&rq->hash);
132 RB_CLEAR_NODE(&rq->rb_node);
133 rq->cmd = rq->__cmd;
134 rq->cmd_len = BLK_MAX_CDB;
135 rq->tag = -1;
136 rq->start_time = jiffies;
137 set_start_time_ns(rq);
138 rq->part = NULL;
139 }
140 EXPORT_SYMBOL(blk_rq_init);
141
142 static void req_bio_endio(struct request *rq, struct bio *bio,
143 unsigned int nbytes, int error)
144 {
145 if (error)
146 bio->bi_error = error;
147
148 if (unlikely(rq->cmd_flags & REQ_QUIET))
149 bio_set_flag(bio, BIO_QUIET);
150
151 bio_advance(bio, nbytes);
152
153 /* don't actually finish bio if it's part of flush sequence */
154 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
155 bio_endio(bio);
156 }
157
158 void blk_dump_rq_flags(struct request *rq, char *msg)
159 {
160 int bit;
161
162 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
163 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
164 (unsigned long long) rq->cmd_flags);
165
166 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
167 (unsigned long long)blk_rq_pos(rq),
168 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
169 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
170 rq->bio, rq->biotail, blk_rq_bytes(rq));
171
172 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
173 printk(KERN_INFO " cdb: ");
174 for (bit = 0; bit < BLK_MAX_CDB; bit++)
175 printk("%02x ", rq->cmd[bit]);
176 printk("\n");
177 }
178 }
179 EXPORT_SYMBOL(blk_dump_rq_flags);
180
181 static void blk_delay_work(struct work_struct *work)
182 {
183 struct request_queue *q;
184
185 q = container_of(work, struct request_queue, delay_work.work);
186 spin_lock_irq(q->queue_lock);
187 __blk_run_queue(q);
188 spin_unlock_irq(q->queue_lock);
189 }
190
191 /**
192 * blk_delay_queue - restart queueing after defined interval
193 * @q: The &struct request_queue in question
194 * @msecs: Delay in msecs
195 *
196 * Description:
197 * Sometimes queueing needs to be postponed for a little while, to allow
198 * resources to come back. This function will make sure that queueing is
199 * restarted around the specified time. Queue lock must be held.
200 */
201 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
202 {
203 if (likely(!blk_queue_dead(q)))
204 queue_delayed_work(kblockd_workqueue, &q->delay_work,
205 msecs_to_jiffies(msecs));
206 }
207 EXPORT_SYMBOL(blk_delay_queue);
208
209 /**
210 * blk_start_queue_async - asynchronously restart a previously stopped queue
211 * @q: The &struct request_queue in question
212 *
213 * Description:
214 * blk_start_queue_async() will clear the stop flag on the queue, and
215 * ensure that the request_fn for the queue is run from an async
216 * context.
217 **/
218 void blk_start_queue_async(struct request_queue *q)
219 {
220 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
221 blk_run_queue_async(q);
222 }
223 EXPORT_SYMBOL(blk_start_queue_async);
224
225 /**
226 * blk_start_queue - restart a previously stopped queue
227 * @q: The &struct request_queue in question
228 *
229 * Description:
230 * blk_start_queue() will clear the stop flag on the queue, and call
231 * the request_fn for the queue if it was in a stopped state when
232 * entered. Also see blk_stop_queue(). Queue lock must be held.
233 **/
234 void blk_start_queue(struct request_queue *q)
235 {
236 WARN_ON(!irqs_disabled());
237
238 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
239 __blk_run_queue(q);
240 }
241 EXPORT_SYMBOL(blk_start_queue);
242
243 /**
244 * blk_stop_queue - stop a queue
245 * @q: The &struct request_queue in question
246 *
247 * Description:
248 * The Linux block layer assumes that a block driver will consume all
249 * entries on the request queue when the request_fn strategy is called.
250 * Often this will not happen, because of hardware limitations (queue
251 * depth settings). If a device driver gets a 'queue full' response,
252 * or if it simply chooses not to queue more I/O at one point, it can
253 * call this function to prevent the request_fn from being called until
254 * the driver has signalled it's ready to go again. This happens by calling
255 * blk_start_queue() to restart queue operations. Queue lock must be held.
256 **/
257 void blk_stop_queue(struct request_queue *q)
258 {
259 cancel_delayed_work(&q->delay_work);
260 queue_flag_set(QUEUE_FLAG_STOPPED, q);
261 }
262 EXPORT_SYMBOL(blk_stop_queue);
263
264 /**
265 * blk_sync_queue - cancel any pending callbacks on a queue
266 * @q: the queue
267 *
268 * Description:
269 * The block layer may perform asynchronous callback activity
270 * on a queue, such as calling the unplug function after a timeout.
271 * A block device may call blk_sync_queue to ensure that any
272 * such activity is cancelled, thus allowing it to release resources
273 * that the callbacks might use. The caller must already have made sure
274 * that its ->make_request_fn will not re-add plugging prior to calling
275 * this function.
276 *
277 * This function does not cancel any asynchronous activity arising
278 * out of elevator or throttling code. That would require elevator_exit()
279 * and blkcg_exit_queue() to be called with queue lock initialized.
280 *
281 */
282 void blk_sync_queue(struct request_queue *q)
283 {
284 del_timer_sync(&q->timeout);
285
286 if (q->mq_ops) {
287 struct blk_mq_hw_ctx *hctx;
288 int i;
289
290 queue_for_each_hw_ctx(q, hctx, i) {
291 cancel_delayed_work_sync(&hctx->run_work);
292 cancel_delayed_work_sync(&hctx->delay_work);
293 }
294 } else {
295 cancel_delayed_work_sync(&q->delay_work);
296 }
297 }
298 EXPORT_SYMBOL(blk_sync_queue);
299
300 /**
301 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
302 * @q: The queue to run
303 *
304 * Description:
305 * Invoke request handling on a queue if there are any pending requests.
306 * May be used to restart request handling after a request has completed.
307 * This variant runs the queue whether or not the queue has been
308 * stopped. Must be called with the queue lock held and interrupts
309 * disabled. See also @blk_run_queue.
310 */
311 inline void __blk_run_queue_uncond(struct request_queue *q)
312 {
313 if (unlikely(blk_queue_dead(q)))
314 return;
315
316 /*
317 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
318 * the queue lock internally. As a result multiple threads may be
319 * running such a request function concurrently. Keep track of the
320 * number of active request_fn invocations such that blk_drain_queue()
321 * can wait until all these request_fn calls have finished.
322 */
323 q->request_fn_active++;
324 q->request_fn(q);
325 q->request_fn_active--;
326 }
327 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
328
329 /**
330 * __blk_run_queue - run a single device queue
331 * @q: The queue to run
332 *
333 * Description:
334 * See @blk_run_queue. This variant must be called with the queue lock
335 * held and interrupts disabled.
336 */
337 void __blk_run_queue(struct request_queue *q)
338 {
339 if (unlikely(blk_queue_stopped(q)))
340 return;
341
342 __blk_run_queue_uncond(q);
343 }
344 EXPORT_SYMBOL(__blk_run_queue);
345
346 /**
347 * blk_run_queue_async - run a single device queue in workqueue context
348 * @q: The queue to run
349 *
350 * Description:
351 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
352 * of us. The caller must hold the queue lock.
353 */
354 void blk_run_queue_async(struct request_queue *q)
355 {
356 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
357 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
358 }
359 EXPORT_SYMBOL(blk_run_queue_async);
360
361 /**
362 * blk_run_queue - run a single device queue
363 * @q: The queue to run
364 *
365 * Description:
366 * Invoke request handling on this queue, if it has pending work to do.
367 * May be used to restart queueing when a request has completed.
368 */
369 void blk_run_queue(struct request_queue *q)
370 {
371 unsigned long flags;
372
373 spin_lock_irqsave(q->queue_lock, flags);
374 __blk_run_queue(q);
375 spin_unlock_irqrestore(q->queue_lock, flags);
376 }
377 EXPORT_SYMBOL(blk_run_queue);
378
379 void blk_put_queue(struct request_queue *q)
380 {
381 kobject_put(&q->kobj);
382 }
383 EXPORT_SYMBOL(blk_put_queue);
384
385 /**
386 * __blk_drain_queue - drain requests from request_queue
387 * @q: queue to drain
388 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
389 *
390 * Drain requests from @q. If @drain_all is set, all requests are drained.
391 * If not, only ELVPRIV requests are drained. The caller is responsible
392 * for ensuring that no new requests which need to be drained are queued.
393 */
394 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
395 __releases(q->queue_lock)
396 __acquires(q->queue_lock)
397 {
398 int i;
399
400 lockdep_assert_held(q->queue_lock);
401
402 while (true) {
403 bool drain = false;
404
405 /*
406 * The caller might be trying to drain @q before its
407 * elevator is initialized.
408 */
409 if (q->elevator)
410 elv_drain_elevator(q);
411
412 blkcg_drain_queue(q);
413
414 /*
415 * This function might be called on a queue which failed
416 * driver init after queue creation or is not yet fully
417 * active yet. Some drivers (e.g. fd and loop) get unhappy
418 * in such cases. Kick queue iff dispatch queue has
419 * something on it and @q has request_fn set.
420 */
421 if (!list_empty(&q->queue_head) && q->request_fn)
422 __blk_run_queue(q);
423
424 drain |= q->nr_rqs_elvpriv;
425 drain |= q->request_fn_active;
426
427 /*
428 * Unfortunately, requests are queued at and tracked from
429 * multiple places and there's no single counter which can
430 * be drained. Check all the queues and counters.
431 */
432 if (drain_all) {
433 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
434 drain |= !list_empty(&q->queue_head);
435 for (i = 0; i < 2; i++) {
436 drain |= q->nr_rqs[i];
437 drain |= q->in_flight[i];
438 if (fq)
439 drain |= !list_empty(&fq->flush_queue[i]);
440 }
441 }
442
443 if (!drain)
444 break;
445
446 spin_unlock_irq(q->queue_lock);
447
448 msleep(10);
449
450 spin_lock_irq(q->queue_lock);
451 }
452
453 /*
454 * With queue marked dead, any woken up waiter will fail the
455 * allocation path, so the wakeup chaining is lost and we're
456 * left with hung waiters. We need to wake up those waiters.
457 */
458 if (q->request_fn) {
459 struct request_list *rl;
460
461 blk_queue_for_each_rl(rl, q)
462 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
463 wake_up_all(&rl->wait[i]);
464 }
465 }
466
467 /**
468 * blk_queue_bypass_start - enter queue bypass mode
469 * @q: queue of interest
470 *
471 * In bypass mode, only the dispatch FIFO queue of @q is used. This
472 * function makes @q enter bypass mode and drains all requests which were
473 * throttled or issued before. On return, it's guaranteed that no request
474 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
475 * inside queue or RCU read lock.
476 */
477 void blk_queue_bypass_start(struct request_queue *q)
478 {
479 spin_lock_irq(q->queue_lock);
480 q->bypass_depth++;
481 queue_flag_set(QUEUE_FLAG_BYPASS, q);
482 spin_unlock_irq(q->queue_lock);
483
484 /*
485 * Queues start drained. Skip actual draining till init is
486 * complete. This avoids lenghty delays during queue init which
487 * can happen many times during boot.
488 */
489 if (blk_queue_init_done(q)) {
490 spin_lock_irq(q->queue_lock);
491 __blk_drain_queue(q, false);
492 spin_unlock_irq(q->queue_lock);
493
494 /* ensure blk_queue_bypass() is %true inside RCU read lock */
495 synchronize_rcu();
496 }
497 }
498 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
499
500 /**
501 * blk_queue_bypass_end - leave queue bypass mode
502 * @q: queue of interest
503 *
504 * Leave bypass mode and restore the normal queueing behavior.
505 */
506 void blk_queue_bypass_end(struct request_queue *q)
507 {
508 spin_lock_irq(q->queue_lock);
509 if (!--q->bypass_depth)
510 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
511 WARN_ON_ONCE(q->bypass_depth < 0);
512 spin_unlock_irq(q->queue_lock);
513 }
514 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
515
516 void blk_set_queue_dying(struct request_queue *q)
517 {
518 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
519
520 if (q->mq_ops)
521 blk_mq_wake_waiters(q);
522 else {
523 struct request_list *rl;
524
525 blk_queue_for_each_rl(rl, q) {
526 if (rl->rq_pool) {
527 wake_up(&rl->wait[BLK_RW_SYNC]);
528 wake_up(&rl->wait[BLK_RW_ASYNC]);
529 }
530 }
531 }
532 }
533 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
534
535 /**
536 * blk_cleanup_queue - shutdown a request queue
537 * @q: request queue to shutdown
538 *
539 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
540 * put it. All future requests will be failed immediately with -ENODEV.
541 */
542 void blk_cleanup_queue(struct request_queue *q)
543 {
544 spinlock_t *lock = q->queue_lock;
545
546 /* mark @q DYING, no new request or merges will be allowed afterwards */
547 mutex_lock(&q->sysfs_lock);
548 blk_set_queue_dying(q);
549 spin_lock_irq(lock);
550
551 /*
552 * A dying queue is permanently in bypass mode till released. Note
553 * that, unlike blk_queue_bypass_start(), we aren't performing
554 * synchronize_rcu() after entering bypass mode to avoid the delay
555 * as some drivers create and destroy a lot of queues while
556 * probing. This is still safe because blk_release_queue() will be
557 * called only after the queue refcnt drops to zero and nothing,
558 * RCU or not, would be traversing the queue by then.
559 */
560 q->bypass_depth++;
561 queue_flag_set(QUEUE_FLAG_BYPASS, q);
562
563 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
564 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
565 queue_flag_set(QUEUE_FLAG_DYING, q);
566 spin_unlock_irq(lock);
567 mutex_unlock(&q->sysfs_lock);
568
569 /*
570 * Drain all requests queued before DYING marking. Set DEAD flag to
571 * prevent that q->request_fn() gets invoked after draining finished.
572 */
573 blk_freeze_queue(q);
574 spin_lock_irq(lock);
575 if (!q->mq_ops)
576 __blk_drain_queue(q, true);
577 queue_flag_set(QUEUE_FLAG_DEAD, q);
578 spin_unlock_irq(lock);
579
580 /* for synchronous bio-based driver finish in-flight integrity i/o */
581 blk_flush_integrity();
582
583 /* @q won't process any more request, flush async actions */
584 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
585 blk_sync_queue(q);
586
587 if (q->mq_ops)
588 blk_mq_free_queue(q);
589 percpu_ref_exit(&q->q_usage_counter);
590
591 spin_lock_irq(lock);
592 if (q->queue_lock != &q->__queue_lock)
593 q->queue_lock = &q->__queue_lock;
594 spin_unlock_irq(lock);
595
596 bdi_unregister(&q->backing_dev_info);
597
598 /* @q is and will stay empty, shutdown and put */
599 blk_put_queue(q);
600 }
601 EXPORT_SYMBOL(blk_cleanup_queue);
602
603 /* Allocate memory local to the request queue */
604 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
605 {
606 int nid = (int)(long)data;
607 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
608 }
609
610 static void free_request_struct(void *element, void *unused)
611 {
612 kmem_cache_free(request_cachep, element);
613 }
614
615 int blk_init_rl(struct request_list *rl, struct request_queue *q,
616 gfp_t gfp_mask)
617 {
618 if (unlikely(rl->rq_pool))
619 return 0;
620
621 rl->q = q;
622 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
623 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
624 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
625 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
626
627 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
628 free_request_struct,
629 (void *)(long)q->node, gfp_mask,
630 q->node);
631 if (!rl->rq_pool)
632 return -ENOMEM;
633
634 return 0;
635 }
636
637 void blk_exit_rl(struct request_list *rl)
638 {
639 if (rl->rq_pool)
640 mempool_destroy(rl->rq_pool);
641 }
642
643 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
644 {
645 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
646 }
647 EXPORT_SYMBOL(blk_alloc_queue);
648
649 int blk_queue_enter(struct request_queue *q, bool nowait)
650 {
651 while (true) {
652 int ret;
653
654 if (percpu_ref_tryget_live(&q->q_usage_counter))
655 return 0;
656
657 if (nowait)
658 return -EBUSY;
659
660 ret = wait_event_interruptible(q->mq_freeze_wq,
661 !atomic_read(&q->mq_freeze_depth) ||
662 blk_queue_dying(q));
663 if (blk_queue_dying(q))
664 return -ENODEV;
665 if (ret)
666 return ret;
667 }
668 }
669
670 void blk_queue_exit(struct request_queue *q)
671 {
672 percpu_ref_put(&q->q_usage_counter);
673 }
674
675 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
676 {
677 struct request_queue *q =
678 container_of(ref, struct request_queue, q_usage_counter);
679
680 wake_up_all(&q->mq_freeze_wq);
681 }
682
683 static void blk_rq_timed_out_timer(unsigned long data)
684 {
685 struct request_queue *q = (struct request_queue *)data;
686
687 kblockd_schedule_work(&q->timeout_work);
688 }
689
690 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
691 {
692 struct request_queue *q;
693 int err;
694
695 q = kmem_cache_alloc_node(blk_requestq_cachep,
696 gfp_mask | __GFP_ZERO, node_id);
697 if (!q)
698 return NULL;
699
700 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
701 if (q->id < 0)
702 goto fail_q;
703
704 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
705 if (!q->bio_split)
706 goto fail_id;
707
708 q->backing_dev_info.ra_pages =
709 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
710 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
711 q->backing_dev_info.name = "block";
712 q->node = node_id;
713
714 err = bdi_init(&q->backing_dev_info);
715 if (err)
716 goto fail_split;
717
718 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
719 laptop_mode_timer_fn, (unsigned long) q);
720 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
721 INIT_LIST_HEAD(&q->queue_head);
722 INIT_LIST_HEAD(&q->timeout_list);
723 INIT_LIST_HEAD(&q->icq_list);
724 #ifdef CONFIG_BLK_CGROUP
725 INIT_LIST_HEAD(&q->blkg_list);
726 #endif
727 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
728
729 kobject_init(&q->kobj, &blk_queue_ktype);
730
731 mutex_init(&q->sysfs_lock);
732 spin_lock_init(&q->__queue_lock);
733
734 /*
735 * By default initialize queue_lock to internal lock and driver can
736 * override it later if need be.
737 */
738 q->queue_lock = &q->__queue_lock;
739
740 /*
741 * A queue starts its life with bypass turned on to avoid
742 * unnecessary bypass on/off overhead and nasty surprises during
743 * init. The initial bypass will be finished when the queue is
744 * registered by blk_register_queue().
745 */
746 q->bypass_depth = 1;
747 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
748
749 init_waitqueue_head(&q->mq_freeze_wq);
750
751 /*
752 * Init percpu_ref in atomic mode so that it's faster to shutdown.
753 * See blk_register_queue() for details.
754 */
755 if (percpu_ref_init(&q->q_usage_counter,
756 blk_queue_usage_counter_release,
757 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
758 goto fail_bdi;
759
760 if (blkcg_init_queue(q))
761 goto fail_ref;
762
763 return q;
764
765 fail_ref:
766 percpu_ref_exit(&q->q_usage_counter);
767 fail_bdi:
768 bdi_destroy(&q->backing_dev_info);
769 fail_split:
770 bioset_free(q->bio_split);
771 fail_id:
772 ida_simple_remove(&blk_queue_ida, q->id);
773 fail_q:
774 kmem_cache_free(blk_requestq_cachep, q);
775 return NULL;
776 }
777 EXPORT_SYMBOL(blk_alloc_queue_node);
778
779 /**
780 * blk_init_queue - prepare a request queue for use with a block device
781 * @rfn: The function to be called to process requests that have been
782 * placed on the queue.
783 * @lock: Request queue spin lock
784 *
785 * Description:
786 * If a block device wishes to use the standard request handling procedures,
787 * which sorts requests and coalesces adjacent requests, then it must
788 * call blk_init_queue(). The function @rfn will be called when there
789 * are requests on the queue that need to be processed. If the device
790 * supports plugging, then @rfn may not be called immediately when requests
791 * are available on the queue, but may be called at some time later instead.
792 * Plugged queues are generally unplugged when a buffer belonging to one
793 * of the requests on the queue is needed, or due to memory pressure.
794 *
795 * @rfn is not required, or even expected, to remove all requests off the
796 * queue, but only as many as it can handle at a time. If it does leave
797 * requests on the queue, it is responsible for arranging that the requests
798 * get dealt with eventually.
799 *
800 * The queue spin lock must be held while manipulating the requests on the
801 * request queue; this lock will be taken also from interrupt context, so irq
802 * disabling is needed for it.
803 *
804 * Function returns a pointer to the initialized request queue, or %NULL if
805 * it didn't succeed.
806 *
807 * Note:
808 * blk_init_queue() must be paired with a blk_cleanup_queue() call
809 * when the block device is deactivated (such as at module unload).
810 **/
811
812 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
813 {
814 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
815 }
816 EXPORT_SYMBOL(blk_init_queue);
817
818 struct request_queue *
819 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
820 {
821 struct request_queue *uninit_q, *q;
822
823 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
824 if (!uninit_q)
825 return NULL;
826
827 q = blk_init_allocated_queue(uninit_q, rfn, lock);
828 if (!q)
829 blk_cleanup_queue(uninit_q);
830
831 return q;
832 }
833 EXPORT_SYMBOL(blk_init_queue_node);
834
835 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
836
837 struct request_queue *
838 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
839 spinlock_t *lock)
840 {
841 if (!q)
842 return NULL;
843
844 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
845 if (!q->fq)
846 return NULL;
847
848 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
849 goto fail;
850
851 INIT_WORK(&q->timeout_work, blk_timeout_work);
852 q->request_fn = rfn;
853 q->prep_rq_fn = NULL;
854 q->unprep_rq_fn = NULL;
855 q->queue_flags |= QUEUE_FLAG_DEFAULT;
856
857 /* Override internal queue lock with supplied lock pointer */
858 if (lock)
859 q->queue_lock = lock;
860
861 /*
862 * This also sets hw/phys segments, boundary and size
863 */
864 blk_queue_make_request(q, blk_queue_bio);
865
866 q->sg_reserved_size = INT_MAX;
867
868 /* Protect q->elevator from elevator_change */
869 mutex_lock(&q->sysfs_lock);
870
871 /* init elevator */
872 if (elevator_init(q, NULL)) {
873 mutex_unlock(&q->sysfs_lock);
874 goto fail;
875 }
876
877 mutex_unlock(&q->sysfs_lock);
878
879 return q;
880
881 fail:
882 blk_free_flush_queue(q->fq);
883 return NULL;
884 }
885 EXPORT_SYMBOL(blk_init_allocated_queue);
886
887 bool blk_get_queue(struct request_queue *q)
888 {
889 if (likely(!blk_queue_dying(q))) {
890 __blk_get_queue(q);
891 return true;
892 }
893
894 return false;
895 }
896 EXPORT_SYMBOL(blk_get_queue);
897
898 static inline void blk_free_request(struct request_list *rl, struct request *rq)
899 {
900 if (rq->cmd_flags & REQ_ELVPRIV) {
901 elv_put_request(rl->q, rq);
902 if (rq->elv.icq)
903 put_io_context(rq->elv.icq->ioc);
904 }
905
906 mempool_free(rq, rl->rq_pool);
907 }
908
909 /*
910 * ioc_batching returns true if the ioc is a valid batching request and
911 * should be given priority access to a request.
912 */
913 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
914 {
915 if (!ioc)
916 return 0;
917
918 /*
919 * Make sure the process is able to allocate at least 1 request
920 * even if the batch times out, otherwise we could theoretically
921 * lose wakeups.
922 */
923 return ioc->nr_batch_requests == q->nr_batching ||
924 (ioc->nr_batch_requests > 0
925 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
926 }
927
928 /*
929 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
930 * will cause the process to be a "batcher" on all queues in the system. This
931 * is the behaviour we want though - once it gets a wakeup it should be given
932 * a nice run.
933 */
934 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
935 {
936 if (!ioc || ioc_batching(q, ioc))
937 return;
938
939 ioc->nr_batch_requests = q->nr_batching;
940 ioc->last_waited = jiffies;
941 }
942
943 static void __freed_request(struct request_list *rl, int sync)
944 {
945 struct request_queue *q = rl->q;
946
947 if (rl->count[sync] < queue_congestion_off_threshold(q))
948 blk_clear_congested(rl, sync);
949
950 if (rl->count[sync] + 1 <= q->nr_requests) {
951 if (waitqueue_active(&rl->wait[sync]))
952 wake_up(&rl->wait[sync]);
953
954 blk_clear_rl_full(rl, sync);
955 }
956 }
957
958 /*
959 * A request has just been released. Account for it, update the full and
960 * congestion status, wake up any waiters. Called under q->queue_lock.
961 */
962 static void freed_request(struct request_list *rl, int op, unsigned int flags)
963 {
964 struct request_queue *q = rl->q;
965 int sync = rw_is_sync(op, flags);
966
967 q->nr_rqs[sync]--;
968 rl->count[sync]--;
969 if (flags & REQ_ELVPRIV)
970 q->nr_rqs_elvpriv--;
971
972 __freed_request(rl, sync);
973
974 if (unlikely(rl->starved[sync ^ 1]))
975 __freed_request(rl, sync ^ 1);
976 }
977
978 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
979 {
980 struct request_list *rl;
981 int on_thresh, off_thresh;
982
983 spin_lock_irq(q->queue_lock);
984 q->nr_requests = nr;
985 blk_queue_congestion_threshold(q);
986 on_thresh = queue_congestion_on_threshold(q);
987 off_thresh = queue_congestion_off_threshold(q);
988
989 blk_queue_for_each_rl(rl, q) {
990 if (rl->count[BLK_RW_SYNC] >= on_thresh)
991 blk_set_congested(rl, BLK_RW_SYNC);
992 else if (rl->count[BLK_RW_SYNC] < off_thresh)
993 blk_clear_congested(rl, BLK_RW_SYNC);
994
995 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
996 blk_set_congested(rl, BLK_RW_ASYNC);
997 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
998 blk_clear_congested(rl, BLK_RW_ASYNC);
999
1000 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1001 blk_set_rl_full(rl, BLK_RW_SYNC);
1002 } else {
1003 blk_clear_rl_full(rl, BLK_RW_SYNC);
1004 wake_up(&rl->wait[BLK_RW_SYNC]);
1005 }
1006
1007 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1008 blk_set_rl_full(rl, BLK_RW_ASYNC);
1009 } else {
1010 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1011 wake_up(&rl->wait[BLK_RW_ASYNC]);
1012 }
1013 }
1014
1015 spin_unlock_irq(q->queue_lock);
1016 return 0;
1017 }
1018
1019 /*
1020 * Determine if elevator data should be initialized when allocating the
1021 * request associated with @bio.
1022 */
1023 static bool blk_rq_should_init_elevator(struct bio *bio)
1024 {
1025 if (!bio)
1026 return true;
1027
1028 /*
1029 * Flush requests do not use the elevator so skip initialization.
1030 * This allows a request to share the flush and elevator data.
1031 */
1032 if (bio->bi_rw & (REQ_PREFLUSH | REQ_FUA))
1033 return false;
1034
1035 return true;
1036 }
1037
1038 /**
1039 * rq_ioc - determine io_context for request allocation
1040 * @bio: request being allocated is for this bio (can be %NULL)
1041 *
1042 * Determine io_context to use for request allocation for @bio. May return
1043 * %NULL if %current->io_context doesn't exist.
1044 */
1045 static struct io_context *rq_ioc(struct bio *bio)
1046 {
1047 #ifdef CONFIG_BLK_CGROUP
1048 if (bio && bio->bi_ioc)
1049 return bio->bi_ioc;
1050 #endif
1051 return current->io_context;
1052 }
1053
1054 /**
1055 * __get_request - get a free request
1056 * @rl: request list to allocate from
1057 * @op: REQ_OP_READ/REQ_OP_WRITE
1058 * @op_flags: rq_flag_bits
1059 * @bio: bio to allocate request for (can be %NULL)
1060 * @gfp_mask: allocation mask
1061 *
1062 * Get a free request from @q. This function may fail under memory
1063 * pressure or if @q is dead.
1064 *
1065 * Must be called with @q->queue_lock held and,
1066 * Returns ERR_PTR on failure, with @q->queue_lock held.
1067 * Returns request pointer on success, with @q->queue_lock *not held*.
1068 */
1069 static struct request *__get_request(struct request_list *rl, int op,
1070 int op_flags, struct bio *bio,
1071 gfp_t gfp_mask)
1072 {
1073 struct request_queue *q = rl->q;
1074 struct request *rq;
1075 struct elevator_type *et = q->elevator->type;
1076 struct io_context *ioc = rq_ioc(bio);
1077 struct io_cq *icq = NULL;
1078 const bool is_sync = rw_is_sync(op, op_flags) != 0;
1079 int may_queue;
1080
1081 if (unlikely(blk_queue_dying(q)))
1082 return ERR_PTR(-ENODEV);
1083
1084 may_queue = elv_may_queue(q, op, op_flags);
1085 if (may_queue == ELV_MQUEUE_NO)
1086 goto rq_starved;
1087
1088 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1089 if (rl->count[is_sync]+1 >= q->nr_requests) {
1090 /*
1091 * The queue will fill after this allocation, so set
1092 * it as full, and mark this process as "batching".
1093 * This process will be allowed to complete a batch of
1094 * requests, others will be blocked.
1095 */
1096 if (!blk_rl_full(rl, is_sync)) {
1097 ioc_set_batching(q, ioc);
1098 blk_set_rl_full(rl, is_sync);
1099 } else {
1100 if (may_queue != ELV_MQUEUE_MUST
1101 && !ioc_batching(q, ioc)) {
1102 /*
1103 * The queue is full and the allocating
1104 * process is not a "batcher", and not
1105 * exempted by the IO scheduler
1106 */
1107 return ERR_PTR(-ENOMEM);
1108 }
1109 }
1110 }
1111 blk_set_congested(rl, is_sync);
1112 }
1113
1114 /*
1115 * Only allow batching queuers to allocate up to 50% over the defined
1116 * limit of requests, otherwise we could have thousands of requests
1117 * allocated with any setting of ->nr_requests
1118 */
1119 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1120 return ERR_PTR(-ENOMEM);
1121
1122 q->nr_rqs[is_sync]++;
1123 rl->count[is_sync]++;
1124 rl->starved[is_sync] = 0;
1125
1126 /*
1127 * Decide whether the new request will be managed by elevator. If
1128 * so, mark @op_flags and increment elvpriv. Non-zero elvpriv will
1129 * prevent the current elevator from being destroyed until the new
1130 * request is freed. This guarantees icq's won't be destroyed and
1131 * makes creating new ones safe.
1132 *
1133 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1134 * it will be created after releasing queue_lock.
1135 */
1136 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1137 op_flags |= REQ_ELVPRIV;
1138 q->nr_rqs_elvpriv++;
1139 if (et->icq_cache && ioc)
1140 icq = ioc_lookup_icq(ioc, q);
1141 }
1142
1143 if (blk_queue_io_stat(q))
1144 op_flags |= REQ_IO_STAT;
1145 spin_unlock_irq(q->queue_lock);
1146
1147 /* allocate and init request */
1148 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1149 if (!rq)
1150 goto fail_alloc;
1151
1152 blk_rq_init(q, rq);
1153 blk_rq_set_rl(rq, rl);
1154 req_set_op_attrs(rq, op, op_flags | REQ_ALLOCED);
1155
1156 /* init elvpriv */
1157 if (op_flags & REQ_ELVPRIV) {
1158 if (unlikely(et->icq_cache && !icq)) {
1159 if (ioc)
1160 icq = ioc_create_icq(ioc, q, gfp_mask);
1161 if (!icq)
1162 goto fail_elvpriv;
1163 }
1164
1165 rq->elv.icq = icq;
1166 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1167 goto fail_elvpriv;
1168
1169 /* @rq->elv.icq holds io_context until @rq is freed */
1170 if (icq)
1171 get_io_context(icq->ioc);
1172 }
1173 out:
1174 /*
1175 * ioc may be NULL here, and ioc_batching will be false. That's
1176 * OK, if the queue is under the request limit then requests need
1177 * not count toward the nr_batch_requests limit. There will always
1178 * be some limit enforced by BLK_BATCH_TIME.
1179 */
1180 if (ioc_batching(q, ioc))
1181 ioc->nr_batch_requests--;
1182
1183 trace_block_getrq(q, bio, op);
1184 return rq;
1185
1186 fail_elvpriv:
1187 /*
1188 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1189 * and may fail indefinitely under memory pressure and thus
1190 * shouldn't stall IO. Treat this request as !elvpriv. This will
1191 * disturb iosched and blkcg but weird is bettern than dead.
1192 */
1193 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1194 __func__, dev_name(q->backing_dev_info.dev));
1195
1196 rq->cmd_flags &= ~REQ_ELVPRIV;
1197 rq->elv.icq = NULL;
1198
1199 spin_lock_irq(q->queue_lock);
1200 q->nr_rqs_elvpriv--;
1201 spin_unlock_irq(q->queue_lock);
1202 goto out;
1203
1204 fail_alloc:
1205 /*
1206 * Allocation failed presumably due to memory. Undo anything we
1207 * might have messed up.
1208 *
1209 * Allocating task should really be put onto the front of the wait
1210 * queue, but this is pretty rare.
1211 */
1212 spin_lock_irq(q->queue_lock);
1213 freed_request(rl, op, op_flags);
1214
1215 /*
1216 * in the very unlikely event that allocation failed and no
1217 * requests for this direction was pending, mark us starved so that
1218 * freeing of a request in the other direction will notice
1219 * us. another possible fix would be to split the rq mempool into
1220 * READ and WRITE
1221 */
1222 rq_starved:
1223 if (unlikely(rl->count[is_sync] == 0))
1224 rl->starved[is_sync] = 1;
1225 return ERR_PTR(-ENOMEM);
1226 }
1227
1228 /**
1229 * get_request - get a free request
1230 * @q: request_queue to allocate request from
1231 * @op: REQ_OP_READ/REQ_OP_WRITE
1232 * @op_flags: rq_flag_bits
1233 * @bio: bio to allocate request for (can be %NULL)
1234 * @gfp_mask: allocation mask
1235 *
1236 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1237 * this function keeps retrying under memory pressure and fails iff @q is dead.
1238 *
1239 * Must be called with @q->queue_lock held and,
1240 * Returns ERR_PTR on failure, with @q->queue_lock held.
1241 * Returns request pointer on success, with @q->queue_lock *not held*.
1242 */
1243 static struct request *get_request(struct request_queue *q, int op,
1244 int op_flags, struct bio *bio,
1245 gfp_t gfp_mask)
1246 {
1247 const bool is_sync = rw_is_sync(op, op_flags) != 0;
1248 DEFINE_WAIT(wait);
1249 struct request_list *rl;
1250 struct request *rq;
1251
1252 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1253 retry:
1254 rq = __get_request(rl, op, op_flags, bio, gfp_mask);
1255 if (!IS_ERR(rq))
1256 return rq;
1257
1258 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1259 blk_put_rl(rl);
1260 return rq;
1261 }
1262
1263 /* wait on @rl and retry */
1264 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1265 TASK_UNINTERRUPTIBLE);
1266
1267 trace_block_sleeprq(q, bio, op);
1268
1269 spin_unlock_irq(q->queue_lock);
1270 io_schedule();
1271
1272 /*
1273 * After sleeping, we become a "batching" process and will be able
1274 * to allocate at least one request, and up to a big batch of them
1275 * for a small period time. See ioc_batching, ioc_set_batching
1276 */
1277 ioc_set_batching(q, current->io_context);
1278
1279 spin_lock_irq(q->queue_lock);
1280 finish_wait(&rl->wait[is_sync], &wait);
1281
1282 goto retry;
1283 }
1284
1285 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1286 gfp_t gfp_mask)
1287 {
1288 struct request *rq;
1289
1290 BUG_ON(rw != READ && rw != WRITE);
1291
1292 /* create ioc upfront */
1293 create_io_context(gfp_mask, q->node);
1294
1295 spin_lock_irq(q->queue_lock);
1296 rq = get_request(q, rw, 0, NULL, gfp_mask);
1297 if (IS_ERR(rq))
1298 spin_unlock_irq(q->queue_lock);
1299 /* q->queue_lock is unlocked at this point */
1300
1301 return rq;
1302 }
1303
1304 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1305 {
1306 if (q->mq_ops)
1307 return blk_mq_alloc_request(q, rw,
1308 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1309 0 : BLK_MQ_REQ_NOWAIT);
1310 else
1311 return blk_old_get_request(q, rw, gfp_mask);
1312 }
1313 EXPORT_SYMBOL(blk_get_request);
1314
1315 /**
1316 * blk_make_request - given a bio, allocate a corresponding struct request.
1317 * @q: target request queue
1318 * @bio: The bio describing the memory mappings that will be submitted for IO.
1319 * It may be a chained-bio properly constructed by block/bio layer.
1320 * @gfp_mask: gfp flags to be used for memory allocation
1321 *
1322 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1323 * type commands. Where the struct request needs to be farther initialized by
1324 * the caller. It is passed a &struct bio, which describes the memory info of
1325 * the I/O transfer.
1326 *
1327 * The caller of blk_make_request must make sure that bi_io_vec
1328 * are set to describe the memory buffers. That bio_data_dir() will return
1329 * the needed direction of the request. (And all bio's in the passed bio-chain
1330 * are properly set accordingly)
1331 *
1332 * If called under none-sleepable conditions, mapped bio buffers must not
1333 * need bouncing, by calling the appropriate masked or flagged allocator,
1334 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1335 * BUG.
1336 *
1337 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1338 * given to how you allocate bios. In particular, you cannot use
1339 * __GFP_DIRECT_RECLAIM for anything but the first bio in the chain. Otherwise
1340 * you risk waiting for IO completion of a bio that hasn't been submitted yet,
1341 * thus resulting in a deadlock. Alternatively bios should be allocated using
1342 * bio_kmalloc() instead of bio_alloc(), as that avoids the mempool deadlock.
1343 * If possible a big IO should be split into smaller parts when allocation
1344 * fails. Partial allocation should not be an error, or you risk a live-lock.
1345 */
1346 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1347 gfp_t gfp_mask)
1348 {
1349 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1350
1351 if (IS_ERR(rq))
1352 return rq;
1353
1354 blk_rq_set_block_pc(rq);
1355
1356 for_each_bio(bio) {
1357 struct bio *bounce_bio = bio;
1358 int ret;
1359
1360 blk_queue_bounce(q, &bounce_bio);
1361 ret = blk_rq_append_bio(q, rq, bounce_bio);
1362 if (unlikely(ret)) {
1363 blk_put_request(rq);
1364 return ERR_PTR(ret);
1365 }
1366 }
1367
1368 return rq;
1369 }
1370 EXPORT_SYMBOL(blk_make_request);
1371
1372 /**
1373 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1374 * @rq: request to be initialized
1375 *
1376 */
1377 void blk_rq_set_block_pc(struct request *rq)
1378 {
1379 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1380 rq->__data_len = 0;
1381 rq->__sector = (sector_t) -1;
1382 rq->bio = rq->biotail = NULL;
1383 memset(rq->__cmd, 0, sizeof(rq->__cmd));
1384 }
1385 EXPORT_SYMBOL(blk_rq_set_block_pc);
1386
1387 /**
1388 * blk_requeue_request - put a request back on queue
1389 * @q: request queue where request should be inserted
1390 * @rq: request to be inserted
1391 *
1392 * Description:
1393 * Drivers often keep queueing requests until the hardware cannot accept
1394 * more, when that condition happens we need to put the request back
1395 * on the queue. Must be called with queue lock held.
1396 */
1397 void blk_requeue_request(struct request_queue *q, struct request *rq)
1398 {
1399 blk_delete_timer(rq);
1400 blk_clear_rq_complete(rq);
1401 trace_block_rq_requeue(q, rq);
1402
1403 if (rq->cmd_flags & REQ_QUEUED)
1404 blk_queue_end_tag(q, rq);
1405
1406 BUG_ON(blk_queued_rq(rq));
1407
1408 elv_requeue_request(q, rq);
1409 }
1410 EXPORT_SYMBOL(blk_requeue_request);
1411
1412 static void add_acct_request(struct request_queue *q, struct request *rq,
1413 int where)
1414 {
1415 blk_account_io_start(rq, true);
1416 __elv_add_request(q, rq, where);
1417 }
1418
1419 static void part_round_stats_single(int cpu, struct hd_struct *part,
1420 unsigned long now)
1421 {
1422 int inflight;
1423
1424 if (now == part->stamp)
1425 return;
1426
1427 inflight = part_in_flight(part);
1428 if (inflight) {
1429 __part_stat_add(cpu, part, time_in_queue,
1430 inflight * (now - part->stamp));
1431 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1432 }
1433 part->stamp = now;
1434 }
1435
1436 /**
1437 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1438 * @cpu: cpu number for stats access
1439 * @part: target partition
1440 *
1441 * The average IO queue length and utilisation statistics are maintained
1442 * by observing the current state of the queue length and the amount of
1443 * time it has been in this state for.
1444 *
1445 * Normally, that accounting is done on IO completion, but that can result
1446 * in more than a second's worth of IO being accounted for within any one
1447 * second, leading to >100% utilisation. To deal with that, we call this
1448 * function to do a round-off before returning the results when reading
1449 * /proc/diskstats. This accounts immediately for all queue usage up to
1450 * the current jiffies and restarts the counters again.
1451 */
1452 void part_round_stats(int cpu, struct hd_struct *part)
1453 {
1454 unsigned long now = jiffies;
1455
1456 if (part->partno)
1457 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1458 part_round_stats_single(cpu, part, now);
1459 }
1460 EXPORT_SYMBOL_GPL(part_round_stats);
1461
1462 #ifdef CONFIG_PM
1463 static void blk_pm_put_request(struct request *rq)
1464 {
1465 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1466 pm_runtime_mark_last_busy(rq->q->dev);
1467 }
1468 #else
1469 static inline void blk_pm_put_request(struct request *rq) {}
1470 #endif
1471
1472 /*
1473 * queue lock must be held
1474 */
1475 void __blk_put_request(struct request_queue *q, struct request *req)
1476 {
1477 if (unlikely(!q))
1478 return;
1479
1480 if (q->mq_ops) {
1481 blk_mq_free_request(req);
1482 return;
1483 }
1484
1485 blk_pm_put_request(req);
1486
1487 elv_completed_request(q, req);
1488
1489 /* this is a bio leak */
1490 WARN_ON(req->bio != NULL);
1491
1492 /*
1493 * Request may not have originated from ll_rw_blk. if not,
1494 * it didn't come out of our reserved rq pools
1495 */
1496 if (req->cmd_flags & REQ_ALLOCED) {
1497 unsigned int flags = req->cmd_flags;
1498 int op = req_op(req);
1499 struct request_list *rl = blk_rq_rl(req);
1500
1501 BUG_ON(!list_empty(&req->queuelist));
1502 BUG_ON(ELV_ON_HASH(req));
1503
1504 blk_free_request(rl, req);
1505 freed_request(rl, op, flags);
1506 blk_put_rl(rl);
1507 }
1508 }
1509 EXPORT_SYMBOL_GPL(__blk_put_request);
1510
1511 void blk_put_request(struct request *req)
1512 {
1513 struct request_queue *q = req->q;
1514
1515 if (q->mq_ops)
1516 blk_mq_free_request(req);
1517 else {
1518 unsigned long flags;
1519
1520 spin_lock_irqsave(q->queue_lock, flags);
1521 __blk_put_request(q, req);
1522 spin_unlock_irqrestore(q->queue_lock, flags);
1523 }
1524 }
1525 EXPORT_SYMBOL(blk_put_request);
1526
1527 /**
1528 * blk_add_request_payload - add a payload to a request
1529 * @rq: request to update
1530 * @page: page backing the payload
1531 * @offset: offset in page
1532 * @len: length of the payload.
1533 *
1534 * This allows to later add a payload to an already submitted request by
1535 * a block driver. The driver needs to take care of freeing the payload
1536 * itself.
1537 *
1538 * Note that this is a quite horrible hack and nothing but handling of
1539 * discard requests should ever use it.
1540 */
1541 void blk_add_request_payload(struct request *rq, struct page *page,
1542 int offset, unsigned int len)
1543 {
1544 struct bio *bio = rq->bio;
1545
1546 bio->bi_io_vec->bv_page = page;
1547 bio->bi_io_vec->bv_offset = offset;
1548 bio->bi_io_vec->bv_len = len;
1549
1550 bio->bi_iter.bi_size = len;
1551 bio->bi_vcnt = 1;
1552 bio->bi_phys_segments = 1;
1553
1554 rq->__data_len = rq->resid_len = len;
1555 rq->nr_phys_segments = 1;
1556 }
1557 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1558
1559 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1560 struct bio *bio)
1561 {
1562 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1563
1564 if (!ll_back_merge_fn(q, req, bio))
1565 return false;
1566
1567 trace_block_bio_backmerge(q, req, bio);
1568
1569 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1570 blk_rq_set_mixed_merge(req);
1571
1572 req->biotail->bi_next = bio;
1573 req->biotail = bio;
1574 req->__data_len += bio->bi_iter.bi_size;
1575 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1576
1577 blk_account_io_start(req, false);
1578 return true;
1579 }
1580
1581 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1582 struct bio *bio)
1583 {
1584 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1585
1586 if (!ll_front_merge_fn(q, req, bio))
1587 return false;
1588
1589 trace_block_bio_frontmerge(q, req, bio);
1590
1591 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1592 blk_rq_set_mixed_merge(req);
1593
1594 bio->bi_next = req->bio;
1595 req->bio = bio;
1596
1597 req->__sector = bio->bi_iter.bi_sector;
1598 req->__data_len += bio->bi_iter.bi_size;
1599 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1600
1601 blk_account_io_start(req, false);
1602 return true;
1603 }
1604
1605 /**
1606 * blk_attempt_plug_merge - try to merge with %current's plugged list
1607 * @q: request_queue new bio is being queued at
1608 * @bio: new bio being queued
1609 * @request_count: out parameter for number of traversed plugged requests
1610 * @same_queue_rq: pointer to &struct request that gets filled in when
1611 * another request associated with @q is found on the plug list
1612 * (optional, may be %NULL)
1613 *
1614 * Determine whether @bio being queued on @q can be merged with a request
1615 * on %current's plugged list. Returns %true if merge was successful,
1616 * otherwise %false.
1617 *
1618 * Plugging coalesces IOs from the same issuer for the same purpose without
1619 * going through @q->queue_lock. As such it's more of an issuing mechanism
1620 * than scheduling, and the request, while may have elvpriv data, is not
1621 * added on the elevator at this point. In addition, we don't have
1622 * reliable access to the elevator outside queue lock. Only check basic
1623 * merging parameters without querying the elevator.
1624 *
1625 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1626 */
1627 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1628 unsigned int *request_count,
1629 struct request **same_queue_rq)
1630 {
1631 struct blk_plug *plug;
1632 struct request *rq;
1633 bool ret = false;
1634 struct list_head *plug_list;
1635
1636 plug = current->plug;
1637 if (!plug)
1638 goto out;
1639 *request_count = 0;
1640
1641 if (q->mq_ops)
1642 plug_list = &plug->mq_list;
1643 else
1644 plug_list = &plug->list;
1645
1646 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1647 int el_ret;
1648
1649 if (rq->q == q) {
1650 (*request_count)++;
1651 /*
1652 * Only blk-mq multiple hardware queues case checks the
1653 * rq in the same queue, there should be only one such
1654 * rq in a queue
1655 **/
1656 if (same_queue_rq)
1657 *same_queue_rq = rq;
1658 }
1659
1660 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1661 continue;
1662
1663 el_ret = blk_try_merge(rq, bio);
1664 if (el_ret == ELEVATOR_BACK_MERGE) {
1665 ret = bio_attempt_back_merge(q, rq, bio);
1666 if (ret)
1667 break;
1668 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1669 ret = bio_attempt_front_merge(q, rq, bio);
1670 if (ret)
1671 break;
1672 }
1673 }
1674 out:
1675 return ret;
1676 }
1677
1678 unsigned int blk_plug_queued_count(struct request_queue *q)
1679 {
1680 struct blk_plug *plug;
1681 struct request *rq;
1682 struct list_head *plug_list;
1683 unsigned int ret = 0;
1684
1685 plug = current->plug;
1686 if (!plug)
1687 goto out;
1688
1689 if (q->mq_ops)
1690 plug_list = &plug->mq_list;
1691 else
1692 plug_list = &plug->list;
1693
1694 list_for_each_entry(rq, plug_list, queuelist) {
1695 if (rq->q == q)
1696 ret++;
1697 }
1698 out:
1699 return ret;
1700 }
1701
1702 void init_request_from_bio(struct request *req, struct bio *bio)
1703 {
1704 req->cmd_type = REQ_TYPE_FS;
1705
1706 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1707 if (bio->bi_rw & REQ_RAHEAD)
1708 req->cmd_flags |= REQ_FAILFAST_MASK;
1709
1710 req->errors = 0;
1711 req->__sector = bio->bi_iter.bi_sector;
1712 req->ioprio = bio_prio(bio);
1713 blk_rq_bio_prep(req->q, req, bio);
1714 }
1715
1716 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1717 {
1718 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1719 struct blk_plug *plug;
1720 int el_ret, rw_flags = 0, where = ELEVATOR_INSERT_SORT;
1721 struct request *req;
1722 unsigned int request_count = 0;
1723
1724 /*
1725 * low level driver can indicate that it wants pages above a
1726 * certain limit bounced to low memory (ie for highmem, or even
1727 * ISA dma in theory)
1728 */
1729 blk_queue_bounce(q, &bio);
1730
1731 blk_queue_split(q, &bio, q->bio_split);
1732
1733 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1734 bio->bi_error = -EIO;
1735 bio_endio(bio);
1736 return BLK_QC_T_NONE;
1737 }
1738
1739 if (bio->bi_rw & (REQ_PREFLUSH | REQ_FUA)) {
1740 spin_lock_irq(q->queue_lock);
1741 where = ELEVATOR_INSERT_FLUSH;
1742 goto get_rq;
1743 }
1744
1745 /*
1746 * Check if we can merge with the plugged list before grabbing
1747 * any locks.
1748 */
1749 if (!blk_queue_nomerges(q)) {
1750 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1751 return BLK_QC_T_NONE;
1752 } else
1753 request_count = blk_plug_queued_count(q);
1754
1755 spin_lock_irq(q->queue_lock);
1756
1757 el_ret = elv_merge(q, &req, bio);
1758 if (el_ret == ELEVATOR_BACK_MERGE) {
1759 if (bio_attempt_back_merge(q, req, bio)) {
1760 elv_bio_merged(q, req, bio);
1761 if (!attempt_back_merge(q, req))
1762 elv_merged_request(q, req, el_ret);
1763 goto out_unlock;
1764 }
1765 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1766 if (bio_attempt_front_merge(q, req, bio)) {
1767 elv_bio_merged(q, req, bio);
1768 if (!attempt_front_merge(q, req))
1769 elv_merged_request(q, req, el_ret);
1770 goto out_unlock;
1771 }
1772 }
1773
1774 get_rq:
1775 /*
1776 * This sync check and mask will be re-done in init_request_from_bio(),
1777 * but we need to set it earlier to expose the sync flag to the
1778 * rq allocator and io schedulers.
1779 */
1780 if (sync)
1781 rw_flags |= REQ_SYNC;
1782
1783 /*
1784 * Grab a free request. This is might sleep but can not fail.
1785 * Returns with the queue unlocked.
1786 */
1787 req = get_request(q, bio_data_dir(bio), rw_flags, bio, GFP_NOIO);
1788 if (IS_ERR(req)) {
1789 bio->bi_error = PTR_ERR(req);
1790 bio_endio(bio);
1791 goto out_unlock;
1792 }
1793
1794 /*
1795 * After dropping the lock and possibly sleeping here, our request
1796 * may now be mergeable after it had proven unmergeable (above).
1797 * We don't worry about that case for efficiency. It won't happen
1798 * often, and the elevators are able to handle it.
1799 */
1800 init_request_from_bio(req, bio);
1801
1802 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1803 req->cpu = raw_smp_processor_id();
1804
1805 plug = current->plug;
1806 if (plug) {
1807 /*
1808 * If this is the first request added after a plug, fire
1809 * of a plug trace.
1810 */
1811 if (!request_count)
1812 trace_block_plug(q);
1813 else {
1814 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1815 blk_flush_plug_list(plug, false);
1816 trace_block_plug(q);
1817 }
1818 }
1819 list_add_tail(&req->queuelist, &plug->list);
1820 blk_account_io_start(req, true);
1821 } else {
1822 spin_lock_irq(q->queue_lock);
1823 add_acct_request(q, req, where);
1824 __blk_run_queue(q);
1825 out_unlock:
1826 spin_unlock_irq(q->queue_lock);
1827 }
1828
1829 return BLK_QC_T_NONE;
1830 }
1831
1832 /*
1833 * If bio->bi_dev is a partition, remap the location
1834 */
1835 static inline void blk_partition_remap(struct bio *bio)
1836 {
1837 struct block_device *bdev = bio->bi_bdev;
1838
1839 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1840 struct hd_struct *p = bdev->bd_part;
1841
1842 bio->bi_iter.bi_sector += p->start_sect;
1843 bio->bi_bdev = bdev->bd_contains;
1844
1845 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1846 bdev->bd_dev,
1847 bio->bi_iter.bi_sector - p->start_sect);
1848 }
1849 }
1850
1851 static void handle_bad_sector(struct bio *bio)
1852 {
1853 char b[BDEVNAME_SIZE];
1854
1855 printk(KERN_INFO "attempt to access beyond end of device\n");
1856 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1857 bdevname(bio->bi_bdev, b),
1858 bio->bi_rw,
1859 (unsigned long long)bio_end_sector(bio),
1860 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1861 }
1862
1863 #ifdef CONFIG_FAIL_MAKE_REQUEST
1864
1865 static DECLARE_FAULT_ATTR(fail_make_request);
1866
1867 static int __init setup_fail_make_request(char *str)
1868 {
1869 return setup_fault_attr(&fail_make_request, str);
1870 }
1871 __setup("fail_make_request=", setup_fail_make_request);
1872
1873 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1874 {
1875 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1876 }
1877
1878 static int __init fail_make_request_debugfs(void)
1879 {
1880 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1881 NULL, &fail_make_request);
1882
1883 return PTR_ERR_OR_ZERO(dir);
1884 }
1885
1886 late_initcall(fail_make_request_debugfs);
1887
1888 #else /* CONFIG_FAIL_MAKE_REQUEST */
1889
1890 static inline bool should_fail_request(struct hd_struct *part,
1891 unsigned int bytes)
1892 {
1893 return false;
1894 }
1895
1896 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1897
1898 /*
1899 * Check whether this bio extends beyond the end of the device.
1900 */
1901 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1902 {
1903 sector_t maxsector;
1904
1905 if (!nr_sectors)
1906 return 0;
1907
1908 /* Test device or partition size, when known. */
1909 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1910 if (maxsector) {
1911 sector_t sector = bio->bi_iter.bi_sector;
1912
1913 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1914 /*
1915 * This may well happen - the kernel calls bread()
1916 * without checking the size of the device, e.g., when
1917 * mounting a device.
1918 */
1919 handle_bad_sector(bio);
1920 return 1;
1921 }
1922 }
1923
1924 return 0;
1925 }
1926
1927 static noinline_for_stack bool
1928 generic_make_request_checks(struct bio *bio)
1929 {
1930 struct request_queue *q;
1931 int nr_sectors = bio_sectors(bio);
1932 int err = -EIO;
1933 char b[BDEVNAME_SIZE];
1934 struct hd_struct *part;
1935
1936 might_sleep();
1937
1938 if (bio_check_eod(bio, nr_sectors))
1939 goto end_io;
1940
1941 q = bdev_get_queue(bio->bi_bdev);
1942 if (unlikely(!q)) {
1943 printk(KERN_ERR
1944 "generic_make_request: Trying to access "
1945 "nonexistent block-device %s (%Lu)\n",
1946 bdevname(bio->bi_bdev, b),
1947 (long long) bio->bi_iter.bi_sector);
1948 goto end_io;
1949 }
1950
1951 part = bio->bi_bdev->bd_part;
1952 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1953 should_fail_request(&part_to_disk(part)->part0,
1954 bio->bi_iter.bi_size))
1955 goto end_io;
1956
1957 /*
1958 * If this device has partitions, remap block n
1959 * of partition p to block n+start(p) of the disk.
1960 */
1961 blk_partition_remap(bio);
1962
1963 if (bio_check_eod(bio, nr_sectors))
1964 goto end_io;
1965
1966 /*
1967 * Filter flush bio's early so that make_request based
1968 * drivers without flush support don't have to worry
1969 * about them.
1970 */
1971 if ((bio->bi_rw & (REQ_PREFLUSH | REQ_FUA)) &&
1972 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1973 bio->bi_rw &= ~(REQ_PREFLUSH | REQ_FUA);
1974 if (!nr_sectors) {
1975 err = 0;
1976 goto end_io;
1977 }
1978 }
1979
1980 switch (bio_op(bio)) {
1981 case REQ_OP_DISCARD:
1982 if (!blk_queue_discard(q))
1983 goto not_supported;
1984 break;
1985 case REQ_OP_SECURE_ERASE:
1986 if (!blk_queue_secure_erase(q))
1987 goto not_supported;
1988 break;
1989 case REQ_OP_WRITE_SAME:
1990 if (!bdev_write_same(bio->bi_bdev))
1991 goto not_supported;
1992 break;
1993 default:
1994 break;
1995 }
1996
1997 /*
1998 * Various block parts want %current->io_context and lazy ioc
1999 * allocation ends up trading a lot of pain for a small amount of
2000 * memory. Just allocate it upfront. This may fail and block
2001 * layer knows how to live with it.
2002 */
2003 create_io_context(GFP_ATOMIC, q->node);
2004
2005 if (!blkcg_bio_issue_check(q, bio))
2006 return false;
2007
2008 trace_block_bio_queue(q, bio);
2009 return true;
2010
2011 not_supported:
2012 err = -EOPNOTSUPP;
2013 end_io:
2014 bio->bi_error = err;
2015 bio_endio(bio);
2016 return false;
2017 }
2018
2019 /**
2020 * generic_make_request - hand a buffer to its device driver for I/O
2021 * @bio: The bio describing the location in memory and on the device.
2022 *
2023 * generic_make_request() is used to make I/O requests of block
2024 * devices. It is passed a &struct bio, which describes the I/O that needs
2025 * to be done.
2026 *
2027 * generic_make_request() does not return any status. The
2028 * success/failure status of the request, along with notification of
2029 * completion, is delivered asynchronously through the bio->bi_end_io
2030 * function described (one day) else where.
2031 *
2032 * The caller of generic_make_request must make sure that bi_io_vec
2033 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2034 * set to describe the device address, and the
2035 * bi_end_io and optionally bi_private are set to describe how
2036 * completion notification should be signaled.
2037 *
2038 * generic_make_request and the drivers it calls may use bi_next if this
2039 * bio happens to be merged with someone else, and may resubmit the bio to
2040 * a lower device by calling into generic_make_request recursively, which
2041 * means the bio should NOT be touched after the call to ->make_request_fn.
2042 */
2043 blk_qc_t generic_make_request(struct bio *bio)
2044 {
2045 struct bio_list bio_list_on_stack;
2046 blk_qc_t ret = BLK_QC_T_NONE;
2047
2048 if (!generic_make_request_checks(bio))
2049 goto out;
2050
2051 /*
2052 * We only want one ->make_request_fn to be active at a time, else
2053 * stack usage with stacked devices could be a problem. So use
2054 * current->bio_list to keep a list of requests submited by a
2055 * make_request_fn function. current->bio_list is also used as a
2056 * flag to say if generic_make_request is currently active in this
2057 * task or not. If it is NULL, then no make_request is active. If
2058 * it is non-NULL, then a make_request is active, and new requests
2059 * should be added at the tail
2060 */
2061 if (current->bio_list) {
2062 bio_list_add(current->bio_list, bio);
2063 goto out;
2064 }
2065
2066 /* following loop may be a bit non-obvious, and so deserves some
2067 * explanation.
2068 * Before entering the loop, bio->bi_next is NULL (as all callers
2069 * ensure that) so we have a list with a single bio.
2070 * We pretend that we have just taken it off a longer list, so
2071 * we assign bio_list to a pointer to the bio_list_on_stack,
2072 * thus initialising the bio_list of new bios to be
2073 * added. ->make_request() may indeed add some more bios
2074 * through a recursive call to generic_make_request. If it
2075 * did, we find a non-NULL value in bio_list and re-enter the loop
2076 * from the top. In this case we really did just take the bio
2077 * of the top of the list (no pretending) and so remove it from
2078 * bio_list, and call into ->make_request() again.
2079 */
2080 BUG_ON(bio->bi_next);
2081 bio_list_init(&bio_list_on_stack);
2082 current->bio_list = &bio_list_on_stack;
2083 do {
2084 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2085
2086 if (likely(blk_queue_enter(q, false) == 0)) {
2087 ret = q->make_request_fn(q, bio);
2088
2089 blk_queue_exit(q);
2090
2091 bio = bio_list_pop(current->bio_list);
2092 } else {
2093 struct bio *bio_next = bio_list_pop(current->bio_list);
2094
2095 bio_io_error(bio);
2096 bio = bio_next;
2097 }
2098 } while (bio);
2099 current->bio_list = NULL; /* deactivate */
2100
2101 out:
2102 return ret;
2103 }
2104 EXPORT_SYMBOL(generic_make_request);
2105
2106 /**
2107 * submit_bio - submit a bio to the block device layer for I/O
2108 * @bio: The &struct bio which describes the I/O
2109 *
2110 * submit_bio() is very similar in purpose to generic_make_request(), and
2111 * uses that function to do most of the work. Both are fairly rough
2112 * interfaces; @bio must be presetup and ready for I/O.
2113 *
2114 */
2115 blk_qc_t submit_bio(struct bio *bio)
2116 {
2117 /*
2118 * If it's a regular read/write or a barrier with data attached,
2119 * go through the normal accounting stuff before submission.
2120 */
2121 if (bio_has_data(bio)) {
2122 unsigned int count;
2123
2124 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2125 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2126 else
2127 count = bio_sectors(bio);
2128
2129 if (op_is_write(bio_op(bio))) {
2130 count_vm_events(PGPGOUT, count);
2131 } else {
2132 task_io_account_read(bio->bi_iter.bi_size);
2133 count_vm_events(PGPGIN, count);
2134 }
2135
2136 if (unlikely(block_dump)) {
2137 char b[BDEVNAME_SIZE];
2138 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2139 current->comm, task_pid_nr(current),
2140 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2141 (unsigned long long)bio->bi_iter.bi_sector,
2142 bdevname(bio->bi_bdev, b),
2143 count);
2144 }
2145 }
2146
2147 return generic_make_request(bio);
2148 }
2149 EXPORT_SYMBOL(submit_bio);
2150
2151 /**
2152 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2153 * for new the queue limits
2154 * @q: the queue
2155 * @rq: the request being checked
2156 *
2157 * Description:
2158 * @rq may have been made based on weaker limitations of upper-level queues
2159 * in request stacking drivers, and it may violate the limitation of @q.
2160 * Since the block layer and the underlying device driver trust @rq
2161 * after it is inserted to @q, it should be checked against @q before
2162 * the insertion using this generic function.
2163 *
2164 * Request stacking drivers like request-based dm may change the queue
2165 * limits when retrying requests on other queues. Those requests need
2166 * to be checked against the new queue limits again during dispatch.
2167 */
2168 static int blk_cloned_rq_check_limits(struct request_queue *q,
2169 struct request *rq)
2170 {
2171 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2172 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2173 return -EIO;
2174 }
2175
2176 /*
2177 * queue's settings related to segment counting like q->bounce_pfn
2178 * may differ from that of other stacking queues.
2179 * Recalculate it to check the request correctly on this queue's
2180 * limitation.
2181 */
2182 blk_recalc_rq_segments(rq);
2183 if (rq->nr_phys_segments > queue_max_segments(q)) {
2184 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2185 return -EIO;
2186 }
2187
2188 return 0;
2189 }
2190
2191 /**
2192 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2193 * @q: the queue to submit the request
2194 * @rq: the request being queued
2195 */
2196 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2197 {
2198 unsigned long flags;
2199 int where = ELEVATOR_INSERT_BACK;
2200
2201 if (blk_cloned_rq_check_limits(q, rq))
2202 return -EIO;
2203
2204 if (rq->rq_disk &&
2205 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2206 return -EIO;
2207
2208 if (q->mq_ops) {
2209 if (blk_queue_io_stat(q))
2210 blk_account_io_start(rq, true);
2211 blk_mq_insert_request(rq, false, true, false);
2212 return 0;
2213 }
2214
2215 spin_lock_irqsave(q->queue_lock, flags);
2216 if (unlikely(blk_queue_dying(q))) {
2217 spin_unlock_irqrestore(q->queue_lock, flags);
2218 return -ENODEV;
2219 }
2220
2221 /*
2222 * Submitting request must be dequeued before calling this function
2223 * because it will be linked to another request_queue
2224 */
2225 BUG_ON(blk_queued_rq(rq));
2226
2227 if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA))
2228 where = ELEVATOR_INSERT_FLUSH;
2229
2230 add_acct_request(q, rq, where);
2231 if (where == ELEVATOR_INSERT_FLUSH)
2232 __blk_run_queue(q);
2233 spin_unlock_irqrestore(q->queue_lock, flags);
2234
2235 return 0;
2236 }
2237 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2238
2239 /**
2240 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2241 * @rq: request to examine
2242 *
2243 * Description:
2244 * A request could be merge of IOs which require different failure
2245 * handling. This function determines the number of bytes which
2246 * can be failed from the beginning of the request without
2247 * crossing into area which need to be retried further.
2248 *
2249 * Return:
2250 * The number of bytes to fail.
2251 *
2252 * Context:
2253 * queue_lock must be held.
2254 */
2255 unsigned int blk_rq_err_bytes(const struct request *rq)
2256 {
2257 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2258 unsigned int bytes = 0;
2259 struct bio *bio;
2260
2261 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2262 return blk_rq_bytes(rq);
2263
2264 /*
2265 * Currently the only 'mixing' which can happen is between
2266 * different fastfail types. We can safely fail portions
2267 * which have all the failfast bits that the first one has -
2268 * the ones which are at least as eager to fail as the first
2269 * one.
2270 */
2271 for (bio = rq->bio; bio; bio = bio->bi_next) {
2272 if ((bio->bi_rw & ff) != ff)
2273 break;
2274 bytes += bio->bi_iter.bi_size;
2275 }
2276
2277 /* this could lead to infinite loop */
2278 BUG_ON(blk_rq_bytes(rq) && !bytes);
2279 return bytes;
2280 }
2281 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2282
2283 void blk_account_io_completion(struct request *req, unsigned int bytes)
2284 {
2285 if (blk_do_io_stat(req)) {
2286 const int rw = rq_data_dir(req);
2287 struct hd_struct *part;
2288 int cpu;
2289
2290 cpu = part_stat_lock();
2291 part = req->part;
2292 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2293 part_stat_unlock();
2294 }
2295 }
2296
2297 void blk_account_io_done(struct request *req)
2298 {
2299 /*
2300 * Account IO completion. flush_rq isn't accounted as a
2301 * normal IO on queueing nor completion. Accounting the
2302 * containing request is enough.
2303 */
2304 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2305 unsigned long duration = jiffies - req->start_time;
2306 const int rw = rq_data_dir(req);
2307 struct hd_struct *part;
2308 int cpu;
2309
2310 cpu = part_stat_lock();
2311 part = req->part;
2312
2313 part_stat_inc(cpu, part, ios[rw]);
2314 part_stat_add(cpu, part, ticks[rw], duration);
2315 part_round_stats(cpu, part);
2316 part_dec_in_flight(part, rw);
2317
2318 hd_struct_put(part);
2319 part_stat_unlock();
2320 }
2321 }
2322
2323 #ifdef CONFIG_PM
2324 /*
2325 * Don't process normal requests when queue is suspended
2326 * or in the process of suspending/resuming
2327 */
2328 static struct request *blk_pm_peek_request(struct request_queue *q,
2329 struct request *rq)
2330 {
2331 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2332 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2333 return NULL;
2334 else
2335 return rq;
2336 }
2337 #else
2338 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2339 struct request *rq)
2340 {
2341 return rq;
2342 }
2343 #endif
2344
2345 void blk_account_io_start(struct request *rq, bool new_io)
2346 {
2347 struct hd_struct *part;
2348 int rw = rq_data_dir(rq);
2349 int cpu;
2350
2351 if (!blk_do_io_stat(rq))
2352 return;
2353
2354 cpu = part_stat_lock();
2355
2356 if (!new_io) {
2357 part = rq->part;
2358 part_stat_inc(cpu, part, merges[rw]);
2359 } else {
2360 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2361 if (!hd_struct_try_get(part)) {
2362 /*
2363 * The partition is already being removed,
2364 * the request will be accounted on the disk only
2365 *
2366 * We take a reference on disk->part0 although that
2367 * partition will never be deleted, so we can treat
2368 * it as any other partition.
2369 */
2370 part = &rq->rq_disk->part0;
2371 hd_struct_get(part);
2372 }
2373 part_round_stats(cpu, part);
2374 part_inc_in_flight(part, rw);
2375 rq->part = part;
2376 }
2377
2378 part_stat_unlock();
2379 }
2380
2381 /**
2382 * blk_peek_request - peek at the top of a request queue
2383 * @q: request queue to peek at
2384 *
2385 * Description:
2386 * Return the request at the top of @q. The returned request
2387 * should be started using blk_start_request() before LLD starts
2388 * processing it.
2389 *
2390 * Return:
2391 * Pointer to the request at the top of @q if available. Null
2392 * otherwise.
2393 *
2394 * Context:
2395 * queue_lock must be held.
2396 */
2397 struct request *blk_peek_request(struct request_queue *q)
2398 {
2399 struct request *rq;
2400 int ret;
2401
2402 while ((rq = __elv_next_request(q)) != NULL) {
2403
2404 rq = blk_pm_peek_request(q, rq);
2405 if (!rq)
2406 break;
2407
2408 if (!(rq->cmd_flags & REQ_STARTED)) {
2409 /*
2410 * This is the first time the device driver
2411 * sees this request (possibly after
2412 * requeueing). Notify IO scheduler.
2413 */
2414 if (rq->cmd_flags & REQ_SORTED)
2415 elv_activate_rq(q, rq);
2416
2417 /*
2418 * just mark as started even if we don't start
2419 * it, a request that has been delayed should
2420 * not be passed by new incoming requests
2421 */
2422 rq->cmd_flags |= REQ_STARTED;
2423 trace_block_rq_issue(q, rq);
2424 }
2425
2426 if (!q->boundary_rq || q->boundary_rq == rq) {
2427 q->end_sector = rq_end_sector(rq);
2428 q->boundary_rq = NULL;
2429 }
2430
2431 if (rq->cmd_flags & REQ_DONTPREP)
2432 break;
2433
2434 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2435 /*
2436 * make sure space for the drain appears we
2437 * know we can do this because max_hw_segments
2438 * has been adjusted to be one fewer than the
2439 * device can handle
2440 */
2441 rq->nr_phys_segments++;
2442 }
2443
2444 if (!q->prep_rq_fn)
2445 break;
2446
2447 ret = q->prep_rq_fn(q, rq);
2448 if (ret == BLKPREP_OK) {
2449 break;
2450 } else if (ret == BLKPREP_DEFER) {
2451 /*
2452 * the request may have been (partially) prepped.
2453 * we need to keep this request in the front to
2454 * avoid resource deadlock. REQ_STARTED will
2455 * prevent other fs requests from passing this one.
2456 */
2457 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2458 !(rq->cmd_flags & REQ_DONTPREP)) {
2459 /*
2460 * remove the space for the drain we added
2461 * so that we don't add it again
2462 */
2463 --rq->nr_phys_segments;
2464 }
2465
2466 rq = NULL;
2467 break;
2468 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2469 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2470
2471 rq->cmd_flags |= REQ_QUIET;
2472 /*
2473 * Mark this request as started so we don't trigger
2474 * any debug logic in the end I/O path.
2475 */
2476 blk_start_request(rq);
2477 __blk_end_request_all(rq, err);
2478 } else {
2479 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2480 break;
2481 }
2482 }
2483
2484 return rq;
2485 }
2486 EXPORT_SYMBOL(blk_peek_request);
2487
2488 void blk_dequeue_request(struct request *rq)
2489 {
2490 struct request_queue *q = rq->q;
2491
2492 BUG_ON(list_empty(&rq->queuelist));
2493 BUG_ON(ELV_ON_HASH(rq));
2494
2495 list_del_init(&rq->queuelist);
2496
2497 /*
2498 * the time frame between a request being removed from the lists
2499 * and to it is freed is accounted as io that is in progress at
2500 * the driver side.
2501 */
2502 if (blk_account_rq(rq)) {
2503 q->in_flight[rq_is_sync(rq)]++;
2504 set_io_start_time_ns(rq);
2505 }
2506 }
2507
2508 /**
2509 * blk_start_request - start request processing on the driver
2510 * @req: request to dequeue
2511 *
2512 * Description:
2513 * Dequeue @req and start timeout timer on it. This hands off the
2514 * request to the driver.
2515 *
2516 * Block internal functions which don't want to start timer should
2517 * call blk_dequeue_request().
2518 *
2519 * Context:
2520 * queue_lock must be held.
2521 */
2522 void blk_start_request(struct request *req)
2523 {
2524 blk_dequeue_request(req);
2525
2526 /*
2527 * We are now handing the request to the hardware, initialize
2528 * resid_len to full count and add the timeout handler.
2529 */
2530 req->resid_len = blk_rq_bytes(req);
2531 if (unlikely(blk_bidi_rq(req)))
2532 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2533
2534 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2535 blk_add_timer(req);
2536 }
2537 EXPORT_SYMBOL(blk_start_request);
2538
2539 /**
2540 * blk_fetch_request - fetch a request from a request queue
2541 * @q: request queue to fetch a request from
2542 *
2543 * Description:
2544 * Return the request at the top of @q. The request is started on
2545 * return and LLD can start processing it immediately.
2546 *
2547 * Return:
2548 * Pointer to the request at the top of @q if available. Null
2549 * otherwise.
2550 *
2551 * Context:
2552 * queue_lock must be held.
2553 */
2554 struct request *blk_fetch_request(struct request_queue *q)
2555 {
2556 struct request *rq;
2557
2558 rq = blk_peek_request(q);
2559 if (rq)
2560 blk_start_request(rq);
2561 return rq;
2562 }
2563 EXPORT_SYMBOL(blk_fetch_request);
2564
2565 /**
2566 * blk_update_request - Special helper function for request stacking drivers
2567 * @req: the request being processed
2568 * @error: %0 for success, < %0 for error
2569 * @nr_bytes: number of bytes to complete @req
2570 *
2571 * Description:
2572 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2573 * the request structure even if @req doesn't have leftover.
2574 * If @req has leftover, sets it up for the next range of segments.
2575 *
2576 * This special helper function is only for request stacking drivers
2577 * (e.g. request-based dm) so that they can handle partial completion.
2578 * Actual device drivers should use blk_end_request instead.
2579 *
2580 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2581 * %false return from this function.
2582 *
2583 * Return:
2584 * %false - this request doesn't have any more data
2585 * %true - this request has more data
2586 **/
2587 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2588 {
2589 int total_bytes;
2590
2591 trace_block_rq_complete(req->q, req, nr_bytes);
2592
2593 if (!req->bio)
2594 return false;
2595
2596 /*
2597 * For fs requests, rq is just carrier of independent bio's
2598 * and each partial completion should be handled separately.
2599 * Reset per-request error on each partial completion.
2600 *
2601 * TODO: tj: This is too subtle. It would be better to let
2602 * low level drivers do what they see fit.
2603 */
2604 if (req->cmd_type == REQ_TYPE_FS)
2605 req->errors = 0;
2606
2607 if (error && req->cmd_type == REQ_TYPE_FS &&
2608 !(req->cmd_flags & REQ_QUIET)) {
2609 char *error_type;
2610
2611 switch (error) {
2612 case -ENOLINK:
2613 error_type = "recoverable transport";
2614 break;
2615 case -EREMOTEIO:
2616 error_type = "critical target";
2617 break;
2618 case -EBADE:
2619 error_type = "critical nexus";
2620 break;
2621 case -ETIMEDOUT:
2622 error_type = "timeout";
2623 break;
2624 case -ENOSPC:
2625 error_type = "critical space allocation";
2626 break;
2627 case -ENODATA:
2628 error_type = "critical medium";
2629 break;
2630 case -EIO:
2631 default:
2632 error_type = "I/O";
2633 break;
2634 }
2635 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2636 __func__, error_type, req->rq_disk ?
2637 req->rq_disk->disk_name : "?",
2638 (unsigned long long)blk_rq_pos(req));
2639
2640 }
2641
2642 blk_account_io_completion(req, nr_bytes);
2643
2644 total_bytes = 0;
2645 while (req->bio) {
2646 struct bio *bio = req->bio;
2647 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2648
2649 if (bio_bytes == bio->bi_iter.bi_size)
2650 req->bio = bio->bi_next;
2651
2652 req_bio_endio(req, bio, bio_bytes, error);
2653
2654 total_bytes += bio_bytes;
2655 nr_bytes -= bio_bytes;
2656
2657 if (!nr_bytes)
2658 break;
2659 }
2660
2661 /*
2662 * completely done
2663 */
2664 if (!req->bio) {
2665 /*
2666 * Reset counters so that the request stacking driver
2667 * can find how many bytes remain in the request
2668 * later.
2669 */
2670 req->__data_len = 0;
2671 return false;
2672 }
2673
2674 req->__data_len -= total_bytes;
2675
2676 /* update sector only for requests with clear definition of sector */
2677 if (req->cmd_type == REQ_TYPE_FS)
2678 req->__sector += total_bytes >> 9;
2679
2680 /* mixed attributes always follow the first bio */
2681 if (req->cmd_flags & REQ_MIXED_MERGE) {
2682 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2683 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2684 }
2685
2686 /*
2687 * If total number of sectors is less than the first segment
2688 * size, something has gone terribly wrong.
2689 */
2690 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2691 blk_dump_rq_flags(req, "request botched");
2692 req->__data_len = blk_rq_cur_bytes(req);
2693 }
2694
2695 /* recalculate the number of segments */
2696 blk_recalc_rq_segments(req);
2697
2698 return true;
2699 }
2700 EXPORT_SYMBOL_GPL(blk_update_request);
2701
2702 static bool blk_update_bidi_request(struct request *rq, int error,
2703 unsigned int nr_bytes,
2704 unsigned int bidi_bytes)
2705 {
2706 if (blk_update_request(rq, error, nr_bytes))
2707 return true;
2708
2709 /* Bidi request must be completed as a whole */
2710 if (unlikely(blk_bidi_rq(rq)) &&
2711 blk_update_request(rq->next_rq, error, bidi_bytes))
2712 return true;
2713
2714 if (blk_queue_add_random(rq->q))
2715 add_disk_randomness(rq->rq_disk);
2716
2717 return false;
2718 }
2719
2720 /**
2721 * blk_unprep_request - unprepare a request
2722 * @req: the request
2723 *
2724 * This function makes a request ready for complete resubmission (or
2725 * completion). It happens only after all error handling is complete,
2726 * so represents the appropriate moment to deallocate any resources
2727 * that were allocated to the request in the prep_rq_fn. The queue
2728 * lock is held when calling this.
2729 */
2730 void blk_unprep_request(struct request *req)
2731 {
2732 struct request_queue *q = req->q;
2733
2734 req->cmd_flags &= ~REQ_DONTPREP;
2735 if (q->unprep_rq_fn)
2736 q->unprep_rq_fn(q, req);
2737 }
2738 EXPORT_SYMBOL_GPL(blk_unprep_request);
2739
2740 /*
2741 * queue lock must be held
2742 */
2743 void blk_finish_request(struct request *req, int error)
2744 {
2745 if (req->cmd_flags & REQ_QUEUED)
2746 blk_queue_end_tag(req->q, req);
2747
2748 BUG_ON(blk_queued_rq(req));
2749
2750 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2751 laptop_io_completion(&req->q->backing_dev_info);
2752
2753 blk_delete_timer(req);
2754
2755 if (req->cmd_flags & REQ_DONTPREP)
2756 blk_unprep_request(req);
2757
2758 blk_account_io_done(req);
2759
2760 if (req->end_io)
2761 req->end_io(req, error);
2762 else {
2763 if (blk_bidi_rq(req))
2764 __blk_put_request(req->next_rq->q, req->next_rq);
2765
2766 __blk_put_request(req->q, req);
2767 }
2768 }
2769 EXPORT_SYMBOL(blk_finish_request);
2770
2771 /**
2772 * blk_end_bidi_request - Complete a bidi request
2773 * @rq: the request to complete
2774 * @error: %0 for success, < %0 for error
2775 * @nr_bytes: number of bytes to complete @rq
2776 * @bidi_bytes: number of bytes to complete @rq->next_rq
2777 *
2778 * Description:
2779 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2780 * Drivers that supports bidi can safely call this member for any
2781 * type of request, bidi or uni. In the later case @bidi_bytes is
2782 * just ignored.
2783 *
2784 * Return:
2785 * %false - we are done with this request
2786 * %true - still buffers pending for this request
2787 **/
2788 static bool blk_end_bidi_request(struct request *rq, int error,
2789 unsigned int nr_bytes, unsigned int bidi_bytes)
2790 {
2791 struct request_queue *q = rq->q;
2792 unsigned long flags;
2793
2794 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2795 return true;
2796
2797 spin_lock_irqsave(q->queue_lock, flags);
2798 blk_finish_request(rq, error);
2799 spin_unlock_irqrestore(q->queue_lock, flags);
2800
2801 return false;
2802 }
2803
2804 /**
2805 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2806 * @rq: the request to complete
2807 * @error: %0 for success, < %0 for error
2808 * @nr_bytes: number of bytes to complete @rq
2809 * @bidi_bytes: number of bytes to complete @rq->next_rq
2810 *
2811 * Description:
2812 * Identical to blk_end_bidi_request() except that queue lock is
2813 * assumed to be locked on entry and remains so on return.
2814 *
2815 * Return:
2816 * %false - we are done with this request
2817 * %true - still buffers pending for this request
2818 **/
2819 bool __blk_end_bidi_request(struct request *rq, int error,
2820 unsigned int nr_bytes, unsigned int bidi_bytes)
2821 {
2822 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2823 return true;
2824
2825 blk_finish_request(rq, error);
2826
2827 return false;
2828 }
2829
2830 /**
2831 * blk_end_request - Helper function for drivers to complete the request.
2832 * @rq: the request being processed
2833 * @error: %0 for success, < %0 for error
2834 * @nr_bytes: number of bytes to complete
2835 *
2836 * Description:
2837 * Ends I/O on a number of bytes attached to @rq.
2838 * If @rq has leftover, sets it up for the next range of segments.
2839 *
2840 * Return:
2841 * %false - we are done with this request
2842 * %true - still buffers pending for this request
2843 **/
2844 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2845 {
2846 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2847 }
2848 EXPORT_SYMBOL(blk_end_request);
2849
2850 /**
2851 * blk_end_request_all - Helper function for drives to finish the request.
2852 * @rq: the request to finish
2853 * @error: %0 for success, < %0 for error
2854 *
2855 * Description:
2856 * Completely finish @rq.
2857 */
2858 void blk_end_request_all(struct request *rq, int error)
2859 {
2860 bool pending;
2861 unsigned int bidi_bytes = 0;
2862
2863 if (unlikely(blk_bidi_rq(rq)))
2864 bidi_bytes = blk_rq_bytes(rq->next_rq);
2865
2866 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2867 BUG_ON(pending);
2868 }
2869 EXPORT_SYMBOL(blk_end_request_all);
2870
2871 /**
2872 * blk_end_request_cur - Helper function to finish the current request chunk.
2873 * @rq: the request to finish the current chunk for
2874 * @error: %0 for success, < %0 for error
2875 *
2876 * Description:
2877 * Complete the current consecutively mapped chunk from @rq.
2878 *
2879 * Return:
2880 * %false - we are done with this request
2881 * %true - still buffers pending for this request
2882 */
2883 bool blk_end_request_cur(struct request *rq, int error)
2884 {
2885 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2886 }
2887 EXPORT_SYMBOL(blk_end_request_cur);
2888
2889 /**
2890 * blk_end_request_err - Finish a request till the next failure boundary.
2891 * @rq: the request to finish till the next failure boundary for
2892 * @error: must be negative errno
2893 *
2894 * Description:
2895 * Complete @rq till the next failure boundary.
2896 *
2897 * Return:
2898 * %false - we are done with this request
2899 * %true - still buffers pending for this request
2900 */
2901 bool blk_end_request_err(struct request *rq, int error)
2902 {
2903 WARN_ON(error >= 0);
2904 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2905 }
2906 EXPORT_SYMBOL_GPL(blk_end_request_err);
2907
2908 /**
2909 * __blk_end_request - Helper function for drivers to complete the request.
2910 * @rq: the request being processed
2911 * @error: %0 for success, < %0 for error
2912 * @nr_bytes: number of bytes to complete
2913 *
2914 * Description:
2915 * Must be called with queue lock held unlike blk_end_request().
2916 *
2917 * Return:
2918 * %false - we are done with this request
2919 * %true - still buffers pending for this request
2920 **/
2921 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2922 {
2923 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2924 }
2925 EXPORT_SYMBOL(__blk_end_request);
2926
2927 /**
2928 * __blk_end_request_all - Helper function for drives to finish the request.
2929 * @rq: the request to finish
2930 * @error: %0 for success, < %0 for error
2931 *
2932 * Description:
2933 * Completely finish @rq. Must be called with queue lock held.
2934 */
2935 void __blk_end_request_all(struct request *rq, int error)
2936 {
2937 bool pending;
2938 unsigned int bidi_bytes = 0;
2939
2940 if (unlikely(blk_bidi_rq(rq)))
2941 bidi_bytes = blk_rq_bytes(rq->next_rq);
2942
2943 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2944 BUG_ON(pending);
2945 }
2946 EXPORT_SYMBOL(__blk_end_request_all);
2947
2948 /**
2949 * __blk_end_request_cur - Helper function to finish the current request chunk.
2950 * @rq: the request to finish the current chunk for
2951 * @error: %0 for success, < %0 for error
2952 *
2953 * Description:
2954 * Complete the current consecutively mapped chunk from @rq. Must
2955 * be called with queue lock held.
2956 *
2957 * Return:
2958 * %false - we are done with this request
2959 * %true - still buffers pending for this request
2960 */
2961 bool __blk_end_request_cur(struct request *rq, int error)
2962 {
2963 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2964 }
2965 EXPORT_SYMBOL(__blk_end_request_cur);
2966
2967 /**
2968 * __blk_end_request_err - Finish a request till the next failure boundary.
2969 * @rq: the request to finish till the next failure boundary for
2970 * @error: must be negative errno
2971 *
2972 * Description:
2973 * Complete @rq till the next failure boundary. Must be called
2974 * with queue lock held.
2975 *
2976 * Return:
2977 * %false - we are done with this request
2978 * %true - still buffers pending for this request
2979 */
2980 bool __blk_end_request_err(struct request *rq, int error)
2981 {
2982 WARN_ON(error >= 0);
2983 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2984 }
2985 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2986
2987 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2988 struct bio *bio)
2989 {
2990 req_set_op(rq, bio_op(bio));
2991
2992 if (bio_has_data(bio))
2993 rq->nr_phys_segments = bio_phys_segments(q, bio);
2994
2995 rq->__data_len = bio->bi_iter.bi_size;
2996 rq->bio = rq->biotail = bio;
2997
2998 if (bio->bi_bdev)
2999 rq->rq_disk = bio->bi_bdev->bd_disk;
3000 }
3001
3002 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3003 /**
3004 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3005 * @rq: the request to be flushed
3006 *
3007 * Description:
3008 * Flush all pages in @rq.
3009 */
3010 void rq_flush_dcache_pages(struct request *rq)
3011 {
3012 struct req_iterator iter;
3013 struct bio_vec bvec;
3014
3015 rq_for_each_segment(bvec, rq, iter)
3016 flush_dcache_page(bvec.bv_page);
3017 }
3018 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3019 #endif
3020
3021 /**
3022 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3023 * @q : the queue of the device being checked
3024 *
3025 * Description:
3026 * Check if underlying low-level drivers of a device are busy.
3027 * If the drivers want to export their busy state, they must set own
3028 * exporting function using blk_queue_lld_busy() first.
3029 *
3030 * Basically, this function is used only by request stacking drivers
3031 * to stop dispatching requests to underlying devices when underlying
3032 * devices are busy. This behavior helps more I/O merging on the queue
3033 * of the request stacking driver and prevents I/O throughput regression
3034 * on burst I/O load.
3035 *
3036 * Return:
3037 * 0 - Not busy (The request stacking driver should dispatch request)
3038 * 1 - Busy (The request stacking driver should stop dispatching request)
3039 */
3040 int blk_lld_busy(struct request_queue *q)
3041 {
3042 if (q->lld_busy_fn)
3043 return q->lld_busy_fn(q);
3044
3045 return 0;
3046 }
3047 EXPORT_SYMBOL_GPL(blk_lld_busy);
3048
3049 /**
3050 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3051 * @rq: the clone request to be cleaned up
3052 *
3053 * Description:
3054 * Free all bios in @rq for a cloned request.
3055 */
3056 void blk_rq_unprep_clone(struct request *rq)
3057 {
3058 struct bio *bio;
3059
3060 while ((bio = rq->bio) != NULL) {
3061 rq->bio = bio->bi_next;
3062
3063 bio_put(bio);
3064 }
3065 }
3066 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3067
3068 /*
3069 * Copy attributes of the original request to the clone request.
3070 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3071 */
3072 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3073 {
3074 dst->cpu = src->cpu;
3075 req_set_op_attrs(dst, req_op(src),
3076 (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE);
3077 dst->cmd_type = src->cmd_type;
3078 dst->__sector = blk_rq_pos(src);
3079 dst->__data_len = blk_rq_bytes(src);
3080 dst->nr_phys_segments = src->nr_phys_segments;
3081 dst->ioprio = src->ioprio;
3082 dst->extra_len = src->extra_len;
3083 }
3084
3085 /**
3086 * blk_rq_prep_clone - Helper function to setup clone request
3087 * @rq: the request to be setup
3088 * @rq_src: original request to be cloned
3089 * @bs: bio_set that bios for clone are allocated from
3090 * @gfp_mask: memory allocation mask for bio
3091 * @bio_ctr: setup function to be called for each clone bio.
3092 * Returns %0 for success, non %0 for failure.
3093 * @data: private data to be passed to @bio_ctr
3094 *
3095 * Description:
3096 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3097 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3098 * are not copied, and copying such parts is the caller's responsibility.
3099 * Also, pages which the original bios are pointing to are not copied
3100 * and the cloned bios just point same pages.
3101 * So cloned bios must be completed before original bios, which means
3102 * the caller must complete @rq before @rq_src.
3103 */
3104 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3105 struct bio_set *bs, gfp_t gfp_mask,
3106 int (*bio_ctr)(struct bio *, struct bio *, void *),
3107 void *data)
3108 {
3109 struct bio *bio, *bio_src;
3110
3111 if (!bs)
3112 bs = fs_bio_set;
3113
3114 __rq_for_each_bio(bio_src, rq_src) {
3115 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3116 if (!bio)
3117 goto free_and_out;
3118
3119 if (bio_ctr && bio_ctr(bio, bio_src, data))
3120 goto free_and_out;
3121
3122 if (rq->bio) {
3123 rq->biotail->bi_next = bio;
3124 rq->biotail = bio;
3125 } else
3126 rq->bio = rq->biotail = bio;
3127 }
3128
3129 __blk_rq_prep_clone(rq, rq_src);
3130
3131 return 0;
3132
3133 free_and_out:
3134 if (bio)
3135 bio_put(bio);
3136 blk_rq_unprep_clone(rq);
3137
3138 return -ENOMEM;
3139 }
3140 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3141
3142 int kblockd_schedule_work(struct work_struct *work)
3143 {
3144 return queue_work(kblockd_workqueue, work);
3145 }
3146 EXPORT_SYMBOL(kblockd_schedule_work);
3147
3148 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3149 unsigned long delay)
3150 {
3151 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3152 }
3153 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3154
3155 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3156 unsigned long delay)
3157 {
3158 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3159 }
3160 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3161
3162 /**
3163 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3164 * @plug: The &struct blk_plug that needs to be initialized
3165 *
3166 * Description:
3167 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3168 * pending I/O should the task end up blocking between blk_start_plug() and
3169 * blk_finish_plug(). This is important from a performance perspective, but
3170 * also ensures that we don't deadlock. For instance, if the task is blocking
3171 * for a memory allocation, memory reclaim could end up wanting to free a
3172 * page belonging to that request that is currently residing in our private
3173 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3174 * this kind of deadlock.
3175 */
3176 void blk_start_plug(struct blk_plug *plug)
3177 {
3178 struct task_struct *tsk = current;
3179
3180 /*
3181 * If this is a nested plug, don't actually assign it.
3182 */
3183 if (tsk->plug)
3184 return;
3185
3186 INIT_LIST_HEAD(&plug->list);
3187 INIT_LIST_HEAD(&plug->mq_list);
3188 INIT_LIST_HEAD(&plug->cb_list);
3189 /*
3190 * Store ordering should not be needed here, since a potential
3191 * preempt will imply a full memory barrier
3192 */
3193 tsk->plug = plug;
3194 }
3195 EXPORT_SYMBOL(blk_start_plug);
3196
3197 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3198 {
3199 struct request *rqa = container_of(a, struct request, queuelist);
3200 struct request *rqb = container_of(b, struct request, queuelist);
3201
3202 return !(rqa->q < rqb->q ||
3203 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3204 }
3205
3206 /*
3207 * If 'from_schedule' is true, then postpone the dispatch of requests
3208 * until a safe kblockd context. We due this to avoid accidental big
3209 * additional stack usage in driver dispatch, in places where the originally
3210 * plugger did not intend it.
3211 */
3212 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3213 bool from_schedule)
3214 __releases(q->queue_lock)
3215 {
3216 trace_block_unplug(q, depth, !from_schedule);
3217
3218 if (from_schedule)
3219 blk_run_queue_async(q);
3220 else
3221 __blk_run_queue(q);
3222 spin_unlock(q->queue_lock);
3223 }
3224
3225 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3226 {
3227 LIST_HEAD(callbacks);
3228
3229 while (!list_empty(&plug->cb_list)) {
3230 list_splice_init(&plug->cb_list, &callbacks);
3231
3232 while (!list_empty(&callbacks)) {
3233 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3234 struct blk_plug_cb,
3235 list);
3236 list_del(&cb->list);
3237 cb->callback(cb, from_schedule);
3238 }
3239 }
3240 }
3241
3242 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3243 int size)
3244 {
3245 struct blk_plug *plug = current->plug;
3246 struct blk_plug_cb *cb;
3247
3248 if (!plug)
3249 return NULL;
3250
3251 list_for_each_entry(cb, &plug->cb_list, list)
3252 if (cb->callback == unplug && cb->data == data)
3253 return cb;
3254
3255 /* Not currently on the callback list */
3256 BUG_ON(size < sizeof(*cb));
3257 cb = kzalloc(size, GFP_ATOMIC);
3258 if (cb) {
3259 cb->data = data;
3260 cb->callback = unplug;
3261 list_add(&cb->list, &plug->cb_list);
3262 }
3263 return cb;
3264 }
3265 EXPORT_SYMBOL(blk_check_plugged);
3266
3267 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3268 {
3269 struct request_queue *q;
3270 unsigned long flags;
3271 struct request *rq;
3272 LIST_HEAD(list);
3273 unsigned int depth;
3274
3275 flush_plug_callbacks(plug, from_schedule);
3276
3277 if (!list_empty(&plug->mq_list))
3278 blk_mq_flush_plug_list(plug, from_schedule);
3279
3280 if (list_empty(&plug->list))
3281 return;
3282
3283 list_splice_init(&plug->list, &list);
3284
3285 list_sort(NULL, &list, plug_rq_cmp);
3286
3287 q = NULL;
3288 depth = 0;
3289
3290 /*
3291 * Save and disable interrupts here, to avoid doing it for every
3292 * queue lock we have to take.
3293 */
3294 local_irq_save(flags);
3295 while (!list_empty(&list)) {
3296 rq = list_entry_rq(list.next);
3297 list_del_init(&rq->queuelist);
3298 BUG_ON(!rq->q);
3299 if (rq->q != q) {
3300 /*
3301 * This drops the queue lock
3302 */
3303 if (q)
3304 queue_unplugged(q, depth, from_schedule);
3305 q = rq->q;
3306 depth = 0;
3307 spin_lock(q->queue_lock);
3308 }
3309
3310 /*
3311 * Short-circuit if @q is dead
3312 */
3313 if (unlikely(blk_queue_dying(q))) {
3314 __blk_end_request_all(rq, -ENODEV);
3315 continue;
3316 }
3317
3318 /*
3319 * rq is already accounted, so use raw insert
3320 */
3321 if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA))
3322 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3323 else
3324 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3325
3326 depth++;
3327 }
3328
3329 /*
3330 * This drops the queue lock
3331 */
3332 if (q)
3333 queue_unplugged(q, depth, from_schedule);
3334
3335 local_irq_restore(flags);
3336 }
3337
3338 void blk_finish_plug(struct blk_plug *plug)
3339 {
3340 if (plug != current->plug)
3341 return;
3342 blk_flush_plug_list(plug, false);
3343
3344 current->plug = NULL;
3345 }
3346 EXPORT_SYMBOL(blk_finish_plug);
3347
3348 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
3349 {
3350 struct blk_plug *plug;
3351 long state;
3352
3353 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
3354 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3355 return false;
3356
3357 plug = current->plug;
3358 if (plug)
3359 blk_flush_plug_list(plug, false);
3360
3361 state = current->state;
3362 while (!need_resched()) {
3363 unsigned int queue_num = blk_qc_t_to_queue_num(cookie);
3364 struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[queue_num];
3365 int ret;
3366
3367 hctx->poll_invoked++;
3368
3369 ret = q->mq_ops->poll(hctx, blk_qc_t_to_tag(cookie));
3370 if (ret > 0) {
3371 hctx->poll_success++;
3372 set_current_state(TASK_RUNNING);
3373 return true;
3374 }
3375
3376 if (signal_pending_state(state, current))
3377 set_current_state(TASK_RUNNING);
3378
3379 if (current->state == TASK_RUNNING)
3380 return true;
3381 if (ret < 0)
3382 break;
3383 cpu_relax();
3384 }
3385
3386 return false;
3387 }
3388 EXPORT_SYMBOL_GPL(blk_poll);
3389
3390 #ifdef CONFIG_PM
3391 /**
3392 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3393 * @q: the queue of the device
3394 * @dev: the device the queue belongs to
3395 *
3396 * Description:
3397 * Initialize runtime-PM-related fields for @q and start auto suspend for
3398 * @dev. Drivers that want to take advantage of request-based runtime PM
3399 * should call this function after @dev has been initialized, and its
3400 * request queue @q has been allocated, and runtime PM for it can not happen
3401 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3402 * cases, driver should call this function before any I/O has taken place.
3403 *
3404 * This function takes care of setting up using auto suspend for the device,
3405 * the autosuspend delay is set to -1 to make runtime suspend impossible
3406 * until an updated value is either set by user or by driver. Drivers do
3407 * not need to touch other autosuspend settings.
3408 *
3409 * The block layer runtime PM is request based, so only works for drivers
3410 * that use request as their IO unit instead of those directly use bio's.
3411 */
3412 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3413 {
3414 q->dev = dev;
3415 q->rpm_status = RPM_ACTIVE;
3416 pm_runtime_set_autosuspend_delay(q->dev, -1);
3417 pm_runtime_use_autosuspend(q->dev);
3418 }
3419 EXPORT_SYMBOL(blk_pm_runtime_init);
3420
3421 /**
3422 * blk_pre_runtime_suspend - Pre runtime suspend check
3423 * @q: the queue of the device
3424 *
3425 * Description:
3426 * This function will check if runtime suspend is allowed for the device
3427 * by examining if there are any requests pending in the queue. If there
3428 * are requests pending, the device can not be runtime suspended; otherwise,
3429 * the queue's status will be updated to SUSPENDING and the driver can
3430 * proceed to suspend the device.
3431 *
3432 * For the not allowed case, we mark last busy for the device so that
3433 * runtime PM core will try to autosuspend it some time later.
3434 *
3435 * This function should be called near the start of the device's
3436 * runtime_suspend callback.
3437 *
3438 * Return:
3439 * 0 - OK to runtime suspend the device
3440 * -EBUSY - Device should not be runtime suspended
3441 */
3442 int blk_pre_runtime_suspend(struct request_queue *q)
3443 {
3444 int ret = 0;
3445
3446 if (!q->dev)
3447 return ret;
3448
3449 spin_lock_irq(q->queue_lock);
3450 if (q->nr_pending) {
3451 ret = -EBUSY;
3452 pm_runtime_mark_last_busy(q->dev);
3453 } else {
3454 q->rpm_status = RPM_SUSPENDING;
3455 }
3456 spin_unlock_irq(q->queue_lock);
3457 return ret;
3458 }
3459 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3460
3461 /**
3462 * blk_post_runtime_suspend - Post runtime suspend processing
3463 * @q: the queue of the device
3464 * @err: return value of the device's runtime_suspend function
3465 *
3466 * Description:
3467 * Update the queue's runtime status according to the return value of the
3468 * device's runtime suspend function and mark last busy for the device so
3469 * that PM core will try to auto suspend the device at a later time.
3470 *
3471 * This function should be called near the end of the device's
3472 * runtime_suspend callback.
3473 */
3474 void blk_post_runtime_suspend(struct request_queue *q, int err)
3475 {
3476 if (!q->dev)
3477 return;
3478
3479 spin_lock_irq(q->queue_lock);
3480 if (!err) {
3481 q->rpm_status = RPM_SUSPENDED;
3482 } else {
3483 q->rpm_status = RPM_ACTIVE;
3484 pm_runtime_mark_last_busy(q->dev);
3485 }
3486 spin_unlock_irq(q->queue_lock);
3487 }
3488 EXPORT_SYMBOL(blk_post_runtime_suspend);
3489
3490 /**
3491 * blk_pre_runtime_resume - Pre runtime resume processing
3492 * @q: the queue of the device
3493 *
3494 * Description:
3495 * Update the queue's runtime status to RESUMING in preparation for the
3496 * runtime resume of the device.
3497 *
3498 * This function should be called near the start of the device's
3499 * runtime_resume callback.
3500 */
3501 void blk_pre_runtime_resume(struct request_queue *q)
3502 {
3503 if (!q->dev)
3504 return;
3505
3506 spin_lock_irq(q->queue_lock);
3507 q->rpm_status = RPM_RESUMING;
3508 spin_unlock_irq(q->queue_lock);
3509 }
3510 EXPORT_SYMBOL(blk_pre_runtime_resume);
3511
3512 /**
3513 * blk_post_runtime_resume - Post runtime resume processing
3514 * @q: the queue of the device
3515 * @err: return value of the device's runtime_resume function
3516 *
3517 * Description:
3518 * Update the queue's runtime status according to the return value of the
3519 * device's runtime_resume function. If it is successfully resumed, process
3520 * the requests that are queued into the device's queue when it is resuming
3521 * and then mark last busy and initiate autosuspend for it.
3522 *
3523 * This function should be called near the end of the device's
3524 * runtime_resume callback.
3525 */
3526 void blk_post_runtime_resume(struct request_queue *q, int err)
3527 {
3528 if (!q->dev)
3529 return;
3530
3531 spin_lock_irq(q->queue_lock);
3532 if (!err) {
3533 q->rpm_status = RPM_ACTIVE;
3534 __blk_run_queue(q);
3535 pm_runtime_mark_last_busy(q->dev);
3536 pm_request_autosuspend(q->dev);
3537 } else {
3538 q->rpm_status = RPM_SUSPENDED;
3539 }
3540 spin_unlock_irq(q->queue_lock);
3541 }
3542 EXPORT_SYMBOL(blk_post_runtime_resume);
3543
3544 /**
3545 * blk_set_runtime_active - Force runtime status of the queue to be active
3546 * @q: the queue of the device
3547 *
3548 * If the device is left runtime suspended during system suspend the resume
3549 * hook typically resumes the device and corrects runtime status
3550 * accordingly. However, that does not affect the queue runtime PM status
3551 * which is still "suspended". This prevents processing requests from the
3552 * queue.
3553 *
3554 * This function can be used in driver's resume hook to correct queue
3555 * runtime PM status and re-enable peeking requests from the queue. It
3556 * should be called before first request is added to the queue.
3557 */
3558 void blk_set_runtime_active(struct request_queue *q)
3559 {
3560 spin_lock_irq(q->queue_lock);
3561 q->rpm_status = RPM_ACTIVE;
3562 pm_runtime_mark_last_busy(q->dev);
3563 pm_request_autosuspend(q->dev);
3564 spin_unlock_irq(q->queue_lock);
3565 }
3566 EXPORT_SYMBOL(blk_set_runtime_active);
3567 #endif
3568
3569 int __init blk_dev_init(void)
3570 {
3571 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3572 FIELD_SIZEOF(struct request, cmd_flags));
3573
3574 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3575 kblockd_workqueue = alloc_workqueue("kblockd",
3576 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3577 if (!kblockd_workqueue)
3578 panic("Failed to create kblockd\n");
3579
3580 request_cachep = kmem_cache_create("blkdev_requests",
3581 sizeof(struct request), 0, SLAB_PANIC, NULL);
3582
3583 blk_requestq_cachep = kmem_cache_create("request_queue",
3584 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3585
3586 return 0;
3587 }
This page took 0.103935 seconds and 5 git commands to generate.