block: fix inconsistency in I/O stat accounting code
[deliverable/linux.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/blktrace_api.h>
30 #include <linux/fault-inject.h>
31 #include <trace/block.h>
32
33 #include "blk.h"
34
35 DEFINE_TRACE(block_plug);
36 DEFINE_TRACE(block_unplug_io);
37 DEFINE_TRACE(block_unplug_timer);
38 DEFINE_TRACE(block_getrq);
39 DEFINE_TRACE(block_sleeprq);
40 DEFINE_TRACE(block_rq_requeue);
41 DEFINE_TRACE(block_bio_backmerge);
42 DEFINE_TRACE(block_bio_frontmerge);
43 DEFINE_TRACE(block_bio_queue);
44 DEFINE_TRACE(block_rq_complete);
45 DEFINE_TRACE(block_remap); /* Also used in drivers/md/dm.c */
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
47
48 static int __make_request(struct request_queue *q, struct bio *bio);
49
50 /*
51 * For the allocated request tables
52 */
53 static struct kmem_cache *request_cachep;
54
55 /*
56 * For queue allocation
57 */
58 struct kmem_cache *blk_requestq_cachep;
59
60 /*
61 * Controlling structure to kblockd
62 */
63 static struct workqueue_struct *kblockd_workqueue;
64
65 static void drive_stat_acct(struct request *rq, int new_io)
66 {
67 struct hd_struct *part;
68 int rw = rq_data_dir(rq);
69 int cpu;
70
71 if (!blk_fs_request(rq) || !blk_do_io_stat(rq))
72 return;
73
74 cpu = part_stat_lock();
75 part = disk_map_sector_rcu(rq->rq_disk, rq->sector);
76
77 if (!new_io)
78 part_stat_inc(cpu, part, merges[rw]);
79 else {
80 part_round_stats(cpu, part);
81 part_inc_in_flight(part);
82 }
83
84 part_stat_unlock();
85 }
86
87 void blk_queue_congestion_threshold(struct request_queue *q)
88 {
89 int nr;
90
91 nr = q->nr_requests - (q->nr_requests / 8) + 1;
92 if (nr > q->nr_requests)
93 nr = q->nr_requests;
94 q->nr_congestion_on = nr;
95
96 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
97 if (nr < 1)
98 nr = 1;
99 q->nr_congestion_off = nr;
100 }
101
102 /**
103 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
104 * @bdev: device
105 *
106 * Locates the passed device's request queue and returns the address of its
107 * backing_dev_info
108 *
109 * Will return NULL if the request queue cannot be located.
110 */
111 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
112 {
113 struct backing_dev_info *ret = NULL;
114 struct request_queue *q = bdev_get_queue(bdev);
115
116 if (q)
117 ret = &q->backing_dev_info;
118 return ret;
119 }
120 EXPORT_SYMBOL(blk_get_backing_dev_info);
121
122 void blk_rq_init(struct request_queue *q, struct request *rq)
123 {
124 memset(rq, 0, sizeof(*rq));
125
126 INIT_LIST_HEAD(&rq->queuelist);
127 INIT_LIST_HEAD(&rq->timeout_list);
128 rq->cpu = -1;
129 rq->q = q;
130 rq->sector = rq->hard_sector = (sector_t) -1;
131 INIT_HLIST_NODE(&rq->hash);
132 RB_CLEAR_NODE(&rq->rb_node);
133 rq->cmd = rq->__cmd;
134 rq->tag = -1;
135 rq->ref_count = 1;
136 }
137 EXPORT_SYMBOL(blk_rq_init);
138
139 static void req_bio_endio(struct request *rq, struct bio *bio,
140 unsigned int nbytes, int error)
141 {
142 struct request_queue *q = rq->q;
143
144 if (&q->bar_rq != rq) {
145 if (error)
146 clear_bit(BIO_UPTODATE, &bio->bi_flags);
147 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
148 error = -EIO;
149
150 if (unlikely(nbytes > bio->bi_size)) {
151 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
152 __func__, nbytes, bio->bi_size);
153 nbytes = bio->bi_size;
154 }
155
156 if (unlikely(rq->cmd_flags & REQ_QUIET))
157 set_bit(BIO_QUIET, &bio->bi_flags);
158
159 bio->bi_size -= nbytes;
160 bio->bi_sector += (nbytes >> 9);
161
162 if (bio_integrity(bio))
163 bio_integrity_advance(bio, nbytes);
164
165 if (bio->bi_size == 0)
166 bio_endio(bio, error);
167 } else {
168
169 /*
170 * Okay, this is the barrier request in progress, just
171 * record the error;
172 */
173 if (error && !q->orderr)
174 q->orderr = error;
175 }
176 }
177
178 void blk_dump_rq_flags(struct request *rq, char *msg)
179 {
180 int bit;
181
182 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
183 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
184 rq->cmd_flags);
185
186 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n",
187 (unsigned long long)rq->sector,
188 rq->nr_sectors,
189 rq->current_nr_sectors);
190 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n",
191 rq->bio, rq->biotail,
192 rq->buffer, rq->data,
193 rq->data_len);
194
195 if (blk_pc_request(rq)) {
196 printk(KERN_INFO " cdb: ");
197 for (bit = 0; bit < BLK_MAX_CDB; bit++)
198 printk("%02x ", rq->cmd[bit]);
199 printk("\n");
200 }
201 }
202 EXPORT_SYMBOL(blk_dump_rq_flags);
203
204 /*
205 * "plug" the device if there are no outstanding requests: this will
206 * force the transfer to start only after we have put all the requests
207 * on the list.
208 *
209 * This is called with interrupts off and no requests on the queue and
210 * with the queue lock held.
211 */
212 void blk_plug_device(struct request_queue *q)
213 {
214 WARN_ON(!irqs_disabled());
215
216 /*
217 * don't plug a stopped queue, it must be paired with blk_start_queue()
218 * which will restart the queueing
219 */
220 if (blk_queue_stopped(q))
221 return;
222
223 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
224 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
225 trace_block_plug(q);
226 }
227 }
228 EXPORT_SYMBOL(blk_plug_device);
229
230 /**
231 * blk_plug_device_unlocked - plug a device without queue lock held
232 * @q: The &struct request_queue to plug
233 *
234 * Description:
235 * Like @blk_plug_device(), but grabs the queue lock and disables
236 * interrupts.
237 **/
238 void blk_plug_device_unlocked(struct request_queue *q)
239 {
240 unsigned long flags;
241
242 spin_lock_irqsave(q->queue_lock, flags);
243 blk_plug_device(q);
244 spin_unlock_irqrestore(q->queue_lock, flags);
245 }
246 EXPORT_SYMBOL(blk_plug_device_unlocked);
247
248 /*
249 * remove the queue from the plugged list, if present. called with
250 * queue lock held and interrupts disabled.
251 */
252 int blk_remove_plug(struct request_queue *q)
253 {
254 WARN_ON(!irqs_disabled());
255
256 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
257 return 0;
258
259 del_timer(&q->unplug_timer);
260 return 1;
261 }
262 EXPORT_SYMBOL(blk_remove_plug);
263
264 /*
265 * remove the plug and let it rip..
266 */
267 void __generic_unplug_device(struct request_queue *q)
268 {
269 if (unlikely(blk_queue_stopped(q)))
270 return;
271 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
272 return;
273
274 q->request_fn(q);
275 }
276
277 /**
278 * generic_unplug_device - fire a request queue
279 * @q: The &struct request_queue in question
280 *
281 * Description:
282 * Linux uses plugging to build bigger requests queues before letting
283 * the device have at them. If a queue is plugged, the I/O scheduler
284 * is still adding and merging requests on the queue. Once the queue
285 * gets unplugged, the request_fn defined for the queue is invoked and
286 * transfers started.
287 **/
288 void generic_unplug_device(struct request_queue *q)
289 {
290 if (blk_queue_plugged(q)) {
291 spin_lock_irq(q->queue_lock);
292 __generic_unplug_device(q);
293 spin_unlock_irq(q->queue_lock);
294 }
295 }
296 EXPORT_SYMBOL(generic_unplug_device);
297
298 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
299 struct page *page)
300 {
301 struct request_queue *q = bdi->unplug_io_data;
302
303 blk_unplug(q);
304 }
305
306 void blk_unplug_work(struct work_struct *work)
307 {
308 struct request_queue *q =
309 container_of(work, struct request_queue, unplug_work);
310
311 trace_block_unplug_io(q);
312 q->unplug_fn(q);
313 }
314
315 void blk_unplug_timeout(unsigned long data)
316 {
317 struct request_queue *q = (struct request_queue *)data;
318
319 trace_block_unplug_timer(q);
320 kblockd_schedule_work(q, &q->unplug_work);
321 }
322
323 void blk_unplug(struct request_queue *q)
324 {
325 /*
326 * devices don't necessarily have an ->unplug_fn defined
327 */
328 if (q->unplug_fn) {
329 trace_block_unplug_io(q);
330 q->unplug_fn(q);
331 }
332 }
333 EXPORT_SYMBOL(blk_unplug);
334
335 static void blk_invoke_request_fn(struct request_queue *q)
336 {
337 if (unlikely(blk_queue_stopped(q)))
338 return;
339
340 /*
341 * one level of recursion is ok and is much faster than kicking
342 * the unplug handling
343 */
344 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
345 q->request_fn(q);
346 queue_flag_clear(QUEUE_FLAG_REENTER, q);
347 } else {
348 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
349 kblockd_schedule_work(q, &q->unplug_work);
350 }
351 }
352
353 /**
354 * blk_start_queue - restart a previously stopped queue
355 * @q: The &struct request_queue in question
356 *
357 * Description:
358 * blk_start_queue() will clear the stop flag on the queue, and call
359 * the request_fn for the queue if it was in a stopped state when
360 * entered. Also see blk_stop_queue(). Queue lock must be held.
361 **/
362 void blk_start_queue(struct request_queue *q)
363 {
364 WARN_ON(!irqs_disabled());
365
366 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
367 blk_invoke_request_fn(q);
368 }
369 EXPORT_SYMBOL(blk_start_queue);
370
371 /**
372 * blk_stop_queue - stop a queue
373 * @q: The &struct request_queue in question
374 *
375 * Description:
376 * The Linux block layer assumes that a block driver will consume all
377 * entries on the request queue when the request_fn strategy is called.
378 * Often this will not happen, because of hardware limitations (queue
379 * depth settings). If a device driver gets a 'queue full' response,
380 * or if it simply chooses not to queue more I/O at one point, it can
381 * call this function to prevent the request_fn from being called until
382 * the driver has signalled it's ready to go again. This happens by calling
383 * blk_start_queue() to restart queue operations. Queue lock must be held.
384 **/
385 void blk_stop_queue(struct request_queue *q)
386 {
387 blk_remove_plug(q);
388 queue_flag_set(QUEUE_FLAG_STOPPED, q);
389 }
390 EXPORT_SYMBOL(blk_stop_queue);
391
392 /**
393 * blk_sync_queue - cancel any pending callbacks on a queue
394 * @q: the queue
395 *
396 * Description:
397 * The block layer may perform asynchronous callback activity
398 * on a queue, such as calling the unplug function after a timeout.
399 * A block device may call blk_sync_queue to ensure that any
400 * such activity is cancelled, thus allowing it to release resources
401 * that the callbacks might use. The caller must already have made sure
402 * that its ->make_request_fn will not re-add plugging prior to calling
403 * this function.
404 *
405 */
406 void blk_sync_queue(struct request_queue *q)
407 {
408 del_timer_sync(&q->unplug_timer);
409 del_timer_sync(&q->timeout);
410 cancel_work_sync(&q->unplug_work);
411 }
412 EXPORT_SYMBOL(blk_sync_queue);
413
414 /**
415 * __blk_run_queue - run a single device queue
416 * @q: The queue to run
417 *
418 * Description:
419 * See @blk_run_queue. This variant must be called with the queue lock
420 * held and interrupts disabled.
421 *
422 */
423 void __blk_run_queue(struct request_queue *q)
424 {
425 blk_remove_plug(q);
426
427 /*
428 * Only recurse once to avoid overrunning the stack, let the unplug
429 * handling reinvoke the handler shortly if we already got there.
430 */
431 if (!elv_queue_empty(q))
432 blk_invoke_request_fn(q);
433 }
434 EXPORT_SYMBOL(__blk_run_queue);
435
436 /**
437 * blk_run_queue - run a single device queue
438 * @q: The queue to run
439 *
440 * Description:
441 * Invoke request handling on this queue, if it has pending work to do.
442 * May be used to restart queueing when a request has completed. Also
443 * See @blk_start_queueing.
444 *
445 */
446 void blk_run_queue(struct request_queue *q)
447 {
448 unsigned long flags;
449
450 spin_lock_irqsave(q->queue_lock, flags);
451 __blk_run_queue(q);
452 spin_unlock_irqrestore(q->queue_lock, flags);
453 }
454 EXPORT_SYMBOL(blk_run_queue);
455
456 void blk_put_queue(struct request_queue *q)
457 {
458 kobject_put(&q->kobj);
459 }
460
461 void blk_cleanup_queue(struct request_queue *q)
462 {
463 /*
464 * We know we have process context here, so we can be a little
465 * cautious and ensure that pending block actions on this device
466 * are done before moving on. Going into this function, we should
467 * not have processes doing IO to this device.
468 */
469 blk_sync_queue(q);
470
471 mutex_lock(&q->sysfs_lock);
472 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
473 mutex_unlock(&q->sysfs_lock);
474
475 if (q->elevator)
476 elevator_exit(q->elevator);
477
478 blk_put_queue(q);
479 }
480 EXPORT_SYMBOL(blk_cleanup_queue);
481
482 static int blk_init_free_list(struct request_queue *q)
483 {
484 struct request_list *rl = &q->rq;
485
486 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
487 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
488 rl->elvpriv = 0;
489 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
490 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
491
492 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
493 mempool_free_slab, request_cachep, q->node);
494
495 if (!rl->rq_pool)
496 return -ENOMEM;
497
498 return 0;
499 }
500
501 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
502 {
503 return blk_alloc_queue_node(gfp_mask, -1);
504 }
505 EXPORT_SYMBOL(blk_alloc_queue);
506
507 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
508 {
509 struct request_queue *q;
510 int err;
511
512 q = kmem_cache_alloc_node(blk_requestq_cachep,
513 gfp_mask | __GFP_ZERO, node_id);
514 if (!q)
515 return NULL;
516
517 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
518 q->backing_dev_info.unplug_io_data = q;
519 err = bdi_init(&q->backing_dev_info);
520 if (err) {
521 kmem_cache_free(blk_requestq_cachep, q);
522 return NULL;
523 }
524
525 init_timer(&q->unplug_timer);
526 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
527 INIT_LIST_HEAD(&q->timeout_list);
528 INIT_WORK(&q->unplug_work, blk_unplug_work);
529
530 kobject_init(&q->kobj, &blk_queue_ktype);
531
532 mutex_init(&q->sysfs_lock);
533 spin_lock_init(&q->__queue_lock);
534
535 return q;
536 }
537 EXPORT_SYMBOL(blk_alloc_queue_node);
538
539 /**
540 * blk_init_queue - prepare a request queue for use with a block device
541 * @rfn: The function to be called to process requests that have been
542 * placed on the queue.
543 * @lock: Request queue spin lock
544 *
545 * Description:
546 * If a block device wishes to use the standard request handling procedures,
547 * which sorts requests and coalesces adjacent requests, then it must
548 * call blk_init_queue(). The function @rfn will be called when there
549 * are requests on the queue that need to be processed. If the device
550 * supports plugging, then @rfn may not be called immediately when requests
551 * are available on the queue, but may be called at some time later instead.
552 * Plugged queues are generally unplugged when a buffer belonging to one
553 * of the requests on the queue is needed, or due to memory pressure.
554 *
555 * @rfn is not required, or even expected, to remove all requests off the
556 * queue, but only as many as it can handle at a time. If it does leave
557 * requests on the queue, it is responsible for arranging that the requests
558 * get dealt with eventually.
559 *
560 * The queue spin lock must be held while manipulating the requests on the
561 * request queue; this lock will be taken also from interrupt context, so irq
562 * disabling is needed for it.
563 *
564 * Function returns a pointer to the initialized request queue, or %NULL if
565 * it didn't succeed.
566 *
567 * Note:
568 * blk_init_queue() must be paired with a blk_cleanup_queue() call
569 * when the block device is deactivated (such as at module unload).
570 **/
571
572 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
573 {
574 return blk_init_queue_node(rfn, lock, -1);
575 }
576 EXPORT_SYMBOL(blk_init_queue);
577
578 struct request_queue *
579 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
580 {
581 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
582
583 if (!q)
584 return NULL;
585
586 q->node = node_id;
587 if (blk_init_free_list(q)) {
588 kmem_cache_free(blk_requestq_cachep, q);
589 return NULL;
590 }
591
592 /*
593 * if caller didn't supply a lock, they get per-queue locking with
594 * our embedded lock
595 */
596 if (!lock)
597 lock = &q->__queue_lock;
598
599 q->request_fn = rfn;
600 q->prep_rq_fn = NULL;
601 q->unplug_fn = generic_unplug_device;
602 q->queue_flags = QUEUE_FLAG_DEFAULT;
603 q->queue_lock = lock;
604
605 /*
606 * This also sets hw/phys segments, boundary and size
607 */
608 blk_queue_make_request(q, __make_request);
609
610 q->sg_reserved_size = INT_MAX;
611
612 blk_set_cmd_filter_defaults(&q->cmd_filter);
613
614 /*
615 * all done
616 */
617 if (!elevator_init(q, NULL)) {
618 blk_queue_congestion_threshold(q);
619 return q;
620 }
621
622 blk_put_queue(q);
623 return NULL;
624 }
625 EXPORT_SYMBOL(blk_init_queue_node);
626
627 int blk_get_queue(struct request_queue *q)
628 {
629 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
630 kobject_get(&q->kobj);
631 return 0;
632 }
633
634 return 1;
635 }
636
637 static inline void blk_free_request(struct request_queue *q, struct request *rq)
638 {
639 if (rq->cmd_flags & REQ_ELVPRIV)
640 elv_put_request(q, rq);
641 mempool_free(rq, q->rq.rq_pool);
642 }
643
644 static struct request *
645 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
646 {
647 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
648
649 if (!rq)
650 return NULL;
651
652 blk_rq_init(q, rq);
653
654 rq->cmd_flags = rw | REQ_ALLOCED;
655
656 if (priv) {
657 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
658 mempool_free(rq, q->rq.rq_pool);
659 return NULL;
660 }
661 rq->cmd_flags |= REQ_ELVPRIV;
662 }
663
664 return rq;
665 }
666
667 /*
668 * ioc_batching returns true if the ioc is a valid batching request and
669 * should be given priority access to a request.
670 */
671 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
672 {
673 if (!ioc)
674 return 0;
675
676 /*
677 * Make sure the process is able to allocate at least 1 request
678 * even if the batch times out, otherwise we could theoretically
679 * lose wakeups.
680 */
681 return ioc->nr_batch_requests == q->nr_batching ||
682 (ioc->nr_batch_requests > 0
683 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
684 }
685
686 /*
687 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
688 * will cause the process to be a "batcher" on all queues in the system. This
689 * is the behaviour we want though - once it gets a wakeup it should be given
690 * a nice run.
691 */
692 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
693 {
694 if (!ioc || ioc_batching(q, ioc))
695 return;
696
697 ioc->nr_batch_requests = q->nr_batching;
698 ioc->last_waited = jiffies;
699 }
700
701 static void __freed_request(struct request_queue *q, int sync)
702 {
703 struct request_list *rl = &q->rq;
704
705 if (rl->count[sync] < queue_congestion_off_threshold(q))
706 blk_clear_queue_congested(q, sync);
707
708 if (rl->count[sync] + 1 <= q->nr_requests) {
709 if (waitqueue_active(&rl->wait[sync]))
710 wake_up(&rl->wait[sync]);
711
712 blk_clear_queue_full(q, sync);
713 }
714 }
715
716 /*
717 * A request has just been released. Account for it, update the full and
718 * congestion status, wake up any waiters. Called under q->queue_lock.
719 */
720 static void freed_request(struct request_queue *q, int sync, int priv)
721 {
722 struct request_list *rl = &q->rq;
723
724 rl->count[sync]--;
725 if (priv)
726 rl->elvpriv--;
727
728 __freed_request(q, sync);
729
730 if (unlikely(rl->starved[sync ^ 1]))
731 __freed_request(q, sync ^ 1);
732 }
733
734 /*
735 * Get a free request, queue_lock must be held.
736 * Returns NULL on failure, with queue_lock held.
737 * Returns !NULL on success, with queue_lock *not held*.
738 */
739 static struct request *get_request(struct request_queue *q, int rw_flags,
740 struct bio *bio, gfp_t gfp_mask)
741 {
742 struct request *rq = NULL;
743 struct request_list *rl = &q->rq;
744 struct io_context *ioc = NULL;
745 const bool is_sync = rw_is_sync(rw_flags) != 0;
746 int may_queue, priv;
747
748 may_queue = elv_may_queue(q, rw_flags);
749 if (may_queue == ELV_MQUEUE_NO)
750 goto rq_starved;
751
752 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
753 if (rl->count[is_sync]+1 >= q->nr_requests) {
754 ioc = current_io_context(GFP_ATOMIC, q->node);
755 /*
756 * The queue will fill after this allocation, so set
757 * it as full, and mark this process as "batching".
758 * This process will be allowed to complete a batch of
759 * requests, others will be blocked.
760 */
761 if (!blk_queue_full(q, is_sync)) {
762 ioc_set_batching(q, ioc);
763 blk_set_queue_full(q, is_sync);
764 } else {
765 if (may_queue != ELV_MQUEUE_MUST
766 && !ioc_batching(q, ioc)) {
767 /*
768 * The queue is full and the allocating
769 * process is not a "batcher", and not
770 * exempted by the IO scheduler
771 */
772 goto out;
773 }
774 }
775 }
776 blk_set_queue_congested(q, is_sync);
777 }
778
779 /*
780 * Only allow batching queuers to allocate up to 50% over the defined
781 * limit of requests, otherwise we could have thousands of requests
782 * allocated with any setting of ->nr_requests
783 */
784 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
785 goto out;
786
787 rl->count[is_sync]++;
788 rl->starved[is_sync] = 0;
789
790 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
791 if (priv)
792 rl->elvpriv++;
793
794 spin_unlock_irq(q->queue_lock);
795
796 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
797 if (unlikely(!rq)) {
798 /*
799 * Allocation failed presumably due to memory. Undo anything
800 * we might have messed up.
801 *
802 * Allocating task should really be put onto the front of the
803 * wait queue, but this is pretty rare.
804 */
805 spin_lock_irq(q->queue_lock);
806 freed_request(q, is_sync, priv);
807
808 /*
809 * in the very unlikely event that allocation failed and no
810 * requests for this direction was pending, mark us starved
811 * so that freeing of a request in the other direction will
812 * notice us. another possible fix would be to split the
813 * rq mempool into READ and WRITE
814 */
815 rq_starved:
816 if (unlikely(rl->count[is_sync] == 0))
817 rl->starved[is_sync] = 1;
818
819 goto out;
820 }
821
822 /*
823 * ioc may be NULL here, and ioc_batching will be false. That's
824 * OK, if the queue is under the request limit then requests need
825 * not count toward the nr_batch_requests limit. There will always
826 * be some limit enforced by BLK_BATCH_TIME.
827 */
828 if (ioc_batching(q, ioc))
829 ioc->nr_batch_requests--;
830
831 trace_block_getrq(q, bio, rw_flags & 1);
832 out:
833 return rq;
834 }
835
836 /*
837 * No available requests for this queue, unplug the device and wait for some
838 * requests to become available.
839 *
840 * Called with q->queue_lock held, and returns with it unlocked.
841 */
842 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
843 struct bio *bio)
844 {
845 const bool is_sync = rw_is_sync(rw_flags) != 0;
846 struct request *rq;
847
848 rq = get_request(q, rw_flags, bio, GFP_NOIO);
849 while (!rq) {
850 DEFINE_WAIT(wait);
851 struct io_context *ioc;
852 struct request_list *rl = &q->rq;
853
854 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
855 TASK_UNINTERRUPTIBLE);
856
857 trace_block_sleeprq(q, bio, rw_flags & 1);
858
859 __generic_unplug_device(q);
860 spin_unlock_irq(q->queue_lock);
861 io_schedule();
862
863 /*
864 * After sleeping, we become a "batching" process and
865 * will be able to allocate at least one request, and
866 * up to a big batch of them for a small period time.
867 * See ioc_batching, ioc_set_batching
868 */
869 ioc = current_io_context(GFP_NOIO, q->node);
870 ioc_set_batching(q, ioc);
871
872 spin_lock_irq(q->queue_lock);
873 finish_wait(&rl->wait[is_sync], &wait);
874
875 rq = get_request(q, rw_flags, bio, GFP_NOIO);
876 };
877
878 return rq;
879 }
880
881 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
882 {
883 struct request *rq;
884
885 BUG_ON(rw != READ && rw != WRITE);
886
887 spin_lock_irq(q->queue_lock);
888 if (gfp_mask & __GFP_WAIT) {
889 rq = get_request_wait(q, rw, NULL);
890 } else {
891 rq = get_request(q, rw, NULL, gfp_mask);
892 if (!rq)
893 spin_unlock_irq(q->queue_lock);
894 }
895 /* q->queue_lock is unlocked at this point */
896
897 return rq;
898 }
899 EXPORT_SYMBOL(blk_get_request);
900
901 /**
902 * blk_start_queueing - initiate dispatch of requests to device
903 * @q: request queue to kick into gear
904 *
905 * This is basically a helper to remove the need to know whether a queue
906 * is plugged or not if someone just wants to initiate dispatch of requests
907 * for this queue. Should be used to start queueing on a device outside
908 * of ->request_fn() context. Also see @blk_run_queue.
909 *
910 * The queue lock must be held with interrupts disabled.
911 */
912 void blk_start_queueing(struct request_queue *q)
913 {
914 if (!blk_queue_plugged(q)) {
915 if (unlikely(blk_queue_stopped(q)))
916 return;
917 q->request_fn(q);
918 } else
919 __generic_unplug_device(q);
920 }
921 EXPORT_SYMBOL(blk_start_queueing);
922
923 /**
924 * blk_requeue_request - put a request back on queue
925 * @q: request queue where request should be inserted
926 * @rq: request to be inserted
927 *
928 * Description:
929 * Drivers often keep queueing requests until the hardware cannot accept
930 * more, when that condition happens we need to put the request back
931 * on the queue. Must be called with queue lock held.
932 */
933 void blk_requeue_request(struct request_queue *q, struct request *rq)
934 {
935 blk_delete_timer(rq);
936 blk_clear_rq_complete(rq);
937 trace_block_rq_requeue(q, rq);
938
939 if (blk_rq_tagged(rq))
940 blk_queue_end_tag(q, rq);
941
942 elv_requeue_request(q, rq);
943 }
944 EXPORT_SYMBOL(blk_requeue_request);
945
946 /**
947 * blk_insert_request - insert a special request into a request queue
948 * @q: request queue where request should be inserted
949 * @rq: request to be inserted
950 * @at_head: insert request at head or tail of queue
951 * @data: private data
952 *
953 * Description:
954 * Many block devices need to execute commands asynchronously, so they don't
955 * block the whole kernel from preemption during request execution. This is
956 * accomplished normally by inserting aritficial requests tagged as
957 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
958 * be scheduled for actual execution by the request queue.
959 *
960 * We have the option of inserting the head or the tail of the queue.
961 * Typically we use the tail for new ioctls and so forth. We use the head
962 * of the queue for things like a QUEUE_FULL message from a device, or a
963 * host that is unable to accept a particular command.
964 */
965 void blk_insert_request(struct request_queue *q, struct request *rq,
966 int at_head, void *data)
967 {
968 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
969 unsigned long flags;
970
971 /*
972 * tell I/O scheduler that this isn't a regular read/write (ie it
973 * must not attempt merges on this) and that it acts as a soft
974 * barrier
975 */
976 rq->cmd_type = REQ_TYPE_SPECIAL;
977 rq->cmd_flags |= REQ_SOFTBARRIER;
978
979 rq->special = data;
980
981 spin_lock_irqsave(q->queue_lock, flags);
982
983 /*
984 * If command is tagged, release the tag
985 */
986 if (blk_rq_tagged(rq))
987 blk_queue_end_tag(q, rq);
988
989 drive_stat_acct(rq, 1);
990 __elv_add_request(q, rq, where, 0);
991 blk_start_queueing(q);
992 spin_unlock_irqrestore(q->queue_lock, flags);
993 }
994 EXPORT_SYMBOL(blk_insert_request);
995
996 /*
997 * add-request adds a request to the linked list.
998 * queue lock is held and interrupts disabled, as we muck with the
999 * request queue list.
1000 */
1001 static inline void add_request(struct request_queue *q, struct request *req)
1002 {
1003 drive_stat_acct(req, 1);
1004
1005 /*
1006 * elevator indicated where it wants this request to be
1007 * inserted at elevator_merge time
1008 */
1009 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1010 }
1011
1012 static void part_round_stats_single(int cpu, struct hd_struct *part,
1013 unsigned long now)
1014 {
1015 if (now == part->stamp)
1016 return;
1017
1018 if (part->in_flight) {
1019 __part_stat_add(cpu, part, time_in_queue,
1020 part->in_flight * (now - part->stamp));
1021 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1022 }
1023 part->stamp = now;
1024 }
1025
1026 /**
1027 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1028 * @cpu: cpu number for stats access
1029 * @part: target partition
1030 *
1031 * The average IO queue length and utilisation statistics are maintained
1032 * by observing the current state of the queue length and the amount of
1033 * time it has been in this state for.
1034 *
1035 * Normally, that accounting is done on IO completion, but that can result
1036 * in more than a second's worth of IO being accounted for within any one
1037 * second, leading to >100% utilisation. To deal with that, we call this
1038 * function to do a round-off before returning the results when reading
1039 * /proc/diskstats. This accounts immediately for all queue usage up to
1040 * the current jiffies and restarts the counters again.
1041 */
1042 void part_round_stats(int cpu, struct hd_struct *part)
1043 {
1044 unsigned long now = jiffies;
1045
1046 if (part->partno)
1047 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1048 part_round_stats_single(cpu, part, now);
1049 }
1050 EXPORT_SYMBOL_GPL(part_round_stats);
1051
1052 /*
1053 * queue lock must be held
1054 */
1055 void __blk_put_request(struct request_queue *q, struct request *req)
1056 {
1057 if (unlikely(!q))
1058 return;
1059 if (unlikely(--req->ref_count))
1060 return;
1061
1062 elv_completed_request(q, req);
1063
1064 /* this is a bio leak */
1065 WARN_ON(req->bio != NULL);
1066
1067 /*
1068 * Request may not have originated from ll_rw_blk. if not,
1069 * it didn't come out of our reserved rq pools
1070 */
1071 if (req->cmd_flags & REQ_ALLOCED) {
1072 int is_sync = rq_is_sync(req) != 0;
1073 int priv = req->cmd_flags & REQ_ELVPRIV;
1074
1075 BUG_ON(!list_empty(&req->queuelist));
1076 BUG_ON(!hlist_unhashed(&req->hash));
1077
1078 blk_free_request(q, req);
1079 freed_request(q, is_sync, priv);
1080 }
1081 }
1082 EXPORT_SYMBOL_GPL(__blk_put_request);
1083
1084 void blk_put_request(struct request *req)
1085 {
1086 unsigned long flags;
1087 struct request_queue *q = req->q;
1088
1089 spin_lock_irqsave(q->queue_lock, flags);
1090 __blk_put_request(q, req);
1091 spin_unlock_irqrestore(q->queue_lock, flags);
1092 }
1093 EXPORT_SYMBOL(blk_put_request);
1094
1095 void init_request_from_bio(struct request *req, struct bio *bio)
1096 {
1097 req->cpu = bio->bi_comp_cpu;
1098 req->cmd_type = REQ_TYPE_FS;
1099
1100 /*
1101 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1102 */
1103 if (bio_rw_ahead(bio))
1104 req->cmd_flags |= (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT |
1105 REQ_FAILFAST_DRIVER);
1106 if (bio_failfast_dev(bio))
1107 req->cmd_flags |= REQ_FAILFAST_DEV;
1108 if (bio_failfast_transport(bio))
1109 req->cmd_flags |= REQ_FAILFAST_TRANSPORT;
1110 if (bio_failfast_driver(bio))
1111 req->cmd_flags |= REQ_FAILFAST_DRIVER;
1112
1113 /*
1114 * REQ_BARRIER implies no merging, but lets make it explicit
1115 */
1116 if (unlikely(bio_discard(bio))) {
1117 req->cmd_flags |= REQ_DISCARD;
1118 if (bio_barrier(bio))
1119 req->cmd_flags |= REQ_SOFTBARRIER;
1120 req->q->prepare_discard_fn(req->q, req);
1121 } else if (unlikely(bio_barrier(bio)))
1122 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
1123
1124 if (bio_sync(bio))
1125 req->cmd_flags |= REQ_RW_SYNC;
1126 if (bio_unplug(bio))
1127 req->cmd_flags |= REQ_UNPLUG;
1128 if (bio_rw_meta(bio))
1129 req->cmd_flags |= REQ_RW_META;
1130 if (bio_noidle(bio))
1131 req->cmd_flags |= REQ_NOIDLE;
1132
1133 req->errors = 0;
1134 req->hard_sector = req->sector = bio->bi_sector;
1135 req->ioprio = bio_prio(bio);
1136 req->start_time = jiffies;
1137 blk_rq_bio_prep(req->q, req, bio);
1138 }
1139
1140 /*
1141 * Only disabling plugging for non-rotational devices if it does tagging
1142 * as well, otherwise we do need the proper merging
1143 */
1144 static inline bool queue_should_plug(struct request_queue *q)
1145 {
1146 return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
1147 }
1148
1149 static int __make_request(struct request_queue *q, struct bio *bio)
1150 {
1151 struct request *req;
1152 int el_ret, nr_sectors;
1153 const unsigned short prio = bio_prio(bio);
1154 const int sync = bio_sync(bio);
1155 const int unplug = bio_unplug(bio);
1156 int rw_flags;
1157
1158 nr_sectors = bio_sectors(bio);
1159
1160 /*
1161 * low level driver can indicate that it wants pages above a
1162 * certain limit bounced to low memory (ie for highmem, or even
1163 * ISA dma in theory)
1164 */
1165 blk_queue_bounce(q, &bio);
1166
1167 spin_lock_irq(q->queue_lock);
1168
1169 if (unlikely(bio_barrier(bio)) || elv_queue_empty(q))
1170 goto get_rq;
1171
1172 el_ret = elv_merge(q, &req, bio);
1173 switch (el_ret) {
1174 case ELEVATOR_BACK_MERGE:
1175 BUG_ON(!rq_mergeable(req));
1176
1177 if (!ll_back_merge_fn(q, req, bio))
1178 break;
1179
1180 trace_block_bio_backmerge(q, bio);
1181
1182 req->biotail->bi_next = bio;
1183 req->biotail = bio;
1184 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1185 req->ioprio = ioprio_best(req->ioprio, prio);
1186 if (!blk_rq_cpu_valid(req))
1187 req->cpu = bio->bi_comp_cpu;
1188 drive_stat_acct(req, 0);
1189 if (!attempt_back_merge(q, req))
1190 elv_merged_request(q, req, el_ret);
1191 goto out;
1192
1193 case ELEVATOR_FRONT_MERGE:
1194 BUG_ON(!rq_mergeable(req));
1195
1196 if (!ll_front_merge_fn(q, req, bio))
1197 break;
1198
1199 trace_block_bio_frontmerge(q, bio);
1200
1201 bio->bi_next = req->bio;
1202 req->bio = bio;
1203
1204 /*
1205 * may not be valid. if the low level driver said
1206 * it didn't need a bounce buffer then it better
1207 * not touch req->buffer either...
1208 */
1209 req->buffer = bio_data(bio);
1210 req->current_nr_sectors = bio_cur_sectors(bio);
1211 req->hard_cur_sectors = req->current_nr_sectors;
1212 req->sector = req->hard_sector = bio->bi_sector;
1213 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1214 req->ioprio = ioprio_best(req->ioprio, prio);
1215 if (!blk_rq_cpu_valid(req))
1216 req->cpu = bio->bi_comp_cpu;
1217 drive_stat_acct(req, 0);
1218 if (!attempt_front_merge(q, req))
1219 elv_merged_request(q, req, el_ret);
1220 goto out;
1221
1222 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1223 default:
1224 ;
1225 }
1226
1227 get_rq:
1228 /*
1229 * This sync check and mask will be re-done in init_request_from_bio(),
1230 * but we need to set it earlier to expose the sync flag to the
1231 * rq allocator and io schedulers.
1232 */
1233 rw_flags = bio_data_dir(bio);
1234 if (sync)
1235 rw_flags |= REQ_RW_SYNC;
1236
1237 /*
1238 * Grab a free request. This is might sleep but can not fail.
1239 * Returns with the queue unlocked.
1240 */
1241 req = get_request_wait(q, rw_flags, bio);
1242
1243 /*
1244 * After dropping the lock and possibly sleeping here, our request
1245 * may now be mergeable after it had proven unmergeable (above).
1246 * We don't worry about that case for efficiency. It won't happen
1247 * often, and the elevators are able to handle it.
1248 */
1249 init_request_from_bio(req, bio);
1250
1251 spin_lock_irq(q->queue_lock);
1252 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1253 bio_flagged(bio, BIO_CPU_AFFINE))
1254 req->cpu = blk_cpu_to_group(smp_processor_id());
1255 if (queue_should_plug(q) && elv_queue_empty(q))
1256 blk_plug_device(q);
1257 add_request(q, req);
1258 out:
1259 if (unplug || !queue_should_plug(q))
1260 __generic_unplug_device(q);
1261 spin_unlock_irq(q->queue_lock);
1262 return 0;
1263 }
1264
1265 /*
1266 * If bio->bi_dev is a partition, remap the location
1267 */
1268 static inline void blk_partition_remap(struct bio *bio)
1269 {
1270 struct block_device *bdev = bio->bi_bdev;
1271
1272 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1273 struct hd_struct *p = bdev->bd_part;
1274
1275 bio->bi_sector += p->start_sect;
1276 bio->bi_bdev = bdev->bd_contains;
1277
1278 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
1279 bdev->bd_dev, bio->bi_sector,
1280 bio->bi_sector - p->start_sect);
1281 }
1282 }
1283
1284 static void handle_bad_sector(struct bio *bio)
1285 {
1286 char b[BDEVNAME_SIZE];
1287
1288 printk(KERN_INFO "attempt to access beyond end of device\n");
1289 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1290 bdevname(bio->bi_bdev, b),
1291 bio->bi_rw,
1292 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1293 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1294
1295 set_bit(BIO_EOF, &bio->bi_flags);
1296 }
1297
1298 #ifdef CONFIG_FAIL_MAKE_REQUEST
1299
1300 static DECLARE_FAULT_ATTR(fail_make_request);
1301
1302 static int __init setup_fail_make_request(char *str)
1303 {
1304 return setup_fault_attr(&fail_make_request, str);
1305 }
1306 __setup("fail_make_request=", setup_fail_make_request);
1307
1308 static int should_fail_request(struct bio *bio)
1309 {
1310 struct hd_struct *part = bio->bi_bdev->bd_part;
1311
1312 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1313 return should_fail(&fail_make_request, bio->bi_size);
1314
1315 return 0;
1316 }
1317
1318 static int __init fail_make_request_debugfs(void)
1319 {
1320 return init_fault_attr_dentries(&fail_make_request,
1321 "fail_make_request");
1322 }
1323
1324 late_initcall(fail_make_request_debugfs);
1325
1326 #else /* CONFIG_FAIL_MAKE_REQUEST */
1327
1328 static inline int should_fail_request(struct bio *bio)
1329 {
1330 return 0;
1331 }
1332
1333 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1334
1335 /*
1336 * Check whether this bio extends beyond the end of the device.
1337 */
1338 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1339 {
1340 sector_t maxsector;
1341
1342 if (!nr_sectors)
1343 return 0;
1344
1345 /* Test device or partition size, when known. */
1346 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1347 if (maxsector) {
1348 sector_t sector = bio->bi_sector;
1349
1350 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1351 /*
1352 * This may well happen - the kernel calls bread()
1353 * without checking the size of the device, e.g., when
1354 * mounting a device.
1355 */
1356 handle_bad_sector(bio);
1357 return 1;
1358 }
1359 }
1360
1361 return 0;
1362 }
1363
1364 /**
1365 * generic_make_request - hand a buffer to its device driver for I/O
1366 * @bio: The bio describing the location in memory and on the device.
1367 *
1368 * generic_make_request() is used to make I/O requests of block
1369 * devices. It is passed a &struct bio, which describes the I/O that needs
1370 * to be done.
1371 *
1372 * generic_make_request() does not return any status. The
1373 * success/failure status of the request, along with notification of
1374 * completion, is delivered asynchronously through the bio->bi_end_io
1375 * function described (one day) else where.
1376 *
1377 * The caller of generic_make_request must make sure that bi_io_vec
1378 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1379 * set to describe the device address, and the
1380 * bi_end_io and optionally bi_private are set to describe how
1381 * completion notification should be signaled.
1382 *
1383 * generic_make_request and the drivers it calls may use bi_next if this
1384 * bio happens to be merged with someone else, and may change bi_dev and
1385 * bi_sector for remaps as it sees fit. So the values of these fields
1386 * should NOT be depended on after the call to generic_make_request.
1387 */
1388 static inline void __generic_make_request(struct bio *bio)
1389 {
1390 struct request_queue *q;
1391 sector_t old_sector;
1392 int ret, nr_sectors = bio_sectors(bio);
1393 dev_t old_dev;
1394 int err = -EIO;
1395
1396 might_sleep();
1397
1398 if (bio_check_eod(bio, nr_sectors))
1399 goto end_io;
1400
1401 /*
1402 * Resolve the mapping until finished. (drivers are
1403 * still free to implement/resolve their own stacking
1404 * by explicitly returning 0)
1405 *
1406 * NOTE: we don't repeat the blk_size check for each new device.
1407 * Stacking drivers are expected to know what they are doing.
1408 */
1409 old_sector = -1;
1410 old_dev = 0;
1411 do {
1412 char b[BDEVNAME_SIZE];
1413
1414 q = bdev_get_queue(bio->bi_bdev);
1415 if (unlikely(!q)) {
1416 printk(KERN_ERR
1417 "generic_make_request: Trying to access "
1418 "nonexistent block-device %s (%Lu)\n",
1419 bdevname(bio->bi_bdev, b),
1420 (long long) bio->bi_sector);
1421 goto end_io;
1422 }
1423
1424 if (unlikely(nr_sectors > q->max_hw_sectors)) {
1425 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1426 bdevname(bio->bi_bdev, b),
1427 bio_sectors(bio),
1428 q->max_hw_sectors);
1429 goto end_io;
1430 }
1431
1432 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1433 goto end_io;
1434
1435 if (should_fail_request(bio))
1436 goto end_io;
1437
1438 /*
1439 * If this device has partitions, remap block n
1440 * of partition p to block n+start(p) of the disk.
1441 */
1442 blk_partition_remap(bio);
1443
1444 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1445 goto end_io;
1446
1447 if (old_sector != -1)
1448 trace_block_remap(q, bio, old_dev, bio->bi_sector,
1449 old_sector);
1450
1451 trace_block_bio_queue(q, bio);
1452
1453 old_sector = bio->bi_sector;
1454 old_dev = bio->bi_bdev->bd_dev;
1455
1456 if (bio_check_eod(bio, nr_sectors))
1457 goto end_io;
1458
1459 if (bio_discard(bio) && !q->prepare_discard_fn) {
1460 err = -EOPNOTSUPP;
1461 goto end_io;
1462 }
1463 if (bio_barrier(bio) && bio_has_data(bio) &&
1464 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1465 err = -EOPNOTSUPP;
1466 goto end_io;
1467 }
1468
1469 ret = q->make_request_fn(q, bio);
1470 } while (ret);
1471
1472 return;
1473
1474 end_io:
1475 bio_endio(bio, err);
1476 }
1477
1478 /*
1479 * We only want one ->make_request_fn to be active at a time,
1480 * else stack usage with stacked devices could be a problem.
1481 * So use current->bio_{list,tail} to keep a list of requests
1482 * submited by a make_request_fn function.
1483 * current->bio_tail is also used as a flag to say if
1484 * generic_make_request is currently active in this task or not.
1485 * If it is NULL, then no make_request is active. If it is non-NULL,
1486 * then a make_request is active, and new requests should be added
1487 * at the tail
1488 */
1489 void generic_make_request(struct bio *bio)
1490 {
1491 if (current->bio_tail) {
1492 /* make_request is active */
1493 *(current->bio_tail) = bio;
1494 bio->bi_next = NULL;
1495 current->bio_tail = &bio->bi_next;
1496 return;
1497 }
1498 /* following loop may be a bit non-obvious, and so deserves some
1499 * explanation.
1500 * Before entering the loop, bio->bi_next is NULL (as all callers
1501 * ensure that) so we have a list with a single bio.
1502 * We pretend that we have just taken it off a longer list, so
1503 * we assign bio_list to the next (which is NULL) and bio_tail
1504 * to &bio_list, thus initialising the bio_list of new bios to be
1505 * added. __generic_make_request may indeed add some more bios
1506 * through a recursive call to generic_make_request. If it
1507 * did, we find a non-NULL value in bio_list and re-enter the loop
1508 * from the top. In this case we really did just take the bio
1509 * of the top of the list (no pretending) and so fixup bio_list and
1510 * bio_tail or bi_next, and call into __generic_make_request again.
1511 *
1512 * The loop was structured like this to make only one call to
1513 * __generic_make_request (which is important as it is large and
1514 * inlined) and to keep the structure simple.
1515 */
1516 BUG_ON(bio->bi_next);
1517 do {
1518 current->bio_list = bio->bi_next;
1519 if (bio->bi_next == NULL)
1520 current->bio_tail = &current->bio_list;
1521 else
1522 bio->bi_next = NULL;
1523 __generic_make_request(bio);
1524 bio = current->bio_list;
1525 } while (bio);
1526 current->bio_tail = NULL; /* deactivate */
1527 }
1528 EXPORT_SYMBOL(generic_make_request);
1529
1530 /**
1531 * submit_bio - submit a bio to the block device layer for I/O
1532 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1533 * @bio: The &struct bio which describes the I/O
1534 *
1535 * submit_bio() is very similar in purpose to generic_make_request(), and
1536 * uses that function to do most of the work. Both are fairly rough
1537 * interfaces; @bio must be presetup and ready for I/O.
1538 *
1539 */
1540 void submit_bio(int rw, struct bio *bio)
1541 {
1542 int count = bio_sectors(bio);
1543
1544 bio->bi_rw |= rw;
1545
1546 /*
1547 * If it's a regular read/write or a barrier with data attached,
1548 * go through the normal accounting stuff before submission.
1549 */
1550 if (bio_has_data(bio)) {
1551 if (rw & WRITE) {
1552 count_vm_events(PGPGOUT, count);
1553 } else {
1554 task_io_account_read(bio->bi_size);
1555 count_vm_events(PGPGIN, count);
1556 }
1557
1558 if (unlikely(block_dump)) {
1559 char b[BDEVNAME_SIZE];
1560 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1561 current->comm, task_pid_nr(current),
1562 (rw & WRITE) ? "WRITE" : "READ",
1563 (unsigned long long)bio->bi_sector,
1564 bdevname(bio->bi_bdev, b));
1565 }
1566 }
1567
1568 generic_make_request(bio);
1569 }
1570 EXPORT_SYMBOL(submit_bio);
1571
1572 /**
1573 * blk_rq_check_limits - Helper function to check a request for the queue limit
1574 * @q: the queue
1575 * @rq: the request being checked
1576 *
1577 * Description:
1578 * @rq may have been made based on weaker limitations of upper-level queues
1579 * in request stacking drivers, and it may violate the limitation of @q.
1580 * Since the block layer and the underlying device driver trust @rq
1581 * after it is inserted to @q, it should be checked against @q before
1582 * the insertion using this generic function.
1583 *
1584 * This function should also be useful for request stacking drivers
1585 * in some cases below, so export this fuction.
1586 * Request stacking drivers like request-based dm may change the queue
1587 * limits while requests are in the queue (e.g. dm's table swapping).
1588 * Such request stacking drivers should check those requests agaist
1589 * the new queue limits again when they dispatch those requests,
1590 * although such checkings are also done against the old queue limits
1591 * when submitting requests.
1592 */
1593 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1594 {
1595 if (rq->nr_sectors > q->max_sectors ||
1596 rq->data_len > q->max_hw_sectors << 9) {
1597 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1598 return -EIO;
1599 }
1600
1601 /*
1602 * queue's settings related to segment counting like q->bounce_pfn
1603 * may differ from that of other stacking queues.
1604 * Recalculate it to check the request correctly on this queue's
1605 * limitation.
1606 */
1607 blk_recalc_rq_segments(rq);
1608 if (rq->nr_phys_segments > q->max_phys_segments ||
1609 rq->nr_phys_segments > q->max_hw_segments) {
1610 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1611 return -EIO;
1612 }
1613
1614 return 0;
1615 }
1616 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1617
1618 /**
1619 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1620 * @q: the queue to submit the request
1621 * @rq: the request being queued
1622 */
1623 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1624 {
1625 unsigned long flags;
1626
1627 if (blk_rq_check_limits(q, rq))
1628 return -EIO;
1629
1630 #ifdef CONFIG_FAIL_MAKE_REQUEST
1631 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1632 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1633 return -EIO;
1634 #endif
1635
1636 spin_lock_irqsave(q->queue_lock, flags);
1637
1638 /*
1639 * Submitting request must be dequeued before calling this function
1640 * because it will be linked to another request_queue
1641 */
1642 BUG_ON(blk_queued_rq(rq));
1643
1644 drive_stat_acct(rq, 1);
1645 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1646
1647 spin_unlock_irqrestore(q->queue_lock, flags);
1648
1649 return 0;
1650 }
1651 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1652
1653 /**
1654 * blkdev_dequeue_request - dequeue request and start timeout timer
1655 * @req: request to dequeue
1656 *
1657 * Dequeue @req and start timeout timer on it. This hands off the
1658 * request to the driver.
1659 *
1660 * Block internal functions which don't want to start timer should
1661 * call elv_dequeue_request().
1662 */
1663 void blkdev_dequeue_request(struct request *req)
1664 {
1665 elv_dequeue_request(req->q, req);
1666
1667 /*
1668 * We are now handing the request to the hardware, add the
1669 * timeout handler.
1670 */
1671 blk_add_timer(req);
1672 }
1673 EXPORT_SYMBOL(blkdev_dequeue_request);
1674
1675 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1676 {
1677 if (!blk_do_io_stat(req))
1678 return;
1679
1680 if (blk_fs_request(req)) {
1681 const int rw = rq_data_dir(req);
1682 struct hd_struct *part;
1683 int cpu;
1684
1685 cpu = part_stat_lock();
1686 part = disk_map_sector_rcu(req->rq_disk, req->sector);
1687 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1688 part_stat_unlock();
1689 }
1690 }
1691
1692 static void blk_account_io_done(struct request *req)
1693 {
1694 if (!blk_do_io_stat(req))
1695 return;
1696
1697 /*
1698 * Account IO completion. bar_rq isn't accounted as a normal
1699 * IO on queueing nor completion. Accounting the containing
1700 * request is enough.
1701 */
1702 if (blk_fs_request(req) && req != &req->q->bar_rq) {
1703 unsigned long duration = jiffies - req->start_time;
1704 const int rw = rq_data_dir(req);
1705 struct hd_struct *part;
1706 int cpu;
1707
1708 cpu = part_stat_lock();
1709 part = disk_map_sector_rcu(req->rq_disk, req->sector);
1710
1711 part_stat_inc(cpu, part, ios[rw]);
1712 part_stat_add(cpu, part, ticks[rw], duration);
1713 part_round_stats(cpu, part);
1714 part_dec_in_flight(part);
1715
1716 part_stat_unlock();
1717 }
1718 }
1719
1720 /**
1721 * __end_that_request_first - end I/O on a request
1722 * @req: the request being processed
1723 * @error: %0 for success, < %0 for error
1724 * @nr_bytes: number of bytes to complete
1725 *
1726 * Description:
1727 * Ends I/O on a number of bytes attached to @req, and sets it up
1728 * for the next range of segments (if any) in the cluster.
1729 *
1730 * Return:
1731 * %0 - we are done with this request, call end_that_request_last()
1732 * %1 - still buffers pending for this request
1733 **/
1734 static int __end_that_request_first(struct request *req, int error,
1735 int nr_bytes)
1736 {
1737 int total_bytes, bio_nbytes, next_idx = 0;
1738 struct bio *bio;
1739
1740 trace_block_rq_complete(req->q, req);
1741
1742 /*
1743 * for a REQ_TYPE_BLOCK_PC request, we want to carry any eventual
1744 * sense key with us all the way through
1745 */
1746 if (!blk_pc_request(req))
1747 req->errors = 0;
1748
1749 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1750 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1751 req->rq_disk ? req->rq_disk->disk_name : "?",
1752 (unsigned long long)req->sector);
1753 }
1754
1755 blk_account_io_completion(req, nr_bytes);
1756
1757 total_bytes = bio_nbytes = 0;
1758 while ((bio = req->bio) != NULL) {
1759 int nbytes;
1760
1761 if (nr_bytes >= bio->bi_size) {
1762 req->bio = bio->bi_next;
1763 nbytes = bio->bi_size;
1764 req_bio_endio(req, bio, nbytes, error);
1765 next_idx = 0;
1766 bio_nbytes = 0;
1767 } else {
1768 int idx = bio->bi_idx + next_idx;
1769
1770 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1771 blk_dump_rq_flags(req, "__end_that");
1772 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1773 __func__, bio->bi_idx, bio->bi_vcnt);
1774 break;
1775 }
1776
1777 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1778 BIO_BUG_ON(nbytes > bio->bi_size);
1779
1780 /*
1781 * not a complete bvec done
1782 */
1783 if (unlikely(nbytes > nr_bytes)) {
1784 bio_nbytes += nr_bytes;
1785 total_bytes += nr_bytes;
1786 break;
1787 }
1788
1789 /*
1790 * advance to the next vector
1791 */
1792 next_idx++;
1793 bio_nbytes += nbytes;
1794 }
1795
1796 total_bytes += nbytes;
1797 nr_bytes -= nbytes;
1798
1799 bio = req->bio;
1800 if (bio) {
1801 /*
1802 * end more in this run, or just return 'not-done'
1803 */
1804 if (unlikely(nr_bytes <= 0))
1805 break;
1806 }
1807 }
1808
1809 /*
1810 * completely done
1811 */
1812 if (!req->bio)
1813 return 0;
1814
1815 /*
1816 * if the request wasn't completed, update state
1817 */
1818 if (bio_nbytes) {
1819 req_bio_endio(req, bio, bio_nbytes, error);
1820 bio->bi_idx += next_idx;
1821 bio_iovec(bio)->bv_offset += nr_bytes;
1822 bio_iovec(bio)->bv_len -= nr_bytes;
1823 }
1824
1825 blk_recalc_rq_sectors(req, total_bytes >> 9);
1826 blk_recalc_rq_segments(req);
1827 return 1;
1828 }
1829
1830 /*
1831 * queue lock must be held
1832 */
1833 static void end_that_request_last(struct request *req, int error)
1834 {
1835 if (blk_rq_tagged(req))
1836 blk_queue_end_tag(req->q, req);
1837
1838 if (blk_queued_rq(req))
1839 elv_dequeue_request(req->q, req);
1840
1841 if (unlikely(laptop_mode) && blk_fs_request(req))
1842 laptop_io_completion();
1843
1844 blk_delete_timer(req);
1845
1846 blk_account_io_done(req);
1847
1848 if (req->end_io)
1849 req->end_io(req, error);
1850 else {
1851 if (blk_bidi_rq(req))
1852 __blk_put_request(req->next_rq->q, req->next_rq);
1853
1854 __blk_put_request(req->q, req);
1855 }
1856 }
1857
1858 /**
1859 * blk_rq_bytes - Returns bytes left to complete in the entire request
1860 * @rq: the request being processed
1861 **/
1862 unsigned int blk_rq_bytes(struct request *rq)
1863 {
1864 if (blk_fs_request(rq))
1865 return rq->hard_nr_sectors << 9;
1866
1867 return rq->data_len;
1868 }
1869 EXPORT_SYMBOL_GPL(blk_rq_bytes);
1870
1871 /**
1872 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
1873 * @rq: the request being processed
1874 **/
1875 unsigned int blk_rq_cur_bytes(struct request *rq)
1876 {
1877 if (blk_fs_request(rq))
1878 return rq->current_nr_sectors << 9;
1879
1880 if (rq->bio)
1881 return rq->bio->bi_size;
1882
1883 return rq->data_len;
1884 }
1885 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
1886
1887 /**
1888 * end_request - end I/O on the current segment of the request
1889 * @req: the request being processed
1890 * @uptodate: error value or %0/%1 uptodate flag
1891 *
1892 * Description:
1893 * Ends I/O on the current segment of a request. If that is the only
1894 * remaining segment, the request is also completed and freed.
1895 *
1896 * This is a remnant of how older block drivers handled I/O completions.
1897 * Modern drivers typically end I/O on the full request in one go, unless
1898 * they have a residual value to account for. For that case this function
1899 * isn't really useful, unless the residual just happens to be the
1900 * full current segment. In other words, don't use this function in new
1901 * code. Use blk_end_request() or __blk_end_request() to end a request.
1902 **/
1903 void end_request(struct request *req, int uptodate)
1904 {
1905 int error = 0;
1906
1907 if (uptodate <= 0)
1908 error = uptodate ? uptodate : -EIO;
1909
1910 __blk_end_request(req, error, req->hard_cur_sectors << 9);
1911 }
1912 EXPORT_SYMBOL(end_request);
1913
1914 static int end_that_request_data(struct request *rq, int error,
1915 unsigned int nr_bytes, unsigned int bidi_bytes)
1916 {
1917 if (rq->bio) {
1918 if (__end_that_request_first(rq, error, nr_bytes))
1919 return 1;
1920
1921 /* Bidi request must be completed as a whole */
1922 if (blk_bidi_rq(rq) &&
1923 __end_that_request_first(rq->next_rq, error, bidi_bytes))
1924 return 1;
1925 }
1926
1927 return 0;
1928 }
1929
1930 /**
1931 * blk_end_io - Generic end_io function to complete a request.
1932 * @rq: the request being processed
1933 * @error: %0 for success, < %0 for error
1934 * @nr_bytes: number of bytes to complete @rq
1935 * @bidi_bytes: number of bytes to complete @rq->next_rq
1936 * @drv_callback: function called between completion of bios in the request
1937 * and completion of the request.
1938 * If the callback returns non %0, this helper returns without
1939 * completion of the request.
1940 *
1941 * Description:
1942 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1943 * If @rq has leftover, sets it up for the next range of segments.
1944 *
1945 * Return:
1946 * %0 - we are done with this request
1947 * %1 - this request is not freed yet, it still has pending buffers.
1948 **/
1949 static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1950 unsigned int bidi_bytes,
1951 int (drv_callback)(struct request *))
1952 {
1953 struct request_queue *q = rq->q;
1954 unsigned long flags = 0UL;
1955
1956 if (end_that_request_data(rq, error, nr_bytes, bidi_bytes))
1957 return 1;
1958
1959 /* Special feature for tricky drivers */
1960 if (drv_callback && drv_callback(rq))
1961 return 1;
1962
1963 add_disk_randomness(rq->rq_disk);
1964
1965 spin_lock_irqsave(q->queue_lock, flags);
1966 end_that_request_last(rq, error);
1967 spin_unlock_irqrestore(q->queue_lock, flags);
1968
1969 return 0;
1970 }
1971
1972 /**
1973 * blk_end_request - Helper function for drivers to complete the request.
1974 * @rq: the request being processed
1975 * @error: %0 for success, < %0 for error
1976 * @nr_bytes: number of bytes to complete
1977 *
1978 * Description:
1979 * Ends I/O on a number of bytes attached to @rq.
1980 * If @rq has leftover, sets it up for the next range of segments.
1981 *
1982 * Return:
1983 * %0 - we are done with this request
1984 * %1 - still buffers pending for this request
1985 **/
1986 int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1987 {
1988 return blk_end_io(rq, error, nr_bytes, 0, NULL);
1989 }
1990 EXPORT_SYMBOL_GPL(blk_end_request);
1991
1992 /**
1993 * __blk_end_request - Helper function for drivers to complete the request.
1994 * @rq: the request being processed
1995 * @error: %0 for success, < %0 for error
1996 * @nr_bytes: number of bytes to complete
1997 *
1998 * Description:
1999 * Must be called with queue lock held unlike blk_end_request().
2000 *
2001 * Return:
2002 * %0 - we are done with this request
2003 * %1 - still buffers pending for this request
2004 **/
2005 int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2006 {
2007 if (rq->bio && __end_that_request_first(rq, error, nr_bytes))
2008 return 1;
2009
2010 add_disk_randomness(rq->rq_disk);
2011
2012 end_that_request_last(rq, error);
2013
2014 return 0;
2015 }
2016 EXPORT_SYMBOL_GPL(__blk_end_request);
2017
2018 /**
2019 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
2020 * @rq: the bidi request being processed
2021 * @error: %0 for success, < %0 for error
2022 * @nr_bytes: number of bytes to complete @rq
2023 * @bidi_bytes: number of bytes to complete @rq->next_rq
2024 *
2025 * Description:
2026 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2027 *
2028 * Return:
2029 * %0 - we are done with this request
2030 * %1 - still buffers pending for this request
2031 **/
2032 int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
2033 unsigned int bidi_bytes)
2034 {
2035 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
2036 }
2037 EXPORT_SYMBOL_GPL(blk_end_bidi_request);
2038
2039 /**
2040 * blk_update_request - Special helper function for request stacking drivers
2041 * @rq: the request being processed
2042 * @error: %0 for success, < %0 for error
2043 * @nr_bytes: number of bytes to complete @rq
2044 *
2045 * Description:
2046 * Ends I/O on a number of bytes attached to @rq, but doesn't complete
2047 * the request structure even if @rq doesn't have leftover.
2048 * If @rq has leftover, sets it up for the next range of segments.
2049 *
2050 * This special helper function is only for request stacking drivers
2051 * (e.g. request-based dm) so that they can handle partial completion.
2052 * Actual device drivers should use blk_end_request instead.
2053 */
2054 void blk_update_request(struct request *rq, int error, unsigned int nr_bytes)
2055 {
2056 if (!end_that_request_data(rq, error, nr_bytes, 0)) {
2057 /*
2058 * These members are not updated in end_that_request_data()
2059 * when all bios are completed.
2060 * Update them so that the request stacking driver can find
2061 * how many bytes remain in the request later.
2062 */
2063 rq->nr_sectors = rq->hard_nr_sectors = 0;
2064 rq->current_nr_sectors = rq->hard_cur_sectors = 0;
2065 }
2066 }
2067 EXPORT_SYMBOL_GPL(blk_update_request);
2068
2069 /**
2070 * blk_end_request_callback - Special helper function for tricky drivers
2071 * @rq: the request being processed
2072 * @error: %0 for success, < %0 for error
2073 * @nr_bytes: number of bytes to complete
2074 * @drv_callback: function called between completion of bios in the request
2075 * and completion of the request.
2076 * If the callback returns non %0, this helper returns without
2077 * completion of the request.
2078 *
2079 * Description:
2080 * Ends I/O on a number of bytes attached to @rq.
2081 * If @rq has leftover, sets it up for the next range of segments.
2082 *
2083 * This special helper function is used only for existing tricky drivers.
2084 * (e.g. cdrom_newpc_intr() of ide-cd)
2085 * This interface will be removed when such drivers are rewritten.
2086 * Don't use this interface in other places anymore.
2087 *
2088 * Return:
2089 * %0 - we are done with this request
2090 * %1 - this request is not freed yet.
2091 * this request still has pending buffers or
2092 * the driver doesn't want to finish this request yet.
2093 **/
2094 int blk_end_request_callback(struct request *rq, int error,
2095 unsigned int nr_bytes,
2096 int (drv_callback)(struct request *))
2097 {
2098 return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
2099 }
2100 EXPORT_SYMBOL_GPL(blk_end_request_callback);
2101
2102 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2103 struct bio *bio)
2104 {
2105 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and
2106 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */
2107 rq->cmd_flags |= (bio->bi_rw & 3);
2108
2109 if (bio_has_data(bio)) {
2110 rq->nr_phys_segments = bio_phys_segments(q, bio);
2111 rq->buffer = bio_data(bio);
2112 }
2113 rq->current_nr_sectors = bio_cur_sectors(bio);
2114 rq->hard_cur_sectors = rq->current_nr_sectors;
2115 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
2116 rq->data_len = bio->bi_size;
2117
2118 rq->bio = rq->biotail = bio;
2119
2120 if (bio->bi_bdev)
2121 rq->rq_disk = bio->bi_bdev->bd_disk;
2122 }
2123
2124 /**
2125 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2126 * @q : the queue of the device being checked
2127 *
2128 * Description:
2129 * Check if underlying low-level drivers of a device are busy.
2130 * If the drivers want to export their busy state, they must set own
2131 * exporting function using blk_queue_lld_busy() first.
2132 *
2133 * Basically, this function is used only by request stacking drivers
2134 * to stop dispatching requests to underlying devices when underlying
2135 * devices are busy. This behavior helps more I/O merging on the queue
2136 * of the request stacking driver and prevents I/O throughput regression
2137 * on burst I/O load.
2138 *
2139 * Return:
2140 * 0 - Not busy (The request stacking driver should dispatch request)
2141 * 1 - Busy (The request stacking driver should stop dispatching request)
2142 */
2143 int blk_lld_busy(struct request_queue *q)
2144 {
2145 if (q->lld_busy_fn)
2146 return q->lld_busy_fn(q);
2147
2148 return 0;
2149 }
2150 EXPORT_SYMBOL_GPL(blk_lld_busy);
2151
2152 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2153 {
2154 return queue_work(kblockd_workqueue, work);
2155 }
2156 EXPORT_SYMBOL(kblockd_schedule_work);
2157
2158 int __init blk_dev_init(void)
2159 {
2160 kblockd_workqueue = create_workqueue("kblockd");
2161 if (!kblockd_workqueue)
2162 panic("Failed to create kblockd\n");
2163
2164 request_cachep = kmem_cache_create("blkdev_requests",
2165 sizeof(struct request), 0, SLAB_PANIC, NULL);
2166
2167 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2168 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2169
2170 return 0;
2171 }
2172
This page took 0.097643 seconds and 6 git commands to generate.