block/sd: Return -EREMOTEIO when WRITE SAME and DISCARD are disabled
[deliverable/linux.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/block.h>
39
40 #include "blk.h"
41 #include "blk-mq.h"
42
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
48
49 DEFINE_IDA(blk_queue_ida);
50
51 /*
52 * For the allocated request tables
53 */
54 struct kmem_cache *request_cachep;
55
56 /*
57 * For queue allocation
58 */
59 struct kmem_cache *blk_requestq_cachep;
60
61 /*
62 * Controlling structure to kblockd
63 */
64 static struct workqueue_struct *kblockd_workqueue;
65
66 static void blk_clear_congested(struct request_list *rl, int sync)
67 {
68 #ifdef CONFIG_CGROUP_WRITEBACK
69 clear_wb_congested(rl->blkg->wb_congested, sync);
70 #else
71 /*
72 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
73 * flip its congestion state for events on other blkcgs.
74 */
75 if (rl == &rl->q->root_rl)
76 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
77 #endif
78 }
79
80 static void blk_set_congested(struct request_list *rl, int sync)
81 {
82 #ifdef CONFIG_CGROUP_WRITEBACK
83 set_wb_congested(rl->blkg->wb_congested, sync);
84 #else
85 /* see blk_clear_congested() */
86 if (rl == &rl->q->root_rl)
87 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
88 #endif
89 }
90
91 void blk_queue_congestion_threshold(struct request_queue *q)
92 {
93 int nr;
94
95 nr = q->nr_requests - (q->nr_requests / 8) + 1;
96 if (nr > q->nr_requests)
97 nr = q->nr_requests;
98 q->nr_congestion_on = nr;
99
100 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
101 if (nr < 1)
102 nr = 1;
103 q->nr_congestion_off = nr;
104 }
105
106 /**
107 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
108 * @bdev: device
109 *
110 * Locates the passed device's request queue and returns the address of its
111 * backing_dev_info. This function can only be called if @bdev is opened
112 * and the return value is never NULL.
113 */
114 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
115 {
116 struct request_queue *q = bdev_get_queue(bdev);
117
118 return &q->backing_dev_info;
119 }
120 EXPORT_SYMBOL(blk_get_backing_dev_info);
121
122 void blk_rq_init(struct request_queue *q, struct request *rq)
123 {
124 memset(rq, 0, sizeof(*rq));
125
126 INIT_LIST_HEAD(&rq->queuelist);
127 INIT_LIST_HEAD(&rq->timeout_list);
128 rq->cpu = -1;
129 rq->q = q;
130 rq->__sector = (sector_t) -1;
131 INIT_HLIST_NODE(&rq->hash);
132 RB_CLEAR_NODE(&rq->rb_node);
133 rq->cmd = rq->__cmd;
134 rq->cmd_len = BLK_MAX_CDB;
135 rq->tag = -1;
136 rq->start_time = jiffies;
137 set_start_time_ns(rq);
138 rq->part = NULL;
139 }
140 EXPORT_SYMBOL(blk_rq_init);
141
142 static void req_bio_endio(struct request *rq, struct bio *bio,
143 unsigned int nbytes, int error)
144 {
145 if (error)
146 bio->bi_error = error;
147
148 if (unlikely(rq->cmd_flags & REQ_QUIET))
149 bio_set_flag(bio, BIO_QUIET);
150
151 bio_advance(bio, nbytes);
152
153 /* don't actually finish bio if it's part of flush sequence */
154 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
155 bio_endio(bio);
156 }
157
158 void blk_dump_rq_flags(struct request *rq, char *msg)
159 {
160 int bit;
161
162 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
163 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
164 (unsigned long long) rq->cmd_flags);
165
166 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
167 (unsigned long long)blk_rq_pos(rq),
168 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
169 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
170 rq->bio, rq->biotail, blk_rq_bytes(rq));
171
172 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
173 printk(KERN_INFO " cdb: ");
174 for (bit = 0; bit < BLK_MAX_CDB; bit++)
175 printk("%02x ", rq->cmd[bit]);
176 printk("\n");
177 }
178 }
179 EXPORT_SYMBOL(blk_dump_rq_flags);
180
181 static void blk_delay_work(struct work_struct *work)
182 {
183 struct request_queue *q;
184
185 q = container_of(work, struct request_queue, delay_work.work);
186 spin_lock_irq(q->queue_lock);
187 __blk_run_queue(q);
188 spin_unlock_irq(q->queue_lock);
189 }
190
191 /**
192 * blk_delay_queue - restart queueing after defined interval
193 * @q: The &struct request_queue in question
194 * @msecs: Delay in msecs
195 *
196 * Description:
197 * Sometimes queueing needs to be postponed for a little while, to allow
198 * resources to come back. This function will make sure that queueing is
199 * restarted around the specified time. Queue lock must be held.
200 */
201 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
202 {
203 if (likely(!blk_queue_dead(q)))
204 queue_delayed_work(kblockd_workqueue, &q->delay_work,
205 msecs_to_jiffies(msecs));
206 }
207 EXPORT_SYMBOL(blk_delay_queue);
208
209 /**
210 * blk_start_queue_async - asynchronously restart a previously stopped queue
211 * @q: The &struct request_queue in question
212 *
213 * Description:
214 * blk_start_queue_async() will clear the stop flag on the queue, and
215 * ensure that the request_fn for the queue is run from an async
216 * context.
217 **/
218 void blk_start_queue_async(struct request_queue *q)
219 {
220 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
221 blk_run_queue_async(q);
222 }
223 EXPORT_SYMBOL(blk_start_queue_async);
224
225 /**
226 * blk_start_queue - restart a previously stopped queue
227 * @q: The &struct request_queue in question
228 *
229 * Description:
230 * blk_start_queue() will clear the stop flag on the queue, and call
231 * the request_fn for the queue if it was in a stopped state when
232 * entered. Also see blk_stop_queue(). Queue lock must be held.
233 **/
234 void blk_start_queue(struct request_queue *q)
235 {
236 WARN_ON(!irqs_disabled());
237
238 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
239 __blk_run_queue(q);
240 }
241 EXPORT_SYMBOL(blk_start_queue);
242
243 /**
244 * blk_stop_queue - stop a queue
245 * @q: The &struct request_queue in question
246 *
247 * Description:
248 * The Linux block layer assumes that a block driver will consume all
249 * entries on the request queue when the request_fn strategy is called.
250 * Often this will not happen, because of hardware limitations (queue
251 * depth settings). If a device driver gets a 'queue full' response,
252 * or if it simply chooses not to queue more I/O at one point, it can
253 * call this function to prevent the request_fn from being called until
254 * the driver has signalled it's ready to go again. This happens by calling
255 * blk_start_queue() to restart queue operations. Queue lock must be held.
256 **/
257 void blk_stop_queue(struct request_queue *q)
258 {
259 cancel_delayed_work(&q->delay_work);
260 queue_flag_set(QUEUE_FLAG_STOPPED, q);
261 }
262 EXPORT_SYMBOL(blk_stop_queue);
263
264 /**
265 * blk_sync_queue - cancel any pending callbacks on a queue
266 * @q: the queue
267 *
268 * Description:
269 * The block layer may perform asynchronous callback activity
270 * on a queue, such as calling the unplug function after a timeout.
271 * A block device may call blk_sync_queue to ensure that any
272 * such activity is cancelled, thus allowing it to release resources
273 * that the callbacks might use. The caller must already have made sure
274 * that its ->make_request_fn will not re-add plugging prior to calling
275 * this function.
276 *
277 * This function does not cancel any asynchronous activity arising
278 * out of elevator or throttling code. That would require elevator_exit()
279 * and blkcg_exit_queue() to be called with queue lock initialized.
280 *
281 */
282 void blk_sync_queue(struct request_queue *q)
283 {
284 del_timer_sync(&q->timeout);
285
286 if (q->mq_ops) {
287 struct blk_mq_hw_ctx *hctx;
288 int i;
289
290 queue_for_each_hw_ctx(q, hctx, i) {
291 cancel_delayed_work_sync(&hctx->run_work);
292 cancel_delayed_work_sync(&hctx->delay_work);
293 }
294 } else {
295 cancel_delayed_work_sync(&q->delay_work);
296 }
297 }
298 EXPORT_SYMBOL(blk_sync_queue);
299
300 /**
301 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
302 * @q: The queue to run
303 *
304 * Description:
305 * Invoke request handling on a queue if there are any pending requests.
306 * May be used to restart request handling after a request has completed.
307 * This variant runs the queue whether or not the queue has been
308 * stopped. Must be called with the queue lock held and interrupts
309 * disabled. See also @blk_run_queue.
310 */
311 inline void __blk_run_queue_uncond(struct request_queue *q)
312 {
313 if (unlikely(blk_queue_dead(q)))
314 return;
315
316 /*
317 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
318 * the queue lock internally. As a result multiple threads may be
319 * running such a request function concurrently. Keep track of the
320 * number of active request_fn invocations such that blk_drain_queue()
321 * can wait until all these request_fn calls have finished.
322 */
323 q->request_fn_active++;
324 q->request_fn(q);
325 q->request_fn_active--;
326 }
327 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
328
329 /**
330 * __blk_run_queue - run a single device queue
331 * @q: The queue to run
332 *
333 * Description:
334 * See @blk_run_queue. This variant must be called with the queue lock
335 * held and interrupts disabled.
336 */
337 void __blk_run_queue(struct request_queue *q)
338 {
339 if (unlikely(blk_queue_stopped(q)))
340 return;
341
342 __blk_run_queue_uncond(q);
343 }
344 EXPORT_SYMBOL(__blk_run_queue);
345
346 /**
347 * blk_run_queue_async - run a single device queue in workqueue context
348 * @q: The queue to run
349 *
350 * Description:
351 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
352 * of us. The caller must hold the queue lock.
353 */
354 void blk_run_queue_async(struct request_queue *q)
355 {
356 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
357 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
358 }
359 EXPORT_SYMBOL(blk_run_queue_async);
360
361 /**
362 * blk_run_queue - run a single device queue
363 * @q: The queue to run
364 *
365 * Description:
366 * Invoke request handling on this queue, if it has pending work to do.
367 * May be used to restart queueing when a request has completed.
368 */
369 void blk_run_queue(struct request_queue *q)
370 {
371 unsigned long flags;
372
373 spin_lock_irqsave(q->queue_lock, flags);
374 __blk_run_queue(q);
375 spin_unlock_irqrestore(q->queue_lock, flags);
376 }
377 EXPORT_SYMBOL(blk_run_queue);
378
379 void blk_put_queue(struct request_queue *q)
380 {
381 kobject_put(&q->kobj);
382 }
383 EXPORT_SYMBOL(blk_put_queue);
384
385 /**
386 * __blk_drain_queue - drain requests from request_queue
387 * @q: queue to drain
388 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
389 *
390 * Drain requests from @q. If @drain_all is set, all requests are drained.
391 * If not, only ELVPRIV requests are drained. The caller is responsible
392 * for ensuring that no new requests which need to be drained are queued.
393 */
394 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
395 __releases(q->queue_lock)
396 __acquires(q->queue_lock)
397 {
398 int i;
399
400 lockdep_assert_held(q->queue_lock);
401
402 while (true) {
403 bool drain = false;
404
405 /*
406 * The caller might be trying to drain @q before its
407 * elevator is initialized.
408 */
409 if (q->elevator)
410 elv_drain_elevator(q);
411
412 blkcg_drain_queue(q);
413
414 /*
415 * This function might be called on a queue which failed
416 * driver init after queue creation or is not yet fully
417 * active yet. Some drivers (e.g. fd and loop) get unhappy
418 * in such cases. Kick queue iff dispatch queue has
419 * something on it and @q has request_fn set.
420 */
421 if (!list_empty(&q->queue_head) && q->request_fn)
422 __blk_run_queue(q);
423
424 drain |= q->nr_rqs_elvpriv;
425 drain |= q->request_fn_active;
426
427 /*
428 * Unfortunately, requests are queued at and tracked from
429 * multiple places and there's no single counter which can
430 * be drained. Check all the queues and counters.
431 */
432 if (drain_all) {
433 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
434 drain |= !list_empty(&q->queue_head);
435 for (i = 0; i < 2; i++) {
436 drain |= q->nr_rqs[i];
437 drain |= q->in_flight[i];
438 if (fq)
439 drain |= !list_empty(&fq->flush_queue[i]);
440 }
441 }
442
443 if (!drain)
444 break;
445
446 spin_unlock_irq(q->queue_lock);
447
448 msleep(10);
449
450 spin_lock_irq(q->queue_lock);
451 }
452
453 /*
454 * With queue marked dead, any woken up waiter will fail the
455 * allocation path, so the wakeup chaining is lost and we're
456 * left with hung waiters. We need to wake up those waiters.
457 */
458 if (q->request_fn) {
459 struct request_list *rl;
460
461 blk_queue_for_each_rl(rl, q)
462 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
463 wake_up_all(&rl->wait[i]);
464 }
465 }
466
467 /**
468 * blk_queue_bypass_start - enter queue bypass mode
469 * @q: queue of interest
470 *
471 * In bypass mode, only the dispatch FIFO queue of @q is used. This
472 * function makes @q enter bypass mode and drains all requests which were
473 * throttled or issued before. On return, it's guaranteed that no request
474 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
475 * inside queue or RCU read lock.
476 */
477 void blk_queue_bypass_start(struct request_queue *q)
478 {
479 spin_lock_irq(q->queue_lock);
480 q->bypass_depth++;
481 queue_flag_set(QUEUE_FLAG_BYPASS, q);
482 spin_unlock_irq(q->queue_lock);
483
484 /*
485 * Queues start drained. Skip actual draining till init is
486 * complete. This avoids lenghty delays during queue init which
487 * can happen many times during boot.
488 */
489 if (blk_queue_init_done(q)) {
490 spin_lock_irq(q->queue_lock);
491 __blk_drain_queue(q, false);
492 spin_unlock_irq(q->queue_lock);
493
494 /* ensure blk_queue_bypass() is %true inside RCU read lock */
495 synchronize_rcu();
496 }
497 }
498 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
499
500 /**
501 * blk_queue_bypass_end - leave queue bypass mode
502 * @q: queue of interest
503 *
504 * Leave bypass mode and restore the normal queueing behavior.
505 */
506 void blk_queue_bypass_end(struct request_queue *q)
507 {
508 spin_lock_irq(q->queue_lock);
509 if (!--q->bypass_depth)
510 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
511 WARN_ON_ONCE(q->bypass_depth < 0);
512 spin_unlock_irq(q->queue_lock);
513 }
514 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
515
516 void blk_set_queue_dying(struct request_queue *q)
517 {
518 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
519
520 if (q->mq_ops)
521 blk_mq_wake_waiters(q);
522 else {
523 struct request_list *rl;
524
525 blk_queue_for_each_rl(rl, q) {
526 if (rl->rq_pool) {
527 wake_up(&rl->wait[BLK_RW_SYNC]);
528 wake_up(&rl->wait[BLK_RW_ASYNC]);
529 }
530 }
531 }
532 }
533 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
534
535 /**
536 * blk_cleanup_queue - shutdown a request queue
537 * @q: request queue to shutdown
538 *
539 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
540 * put it. All future requests will be failed immediately with -ENODEV.
541 */
542 void blk_cleanup_queue(struct request_queue *q)
543 {
544 spinlock_t *lock = q->queue_lock;
545
546 /* mark @q DYING, no new request or merges will be allowed afterwards */
547 mutex_lock(&q->sysfs_lock);
548 blk_set_queue_dying(q);
549 spin_lock_irq(lock);
550
551 /*
552 * A dying queue is permanently in bypass mode till released. Note
553 * that, unlike blk_queue_bypass_start(), we aren't performing
554 * synchronize_rcu() after entering bypass mode to avoid the delay
555 * as some drivers create and destroy a lot of queues while
556 * probing. This is still safe because blk_release_queue() will be
557 * called only after the queue refcnt drops to zero and nothing,
558 * RCU or not, would be traversing the queue by then.
559 */
560 q->bypass_depth++;
561 queue_flag_set(QUEUE_FLAG_BYPASS, q);
562
563 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
564 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
565 queue_flag_set(QUEUE_FLAG_DYING, q);
566 spin_unlock_irq(lock);
567 mutex_unlock(&q->sysfs_lock);
568
569 /*
570 * Drain all requests queued before DYING marking. Set DEAD flag to
571 * prevent that q->request_fn() gets invoked after draining finished.
572 */
573 blk_freeze_queue(q);
574 spin_lock_irq(lock);
575 if (!q->mq_ops)
576 __blk_drain_queue(q, true);
577 queue_flag_set(QUEUE_FLAG_DEAD, q);
578 spin_unlock_irq(lock);
579
580 /* for synchronous bio-based driver finish in-flight integrity i/o */
581 blk_flush_integrity();
582
583 /* @q won't process any more request, flush async actions */
584 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
585 blk_sync_queue(q);
586
587 if (q->mq_ops)
588 blk_mq_free_queue(q);
589 percpu_ref_exit(&q->q_usage_counter);
590
591 spin_lock_irq(lock);
592 if (q->queue_lock != &q->__queue_lock)
593 q->queue_lock = &q->__queue_lock;
594 spin_unlock_irq(lock);
595
596 bdi_unregister(&q->backing_dev_info);
597
598 /* @q is and will stay empty, shutdown and put */
599 blk_put_queue(q);
600 }
601 EXPORT_SYMBOL(blk_cleanup_queue);
602
603 /* Allocate memory local to the request queue */
604 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
605 {
606 int nid = (int)(long)data;
607 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
608 }
609
610 static void free_request_struct(void *element, void *unused)
611 {
612 kmem_cache_free(request_cachep, element);
613 }
614
615 int blk_init_rl(struct request_list *rl, struct request_queue *q,
616 gfp_t gfp_mask)
617 {
618 if (unlikely(rl->rq_pool))
619 return 0;
620
621 rl->q = q;
622 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
623 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
624 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
625 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
626
627 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
628 free_request_struct,
629 (void *)(long)q->node, gfp_mask,
630 q->node);
631 if (!rl->rq_pool)
632 return -ENOMEM;
633
634 return 0;
635 }
636
637 void blk_exit_rl(struct request_list *rl)
638 {
639 if (rl->rq_pool)
640 mempool_destroy(rl->rq_pool);
641 }
642
643 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
644 {
645 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
646 }
647 EXPORT_SYMBOL(blk_alloc_queue);
648
649 int blk_queue_enter(struct request_queue *q, bool nowait)
650 {
651 while (true) {
652 int ret;
653
654 if (percpu_ref_tryget_live(&q->q_usage_counter))
655 return 0;
656
657 if (nowait)
658 return -EBUSY;
659
660 ret = wait_event_interruptible(q->mq_freeze_wq,
661 !atomic_read(&q->mq_freeze_depth) ||
662 blk_queue_dying(q));
663 if (blk_queue_dying(q))
664 return -ENODEV;
665 if (ret)
666 return ret;
667 }
668 }
669
670 void blk_queue_exit(struct request_queue *q)
671 {
672 percpu_ref_put(&q->q_usage_counter);
673 }
674
675 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
676 {
677 struct request_queue *q =
678 container_of(ref, struct request_queue, q_usage_counter);
679
680 wake_up_all(&q->mq_freeze_wq);
681 }
682
683 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
684 {
685 struct request_queue *q;
686 int err;
687
688 q = kmem_cache_alloc_node(blk_requestq_cachep,
689 gfp_mask | __GFP_ZERO, node_id);
690 if (!q)
691 return NULL;
692
693 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
694 if (q->id < 0)
695 goto fail_q;
696
697 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
698 if (!q->bio_split)
699 goto fail_id;
700
701 q->backing_dev_info.ra_pages =
702 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
703 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
704 q->backing_dev_info.name = "block";
705 q->node = node_id;
706
707 err = bdi_init(&q->backing_dev_info);
708 if (err)
709 goto fail_split;
710
711 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
712 laptop_mode_timer_fn, (unsigned long) q);
713 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
714 INIT_LIST_HEAD(&q->queue_head);
715 INIT_LIST_HEAD(&q->timeout_list);
716 INIT_LIST_HEAD(&q->icq_list);
717 #ifdef CONFIG_BLK_CGROUP
718 INIT_LIST_HEAD(&q->blkg_list);
719 #endif
720 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
721
722 kobject_init(&q->kobj, &blk_queue_ktype);
723
724 mutex_init(&q->sysfs_lock);
725 spin_lock_init(&q->__queue_lock);
726
727 /*
728 * By default initialize queue_lock to internal lock and driver can
729 * override it later if need be.
730 */
731 q->queue_lock = &q->__queue_lock;
732
733 /*
734 * A queue starts its life with bypass turned on to avoid
735 * unnecessary bypass on/off overhead and nasty surprises during
736 * init. The initial bypass will be finished when the queue is
737 * registered by blk_register_queue().
738 */
739 q->bypass_depth = 1;
740 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
741
742 init_waitqueue_head(&q->mq_freeze_wq);
743
744 /*
745 * Init percpu_ref in atomic mode so that it's faster to shutdown.
746 * See blk_register_queue() for details.
747 */
748 if (percpu_ref_init(&q->q_usage_counter,
749 blk_queue_usage_counter_release,
750 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
751 goto fail_bdi;
752
753 if (blkcg_init_queue(q))
754 goto fail_ref;
755
756 return q;
757
758 fail_ref:
759 percpu_ref_exit(&q->q_usage_counter);
760 fail_bdi:
761 bdi_destroy(&q->backing_dev_info);
762 fail_split:
763 bioset_free(q->bio_split);
764 fail_id:
765 ida_simple_remove(&blk_queue_ida, q->id);
766 fail_q:
767 kmem_cache_free(blk_requestq_cachep, q);
768 return NULL;
769 }
770 EXPORT_SYMBOL(blk_alloc_queue_node);
771
772 /**
773 * blk_init_queue - prepare a request queue for use with a block device
774 * @rfn: The function to be called to process requests that have been
775 * placed on the queue.
776 * @lock: Request queue spin lock
777 *
778 * Description:
779 * If a block device wishes to use the standard request handling procedures,
780 * which sorts requests and coalesces adjacent requests, then it must
781 * call blk_init_queue(). The function @rfn will be called when there
782 * are requests on the queue that need to be processed. If the device
783 * supports plugging, then @rfn may not be called immediately when requests
784 * are available on the queue, but may be called at some time later instead.
785 * Plugged queues are generally unplugged when a buffer belonging to one
786 * of the requests on the queue is needed, or due to memory pressure.
787 *
788 * @rfn is not required, or even expected, to remove all requests off the
789 * queue, but only as many as it can handle at a time. If it does leave
790 * requests on the queue, it is responsible for arranging that the requests
791 * get dealt with eventually.
792 *
793 * The queue spin lock must be held while manipulating the requests on the
794 * request queue; this lock will be taken also from interrupt context, so irq
795 * disabling is needed for it.
796 *
797 * Function returns a pointer to the initialized request queue, or %NULL if
798 * it didn't succeed.
799 *
800 * Note:
801 * blk_init_queue() must be paired with a blk_cleanup_queue() call
802 * when the block device is deactivated (such as at module unload).
803 **/
804
805 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
806 {
807 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
808 }
809 EXPORT_SYMBOL(blk_init_queue);
810
811 struct request_queue *
812 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
813 {
814 struct request_queue *uninit_q, *q;
815
816 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
817 if (!uninit_q)
818 return NULL;
819
820 q = blk_init_allocated_queue(uninit_q, rfn, lock);
821 if (!q)
822 blk_cleanup_queue(uninit_q);
823
824 return q;
825 }
826 EXPORT_SYMBOL(blk_init_queue_node);
827
828 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
829
830 struct request_queue *
831 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
832 spinlock_t *lock)
833 {
834 if (!q)
835 return NULL;
836
837 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
838 if (!q->fq)
839 return NULL;
840
841 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
842 goto fail;
843
844 q->request_fn = rfn;
845 q->prep_rq_fn = NULL;
846 q->unprep_rq_fn = NULL;
847 q->queue_flags |= QUEUE_FLAG_DEFAULT;
848
849 /* Override internal queue lock with supplied lock pointer */
850 if (lock)
851 q->queue_lock = lock;
852
853 /*
854 * This also sets hw/phys segments, boundary and size
855 */
856 blk_queue_make_request(q, blk_queue_bio);
857
858 q->sg_reserved_size = INT_MAX;
859
860 /* Protect q->elevator from elevator_change */
861 mutex_lock(&q->sysfs_lock);
862
863 /* init elevator */
864 if (elevator_init(q, NULL)) {
865 mutex_unlock(&q->sysfs_lock);
866 goto fail;
867 }
868
869 mutex_unlock(&q->sysfs_lock);
870
871 return q;
872
873 fail:
874 blk_free_flush_queue(q->fq);
875 return NULL;
876 }
877 EXPORT_SYMBOL(blk_init_allocated_queue);
878
879 bool blk_get_queue(struct request_queue *q)
880 {
881 if (likely(!blk_queue_dying(q))) {
882 __blk_get_queue(q);
883 return true;
884 }
885
886 return false;
887 }
888 EXPORT_SYMBOL(blk_get_queue);
889
890 static inline void blk_free_request(struct request_list *rl, struct request *rq)
891 {
892 if (rq->cmd_flags & REQ_ELVPRIV) {
893 elv_put_request(rl->q, rq);
894 if (rq->elv.icq)
895 put_io_context(rq->elv.icq->ioc);
896 }
897
898 mempool_free(rq, rl->rq_pool);
899 }
900
901 /*
902 * ioc_batching returns true if the ioc is a valid batching request and
903 * should be given priority access to a request.
904 */
905 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
906 {
907 if (!ioc)
908 return 0;
909
910 /*
911 * Make sure the process is able to allocate at least 1 request
912 * even if the batch times out, otherwise we could theoretically
913 * lose wakeups.
914 */
915 return ioc->nr_batch_requests == q->nr_batching ||
916 (ioc->nr_batch_requests > 0
917 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
918 }
919
920 /*
921 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
922 * will cause the process to be a "batcher" on all queues in the system. This
923 * is the behaviour we want though - once it gets a wakeup it should be given
924 * a nice run.
925 */
926 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
927 {
928 if (!ioc || ioc_batching(q, ioc))
929 return;
930
931 ioc->nr_batch_requests = q->nr_batching;
932 ioc->last_waited = jiffies;
933 }
934
935 static void __freed_request(struct request_list *rl, int sync)
936 {
937 struct request_queue *q = rl->q;
938
939 if (rl->count[sync] < queue_congestion_off_threshold(q))
940 blk_clear_congested(rl, sync);
941
942 if (rl->count[sync] + 1 <= q->nr_requests) {
943 if (waitqueue_active(&rl->wait[sync]))
944 wake_up(&rl->wait[sync]);
945
946 blk_clear_rl_full(rl, sync);
947 }
948 }
949
950 /*
951 * A request has just been released. Account for it, update the full and
952 * congestion status, wake up any waiters. Called under q->queue_lock.
953 */
954 static void freed_request(struct request_list *rl, unsigned int flags)
955 {
956 struct request_queue *q = rl->q;
957 int sync = rw_is_sync(flags);
958
959 q->nr_rqs[sync]--;
960 rl->count[sync]--;
961 if (flags & REQ_ELVPRIV)
962 q->nr_rqs_elvpriv--;
963
964 __freed_request(rl, sync);
965
966 if (unlikely(rl->starved[sync ^ 1]))
967 __freed_request(rl, sync ^ 1);
968 }
969
970 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
971 {
972 struct request_list *rl;
973 int on_thresh, off_thresh;
974
975 spin_lock_irq(q->queue_lock);
976 q->nr_requests = nr;
977 blk_queue_congestion_threshold(q);
978 on_thresh = queue_congestion_on_threshold(q);
979 off_thresh = queue_congestion_off_threshold(q);
980
981 blk_queue_for_each_rl(rl, q) {
982 if (rl->count[BLK_RW_SYNC] >= on_thresh)
983 blk_set_congested(rl, BLK_RW_SYNC);
984 else if (rl->count[BLK_RW_SYNC] < off_thresh)
985 blk_clear_congested(rl, BLK_RW_SYNC);
986
987 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
988 blk_set_congested(rl, BLK_RW_ASYNC);
989 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
990 blk_clear_congested(rl, BLK_RW_ASYNC);
991
992 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
993 blk_set_rl_full(rl, BLK_RW_SYNC);
994 } else {
995 blk_clear_rl_full(rl, BLK_RW_SYNC);
996 wake_up(&rl->wait[BLK_RW_SYNC]);
997 }
998
999 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1000 blk_set_rl_full(rl, BLK_RW_ASYNC);
1001 } else {
1002 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1003 wake_up(&rl->wait[BLK_RW_ASYNC]);
1004 }
1005 }
1006
1007 spin_unlock_irq(q->queue_lock);
1008 return 0;
1009 }
1010
1011 /*
1012 * Determine if elevator data should be initialized when allocating the
1013 * request associated with @bio.
1014 */
1015 static bool blk_rq_should_init_elevator(struct bio *bio)
1016 {
1017 if (!bio)
1018 return true;
1019
1020 /*
1021 * Flush requests do not use the elevator so skip initialization.
1022 * This allows a request to share the flush and elevator data.
1023 */
1024 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
1025 return false;
1026
1027 return true;
1028 }
1029
1030 /**
1031 * rq_ioc - determine io_context for request allocation
1032 * @bio: request being allocated is for this bio (can be %NULL)
1033 *
1034 * Determine io_context to use for request allocation for @bio. May return
1035 * %NULL if %current->io_context doesn't exist.
1036 */
1037 static struct io_context *rq_ioc(struct bio *bio)
1038 {
1039 #ifdef CONFIG_BLK_CGROUP
1040 if (bio && bio->bi_ioc)
1041 return bio->bi_ioc;
1042 #endif
1043 return current->io_context;
1044 }
1045
1046 /**
1047 * __get_request - get a free request
1048 * @rl: request list to allocate from
1049 * @rw_flags: RW and SYNC flags
1050 * @bio: bio to allocate request for (can be %NULL)
1051 * @gfp_mask: allocation mask
1052 *
1053 * Get a free request from @q. This function may fail under memory
1054 * pressure or if @q is dead.
1055 *
1056 * Must be called with @q->queue_lock held and,
1057 * Returns ERR_PTR on failure, with @q->queue_lock held.
1058 * Returns request pointer on success, with @q->queue_lock *not held*.
1059 */
1060 static struct request *__get_request(struct request_list *rl, int rw_flags,
1061 struct bio *bio, gfp_t gfp_mask)
1062 {
1063 struct request_queue *q = rl->q;
1064 struct request *rq;
1065 struct elevator_type *et = q->elevator->type;
1066 struct io_context *ioc = rq_ioc(bio);
1067 struct io_cq *icq = NULL;
1068 const bool is_sync = rw_is_sync(rw_flags) != 0;
1069 int may_queue;
1070
1071 if (unlikely(blk_queue_dying(q)))
1072 return ERR_PTR(-ENODEV);
1073
1074 may_queue = elv_may_queue(q, rw_flags);
1075 if (may_queue == ELV_MQUEUE_NO)
1076 goto rq_starved;
1077
1078 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1079 if (rl->count[is_sync]+1 >= q->nr_requests) {
1080 /*
1081 * The queue will fill after this allocation, so set
1082 * it as full, and mark this process as "batching".
1083 * This process will be allowed to complete a batch of
1084 * requests, others will be blocked.
1085 */
1086 if (!blk_rl_full(rl, is_sync)) {
1087 ioc_set_batching(q, ioc);
1088 blk_set_rl_full(rl, is_sync);
1089 } else {
1090 if (may_queue != ELV_MQUEUE_MUST
1091 && !ioc_batching(q, ioc)) {
1092 /*
1093 * The queue is full and the allocating
1094 * process is not a "batcher", and not
1095 * exempted by the IO scheduler
1096 */
1097 return ERR_PTR(-ENOMEM);
1098 }
1099 }
1100 }
1101 blk_set_congested(rl, is_sync);
1102 }
1103
1104 /*
1105 * Only allow batching queuers to allocate up to 50% over the defined
1106 * limit of requests, otherwise we could have thousands of requests
1107 * allocated with any setting of ->nr_requests
1108 */
1109 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1110 return ERR_PTR(-ENOMEM);
1111
1112 q->nr_rqs[is_sync]++;
1113 rl->count[is_sync]++;
1114 rl->starved[is_sync] = 0;
1115
1116 /*
1117 * Decide whether the new request will be managed by elevator. If
1118 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1119 * prevent the current elevator from being destroyed until the new
1120 * request is freed. This guarantees icq's won't be destroyed and
1121 * makes creating new ones safe.
1122 *
1123 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1124 * it will be created after releasing queue_lock.
1125 */
1126 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1127 rw_flags |= REQ_ELVPRIV;
1128 q->nr_rqs_elvpriv++;
1129 if (et->icq_cache && ioc)
1130 icq = ioc_lookup_icq(ioc, q);
1131 }
1132
1133 if (blk_queue_io_stat(q))
1134 rw_flags |= REQ_IO_STAT;
1135 spin_unlock_irq(q->queue_lock);
1136
1137 /* allocate and init request */
1138 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1139 if (!rq)
1140 goto fail_alloc;
1141
1142 blk_rq_init(q, rq);
1143 blk_rq_set_rl(rq, rl);
1144 rq->cmd_flags = rw_flags | REQ_ALLOCED;
1145
1146 /* init elvpriv */
1147 if (rw_flags & REQ_ELVPRIV) {
1148 if (unlikely(et->icq_cache && !icq)) {
1149 if (ioc)
1150 icq = ioc_create_icq(ioc, q, gfp_mask);
1151 if (!icq)
1152 goto fail_elvpriv;
1153 }
1154
1155 rq->elv.icq = icq;
1156 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1157 goto fail_elvpriv;
1158
1159 /* @rq->elv.icq holds io_context until @rq is freed */
1160 if (icq)
1161 get_io_context(icq->ioc);
1162 }
1163 out:
1164 /*
1165 * ioc may be NULL here, and ioc_batching will be false. That's
1166 * OK, if the queue is under the request limit then requests need
1167 * not count toward the nr_batch_requests limit. There will always
1168 * be some limit enforced by BLK_BATCH_TIME.
1169 */
1170 if (ioc_batching(q, ioc))
1171 ioc->nr_batch_requests--;
1172
1173 trace_block_getrq(q, bio, rw_flags & 1);
1174 return rq;
1175
1176 fail_elvpriv:
1177 /*
1178 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1179 * and may fail indefinitely under memory pressure and thus
1180 * shouldn't stall IO. Treat this request as !elvpriv. This will
1181 * disturb iosched and blkcg but weird is bettern than dead.
1182 */
1183 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1184 __func__, dev_name(q->backing_dev_info.dev));
1185
1186 rq->cmd_flags &= ~REQ_ELVPRIV;
1187 rq->elv.icq = NULL;
1188
1189 spin_lock_irq(q->queue_lock);
1190 q->nr_rqs_elvpriv--;
1191 spin_unlock_irq(q->queue_lock);
1192 goto out;
1193
1194 fail_alloc:
1195 /*
1196 * Allocation failed presumably due to memory. Undo anything we
1197 * might have messed up.
1198 *
1199 * Allocating task should really be put onto the front of the wait
1200 * queue, but this is pretty rare.
1201 */
1202 spin_lock_irq(q->queue_lock);
1203 freed_request(rl, rw_flags);
1204
1205 /*
1206 * in the very unlikely event that allocation failed and no
1207 * requests for this direction was pending, mark us starved so that
1208 * freeing of a request in the other direction will notice
1209 * us. another possible fix would be to split the rq mempool into
1210 * READ and WRITE
1211 */
1212 rq_starved:
1213 if (unlikely(rl->count[is_sync] == 0))
1214 rl->starved[is_sync] = 1;
1215 return ERR_PTR(-ENOMEM);
1216 }
1217
1218 /**
1219 * get_request - get a free request
1220 * @q: request_queue to allocate request from
1221 * @rw_flags: RW and SYNC flags
1222 * @bio: bio to allocate request for (can be %NULL)
1223 * @gfp_mask: allocation mask
1224 *
1225 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1226 * this function keeps retrying under memory pressure and fails iff @q is dead.
1227 *
1228 * Must be called with @q->queue_lock held and,
1229 * Returns ERR_PTR on failure, with @q->queue_lock held.
1230 * Returns request pointer on success, with @q->queue_lock *not held*.
1231 */
1232 static struct request *get_request(struct request_queue *q, int rw_flags,
1233 struct bio *bio, gfp_t gfp_mask)
1234 {
1235 const bool is_sync = rw_is_sync(rw_flags) != 0;
1236 DEFINE_WAIT(wait);
1237 struct request_list *rl;
1238 struct request *rq;
1239
1240 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1241 retry:
1242 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1243 if (!IS_ERR(rq))
1244 return rq;
1245
1246 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1247 blk_put_rl(rl);
1248 return rq;
1249 }
1250
1251 /* wait on @rl and retry */
1252 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1253 TASK_UNINTERRUPTIBLE);
1254
1255 trace_block_sleeprq(q, bio, rw_flags & 1);
1256
1257 spin_unlock_irq(q->queue_lock);
1258 io_schedule();
1259
1260 /*
1261 * After sleeping, we become a "batching" process and will be able
1262 * to allocate at least one request, and up to a big batch of them
1263 * for a small period time. See ioc_batching, ioc_set_batching
1264 */
1265 ioc_set_batching(q, current->io_context);
1266
1267 spin_lock_irq(q->queue_lock);
1268 finish_wait(&rl->wait[is_sync], &wait);
1269
1270 goto retry;
1271 }
1272
1273 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1274 gfp_t gfp_mask)
1275 {
1276 struct request *rq;
1277
1278 BUG_ON(rw != READ && rw != WRITE);
1279
1280 /* create ioc upfront */
1281 create_io_context(gfp_mask, q->node);
1282
1283 spin_lock_irq(q->queue_lock);
1284 rq = get_request(q, rw, NULL, gfp_mask);
1285 if (IS_ERR(rq))
1286 spin_unlock_irq(q->queue_lock);
1287 /* q->queue_lock is unlocked at this point */
1288
1289 return rq;
1290 }
1291
1292 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1293 {
1294 if (q->mq_ops)
1295 return blk_mq_alloc_request(q, rw,
1296 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1297 0 : BLK_MQ_REQ_NOWAIT);
1298 else
1299 return blk_old_get_request(q, rw, gfp_mask);
1300 }
1301 EXPORT_SYMBOL(blk_get_request);
1302
1303 /**
1304 * blk_make_request - given a bio, allocate a corresponding struct request.
1305 * @q: target request queue
1306 * @bio: The bio describing the memory mappings that will be submitted for IO.
1307 * It may be a chained-bio properly constructed by block/bio layer.
1308 * @gfp_mask: gfp flags to be used for memory allocation
1309 *
1310 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1311 * type commands. Where the struct request needs to be farther initialized by
1312 * the caller. It is passed a &struct bio, which describes the memory info of
1313 * the I/O transfer.
1314 *
1315 * The caller of blk_make_request must make sure that bi_io_vec
1316 * are set to describe the memory buffers. That bio_data_dir() will return
1317 * the needed direction of the request. (And all bio's in the passed bio-chain
1318 * are properly set accordingly)
1319 *
1320 * If called under none-sleepable conditions, mapped bio buffers must not
1321 * need bouncing, by calling the appropriate masked or flagged allocator,
1322 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1323 * BUG.
1324 *
1325 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1326 * given to how you allocate bios. In particular, you cannot use
1327 * __GFP_DIRECT_RECLAIM for anything but the first bio in the chain. Otherwise
1328 * you risk waiting for IO completion of a bio that hasn't been submitted yet,
1329 * thus resulting in a deadlock. Alternatively bios should be allocated using
1330 * bio_kmalloc() instead of bio_alloc(), as that avoids the mempool deadlock.
1331 * If possible a big IO should be split into smaller parts when allocation
1332 * fails. Partial allocation should not be an error, or you risk a live-lock.
1333 */
1334 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1335 gfp_t gfp_mask)
1336 {
1337 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1338
1339 if (IS_ERR(rq))
1340 return rq;
1341
1342 blk_rq_set_block_pc(rq);
1343
1344 for_each_bio(bio) {
1345 struct bio *bounce_bio = bio;
1346 int ret;
1347
1348 blk_queue_bounce(q, &bounce_bio);
1349 ret = blk_rq_append_bio(q, rq, bounce_bio);
1350 if (unlikely(ret)) {
1351 blk_put_request(rq);
1352 return ERR_PTR(ret);
1353 }
1354 }
1355
1356 return rq;
1357 }
1358 EXPORT_SYMBOL(blk_make_request);
1359
1360 /**
1361 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1362 * @rq: request to be initialized
1363 *
1364 */
1365 void blk_rq_set_block_pc(struct request *rq)
1366 {
1367 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1368 rq->__data_len = 0;
1369 rq->__sector = (sector_t) -1;
1370 rq->bio = rq->biotail = NULL;
1371 memset(rq->__cmd, 0, sizeof(rq->__cmd));
1372 }
1373 EXPORT_SYMBOL(blk_rq_set_block_pc);
1374
1375 /**
1376 * blk_requeue_request - put a request back on queue
1377 * @q: request queue where request should be inserted
1378 * @rq: request to be inserted
1379 *
1380 * Description:
1381 * Drivers often keep queueing requests until the hardware cannot accept
1382 * more, when that condition happens we need to put the request back
1383 * on the queue. Must be called with queue lock held.
1384 */
1385 void blk_requeue_request(struct request_queue *q, struct request *rq)
1386 {
1387 blk_delete_timer(rq);
1388 blk_clear_rq_complete(rq);
1389 trace_block_rq_requeue(q, rq);
1390
1391 if (rq->cmd_flags & REQ_QUEUED)
1392 blk_queue_end_tag(q, rq);
1393
1394 BUG_ON(blk_queued_rq(rq));
1395
1396 elv_requeue_request(q, rq);
1397 }
1398 EXPORT_SYMBOL(blk_requeue_request);
1399
1400 static void add_acct_request(struct request_queue *q, struct request *rq,
1401 int where)
1402 {
1403 blk_account_io_start(rq, true);
1404 __elv_add_request(q, rq, where);
1405 }
1406
1407 static void part_round_stats_single(int cpu, struct hd_struct *part,
1408 unsigned long now)
1409 {
1410 int inflight;
1411
1412 if (now == part->stamp)
1413 return;
1414
1415 inflight = part_in_flight(part);
1416 if (inflight) {
1417 __part_stat_add(cpu, part, time_in_queue,
1418 inflight * (now - part->stamp));
1419 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1420 }
1421 part->stamp = now;
1422 }
1423
1424 /**
1425 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1426 * @cpu: cpu number for stats access
1427 * @part: target partition
1428 *
1429 * The average IO queue length and utilisation statistics are maintained
1430 * by observing the current state of the queue length and the amount of
1431 * time it has been in this state for.
1432 *
1433 * Normally, that accounting is done on IO completion, but that can result
1434 * in more than a second's worth of IO being accounted for within any one
1435 * second, leading to >100% utilisation. To deal with that, we call this
1436 * function to do a round-off before returning the results when reading
1437 * /proc/diskstats. This accounts immediately for all queue usage up to
1438 * the current jiffies and restarts the counters again.
1439 */
1440 void part_round_stats(int cpu, struct hd_struct *part)
1441 {
1442 unsigned long now = jiffies;
1443
1444 if (part->partno)
1445 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1446 part_round_stats_single(cpu, part, now);
1447 }
1448 EXPORT_SYMBOL_GPL(part_round_stats);
1449
1450 #ifdef CONFIG_PM
1451 static void blk_pm_put_request(struct request *rq)
1452 {
1453 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1454 pm_runtime_mark_last_busy(rq->q->dev);
1455 }
1456 #else
1457 static inline void blk_pm_put_request(struct request *rq) {}
1458 #endif
1459
1460 /*
1461 * queue lock must be held
1462 */
1463 void __blk_put_request(struct request_queue *q, struct request *req)
1464 {
1465 if (unlikely(!q))
1466 return;
1467
1468 if (q->mq_ops) {
1469 blk_mq_free_request(req);
1470 return;
1471 }
1472
1473 blk_pm_put_request(req);
1474
1475 elv_completed_request(q, req);
1476
1477 /* this is a bio leak */
1478 WARN_ON(req->bio != NULL);
1479
1480 /*
1481 * Request may not have originated from ll_rw_blk. if not,
1482 * it didn't come out of our reserved rq pools
1483 */
1484 if (req->cmd_flags & REQ_ALLOCED) {
1485 unsigned int flags = req->cmd_flags;
1486 struct request_list *rl = blk_rq_rl(req);
1487
1488 BUG_ON(!list_empty(&req->queuelist));
1489 BUG_ON(ELV_ON_HASH(req));
1490
1491 blk_free_request(rl, req);
1492 freed_request(rl, flags);
1493 blk_put_rl(rl);
1494 }
1495 }
1496 EXPORT_SYMBOL_GPL(__blk_put_request);
1497
1498 void blk_put_request(struct request *req)
1499 {
1500 struct request_queue *q = req->q;
1501
1502 if (q->mq_ops)
1503 blk_mq_free_request(req);
1504 else {
1505 unsigned long flags;
1506
1507 spin_lock_irqsave(q->queue_lock, flags);
1508 __blk_put_request(q, req);
1509 spin_unlock_irqrestore(q->queue_lock, flags);
1510 }
1511 }
1512 EXPORT_SYMBOL(blk_put_request);
1513
1514 /**
1515 * blk_add_request_payload - add a payload to a request
1516 * @rq: request to update
1517 * @page: page backing the payload
1518 * @len: length of the payload.
1519 *
1520 * This allows to later add a payload to an already submitted request by
1521 * a block driver. The driver needs to take care of freeing the payload
1522 * itself.
1523 *
1524 * Note that this is a quite horrible hack and nothing but handling of
1525 * discard requests should ever use it.
1526 */
1527 void blk_add_request_payload(struct request *rq, struct page *page,
1528 unsigned int len)
1529 {
1530 struct bio *bio = rq->bio;
1531
1532 bio->bi_io_vec->bv_page = page;
1533 bio->bi_io_vec->bv_offset = 0;
1534 bio->bi_io_vec->bv_len = len;
1535
1536 bio->bi_iter.bi_size = len;
1537 bio->bi_vcnt = 1;
1538 bio->bi_phys_segments = 1;
1539
1540 rq->__data_len = rq->resid_len = len;
1541 rq->nr_phys_segments = 1;
1542 }
1543 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1544
1545 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1546 struct bio *bio)
1547 {
1548 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1549
1550 if (!ll_back_merge_fn(q, req, bio))
1551 return false;
1552
1553 trace_block_bio_backmerge(q, req, bio);
1554
1555 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1556 blk_rq_set_mixed_merge(req);
1557
1558 req->biotail->bi_next = bio;
1559 req->biotail = bio;
1560 req->__data_len += bio->bi_iter.bi_size;
1561 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1562
1563 blk_account_io_start(req, false);
1564 return true;
1565 }
1566
1567 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1568 struct bio *bio)
1569 {
1570 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1571
1572 if (!ll_front_merge_fn(q, req, bio))
1573 return false;
1574
1575 trace_block_bio_frontmerge(q, req, bio);
1576
1577 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1578 blk_rq_set_mixed_merge(req);
1579
1580 bio->bi_next = req->bio;
1581 req->bio = bio;
1582
1583 req->__sector = bio->bi_iter.bi_sector;
1584 req->__data_len += bio->bi_iter.bi_size;
1585 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1586
1587 blk_account_io_start(req, false);
1588 return true;
1589 }
1590
1591 /**
1592 * blk_attempt_plug_merge - try to merge with %current's plugged list
1593 * @q: request_queue new bio is being queued at
1594 * @bio: new bio being queued
1595 * @request_count: out parameter for number of traversed plugged requests
1596 * @same_queue_rq: pointer to &struct request that gets filled in when
1597 * another request associated with @q is found on the plug list
1598 * (optional, may be %NULL)
1599 *
1600 * Determine whether @bio being queued on @q can be merged with a request
1601 * on %current's plugged list. Returns %true if merge was successful,
1602 * otherwise %false.
1603 *
1604 * Plugging coalesces IOs from the same issuer for the same purpose without
1605 * going through @q->queue_lock. As such it's more of an issuing mechanism
1606 * than scheduling, and the request, while may have elvpriv data, is not
1607 * added on the elevator at this point. In addition, we don't have
1608 * reliable access to the elevator outside queue lock. Only check basic
1609 * merging parameters without querying the elevator.
1610 *
1611 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1612 */
1613 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1614 unsigned int *request_count,
1615 struct request **same_queue_rq)
1616 {
1617 struct blk_plug *plug;
1618 struct request *rq;
1619 bool ret = false;
1620 struct list_head *plug_list;
1621
1622 plug = current->plug;
1623 if (!plug)
1624 goto out;
1625 *request_count = 0;
1626
1627 if (q->mq_ops)
1628 plug_list = &plug->mq_list;
1629 else
1630 plug_list = &plug->list;
1631
1632 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1633 int el_ret;
1634
1635 if (rq->q == q) {
1636 (*request_count)++;
1637 /*
1638 * Only blk-mq multiple hardware queues case checks the
1639 * rq in the same queue, there should be only one such
1640 * rq in a queue
1641 **/
1642 if (same_queue_rq)
1643 *same_queue_rq = rq;
1644 }
1645
1646 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1647 continue;
1648
1649 el_ret = blk_try_merge(rq, bio);
1650 if (el_ret == ELEVATOR_BACK_MERGE) {
1651 ret = bio_attempt_back_merge(q, rq, bio);
1652 if (ret)
1653 break;
1654 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1655 ret = bio_attempt_front_merge(q, rq, bio);
1656 if (ret)
1657 break;
1658 }
1659 }
1660 out:
1661 return ret;
1662 }
1663
1664 unsigned int blk_plug_queued_count(struct request_queue *q)
1665 {
1666 struct blk_plug *plug;
1667 struct request *rq;
1668 struct list_head *plug_list;
1669 unsigned int ret = 0;
1670
1671 plug = current->plug;
1672 if (!plug)
1673 goto out;
1674
1675 if (q->mq_ops)
1676 plug_list = &plug->mq_list;
1677 else
1678 plug_list = &plug->list;
1679
1680 list_for_each_entry(rq, plug_list, queuelist) {
1681 if (rq->q == q)
1682 ret++;
1683 }
1684 out:
1685 return ret;
1686 }
1687
1688 void init_request_from_bio(struct request *req, struct bio *bio)
1689 {
1690 req->cmd_type = REQ_TYPE_FS;
1691
1692 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1693 if (bio->bi_rw & REQ_RAHEAD)
1694 req->cmd_flags |= REQ_FAILFAST_MASK;
1695
1696 req->errors = 0;
1697 req->__sector = bio->bi_iter.bi_sector;
1698 req->ioprio = bio_prio(bio);
1699 blk_rq_bio_prep(req->q, req, bio);
1700 }
1701
1702 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1703 {
1704 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1705 struct blk_plug *plug;
1706 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1707 struct request *req;
1708 unsigned int request_count = 0;
1709
1710 /*
1711 * low level driver can indicate that it wants pages above a
1712 * certain limit bounced to low memory (ie for highmem, or even
1713 * ISA dma in theory)
1714 */
1715 blk_queue_bounce(q, &bio);
1716
1717 blk_queue_split(q, &bio, q->bio_split);
1718
1719 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1720 bio->bi_error = -EIO;
1721 bio_endio(bio);
1722 return BLK_QC_T_NONE;
1723 }
1724
1725 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1726 spin_lock_irq(q->queue_lock);
1727 where = ELEVATOR_INSERT_FLUSH;
1728 goto get_rq;
1729 }
1730
1731 /*
1732 * Check if we can merge with the plugged list before grabbing
1733 * any locks.
1734 */
1735 if (!blk_queue_nomerges(q)) {
1736 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1737 return BLK_QC_T_NONE;
1738 } else
1739 request_count = blk_plug_queued_count(q);
1740
1741 spin_lock_irq(q->queue_lock);
1742
1743 el_ret = elv_merge(q, &req, bio);
1744 if (el_ret == ELEVATOR_BACK_MERGE) {
1745 if (bio_attempt_back_merge(q, req, bio)) {
1746 elv_bio_merged(q, req, bio);
1747 if (!attempt_back_merge(q, req))
1748 elv_merged_request(q, req, el_ret);
1749 goto out_unlock;
1750 }
1751 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1752 if (bio_attempt_front_merge(q, req, bio)) {
1753 elv_bio_merged(q, req, bio);
1754 if (!attempt_front_merge(q, req))
1755 elv_merged_request(q, req, el_ret);
1756 goto out_unlock;
1757 }
1758 }
1759
1760 get_rq:
1761 /*
1762 * This sync check and mask will be re-done in init_request_from_bio(),
1763 * but we need to set it earlier to expose the sync flag to the
1764 * rq allocator and io schedulers.
1765 */
1766 rw_flags = bio_data_dir(bio);
1767 if (sync)
1768 rw_flags |= REQ_SYNC;
1769
1770 /*
1771 * Grab a free request. This is might sleep but can not fail.
1772 * Returns with the queue unlocked.
1773 */
1774 req = get_request(q, rw_flags, bio, GFP_NOIO);
1775 if (IS_ERR(req)) {
1776 bio->bi_error = PTR_ERR(req);
1777 bio_endio(bio);
1778 goto out_unlock;
1779 }
1780
1781 /*
1782 * After dropping the lock and possibly sleeping here, our request
1783 * may now be mergeable after it had proven unmergeable (above).
1784 * We don't worry about that case for efficiency. It won't happen
1785 * often, and the elevators are able to handle it.
1786 */
1787 init_request_from_bio(req, bio);
1788
1789 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1790 req->cpu = raw_smp_processor_id();
1791
1792 plug = current->plug;
1793 if (plug) {
1794 /*
1795 * If this is the first request added after a plug, fire
1796 * of a plug trace.
1797 */
1798 if (!request_count)
1799 trace_block_plug(q);
1800 else {
1801 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1802 blk_flush_plug_list(plug, false);
1803 trace_block_plug(q);
1804 }
1805 }
1806 list_add_tail(&req->queuelist, &plug->list);
1807 blk_account_io_start(req, true);
1808 } else {
1809 spin_lock_irq(q->queue_lock);
1810 add_acct_request(q, req, where);
1811 __blk_run_queue(q);
1812 out_unlock:
1813 spin_unlock_irq(q->queue_lock);
1814 }
1815
1816 return BLK_QC_T_NONE;
1817 }
1818
1819 /*
1820 * If bio->bi_dev is a partition, remap the location
1821 */
1822 static inline void blk_partition_remap(struct bio *bio)
1823 {
1824 struct block_device *bdev = bio->bi_bdev;
1825
1826 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1827 struct hd_struct *p = bdev->bd_part;
1828
1829 bio->bi_iter.bi_sector += p->start_sect;
1830 bio->bi_bdev = bdev->bd_contains;
1831
1832 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1833 bdev->bd_dev,
1834 bio->bi_iter.bi_sector - p->start_sect);
1835 }
1836 }
1837
1838 static void handle_bad_sector(struct bio *bio)
1839 {
1840 char b[BDEVNAME_SIZE];
1841
1842 printk(KERN_INFO "attempt to access beyond end of device\n");
1843 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1844 bdevname(bio->bi_bdev, b),
1845 bio->bi_rw,
1846 (unsigned long long)bio_end_sector(bio),
1847 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1848 }
1849
1850 #ifdef CONFIG_FAIL_MAKE_REQUEST
1851
1852 static DECLARE_FAULT_ATTR(fail_make_request);
1853
1854 static int __init setup_fail_make_request(char *str)
1855 {
1856 return setup_fault_attr(&fail_make_request, str);
1857 }
1858 __setup("fail_make_request=", setup_fail_make_request);
1859
1860 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1861 {
1862 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1863 }
1864
1865 static int __init fail_make_request_debugfs(void)
1866 {
1867 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1868 NULL, &fail_make_request);
1869
1870 return PTR_ERR_OR_ZERO(dir);
1871 }
1872
1873 late_initcall(fail_make_request_debugfs);
1874
1875 #else /* CONFIG_FAIL_MAKE_REQUEST */
1876
1877 static inline bool should_fail_request(struct hd_struct *part,
1878 unsigned int bytes)
1879 {
1880 return false;
1881 }
1882
1883 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1884
1885 /*
1886 * Check whether this bio extends beyond the end of the device.
1887 */
1888 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1889 {
1890 sector_t maxsector;
1891
1892 if (!nr_sectors)
1893 return 0;
1894
1895 /* Test device or partition size, when known. */
1896 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1897 if (maxsector) {
1898 sector_t sector = bio->bi_iter.bi_sector;
1899
1900 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1901 /*
1902 * This may well happen - the kernel calls bread()
1903 * without checking the size of the device, e.g., when
1904 * mounting a device.
1905 */
1906 handle_bad_sector(bio);
1907 return 1;
1908 }
1909 }
1910
1911 return 0;
1912 }
1913
1914 static noinline_for_stack bool
1915 generic_make_request_checks(struct bio *bio)
1916 {
1917 struct request_queue *q;
1918 int nr_sectors = bio_sectors(bio);
1919 int err = -EIO;
1920 char b[BDEVNAME_SIZE];
1921 struct hd_struct *part;
1922
1923 might_sleep();
1924
1925 if (bio_check_eod(bio, nr_sectors))
1926 goto end_io;
1927
1928 q = bdev_get_queue(bio->bi_bdev);
1929 if (unlikely(!q)) {
1930 printk(KERN_ERR
1931 "generic_make_request: Trying to access "
1932 "nonexistent block-device %s (%Lu)\n",
1933 bdevname(bio->bi_bdev, b),
1934 (long long) bio->bi_iter.bi_sector);
1935 goto end_io;
1936 }
1937
1938 part = bio->bi_bdev->bd_part;
1939 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1940 should_fail_request(&part_to_disk(part)->part0,
1941 bio->bi_iter.bi_size))
1942 goto end_io;
1943
1944 /*
1945 * If this device has partitions, remap block n
1946 * of partition p to block n+start(p) of the disk.
1947 */
1948 blk_partition_remap(bio);
1949
1950 if (bio_check_eod(bio, nr_sectors))
1951 goto end_io;
1952
1953 /*
1954 * Filter flush bio's early so that make_request based
1955 * drivers without flush support don't have to worry
1956 * about them.
1957 */
1958 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1959 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1960 if (!nr_sectors) {
1961 err = 0;
1962 goto end_io;
1963 }
1964 }
1965
1966 if ((bio->bi_rw & REQ_DISCARD) &&
1967 (!blk_queue_discard(q) ||
1968 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1969 err = -EOPNOTSUPP;
1970 goto end_io;
1971 }
1972
1973 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1974 err = -EOPNOTSUPP;
1975 goto end_io;
1976 }
1977
1978 /*
1979 * Various block parts want %current->io_context and lazy ioc
1980 * allocation ends up trading a lot of pain for a small amount of
1981 * memory. Just allocate it upfront. This may fail and block
1982 * layer knows how to live with it.
1983 */
1984 create_io_context(GFP_ATOMIC, q->node);
1985
1986 if (!blkcg_bio_issue_check(q, bio))
1987 return false;
1988
1989 trace_block_bio_queue(q, bio);
1990 return true;
1991
1992 end_io:
1993 bio->bi_error = err;
1994 bio_endio(bio);
1995 return false;
1996 }
1997
1998 /**
1999 * generic_make_request - hand a buffer to its device driver for I/O
2000 * @bio: The bio describing the location in memory and on the device.
2001 *
2002 * generic_make_request() is used to make I/O requests of block
2003 * devices. It is passed a &struct bio, which describes the I/O that needs
2004 * to be done.
2005 *
2006 * generic_make_request() does not return any status. The
2007 * success/failure status of the request, along with notification of
2008 * completion, is delivered asynchronously through the bio->bi_end_io
2009 * function described (one day) else where.
2010 *
2011 * The caller of generic_make_request must make sure that bi_io_vec
2012 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2013 * set to describe the device address, and the
2014 * bi_end_io and optionally bi_private are set to describe how
2015 * completion notification should be signaled.
2016 *
2017 * generic_make_request and the drivers it calls may use bi_next if this
2018 * bio happens to be merged with someone else, and may resubmit the bio to
2019 * a lower device by calling into generic_make_request recursively, which
2020 * means the bio should NOT be touched after the call to ->make_request_fn.
2021 */
2022 blk_qc_t generic_make_request(struct bio *bio)
2023 {
2024 struct bio_list bio_list_on_stack;
2025 blk_qc_t ret = BLK_QC_T_NONE;
2026
2027 if (!generic_make_request_checks(bio))
2028 goto out;
2029
2030 /*
2031 * We only want one ->make_request_fn to be active at a time, else
2032 * stack usage with stacked devices could be a problem. So use
2033 * current->bio_list to keep a list of requests submited by a
2034 * make_request_fn function. current->bio_list is also used as a
2035 * flag to say if generic_make_request is currently active in this
2036 * task or not. If it is NULL, then no make_request is active. If
2037 * it is non-NULL, then a make_request is active, and new requests
2038 * should be added at the tail
2039 */
2040 if (current->bio_list) {
2041 bio_list_add(current->bio_list, bio);
2042 goto out;
2043 }
2044
2045 /* following loop may be a bit non-obvious, and so deserves some
2046 * explanation.
2047 * Before entering the loop, bio->bi_next is NULL (as all callers
2048 * ensure that) so we have a list with a single bio.
2049 * We pretend that we have just taken it off a longer list, so
2050 * we assign bio_list to a pointer to the bio_list_on_stack,
2051 * thus initialising the bio_list of new bios to be
2052 * added. ->make_request() may indeed add some more bios
2053 * through a recursive call to generic_make_request. If it
2054 * did, we find a non-NULL value in bio_list and re-enter the loop
2055 * from the top. In this case we really did just take the bio
2056 * of the top of the list (no pretending) and so remove it from
2057 * bio_list, and call into ->make_request() again.
2058 */
2059 BUG_ON(bio->bi_next);
2060 bio_list_init(&bio_list_on_stack);
2061 current->bio_list = &bio_list_on_stack;
2062 do {
2063 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2064
2065 if (likely(blk_queue_enter(q, false) == 0)) {
2066 ret = q->make_request_fn(q, bio);
2067
2068 blk_queue_exit(q);
2069
2070 bio = bio_list_pop(current->bio_list);
2071 } else {
2072 struct bio *bio_next = bio_list_pop(current->bio_list);
2073
2074 bio_io_error(bio);
2075 bio = bio_next;
2076 }
2077 } while (bio);
2078 current->bio_list = NULL; /* deactivate */
2079
2080 out:
2081 return ret;
2082 }
2083 EXPORT_SYMBOL(generic_make_request);
2084
2085 /**
2086 * submit_bio - submit a bio to the block device layer for I/O
2087 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2088 * @bio: The &struct bio which describes the I/O
2089 *
2090 * submit_bio() is very similar in purpose to generic_make_request(), and
2091 * uses that function to do most of the work. Both are fairly rough
2092 * interfaces; @bio must be presetup and ready for I/O.
2093 *
2094 */
2095 blk_qc_t submit_bio(int rw, struct bio *bio)
2096 {
2097 bio->bi_rw |= rw;
2098
2099 /*
2100 * If it's a regular read/write or a barrier with data attached,
2101 * go through the normal accounting stuff before submission.
2102 */
2103 if (bio_has_data(bio)) {
2104 unsigned int count;
2105
2106 if (unlikely(rw & REQ_WRITE_SAME))
2107 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2108 else
2109 count = bio_sectors(bio);
2110
2111 if (rw & WRITE) {
2112 count_vm_events(PGPGOUT, count);
2113 } else {
2114 task_io_account_read(bio->bi_iter.bi_size);
2115 count_vm_events(PGPGIN, count);
2116 }
2117
2118 if (unlikely(block_dump)) {
2119 char b[BDEVNAME_SIZE];
2120 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2121 current->comm, task_pid_nr(current),
2122 (rw & WRITE) ? "WRITE" : "READ",
2123 (unsigned long long)bio->bi_iter.bi_sector,
2124 bdevname(bio->bi_bdev, b),
2125 count);
2126 }
2127 }
2128
2129 return generic_make_request(bio);
2130 }
2131 EXPORT_SYMBOL(submit_bio);
2132
2133 /**
2134 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2135 * for new the queue limits
2136 * @q: the queue
2137 * @rq: the request being checked
2138 *
2139 * Description:
2140 * @rq may have been made based on weaker limitations of upper-level queues
2141 * in request stacking drivers, and it may violate the limitation of @q.
2142 * Since the block layer and the underlying device driver trust @rq
2143 * after it is inserted to @q, it should be checked against @q before
2144 * the insertion using this generic function.
2145 *
2146 * Request stacking drivers like request-based dm may change the queue
2147 * limits when retrying requests on other queues. Those requests need
2148 * to be checked against the new queue limits again during dispatch.
2149 */
2150 static int blk_cloned_rq_check_limits(struct request_queue *q,
2151 struct request *rq)
2152 {
2153 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
2154 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2155 return -EIO;
2156 }
2157
2158 /*
2159 * queue's settings related to segment counting like q->bounce_pfn
2160 * may differ from that of other stacking queues.
2161 * Recalculate it to check the request correctly on this queue's
2162 * limitation.
2163 */
2164 blk_recalc_rq_segments(rq);
2165 if (rq->nr_phys_segments > queue_max_segments(q)) {
2166 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2167 return -EIO;
2168 }
2169
2170 return 0;
2171 }
2172
2173 /**
2174 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2175 * @q: the queue to submit the request
2176 * @rq: the request being queued
2177 */
2178 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2179 {
2180 unsigned long flags;
2181 int where = ELEVATOR_INSERT_BACK;
2182
2183 if (blk_cloned_rq_check_limits(q, rq))
2184 return -EIO;
2185
2186 if (rq->rq_disk &&
2187 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2188 return -EIO;
2189
2190 if (q->mq_ops) {
2191 if (blk_queue_io_stat(q))
2192 blk_account_io_start(rq, true);
2193 blk_mq_insert_request(rq, false, true, true);
2194 return 0;
2195 }
2196
2197 spin_lock_irqsave(q->queue_lock, flags);
2198 if (unlikely(blk_queue_dying(q))) {
2199 spin_unlock_irqrestore(q->queue_lock, flags);
2200 return -ENODEV;
2201 }
2202
2203 /*
2204 * Submitting request must be dequeued before calling this function
2205 * because it will be linked to another request_queue
2206 */
2207 BUG_ON(blk_queued_rq(rq));
2208
2209 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2210 where = ELEVATOR_INSERT_FLUSH;
2211
2212 add_acct_request(q, rq, where);
2213 if (where == ELEVATOR_INSERT_FLUSH)
2214 __blk_run_queue(q);
2215 spin_unlock_irqrestore(q->queue_lock, flags);
2216
2217 return 0;
2218 }
2219 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2220
2221 /**
2222 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2223 * @rq: request to examine
2224 *
2225 * Description:
2226 * A request could be merge of IOs which require different failure
2227 * handling. This function determines the number of bytes which
2228 * can be failed from the beginning of the request without
2229 * crossing into area which need to be retried further.
2230 *
2231 * Return:
2232 * The number of bytes to fail.
2233 *
2234 * Context:
2235 * queue_lock must be held.
2236 */
2237 unsigned int blk_rq_err_bytes(const struct request *rq)
2238 {
2239 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2240 unsigned int bytes = 0;
2241 struct bio *bio;
2242
2243 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2244 return blk_rq_bytes(rq);
2245
2246 /*
2247 * Currently the only 'mixing' which can happen is between
2248 * different fastfail types. We can safely fail portions
2249 * which have all the failfast bits that the first one has -
2250 * the ones which are at least as eager to fail as the first
2251 * one.
2252 */
2253 for (bio = rq->bio; bio; bio = bio->bi_next) {
2254 if ((bio->bi_rw & ff) != ff)
2255 break;
2256 bytes += bio->bi_iter.bi_size;
2257 }
2258
2259 /* this could lead to infinite loop */
2260 BUG_ON(blk_rq_bytes(rq) && !bytes);
2261 return bytes;
2262 }
2263 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2264
2265 void blk_account_io_completion(struct request *req, unsigned int bytes)
2266 {
2267 if (blk_do_io_stat(req)) {
2268 const int rw = rq_data_dir(req);
2269 struct hd_struct *part;
2270 int cpu;
2271
2272 cpu = part_stat_lock();
2273 part = req->part;
2274 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2275 part_stat_unlock();
2276 }
2277 }
2278
2279 void blk_account_io_done(struct request *req)
2280 {
2281 /*
2282 * Account IO completion. flush_rq isn't accounted as a
2283 * normal IO on queueing nor completion. Accounting the
2284 * containing request is enough.
2285 */
2286 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2287 unsigned long duration = jiffies - req->start_time;
2288 const int rw = rq_data_dir(req);
2289 struct hd_struct *part;
2290 int cpu;
2291
2292 cpu = part_stat_lock();
2293 part = req->part;
2294
2295 part_stat_inc(cpu, part, ios[rw]);
2296 part_stat_add(cpu, part, ticks[rw], duration);
2297 part_round_stats(cpu, part);
2298 part_dec_in_flight(part, rw);
2299
2300 hd_struct_put(part);
2301 part_stat_unlock();
2302 }
2303 }
2304
2305 #ifdef CONFIG_PM
2306 /*
2307 * Don't process normal requests when queue is suspended
2308 * or in the process of suspending/resuming
2309 */
2310 static struct request *blk_pm_peek_request(struct request_queue *q,
2311 struct request *rq)
2312 {
2313 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2314 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2315 return NULL;
2316 else
2317 return rq;
2318 }
2319 #else
2320 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2321 struct request *rq)
2322 {
2323 return rq;
2324 }
2325 #endif
2326
2327 void blk_account_io_start(struct request *rq, bool new_io)
2328 {
2329 struct hd_struct *part;
2330 int rw = rq_data_dir(rq);
2331 int cpu;
2332
2333 if (!blk_do_io_stat(rq))
2334 return;
2335
2336 cpu = part_stat_lock();
2337
2338 if (!new_io) {
2339 part = rq->part;
2340 part_stat_inc(cpu, part, merges[rw]);
2341 } else {
2342 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2343 if (!hd_struct_try_get(part)) {
2344 /*
2345 * The partition is already being removed,
2346 * the request will be accounted on the disk only
2347 *
2348 * We take a reference on disk->part0 although that
2349 * partition will never be deleted, so we can treat
2350 * it as any other partition.
2351 */
2352 part = &rq->rq_disk->part0;
2353 hd_struct_get(part);
2354 }
2355 part_round_stats(cpu, part);
2356 part_inc_in_flight(part, rw);
2357 rq->part = part;
2358 }
2359
2360 part_stat_unlock();
2361 }
2362
2363 /**
2364 * blk_peek_request - peek at the top of a request queue
2365 * @q: request queue to peek at
2366 *
2367 * Description:
2368 * Return the request at the top of @q. The returned request
2369 * should be started using blk_start_request() before LLD starts
2370 * processing it.
2371 *
2372 * Return:
2373 * Pointer to the request at the top of @q if available. Null
2374 * otherwise.
2375 *
2376 * Context:
2377 * queue_lock must be held.
2378 */
2379 struct request *blk_peek_request(struct request_queue *q)
2380 {
2381 struct request *rq;
2382 int ret;
2383
2384 while ((rq = __elv_next_request(q)) != NULL) {
2385
2386 rq = blk_pm_peek_request(q, rq);
2387 if (!rq)
2388 break;
2389
2390 if (!(rq->cmd_flags & REQ_STARTED)) {
2391 /*
2392 * This is the first time the device driver
2393 * sees this request (possibly after
2394 * requeueing). Notify IO scheduler.
2395 */
2396 if (rq->cmd_flags & REQ_SORTED)
2397 elv_activate_rq(q, rq);
2398
2399 /*
2400 * just mark as started even if we don't start
2401 * it, a request that has been delayed should
2402 * not be passed by new incoming requests
2403 */
2404 rq->cmd_flags |= REQ_STARTED;
2405 trace_block_rq_issue(q, rq);
2406 }
2407
2408 if (!q->boundary_rq || q->boundary_rq == rq) {
2409 q->end_sector = rq_end_sector(rq);
2410 q->boundary_rq = NULL;
2411 }
2412
2413 if (rq->cmd_flags & REQ_DONTPREP)
2414 break;
2415
2416 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2417 /*
2418 * make sure space for the drain appears we
2419 * know we can do this because max_hw_segments
2420 * has been adjusted to be one fewer than the
2421 * device can handle
2422 */
2423 rq->nr_phys_segments++;
2424 }
2425
2426 if (!q->prep_rq_fn)
2427 break;
2428
2429 ret = q->prep_rq_fn(q, rq);
2430 if (ret == BLKPREP_OK) {
2431 break;
2432 } else if (ret == BLKPREP_DEFER) {
2433 /*
2434 * the request may have been (partially) prepped.
2435 * we need to keep this request in the front to
2436 * avoid resource deadlock. REQ_STARTED will
2437 * prevent other fs requests from passing this one.
2438 */
2439 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2440 !(rq->cmd_flags & REQ_DONTPREP)) {
2441 /*
2442 * remove the space for the drain we added
2443 * so that we don't add it again
2444 */
2445 --rq->nr_phys_segments;
2446 }
2447
2448 rq = NULL;
2449 break;
2450 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2451 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2452
2453 rq->cmd_flags |= REQ_QUIET;
2454 /*
2455 * Mark this request as started so we don't trigger
2456 * any debug logic in the end I/O path.
2457 */
2458 blk_start_request(rq);
2459 __blk_end_request_all(rq, err);
2460 } else {
2461 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2462 break;
2463 }
2464 }
2465
2466 return rq;
2467 }
2468 EXPORT_SYMBOL(blk_peek_request);
2469
2470 void blk_dequeue_request(struct request *rq)
2471 {
2472 struct request_queue *q = rq->q;
2473
2474 BUG_ON(list_empty(&rq->queuelist));
2475 BUG_ON(ELV_ON_HASH(rq));
2476
2477 list_del_init(&rq->queuelist);
2478
2479 /*
2480 * the time frame between a request being removed from the lists
2481 * and to it is freed is accounted as io that is in progress at
2482 * the driver side.
2483 */
2484 if (blk_account_rq(rq)) {
2485 q->in_flight[rq_is_sync(rq)]++;
2486 set_io_start_time_ns(rq);
2487 }
2488 }
2489
2490 /**
2491 * blk_start_request - start request processing on the driver
2492 * @req: request to dequeue
2493 *
2494 * Description:
2495 * Dequeue @req and start timeout timer on it. This hands off the
2496 * request to the driver.
2497 *
2498 * Block internal functions which don't want to start timer should
2499 * call blk_dequeue_request().
2500 *
2501 * Context:
2502 * queue_lock must be held.
2503 */
2504 void blk_start_request(struct request *req)
2505 {
2506 blk_dequeue_request(req);
2507
2508 /*
2509 * We are now handing the request to the hardware, initialize
2510 * resid_len to full count and add the timeout handler.
2511 */
2512 req->resid_len = blk_rq_bytes(req);
2513 if (unlikely(blk_bidi_rq(req)))
2514 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2515
2516 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2517 blk_add_timer(req);
2518 }
2519 EXPORT_SYMBOL(blk_start_request);
2520
2521 /**
2522 * blk_fetch_request - fetch a request from a request queue
2523 * @q: request queue to fetch a request from
2524 *
2525 * Description:
2526 * Return the request at the top of @q. The request is started on
2527 * return and LLD can start processing it immediately.
2528 *
2529 * Return:
2530 * Pointer to the request at the top of @q if available. Null
2531 * otherwise.
2532 *
2533 * Context:
2534 * queue_lock must be held.
2535 */
2536 struct request *blk_fetch_request(struct request_queue *q)
2537 {
2538 struct request *rq;
2539
2540 rq = blk_peek_request(q);
2541 if (rq)
2542 blk_start_request(rq);
2543 return rq;
2544 }
2545 EXPORT_SYMBOL(blk_fetch_request);
2546
2547 /**
2548 * blk_update_request - Special helper function for request stacking drivers
2549 * @req: the request being processed
2550 * @error: %0 for success, < %0 for error
2551 * @nr_bytes: number of bytes to complete @req
2552 *
2553 * Description:
2554 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2555 * the request structure even if @req doesn't have leftover.
2556 * If @req has leftover, sets it up for the next range of segments.
2557 *
2558 * This special helper function is only for request stacking drivers
2559 * (e.g. request-based dm) so that they can handle partial completion.
2560 * Actual device drivers should use blk_end_request instead.
2561 *
2562 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2563 * %false return from this function.
2564 *
2565 * Return:
2566 * %false - this request doesn't have any more data
2567 * %true - this request has more data
2568 **/
2569 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2570 {
2571 int total_bytes;
2572
2573 trace_block_rq_complete(req->q, req, nr_bytes);
2574
2575 if (!req->bio)
2576 return false;
2577
2578 /*
2579 * For fs requests, rq is just carrier of independent bio's
2580 * and each partial completion should be handled separately.
2581 * Reset per-request error on each partial completion.
2582 *
2583 * TODO: tj: This is too subtle. It would be better to let
2584 * low level drivers do what they see fit.
2585 */
2586 if (req->cmd_type == REQ_TYPE_FS)
2587 req->errors = 0;
2588
2589 if (error && req->cmd_type == REQ_TYPE_FS &&
2590 !(req->cmd_flags & REQ_QUIET)) {
2591 char *error_type;
2592
2593 switch (error) {
2594 case -ENOLINK:
2595 error_type = "recoverable transport";
2596 break;
2597 case -EREMOTEIO:
2598 error_type = "critical target";
2599 break;
2600 case -EBADE:
2601 error_type = "critical nexus";
2602 break;
2603 case -ETIMEDOUT:
2604 error_type = "timeout";
2605 break;
2606 case -ENOSPC:
2607 error_type = "critical space allocation";
2608 break;
2609 case -ENODATA:
2610 error_type = "critical medium";
2611 break;
2612 case -EIO:
2613 default:
2614 error_type = "I/O";
2615 break;
2616 }
2617 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2618 __func__, error_type, req->rq_disk ?
2619 req->rq_disk->disk_name : "?",
2620 (unsigned long long)blk_rq_pos(req));
2621
2622 }
2623
2624 blk_account_io_completion(req, nr_bytes);
2625
2626 total_bytes = 0;
2627 while (req->bio) {
2628 struct bio *bio = req->bio;
2629 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2630
2631 if (bio_bytes == bio->bi_iter.bi_size)
2632 req->bio = bio->bi_next;
2633
2634 req_bio_endio(req, bio, bio_bytes, error);
2635
2636 total_bytes += bio_bytes;
2637 nr_bytes -= bio_bytes;
2638
2639 if (!nr_bytes)
2640 break;
2641 }
2642
2643 /*
2644 * completely done
2645 */
2646 if (!req->bio) {
2647 /*
2648 * Reset counters so that the request stacking driver
2649 * can find how many bytes remain in the request
2650 * later.
2651 */
2652 req->__data_len = 0;
2653 return false;
2654 }
2655
2656 req->__data_len -= total_bytes;
2657
2658 /* update sector only for requests with clear definition of sector */
2659 if (req->cmd_type == REQ_TYPE_FS)
2660 req->__sector += total_bytes >> 9;
2661
2662 /* mixed attributes always follow the first bio */
2663 if (req->cmd_flags & REQ_MIXED_MERGE) {
2664 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2665 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2666 }
2667
2668 /*
2669 * If total number of sectors is less than the first segment
2670 * size, something has gone terribly wrong.
2671 */
2672 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2673 blk_dump_rq_flags(req, "request botched");
2674 req->__data_len = blk_rq_cur_bytes(req);
2675 }
2676
2677 /* recalculate the number of segments */
2678 blk_recalc_rq_segments(req);
2679
2680 return true;
2681 }
2682 EXPORT_SYMBOL_GPL(blk_update_request);
2683
2684 static bool blk_update_bidi_request(struct request *rq, int error,
2685 unsigned int nr_bytes,
2686 unsigned int bidi_bytes)
2687 {
2688 if (blk_update_request(rq, error, nr_bytes))
2689 return true;
2690
2691 /* Bidi request must be completed as a whole */
2692 if (unlikely(blk_bidi_rq(rq)) &&
2693 blk_update_request(rq->next_rq, error, bidi_bytes))
2694 return true;
2695
2696 if (blk_queue_add_random(rq->q))
2697 add_disk_randomness(rq->rq_disk);
2698
2699 return false;
2700 }
2701
2702 /**
2703 * blk_unprep_request - unprepare a request
2704 * @req: the request
2705 *
2706 * This function makes a request ready for complete resubmission (or
2707 * completion). It happens only after all error handling is complete,
2708 * so represents the appropriate moment to deallocate any resources
2709 * that were allocated to the request in the prep_rq_fn. The queue
2710 * lock is held when calling this.
2711 */
2712 void blk_unprep_request(struct request *req)
2713 {
2714 struct request_queue *q = req->q;
2715
2716 req->cmd_flags &= ~REQ_DONTPREP;
2717 if (q->unprep_rq_fn)
2718 q->unprep_rq_fn(q, req);
2719 }
2720 EXPORT_SYMBOL_GPL(blk_unprep_request);
2721
2722 /*
2723 * queue lock must be held
2724 */
2725 void blk_finish_request(struct request *req, int error)
2726 {
2727 if (req->cmd_flags & REQ_QUEUED)
2728 blk_queue_end_tag(req->q, req);
2729
2730 BUG_ON(blk_queued_rq(req));
2731
2732 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2733 laptop_io_completion(&req->q->backing_dev_info);
2734
2735 blk_delete_timer(req);
2736
2737 if (req->cmd_flags & REQ_DONTPREP)
2738 blk_unprep_request(req);
2739
2740 blk_account_io_done(req);
2741
2742 if (req->end_io)
2743 req->end_io(req, error);
2744 else {
2745 if (blk_bidi_rq(req))
2746 __blk_put_request(req->next_rq->q, req->next_rq);
2747
2748 __blk_put_request(req->q, req);
2749 }
2750 }
2751 EXPORT_SYMBOL(blk_finish_request);
2752
2753 /**
2754 * blk_end_bidi_request - Complete a bidi request
2755 * @rq: the request to complete
2756 * @error: %0 for success, < %0 for error
2757 * @nr_bytes: number of bytes to complete @rq
2758 * @bidi_bytes: number of bytes to complete @rq->next_rq
2759 *
2760 * Description:
2761 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2762 * Drivers that supports bidi can safely call this member for any
2763 * type of request, bidi or uni. In the later case @bidi_bytes is
2764 * just ignored.
2765 *
2766 * Return:
2767 * %false - we are done with this request
2768 * %true - still buffers pending for this request
2769 **/
2770 static bool blk_end_bidi_request(struct request *rq, int error,
2771 unsigned int nr_bytes, unsigned int bidi_bytes)
2772 {
2773 struct request_queue *q = rq->q;
2774 unsigned long flags;
2775
2776 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2777 return true;
2778
2779 spin_lock_irqsave(q->queue_lock, flags);
2780 blk_finish_request(rq, error);
2781 spin_unlock_irqrestore(q->queue_lock, flags);
2782
2783 return false;
2784 }
2785
2786 /**
2787 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2788 * @rq: the request to complete
2789 * @error: %0 for success, < %0 for error
2790 * @nr_bytes: number of bytes to complete @rq
2791 * @bidi_bytes: number of bytes to complete @rq->next_rq
2792 *
2793 * Description:
2794 * Identical to blk_end_bidi_request() except that queue lock is
2795 * assumed to be locked on entry and remains so on return.
2796 *
2797 * Return:
2798 * %false - we are done with this request
2799 * %true - still buffers pending for this request
2800 **/
2801 bool __blk_end_bidi_request(struct request *rq, int error,
2802 unsigned int nr_bytes, unsigned int bidi_bytes)
2803 {
2804 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2805 return true;
2806
2807 blk_finish_request(rq, error);
2808
2809 return false;
2810 }
2811
2812 /**
2813 * blk_end_request - Helper function for drivers to complete the request.
2814 * @rq: the request being processed
2815 * @error: %0 for success, < %0 for error
2816 * @nr_bytes: number of bytes to complete
2817 *
2818 * Description:
2819 * Ends I/O on a number of bytes attached to @rq.
2820 * If @rq has leftover, sets it up for the next range of segments.
2821 *
2822 * Return:
2823 * %false - we are done with this request
2824 * %true - still buffers pending for this request
2825 **/
2826 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2827 {
2828 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2829 }
2830 EXPORT_SYMBOL(blk_end_request);
2831
2832 /**
2833 * blk_end_request_all - Helper function for drives to finish the request.
2834 * @rq: the request to finish
2835 * @error: %0 for success, < %0 for error
2836 *
2837 * Description:
2838 * Completely finish @rq.
2839 */
2840 void blk_end_request_all(struct request *rq, int error)
2841 {
2842 bool pending;
2843 unsigned int bidi_bytes = 0;
2844
2845 if (unlikely(blk_bidi_rq(rq)))
2846 bidi_bytes = blk_rq_bytes(rq->next_rq);
2847
2848 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2849 BUG_ON(pending);
2850 }
2851 EXPORT_SYMBOL(blk_end_request_all);
2852
2853 /**
2854 * blk_end_request_cur - Helper function to finish the current request chunk.
2855 * @rq: the request to finish the current chunk for
2856 * @error: %0 for success, < %0 for error
2857 *
2858 * Description:
2859 * Complete the current consecutively mapped chunk from @rq.
2860 *
2861 * Return:
2862 * %false - we are done with this request
2863 * %true - still buffers pending for this request
2864 */
2865 bool blk_end_request_cur(struct request *rq, int error)
2866 {
2867 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2868 }
2869 EXPORT_SYMBOL(blk_end_request_cur);
2870
2871 /**
2872 * blk_end_request_err - Finish a request till the next failure boundary.
2873 * @rq: the request to finish till the next failure boundary for
2874 * @error: must be negative errno
2875 *
2876 * Description:
2877 * Complete @rq till the next failure boundary.
2878 *
2879 * Return:
2880 * %false - we are done with this request
2881 * %true - still buffers pending for this request
2882 */
2883 bool blk_end_request_err(struct request *rq, int error)
2884 {
2885 WARN_ON(error >= 0);
2886 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2887 }
2888 EXPORT_SYMBOL_GPL(blk_end_request_err);
2889
2890 /**
2891 * __blk_end_request - Helper function for drivers to complete the request.
2892 * @rq: the request being processed
2893 * @error: %0 for success, < %0 for error
2894 * @nr_bytes: number of bytes to complete
2895 *
2896 * Description:
2897 * Must be called with queue lock held unlike blk_end_request().
2898 *
2899 * Return:
2900 * %false - we are done with this request
2901 * %true - still buffers pending for this request
2902 **/
2903 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2904 {
2905 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2906 }
2907 EXPORT_SYMBOL(__blk_end_request);
2908
2909 /**
2910 * __blk_end_request_all - Helper function for drives to finish the request.
2911 * @rq: the request to finish
2912 * @error: %0 for success, < %0 for error
2913 *
2914 * Description:
2915 * Completely finish @rq. Must be called with queue lock held.
2916 */
2917 void __blk_end_request_all(struct request *rq, int error)
2918 {
2919 bool pending;
2920 unsigned int bidi_bytes = 0;
2921
2922 if (unlikely(blk_bidi_rq(rq)))
2923 bidi_bytes = blk_rq_bytes(rq->next_rq);
2924
2925 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2926 BUG_ON(pending);
2927 }
2928 EXPORT_SYMBOL(__blk_end_request_all);
2929
2930 /**
2931 * __blk_end_request_cur - Helper function to finish the current request chunk.
2932 * @rq: the request to finish the current chunk for
2933 * @error: %0 for success, < %0 for error
2934 *
2935 * Description:
2936 * Complete the current consecutively mapped chunk from @rq. Must
2937 * be called with queue lock held.
2938 *
2939 * Return:
2940 * %false - we are done with this request
2941 * %true - still buffers pending for this request
2942 */
2943 bool __blk_end_request_cur(struct request *rq, int error)
2944 {
2945 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2946 }
2947 EXPORT_SYMBOL(__blk_end_request_cur);
2948
2949 /**
2950 * __blk_end_request_err - Finish a request till the next failure boundary.
2951 * @rq: the request to finish till the next failure boundary for
2952 * @error: must be negative errno
2953 *
2954 * Description:
2955 * Complete @rq till the next failure boundary. Must be called
2956 * with queue lock held.
2957 *
2958 * Return:
2959 * %false - we are done with this request
2960 * %true - still buffers pending for this request
2961 */
2962 bool __blk_end_request_err(struct request *rq, int error)
2963 {
2964 WARN_ON(error >= 0);
2965 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2966 }
2967 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2968
2969 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2970 struct bio *bio)
2971 {
2972 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2973 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2974
2975 if (bio_has_data(bio))
2976 rq->nr_phys_segments = bio_phys_segments(q, bio);
2977
2978 rq->__data_len = bio->bi_iter.bi_size;
2979 rq->bio = rq->biotail = bio;
2980
2981 if (bio->bi_bdev)
2982 rq->rq_disk = bio->bi_bdev->bd_disk;
2983 }
2984
2985 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2986 /**
2987 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2988 * @rq: the request to be flushed
2989 *
2990 * Description:
2991 * Flush all pages in @rq.
2992 */
2993 void rq_flush_dcache_pages(struct request *rq)
2994 {
2995 struct req_iterator iter;
2996 struct bio_vec bvec;
2997
2998 rq_for_each_segment(bvec, rq, iter)
2999 flush_dcache_page(bvec.bv_page);
3000 }
3001 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3002 #endif
3003
3004 /**
3005 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3006 * @q : the queue of the device being checked
3007 *
3008 * Description:
3009 * Check if underlying low-level drivers of a device are busy.
3010 * If the drivers want to export their busy state, they must set own
3011 * exporting function using blk_queue_lld_busy() first.
3012 *
3013 * Basically, this function is used only by request stacking drivers
3014 * to stop dispatching requests to underlying devices when underlying
3015 * devices are busy. This behavior helps more I/O merging on the queue
3016 * of the request stacking driver and prevents I/O throughput regression
3017 * on burst I/O load.
3018 *
3019 * Return:
3020 * 0 - Not busy (The request stacking driver should dispatch request)
3021 * 1 - Busy (The request stacking driver should stop dispatching request)
3022 */
3023 int blk_lld_busy(struct request_queue *q)
3024 {
3025 if (q->lld_busy_fn)
3026 return q->lld_busy_fn(q);
3027
3028 return 0;
3029 }
3030 EXPORT_SYMBOL_GPL(blk_lld_busy);
3031
3032 /**
3033 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3034 * @rq: the clone request to be cleaned up
3035 *
3036 * Description:
3037 * Free all bios in @rq for a cloned request.
3038 */
3039 void blk_rq_unprep_clone(struct request *rq)
3040 {
3041 struct bio *bio;
3042
3043 while ((bio = rq->bio) != NULL) {
3044 rq->bio = bio->bi_next;
3045
3046 bio_put(bio);
3047 }
3048 }
3049 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3050
3051 /*
3052 * Copy attributes of the original request to the clone request.
3053 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3054 */
3055 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3056 {
3057 dst->cpu = src->cpu;
3058 dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
3059 dst->cmd_type = src->cmd_type;
3060 dst->__sector = blk_rq_pos(src);
3061 dst->__data_len = blk_rq_bytes(src);
3062 dst->nr_phys_segments = src->nr_phys_segments;
3063 dst->ioprio = src->ioprio;
3064 dst->extra_len = src->extra_len;
3065 }
3066
3067 /**
3068 * blk_rq_prep_clone - Helper function to setup clone request
3069 * @rq: the request to be setup
3070 * @rq_src: original request to be cloned
3071 * @bs: bio_set that bios for clone are allocated from
3072 * @gfp_mask: memory allocation mask for bio
3073 * @bio_ctr: setup function to be called for each clone bio.
3074 * Returns %0 for success, non %0 for failure.
3075 * @data: private data to be passed to @bio_ctr
3076 *
3077 * Description:
3078 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3079 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3080 * are not copied, and copying such parts is the caller's responsibility.
3081 * Also, pages which the original bios are pointing to are not copied
3082 * and the cloned bios just point same pages.
3083 * So cloned bios must be completed before original bios, which means
3084 * the caller must complete @rq before @rq_src.
3085 */
3086 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3087 struct bio_set *bs, gfp_t gfp_mask,
3088 int (*bio_ctr)(struct bio *, struct bio *, void *),
3089 void *data)
3090 {
3091 struct bio *bio, *bio_src;
3092
3093 if (!bs)
3094 bs = fs_bio_set;
3095
3096 __rq_for_each_bio(bio_src, rq_src) {
3097 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3098 if (!bio)
3099 goto free_and_out;
3100
3101 if (bio_ctr && bio_ctr(bio, bio_src, data))
3102 goto free_and_out;
3103
3104 if (rq->bio) {
3105 rq->biotail->bi_next = bio;
3106 rq->biotail = bio;
3107 } else
3108 rq->bio = rq->biotail = bio;
3109 }
3110
3111 __blk_rq_prep_clone(rq, rq_src);
3112
3113 return 0;
3114
3115 free_and_out:
3116 if (bio)
3117 bio_put(bio);
3118 blk_rq_unprep_clone(rq);
3119
3120 return -ENOMEM;
3121 }
3122 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3123
3124 int kblockd_schedule_work(struct work_struct *work)
3125 {
3126 return queue_work(kblockd_workqueue, work);
3127 }
3128 EXPORT_SYMBOL(kblockd_schedule_work);
3129
3130 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3131 unsigned long delay)
3132 {
3133 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3134 }
3135 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3136
3137 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3138 unsigned long delay)
3139 {
3140 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3141 }
3142 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3143
3144 /**
3145 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3146 * @plug: The &struct blk_plug that needs to be initialized
3147 *
3148 * Description:
3149 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3150 * pending I/O should the task end up blocking between blk_start_plug() and
3151 * blk_finish_plug(). This is important from a performance perspective, but
3152 * also ensures that we don't deadlock. For instance, if the task is blocking
3153 * for a memory allocation, memory reclaim could end up wanting to free a
3154 * page belonging to that request that is currently residing in our private
3155 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3156 * this kind of deadlock.
3157 */
3158 void blk_start_plug(struct blk_plug *plug)
3159 {
3160 struct task_struct *tsk = current;
3161
3162 /*
3163 * If this is a nested plug, don't actually assign it.
3164 */
3165 if (tsk->plug)
3166 return;
3167
3168 INIT_LIST_HEAD(&plug->list);
3169 INIT_LIST_HEAD(&plug->mq_list);
3170 INIT_LIST_HEAD(&plug->cb_list);
3171 /*
3172 * Store ordering should not be needed here, since a potential
3173 * preempt will imply a full memory barrier
3174 */
3175 tsk->plug = plug;
3176 }
3177 EXPORT_SYMBOL(blk_start_plug);
3178
3179 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3180 {
3181 struct request *rqa = container_of(a, struct request, queuelist);
3182 struct request *rqb = container_of(b, struct request, queuelist);
3183
3184 return !(rqa->q < rqb->q ||
3185 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3186 }
3187
3188 /*
3189 * If 'from_schedule' is true, then postpone the dispatch of requests
3190 * until a safe kblockd context. We due this to avoid accidental big
3191 * additional stack usage in driver dispatch, in places where the originally
3192 * plugger did not intend it.
3193 */
3194 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3195 bool from_schedule)
3196 __releases(q->queue_lock)
3197 {
3198 trace_block_unplug(q, depth, !from_schedule);
3199
3200 if (from_schedule)
3201 blk_run_queue_async(q);
3202 else
3203 __blk_run_queue(q);
3204 spin_unlock(q->queue_lock);
3205 }
3206
3207 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3208 {
3209 LIST_HEAD(callbacks);
3210
3211 while (!list_empty(&plug->cb_list)) {
3212 list_splice_init(&plug->cb_list, &callbacks);
3213
3214 while (!list_empty(&callbacks)) {
3215 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3216 struct blk_plug_cb,
3217 list);
3218 list_del(&cb->list);
3219 cb->callback(cb, from_schedule);
3220 }
3221 }
3222 }
3223
3224 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3225 int size)
3226 {
3227 struct blk_plug *plug = current->plug;
3228 struct blk_plug_cb *cb;
3229
3230 if (!plug)
3231 return NULL;
3232
3233 list_for_each_entry(cb, &plug->cb_list, list)
3234 if (cb->callback == unplug && cb->data == data)
3235 return cb;
3236
3237 /* Not currently on the callback list */
3238 BUG_ON(size < sizeof(*cb));
3239 cb = kzalloc(size, GFP_ATOMIC);
3240 if (cb) {
3241 cb->data = data;
3242 cb->callback = unplug;
3243 list_add(&cb->list, &plug->cb_list);
3244 }
3245 return cb;
3246 }
3247 EXPORT_SYMBOL(blk_check_plugged);
3248
3249 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3250 {
3251 struct request_queue *q;
3252 unsigned long flags;
3253 struct request *rq;
3254 LIST_HEAD(list);
3255 unsigned int depth;
3256
3257 flush_plug_callbacks(plug, from_schedule);
3258
3259 if (!list_empty(&plug->mq_list))
3260 blk_mq_flush_plug_list(plug, from_schedule);
3261
3262 if (list_empty(&plug->list))
3263 return;
3264
3265 list_splice_init(&plug->list, &list);
3266
3267 list_sort(NULL, &list, plug_rq_cmp);
3268
3269 q = NULL;
3270 depth = 0;
3271
3272 /*
3273 * Save and disable interrupts here, to avoid doing it for every
3274 * queue lock we have to take.
3275 */
3276 local_irq_save(flags);
3277 while (!list_empty(&list)) {
3278 rq = list_entry_rq(list.next);
3279 list_del_init(&rq->queuelist);
3280 BUG_ON(!rq->q);
3281 if (rq->q != q) {
3282 /*
3283 * This drops the queue lock
3284 */
3285 if (q)
3286 queue_unplugged(q, depth, from_schedule);
3287 q = rq->q;
3288 depth = 0;
3289 spin_lock(q->queue_lock);
3290 }
3291
3292 /*
3293 * Short-circuit if @q is dead
3294 */
3295 if (unlikely(blk_queue_dying(q))) {
3296 __blk_end_request_all(rq, -ENODEV);
3297 continue;
3298 }
3299
3300 /*
3301 * rq is already accounted, so use raw insert
3302 */
3303 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3304 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3305 else
3306 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3307
3308 depth++;
3309 }
3310
3311 /*
3312 * This drops the queue lock
3313 */
3314 if (q)
3315 queue_unplugged(q, depth, from_schedule);
3316
3317 local_irq_restore(flags);
3318 }
3319
3320 void blk_finish_plug(struct blk_plug *plug)
3321 {
3322 if (plug != current->plug)
3323 return;
3324 blk_flush_plug_list(plug, false);
3325
3326 current->plug = NULL;
3327 }
3328 EXPORT_SYMBOL(blk_finish_plug);
3329
3330 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
3331 {
3332 struct blk_plug *plug;
3333 long state;
3334
3335 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
3336 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3337 return false;
3338
3339 plug = current->plug;
3340 if (plug)
3341 blk_flush_plug_list(plug, false);
3342
3343 state = current->state;
3344 while (!need_resched()) {
3345 unsigned int queue_num = blk_qc_t_to_queue_num(cookie);
3346 struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[queue_num];
3347 int ret;
3348
3349 hctx->poll_invoked++;
3350
3351 ret = q->mq_ops->poll(hctx, blk_qc_t_to_tag(cookie));
3352 if (ret > 0) {
3353 hctx->poll_success++;
3354 set_current_state(TASK_RUNNING);
3355 return true;
3356 }
3357
3358 if (signal_pending_state(state, current))
3359 set_current_state(TASK_RUNNING);
3360
3361 if (current->state == TASK_RUNNING)
3362 return true;
3363 if (ret < 0)
3364 break;
3365 cpu_relax();
3366 }
3367
3368 return false;
3369 }
3370
3371 #ifdef CONFIG_PM
3372 /**
3373 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3374 * @q: the queue of the device
3375 * @dev: the device the queue belongs to
3376 *
3377 * Description:
3378 * Initialize runtime-PM-related fields for @q and start auto suspend for
3379 * @dev. Drivers that want to take advantage of request-based runtime PM
3380 * should call this function after @dev has been initialized, and its
3381 * request queue @q has been allocated, and runtime PM for it can not happen
3382 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3383 * cases, driver should call this function before any I/O has taken place.
3384 *
3385 * This function takes care of setting up using auto suspend for the device,
3386 * the autosuspend delay is set to -1 to make runtime suspend impossible
3387 * until an updated value is either set by user or by driver. Drivers do
3388 * not need to touch other autosuspend settings.
3389 *
3390 * The block layer runtime PM is request based, so only works for drivers
3391 * that use request as their IO unit instead of those directly use bio's.
3392 */
3393 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3394 {
3395 q->dev = dev;
3396 q->rpm_status = RPM_ACTIVE;
3397 pm_runtime_set_autosuspend_delay(q->dev, -1);
3398 pm_runtime_use_autosuspend(q->dev);
3399 }
3400 EXPORT_SYMBOL(blk_pm_runtime_init);
3401
3402 /**
3403 * blk_pre_runtime_suspend - Pre runtime suspend check
3404 * @q: the queue of the device
3405 *
3406 * Description:
3407 * This function will check if runtime suspend is allowed for the device
3408 * by examining if there are any requests pending in the queue. If there
3409 * are requests pending, the device can not be runtime suspended; otherwise,
3410 * the queue's status will be updated to SUSPENDING and the driver can
3411 * proceed to suspend the device.
3412 *
3413 * For the not allowed case, we mark last busy for the device so that
3414 * runtime PM core will try to autosuspend it some time later.
3415 *
3416 * This function should be called near the start of the device's
3417 * runtime_suspend callback.
3418 *
3419 * Return:
3420 * 0 - OK to runtime suspend the device
3421 * -EBUSY - Device should not be runtime suspended
3422 */
3423 int blk_pre_runtime_suspend(struct request_queue *q)
3424 {
3425 int ret = 0;
3426
3427 if (!q->dev)
3428 return ret;
3429
3430 spin_lock_irq(q->queue_lock);
3431 if (q->nr_pending) {
3432 ret = -EBUSY;
3433 pm_runtime_mark_last_busy(q->dev);
3434 } else {
3435 q->rpm_status = RPM_SUSPENDING;
3436 }
3437 spin_unlock_irq(q->queue_lock);
3438 return ret;
3439 }
3440 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3441
3442 /**
3443 * blk_post_runtime_suspend - Post runtime suspend processing
3444 * @q: the queue of the device
3445 * @err: return value of the device's runtime_suspend function
3446 *
3447 * Description:
3448 * Update the queue's runtime status according to the return value of the
3449 * device's runtime suspend function and mark last busy for the device so
3450 * that PM core will try to auto suspend the device at a later time.
3451 *
3452 * This function should be called near the end of the device's
3453 * runtime_suspend callback.
3454 */
3455 void blk_post_runtime_suspend(struct request_queue *q, int err)
3456 {
3457 if (!q->dev)
3458 return;
3459
3460 spin_lock_irq(q->queue_lock);
3461 if (!err) {
3462 q->rpm_status = RPM_SUSPENDED;
3463 } else {
3464 q->rpm_status = RPM_ACTIVE;
3465 pm_runtime_mark_last_busy(q->dev);
3466 }
3467 spin_unlock_irq(q->queue_lock);
3468 }
3469 EXPORT_SYMBOL(blk_post_runtime_suspend);
3470
3471 /**
3472 * blk_pre_runtime_resume - Pre runtime resume processing
3473 * @q: the queue of the device
3474 *
3475 * Description:
3476 * Update the queue's runtime status to RESUMING in preparation for the
3477 * runtime resume of the device.
3478 *
3479 * This function should be called near the start of the device's
3480 * runtime_resume callback.
3481 */
3482 void blk_pre_runtime_resume(struct request_queue *q)
3483 {
3484 if (!q->dev)
3485 return;
3486
3487 spin_lock_irq(q->queue_lock);
3488 q->rpm_status = RPM_RESUMING;
3489 spin_unlock_irq(q->queue_lock);
3490 }
3491 EXPORT_SYMBOL(blk_pre_runtime_resume);
3492
3493 /**
3494 * blk_post_runtime_resume - Post runtime resume processing
3495 * @q: the queue of the device
3496 * @err: return value of the device's runtime_resume function
3497 *
3498 * Description:
3499 * Update the queue's runtime status according to the return value of the
3500 * device's runtime_resume function. If it is successfully resumed, process
3501 * the requests that are queued into the device's queue when it is resuming
3502 * and then mark last busy and initiate autosuspend for it.
3503 *
3504 * This function should be called near the end of the device's
3505 * runtime_resume callback.
3506 */
3507 void blk_post_runtime_resume(struct request_queue *q, int err)
3508 {
3509 if (!q->dev)
3510 return;
3511
3512 spin_lock_irq(q->queue_lock);
3513 if (!err) {
3514 q->rpm_status = RPM_ACTIVE;
3515 __blk_run_queue(q);
3516 pm_runtime_mark_last_busy(q->dev);
3517 pm_request_autosuspend(q->dev);
3518 } else {
3519 q->rpm_status = RPM_SUSPENDED;
3520 }
3521 spin_unlock_irq(q->queue_lock);
3522 }
3523 EXPORT_SYMBOL(blk_post_runtime_resume);
3524 #endif
3525
3526 int __init blk_dev_init(void)
3527 {
3528 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3529 FIELD_SIZEOF(struct request, cmd_flags));
3530
3531 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3532 kblockd_workqueue = alloc_workqueue("kblockd",
3533 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3534 if (!kblockd_workqueue)
3535 panic("Failed to create kblockd\n");
3536
3537 request_cachep = kmem_cache_create("blkdev_requests",
3538 sizeof(struct request), 0, SLAB_PANIC, NULL);
3539
3540 blk_requestq_cachep = kmem_cache_create("request_queue",
3541 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3542
3543 return 0;
3544 }
This page took 0.097334 seconds and 6 git commands to generate.