fe81e19099a13dbb1a4876f61f437886e2e85232
[deliverable/linux.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/block.h>
38
39 #include "blk.h"
40 #include "blk-cgroup.h"
41 #include "blk-mq.h"
42
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
47
48 DEFINE_IDA(blk_queue_ida);
49
50 /*
51 * For the allocated request tables
52 */
53 struct kmem_cache *request_cachep = NULL;
54
55 /*
56 * For queue allocation
57 */
58 struct kmem_cache *blk_requestq_cachep;
59
60 /*
61 * Controlling structure to kblockd
62 */
63 static struct workqueue_struct *kblockd_workqueue;
64
65 void blk_queue_congestion_threshold(struct request_queue *q)
66 {
67 int nr;
68
69 nr = q->nr_requests - (q->nr_requests / 8) + 1;
70 if (nr > q->nr_requests)
71 nr = q->nr_requests;
72 q->nr_congestion_on = nr;
73
74 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
75 if (nr < 1)
76 nr = 1;
77 q->nr_congestion_off = nr;
78 }
79
80 /**
81 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
82 * @bdev: device
83 *
84 * Locates the passed device's request queue and returns the address of its
85 * backing_dev_info
86 *
87 * Will return NULL if the request queue cannot be located.
88 */
89 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
90 {
91 struct backing_dev_info *ret = NULL;
92 struct request_queue *q = bdev_get_queue(bdev);
93
94 if (q)
95 ret = &q->backing_dev_info;
96 return ret;
97 }
98 EXPORT_SYMBOL(blk_get_backing_dev_info);
99
100 void blk_rq_init(struct request_queue *q, struct request *rq)
101 {
102 memset(rq, 0, sizeof(*rq));
103
104 INIT_LIST_HEAD(&rq->queuelist);
105 INIT_LIST_HEAD(&rq->timeout_list);
106 rq->cpu = -1;
107 rq->q = q;
108 rq->__sector = (sector_t) -1;
109 INIT_HLIST_NODE(&rq->hash);
110 RB_CLEAR_NODE(&rq->rb_node);
111 rq->cmd = rq->__cmd;
112 rq->cmd_len = BLK_MAX_CDB;
113 rq->tag = -1;
114 rq->start_time = jiffies;
115 set_start_time_ns(rq);
116 rq->part = NULL;
117 }
118 EXPORT_SYMBOL(blk_rq_init);
119
120 static void req_bio_endio(struct request *rq, struct bio *bio,
121 unsigned int nbytes, int error)
122 {
123 if (error)
124 clear_bit(BIO_UPTODATE, &bio->bi_flags);
125 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
126 error = -EIO;
127
128 if (unlikely(rq->cmd_flags & REQ_QUIET))
129 set_bit(BIO_QUIET, &bio->bi_flags);
130
131 bio_advance(bio, nbytes);
132
133 /* don't actually finish bio if it's part of flush sequence */
134 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
135 bio_endio(bio, error);
136 }
137
138 void blk_dump_rq_flags(struct request *rq, char *msg)
139 {
140 int bit;
141
142 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
143 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
144 (unsigned long long) rq->cmd_flags);
145
146 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
147 (unsigned long long)blk_rq_pos(rq),
148 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
149 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
150 rq->bio, rq->biotail, blk_rq_bytes(rq));
151
152 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
153 printk(KERN_INFO " cdb: ");
154 for (bit = 0; bit < BLK_MAX_CDB; bit++)
155 printk("%02x ", rq->cmd[bit]);
156 printk("\n");
157 }
158 }
159 EXPORT_SYMBOL(blk_dump_rq_flags);
160
161 static void blk_delay_work(struct work_struct *work)
162 {
163 struct request_queue *q;
164
165 q = container_of(work, struct request_queue, delay_work.work);
166 spin_lock_irq(q->queue_lock);
167 __blk_run_queue(q);
168 spin_unlock_irq(q->queue_lock);
169 }
170
171 /**
172 * blk_delay_queue - restart queueing after defined interval
173 * @q: The &struct request_queue in question
174 * @msecs: Delay in msecs
175 *
176 * Description:
177 * Sometimes queueing needs to be postponed for a little while, to allow
178 * resources to come back. This function will make sure that queueing is
179 * restarted around the specified time. Queue lock must be held.
180 */
181 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
182 {
183 if (likely(!blk_queue_dead(q)))
184 queue_delayed_work(kblockd_workqueue, &q->delay_work,
185 msecs_to_jiffies(msecs));
186 }
187 EXPORT_SYMBOL(blk_delay_queue);
188
189 /**
190 * blk_start_queue - restart a previously stopped queue
191 * @q: The &struct request_queue in question
192 *
193 * Description:
194 * blk_start_queue() will clear the stop flag on the queue, and call
195 * the request_fn for the queue if it was in a stopped state when
196 * entered. Also see blk_stop_queue(). Queue lock must be held.
197 **/
198 void blk_start_queue(struct request_queue *q)
199 {
200 WARN_ON(!irqs_disabled());
201
202 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
203 __blk_run_queue(q);
204 }
205 EXPORT_SYMBOL(blk_start_queue);
206
207 /**
208 * blk_stop_queue - stop a queue
209 * @q: The &struct request_queue in question
210 *
211 * Description:
212 * The Linux block layer assumes that a block driver will consume all
213 * entries on the request queue when the request_fn strategy is called.
214 * Often this will not happen, because of hardware limitations (queue
215 * depth settings). If a device driver gets a 'queue full' response,
216 * or if it simply chooses not to queue more I/O at one point, it can
217 * call this function to prevent the request_fn from being called until
218 * the driver has signalled it's ready to go again. This happens by calling
219 * blk_start_queue() to restart queue operations. Queue lock must be held.
220 **/
221 void blk_stop_queue(struct request_queue *q)
222 {
223 cancel_delayed_work(&q->delay_work);
224 queue_flag_set(QUEUE_FLAG_STOPPED, q);
225 }
226 EXPORT_SYMBOL(blk_stop_queue);
227
228 /**
229 * blk_sync_queue - cancel any pending callbacks on a queue
230 * @q: the queue
231 *
232 * Description:
233 * The block layer may perform asynchronous callback activity
234 * on a queue, such as calling the unplug function after a timeout.
235 * A block device may call blk_sync_queue to ensure that any
236 * such activity is cancelled, thus allowing it to release resources
237 * that the callbacks might use. The caller must already have made sure
238 * that its ->make_request_fn will not re-add plugging prior to calling
239 * this function.
240 *
241 * This function does not cancel any asynchronous activity arising
242 * out of elevator or throttling code. That would require elevaotor_exit()
243 * and blkcg_exit_queue() to be called with queue lock initialized.
244 *
245 */
246 void blk_sync_queue(struct request_queue *q)
247 {
248 del_timer_sync(&q->timeout);
249
250 if (q->mq_ops) {
251 struct blk_mq_hw_ctx *hctx;
252 int i;
253
254 queue_for_each_hw_ctx(q, hctx, i) {
255 cancel_delayed_work_sync(&hctx->run_work);
256 cancel_delayed_work_sync(&hctx->delay_work);
257 }
258 } else {
259 cancel_delayed_work_sync(&q->delay_work);
260 }
261 }
262 EXPORT_SYMBOL(blk_sync_queue);
263
264 /**
265 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
266 * @q: The queue to run
267 *
268 * Description:
269 * Invoke request handling on a queue if there are any pending requests.
270 * May be used to restart request handling after a request has completed.
271 * This variant runs the queue whether or not the queue has been
272 * stopped. Must be called with the queue lock held and interrupts
273 * disabled. See also @blk_run_queue.
274 */
275 inline void __blk_run_queue_uncond(struct request_queue *q)
276 {
277 if (unlikely(blk_queue_dead(q)))
278 return;
279
280 /*
281 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
282 * the queue lock internally. As a result multiple threads may be
283 * running such a request function concurrently. Keep track of the
284 * number of active request_fn invocations such that blk_drain_queue()
285 * can wait until all these request_fn calls have finished.
286 */
287 q->request_fn_active++;
288 q->request_fn(q);
289 q->request_fn_active--;
290 }
291
292 /**
293 * __blk_run_queue - run a single device queue
294 * @q: The queue to run
295 *
296 * Description:
297 * See @blk_run_queue. This variant must be called with the queue lock
298 * held and interrupts disabled.
299 */
300 void __blk_run_queue(struct request_queue *q)
301 {
302 if (unlikely(blk_queue_stopped(q)))
303 return;
304
305 __blk_run_queue_uncond(q);
306 }
307 EXPORT_SYMBOL(__blk_run_queue);
308
309 /**
310 * blk_run_queue_async - run a single device queue in workqueue context
311 * @q: The queue to run
312 *
313 * Description:
314 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
315 * of us. The caller must hold the queue lock.
316 */
317 void blk_run_queue_async(struct request_queue *q)
318 {
319 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
320 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
321 }
322 EXPORT_SYMBOL(blk_run_queue_async);
323
324 /**
325 * blk_run_queue - run a single device queue
326 * @q: The queue to run
327 *
328 * Description:
329 * Invoke request handling on this queue, if it has pending work to do.
330 * May be used to restart queueing when a request has completed.
331 */
332 void blk_run_queue(struct request_queue *q)
333 {
334 unsigned long flags;
335
336 spin_lock_irqsave(q->queue_lock, flags);
337 __blk_run_queue(q);
338 spin_unlock_irqrestore(q->queue_lock, flags);
339 }
340 EXPORT_SYMBOL(blk_run_queue);
341
342 void blk_put_queue(struct request_queue *q)
343 {
344 kobject_put(&q->kobj);
345 }
346 EXPORT_SYMBOL(blk_put_queue);
347
348 /**
349 * __blk_drain_queue - drain requests from request_queue
350 * @q: queue to drain
351 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
352 *
353 * Drain requests from @q. If @drain_all is set, all requests are drained.
354 * If not, only ELVPRIV requests are drained. The caller is responsible
355 * for ensuring that no new requests which need to be drained are queued.
356 */
357 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
358 __releases(q->queue_lock)
359 __acquires(q->queue_lock)
360 {
361 int i;
362
363 lockdep_assert_held(q->queue_lock);
364
365 while (true) {
366 bool drain = false;
367
368 /*
369 * The caller might be trying to drain @q before its
370 * elevator is initialized.
371 */
372 if (q->elevator)
373 elv_drain_elevator(q);
374
375 blkcg_drain_queue(q);
376
377 /*
378 * This function might be called on a queue which failed
379 * driver init after queue creation or is not yet fully
380 * active yet. Some drivers (e.g. fd and loop) get unhappy
381 * in such cases. Kick queue iff dispatch queue has
382 * something on it and @q has request_fn set.
383 */
384 if (!list_empty(&q->queue_head) && q->request_fn)
385 __blk_run_queue(q);
386
387 drain |= q->nr_rqs_elvpriv;
388 drain |= q->request_fn_active;
389
390 /*
391 * Unfortunately, requests are queued at and tracked from
392 * multiple places and there's no single counter which can
393 * be drained. Check all the queues and counters.
394 */
395 if (drain_all) {
396 drain |= !list_empty(&q->queue_head);
397 for (i = 0; i < 2; i++) {
398 drain |= q->nr_rqs[i];
399 drain |= q->in_flight[i];
400 drain |= !list_empty(&q->flush_queue[i]);
401 }
402 }
403
404 if (!drain)
405 break;
406
407 spin_unlock_irq(q->queue_lock);
408
409 msleep(10);
410
411 spin_lock_irq(q->queue_lock);
412 }
413
414 /*
415 * With queue marked dead, any woken up waiter will fail the
416 * allocation path, so the wakeup chaining is lost and we're
417 * left with hung waiters. We need to wake up those waiters.
418 */
419 if (q->request_fn) {
420 struct request_list *rl;
421
422 blk_queue_for_each_rl(rl, q)
423 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
424 wake_up_all(&rl->wait[i]);
425 }
426 }
427
428 /**
429 * blk_queue_bypass_start - enter queue bypass mode
430 * @q: queue of interest
431 *
432 * In bypass mode, only the dispatch FIFO queue of @q is used. This
433 * function makes @q enter bypass mode and drains all requests which were
434 * throttled or issued before. On return, it's guaranteed that no request
435 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
436 * inside queue or RCU read lock.
437 */
438 void blk_queue_bypass_start(struct request_queue *q)
439 {
440 bool drain;
441
442 spin_lock_irq(q->queue_lock);
443 drain = !q->bypass_depth++;
444 queue_flag_set(QUEUE_FLAG_BYPASS, q);
445 spin_unlock_irq(q->queue_lock);
446
447 if (drain) {
448 spin_lock_irq(q->queue_lock);
449 __blk_drain_queue(q, false);
450 spin_unlock_irq(q->queue_lock);
451
452 /* ensure blk_queue_bypass() is %true inside RCU read lock */
453 synchronize_rcu();
454 }
455 }
456 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
457
458 /**
459 * blk_queue_bypass_end - leave queue bypass mode
460 * @q: queue of interest
461 *
462 * Leave bypass mode and restore the normal queueing behavior.
463 */
464 void blk_queue_bypass_end(struct request_queue *q)
465 {
466 spin_lock_irq(q->queue_lock);
467 if (!--q->bypass_depth)
468 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
469 WARN_ON_ONCE(q->bypass_depth < 0);
470 spin_unlock_irq(q->queue_lock);
471 }
472 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
473
474 /**
475 * blk_cleanup_queue - shutdown a request queue
476 * @q: request queue to shutdown
477 *
478 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
479 * put it. All future requests will be failed immediately with -ENODEV.
480 */
481 void blk_cleanup_queue(struct request_queue *q)
482 {
483 spinlock_t *lock = q->queue_lock;
484
485 /* mark @q DYING, no new request or merges will be allowed afterwards */
486 mutex_lock(&q->sysfs_lock);
487 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
488 spin_lock_irq(lock);
489
490 /*
491 * A dying queue is permanently in bypass mode till released. Note
492 * that, unlike blk_queue_bypass_start(), we aren't performing
493 * synchronize_rcu() after entering bypass mode to avoid the delay
494 * as some drivers create and destroy a lot of queues while
495 * probing. This is still safe because blk_release_queue() will be
496 * called only after the queue refcnt drops to zero and nothing,
497 * RCU or not, would be traversing the queue by then.
498 */
499 q->bypass_depth++;
500 queue_flag_set(QUEUE_FLAG_BYPASS, q);
501
502 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
503 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
504 queue_flag_set(QUEUE_FLAG_DYING, q);
505 spin_unlock_irq(lock);
506 mutex_unlock(&q->sysfs_lock);
507
508 /*
509 * Drain all requests queued before DYING marking. Set DEAD flag to
510 * prevent that q->request_fn() gets invoked after draining finished.
511 */
512 if (q->mq_ops) {
513 blk_mq_drain_queue(q);
514 spin_lock_irq(lock);
515 } else {
516 spin_lock_irq(lock);
517 __blk_drain_queue(q, true);
518 }
519 queue_flag_set(QUEUE_FLAG_DEAD, q);
520 spin_unlock_irq(lock);
521
522 /* @q won't process any more request, flush async actions */
523 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
524 blk_sync_queue(q);
525
526 spin_lock_irq(lock);
527 if (q->queue_lock != &q->__queue_lock)
528 q->queue_lock = &q->__queue_lock;
529 spin_unlock_irq(lock);
530
531 /* @q is and will stay empty, shutdown and put */
532 blk_put_queue(q);
533 }
534 EXPORT_SYMBOL(blk_cleanup_queue);
535
536 int blk_init_rl(struct request_list *rl, struct request_queue *q,
537 gfp_t gfp_mask)
538 {
539 if (unlikely(rl->rq_pool))
540 return 0;
541
542 rl->q = q;
543 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
544 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
545 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
546 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
547
548 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
549 mempool_free_slab, request_cachep,
550 gfp_mask, q->node);
551 if (!rl->rq_pool)
552 return -ENOMEM;
553
554 return 0;
555 }
556
557 void blk_exit_rl(struct request_list *rl)
558 {
559 if (rl->rq_pool)
560 mempool_destroy(rl->rq_pool);
561 }
562
563 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
564 {
565 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
566 }
567 EXPORT_SYMBOL(blk_alloc_queue);
568
569 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
570 {
571 struct request_queue *q;
572 int err;
573
574 q = kmem_cache_alloc_node(blk_requestq_cachep,
575 gfp_mask | __GFP_ZERO, node_id);
576 if (!q)
577 return NULL;
578
579 if (percpu_counter_init(&q->mq_usage_counter, 0))
580 goto fail_q;
581
582 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
583 if (q->id < 0)
584 goto fail_c;
585
586 q->backing_dev_info.ra_pages =
587 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
588 q->backing_dev_info.state = 0;
589 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
590 q->backing_dev_info.name = "block";
591 q->node = node_id;
592
593 err = bdi_init(&q->backing_dev_info);
594 if (err)
595 goto fail_id;
596
597 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
598 laptop_mode_timer_fn, (unsigned long) q);
599 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
600 INIT_LIST_HEAD(&q->queue_head);
601 INIT_LIST_HEAD(&q->timeout_list);
602 INIT_LIST_HEAD(&q->icq_list);
603 #ifdef CONFIG_BLK_CGROUP
604 INIT_LIST_HEAD(&q->blkg_list);
605 #endif
606 INIT_LIST_HEAD(&q->flush_queue[0]);
607 INIT_LIST_HEAD(&q->flush_queue[1]);
608 INIT_LIST_HEAD(&q->flush_data_in_flight);
609 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
610
611 kobject_init(&q->kobj, &blk_queue_ktype);
612
613 mutex_init(&q->sysfs_lock);
614 spin_lock_init(&q->__queue_lock);
615
616 /*
617 * By default initialize queue_lock to internal lock and driver can
618 * override it later if need be.
619 */
620 q->queue_lock = &q->__queue_lock;
621
622 /*
623 * A queue starts its life with bypass turned on to avoid
624 * unnecessary bypass on/off overhead and nasty surprises during
625 * init. The initial bypass will be finished when the queue is
626 * registered by blk_register_queue().
627 */
628 q->bypass_depth = 1;
629 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
630
631 init_waitqueue_head(&q->mq_freeze_wq);
632
633 if (blkcg_init_queue(q))
634 goto fail_bdi;
635
636 return q;
637
638 fail_bdi:
639 bdi_destroy(&q->backing_dev_info);
640 fail_id:
641 ida_simple_remove(&blk_queue_ida, q->id);
642 fail_c:
643 percpu_counter_destroy(&q->mq_usage_counter);
644 fail_q:
645 kmem_cache_free(blk_requestq_cachep, q);
646 return NULL;
647 }
648 EXPORT_SYMBOL(blk_alloc_queue_node);
649
650 /**
651 * blk_init_queue - prepare a request queue for use with a block device
652 * @rfn: The function to be called to process requests that have been
653 * placed on the queue.
654 * @lock: Request queue spin lock
655 *
656 * Description:
657 * If a block device wishes to use the standard request handling procedures,
658 * which sorts requests and coalesces adjacent requests, then it must
659 * call blk_init_queue(). The function @rfn will be called when there
660 * are requests on the queue that need to be processed. If the device
661 * supports plugging, then @rfn may not be called immediately when requests
662 * are available on the queue, but may be called at some time later instead.
663 * Plugged queues are generally unplugged when a buffer belonging to one
664 * of the requests on the queue is needed, or due to memory pressure.
665 *
666 * @rfn is not required, or even expected, to remove all requests off the
667 * queue, but only as many as it can handle at a time. If it does leave
668 * requests on the queue, it is responsible for arranging that the requests
669 * get dealt with eventually.
670 *
671 * The queue spin lock must be held while manipulating the requests on the
672 * request queue; this lock will be taken also from interrupt context, so irq
673 * disabling is needed for it.
674 *
675 * Function returns a pointer to the initialized request queue, or %NULL if
676 * it didn't succeed.
677 *
678 * Note:
679 * blk_init_queue() must be paired with a blk_cleanup_queue() call
680 * when the block device is deactivated (such as at module unload).
681 **/
682
683 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
684 {
685 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
686 }
687 EXPORT_SYMBOL(blk_init_queue);
688
689 struct request_queue *
690 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
691 {
692 struct request_queue *uninit_q, *q;
693
694 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
695 if (!uninit_q)
696 return NULL;
697
698 q = blk_init_allocated_queue(uninit_q, rfn, lock);
699 if (!q)
700 blk_cleanup_queue(uninit_q);
701
702 return q;
703 }
704 EXPORT_SYMBOL(blk_init_queue_node);
705
706 struct request_queue *
707 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
708 spinlock_t *lock)
709 {
710 if (!q)
711 return NULL;
712
713 q->flush_rq = kzalloc(sizeof(struct request), GFP_KERNEL);
714 if (!q->flush_rq)
715 return NULL;
716
717 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
718 goto fail;
719
720 q->request_fn = rfn;
721 q->prep_rq_fn = NULL;
722 q->unprep_rq_fn = NULL;
723 q->queue_flags |= QUEUE_FLAG_DEFAULT;
724
725 /* Override internal queue lock with supplied lock pointer */
726 if (lock)
727 q->queue_lock = lock;
728
729 /*
730 * This also sets hw/phys segments, boundary and size
731 */
732 blk_queue_make_request(q, blk_queue_bio);
733
734 q->sg_reserved_size = INT_MAX;
735
736 /* Protect q->elevator from elevator_change */
737 mutex_lock(&q->sysfs_lock);
738
739 /* init elevator */
740 if (elevator_init(q, NULL)) {
741 mutex_unlock(&q->sysfs_lock);
742 goto fail;
743 }
744
745 mutex_unlock(&q->sysfs_lock);
746
747 return q;
748
749 fail:
750 kfree(q->flush_rq);
751 return NULL;
752 }
753 EXPORT_SYMBOL(blk_init_allocated_queue);
754
755 bool blk_get_queue(struct request_queue *q)
756 {
757 if (likely(!blk_queue_dying(q))) {
758 __blk_get_queue(q);
759 return true;
760 }
761
762 return false;
763 }
764 EXPORT_SYMBOL(blk_get_queue);
765
766 static inline void blk_free_request(struct request_list *rl, struct request *rq)
767 {
768 if (rq->cmd_flags & REQ_ELVPRIV) {
769 elv_put_request(rl->q, rq);
770 if (rq->elv.icq)
771 put_io_context(rq->elv.icq->ioc);
772 }
773
774 mempool_free(rq, rl->rq_pool);
775 }
776
777 /*
778 * ioc_batching returns true if the ioc is a valid batching request and
779 * should be given priority access to a request.
780 */
781 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
782 {
783 if (!ioc)
784 return 0;
785
786 /*
787 * Make sure the process is able to allocate at least 1 request
788 * even if the batch times out, otherwise we could theoretically
789 * lose wakeups.
790 */
791 return ioc->nr_batch_requests == q->nr_batching ||
792 (ioc->nr_batch_requests > 0
793 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
794 }
795
796 /*
797 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
798 * will cause the process to be a "batcher" on all queues in the system. This
799 * is the behaviour we want though - once it gets a wakeup it should be given
800 * a nice run.
801 */
802 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
803 {
804 if (!ioc || ioc_batching(q, ioc))
805 return;
806
807 ioc->nr_batch_requests = q->nr_batching;
808 ioc->last_waited = jiffies;
809 }
810
811 static void __freed_request(struct request_list *rl, int sync)
812 {
813 struct request_queue *q = rl->q;
814
815 /*
816 * bdi isn't aware of blkcg yet. As all async IOs end up root
817 * blkcg anyway, just use root blkcg state.
818 */
819 if (rl == &q->root_rl &&
820 rl->count[sync] < queue_congestion_off_threshold(q))
821 blk_clear_queue_congested(q, sync);
822
823 if (rl->count[sync] + 1 <= q->nr_requests) {
824 if (waitqueue_active(&rl->wait[sync]))
825 wake_up(&rl->wait[sync]);
826
827 blk_clear_rl_full(rl, sync);
828 }
829 }
830
831 /*
832 * A request has just been released. Account for it, update the full and
833 * congestion status, wake up any waiters. Called under q->queue_lock.
834 */
835 static void freed_request(struct request_list *rl, unsigned int flags)
836 {
837 struct request_queue *q = rl->q;
838 int sync = rw_is_sync(flags);
839
840 q->nr_rqs[sync]--;
841 rl->count[sync]--;
842 if (flags & REQ_ELVPRIV)
843 q->nr_rqs_elvpriv--;
844
845 __freed_request(rl, sync);
846
847 if (unlikely(rl->starved[sync ^ 1]))
848 __freed_request(rl, sync ^ 1);
849 }
850
851 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
852 {
853 struct request_list *rl;
854
855 spin_lock_irq(q->queue_lock);
856 q->nr_requests = nr;
857 blk_queue_congestion_threshold(q);
858
859 /* congestion isn't cgroup aware and follows root blkcg for now */
860 rl = &q->root_rl;
861
862 if (rl->count[BLK_RW_SYNC] >= queue_congestion_on_threshold(q))
863 blk_set_queue_congested(q, BLK_RW_SYNC);
864 else if (rl->count[BLK_RW_SYNC] < queue_congestion_off_threshold(q))
865 blk_clear_queue_congested(q, BLK_RW_SYNC);
866
867 if (rl->count[BLK_RW_ASYNC] >= queue_congestion_on_threshold(q))
868 blk_set_queue_congested(q, BLK_RW_ASYNC);
869 else if (rl->count[BLK_RW_ASYNC] < queue_congestion_off_threshold(q))
870 blk_clear_queue_congested(q, BLK_RW_ASYNC);
871
872 blk_queue_for_each_rl(rl, q) {
873 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
874 blk_set_rl_full(rl, BLK_RW_SYNC);
875 } else {
876 blk_clear_rl_full(rl, BLK_RW_SYNC);
877 wake_up(&rl->wait[BLK_RW_SYNC]);
878 }
879
880 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
881 blk_set_rl_full(rl, BLK_RW_ASYNC);
882 } else {
883 blk_clear_rl_full(rl, BLK_RW_ASYNC);
884 wake_up(&rl->wait[BLK_RW_ASYNC]);
885 }
886 }
887
888 spin_unlock_irq(q->queue_lock);
889 return 0;
890 }
891
892 /*
893 * Determine if elevator data should be initialized when allocating the
894 * request associated with @bio.
895 */
896 static bool blk_rq_should_init_elevator(struct bio *bio)
897 {
898 if (!bio)
899 return true;
900
901 /*
902 * Flush requests do not use the elevator so skip initialization.
903 * This allows a request to share the flush and elevator data.
904 */
905 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
906 return false;
907
908 return true;
909 }
910
911 /**
912 * rq_ioc - determine io_context for request allocation
913 * @bio: request being allocated is for this bio (can be %NULL)
914 *
915 * Determine io_context to use for request allocation for @bio. May return
916 * %NULL if %current->io_context doesn't exist.
917 */
918 static struct io_context *rq_ioc(struct bio *bio)
919 {
920 #ifdef CONFIG_BLK_CGROUP
921 if (bio && bio->bi_ioc)
922 return bio->bi_ioc;
923 #endif
924 return current->io_context;
925 }
926
927 /**
928 * __get_request - get a free request
929 * @rl: request list to allocate from
930 * @rw_flags: RW and SYNC flags
931 * @bio: bio to allocate request for (can be %NULL)
932 * @gfp_mask: allocation mask
933 *
934 * Get a free request from @q. This function may fail under memory
935 * pressure or if @q is dead.
936 *
937 * Must be callled with @q->queue_lock held and,
938 * Returns %NULL on failure, with @q->queue_lock held.
939 * Returns !%NULL on success, with @q->queue_lock *not held*.
940 */
941 static struct request *__get_request(struct request_list *rl, int rw_flags,
942 struct bio *bio, gfp_t gfp_mask)
943 {
944 struct request_queue *q = rl->q;
945 struct request *rq;
946 struct elevator_type *et = q->elevator->type;
947 struct io_context *ioc = rq_ioc(bio);
948 struct io_cq *icq = NULL;
949 const bool is_sync = rw_is_sync(rw_flags) != 0;
950 int may_queue;
951
952 if (unlikely(blk_queue_dying(q)))
953 return NULL;
954
955 may_queue = elv_may_queue(q, rw_flags);
956 if (may_queue == ELV_MQUEUE_NO)
957 goto rq_starved;
958
959 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
960 if (rl->count[is_sync]+1 >= q->nr_requests) {
961 /*
962 * The queue will fill after this allocation, so set
963 * it as full, and mark this process as "batching".
964 * This process will be allowed to complete a batch of
965 * requests, others will be blocked.
966 */
967 if (!blk_rl_full(rl, is_sync)) {
968 ioc_set_batching(q, ioc);
969 blk_set_rl_full(rl, is_sync);
970 } else {
971 if (may_queue != ELV_MQUEUE_MUST
972 && !ioc_batching(q, ioc)) {
973 /*
974 * The queue is full and the allocating
975 * process is not a "batcher", and not
976 * exempted by the IO scheduler
977 */
978 return NULL;
979 }
980 }
981 }
982 /*
983 * bdi isn't aware of blkcg yet. As all async IOs end up
984 * root blkcg anyway, just use root blkcg state.
985 */
986 if (rl == &q->root_rl)
987 blk_set_queue_congested(q, is_sync);
988 }
989
990 /*
991 * Only allow batching queuers to allocate up to 50% over the defined
992 * limit of requests, otherwise we could have thousands of requests
993 * allocated with any setting of ->nr_requests
994 */
995 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
996 return NULL;
997
998 q->nr_rqs[is_sync]++;
999 rl->count[is_sync]++;
1000 rl->starved[is_sync] = 0;
1001
1002 /*
1003 * Decide whether the new request will be managed by elevator. If
1004 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1005 * prevent the current elevator from being destroyed until the new
1006 * request is freed. This guarantees icq's won't be destroyed and
1007 * makes creating new ones safe.
1008 *
1009 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1010 * it will be created after releasing queue_lock.
1011 */
1012 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1013 rw_flags |= REQ_ELVPRIV;
1014 q->nr_rqs_elvpriv++;
1015 if (et->icq_cache && ioc)
1016 icq = ioc_lookup_icq(ioc, q);
1017 }
1018
1019 if (blk_queue_io_stat(q))
1020 rw_flags |= REQ_IO_STAT;
1021 spin_unlock_irq(q->queue_lock);
1022
1023 /* allocate and init request */
1024 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1025 if (!rq)
1026 goto fail_alloc;
1027
1028 blk_rq_init(q, rq);
1029 blk_rq_set_rl(rq, rl);
1030 rq->cmd_flags = rw_flags | REQ_ALLOCED;
1031
1032 /* init elvpriv */
1033 if (rw_flags & REQ_ELVPRIV) {
1034 if (unlikely(et->icq_cache && !icq)) {
1035 if (ioc)
1036 icq = ioc_create_icq(ioc, q, gfp_mask);
1037 if (!icq)
1038 goto fail_elvpriv;
1039 }
1040
1041 rq->elv.icq = icq;
1042 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1043 goto fail_elvpriv;
1044
1045 /* @rq->elv.icq holds io_context until @rq is freed */
1046 if (icq)
1047 get_io_context(icq->ioc);
1048 }
1049 out:
1050 /*
1051 * ioc may be NULL here, and ioc_batching will be false. That's
1052 * OK, if the queue is under the request limit then requests need
1053 * not count toward the nr_batch_requests limit. There will always
1054 * be some limit enforced by BLK_BATCH_TIME.
1055 */
1056 if (ioc_batching(q, ioc))
1057 ioc->nr_batch_requests--;
1058
1059 trace_block_getrq(q, bio, rw_flags & 1);
1060 return rq;
1061
1062 fail_elvpriv:
1063 /*
1064 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1065 * and may fail indefinitely under memory pressure and thus
1066 * shouldn't stall IO. Treat this request as !elvpriv. This will
1067 * disturb iosched and blkcg but weird is bettern than dead.
1068 */
1069 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1070 dev_name(q->backing_dev_info.dev));
1071
1072 rq->cmd_flags &= ~REQ_ELVPRIV;
1073 rq->elv.icq = NULL;
1074
1075 spin_lock_irq(q->queue_lock);
1076 q->nr_rqs_elvpriv--;
1077 spin_unlock_irq(q->queue_lock);
1078 goto out;
1079
1080 fail_alloc:
1081 /*
1082 * Allocation failed presumably due to memory. Undo anything we
1083 * might have messed up.
1084 *
1085 * Allocating task should really be put onto the front of the wait
1086 * queue, but this is pretty rare.
1087 */
1088 spin_lock_irq(q->queue_lock);
1089 freed_request(rl, rw_flags);
1090
1091 /*
1092 * in the very unlikely event that allocation failed and no
1093 * requests for this direction was pending, mark us starved so that
1094 * freeing of a request in the other direction will notice
1095 * us. another possible fix would be to split the rq mempool into
1096 * READ and WRITE
1097 */
1098 rq_starved:
1099 if (unlikely(rl->count[is_sync] == 0))
1100 rl->starved[is_sync] = 1;
1101 return NULL;
1102 }
1103
1104 /**
1105 * get_request - get a free request
1106 * @q: request_queue to allocate request from
1107 * @rw_flags: RW and SYNC flags
1108 * @bio: bio to allocate request for (can be %NULL)
1109 * @gfp_mask: allocation mask
1110 *
1111 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1112 * function keeps retrying under memory pressure and fails iff @q is dead.
1113 *
1114 * Must be callled with @q->queue_lock held and,
1115 * Returns %NULL on failure, with @q->queue_lock held.
1116 * Returns !%NULL on success, with @q->queue_lock *not held*.
1117 */
1118 static struct request *get_request(struct request_queue *q, int rw_flags,
1119 struct bio *bio, gfp_t gfp_mask)
1120 {
1121 const bool is_sync = rw_is_sync(rw_flags) != 0;
1122 DEFINE_WAIT(wait);
1123 struct request_list *rl;
1124 struct request *rq;
1125
1126 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1127 retry:
1128 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1129 if (rq)
1130 return rq;
1131
1132 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1133 blk_put_rl(rl);
1134 return NULL;
1135 }
1136
1137 /* wait on @rl and retry */
1138 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1139 TASK_UNINTERRUPTIBLE);
1140
1141 trace_block_sleeprq(q, bio, rw_flags & 1);
1142
1143 spin_unlock_irq(q->queue_lock);
1144 io_schedule();
1145
1146 /*
1147 * After sleeping, we become a "batching" process and will be able
1148 * to allocate at least one request, and up to a big batch of them
1149 * for a small period time. See ioc_batching, ioc_set_batching
1150 */
1151 ioc_set_batching(q, current->io_context);
1152
1153 spin_lock_irq(q->queue_lock);
1154 finish_wait(&rl->wait[is_sync], &wait);
1155
1156 goto retry;
1157 }
1158
1159 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1160 gfp_t gfp_mask)
1161 {
1162 struct request *rq;
1163
1164 BUG_ON(rw != READ && rw != WRITE);
1165
1166 /* create ioc upfront */
1167 create_io_context(gfp_mask, q->node);
1168
1169 spin_lock_irq(q->queue_lock);
1170 rq = get_request(q, rw, NULL, gfp_mask);
1171 if (!rq)
1172 spin_unlock_irq(q->queue_lock);
1173 /* q->queue_lock is unlocked at this point */
1174
1175 return rq;
1176 }
1177
1178 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1179 {
1180 if (q->mq_ops)
1181 return blk_mq_alloc_request(q, rw, gfp_mask);
1182 else
1183 return blk_old_get_request(q, rw, gfp_mask);
1184 }
1185 EXPORT_SYMBOL(blk_get_request);
1186
1187 /**
1188 * blk_make_request - given a bio, allocate a corresponding struct request.
1189 * @q: target request queue
1190 * @bio: The bio describing the memory mappings that will be submitted for IO.
1191 * It may be a chained-bio properly constructed by block/bio layer.
1192 * @gfp_mask: gfp flags to be used for memory allocation
1193 *
1194 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1195 * type commands. Where the struct request needs to be farther initialized by
1196 * the caller. It is passed a &struct bio, which describes the memory info of
1197 * the I/O transfer.
1198 *
1199 * The caller of blk_make_request must make sure that bi_io_vec
1200 * are set to describe the memory buffers. That bio_data_dir() will return
1201 * the needed direction of the request. (And all bio's in the passed bio-chain
1202 * are properly set accordingly)
1203 *
1204 * If called under none-sleepable conditions, mapped bio buffers must not
1205 * need bouncing, by calling the appropriate masked or flagged allocator,
1206 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1207 * BUG.
1208 *
1209 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1210 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1211 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1212 * completion of a bio that hasn't been submitted yet, thus resulting in a
1213 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1214 * of bio_alloc(), as that avoids the mempool deadlock.
1215 * If possible a big IO should be split into smaller parts when allocation
1216 * fails. Partial allocation should not be an error, or you risk a live-lock.
1217 */
1218 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1219 gfp_t gfp_mask)
1220 {
1221 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1222
1223 if (unlikely(!rq))
1224 return ERR_PTR(-ENOMEM);
1225
1226 for_each_bio(bio) {
1227 struct bio *bounce_bio = bio;
1228 int ret;
1229
1230 blk_queue_bounce(q, &bounce_bio);
1231 ret = blk_rq_append_bio(q, rq, bounce_bio);
1232 if (unlikely(ret)) {
1233 blk_put_request(rq);
1234 return ERR_PTR(ret);
1235 }
1236 }
1237
1238 return rq;
1239 }
1240 EXPORT_SYMBOL(blk_make_request);
1241
1242 /**
1243 * blk_requeue_request - put a request back on queue
1244 * @q: request queue where request should be inserted
1245 * @rq: request to be inserted
1246 *
1247 * Description:
1248 * Drivers often keep queueing requests until the hardware cannot accept
1249 * more, when that condition happens we need to put the request back
1250 * on the queue. Must be called with queue lock held.
1251 */
1252 void blk_requeue_request(struct request_queue *q, struct request *rq)
1253 {
1254 blk_delete_timer(rq);
1255 blk_clear_rq_complete(rq);
1256 trace_block_rq_requeue(q, rq);
1257
1258 if (blk_rq_tagged(rq))
1259 blk_queue_end_tag(q, rq);
1260
1261 BUG_ON(blk_queued_rq(rq));
1262
1263 elv_requeue_request(q, rq);
1264 }
1265 EXPORT_SYMBOL(blk_requeue_request);
1266
1267 static void add_acct_request(struct request_queue *q, struct request *rq,
1268 int where)
1269 {
1270 blk_account_io_start(rq, true);
1271 __elv_add_request(q, rq, where);
1272 }
1273
1274 static void part_round_stats_single(int cpu, struct hd_struct *part,
1275 unsigned long now)
1276 {
1277 int inflight;
1278
1279 if (now == part->stamp)
1280 return;
1281
1282 inflight = part_in_flight(part);
1283 if (inflight) {
1284 __part_stat_add(cpu, part, time_in_queue,
1285 inflight * (now - part->stamp));
1286 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1287 }
1288 part->stamp = now;
1289 }
1290
1291 /**
1292 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1293 * @cpu: cpu number for stats access
1294 * @part: target partition
1295 *
1296 * The average IO queue length and utilisation statistics are maintained
1297 * by observing the current state of the queue length and the amount of
1298 * time it has been in this state for.
1299 *
1300 * Normally, that accounting is done on IO completion, but that can result
1301 * in more than a second's worth of IO being accounted for within any one
1302 * second, leading to >100% utilisation. To deal with that, we call this
1303 * function to do a round-off before returning the results when reading
1304 * /proc/diskstats. This accounts immediately for all queue usage up to
1305 * the current jiffies and restarts the counters again.
1306 */
1307 void part_round_stats(int cpu, struct hd_struct *part)
1308 {
1309 unsigned long now = jiffies;
1310
1311 if (part->partno)
1312 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1313 part_round_stats_single(cpu, part, now);
1314 }
1315 EXPORT_SYMBOL_GPL(part_round_stats);
1316
1317 #ifdef CONFIG_PM_RUNTIME
1318 static void blk_pm_put_request(struct request *rq)
1319 {
1320 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1321 pm_runtime_mark_last_busy(rq->q->dev);
1322 }
1323 #else
1324 static inline void blk_pm_put_request(struct request *rq) {}
1325 #endif
1326
1327 /*
1328 * queue lock must be held
1329 */
1330 void __blk_put_request(struct request_queue *q, struct request *req)
1331 {
1332 if (unlikely(!q))
1333 return;
1334
1335 if (q->mq_ops) {
1336 blk_mq_free_request(req);
1337 return;
1338 }
1339
1340 blk_pm_put_request(req);
1341
1342 elv_completed_request(q, req);
1343
1344 /* this is a bio leak */
1345 WARN_ON(req->bio != NULL);
1346
1347 /*
1348 * Request may not have originated from ll_rw_blk. if not,
1349 * it didn't come out of our reserved rq pools
1350 */
1351 if (req->cmd_flags & REQ_ALLOCED) {
1352 unsigned int flags = req->cmd_flags;
1353 struct request_list *rl = blk_rq_rl(req);
1354
1355 BUG_ON(!list_empty(&req->queuelist));
1356 BUG_ON(ELV_ON_HASH(req));
1357
1358 blk_free_request(rl, req);
1359 freed_request(rl, flags);
1360 blk_put_rl(rl);
1361 }
1362 }
1363 EXPORT_SYMBOL_GPL(__blk_put_request);
1364
1365 void blk_put_request(struct request *req)
1366 {
1367 struct request_queue *q = req->q;
1368
1369 if (q->mq_ops)
1370 blk_mq_free_request(req);
1371 else {
1372 unsigned long flags;
1373
1374 spin_lock_irqsave(q->queue_lock, flags);
1375 __blk_put_request(q, req);
1376 spin_unlock_irqrestore(q->queue_lock, flags);
1377 }
1378 }
1379 EXPORT_SYMBOL(blk_put_request);
1380
1381 /**
1382 * blk_add_request_payload - add a payload to a request
1383 * @rq: request to update
1384 * @page: page backing the payload
1385 * @len: length of the payload.
1386 *
1387 * This allows to later add a payload to an already submitted request by
1388 * a block driver. The driver needs to take care of freeing the payload
1389 * itself.
1390 *
1391 * Note that this is a quite horrible hack and nothing but handling of
1392 * discard requests should ever use it.
1393 */
1394 void blk_add_request_payload(struct request *rq, struct page *page,
1395 unsigned int len)
1396 {
1397 struct bio *bio = rq->bio;
1398
1399 bio->bi_io_vec->bv_page = page;
1400 bio->bi_io_vec->bv_offset = 0;
1401 bio->bi_io_vec->bv_len = len;
1402
1403 bio->bi_iter.bi_size = len;
1404 bio->bi_vcnt = 1;
1405 bio->bi_phys_segments = 1;
1406
1407 rq->__data_len = rq->resid_len = len;
1408 rq->nr_phys_segments = 1;
1409 }
1410 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1411
1412 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1413 struct bio *bio)
1414 {
1415 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1416
1417 if (!ll_back_merge_fn(q, req, bio))
1418 return false;
1419
1420 trace_block_bio_backmerge(q, req, bio);
1421
1422 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1423 blk_rq_set_mixed_merge(req);
1424
1425 req->biotail->bi_next = bio;
1426 req->biotail = bio;
1427 req->__data_len += bio->bi_iter.bi_size;
1428 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1429
1430 blk_account_io_start(req, false);
1431 return true;
1432 }
1433
1434 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1435 struct bio *bio)
1436 {
1437 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1438
1439 if (!ll_front_merge_fn(q, req, bio))
1440 return false;
1441
1442 trace_block_bio_frontmerge(q, req, bio);
1443
1444 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1445 blk_rq_set_mixed_merge(req);
1446
1447 bio->bi_next = req->bio;
1448 req->bio = bio;
1449
1450 req->__sector = bio->bi_iter.bi_sector;
1451 req->__data_len += bio->bi_iter.bi_size;
1452 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1453
1454 blk_account_io_start(req, false);
1455 return true;
1456 }
1457
1458 /**
1459 * blk_attempt_plug_merge - try to merge with %current's plugged list
1460 * @q: request_queue new bio is being queued at
1461 * @bio: new bio being queued
1462 * @request_count: out parameter for number of traversed plugged requests
1463 *
1464 * Determine whether @bio being queued on @q can be merged with a request
1465 * on %current's plugged list. Returns %true if merge was successful,
1466 * otherwise %false.
1467 *
1468 * Plugging coalesces IOs from the same issuer for the same purpose without
1469 * going through @q->queue_lock. As such it's more of an issuing mechanism
1470 * than scheduling, and the request, while may have elvpriv data, is not
1471 * added on the elevator at this point. In addition, we don't have
1472 * reliable access to the elevator outside queue lock. Only check basic
1473 * merging parameters without querying the elevator.
1474 */
1475 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1476 unsigned int *request_count)
1477 {
1478 struct blk_plug *plug;
1479 struct request *rq;
1480 bool ret = false;
1481 struct list_head *plug_list;
1482
1483 if (blk_queue_nomerges(q))
1484 goto out;
1485
1486 plug = current->plug;
1487 if (!plug)
1488 goto out;
1489 *request_count = 0;
1490
1491 if (q->mq_ops)
1492 plug_list = &plug->mq_list;
1493 else
1494 plug_list = &plug->list;
1495
1496 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1497 int el_ret;
1498
1499 if (rq->q == q)
1500 (*request_count)++;
1501
1502 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1503 continue;
1504
1505 el_ret = blk_try_merge(rq, bio);
1506 if (el_ret == ELEVATOR_BACK_MERGE) {
1507 ret = bio_attempt_back_merge(q, rq, bio);
1508 if (ret)
1509 break;
1510 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1511 ret = bio_attempt_front_merge(q, rq, bio);
1512 if (ret)
1513 break;
1514 }
1515 }
1516 out:
1517 return ret;
1518 }
1519
1520 void init_request_from_bio(struct request *req, struct bio *bio)
1521 {
1522 req->cmd_type = REQ_TYPE_FS;
1523
1524 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1525 if (bio->bi_rw & REQ_RAHEAD)
1526 req->cmd_flags |= REQ_FAILFAST_MASK;
1527
1528 req->errors = 0;
1529 req->__sector = bio->bi_iter.bi_sector;
1530 req->ioprio = bio_prio(bio);
1531 blk_rq_bio_prep(req->q, req, bio);
1532 }
1533
1534 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1535 {
1536 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1537 struct blk_plug *plug;
1538 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1539 struct request *req;
1540 unsigned int request_count = 0;
1541
1542 /*
1543 * low level driver can indicate that it wants pages above a
1544 * certain limit bounced to low memory (ie for highmem, or even
1545 * ISA dma in theory)
1546 */
1547 blk_queue_bounce(q, &bio);
1548
1549 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1550 bio_endio(bio, -EIO);
1551 return;
1552 }
1553
1554 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1555 spin_lock_irq(q->queue_lock);
1556 where = ELEVATOR_INSERT_FLUSH;
1557 goto get_rq;
1558 }
1559
1560 /*
1561 * Check if we can merge with the plugged list before grabbing
1562 * any locks.
1563 */
1564 if (blk_attempt_plug_merge(q, bio, &request_count))
1565 return;
1566
1567 spin_lock_irq(q->queue_lock);
1568
1569 el_ret = elv_merge(q, &req, bio);
1570 if (el_ret == ELEVATOR_BACK_MERGE) {
1571 if (bio_attempt_back_merge(q, req, bio)) {
1572 elv_bio_merged(q, req, bio);
1573 if (!attempt_back_merge(q, req))
1574 elv_merged_request(q, req, el_ret);
1575 goto out_unlock;
1576 }
1577 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1578 if (bio_attempt_front_merge(q, req, bio)) {
1579 elv_bio_merged(q, req, bio);
1580 if (!attempt_front_merge(q, req))
1581 elv_merged_request(q, req, el_ret);
1582 goto out_unlock;
1583 }
1584 }
1585
1586 get_rq:
1587 /*
1588 * This sync check and mask will be re-done in init_request_from_bio(),
1589 * but we need to set it earlier to expose the sync flag to the
1590 * rq allocator and io schedulers.
1591 */
1592 rw_flags = bio_data_dir(bio);
1593 if (sync)
1594 rw_flags |= REQ_SYNC;
1595
1596 /*
1597 * Grab a free request. This is might sleep but can not fail.
1598 * Returns with the queue unlocked.
1599 */
1600 req = get_request(q, rw_flags, bio, GFP_NOIO);
1601 if (unlikely(!req)) {
1602 bio_endio(bio, -ENODEV); /* @q is dead */
1603 goto out_unlock;
1604 }
1605
1606 /*
1607 * After dropping the lock and possibly sleeping here, our request
1608 * may now be mergeable after it had proven unmergeable (above).
1609 * We don't worry about that case for efficiency. It won't happen
1610 * often, and the elevators are able to handle it.
1611 */
1612 init_request_from_bio(req, bio);
1613
1614 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1615 req->cpu = raw_smp_processor_id();
1616
1617 plug = current->plug;
1618 if (plug) {
1619 /*
1620 * If this is the first request added after a plug, fire
1621 * of a plug trace.
1622 */
1623 if (!request_count)
1624 trace_block_plug(q);
1625 else {
1626 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1627 blk_flush_plug_list(plug, false);
1628 trace_block_plug(q);
1629 }
1630 }
1631 list_add_tail(&req->queuelist, &plug->list);
1632 blk_account_io_start(req, true);
1633 } else {
1634 spin_lock_irq(q->queue_lock);
1635 add_acct_request(q, req, where);
1636 __blk_run_queue(q);
1637 out_unlock:
1638 spin_unlock_irq(q->queue_lock);
1639 }
1640 }
1641 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1642
1643 /*
1644 * If bio->bi_dev is a partition, remap the location
1645 */
1646 static inline void blk_partition_remap(struct bio *bio)
1647 {
1648 struct block_device *bdev = bio->bi_bdev;
1649
1650 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1651 struct hd_struct *p = bdev->bd_part;
1652
1653 bio->bi_iter.bi_sector += p->start_sect;
1654 bio->bi_bdev = bdev->bd_contains;
1655
1656 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1657 bdev->bd_dev,
1658 bio->bi_iter.bi_sector - p->start_sect);
1659 }
1660 }
1661
1662 static void handle_bad_sector(struct bio *bio)
1663 {
1664 char b[BDEVNAME_SIZE];
1665
1666 printk(KERN_INFO "attempt to access beyond end of device\n");
1667 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1668 bdevname(bio->bi_bdev, b),
1669 bio->bi_rw,
1670 (unsigned long long)bio_end_sector(bio),
1671 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1672
1673 set_bit(BIO_EOF, &bio->bi_flags);
1674 }
1675
1676 #ifdef CONFIG_FAIL_MAKE_REQUEST
1677
1678 static DECLARE_FAULT_ATTR(fail_make_request);
1679
1680 static int __init setup_fail_make_request(char *str)
1681 {
1682 return setup_fault_attr(&fail_make_request, str);
1683 }
1684 __setup("fail_make_request=", setup_fail_make_request);
1685
1686 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1687 {
1688 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1689 }
1690
1691 static int __init fail_make_request_debugfs(void)
1692 {
1693 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1694 NULL, &fail_make_request);
1695
1696 return PTR_ERR_OR_ZERO(dir);
1697 }
1698
1699 late_initcall(fail_make_request_debugfs);
1700
1701 #else /* CONFIG_FAIL_MAKE_REQUEST */
1702
1703 static inline bool should_fail_request(struct hd_struct *part,
1704 unsigned int bytes)
1705 {
1706 return false;
1707 }
1708
1709 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1710
1711 /*
1712 * Check whether this bio extends beyond the end of the device.
1713 */
1714 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1715 {
1716 sector_t maxsector;
1717
1718 if (!nr_sectors)
1719 return 0;
1720
1721 /* Test device or partition size, when known. */
1722 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1723 if (maxsector) {
1724 sector_t sector = bio->bi_iter.bi_sector;
1725
1726 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1727 /*
1728 * This may well happen - the kernel calls bread()
1729 * without checking the size of the device, e.g., when
1730 * mounting a device.
1731 */
1732 handle_bad_sector(bio);
1733 return 1;
1734 }
1735 }
1736
1737 return 0;
1738 }
1739
1740 static noinline_for_stack bool
1741 generic_make_request_checks(struct bio *bio)
1742 {
1743 struct request_queue *q;
1744 int nr_sectors = bio_sectors(bio);
1745 int err = -EIO;
1746 char b[BDEVNAME_SIZE];
1747 struct hd_struct *part;
1748
1749 might_sleep();
1750
1751 if (bio_check_eod(bio, nr_sectors))
1752 goto end_io;
1753
1754 q = bdev_get_queue(bio->bi_bdev);
1755 if (unlikely(!q)) {
1756 printk(KERN_ERR
1757 "generic_make_request: Trying to access "
1758 "nonexistent block-device %s (%Lu)\n",
1759 bdevname(bio->bi_bdev, b),
1760 (long long) bio->bi_iter.bi_sector);
1761 goto end_io;
1762 }
1763
1764 if (likely(bio_is_rw(bio) &&
1765 nr_sectors > queue_max_hw_sectors(q))) {
1766 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1767 bdevname(bio->bi_bdev, b),
1768 bio_sectors(bio),
1769 queue_max_hw_sectors(q));
1770 goto end_io;
1771 }
1772
1773 part = bio->bi_bdev->bd_part;
1774 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1775 should_fail_request(&part_to_disk(part)->part0,
1776 bio->bi_iter.bi_size))
1777 goto end_io;
1778
1779 /*
1780 * If this device has partitions, remap block n
1781 * of partition p to block n+start(p) of the disk.
1782 */
1783 blk_partition_remap(bio);
1784
1785 if (bio_check_eod(bio, nr_sectors))
1786 goto end_io;
1787
1788 /*
1789 * Filter flush bio's early so that make_request based
1790 * drivers without flush support don't have to worry
1791 * about them.
1792 */
1793 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1794 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1795 if (!nr_sectors) {
1796 err = 0;
1797 goto end_io;
1798 }
1799 }
1800
1801 if ((bio->bi_rw & REQ_DISCARD) &&
1802 (!blk_queue_discard(q) ||
1803 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1804 err = -EOPNOTSUPP;
1805 goto end_io;
1806 }
1807
1808 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1809 err = -EOPNOTSUPP;
1810 goto end_io;
1811 }
1812
1813 /*
1814 * Various block parts want %current->io_context and lazy ioc
1815 * allocation ends up trading a lot of pain for a small amount of
1816 * memory. Just allocate it upfront. This may fail and block
1817 * layer knows how to live with it.
1818 */
1819 create_io_context(GFP_ATOMIC, q->node);
1820
1821 if (blk_throtl_bio(q, bio))
1822 return false; /* throttled, will be resubmitted later */
1823
1824 trace_block_bio_queue(q, bio);
1825 return true;
1826
1827 end_io:
1828 bio_endio(bio, err);
1829 return false;
1830 }
1831
1832 /**
1833 * generic_make_request - hand a buffer to its device driver for I/O
1834 * @bio: The bio describing the location in memory and on the device.
1835 *
1836 * generic_make_request() is used to make I/O requests of block
1837 * devices. It is passed a &struct bio, which describes the I/O that needs
1838 * to be done.
1839 *
1840 * generic_make_request() does not return any status. The
1841 * success/failure status of the request, along with notification of
1842 * completion, is delivered asynchronously through the bio->bi_end_io
1843 * function described (one day) else where.
1844 *
1845 * The caller of generic_make_request must make sure that bi_io_vec
1846 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1847 * set to describe the device address, and the
1848 * bi_end_io and optionally bi_private are set to describe how
1849 * completion notification should be signaled.
1850 *
1851 * generic_make_request and the drivers it calls may use bi_next if this
1852 * bio happens to be merged with someone else, and may resubmit the bio to
1853 * a lower device by calling into generic_make_request recursively, which
1854 * means the bio should NOT be touched after the call to ->make_request_fn.
1855 */
1856 void generic_make_request(struct bio *bio)
1857 {
1858 struct bio_list bio_list_on_stack;
1859
1860 if (!generic_make_request_checks(bio))
1861 return;
1862
1863 /*
1864 * We only want one ->make_request_fn to be active at a time, else
1865 * stack usage with stacked devices could be a problem. So use
1866 * current->bio_list to keep a list of requests submited by a
1867 * make_request_fn function. current->bio_list is also used as a
1868 * flag to say if generic_make_request is currently active in this
1869 * task or not. If it is NULL, then no make_request is active. If
1870 * it is non-NULL, then a make_request is active, and new requests
1871 * should be added at the tail
1872 */
1873 if (current->bio_list) {
1874 bio_list_add(current->bio_list, bio);
1875 return;
1876 }
1877
1878 /* following loop may be a bit non-obvious, and so deserves some
1879 * explanation.
1880 * Before entering the loop, bio->bi_next is NULL (as all callers
1881 * ensure that) so we have a list with a single bio.
1882 * We pretend that we have just taken it off a longer list, so
1883 * we assign bio_list to a pointer to the bio_list_on_stack,
1884 * thus initialising the bio_list of new bios to be
1885 * added. ->make_request() may indeed add some more bios
1886 * through a recursive call to generic_make_request. If it
1887 * did, we find a non-NULL value in bio_list and re-enter the loop
1888 * from the top. In this case we really did just take the bio
1889 * of the top of the list (no pretending) and so remove it from
1890 * bio_list, and call into ->make_request() again.
1891 */
1892 BUG_ON(bio->bi_next);
1893 bio_list_init(&bio_list_on_stack);
1894 current->bio_list = &bio_list_on_stack;
1895 do {
1896 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1897
1898 q->make_request_fn(q, bio);
1899
1900 bio = bio_list_pop(current->bio_list);
1901 } while (bio);
1902 current->bio_list = NULL; /* deactivate */
1903 }
1904 EXPORT_SYMBOL(generic_make_request);
1905
1906 /**
1907 * submit_bio - submit a bio to the block device layer for I/O
1908 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1909 * @bio: The &struct bio which describes the I/O
1910 *
1911 * submit_bio() is very similar in purpose to generic_make_request(), and
1912 * uses that function to do most of the work. Both are fairly rough
1913 * interfaces; @bio must be presetup and ready for I/O.
1914 *
1915 */
1916 void submit_bio(int rw, struct bio *bio)
1917 {
1918 bio->bi_rw |= rw;
1919
1920 /*
1921 * If it's a regular read/write or a barrier with data attached,
1922 * go through the normal accounting stuff before submission.
1923 */
1924 if (bio_has_data(bio)) {
1925 unsigned int count;
1926
1927 if (unlikely(rw & REQ_WRITE_SAME))
1928 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1929 else
1930 count = bio_sectors(bio);
1931
1932 if (rw & WRITE) {
1933 count_vm_events(PGPGOUT, count);
1934 } else {
1935 task_io_account_read(bio->bi_iter.bi_size);
1936 count_vm_events(PGPGIN, count);
1937 }
1938
1939 if (unlikely(block_dump)) {
1940 char b[BDEVNAME_SIZE];
1941 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1942 current->comm, task_pid_nr(current),
1943 (rw & WRITE) ? "WRITE" : "READ",
1944 (unsigned long long)bio->bi_iter.bi_sector,
1945 bdevname(bio->bi_bdev, b),
1946 count);
1947 }
1948 }
1949
1950 generic_make_request(bio);
1951 }
1952 EXPORT_SYMBOL(submit_bio);
1953
1954 /**
1955 * blk_rq_check_limits - Helper function to check a request for the queue limit
1956 * @q: the queue
1957 * @rq: the request being checked
1958 *
1959 * Description:
1960 * @rq may have been made based on weaker limitations of upper-level queues
1961 * in request stacking drivers, and it may violate the limitation of @q.
1962 * Since the block layer and the underlying device driver trust @rq
1963 * after it is inserted to @q, it should be checked against @q before
1964 * the insertion using this generic function.
1965 *
1966 * This function should also be useful for request stacking drivers
1967 * in some cases below, so export this function.
1968 * Request stacking drivers like request-based dm may change the queue
1969 * limits while requests are in the queue (e.g. dm's table swapping).
1970 * Such request stacking drivers should check those requests against
1971 * the new queue limits again when they dispatch those requests,
1972 * although such checkings are also done against the old queue limits
1973 * when submitting requests.
1974 */
1975 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1976 {
1977 if (!rq_mergeable(rq))
1978 return 0;
1979
1980 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
1981 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1982 return -EIO;
1983 }
1984
1985 /*
1986 * queue's settings related to segment counting like q->bounce_pfn
1987 * may differ from that of other stacking queues.
1988 * Recalculate it to check the request correctly on this queue's
1989 * limitation.
1990 */
1991 blk_recalc_rq_segments(rq);
1992 if (rq->nr_phys_segments > queue_max_segments(q)) {
1993 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1994 return -EIO;
1995 }
1996
1997 return 0;
1998 }
1999 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
2000
2001 /**
2002 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2003 * @q: the queue to submit the request
2004 * @rq: the request being queued
2005 */
2006 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2007 {
2008 unsigned long flags;
2009 int where = ELEVATOR_INSERT_BACK;
2010
2011 if (blk_rq_check_limits(q, rq))
2012 return -EIO;
2013
2014 if (rq->rq_disk &&
2015 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2016 return -EIO;
2017
2018 spin_lock_irqsave(q->queue_lock, flags);
2019 if (unlikely(blk_queue_dying(q))) {
2020 spin_unlock_irqrestore(q->queue_lock, flags);
2021 return -ENODEV;
2022 }
2023
2024 /*
2025 * Submitting request must be dequeued before calling this function
2026 * because it will be linked to another request_queue
2027 */
2028 BUG_ON(blk_queued_rq(rq));
2029
2030 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2031 where = ELEVATOR_INSERT_FLUSH;
2032
2033 add_acct_request(q, rq, where);
2034 if (where == ELEVATOR_INSERT_FLUSH)
2035 __blk_run_queue(q);
2036 spin_unlock_irqrestore(q->queue_lock, flags);
2037
2038 return 0;
2039 }
2040 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2041
2042 /**
2043 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2044 * @rq: request to examine
2045 *
2046 * Description:
2047 * A request could be merge of IOs which require different failure
2048 * handling. This function determines the number of bytes which
2049 * can be failed from the beginning of the request without
2050 * crossing into area which need to be retried further.
2051 *
2052 * Return:
2053 * The number of bytes to fail.
2054 *
2055 * Context:
2056 * queue_lock must be held.
2057 */
2058 unsigned int blk_rq_err_bytes(const struct request *rq)
2059 {
2060 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2061 unsigned int bytes = 0;
2062 struct bio *bio;
2063
2064 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2065 return blk_rq_bytes(rq);
2066
2067 /*
2068 * Currently the only 'mixing' which can happen is between
2069 * different fastfail types. We can safely fail portions
2070 * which have all the failfast bits that the first one has -
2071 * the ones which are at least as eager to fail as the first
2072 * one.
2073 */
2074 for (bio = rq->bio; bio; bio = bio->bi_next) {
2075 if ((bio->bi_rw & ff) != ff)
2076 break;
2077 bytes += bio->bi_iter.bi_size;
2078 }
2079
2080 /* this could lead to infinite loop */
2081 BUG_ON(blk_rq_bytes(rq) && !bytes);
2082 return bytes;
2083 }
2084 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2085
2086 void blk_account_io_completion(struct request *req, unsigned int bytes)
2087 {
2088 if (blk_do_io_stat(req)) {
2089 const int rw = rq_data_dir(req);
2090 struct hd_struct *part;
2091 int cpu;
2092
2093 cpu = part_stat_lock();
2094 part = req->part;
2095 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2096 part_stat_unlock();
2097 }
2098 }
2099
2100 void blk_account_io_done(struct request *req)
2101 {
2102 /*
2103 * Account IO completion. flush_rq isn't accounted as a
2104 * normal IO on queueing nor completion. Accounting the
2105 * containing request is enough.
2106 */
2107 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2108 unsigned long duration = jiffies - req->start_time;
2109 const int rw = rq_data_dir(req);
2110 struct hd_struct *part;
2111 int cpu;
2112
2113 cpu = part_stat_lock();
2114 part = req->part;
2115
2116 part_stat_inc(cpu, part, ios[rw]);
2117 part_stat_add(cpu, part, ticks[rw], duration);
2118 part_round_stats(cpu, part);
2119 part_dec_in_flight(part, rw);
2120
2121 hd_struct_put(part);
2122 part_stat_unlock();
2123 }
2124 }
2125
2126 #ifdef CONFIG_PM_RUNTIME
2127 /*
2128 * Don't process normal requests when queue is suspended
2129 * or in the process of suspending/resuming
2130 */
2131 static struct request *blk_pm_peek_request(struct request_queue *q,
2132 struct request *rq)
2133 {
2134 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2135 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2136 return NULL;
2137 else
2138 return rq;
2139 }
2140 #else
2141 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2142 struct request *rq)
2143 {
2144 return rq;
2145 }
2146 #endif
2147
2148 void blk_account_io_start(struct request *rq, bool new_io)
2149 {
2150 struct hd_struct *part;
2151 int rw = rq_data_dir(rq);
2152 int cpu;
2153
2154 if (!blk_do_io_stat(rq))
2155 return;
2156
2157 cpu = part_stat_lock();
2158
2159 if (!new_io) {
2160 part = rq->part;
2161 part_stat_inc(cpu, part, merges[rw]);
2162 } else {
2163 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2164 if (!hd_struct_try_get(part)) {
2165 /*
2166 * The partition is already being removed,
2167 * the request will be accounted on the disk only
2168 *
2169 * We take a reference on disk->part0 although that
2170 * partition will never be deleted, so we can treat
2171 * it as any other partition.
2172 */
2173 part = &rq->rq_disk->part0;
2174 hd_struct_get(part);
2175 }
2176 part_round_stats(cpu, part);
2177 part_inc_in_flight(part, rw);
2178 rq->part = part;
2179 }
2180
2181 part_stat_unlock();
2182 }
2183
2184 /**
2185 * blk_peek_request - peek at the top of a request queue
2186 * @q: request queue to peek at
2187 *
2188 * Description:
2189 * Return the request at the top of @q. The returned request
2190 * should be started using blk_start_request() before LLD starts
2191 * processing it.
2192 *
2193 * Return:
2194 * Pointer to the request at the top of @q if available. Null
2195 * otherwise.
2196 *
2197 * Context:
2198 * queue_lock must be held.
2199 */
2200 struct request *blk_peek_request(struct request_queue *q)
2201 {
2202 struct request *rq;
2203 int ret;
2204
2205 while ((rq = __elv_next_request(q)) != NULL) {
2206
2207 rq = blk_pm_peek_request(q, rq);
2208 if (!rq)
2209 break;
2210
2211 if (!(rq->cmd_flags & REQ_STARTED)) {
2212 /*
2213 * This is the first time the device driver
2214 * sees this request (possibly after
2215 * requeueing). Notify IO scheduler.
2216 */
2217 if (rq->cmd_flags & REQ_SORTED)
2218 elv_activate_rq(q, rq);
2219
2220 /*
2221 * just mark as started even if we don't start
2222 * it, a request that has been delayed should
2223 * not be passed by new incoming requests
2224 */
2225 rq->cmd_flags |= REQ_STARTED;
2226 trace_block_rq_issue(q, rq);
2227 }
2228
2229 if (!q->boundary_rq || q->boundary_rq == rq) {
2230 q->end_sector = rq_end_sector(rq);
2231 q->boundary_rq = NULL;
2232 }
2233
2234 if (rq->cmd_flags & REQ_DONTPREP)
2235 break;
2236
2237 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2238 /*
2239 * make sure space for the drain appears we
2240 * know we can do this because max_hw_segments
2241 * has been adjusted to be one fewer than the
2242 * device can handle
2243 */
2244 rq->nr_phys_segments++;
2245 }
2246
2247 if (!q->prep_rq_fn)
2248 break;
2249
2250 ret = q->prep_rq_fn(q, rq);
2251 if (ret == BLKPREP_OK) {
2252 break;
2253 } else if (ret == BLKPREP_DEFER) {
2254 /*
2255 * the request may have been (partially) prepped.
2256 * we need to keep this request in the front to
2257 * avoid resource deadlock. REQ_STARTED will
2258 * prevent other fs requests from passing this one.
2259 */
2260 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2261 !(rq->cmd_flags & REQ_DONTPREP)) {
2262 /*
2263 * remove the space for the drain we added
2264 * so that we don't add it again
2265 */
2266 --rq->nr_phys_segments;
2267 }
2268
2269 rq = NULL;
2270 break;
2271 } else if (ret == BLKPREP_KILL) {
2272 rq->cmd_flags |= REQ_QUIET;
2273 /*
2274 * Mark this request as started so we don't trigger
2275 * any debug logic in the end I/O path.
2276 */
2277 blk_start_request(rq);
2278 __blk_end_request_all(rq, -EIO);
2279 } else {
2280 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2281 break;
2282 }
2283 }
2284
2285 return rq;
2286 }
2287 EXPORT_SYMBOL(blk_peek_request);
2288
2289 void blk_dequeue_request(struct request *rq)
2290 {
2291 struct request_queue *q = rq->q;
2292
2293 BUG_ON(list_empty(&rq->queuelist));
2294 BUG_ON(ELV_ON_HASH(rq));
2295
2296 list_del_init(&rq->queuelist);
2297
2298 /*
2299 * the time frame between a request being removed from the lists
2300 * and to it is freed is accounted as io that is in progress at
2301 * the driver side.
2302 */
2303 if (blk_account_rq(rq)) {
2304 q->in_flight[rq_is_sync(rq)]++;
2305 set_io_start_time_ns(rq);
2306 }
2307 }
2308
2309 /**
2310 * blk_start_request - start request processing on the driver
2311 * @req: request to dequeue
2312 *
2313 * Description:
2314 * Dequeue @req and start timeout timer on it. This hands off the
2315 * request to the driver.
2316 *
2317 * Block internal functions which don't want to start timer should
2318 * call blk_dequeue_request().
2319 *
2320 * Context:
2321 * queue_lock must be held.
2322 */
2323 void blk_start_request(struct request *req)
2324 {
2325 blk_dequeue_request(req);
2326
2327 /*
2328 * We are now handing the request to the hardware, initialize
2329 * resid_len to full count and add the timeout handler.
2330 */
2331 req->resid_len = blk_rq_bytes(req);
2332 if (unlikely(blk_bidi_rq(req)))
2333 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2334
2335 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2336 blk_add_timer(req);
2337 }
2338 EXPORT_SYMBOL(blk_start_request);
2339
2340 /**
2341 * blk_fetch_request - fetch a request from a request queue
2342 * @q: request queue to fetch a request from
2343 *
2344 * Description:
2345 * Return the request at the top of @q. The request is started on
2346 * return and LLD can start processing it immediately.
2347 *
2348 * Return:
2349 * Pointer to the request at the top of @q if available. Null
2350 * otherwise.
2351 *
2352 * Context:
2353 * queue_lock must be held.
2354 */
2355 struct request *blk_fetch_request(struct request_queue *q)
2356 {
2357 struct request *rq;
2358
2359 rq = blk_peek_request(q);
2360 if (rq)
2361 blk_start_request(rq);
2362 return rq;
2363 }
2364 EXPORT_SYMBOL(blk_fetch_request);
2365
2366 /**
2367 * blk_update_request - Special helper function for request stacking drivers
2368 * @req: the request being processed
2369 * @error: %0 for success, < %0 for error
2370 * @nr_bytes: number of bytes to complete @req
2371 *
2372 * Description:
2373 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2374 * the request structure even if @req doesn't have leftover.
2375 * If @req has leftover, sets it up for the next range of segments.
2376 *
2377 * This special helper function is only for request stacking drivers
2378 * (e.g. request-based dm) so that they can handle partial completion.
2379 * Actual device drivers should use blk_end_request instead.
2380 *
2381 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2382 * %false return from this function.
2383 *
2384 * Return:
2385 * %false - this request doesn't have any more data
2386 * %true - this request has more data
2387 **/
2388 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2389 {
2390 int total_bytes;
2391
2392 if (!req->bio)
2393 return false;
2394
2395 trace_block_rq_complete(req->q, req, nr_bytes);
2396
2397 /*
2398 * For fs requests, rq is just carrier of independent bio's
2399 * and each partial completion should be handled separately.
2400 * Reset per-request error on each partial completion.
2401 *
2402 * TODO: tj: This is too subtle. It would be better to let
2403 * low level drivers do what they see fit.
2404 */
2405 if (req->cmd_type == REQ_TYPE_FS)
2406 req->errors = 0;
2407
2408 if (error && req->cmd_type == REQ_TYPE_FS &&
2409 !(req->cmd_flags & REQ_QUIET)) {
2410 char *error_type;
2411
2412 switch (error) {
2413 case -ENOLINK:
2414 error_type = "recoverable transport";
2415 break;
2416 case -EREMOTEIO:
2417 error_type = "critical target";
2418 break;
2419 case -EBADE:
2420 error_type = "critical nexus";
2421 break;
2422 case -ETIMEDOUT:
2423 error_type = "timeout";
2424 break;
2425 case -ENOSPC:
2426 error_type = "critical space allocation";
2427 break;
2428 case -ENODATA:
2429 error_type = "critical medium";
2430 break;
2431 case -EIO:
2432 default:
2433 error_type = "I/O";
2434 break;
2435 }
2436 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2437 error_type, req->rq_disk ?
2438 req->rq_disk->disk_name : "?",
2439 (unsigned long long)blk_rq_pos(req));
2440
2441 }
2442
2443 blk_account_io_completion(req, nr_bytes);
2444
2445 total_bytes = 0;
2446 while (req->bio) {
2447 struct bio *bio = req->bio;
2448 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2449
2450 if (bio_bytes == bio->bi_iter.bi_size)
2451 req->bio = bio->bi_next;
2452
2453 req_bio_endio(req, bio, bio_bytes, error);
2454
2455 total_bytes += bio_bytes;
2456 nr_bytes -= bio_bytes;
2457
2458 if (!nr_bytes)
2459 break;
2460 }
2461
2462 /*
2463 * completely done
2464 */
2465 if (!req->bio) {
2466 /*
2467 * Reset counters so that the request stacking driver
2468 * can find how many bytes remain in the request
2469 * later.
2470 */
2471 req->__data_len = 0;
2472 return false;
2473 }
2474
2475 req->__data_len -= total_bytes;
2476
2477 /* update sector only for requests with clear definition of sector */
2478 if (req->cmd_type == REQ_TYPE_FS)
2479 req->__sector += total_bytes >> 9;
2480
2481 /* mixed attributes always follow the first bio */
2482 if (req->cmd_flags & REQ_MIXED_MERGE) {
2483 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2484 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2485 }
2486
2487 /*
2488 * If total number of sectors is less than the first segment
2489 * size, something has gone terribly wrong.
2490 */
2491 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2492 blk_dump_rq_flags(req, "request botched");
2493 req->__data_len = blk_rq_cur_bytes(req);
2494 }
2495
2496 /* recalculate the number of segments */
2497 blk_recalc_rq_segments(req);
2498
2499 return true;
2500 }
2501 EXPORT_SYMBOL_GPL(blk_update_request);
2502
2503 static bool blk_update_bidi_request(struct request *rq, int error,
2504 unsigned int nr_bytes,
2505 unsigned int bidi_bytes)
2506 {
2507 if (blk_update_request(rq, error, nr_bytes))
2508 return true;
2509
2510 /* Bidi request must be completed as a whole */
2511 if (unlikely(blk_bidi_rq(rq)) &&
2512 blk_update_request(rq->next_rq, error, bidi_bytes))
2513 return true;
2514
2515 if (blk_queue_add_random(rq->q))
2516 add_disk_randomness(rq->rq_disk);
2517
2518 return false;
2519 }
2520
2521 /**
2522 * blk_unprep_request - unprepare a request
2523 * @req: the request
2524 *
2525 * This function makes a request ready for complete resubmission (or
2526 * completion). It happens only after all error handling is complete,
2527 * so represents the appropriate moment to deallocate any resources
2528 * that were allocated to the request in the prep_rq_fn. The queue
2529 * lock is held when calling this.
2530 */
2531 void blk_unprep_request(struct request *req)
2532 {
2533 struct request_queue *q = req->q;
2534
2535 req->cmd_flags &= ~REQ_DONTPREP;
2536 if (q->unprep_rq_fn)
2537 q->unprep_rq_fn(q, req);
2538 }
2539 EXPORT_SYMBOL_GPL(blk_unprep_request);
2540
2541 /*
2542 * queue lock must be held
2543 */
2544 void blk_finish_request(struct request *req, int error)
2545 {
2546 if (blk_rq_tagged(req))
2547 blk_queue_end_tag(req->q, req);
2548
2549 BUG_ON(blk_queued_rq(req));
2550
2551 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2552 laptop_io_completion(&req->q->backing_dev_info);
2553
2554 blk_delete_timer(req);
2555
2556 if (req->cmd_flags & REQ_DONTPREP)
2557 blk_unprep_request(req);
2558
2559 blk_account_io_done(req);
2560
2561 if (req->end_io)
2562 req->end_io(req, error);
2563 else {
2564 if (blk_bidi_rq(req))
2565 __blk_put_request(req->next_rq->q, req->next_rq);
2566
2567 __blk_put_request(req->q, req);
2568 }
2569 }
2570 EXPORT_SYMBOL(blk_finish_request);
2571
2572 /**
2573 * blk_end_bidi_request - Complete a bidi request
2574 * @rq: the request to complete
2575 * @error: %0 for success, < %0 for error
2576 * @nr_bytes: number of bytes to complete @rq
2577 * @bidi_bytes: number of bytes to complete @rq->next_rq
2578 *
2579 * Description:
2580 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2581 * Drivers that supports bidi can safely call this member for any
2582 * type of request, bidi or uni. In the later case @bidi_bytes is
2583 * just ignored.
2584 *
2585 * Return:
2586 * %false - we are done with this request
2587 * %true - still buffers pending for this request
2588 **/
2589 static bool blk_end_bidi_request(struct request *rq, int error,
2590 unsigned int nr_bytes, unsigned int bidi_bytes)
2591 {
2592 struct request_queue *q = rq->q;
2593 unsigned long flags;
2594
2595 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2596 return true;
2597
2598 spin_lock_irqsave(q->queue_lock, flags);
2599 blk_finish_request(rq, error);
2600 spin_unlock_irqrestore(q->queue_lock, flags);
2601
2602 return false;
2603 }
2604
2605 /**
2606 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2607 * @rq: the request to complete
2608 * @error: %0 for success, < %0 for error
2609 * @nr_bytes: number of bytes to complete @rq
2610 * @bidi_bytes: number of bytes to complete @rq->next_rq
2611 *
2612 * Description:
2613 * Identical to blk_end_bidi_request() except that queue lock is
2614 * assumed to be locked on entry and remains so on return.
2615 *
2616 * Return:
2617 * %false - we are done with this request
2618 * %true - still buffers pending for this request
2619 **/
2620 bool __blk_end_bidi_request(struct request *rq, int error,
2621 unsigned int nr_bytes, unsigned int bidi_bytes)
2622 {
2623 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2624 return true;
2625
2626 blk_finish_request(rq, error);
2627
2628 return false;
2629 }
2630
2631 /**
2632 * blk_end_request - Helper function for drivers to complete the request.
2633 * @rq: the request being processed
2634 * @error: %0 for success, < %0 for error
2635 * @nr_bytes: number of bytes to complete
2636 *
2637 * Description:
2638 * Ends I/O on a number of bytes attached to @rq.
2639 * If @rq has leftover, sets it up for the next range of segments.
2640 *
2641 * Return:
2642 * %false - we are done with this request
2643 * %true - still buffers pending for this request
2644 **/
2645 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2646 {
2647 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2648 }
2649 EXPORT_SYMBOL(blk_end_request);
2650
2651 /**
2652 * blk_end_request_all - Helper function for drives to finish the request.
2653 * @rq: the request to finish
2654 * @error: %0 for success, < %0 for error
2655 *
2656 * Description:
2657 * Completely finish @rq.
2658 */
2659 void blk_end_request_all(struct request *rq, int error)
2660 {
2661 bool pending;
2662 unsigned int bidi_bytes = 0;
2663
2664 if (unlikely(blk_bidi_rq(rq)))
2665 bidi_bytes = blk_rq_bytes(rq->next_rq);
2666
2667 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2668 BUG_ON(pending);
2669 }
2670 EXPORT_SYMBOL(blk_end_request_all);
2671
2672 /**
2673 * blk_end_request_cur - Helper function to finish the current request chunk.
2674 * @rq: the request to finish the current chunk for
2675 * @error: %0 for success, < %0 for error
2676 *
2677 * Description:
2678 * Complete the current consecutively mapped chunk from @rq.
2679 *
2680 * Return:
2681 * %false - we are done with this request
2682 * %true - still buffers pending for this request
2683 */
2684 bool blk_end_request_cur(struct request *rq, int error)
2685 {
2686 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2687 }
2688 EXPORT_SYMBOL(blk_end_request_cur);
2689
2690 /**
2691 * blk_end_request_err - Finish a request till the next failure boundary.
2692 * @rq: the request to finish till the next failure boundary for
2693 * @error: must be negative errno
2694 *
2695 * Description:
2696 * Complete @rq till the next failure boundary.
2697 *
2698 * Return:
2699 * %false - we are done with this request
2700 * %true - still buffers pending for this request
2701 */
2702 bool blk_end_request_err(struct request *rq, int error)
2703 {
2704 WARN_ON(error >= 0);
2705 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2706 }
2707 EXPORT_SYMBOL_GPL(blk_end_request_err);
2708
2709 /**
2710 * __blk_end_request - Helper function for drivers to complete the request.
2711 * @rq: the request being processed
2712 * @error: %0 for success, < %0 for error
2713 * @nr_bytes: number of bytes to complete
2714 *
2715 * Description:
2716 * Must be called with queue lock held unlike blk_end_request().
2717 *
2718 * Return:
2719 * %false - we are done with this request
2720 * %true - still buffers pending for this request
2721 **/
2722 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2723 {
2724 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2725 }
2726 EXPORT_SYMBOL(__blk_end_request);
2727
2728 /**
2729 * __blk_end_request_all - Helper function for drives to finish the request.
2730 * @rq: the request to finish
2731 * @error: %0 for success, < %0 for error
2732 *
2733 * Description:
2734 * Completely finish @rq. Must be called with queue lock held.
2735 */
2736 void __blk_end_request_all(struct request *rq, int error)
2737 {
2738 bool pending;
2739 unsigned int bidi_bytes = 0;
2740
2741 if (unlikely(blk_bidi_rq(rq)))
2742 bidi_bytes = blk_rq_bytes(rq->next_rq);
2743
2744 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2745 BUG_ON(pending);
2746 }
2747 EXPORT_SYMBOL(__blk_end_request_all);
2748
2749 /**
2750 * __blk_end_request_cur - Helper function to finish the current request chunk.
2751 * @rq: the request to finish the current chunk for
2752 * @error: %0 for success, < %0 for error
2753 *
2754 * Description:
2755 * Complete the current consecutively mapped chunk from @rq. Must
2756 * be called with queue lock held.
2757 *
2758 * Return:
2759 * %false - we are done with this request
2760 * %true - still buffers pending for this request
2761 */
2762 bool __blk_end_request_cur(struct request *rq, int error)
2763 {
2764 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2765 }
2766 EXPORT_SYMBOL(__blk_end_request_cur);
2767
2768 /**
2769 * __blk_end_request_err - Finish a request till the next failure boundary.
2770 * @rq: the request to finish till the next failure boundary for
2771 * @error: must be negative errno
2772 *
2773 * Description:
2774 * Complete @rq till the next failure boundary. Must be called
2775 * with queue lock held.
2776 *
2777 * Return:
2778 * %false - we are done with this request
2779 * %true - still buffers pending for this request
2780 */
2781 bool __blk_end_request_err(struct request *rq, int error)
2782 {
2783 WARN_ON(error >= 0);
2784 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2785 }
2786 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2787
2788 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2789 struct bio *bio)
2790 {
2791 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2792 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2793
2794 if (bio_has_data(bio))
2795 rq->nr_phys_segments = bio_phys_segments(q, bio);
2796
2797 rq->__data_len = bio->bi_iter.bi_size;
2798 rq->bio = rq->biotail = bio;
2799
2800 if (bio->bi_bdev)
2801 rq->rq_disk = bio->bi_bdev->bd_disk;
2802 }
2803
2804 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2805 /**
2806 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2807 * @rq: the request to be flushed
2808 *
2809 * Description:
2810 * Flush all pages in @rq.
2811 */
2812 void rq_flush_dcache_pages(struct request *rq)
2813 {
2814 struct req_iterator iter;
2815 struct bio_vec bvec;
2816
2817 rq_for_each_segment(bvec, rq, iter)
2818 flush_dcache_page(bvec.bv_page);
2819 }
2820 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2821 #endif
2822
2823 /**
2824 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2825 * @q : the queue of the device being checked
2826 *
2827 * Description:
2828 * Check if underlying low-level drivers of a device are busy.
2829 * If the drivers want to export their busy state, they must set own
2830 * exporting function using blk_queue_lld_busy() first.
2831 *
2832 * Basically, this function is used only by request stacking drivers
2833 * to stop dispatching requests to underlying devices when underlying
2834 * devices are busy. This behavior helps more I/O merging on the queue
2835 * of the request stacking driver and prevents I/O throughput regression
2836 * on burst I/O load.
2837 *
2838 * Return:
2839 * 0 - Not busy (The request stacking driver should dispatch request)
2840 * 1 - Busy (The request stacking driver should stop dispatching request)
2841 */
2842 int blk_lld_busy(struct request_queue *q)
2843 {
2844 if (q->lld_busy_fn)
2845 return q->lld_busy_fn(q);
2846
2847 return 0;
2848 }
2849 EXPORT_SYMBOL_GPL(blk_lld_busy);
2850
2851 /**
2852 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2853 * @rq: the clone request to be cleaned up
2854 *
2855 * Description:
2856 * Free all bios in @rq for a cloned request.
2857 */
2858 void blk_rq_unprep_clone(struct request *rq)
2859 {
2860 struct bio *bio;
2861
2862 while ((bio = rq->bio) != NULL) {
2863 rq->bio = bio->bi_next;
2864
2865 bio_put(bio);
2866 }
2867 }
2868 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2869
2870 /*
2871 * Copy attributes of the original request to the clone request.
2872 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
2873 */
2874 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2875 {
2876 dst->cpu = src->cpu;
2877 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2878 dst->cmd_type = src->cmd_type;
2879 dst->__sector = blk_rq_pos(src);
2880 dst->__data_len = blk_rq_bytes(src);
2881 dst->nr_phys_segments = src->nr_phys_segments;
2882 dst->ioprio = src->ioprio;
2883 dst->extra_len = src->extra_len;
2884 }
2885
2886 /**
2887 * blk_rq_prep_clone - Helper function to setup clone request
2888 * @rq: the request to be setup
2889 * @rq_src: original request to be cloned
2890 * @bs: bio_set that bios for clone are allocated from
2891 * @gfp_mask: memory allocation mask for bio
2892 * @bio_ctr: setup function to be called for each clone bio.
2893 * Returns %0 for success, non %0 for failure.
2894 * @data: private data to be passed to @bio_ctr
2895 *
2896 * Description:
2897 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2898 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
2899 * are not copied, and copying such parts is the caller's responsibility.
2900 * Also, pages which the original bios are pointing to are not copied
2901 * and the cloned bios just point same pages.
2902 * So cloned bios must be completed before original bios, which means
2903 * the caller must complete @rq before @rq_src.
2904 */
2905 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2906 struct bio_set *bs, gfp_t gfp_mask,
2907 int (*bio_ctr)(struct bio *, struct bio *, void *),
2908 void *data)
2909 {
2910 struct bio *bio, *bio_src;
2911
2912 if (!bs)
2913 bs = fs_bio_set;
2914
2915 blk_rq_init(NULL, rq);
2916
2917 __rq_for_each_bio(bio_src, rq_src) {
2918 bio = bio_clone_bioset(bio_src, gfp_mask, bs);
2919 if (!bio)
2920 goto free_and_out;
2921
2922 if (bio_ctr && bio_ctr(bio, bio_src, data))
2923 goto free_and_out;
2924
2925 if (rq->bio) {
2926 rq->biotail->bi_next = bio;
2927 rq->biotail = bio;
2928 } else
2929 rq->bio = rq->biotail = bio;
2930 }
2931
2932 __blk_rq_prep_clone(rq, rq_src);
2933
2934 return 0;
2935
2936 free_and_out:
2937 if (bio)
2938 bio_put(bio);
2939 blk_rq_unprep_clone(rq);
2940
2941 return -ENOMEM;
2942 }
2943 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2944
2945 int kblockd_schedule_work(struct work_struct *work)
2946 {
2947 return queue_work(kblockd_workqueue, work);
2948 }
2949 EXPORT_SYMBOL(kblockd_schedule_work);
2950
2951 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
2952 unsigned long delay)
2953 {
2954 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2955 }
2956 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2957
2958 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2959 unsigned long delay)
2960 {
2961 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
2962 }
2963 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
2964
2965 #define PLUG_MAGIC 0x91827364
2966
2967 /**
2968 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2969 * @plug: The &struct blk_plug that needs to be initialized
2970 *
2971 * Description:
2972 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2973 * pending I/O should the task end up blocking between blk_start_plug() and
2974 * blk_finish_plug(). This is important from a performance perspective, but
2975 * also ensures that we don't deadlock. For instance, if the task is blocking
2976 * for a memory allocation, memory reclaim could end up wanting to free a
2977 * page belonging to that request that is currently residing in our private
2978 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2979 * this kind of deadlock.
2980 */
2981 void blk_start_plug(struct blk_plug *plug)
2982 {
2983 struct task_struct *tsk = current;
2984
2985 plug->magic = PLUG_MAGIC;
2986 INIT_LIST_HEAD(&plug->list);
2987 INIT_LIST_HEAD(&plug->mq_list);
2988 INIT_LIST_HEAD(&plug->cb_list);
2989
2990 /*
2991 * If this is a nested plug, don't actually assign it. It will be
2992 * flushed on its own.
2993 */
2994 if (!tsk->plug) {
2995 /*
2996 * Store ordering should not be needed here, since a potential
2997 * preempt will imply a full memory barrier
2998 */
2999 tsk->plug = plug;
3000 }
3001 }
3002 EXPORT_SYMBOL(blk_start_plug);
3003
3004 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3005 {
3006 struct request *rqa = container_of(a, struct request, queuelist);
3007 struct request *rqb = container_of(b, struct request, queuelist);
3008
3009 return !(rqa->q < rqb->q ||
3010 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3011 }
3012
3013 /*
3014 * If 'from_schedule' is true, then postpone the dispatch of requests
3015 * until a safe kblockd context. We due this to avoid accidental big
3016 * additional stack usage in driver dispatch, in places where the originally
3017 * plugger did not intend it.
3018 */
3019 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3020 bool from_schedule)
3021 __releases(q->queue_lock)
3022 {
3023 trace_block_unplug(q, depth, !from_schedule);
3024
3025 if (from_schedule)
3026 blk_run_queue_async(q);
3027 else
3028 __blk_run_queue(q);
3029 spin_unlock(q->queue_lock);
3030 }
3031
3032 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3033 {
3034 LIST_HEAD(callbacks);
3035
3036 while (!list_empty(&plug->cb_list)) {
3037 list_splice_init(&plug->cb_list, &callbacks);
3038
3039 while (!list_empty(&callbacks)) {
3040 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3041 struct blk_plug_cb,
3042 list);
3043 list_del(&cb->list);
3044 cb->callback(cb, from_schedule);
3045 }
3046 }
3047 }
3048
3049 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3050 int size)
3051 {
3052 struct blk_plug *plug = current->plug;
3053 struct blk_plug_cb *cb;
3054
3055 if (!plug)
3056 return NULL;
3057
3058 list_for_each_entry(cb, &plug->cb_list, list)
3059 if (cb->callback == unplug && cb->data == data)
3060 return cb;
3061
3062 /* Not currently on the callback list */
3063 BUG_ON(size < sizeof(*cb));
3064 cb = kzalloc(size, GFP_ATOMIC);
3065 if (cb) {
3066 cb->data = data;
3067 cb->callback = unplug;
3068 list_add(&cb->list, &plug->cb_list);
3069 }
3070 return cb;
3071 }
3072 EXPORT_SYMBOL(blk_check_plugged);
3073
3074 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3075 {
3076 struct request_queue *q;
3077 unsigned long flags;
3078 struct request *rq;
3079 LIST_HEAD(list);
3080 unsigned int depth;
3081
3082 BUG_ON(plug->magic != PLUG_MAGIC);
3083
3084 flush_plug_callbacks(plug, from_schedule);
3085
3086 if (!list_empty(&plug->mq_list))
3087 blk_mq_flush_plug_list(plug, from_schedule);
3088
3089 if (list_empty(&plug->list))
3090 return;
3091
3092 list_splice_init(&plug->list, &list);
3093
3094 list_sort(NULL, &list, plug_rq_cmp);
3095
3096 q = NULL;
3097 depth = 0;
3098
3099 /*
3100 * Save and disable interrupts here, to avoid doing it for every
3101 * queue lock we have to take.
3102 */
3103 local_irq_save(flags);
3104 while (!list_empty(&list)) {
3105 rq = list_entry_rq(list.next);
3106 list_del_init(&rq->queuelist);
3107 BUG_ON(!rq->q);
3108 if (rq->q != q) {
3109 /*
3110 * This drops the queue lock
3111 */
3112 if (q)
3113 queue_unplugged(q, depth, from_schedule);
3114 q = rq->q;
3115 depth = 0;
3116 spin_lock(q->queue_lock);
3117 }
3118
3119 /*
3120 * Short-circuit if @q is dead
3121 */
3122 if (unlikely(blk_queue_dying(q))) {
3123 __blk_end_request_all(rq, -ENODEV);
3124 continue;
3125 }
3126
3127 /*
3128 * rq is already accounted, so use raw insert
3129 */
3130 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3131 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3132 else
3133 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3134
3135 depth++;
3136 }
3137
3138 /*
3139 * This drops the queue lock
3140 */
3141 if (q)
3142 queue_unplugged(q, depth, from_schedule);
3143
3144 local_irq_restore(flags);
3145 }
3146
3147 void blk_finish_plug(struct blk_plug *plug)
3148 {
3149 blk_flush_plug_list(plug, false);
3150
3151 if (plug == current->plug)
3152 current->plug = NULL;
3153 }
3154 EXPORT_SYMBOL(blk_finish_plug);
3155
3156 #ifdef CONFIG_PM_RUNTIME
3157 /**
3158 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3159 * @q: the queue of the device
3160 * @dev: the device the queue belongs to
3161 *
3162 * Description:
3163 * Initialize runtime-PM-related fields for @q and start auto suspend for
3164 * @dev. Drivers that want to take advantage of request-based runtime PM
3165 * should call this function after @dev has been initialized, and its
3166 * request queue @q has been allocated, and runtime PM for it can not happen
3167 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3168 * cases, driver should call this function before any I/O has taken place.
3169 *
3170 * This function takes care of setting up using auto suspend for the device,
3171 * the autosuspend delay is set to -1 to make runtime suspend impossible
3172 * until an updated value is either set by user or by driver. Drivers do
3173 * not need to touch other autosuspend settings.
3174 *
3175 * The block layer runtime PM is request based, so only works for drivers
3176 * that use request as their IO unit instead of those directly use bio's.
3177 */
3178 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3179 {
3180 q->dev = dev;
3181 q->rpm_status = RPM_ACTIVE;
3182 pm_runtime_set_autosuspend_delay(q->dev, -1);
3183 pm_runtime_use_autosuspend(q->dev);
3184 }
3185 EXPORT_SYMBOL(blk_pm_runtime_init);
3186
3187 /**
3188 * blk_pre_runtime_suspend - Pre runtime suspend check
3189 * @q: the queue of the device
3190 *
3191 * Description:
3192 * This function will check if runtime suspend is allowed for the device
3193 * by examining if there are any requests pending in the queue. If there
3194 * are requests pending, the device can not be runtime suspended; otherwise,
3195 * the queue's status will be updated to SUSPENDING and the driver can
3196 * proceed to suspend the device.
3197 *
3198 * For the not allowed case, we mark last busy for the device so that
3199 * runtime PM core will try to autosuspend it some time later.
3200 *
3201 * This function should be called near the start of the device's
3202 * runtime_suspend callback.
3203 *
3204 * Return:
3205 * 0 - OK to runtime suspend the device
3206 * -EBUSY - Device should not be runtime suspended
3207 */
3208 int blk_pre_runtime_suspend(struct request_queue *q)
3209 {
3210 int ret = 0;
3211
3212 spin_lock_irq(q->queue_lock);
3213 if (q->nr_pending) {
3214 ret = -EBUSY;
3215 pm_runtime_mark_last_busy(q->dev);
3216 } else {
3217 q->rpm_status = RPM_SUSPENDING;
3218 }
3219 spin_unlock_irq(q->queue_lock);
3220 return ret;
3221 }
3222 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3223
3224 /**
3225 * blk_post_runtime_suspend - Post runtime suspend processing
3226 * @q: the queue of the device
3227 * @err: return value of the device's runtime_suspend function
3228 *
3229 * Description:
3230 * Update the queue's runtime status according to the return value of the
3231 * device's runtime suspend function and mark last busy for the device so
3232 * that PM core will try to auto suspend the device at a later time.
3233 *
3234 * This function should be called near the end of the device's
3235 * runtime_suspend callback.
3236 */
3237 void blk_post_runtime_suspend(struct request_queue *q, int err)
3238 {
3239 spin_lock_irq(q->queue_lock);
3240 if (!err) {
3241 q->rpm_status = RPM_SUSPENDED;
3242 } else {
3243 q->rpm_status = RPM_ACTIVE;
3244 pm_runtime_mark_last_busy(q->dev);
3245 }
3246 spin_unlock_irq(q->queue_lock);
3247 }
3248 EXPORT_SYMBOL(blk_post_runtime_suspend);
3249
3250 /**
3251 * blk_pre_runtime_resume - Pre runtime resume processing
3252 * @q: the queue of the device
3253 *
3254 * Description:
3255 * Update the queue's runtime status to RESUMING in preparation for the
3256 * runtime resume of the device.
3257 *
3258 * This function should be called near the start of the device's
3259 * runtime_resume callback.
3260 */
3261 void blk_pre_runtime_resume(struct request_queue *q)
3262 {
3263 spin_lock_irq(q->queue_lock);
3264 q->rpm_status = RPM_RESUMING;
3265 spin_unlock_irq(q->queue_lock);
3266 }
3267 EXPORT_SYMBOL(blk_pre_runtime_resume);
3268
3269 /**
3270 * blk_post_runtime_resume - Post runtime resume processing
3271 * @q: the queue of the device
3272 * @err: return value of the device's runtime_resume function
3273 *
3274 * Description:
3275 * Update the queue's runtime status according to the return value of the
3276 * device's runtime_resume function. If it is successfully resumed, process
3277 * the requests that are queued into the device's queue when it is resuming
3278 * and then mark last busy and initiate autosuspend for it.
3279 *
3280 * This function should be called near the end of the device's
3281 * runtime_resume callback.
3282 */
3283 void blk_post_runtime_resume(struct request_queue *q, int err)
3284 {
3285 spin_lock_irq(q->queue_lock);
3286 if (!err) {
3287 q->rpm_status = RPM_ACTIVE;
3288 __blk_run_queue(q);
3289 pm_runtime_mark_last_busy(q->dev);
3290 pm_request_autosuspend(q->dev);
3291 } else {
3292 q->rpm_status = RPM_SUSPENDED;
3293 }
3294 spin_unlock_irq(q->queue_lock);
3295 }
3296 EXPORT_SYMBOL(blk_post_runtime_resume);
3297 #endif
3298
3299 int __init blk_dev_init(void)
3300 {
3301 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3302 sizeof(((struct request *)0)->cmd_flags));
3303
3304 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3305 kblockd_workqueue = alloc_workqueue("kblockd",
3306 WQ_MEM_RECLAIM | WQ_HIGHPRI |
3307 WQ_POWER_EFFICIENT, 0);
3308 if (!kblockd_workqueue)
3309 panic("Failed to create kblockd\n");
3310
3311 request_cachep = kmem_cache_create("blkdev_requests",
3312 sizeof(struct request), 0, SLAB_PANIC, NULL);
3313
3314 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3315 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3316
3317 return 0;
3318 }
This page took 0.091767 seconds and 4 git commands to generate.