powerpc/pseries: Increase cpu die timeout
[deliverable/linux.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/block.h>
33
34 #include "blk.h"
35
36 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
39
40 static int __make_request(struct request_queue *q, struct bio *bio);
41
42 /*
43 * For the allocated request tables
44 */
45 static struct kmem_cache *request_cachep;
46
47 /*
48 * For queue allocation
49 */
50 struct kmem_cache *blk_requestq_cachep;
51
52 /*
53 * Controlling structure to kblockd
54 */
55 static struct workqueue_struct *kblockd_workqueue;
56
57 static void drive_stat_acct(struct request *rq, int new_io)
58 {
59 struct hd_struct *part;
60 int rw = rq_data_dir(rq);
61 int cpu;
62
63 if (!blk_do_io_stat(rq))
64 return;
65
66 cpu = part_stat_lock();
67 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
68
69 if (!new_io)
70 part_stat_inc(cpu, part, merges[rw]);
71 else {
72 part_round_stats(cpu, part);
73 part_inc_in_flight(part, rw);
74 }
75
76 part_stat_unlock();
77 }
78
79 void blk_queue_congestion_threshold(struct request_queue *q)
80 {
81 int nr;
82
83 nr = q->nr_requests - (q->nr_requests / 8) + 1;
84 if (nr > q->nr_requests)
85 nr = q->nr_requests;
86 q->nr_congestion_on = nr;
87
88 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
89 if (nr < 1)
90 nr = 1;
91 q->nr_congestion_off = nr;
92 }
93
94 /**
95 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
96 * @bdev: device
97 *
98 * Locates the passed device's request queue and returns the address of its
99 * backing_dev_info
100 *
101 * Will return NULL if the request queue cannot be located.
102 */
103 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
104 {
105 struct backing_dev_info *ret = NULL;
106 struct request_queue *q = bdev_get_queue(bdev);
107
108 if (q)
109 ret = &q->backing_dev_info;
110 return ret;
111 }
112 EXPORT_SYMBOL(blk_get_backing_dev_info);
113
114 void blk_rq_init(struct request_queue *q, struct request *rq)
115 {
116 memset(rq, 0, sizeof(*rq));
117
118 INIT_LIST_HEAD(&rq->queuelist);
119 INIT_LIST_HEAD(&rq->timeout_list);
120 rq->cpu = -1;
121 rq->q = q;
122 rq->__sector = (sector_t) -1;
123 INIT_HLIST_NODE(&rq->hash);
124 RB_CLEAR_NODE(&rq->rb_node);
125 rq->cmd = rq->__cmd;
126 rq->cmd_len = BLK_MAX_CDB;
127 rq->tag = -1;
128 rq->ref_count = 1;
129 rq->start_time = jiffies;
130 set_start_time_ns(rq);
131 }
132 EXPORT_SYMBOL(blk_rq_init);
133
134 static void req_bio_endio(struct request *rq, struct bio *bio,
135 unsigned int nbytes, int error)
136 {
137 struct request_queue *q = rq->q;
138
139 if (&q->bar_rq != rq) {
140 if (error)
141 clear_bit(BIO_UPTODATE, &bio->bi_flags);
142 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
143 error = -EIO;
144
145 if (unlikely(nbytes > bio->bi_size)) {
146 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
147 __func__, nbytes, bio->bi_size);
148 nbytes = bio->bi_size;
149 }
150
151 if (unlikely(rq->cmd_flags & REQ_QUIET))
152 set_bit(BIO_QUIET, &bio->bi_flags);
153
154 bio->bi_size -= nbytes;
155 bio->bi_sector += (nbytes >> 9);
156
157 if (bio_integrity(bio))
158 bio_integrity_advance(bio, nbytes);
159
160 if (bio->bi_size == 0)
161 bio_endio(bio, error);
162 } else {
163
164 /*
165 * Okay, this is the barrier request in progress, just
166 * record the error;
167 */
168 if (error && !q->orderr)
169 q->orderr = error;
170 }
171 }
172
173 void blk_dump_rq_flags(struct request *rq, char *msg)
174 {
175 int bit;
176
177 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
178 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
179 rq->cmd_flags);
180
181 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
182 (unsigned long long)blk_rq_pos(rq),
183 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
184 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
185 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
186
187 if (blk_pc_request(rq)) {
188 printk(KERN_INFO " cdb: ");
189 for (bit = 0; bit < BLK_MAX_CDB; bit++)
190 printk("%02x ", rq->cmd[bit]);
191 printk("\n");
192 }
193 }
194 EXPORT_SYMBOL(blk_dump_rq_flags);
195
196 /*
197 * "plug" the device if there are no outstanding requests: this will
198 * force the transfer to start only after we have put all the requests
199 * on the list.
200 *
201 * This is called with interrupts off and no requests on the queue and
202 * with the queue lock held.
203 */
204 void blk_plug_device(struct request_queue *q)
205 {
206 WARN_ON(!irqs_disabled());
207
208 /*
209 * don't plug a stopped queue, it must be paired with blk_start_queue()
210 * which will restart the queueing
211 */
212 if (blk_queue_stopped(q))
213 return;
214
215 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
216 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
217 trace_block_plug(q);
218 }
219 }
220 EXPORT_SYMBOL(blk_plug_device);
221
222 /**
223 * blk_plug_device_unlocked - plug a device without queue lock held
224 * @q: The &struct request_queue to plug
225 *
226 * Description:
227 * Like @blk_plug_device(), but grabs the queue lock and disables
228 * interrupts.
229 **/
230 void blk_plug_device_unlocked(struct request_queue *q)
231 {
232 unsigned long flags;
233
234 spin_lock_irqsave(q->queue_lock, flags);
235 blk_plug_device(q);
236 spin_unlock_irqrestore(q->queue_lock, flags);
237 }
238 EXPORT_SYMBOL(blk_plug_device_unlocked);
239
240 /*
241 * remove the queue from the plugged list, if present. called with
242 * queue lock held and interrupts disabled.
243 */
244 int blk_remove_plug(struct request_queue *q)
245 {
246 WARN_ON(!irqs_disabled());
247
248 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
249 return 0;
250
251 del_timer(&q->unplug_timer);
252 return 1;
253 }
254 EXPORT_SYMBOL(blk_remove_plug);
255
256 /*
257 * remove the plug and let it rip..
258 */
259 void __generic_unplug_device(struct request_queue *q)
260 {
261 if (unlikely(blk_queue_stopped(q)))
262 return;
263 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
264 return;
265
266 q->request_fn(q);
267 }
268
269 /**
270 * generic_unplug_device - fire a request queue
271 * @q: The &struct request_queue in question
272 *
273 * Description:
274 * Linux uses plugging to build bigger requests queues before letting
275 * the device have at them. If a queue is plugged, the I/O scheduler
276 * is still adding and merging requests on the queue. Once the queue
277 * gets unplugged, the request_fn defined for the queue is invoked and
278 * transfers started.
279 **/
280 void generic_unplug_device(struct request_queue *q)
281 {
282 if (blk_queue_plugged(q)) {
283 spin_lock_irq(q->queue_lock);
284 __generic_unplug_device(q);
285 spin_unlock_irq(q->queue_lock);
286 }
287 }
288 EXPORT_SYMBOL(generic_unplug_device);
289
290 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
291 struct page *page)
292 {
293 struct request_queue *q = bdi->unplug_io_data;
294
295 blk_unplug(q);
296 }
297
298 void blk_unplug_work(struct work_struct *work)
299 {
300 struct request_queue *q =
301 container_of(work, struct request_queue, unplug_work);
302
303 trace_block_unplug_io(q);
304 q->unplug_fn(q);
305 }
306
307 void blk_unplug_timeout(unsigned long data)
308 {
309 struct request_queue *q = (struct request_queue *)data;
310
311 trace_block_unplug_timer(q);
312 kblockd_schedule_work(q, &q->unplug_work);
313 }
314
315 void blk_unplug(struct request_queue *q)
316 {
317 /*
318 * devices don't necessarily have an ->unplug_fn defined
319 */
320 if (q->unplug_fn) {
321 trace_block_unplug_io(q);
322 q->unplug_fn(q);
323 }
324 }
325 EXPORT_SYMBOL(blk_unplug);
326
327 /**
328 * blk_start_queue - restart a previously stopped queue
329 * @q: The &struct request_queue in question
330 *
331 * Description:
332 * blk_start_queue() will clear the stop flag on the queue, and call
333 * the request_fn for the queue if it was in a stopped state when
334 * entered. Also see blk_stop_queue(). Queue lock must be held.
335 **/
336 void blk_start_queue(struct request_queue *q)
337 {
338 WARN_ON(!irqs_disabled());
339
340 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
341 __blk_run_queue(q);
342 }
343 EXPORT_SYMBOL(blk_start_queue);
344
345 /**
346 * blk_stop_queue - stop a queue
347 * @q: The &struct request_queue in question
348 *
349 * Description:
350 * The Linux block layer assumes that a block driver will consume all
351 * entries on the request queue when the request_fn strategy is called.
352 * Often this will not happen, because of hardware limitations (queue
353 * depth settings). If a device driver gets a 'queue full' response,
354 * or if it simply chooses not to queue more I/O at one point, it can
355 * call this function to prevent the request_fn from being called until
356 * the driver has signalled it's ready to go again. This happens by calling
357 * blk_start_queue() to restart queue operations. Queue lock must be held.
358 **/
359 void blk_stop_queue(struct request_queue *q)
360 {
361 blk_remove_plug(q);
362 queue_flag_set(QUEUE_FLAG_STOPPED, q);
363 }
364 EXPORT_SYMBOL(blk_stop_queue);
365
366 /**
367 * blk_sync_queue - cancel any pending callbacks on a queue
368 * @q: the queue
369 *
370 * Description:
371 * The block layer may perform asynchronous callback activity
372 * on a queue, such as calling the unplug function after a timeout.
373 * A block device may call blk_sync_queue to ensure that any
374 * such activity is cancelled, thus allowing it to release resources
375 * that the callbacks might use. The caller must already have made sure
376 * that its ->make_request_fn will not re-add plugging prior to calling
377 * this function.
378 *
379 */
380 void blk_sync_queue(struct request_queue *q)
381 {
382 del_timer_sync(&q->unplug_timer);
383 del_timer_sync(&q->timeout);
384 cancel_work_sync(&q->unplug_work);
385 }
386 EXPORT_SYMBOL(blk_sync_queue);
387
388 /**
389 * __blk_run_queue - run a single device queue
390 * @q: The queue to run
391 *
392 * Description:
393 * See @blk_run_queue. This variant must be called with the queue lock
394 * held and interrupts disabled.
395 *
396 */
397 void __blk_run_queue(struct request_queue *q)
398 {
399 blk_remove_plug(q);
400
401 if (unlikely(blk_queue_stopped(q)))
402 return;
403
404 if (elv_queue_empty(q))
405 return;
406
407 /*
408 * Only recurse once to avoid overrunning the stack, let the unplug
409 * handling reinvoke the handler shortly if we already got there.
410 */
411 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
412 q->request_fn(q);
413 queue_flag_clear(QUEUE_FLAG_REENTER, q);
414 } else {
415 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
416 kblockd_schedule_work(q, &q->unplug_work);
417 }
418 }
419 EXPORT_SYMBOL(__blk_run_queue);
420
421 /**
422 * blk_run_queue - run a single device queue
423 * @q: The queue to run
424 *
425 * Description:
426 * Invoke request handling on this queue, if it has pending work to do.
427 * May be used to restart queueing when a request has completed.
428 */
429 void blk_run_queue(struct request_queue *q)
430 {
431 unsigned long flags;
432
433 spin_lock_irqsave(q->queue_lock, flags);
434 __blk_run_queue(q);
435 spin_unlock_irqrestore(q->queue_lock, flags);
436 }
437 EXPORT_SYMBOL(blk_run_queue);
438
439 void blk_put_queue(struct request_queue *q)
440 {
441 kobject_put(&q->kobj);
442 }
443
444 void blk_cleanup_queue(struct request_queue *q)
445 {
446 /*
447 * We know we have process context here, so we can be a little
448 * cautious and ensure that pending block actions on this device
449 * are done before moving on. Going into this function, we should
450 * not have processes doing IO to this device.
451 */
452 blk_sync_queue(q);
453
454 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
455 mutex_lock(&q->sysfs_lock);
456 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
457 mutex_unlock(&q->sysfs_lock);
458
459 if (q->elevator)
460 elevator_exit(q->elevator);
461
462 blk_put_queue(q);
463 }
464 EXPORT_SYMBOL(blk_cleanup_queue);
465
466 static int blk_init_free_list(struct request_queue *q)
467 {
468 struct request_list *rl = &q->rq;
469
470 if (unlikely(rl->rq_pool))
471 return 0;
472
473 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
474 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
475 rl->elvpriv = 0;
476 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
477 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
478
479 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
480 mempool_free_slab, request_cachep, q->node);
481
482 if (!rl->rq_pool)
483 return -ENOMEM;
484
485 return 0;
486 }
487
488 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
489 {
490 return blk_alloc_queue_node(gfp_mask, -1);
491 }
492 EXPORT_SYMBOL(blk_alloc_queue);
493
494 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
495 {
496 struct request_queue *q;
497 int err;
498
499 q = kmem_cache_alloc_node(blk_requestq_cachep,
500 gfp_mask | __GFP_ZERO, node_id);
501 if (!q)
502 return NULL;
503
504 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
505 q->backing_dev_info.unplug_io_data = q;
506 q->backing_dev_info.ra_pages =
507 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
508 q->backing_dev_info.state = 0;
509 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
510 q->backing_dev_info.name = "block";
511
512 err = bdi_init(&q->backing_dev_info);
513 if (err) {
514 kmem_cache_free(blk_requestq_cachep, q);
515 return NULL;
516 }
517
518 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
519 laptop_mode_timer_fn, (unsigned long) q);
520 init_timer(&q->unplug_timer);
521 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
522 INIT_LIST_HEAD(&q->timeout_list);
523 INIT_WORK(&q->unplug_work, blk_unplug_work);
524
525 kobject_init(&q->kobj, &blk_queue_ktype);
526
527 mutex_init(&q->sysfs_lock);
528 spin_lock_init(&q->__queue_lock);
529
530 return q;
531 }
532 EXPORT_SYMBOL(blk_alloc_queue_node);
533
534 /**
535 * blk_init_queue - prepare a request queue for use with a block device
536 * @rfn: The function to be called to process requests that have been
537 * placed on the queue.
538 * @lock: Request queue spin lock
539 *
540 * Description:
541 * If a block device wishes to use the standard request handling procedures,
542 * which sorts requests and coalesces adjacent requests, then it must
543 * call blk_init_queue(). The function @rfn will be called when there
544 * are requests on the queue that need to be processed. If the device
545 * supports plugging, then @rfn may not be called immediately when requests
546 * are available on the queue, but may be called at some time later instead.
547 * Plugged queues are generally unplugged when a buffer belonging to one
548 * of the requests on the queue is needed, or due to memory pressure.
549 *
550 * @rfn is not required, or even expected, to remove all requests off the
551 * queue, but only as many as it can handle at a time. If it does leave
552 * requests on the queue, it is responsible for arranging that the requests
553 * get dealt with eventually.
554 *
555 * The queue spin lock must be held while manipulating the requests on the
556 * request queue; this lock will be taken also from interrupt context, so irq
557 * disabling is needed for it.
558 *
559 * Function returns a pointer to the initialized request queue, or %NULL if
560 * it didn't succeed.
561 *
562 * Note:
563 * blk_init_queue() must be paired with a blk_cleanup_queue() call
564 * when the block device is deactivated (such as at module unload).
565 **/
566
567 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
568 {
569 return blk_init_queue_node(rfn, lock, -1);
570 }
571 EXPORT_SYMBOL(blk_init_queue);
572
573 struct request_queue *
574 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
575 {
576 struct request_queue *uninit_q, *q;
577
578 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
579 if (!uninit_q)
580 return NULL;
581
582 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
583 if (!q)
584 blk_cleanup_queue(uninit_q);
585
586 return q;
587 }
588 EXPORT_SYMBOL(blk_init_queue_node);
589
590 struct request_queue *
591 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
592 spinlock_t *lock)
593 {
594 return blk_init_allocated_queue_node(q, rfn, lock, -1);
595 }
596 EXPORT_SYMBOL(blk_init_allocated_queue);
597
598 struct request_queue *
599 blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
600 spinlock_t *lock, int node_id)
601 {
602 if (!q)
603 return NULL;
604
605 q->node = node_id;
606 if (blk_init_free_list(q))
607 return NULL;
608
609 q->request_fn = rfn;
610 q->prep_rq_fn = NULL;
611 q->unplug_fn = generic_unplug_device;
612 q->queue_flags = QUEUE_FLAG_DEFAULT;
613 q->queue_lock = lock;
614
615 /*
616 * This also sets hw/phys segments, boundary and size
617 */
618 blk_queue_make_request(q, __make_request);
619
620 q->sg_reserved_size = INT_MAX;
621
622 /*
623 * all done
624 */
625 if (!elevator_init(q, NULL)) {
626 blk_queue_congestion_threshold(q);
627 return q;
628 }
629
630 return NULL;
631 }
632 EXPORT_SYMBOL(blk_init_allocated_queue_node);
633
634 int blk_get_queue(struct request_queue *q)
635 {
636 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
637 kobject_get(&q->kobj);
638 return 0;
639 }
640
641 return 1;
642 }
643
644 static inline void blk_free_request(struct request_queue *q, struct request *rq)
645 {
646 if (rq->cmd_flags & REQ_ELVPRIV)
647 elv_put_request(q, rq);
648 mempool_free(rq, q->rq.rq_pool);
649 }
650
651 static struct request *
652 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
653 {
654 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
655
656 if (!rq)
657 return NULL;
658
659 blk_rq_init(q, rq);
660
661 rq->cmd_flags = flags | REQ_ALLOCED;
662
663 if (priv) {
664 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
665 mempool_free(rq, q->rq.rq_pool);
666 return NULL;
667 }
668 rq->cmd_flags |= REQ_ELVPRIV;
669 }
670
671 return rq;
672 }
673
674 /*
675 * ioc_batching returns true if the ioc is a valid batching request and
676 * should be given priority access to a request.
677 */
678 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
679 {
680 if (!ioc)
681 return 0;
682
683 /*
684 * Make sure the process is able to allocate at least 1 request
685 * even if the batch times out, otherwise we could theoretically
686 * lose wakeups.
687 */
688 return ioc->nr_batch_requests == q->nr_batching ||
689 (ioc->nr_batch_requests > 0
690 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
691 }
692
693 /*
694 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
695 * will cause the process to be a "batcher" on all queues in the system. This
696 * is the behaviour we want though - once it gets a wakeup it should be given
697 * a nice run.
698 */
699 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
700 {
701 if (!ioc || ioc_batching(q, ioc))
702 return;
703
704 ioc->nr_batch_requests = q->nr_batching;
705 ioc->last_waited = jiffies;
706 }
707
708 static void __freed_request(struct request_queue *q, int sync)
709 {
710 struct request_list *rl = &q->rq;
711
712 if (rl->count[sync] < queue_congestion_off_threshold(q))
713 blk_clear_queue_congested(q, sync);
714
715 if (rl->count[sync] + 1 <= q->nr_requests) {
716 if (waitqueue_active(&rl->wait[sync]))
717 wake_up(&rl->wait[sync]);
718
719 blk_clear_queue_full(q, sync);
720 }
721 }
722
723 /*
724 * A request has just been released. Account for it, update the full and
725 * congestion status, wake up any waiters. Called under q->queue_lock.
726 */
727 static void freed_request(struct request_queue *q, int sync, int priv)
728 {
729 struct request_list *rl = &q->rq;
730
731 rl->count[sync]--;
732 if (priv)
733 rl->elvpriv--;
734
735 __freed_request(q, sync);
736
737 if (unlikely(rl->starved[sync ^ 1]))
738 __freed_request(q, sync ^ 1);
739 }
740
741 /*
742 * Get a free request, queue_lock must be held.
743 * Returns NULL on failure, with queue_lock held.
744 * Returns !NULL on success, with queue_lock *not held*.
745 */
746 static struct request *get_request(struct request_queue *q, int rw_flags,
747 struct bio *bio, gfp_t gfp_mask)
748 {
749 struct request *rq = NULL;
750 struct request_list *rl = &q->rq;
751 struct io_context *ioc = NULL;
752 const bool is_sync = rw_is_sync(rw_flags) != 0;
753 int may_queue, priv;
754
755 may_queue = elv_may_queue(q, rw_flags);
756 if (may_queue == ELV_MQUEUE_NO)
757 goto rq_starved;
758
759 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
760 if (rl->count[is_sync]+1 >= q->nr_requests) {
761 ioc = current_io_context(GFP_ATOMIC, q->node);
762 /*
763 * The queue will fill after this allocation, so set
764 * it as full, and mark this process as "batching".
765 * This process will be allowed to complete a batch of
766 * requests, others will be blocked.
767 */
768 if (!blk_queue_full(q, is_sync)) {
769 ioc_set_batching(q, ioc);
770 blk_set_queue_full(q, is_sync);
771 } else {
772 if (may_queue != ELV_MQUEUE_MUST
773 && !ioc_batching(q, ioc)) {
774 /*
775 * The queue is full and the allocating
776 * process is not a "batcher", and not
777 * exempted by the IO scheduler
778 */
779 goto out;
780 }
781 }
782 }
783 blk_set_queue_congested(q, is_sync);
784 }
785
786 /*
787 * Only allow batching queuers to allocate up to 50% over the defined
788 * limit of requests, otherwise we could have thousands of requests
789 * allocated with any setting of ->nr_requests
790 */
791 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
792 goto out;
793
794 rl->count[is_sync]++;
795 rl->starved[is_sync] = 0;
796
797 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
798 if (priv)
799 rl->elvpriv++;
800
801 if (blk_queue_io_stat(q))
802 rw_flags |= REQ_IO_STAT;
803 spin_unlock_irq(q->queue_lock);
804
805 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
806 if (unlikely(!rq)) {
807 /*
808 * Allocation failed presumably due to memory. Undo anything
809 * we might have messed up.
810 *
811 * Allocating task should really be put onto the front of the
812 * wait queue, but this is pretty rare.
813 */
814 spin_lock_irq(q->queue_lock);
815 freed_request(q, is_sync, priv);
816
817 /*
818 * in the very unlikely event that allocation failed and no
819 * requests for this direction was pending, mark us starved
820 * so that freeing of a request in the other direction will
821 * notice us. another possible fix would be to split the
822 * rq mempool into READ and WRITE
823 */
824 rq_starved:
825 if (unlikely(rl->count[is_sync] == 0))
826 rl->starved[is_sync] = 1;
827
828 goto out;
829 }
830
831 /*
832 * ioc may be NULL here, and ioc_batching will be false. That's
833 * OK, if the queue is under the request limit then requests need
834 * not count toward the nr_batch_requests limit. There will always
835 * be some limit enforced by BLK_BATCH_TIME.
836 */
837 if (ioc_batching(q, ioc))
838 ioc->nr_batch_requests--;
839
840 trace_block_getrq(q, bio, rw_flags & 1);
841 out:
842 return rq;
843 }
844
845 /*
846 * No available requests for this queue, unplug the device and wait for some
847 * requests to become available.
848 *
849 * Called with q->queue_lock held, and returns with it unlocked.
850 */
851 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
852 struct bio *bio)
853 {
854 const bool is_sync = rw_is_sync(rw_flags) != 0;
855 struct request *rq;
856
857 rq = get_request(q, rw_flags, bio, GFP_NOIO);
858 while (!rq) {
859 DEFINE_WAIT(wait);
860 struct io_context *ioc;
861 struct request_list *rl = &q->rq;
862
863 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
864 TASK_UNINTERRUPTIBLE);
865
866 trace_block_sleeprq(q, bio, rw_flags & 1);
867
868 __generic_unplug_device(q);
869 spin_unlock_irq(q->queue_lock);
870 io_schedule();
871
872 /*
873 * After sleeping, we become a "batching" process and
874 * will be able to allocate at least one request, and
875 * up to a big batch of them for a small period time.
876 * See ioc_batching, ioc_set_batching
877 */
878 ioc = current_io_context(GFP_NOIO, q->node);
879 ioc_set_batching(q, ioc);
880
881 spin_lock_irq(q->queue_lock);
882 finish_wait(&rl->wait[is_sync], &wait);
883
884 rq = get_request(q, rw_flags, bio, GFP_NOIO);
885 };
886
887 return rq;
888 }
889
890 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
891 {
892 struct request *rq;
893
894 BUG_ON(rw != READ && rw != WRITE);
895
896 spin_lock_irq(q->queue_lock);
897 if (gfp_mask & __GFP_WAIT) {
898 rq = get_request_wait(q, rw, NULL);
899 } else {
900 rq = get_request(q, rw, NULL, gfp_mask);
901 if (!rq)
902 spin_unlock_irq(q->queue_lock);
903 }
904 /* q->queue_lock is unlocked at this point */
905
906 return rq;
907 }
908 EXPORT_SYMBOL(blk_get_request);
909
910 /**
911 * blk_make_request - given a bio, allocate a corresponding struct request.
912 * @q: target request queue
913 * @bio: The bio describing the memory mappings that will be submitted for IO.
914 * It may be a chained-bio properly constructed by block/bio layer.
915 * @gfp_mask: gfp flags to be used for memory allocation
916 *
917 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
918 * type commands. Where the struct request needs to be farther initialized by
919 * the caller. It is passed a &struct bio, which describes the memory info of
920 * the I/O transfer.
921 *
922 * The caller of blk_make_request must make sure that bi_io_vec
923 * are set to describe the memory buffers. That bio_data_dir() will return
924 * the needed direction of the request. (And all bio's in the passed bio-chain
925 * are properly set accordingly)
926 *
927 * If called under none-sleepable conditions, mapped bio buffers must not
928 * need bouncing, by calling the appropriate masked or flagged allocator,
929 * suitable for the target device. Otherwise the call to blk_queue_bounce will
930 * BUG.
931 *
932 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
933 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
934 * anything but the first bio in the chain. Otherwise you risk waiting for IO
935 * completion of a bio that hasn't been submitted yet, thus resulting in a
936 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
937 * of bio_alloc(), as that avoids the mempool deadlock.
938 * If possible a big IO should be split into smaller parts when allocation
939 * fails. Partial allocation should not be an error, or you risk a live-lock.
940 */
941 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
942 gfp_t gfp_mask)
943 {
944 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
945
946 if (unlikely(!rq))
947 return ERR_PTR(-ENOMEM);
948
949 for_each_bio(bio) {
950 struct bio *bounce_bio = bio;
951 int ret;
952
953 blk_queue_bounce(q, &bounce_bio);
954 ret = blk_rq_append_bio(q, rq, bounce_bio);
955 if (unlikely(ret)) {
956 blk_put_request(rq);
957 return ERR_PTR(ret);
958 }
959 }
960
961 return rq;
962 }
963 EXPORT_SYMBOL(blk_make_request);
964
965 /**
966 * blk_requeue_request - put a request back on queue
967 * @q: request queue where request should be inserted
968 * @rq: request to be inserted
969 *
970 * Description:
971 * Drivers often keep queueing requests until the hardware cannot accept
972 * more, when that condition happens we need to put the request back
973 * on the queue. Must be called with queue lock held.
974 */
975 void blk_requeue_request(struct request_queue *q, struct request *rq)
976 {
977 blk_delete_timer(rq);
978 blk_clear_rq_complete(rq);
979 trace_block_rq_requeue(q, rq);
980
981 if (blk_rq_tagged(rq))
982 blk_queue_end_tag(q, rq);
983
984 BUG_ON(blk_queued_rq(rq));
985
986 elv_requeue_request(q, rq);
987 }
988 EXPORT_SYMBOL(blk_requeue_request);
989
990 /**
991 * blk_insert_request - insert a special request into a request queue
992 * @q: request queue where request should be inserted
993 * @rq: request to be inserted
994 * @at_head: insert request at head or tail of queue
995 * @data: private data
996 *
997 * Description:
998 * Many block devices need to execute commands asynchronously, so they don't
999 * block the whole kernel from preemption during request execution. This is
1000 * accomplished normally by inserting aritficial requests tagged as
1001 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
1002 * be scheduled for actual execution by the request queue.
1003 *
1004 * We have the option of inserting the head or the tail of the queue.
1005 * Typically we use the tail for new ioctls and so forth. We use the head
1006 * of the queue for things like a QUEUE_FULL message from a device, or a
1007 * host that is unable to accept a particular command.
1008 */
1009 void blk_insert_request(struct request_queue *q, struct request *rq,
1010 int at_head, void *data)
1011 {
1012 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1013 unsigned long flags;
1014
1015 /*
1016 * tell I/O scheduler that this isn't a regular read/write (ie it
1017 * must not attempt merges on this) and that it acts as a soft
1018 * barrier
1019 */
1020 rq->cmd_type = REQ_TYPE_SPECIAL;
1021
1022 rq->special = data;
1023
1024 spin_lock_irqsave(q->queue_lock, flags);
1025
1026 /*
1027 * If command is tagged, release the tag
1028 */
1029 if (blk_rq_tagged(rq))
1030 blk_queue_end_tag(q, rq);
1031
1032 drive_stat_acct(rq, 1);
1033 __elv_add_request(q, rq, where, 0);
1034 __blk_run_queue(q);
1035 spin_unlock_irqrestore(q->queue_lock, flags);
1036 }
1037 EXPORT_SYMBOL(blk_insert_request);
1038
1039 /*
1040 * add-request adds a request to the linked list.
1041 * queue lock is held and interrupts disabled, as we muck with the
1042 * request queue list.
1043 */
1044 static inline void add_request(struct request_queue *q, struct request *req)
1045 {
1046 drive_stat_acct(req, 1);
1047
1048 /*
1049 * elevator indicated where it wants this request to be
1050 * inserted at elevator_merge time
1051 */
1052 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1053 }
1054
1055 static void part_round_stats_single(int cpu, struct hd_struct *part,
1056 unsigned long now)
1057 {
1058 if (now == part->stamp)
1059 return;
1060
1061 if (part_in_flight(part)) {
1062 __part_stat_add(cpu, part, time_in_queue,
1063 part_in_flight(part) * (now - part->stamp));
1064 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1065 }
1066 part->stamp = now;
1067 }
1068
1069 /**
1070 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1071 * @cpu: cpu number for stats access
1072 * @part: target partition
1073 *
1074 * The average IO queue length and utilisation statistics are maintained
1075 * by observing the current state of the queue length and the amount of
1076 * time it has been in this state for.
1077 *
1078 * Normally, that accounting is done on IO completion, but that can result
1079 * in more than a second's worth of IO being accounted for within any one
1080 * second, leading to >100% utilisation. To deal with that, we call this
1081 * function to do a round-off before returning the results when reading
1082 * /proc/diskstats. This accounts immediately for all queue usage up to
1083 * the current jiffies and restarts the counters again.
1084 */
1085 void part_round_stats(int cpu, struct hd_struct *part)
1086 {
1087 unsigned long now = jiffies;
1088
1089 if (part->partno)
1090 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1091 part_round_stats_single(cpu, part, now);
1092 }
1093 EXPORT_SYMBOL_GPL(part_round_stats);
1094
1095 /*
1096 * queue lock must be held
1097 */
1098 void __blk_put_request(struct request_queue *q, struct request *req)
1099 {
1100 if (unlikely(!q))
1101 return;
1102 if (unlikely(--req->ref_count))
1103 return;
1104
1105 elv_completed_request(q, req);
1106
1107 /* this is a bio leak */
1108 WARN_ON(req->bio != NULL);
1109
1110 /*
1111 * Request may not have originated from ll_rw_blk. if not,
1112 * it didn't come out of our reserved rq pools
1113 */
1114 if (req->cmd_flags & REQ_ALLOCED) {
1115 int is_sync = rq_is_sync(req) != 0;
1116 int priv = req->cmd_flags & REQ_ELVPRIV;
1117
1118 BUG_ON(!list_empty(&req->queuelist));
1119 BUG_ON(!hlist_unhashed(&req->hash));
1120
1121 blk_free_request(q, req);
1122 freed_request(q, is_sync, priv);
1123 }
1124 }
1125 EXPORT_SYMBOL_GPL(__blk_put_request);
1126
1127 void blk_put_request(struct request *req)
1128 {
1129 unsigned long flags;
1130 struct request_queue *q = req->q;
1131
1132 spin_lock_irqsave(q->queue_lock, flags);
1133 __blk_put_request(q, req);
1134 spin_unlock_irqrestore(q->queue_lock, flags);
1135 }
1136 EXPORT_SYMBOL(blk_put_request);
1137
1138 void init_request_from_bio(struct request *req, struct bio *bio)
1139 {
1140 req->cpu = bio->bi_comp_cpu;
1141 req->cmd_type = REQ_TYPE_FS;
1142
1143 /*
1144 * Inherit FAILFAST from bio (for read-ahead, and explicit
1145 * FAILFAST). FAILFAST flags are identical for req and bio.
1146 */
1147 if (bio_rw_flagged(bio, BIO_RW_AHEAD))
1148 req->cmd_flags |= REQ_FAILFAST_MASK;
1149 else
1150 req->cmd_flags |= bio->bi_rw & REQ_FAILFAST_MASK;
1151
1152 if (bio_rw_flagged(bio, BIO_RW_DISCARD))
1153 req->cmd_flags |= REQ_DISCARD;
1154 if (bio_rw_flagged(bio, BIO_RW_BARRIER))
1155 req->cmd_flags |= REQ_HARDBARRIER;
1156 if (bio_rw_flagged(bio, BIO_RW_SYNCIO))
1157 req->cmd_flags |= REQ_RW_SYNC;
1158 if (bio_rw_flagged(bio, BIO_RW_META))
1159 req->cmd_flags |= REQ_RW_META;
1160 if (bio_rw_flagged(bio, BIO_RW_NOIDLE))
1161 req->cmd_flags |= REQ_NOIDLE;
1162
1163 req->errors = 0;
1164 req->__sector = bio->bi_sector;
1165 req->ioprio = bio_prio(bio);
1166 blk_rq_bio_prep(req->q, req, bio);
1167 }
1168
1169 /*
1170 * Only disabling plugging for non-rotational devices if it does tagging
1171 * as well, otherwise we do need the proper merging
1172 */
1173 static inline bool queue_should_plug(struct request_queue *q)
1174 {
1175 return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
1176 }
1177
1178 static int __make_request(struct request_queue *q, struct bio *bio)
1179 {
1180 struct request *req;
1181 int el_ret;
1182 unsigned int bytes = bio->bi_size;
1183 const unsigned short prio = bio_prio(bio);
1184 const bool sync = bio_rw_flagged(bio, BIO_RW_SYNCIO);
1185 const bool unplug = bio_rw_flagged(bio, BIO_RW_UNPLUG);
1186 const unsigned int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1187 int rw_flags;
1188
1189 if (bio_rw_flagged(bio, BIO_RW_BARRIER) &&
1190 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1191 bio_endio(bio, -EOPNOTSUPP);
1192 return 0;
1193 }
1194 /*
1195 * low level driver can indicate that it wants pages above a
1196 * certain limit bounced to low memory (ie for highmem, or even
1197 * ISA dma in theory)
1198 */
1199 blk_queue_bounce(q, &bio);
1200
1201 spin_lock_irq(q->queue_lock);
1202
1203 if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER)) || elv_queue_empty(q))
1204 goto get_rq;
1205
1206 el_ret = elv_merge(q, &req, bio);
1207 switch (el_ret) {
1208 case ELEVATOR_BACK_MERGE:
1209 BUG_ON(!rq_mergeable(req));
1210
1211 if (!ll_back_merge_fn(q, req, bio))
1212 break;
1213
1214 trace_block_bio_backmerge(q, bio);
1215
1216 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1217 blk_rq_set_mixed_merge(req);
1218
1219 req->biotail->bi_next = bio;
1220 req->biotail = bio;
1221 req->__data_len += bytes;
1222 req->ioprio = ioprio_best(req->ioprio, prio);
1223 if (!blk_rq_cpu_valid(req))
1224 req->cpu = bio->bi_comp_cpu;
1225 drive_stat_acct(req, 0);
1226 elv_bio_merged(q, req, bio);
1227 if (!attempt_back_merge(q, req))
1228 elv_merged_request(q, req, el_ret);
1229 goto out;
1230
1231 case ELEVATOR_FRONT_MERGE:
1232 BUG_ON(!rq_mergeable(req));
1233
1234 if (!ll_front_merge_fn(q, req, bio))
1235 break;
1236
1237 trace_block_bio_frontmerge(q, bio);
1238
1239 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) {
1240 blk_rq_set_mixed_merge(req);
1241 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1242 req->cmd_flags |= ff;
1243 }
1244
1245 bio->bi_next = req->bio;
1246 req->bio = bio;
1247
1248 /*
1249 * may not be valid. if the low level driver said
1250 * it didn't need a bounce buffer then it better
1251 * not touch req->buffer either...
1252 */
1253 req->buffer = bio_data(bio);
1254 req->__sector = bio->bi_sector;
1255 req->__data_len += bytes;
1256 req->ioprio = ioprio_best(req->ioprio, prio);
1257 if (!blk_rq_cpu_valid(req))
1258 req->cpu = bio->bi_comp_cpu;
1259 drive_stat_acct(req, 0);
1260 elv_bio_merged(q, req, bio);
1261 if (!attempt_front_merge(q, req))
1262 elv_merged_request(q, req, el_ret);
1263 goto out;
1264
1265 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1266 default:
1267 ;
1268 }
1269
1270 get_rq:
1271 /*
1272 * This sync check and mask will be re-done in init_request_from_bio(),
1273 * but we need to set it earlier to expose the sync flag to the
1274 * rq allocator and io schedulers.
1275 */
1276 rw_flags = bio_data_dir(bio);
1277 if (sync)
1278 rw_flags |= REQ_RW_SYNC;
1279
1280 /*
1281 * Grab a free request. This is might sleep but can not fail.
1282 * Returns with the queue unlocked.
1283 */
1284 req = get_request_wait(q, rw_flags, bio);
1285
1286 /*
1287 * After dropping the lock and possibly sleeping here, our request
1288 * may now be mergeable after it had proven unmergeable (above).
1289 * We don't worry about that case for efficiency. It won't happen
1290 * often, and the elevators are able to handle it.
1291 */
1292 init_request_from_bio(req, bio);
1293
1294 spin_lock_irq(q->queue_lock);
1295 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1296 bio_flagged(bio, BIO_CPU_AFFINE))
1297 req->cpu = blk_cpu_to_group(smp_processor_id());
1298 if (queue_should_plug(q) && elv_queue_empty(q))
1299 blk_plug_device(q);
1300 add_request(q, req);
1301 out:
1302 if (unplug || !queue_should_plug(q))
1303 __generic_unplug_device(q);
1304 spin_unlock_irq(q->queue_lock);
1305 return 0;
1306 }
1307
1308 /*
1309 * If bio->bi_dev is a partition, remap the location
1310 */
1311 static inline void blk_partition_remap(struct bio *bio)
1312 {
1313 struct block_device *bdev = bio->bi_bdev;
1314
1315 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1316 struct hd_struct *p = bdev->bd_part;
1317
1318 bio->bi_sector += p->start_sect;
1319 bio->bi_bdev = bdev->bd_contains;
1320
1321 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
1322 bdev->bd_dev,
1323 bio->bi_sector - p->start_sect);
1324 }
1325 }
1326
1327 static void handle_bad_sector(struct bio *bio)
1328 {
1329 char b[BDEVNAME_SIZE];
1330
1331 printk(KERN_INFO "attempt to access beyond end of device\n");
1332 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1333 bdevname(bio->bi_bdev, b),
1334 bio->bi_rw,
1335 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1336 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1337
1338 set_bit(BIO_EOF, &bio->bi_flags);
1339 }
1340
1341 #ifdef CONFIG_FAIL_MAKE_REQUEST
1342
1343 static DECLARE_FAULT_ATTR(fail_make_request);
1344
1345 static int __init setup_fail_make_request(char *str)
1346 {
1347 return setup_fault_attr(&fail_make_request, str);
1348 }
1349 __setup("fail_make_request=", setup_fail_make_request);
1350
1351 static int should_fail_request(struct bio *bio)
1352 {
1353 struct hd_struct *part = bio->bi_bdev->bd_part;
1354
1355 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1356 return should_fail(&fail_make_request, bio->bi_size);
1357
1358 return 0;
1359 }
1360
1361 static int __init fail_make_request_debugfs(void)
1362 {
1363 return init_fault_attr_dentries(&fail_make_request,
1364 "fail_make_request");
1365 }
1366
1367 late_initcall(fail_make_request_debugfs);
1368
1369 #else /* CONFIG_FAIL_MAKE_REQUEST */
1370
1371 static inline int should_fail_request(struct bio *bio)
1372 {
1373 return 0;
1374 }
1375
1376 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1377
1378 /*
1379 * Check whether this bio extends beyond the end of the device.
1380 */
1381 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1382 {
1383 sector_t maxsector;
1384
1385 if (!nr_sectors)
1386 return 0;
1387
1388 /* Test device or partition size, when known. */
1389 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1390 if (maxsector) {
1391 sector_t sector = bio->bi_sector;
1392
1393 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1394 /*
1395 * This may well happen - the kernel calls bread()
1396 * without checking the size of the device, e.g., when
1397 * mounting a device.
1398 */
1399 handle_bad_sector(bio);
1400 return 1;
1401 }
1402 }
1403
1404 return 0;
1405 }
1406
1407 /**
1408 * generic_make_request - hand a buffer to its device driver for I/O
1409 * @bio: The bio describing the location in memory and on the device.
1410 *
1411 * generic_make_request() is used to make I/O requests of block
1412 * devices. It is passed a &struct bio, which describes the I/O that needs
1413 * to be done.
1414 *
1415 * generic_make_request() does not return any status. The
1416 * success/failure status of the request, along with notification of
1417 * completion, is delivered asynchronously through the bio->bi_end_io
1418 * function described (one day) else where.
1419 *
1420 * The caller of generic_make_request must make sure that bi_io_vec
1421 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1422 * set to describe the device address, and the
1423 * bi_end_io and optionally bi_private are set to describe how
1424 * completion notification should be signaled.
1425 *
1426 * generic_make_request and the drivers it calls may use bi_next if this
1427 * bio happens to be merged with someone else, and may change bi_dev and
1428 * bi_sector for remaps as it sees fit. So the values of these fields
1429 * should NOT be depended on after the call to generic_make_request.
1430 */
1431 static inline void __generic_make_request(struct bio *bio)
1432 {
1433 struct request_queue *q;
1434 sector_t old_sector;
1435 int ret, nr_sectors = bio_sectors(bio);
1436 dev_t old_dev;
1437 int err = -EIO;
1438
1439 might_sleep();
1440
1441 if (bio_check_eod(bio, nr_sectors))
1442 goto end_io;
1443
1444 /*
1445 * Resolve the mapping until finished. (drivers are
1446 * still free to implement/resolve their own stacking
1447 * by explicitly returning 0)
1448 *
1449 * NOTE: we don't repeat the blk_size check for each new device.
1450 * Stacking drivers are expected to know what they are doing.
1451 */
1452 old_sector = -1;
1453 old_dev = 0;
1454 do {
1455 char b[BDEVNAME_SIZE];
1456
1457 q = bdev_get_queue(bio->bi_bdev);
1458 if (unlikely(!q)) {
1459 printk(KERN_ERR
1460 "generic_make_request: Trying to access "
1461 "nonexistent block-device %s (%Lu)\n",
1462 bdevname(bio->bi_bdev, b),
1463 (long long) bio->bi_sector);
1464 goto end_io;
1465 }
1466
1467 if (unlikely(!bio_rw_flagged(bio, BIO_RW_DISCARD) &&
1468 nr_sectors > queue_max_hw_sectors(q))) {
1469 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1470 bdevname(bio->bi_bdev, b),
1471 bio_sectors(bio),
1472 queue_max_hw_sectors(q));
1473 goto end_io;
1474 }
1475
1476 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1477 goto end_io;
1478
1479 if (should_fail_request(bio))
1480 goto end_io;
1481
1482 /*
1483 * If this device has partitions, remap block n
1484 * of partition p to block n+start(p) of the disk.
1485 */
1486 blk_partition_remap(bio);
1487
1488 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1489 goto end_io;
1490
1491 if (old_sector != -1)
1492 trace_block_remap(q, bio, old_dev, old_sector);
1493
1494 old_sector = bio->bi_sector;
1495 old_dev = bio->bi_bdev->bd_dev;
1496
1497 if (bio_check_eod(bio, nr_sectors))
1498 goto end_io;
1499
1500 if (bio_rw_flagged(bio, BIO_RW_DISCARD) &&
1501 !blk_queue_discard(q)) {
1502 err = -EOPNOTSUPP;
1503 goto end_io;
1504 }
1505
1506 trace_block_bio_queue(q, bio);
1507
1508 ret = q->make_request_fn(q, bio);
1509 } while (ret);
1510
1511 return;
1512
1513 end_io:
1514 bio_endio(bio, err);
1515 }
1516
1517 /*
1518 * We only want one ->make_request_fn to be active at a time,
1519 * else stack usage with stacked devices could be a problem.
1520 * So use current->bio_list to keep a list of requests
1521 * submited by a make_request_fn function.
1522 * current->bio_list is also used as a flag to say if
1523 * generic_make_request is currently active in this task or not.
1524 * If it is NULL, then no make_request is active. If it is non-NULL,
1525 * then a make_request is active, and new requests should be added
1526 * at the tail
1527 */
1528 void generic_make_request(struct bio *bio)
1529 {
1530 struct bio_list bio_list_on_stack;
1531
1532 if (current->bio_list) {
1533 /* make_request is active */
1534 bio_list_add(current->bio_list, bio);
1535 return;
1536 }
1537 /* following loop may be a bit non-obvious, and so deserves some
1538 * explanation.
1539 * Before entering the loop, bio->bi_next is NULL (as all callers
1540 * ensure that) so we have a list with a single bio.
1541 * We pretend that we have just taken it off a longer list, so
1542 * we assign bio_list to a pointer to the bio_list_on_stack,
1543 * thus initialising the bio_list of new bios to be
1544 * added. __generic_make_request may indeed add some more bios
1545 * through a recursive call to generic_make_request. If it
1546 * did, we find a non-NULL value in bio_list and re-enter the loop
1547 * from the top. In this case we really did just take the bio
1548 * of the top of the list (no pretending) and so remove it from
1549 * bio_list, and call into __generic_make_request again.
1550 *
1551 * The loop was structured like this to make only one call to
1552 * __generic_make_request (which is important as it is large and
1553 * inlined) and to keep the structure simple.
1554 */
1555 BUG_ON(bio->bi_next);
1556 bio_list_init(&bio_list_on_stack);
1557 current->bio_list = &bio_list_on_stack;
1558 do {
1559 __generic_make_request(bio);
1560 bio = bio_list_pop(current->bio_list);
1561 } while (bio);
1562 current->bio_list = NULL; /* deactivate */
1563 }
1564 EXPORT_SYMBOL(generic_make_request);
1565
1566 /**
1567 * submit_bio - submit a bio to the block device layer for I/O
1568 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1569 * @bio: The &struct bio which describes the I/O
1570 *
1571 * submit_bio() is very similar in purpose to generic_make_request(), and
1572 * uses that function to do most of the work. Both are fairly rough
1573 * interfaces; @bio must be presetup and ready for I/O.
1574 *
1575 */
1576 void submit_bio(int rw, struct bio *bio)
1577 {
1578 int count = bio_sectors(bio);
1579
1580 bio->bi_rw |= rw;
1581
1582 /*
1583 * If it's a regular read/write or a barrier with data attached,
1584 * go through the normal accounting stuff before submission.
1585 */
1586 if (bio_has_data(bio) && !(rw & (1 << BIO_RW_DISCARD))) {
1587 if (rw & WRITE) {
1588 count_vm_events(PGPGOUT, count);
1589 } else {
1590 task_io_account_read(bio->bi_size);
1591 count_vm_events(PGPGIN, count);
1592 }
1593
1594 if (unlikely(block_dump)) {
1595 char b[BDEVNAME_SIZE];
1596 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1597 current->comm, task_pid_nr(current),
1598 (rw & WRITE) ? "WRITE" : "READ",
1599 (unsigned long long)bio->bi_sector,
1600 bdevname(bio->bi_bdev, b));
1601 }
1602 }
1603
1604 generic_make_request(bio);
1605 }
1606 EXPORT_SYMBOL(submit_bio);
1607
1608 /**
1609 * blk_rq_check_limits - Helper function to check a request for the queue limit
1610 * @q: the queue
1611 * @rq: the request being checked
1612 *
1613 * Description:
1614 * @rq may have been made based on weaker limitations of upper-level queues
1615 * in request stacking drivers, and it may violate the limitation of @q.
1616 * Since the block layer and the underlying device driver trust @rq
1617 * after it is inserted to @q, it should be checked against @q before
1618 * the insertion using this generic function.
1619 *
1620 * This function should also be useful for request stacking drivers
1621 * in some cases below, so export this fuction.
1622 * Request stacking drivers like request-based dm may change the queue
1623 * limits while requests are in the queue (e.g. dm's table swapping).
1624 * Such request stacking drivers should check those requests agaist
1625 * the new queue limits again when they dispatch those requests,
1626 * although such checkings are also done against the old queue limits
1627 * when submitting requests.
1628 */
1629 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1630 {
1631 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1632 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1633 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1634 return -EIO;
1635 }
1636
1637 /*
1638 * queue's settings related to segment counting like q->bounce_pfn
1639 * may differ from that of other stacking queues.
1640 * Recalculate it to check the request correctly on this queue's
1641 * limitation.
1642 */
1643 blk_recalc_rq_segments(rq);
1644 if (rq->nr_phys_segments > queue_max_segments(q)) {
1645 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1646 return -EIO;
1647 }
1648
1649 return 0;
1650 }
1651 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1652
1653 /**
1654 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1655 * @q: the queue to submit the request
1656 * @rq: the request being queued
1657 */
1658 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1659 {
1660 unsigned long flags;
1661
1662 if (blk_rq_check_limits(q, rq))
1663 return -EIO;
1664
1665 #ifdef CONFIG_FAIL_MAKE_REQUEST
1666 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1667 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1668 return -EIO;
1669 #endif
1670
1671 spin_lock_irqsave(q->queue_lock, flags);
1672
1673 /*
1674 * Submitting request must be dequeued before calling this function
1675 * because it will be linked to another request_queue
1676 */
1677 BUG_ON(blk_queued_rq(rq));
1678
1679 drive_stat_acct(rq, 1);
1680 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1681
1682 spin_unlock_irqrestore(q->queue_lock, flags);
1683
1684 return 0;
1685 }
1686 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1687
1688 /**
1689 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1690 * @rq: request to examine
1691 *
1692 * Description:
1693 * A request could be merge of IOs which require different failure
1694 * handling. This function determines the number of bytes which
1695 * can be failed from the beginning of the request without
1696 * crossing into area which need to be retried further.
1697 *
1698 * Return:
1699 * The number of bytes to fail.
1700 *
1701 * Context:
1702 * queue_lock must be held.
1703 */
1704 unsigned int blk_rq_err_bytes(const struct request *rq)
1705 {
1706 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1707 unsigned int bytes = 0;
1708 struct bio *bio;
1709
1710 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1711 return blk_rq_bytes(rq);
1712
1713 /*
1714 * Currently the only 'mixing' which can happen is between
1715 * different fastfail types. We can safely fail portions
1716 * which have all the failfast bits that the first one has -
1717 * the ones which are at least as eager to fail as the first
1718 * one.
1719 */
1720 for (bio = rq->bio; bio; bio = bio->bi_next) {
1721 if ((bio->bi_rw & ff) != ff)
1722 break;
1723 bytes += bio->bi_size;
1724 }
1725
1726 /* this could lead to infinite loop */
1727 BUG_ON(blk_rq_bytes(rq) && !bytes);
1728 return bytes;
1729 }
1730 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1731
1732 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1733 {
1734 if (blk_do_io_stat(req)) {
1735 const int rw = rq_data_dir(req);
1736 struct hd_struct *part;
1737 int cpu;
1738
1739 cpu = part_stat_lock();
1740 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
1741 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1742 part_stat_unlock();
1743 }
1744 }
1745
1746 static void blk_account_io_done(struct request *req)
1747 {
1748 /*
1749 * Account IO completion. bar_rq isn't accounted as a normal
1750 * IO on queueing nor completion. Accounting the containing
1751 * request is enough.
1752 */
1753 if (blk_do_io_stat(req) && req != &req->q->bar_rq) {
1754 unsigned long duration = jiffies - req->start_time;
1755 const int rw = rq_data_dir(req);
1756 struct hd_struct *part;
1757 int cpu;
1758
1759 cpu = part_stat_lock();
1760 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
1761
1762 part_stat_inc(cpu, part, ios[rw]);
1763 part_stat_add(cpu, part, ticks[rw], duration);
1764 part_round_stats(cpu, part);
1765 part_dec_in_flight(part, rw);
1766
1767 part_stat_unlock();
1768 }
1769 }
1770
1771 /**
1772 * blk_peek_request - peek at the top of a request queue
1773 * @q: request queue to peek at
1774 *
1775 * Description:
1776 * Return the request at the top of @q. The returned request
1777 * should be started using blk_start_request() before LLD starts
1778 * processing it.
1779 *
1780 * Return:
1781 * Pointer to the request at the top of @q if available. Null
1782 * otherwise.
1783 *
1784 * Context:
1785 * queue_lock must be held.
1786 */
1787 struct request *blk_peek_request(struct request_queue *q)
1788 {
1789 struct request *rq;
1790 int ret;
1791
1792 while ((rq = __elv_next_request(q)) != NULL) {
1793 if (!(rq->cmd_flags & REQ_STARTED)) {
1794 /*
1795 * This is the first time the device driver
1796 * sees this request (possibly after
1797 * requeueing). Notify IO scheduler.
1798 */
1799 if (blk_sorted_rq(rq))
1800 elv_activate_rq(q, rq);
1801
1802 /*
1803 * just mark as started even if we don't start
1804 * it, a request that has been delayed should
1805 * not be passed by new incoming requests
1806 */
1807 rq->cmd_flags |= REQ_STARTED;
1808 trace_block_rq_issue(q, rq);
1809 }
1810
1811 if (!q->boundary_rq || q->boundary_rq == rq) {
1812 q->end_sector = rq_end_sector(rq);
1813 q->boundary_rq = NULL;
1814 }
1815
1816 if (rq->cmd_flags & REQ_DONTPREP)
1817 break;
1818
1819 if (q->dma_drain_size && blk_rq_bytes(rq)) {
1820 /*
1821 * make sure space for the drain appears we
1822 * know we can do this because max_hw_segments
1823 * has been adjusted to be one fewer than the
1824 * device can handle
1825 */
1826 rq->nr_phys_segments++;
1827 }
1828
1829 if (!q->prep_rq_fn)
1830 break;
1831
1832 ret = q->prep_rq_fn(q, rq);
1833 if (ret == BLKPREP_OK) {
1834 break;
1835 } else if (ret == BLKPREP_DEFER) {
1836 /*
1837 * the request may have been (partially) prepped.
1838 * we need to keep this request in the front to
1839 * avoid resource deadlock. REQ_STARTED will
1840 * prevent other fs requests from passing this one.
1841 */
1842 if (q->dma_drain_size && blk_rq_bytes(rq) &&
1843 !(rq->cmd_flags & REQ_DONTPREP)) {
1844 /*
1845 * remove the space for the drain we added
1846 * so that we don't add it again
1847 */
1848 --rq->nr_phys_segments;
1849 }
1850
1851 rq = NULL;
1852 break;
1853 } else if (ret == BLKPREP_KILL) {
1854 rq->cmd_flags |= REQ_QUIET;
1855 /*
1856 * Mark this request as started so we don't trigger
1857 * any debug logic in the end I/O path.
1858 */
1859 blk_start_request(rq);
1860 __blk_end_request_all(rq, -EIO);
1861 } else {
1862 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1863 break;
1864 }
1865 }
1866
1867 return rq;
1868 }
1869 EXPORT_SYMBOL(blk_peek_request);
1870
1871 void blk_dequeue_request(struct request *rq)
1872 {
1873 struct request_queue *q = rq->q;
1874
1875 BUG_ON(list_empty(&rq->queuelist));
1876 BUG_ON(ELV_ON_HASH(rq));
1877
1878 list_del_init(&rq->queuelist);
1879
1880 /*
1881 * the time frame between a request being removed from the lists
1882 * and to it is freed is accounted as io that is in progress at
1883 * the driver side.
1884 */
1885 if (blk_account_rq(rq)) {
1886 q->in_flight[rq_is_sync(rq)]++;
1887 set_io_start_time_ns(rq);
1888 }
1889 }
1890
1891 /**
1892 * blk_start_request - start request processing on the driver
1893 * @req: request to dequeue
1894 *
1895 * Description:
1896 * Dequeue @req and start timeout timer on it. This hands off the
1897 * request to the driver.
1898 *
1899 * Block internal functions which don't want to start timer should
1900 * call blk_dequeue_request().
1901 *
1902 * Context:
1903 * queue_lock must be held.
1904 */
1905 void blk_start_request(struct request *req)
1906 {
1907 blk_dequeue_request(req);
1908
1909 /*
1910 * We are now handing the request to the hardware, initialize
1911 * resid_len to full count and add the timeout handler.
1912 */
1913 req->resid_len = blk_rq_bytes(req);
1914 if (unlikely(blk_bidi_rq(req)))
1915 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1916
1917 blk_add_timer(req);
1918 }
1919 EXPORT_SYMBOL(blk_start_request);
1920
1921 /**
1922 * blk_fetch_request - fetch a request from a request queue
1923 * @q: request queue to fetch a request from
1924 *
1925 * Description:
1926 * Return the request at the top of @q. The request is started on
1927 * return and LLD can start processing it immediately.
1928 *
1929 * Return:
1930 * Pointer to the request at the top of @q if available. Null
1931 * otherwise.
1932 *
1933 * Context:
1934 * queue_lock must be held.
1935 */
1936 struct request *blk_fetch_request(struct request_queue *q)
1937 {
1938 struct request *rq;
1939
1940 rq = blk_peek_request(q);
1941 if (rq)
1942 blk_start_request(rq);
1943 return rq;
1944 }
1945 EXPORT_SYMBOL(blk_fetch_request);
1946
1947 /**
1948 * blk_update_request - Special helper function for request stacking drivers
1949 * @req: the request being processed
1950 * @error: %0 for success, < %0 for error
1951 * @nr_bytes: number of bytes to complete @req
1952 *
1953 * Description:
1954 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1955 * the request structure even if @req doesn't have leftover.
1956 * If @req has leftover, sets it up for the next range of segments.
1957 *
1958 * This special helper function is only for request stacking drivers
1959 * (e.g. request-based dm) so that they can handle partial completion.
1960 * Actual device drivers should use blk_end_request instead.
1961 *
1962 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1963 * %false return from this function.
1964 *
1965 * Return:
1966 * %false - this request doesn't have any more data
1967 * %true - this request has more data
1968 **/
1969 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1970 {
1971 int total_bytes, bio_nbytes, next_idx = 0;
1972 struct bio *bio;
1973
1974 if (!req->bio)
1975 return false;
1976
1977 trace_block_rq_complete(req->q, req);
1978
1979 /*
1980 * For fs requests, rq is just carrier of independent bio's
1981 * and each partial completion should be handled separately.
1982 * Reset per-request error on each partial completion.
1983 *
1984 * TODO: tj: This is too subtle. It would be better to let
1985 * low level drivers do what they see fit.
1986 */
1987 if (blk_fs_request(req))
1988 req->errors = 0;
1989
1990 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1991 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1992 req->rq_disk ? req->rq_disk->disk_name : "?",
1993 (unsigned long long)blk_rq_pos(req));
1994 }
1995
1996 blk_account_io_completion(req, nr_bytes);
1997
1998 total_bytes = bio_nbytes = 0;
1999 while ((bio = req->bio) != NULL) {
2000 int nbytes;
2001
2002 if (nr_bytes >= bio->bi_size) {
2003 req->bio = bio->bi_next;
2004 nbytes = bio->bi_size;
2005 req_bio_endio(req, bio, nbytes, error);
2006 next_idx = 0;
2007 bio_nbytes = 0;
2008 } else {
2009 int idx = bio->bi_idx + next_idx;
2010
2011 if (unlikely(idx >= bio->bi_vcnt)) {
2012 blk_dump_rq_flags(req, "__end_that");
2013 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2014 __func__, idx, bio->bi_vcnt);
2015 break;
2016 }
2017
2018 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2019 BIO_BUG_ON(nbytes > bio->bi_size);
2020
2021 /*
2022 * not a complete bvec done
2023 */
2024 if (unlikely(nbytes > nr_bytes)) {
2025 bio_nbytes += nr_bytes;
2026 total_bytes += nr_bytes;
2027 break;
2028 }
2029
2030 /*
2031 * advance to the next vector
2032 */
2033 next_idx++;
2034 bio_nbytes += nbytes;
2035 }
2036
2037 total_bytes += nbytes;
2038 nr_bytes -= nbytes;
2039
2040 bio = req->bio;
2041 if (bio) {
2042 /*
2043 * end more in this run, or just return 'not-done'
2044 */
2045 if (unlikely(nr_bytes <= 0))
2046 break;
2047 }
2048 }
2049
2050 /*
2051 * completely done
2052 */
2053 if (!req->bio) {
2054 /*
2055 * Reset counters so that the request stacking driver
2056 * can find how many bytes remain in the request
2057 * later.
2058 */
2059 req->__data_len = 0;
2060 return false;
2061 }
2062
2063 /*
2064 * if the request wasn't completed, update state
2065 */
2066 if (bio_nbytes) {
2067 req_bio_endio(req, bio, bio_nbytes, error);
2068 bio->bi_idx += next_idx;
2069 bio_iovec(bio)->bv_offset += nr_bytes;
2070 bio_iovec(bio)->bv_len -= nr_bytes;
2071 }
2072
2073 req->__data_len -= total_bytes;
2074 req->buffer = bio_data(req->bio);
2075
2076 /* update sector only for requests with clear definition of sector */
2077 if (blk_fs_request(req) || blk_discard_rq(req))
2078 req->__sector += total_bytes >> 9;
2079
2080 /* mixed attributes always follow the first bio */
2081 if (req->cmd_flags & REQ_MIXED_MERGE) {
2082 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2083 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2084 }
2085
2086 /*
2087 * If total number of sectors is less than the first segment
2088 * size, something has gone terribly wrong.
2089 */
2090 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2091 printk(KERN_ERR "blk: request botched\n");
2092 req->__data_len = blk_rq_cur_bytes(req);
2093 }
2094
2095 /* recalculate the number of segments */
2096 blk_recalc_rq_segments(req);
2097
2098 return true;
2099 }
2100 EXPORT_SYMBOL_GPL(blk_update_request);
2101
2102 static bool blk_update_bidi_request(struct request *rq, int error,
2103 unsigned int nr_bytes,
2104 unsigned int bidi_bytes)
2105 {
2106 if (blk_update_request(rq, error, nr_bytes))
2107 return true;
2108
2109 /* Bidi request must be completed as a whole */
2110 if (unlikely(blk_bidi_rq(rq)) &&
2111 blk_update_request(rq->next_rq, error, bidi_bytes))
2112 return true;
2113
2114 add_disk_randomness(rq->rq_disk);
2115
2116 return false;
2117 }
2118
2119 /*
2120 * queue lock must be held
2121 */
2122 static void blk_finish_request(struct request *req, int error)
2123 {
2124 if (blk_rq_tagged(req))
2125 blk_queue_end_tag(req->q, req);
2126
2127 BUG_ON(blk_queued_rq(req));
2128
2129 if (unlikely(laptop_mode) && blk_fs_request(req))
2130 laptop_io_completion(&req->q->backing_dev_info);
2131
2132 blk_delete_timer(req);
2133
2134 blk_account_io_done(req);
2135
2136 if (req->end_io)
2137 req->end_io(req, error);
2138 else {
2139 if (blk_bidi_rq(req))
2140 __blk_put_request(req->next_rq->q, req->next_rq);
2141
2142 __blk_put_request(req->q, req);
2143 }
2144 }
2145
2146 /**
2147 * blk_end_bidi_request - Complete a bidi request
2148 * @rq: the request to complete
2149 * @error: %0 for success, < %0 for error
2150 * @nr_bytes: number of bytes to complete @rq
2151 * @bidi_bytes: number of bytes to complete @rq->next_rq
2152 *
2153 * Description:
2154 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2155 * Drivers that supports bidi can safely call this member for any
2156 * type of request, bidi or uni. In the later case @bidi_bytes is
2157 * just ignored.
2158 *
2159 * Return:
2160 * %false - we are done with this request
2161 * %true - still buffers pending for this request
2162 **/
2163 static bool blk_end_bidi_request(struct request *rq, int error,
2164 unsigned int nr_bytes, unsigned int bidi_bytes)
2165 {
2166 struct request_queue *q = rq->q;
2167 unsigned long flags;
2168
2169 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2170 return true;
2171
2172 spin_lock_irqsave(q->queue_lock, flags);
2173 blk_finish_request(rq, error);
2174 spin_unlock_irqrestore(q->queue_lock, flags);
2175
2176 return false;
2177 }
2178
2179 /**
2180 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2181 * @rq: the request to complete
2182 * @error: %0 for success, < %0 for error
2183 * @nr_bytes: number of bytes to complete @rq
2184 * @bidi_bytes: number of bytes to complete @rq->next_rq
2185 *
2186 * Description:
2187 * Identical to blk_end_bidi_request() except that queue lock is
2188 * assumed to be locked on entry and remains so on return.
2189 *
2190 * Return:
2191 * %false - we are done with this request
2192 * %true - still buffers pending for this request
2193 **/
2194 static bool __blk_end_bidi_request(struct request *rq, int error,
2195 unsigned int nr_bytes, unsigned int bidi_bytes)
2196 {
2197 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2198 return true;
2199
2200 blk_finish_request(rq, error);
2201
2202 return false;
2203 }
2204
2205 /**
2206 * blk_end_request - Helper function for drivers to complete the request.
2207 * @rq: the request being processed
2208 * @error: %0 for success, < %0 for error
2209 * @nr_bytes: number of bytes to complete
2210 *
2211 * Description:
2212 * Ends I/O on a number of bytes attached to @rq.
2213 * If @rq has leftover, sets it up for the next range of segments.
2214 *
2215 * Return:
2216 * %false - we are done with this request
2217 * %true - still buffers pending for this request
2218 **/
2219 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2220 {
2221 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2222 }
2223 EXPORT_SYMBOL(blk_end_request);
2224
2225 /**
2226 * blk_end_request_all - Helper function for drives to finish the request.
2227 * @rq: the request to finish
2228 * @error: %0 for success, < %0 for error
2229 *
2230 * Description:
2231 * Completely finish @rq.
2232 */
2233 void blk_end_request_all(struct request *rq, int error)
2234 {
2235 bool pending;
2236 unsigned int bidi_bytes = 0;
2237
2238 if (unlikely(blk_bidi_rq(rq)))
2239 bidi_bytes = blk_rq_bytes(rq->next_rq);
2240
2241 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2242 BUG_ON(pending);
2243 }
2244 EXPORT_SYMBOL(blk_end_request_all);
2245
2246 /**
2247 * blk_end_request_cur - Helper function to finish the current request chunk.
2248 * @rq: the request to finish the current chunk for
2249 * @error: %0 for success, < %0 for error
2250 *
2251 * Description:
2252 * Complete the current consecutively mapped chunk from @rq.
2253 *
2254 * Return:
2255 * %false - we are done with this request
2256 * %true - still buffers pending for this request
2257 */
2258 bool blk_end_request_cur(struct request *rq, int error)
2259 {
2260 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2261 }
2262 EXPORT_SYMBOL(blk_end_request_cur);
2263
2264 /**
2265 * blk_end_request_err - Finish a request till the next failure boundary.
2266 * @rq: the request to finish till the next failure boundary for
2267 * @error: must be negative errno
2268 *
2269 * Description:
2270 * Complete @rq till the next failure boundary.
2271 *
2272 * Return:
2273 * %false - we are done with this request
2274 * %true - still buffers pending for this request
2275 */
2276 bool blk_end_request_err(struct request *rq, int error)
2277 {
2278 WARN_ON(error >= 0);
2279 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2280 }
2281 EXPORT_SYMBOL_GPL(blk_end_request_err);
2282
2283 /**
2284 * __blk_end_request - Helper function for drivers to complete the request.
2285 * @rq: the request being processed
2286 * @error: %0 for success, < %0 for error
2287 * @nr_bytes: number of bytes to complete
2288 *
2289 * Description:
2290 * Must be called with queue lock held unlike blk_end_request().
2291 *
2292 * Return:
2293 * %false - we are done with this request
2294 * %true - still buffers pending for this request
2295 **/
2296 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2297 {
2298 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2299 }
2300 EXPORT_SYMBOL(__blk_end_request);
2301
2302 /**
2303 * __blk_end_request_all - Helper function for drives to finish the request.
2304 * @rq: the request to finish
2305 * @error: %0 for success, < %0 for error
2306 *
2307 * Description:
2308 * Completely finish @rq. Must be called with queue lock held.
2309 */
2310 void __blk_end_request_all(struct request *rq, int error)
2311 {
2312 bool pending;
2313 unsigned int bidi_bytes = 0;
2314
2315 if (unlikely(blk_bidi_rq(rq)))
2316 bidi_bytes = blk_rq_bytes(rq->next_rq);
2317
2318 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2319 BUG_ON(pending);
2320 }
2321 EXPORT_SYMBOL(__blk_end_request_all);
2322
2323 /**
2324 * __blk_end_request_cur - Helper function to finish the current request chunk.
2325 * @rq: the request to finish the current chunk for
2326 * @error: %0 for success, < %0 for error
2327 *
2328 * Description:
2329 * Complete the current consecutively mapped chunk from @rq. Must
2330 * be called with queue lock held.
2331 *
2332 * Return:
2333 * %false - we are done with this request
2334 * %true - still buffers pending for this request
2335 */
2336 bool __blk_end_request_cur(struct request *rq, int error)
2337 {
2338 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2339 }
2340 EXPORT_SYMBOL(__blk_end_request_cur);
2341
2342 /**
2343 * __blk_end_request_err - Finish a request till the next failure boundary.
2344 * @rq: the request to finish till the next failure boundary for
2345 * @error: must be negative errno
2346 *
2347 * Description:
2348 * Complete @rq till the next failure boundary. Must be called
2349 * with queue lock held.
2350 *
2351 * Return:
2352 * %false - we are done with this request
2353 * %true - still buffers pending for this request
2354 */
2355 bool __blk_end_request_err(struct request *rq, int error)
2356 {
2357 WARN_ON(error >= 0);
2358 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2359 }
2360 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2361
2362 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2363 struct bio *bio)
2364 {
2365 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2366 rq->cmd_flags |= bio->bi_rw & REQ_RW;
2367
2368 if (bio_has_data(bio)) {
2369 rq->nr_phys_segments = bio_phys_segments(q, bio);
2370 rq->buffer = bio_data(bio);
2371 }
2372 rq->__data_len = bio->bi_size;
2373 rq->bio = rq->biotail = bio;
2374
2375 if (bio->bi_bdev)
2376 rq->rq_disk = bio->bi_bdev->bd_disk;
2377 }
2378
2379 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2380 /**
2381 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2382 * @rq: the request to be flushed
2383 *
2384 * Description:
2385 * Flush all pages in @rq.
2386 */
2387 void rq_flush_dcache_pages(struct request *rq)
2388 {
2389 struct req_iterator iter;
2390 struct bio_vec *bvec;
2391
2392 rq_for_each_segment(bvec, rq, iter)
2393 flush_dcache_page(bvec->bv_page);
2394 }
2395 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2396 #endif
2397
2398 /**
2399 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2400 * @q : the queue of the device being checked
2401 *
2402 * Description:
2403 * Check if underlying low-level drivers of a device are busy.
2404 * If the drivers want to export their busy state, they must set own
2405 * exporting function using blk_queue_lld_busy() first.
2406 *
2407 * Basically, this function is used only by request stacking drivers
2408 * to stop dispatching requests to underlying devices when underlying
2409 * devices are busy. This behavior helps more I/O merging on the queue
2410 * of the request stacking driver and prevents I/O throughput regression
2411 * on burst I/O load.
2412 *
2413 * Return:
2414 * 0 - Not busy (The request stacking driver should dispatch request)
2415 * 1 - Busy (The request stacking driver should stop dispatching request)
2416 */
2417 int blk_lld_busy(struct request_queue *q)
2418 {
2419 if (q->lld_busy_fn)
2420 return q->lld_busy_fn(q);
2421
2422 return 0;
2423 }
2424 EXPORT_SYMBOL_GPL(blk_lld_busy);
2425
2426 /**
2427 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2428 * @rq: the clone request to be cleaned up
2429 *
2430 * Description:
2431 * Free all bios in @rq for a cloned request.
2432 */
2433 void blk_rq_unprep_clone(struct request *rq)
2434 {
2435 struct bio *bio;
2436
2437 while ((bio = rq->bio) != NULL) {
2438 rq->bio = bio->bi_next;
2439
2440 bio_put(bio);
2441 }
2442 }
2443 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2444
2445 /*
2446 * Copy attributes of the original request to the clone request.
2447 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2448 */
2449 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2450 {
2451 dst->cpu = src->cpu;
2452 dst->cmd_flags = (rq_data_dir(src) | REQ_NOMERGE);
2453 dst->cmd_type = src->cmd_type;
2454 dst->__sector = blk_rq_pos(src);
2455 dst->__data_len = blk_rq_bytes(src);
2456 dst->nr_phys_segments = src->nr_phys_segments;
2457 dst->ioprio = src->ioprio;
2458 dst->extra_len = src->extra_len;
2459 }
2460
2461 /**
2462 * blk_rq_prep_clone - Helper function to setup clone request
2463 * @rq: the request to be setup
2464 * @rq_src: original request to be cloned
2465 * @bs: bio_set that bios for clone are allocated from
2466 * @gfp_mask: memory allocation mask for bio
2467 * @bio_ctr: setup function to be called for each clone bio.
2468 * Returns %0 for success, non %0 for failure.
2469 * @data: private data to be passed to @bio_ctr
2470 *
2471 * Description:
2472 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2473 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2474 * are not copied, and copying such parts is the caller's responsibility.
2475 * Also, pages which the original bios are pointing to are not copied
2476 * and the cloned bios just point same pages.
2477 * So cloned bios must be completed before original bios, which means
2478 * the caller must complete @rq before @rq_src.
2479 */
2480 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2481 struct bio_set *bs, gfp_t gfp_mask,
2482 int (*bio_ctr)(struct bio *, struct bio *, void *),
2483 void *data)
2484 {
2485 struct bio *bio, *bio_src;
2486
2487 if (!bs)
2488 bs = fs_bio_set;
2489
2490 blk_rq_init(NULL, rq);
2491
2492 __rq_for_each_bio(bio_src, rq_src) {
2493 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2494 if (!bio)
2495 goto free_and_out;
2496
2497 __bio_clone(bio, bio_src);
2498
2499 if (bio_integrity(bio_src) &&
2500 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2501 goto free_and_out;
2502
2503 if (bio_ctr && bio_ctr(bio, bio_src, data))
2504 goto free_and_out;
2505
2506 if (rq->bio) {
2507 rq->biotail->bi_next = bio;
2508 rq->biotail = bio;
2509 } else
2510 rq->bio = rq->biotail = bio;
2511 }
2512
2513 __blk_rq_prep_clone(rq, rq_src);
2514
2515 return 0;
2516
2517 free_and_out:
2518 if (bio)
2519 bio_free(bio, bs);
2520 blk_rq_unprep_clone(rq);
2521
2522 return -ENOMEM;
2523 }
2524 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2525
2526 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2527 {
2528 return queue_work(kblockd_workqueue, work);
2529 }
2530 EXPORT_SYMBOL(kblockd_schedule_work);
2531
2532 int __init blk_dev_init(void)
2533 {
2534 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2535 sizeof(((struct request *)0)->cmd_flags));
2536
2537 kblockd_workqueue = create_workqueue("kblockd");
2538 if (!kblockd_workqueue)
2539 panic("Failed to create kblockd\n");
2540
2541 request_cachep = kmem_cache_create("blkdev_requests",
2542 sizeof(struct request), 0, SLAB_PANIC, NULL);
2543
2544 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2545 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2546
2547 return 0;
2548 }
This page took 0.087888 seconds and 5 git commands to generate.