Merge branch 'master' into for-2.6.35
[deliverable/linux.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/block.h>
33
34 #include "blk.h"
35
36 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
39
40 static int __make_request(struct request_queue *q, struct bio *bio);
41
42 /*
43 * For the allocated request tables
44 */
45 static struct kmem_cache *request_cachep;
46
47 /*
48 * For queue allocation
49 */
50 struct kmem_cache *blk_requestq_cachep;
51
52 /*
53 * Controlling structure to kblockd
54 */
55 static struct workqueue_struct *kblockd_workqueue;
56
57 static void drive_stat_acct(struct request *rq, int new_io)
58 {
59 struct hd_struct *part;
60 int rw = rq_data_dir(rq);
61 int cpu;
62
63 if (!blk_do_io_stat(rq))
64 return;
65
66 cpu = part_stat_lock();
67 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
68
69 if (!new_io)
70 part_stat_inc(cpu, part, merges[rw]);
71 else {
72 part_round_stats(cpu, part);
73 part_inc_in_flight(part, rw);
74 }
75
76 part_stat_unlock();
77 }
78
79 void blk_queue_congestion_threshold(struct request_queue *q)
80 {
81 int nr;
82
83 nr = q->nr_requests - (q->nr_requests / 8) + 1;
84 if (nr > q->nr_requests)
85 nr = q->nr_requests;
86 q->nr_congestion_on = nr;
87
88 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
89 if (nr < 1)
90 nr = 1;
91 q->nr_congestion_off = nr;
92 }
93
94 /**
95 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
96 * @bdev: device
97 *
98 * Locates the passed device's request queue and returns the address of its
99 * backing_dev_info
100 *
101 * Will return NULL if the request queue cannot be located.
102 */
103 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
104 {
105 struct backing_dev_info *ret = NULL;
106 struct request_queue *q = bdev_get_queue(bdev);
107
108 if (q)
109 ret = &q->backing_dev_info;
110 return ret;
111 }
112 EXPORT_SYMBOL(blk_get_backing_dev_info);
113
114 void blk_rq_init(struct request_queue *q, struct request *rq)
115 {
116 memset(rq, 0, sizeof(*rq));
117
118 INIT_LIST_HEAD(&rq->queuelist);
119 INIT_LIST_HEAD(&rq->timeout_list);
120 rq->cpu = -1;
121 rq->q = q;
122 rq->__sector = (sector_t) -1;
123 INIT_HLIST_NODE(&rq->hash);
124 RB_CLEAR_NODE(&rq->rb_node);
125 rq->cmd = rq->__cmd;
126 rq->cmd_len = BLK_MAX_CDB;
127 rq->tag = -1;
128 rq->ref_count = 1;
129 rq->start_time = jiffies;
130 set_start_time_ns(rq);
131 }
132 EXPORT_SYMBOL(blk_rq_init);
133
134 static void req_bio_endio(struct request *rq, struct bio *bio,
135 unsigned int nbytes, int error)
136 {
137 struct request_queue *q = rq->q;
138
139 if (&q->bar_rq != rq) {
140 if (error)
141 clear_bit(BIO_UPTODATE, &bio->bi_flags);
142 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
143 error = -EIO;
144
145 if (unlikely(nbytes > bio->bi_size)) {
146 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
147 __func__, nbytes, bio->bi_size);
148 nbytes = bio->bi_size;
149 }
150
151 if (unlikely(rq->cmd_flags & REQ_QUIET))
152 set_bit(BIO_QUIET, &bio->bi_flags);
153
154 bio->bi_size -= nbytes;
155 bio->bi_sector += (nbytes >> 9);
156
157 if (bio_integrity(bio))
158 bio_integrity_advance(bio, nbytes);
159
160 if (bio->bi_size == 0)
161 bio_endio(bio, error);
162 } else {
163
164 /*
165 * Okay, this is the barrier request in progress, just
166 * record the error;
167 */
168 if (error && !q->orderr)
169 q->orderr = error;
170 }
171 }
172
173 void blk_dump_rq_flags(struct request *rq, char *msg)
174 {
175 int bit;
176
177 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
178 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
179 rq->cmd_flags);
180
181 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
182 (unsigned long long)blk_rq_pos(rq),
183 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
184 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
185 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
186
187 if (blk_pc_request(rq)) {
188 printk(KERN_INFO " cdb: ");
189 for (bit = 0; bit < BLK_MAX_CDB; bit++)
190 printk("%02x ", rq->cmd[bit]);
191 printk("\n");
192 }
193 }
194 EXPORT_SYMBOL(blk_dump_rq_flags);
195
196 /*
197 * "plug" the device if there are no outstanding requests: this will
198 * force the transfer to start only after we have put all the requests
199 * on the list.
200 *
201 * This is called with interrupts off and no requests on the queue and
202 * with the queue lock held.
203 */
204 void blk_plug_device(struct request_queue *q)
205 {
206 WARN_ON(!irqs_disabled());
207
208 /*
209 * don't plug a stopped queue, it must be paired with blk_start_queue()
210 * which will restart the queueing
211 */
212 if (blk_queue_stopped(q))
213 return;
214
215 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
216 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
217 trace_block_plug(q);
218 }
219 }
220 EXPORT_SYMBOL(blk_plug_device);
221
222 /**
223 * blk_plug_device_unlocked - plug a device without queue lock held
224 * @q: The &struct request_queue to plug
225 *
226 * Description:
227 * Like @blk_plug_device(), but grabs the queue lock and disables
228 * interrupts.
229 **/
230 void blk_plug_device_unlocked(struct request_queue *q)
231 {
232 unsigned long flags;
233
234 spin_lock_irqsave(q->queue_lock, flags);
235 blk_plug_device(q);
236 spin_unlock_irqrestore(q->queue_lock, flags);
237 }
238 EXPORT_SYMBOL(blk_plug_device_unlocked);
239
240 /*
241 * remove the queue from the plugged list, if present. called with
242 * queue lock held and interrupts disabled.
243 */
244 int blk_remove_plug(struct request_queue *q)
245 {
246 WARN_ON(!irqs_disabled());
247
248 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
249 return 0;
250
251 del_timer(&q->unplug_timer);
252 return 1;
253 }
254 EXPORT_SYMBOL(blk_remove_plug);
255
256 /*
257 * remove the plug and let it rip..
258 */
259 void __generic_unplug_device(struct request_queue *q)
260 {
261 if (unlikely(blk_queue_stopped(q)))
262 return;
263 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
264 return;
265
266 q->request_fn(q);
267 }
268
269 /**
270 * generic_unplug_device - fire a request queue
271 * @q: The &struct request_queue in question
272 *
273 * Description:
274 * Linux uses plugging to build bigger requests queues before letting
275 * the device have at them. If a queue is plugged, the I/O scheduler
276 * is still adding and merging requests on the queue. Once the queue
277 * gets unplugged, the request_fn defined for the queue is invoked and
278 * transfers started.
279 **/
280 void generic_unplug_device(struct request_queue *q)
281 {
282 if (blk_queue_plugged(q)) {
283 spin_lock_irq(q->queue_lock);
284 __generic_unplug_device(q);
285 spin_unlock_irq(q->queue_lock);
286 }
287 }
288 EXPORT_SYMBOL(generic_unplug_device);
289
290 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
291 struct page *page)
292 {
293 struct request_queue *q = bdi->unplug_io_data;
294
295 blk_unplug(q);
296 }
297
298 void blk_unplug_work(struct work_struct *work)
299 {
300 struct request_queue *q =
301 container_of(work, struct request_queue, unplug_work);
302
303 trace_block_unplug_io(q);
304 q->unplug_fn(q);
305 }
306
307 void blk_unplug_timeout(unsigned long data)
308 {
309 struct request_queue *q = (struct request_queue *)data;
310
311 trace_block_unplug_timer(q);
312 kblockd_schedule_work(q, &q->unplug_work);
313 }
314
315 void blk_unplug(struct request_queue *q)
316 {
317 /*
318 * devices don't necessarily have an ->unplug_fn defined
319 */
320 if (q->unplug_fn) {
321 trace_block_unplug_io(q);
322 q->unplug_fn(q);
323 }
324 }
325 EXPORT_SYMBOL(blk_unplug);
326
327 /**
328 * blk_start_queue - restart a previously stopped queue
329 * @q: The &struct request_queue in question
330 *
331 * Description:
332 * blk_start_queue() will clear the stop flag on the queue, and call
333 * the request_fn for the queue if it was in a stopped state when
334 * entered. Also see blk_stop_queue(). Queue lock must be held.
335 **/
336 void blk_start_queue(struct request_queue *q)
337 {
338 WARN_ON(!irqs_disabled());
339
340 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
341 __blk_run_queue(q);
342 }
343 EXPORT_SYMBOL(blk_start_queue);
344
345 /**
346 * blk_stop_queue - stop a queue
347 * @q: The &struct request_queue in question
348 *
349 * Description:
350 * The Linux block layer assumes that a block driver will consume all
351 * entries on the request queue when the request_fn strategy is called.
352 * Often this will not happen, because of hardware limitations (queue
353 * depth settings). If a device driver gets a 'queue full' response,
354 * or if it simply chooses not to queue more I/O at one point, it can
355 * call this function to prevent the request_fn from being called until
356 * the driver has signalled it's ready to go again. This happens by calling
357 * blk_start_queue() to restart queue operations. Queue lock must be held.
358 **/
359 void blk_stop_queue(struct request_queue *q)
360 {
361 blk_remove_plug(q);
362 queue_flag_set(QUEUE_FLAG_STOPPED, q);
363 }
364 EXPORT_SYMBOL(blk_stop_queue);
365
366 /**
367 * blk_sync_queue - cancel any pending callbacks on a queue
368 * @q: the queue
369 *
370 * Description:
371 * The block layer may perform asynchronous callback activity
372 * on a queue, such as calling the unplug function after a timeout.
373 * A block device may call blk_sync_queue to ensure that any
374 * such activity is cancelled, thus allowing it to release resources
375 * that the callbacks might use. The caller must already have made sure
376 * that its ->make_request_fn will not re-add plugging prior to calling
377 * this function.
378 *
379 */
380 void blk_sync_queue(struct request_queue *q)
381 {
382 del_timer_sync(&q->unplug_timer);
383 del_timer_sync(&q->timeout);
384 cancel_work_sync(&q->unplug_work);
385 }
386 EXPORT_SYMBOL(blk_sync_queue);
387
388 /**
389 * __blk_run_queue - run a single device queue
390 * @q: The queue to run
391 *
392 * Description:
393 * See @blk_run_queue. This variant must be called with the queue lock
394 * held and interrupts disabled.
395 *
396 */
397 void __blk_run_queue(struct request_queue *q)
398 {
399 blk_remove_plug(q);
400
401 if (unlikely(blk_queue_stopped(q)))
402 return;
403
404 if (elv_queue_empty(q))
405 return;
406
407 /*
408 * Only recurse once to avoid overrunning the stack, let the unplug
409 * handling reinvoke the handler shortly if we already got there.
410 */
411 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
412 q->request_fn(q);
413 queue_flag_clear(QUEUE_FLAG_REENTER, q);
414 } else {
415 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
416 kblockd_schedule_work(q, &q->unplug_work);
417 }
418 }
419 EXPORT_SYMBOL(__blk_run_queue);
420
421 /**
422 * blk_run_queue - run a single device queue
423 * @q: The queue to run
424 *
425 * Description:
426 * Invoke request handling on this queue, if it has pending work to do.
427 * May be used to restart queueing when a request has completed.
428 */
429 void blk_run_queue(struct request_queue *q)
430 {
431 unsigned long flags;
432
433 spin_lock_irqsave(q->queue_lock, flags);
434 __blk_run_queue(q);
435 spin_unlock_irqrestore(q->queue_lock, flags);
436 }
437 EXPORT_SYMBOL(blk_run_queue);
438
439 void blk_put_queue(struct request_queue *q)
440 {
441 kobject_put(&q->kobj);
442 }
443
444 void blk_cleanup_queue(struct request_queue *q)
445 {
446 /*
447 * We know we have process context here, so we can be a little
448 * cautious and ensure that pending block actions on this device
449 * are done before moving on. Going into this function, we should
450 * not have processes doing IO to this device.
451 */
452 blk_sync_queue(q);
453
454 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
455 mutex_lock(&q->sysfs_lock);
456 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
457 mutex_unlock(&q->sysfs_lock);
458
459 if (q->elevator)
460 elevator_exit(q->elevator);
461
462 blk_put_queue(q);
463 }
464 EXPORT_SYMBOL(blk_cleanup_queue);
465
466 static int blk_init_free_list(struct request_queue *q)
467 {
468 struct request_list *rl = &q->rq;
469
470 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
471 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
472 rl->elvpriv = 0;
473 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
474 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
475
476 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
477 mempool_free_slab, request_cachep, q->node);
478
479 if (!rl->rq_pool)
480 return -ENOMEM;
481
482 return 0;
483 }
484
485 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
486 {
487 return blk_alloc_queue_node(gfp_mask, -1);
488 }
489 EXPORT_SYMBOL(blk_alloc_queue);
490
491 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
492 {
493 struct request_queue *q;
494 int err;
495
496 q = kmem_cache_alloc_node(blk_requestq_cachep,
497 gfp_mask | __GFP_ZERO, node_id);
498 if (!q)
499 return NULL;
500
501 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
502 q->backing_dev_info.unplug_io_data = q;
503 q->backing_dev_info.ra_pages =
504 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
505 q->backing_dev_info.state = 0;
506 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
507 q->backing_dev_info.name = "block";
508
509 err = bdi_init(&q->backing_dev_info);
510 if (err) {
511 kmem_cache_free(blk_requestq_cachep, q);
512 return NULL;
513 }
514
515 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
516 laptop_mode_timer_fn, (unsigned long) q);
517 init_timer(&q->unplug_timer);
518 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
519 INIT_LIST_HEAD(&q->timeout_list);
520 INIT_WORK(&q->unplug_work, blk_unplug_work);
521
522 kobject_init(&q->kobj, &blk_queue_ktype);
523
524 mutex_init(&q->sysfs_lock);
525 spin_lock_init(&q->__queue_lock);
526
527 return q;
528 }
529 EXPORT_SYMBOL(blk_alloc_queue_node);
530
531 /**
532 * blk_init_queue - prepare a request queue for use with a block device
533 * @rfn: The function to be called to process requests that have been
534 * placed on the queue.
535 * @lock: Request queue spin lock
536 *
537 * Description:
538 * If a block device wishes to use the standard request handling procedures,
539 * which sorts requests and coalesces adjacent requests, then it must
540 * call blk_init_queue(). The function @rfn will be called when there
541 * are requests on the queue that need to be processed. If the device
542 * supports plugging, then @rfn may not be called immediately when requests
543 * are available on the queue, but may be called at some time later instead.
544 * Plugged queues are generally unplugged when a buffer belonging to one
545 * of the requests on the queue is needed, or due to memory pressure.
546 *
547 * @rfn is not required, or even expected, to remove all requests off the
548 * queue, but only as many as it can handle at a time. If it does leave
549 * requests on the queue, it is responsible for arranging that the requests
550 * get dealt with eventually.
551 *
552 * The queue spin lock must be held while manipulating the requests on the
553 * request queue; this lock will be taken also from interrupt context, so irq
554 * disabling is needed for it.
555 *
556 * Function returns a pointer to the initialized request queue, or %NULL if
557 * it didn't succeed.
558 *
559 * Note:
560 * blk_init_queue() must be paired with a blk_cleanup_queue() call
561 * when the block device is deactivated (such as at module unload).
562 **/
563
564 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
565 {
566 return blk_init_queue_node(rfn, lock, -1);
567 }
568 EXPORT_SYMBOL(blk_init_queue);
569
570 struct request_queue *
571 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
572 {
573 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
574
575 if (!q)
576 return NULL;
577
578 q->node = node_id;
579 if (blk_init_free_list(q)) {
580 kmem_cache_free(blk_requestq_cachep, q);
581 return NULL;
582 }
583
584 q->request_fn = rfn;
585 q->prep_rq_fn = NULL;
586 q->unplug_fn = generic_unplug_device;
587 q->queue_flags = QUEUE_FLAG_DEFAULT;
588 q->queue_lock = lock;
589
590 /*
591 * This also sets hw/phys segments, boundary and size
592 */
593 blk_queue_make_request(q, __make_request);
594
595 q->sg_reserved_size = INT_MAX;
596
597 /*
598 * all done
599 */
600 if (!elevator_init(q, NULL)) {
601 blk_queue_congestion_threshold(q);
602 return q;
603 }
604
605 blk_put_queue(q);
606 return NULL;
607 }
608 EXPORT_SYMBOL(blk_init_queue_node);
609
610 int blk_get_queue(struct request_queue *q)
611 {
612 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
613 kobject_get(&q->kobj);
614 return 0;
615 }
616
617 return 1;
618 }
619
620 static inline void blk_free_request(struct request_queue *q, struct request *rq)
621 {
622 if (rq->cmd_flags & REQ_ELVPRIV)
623 elv_put_request(q, rq);
624 mempool_free(rq, q->rq.rq_pool);
625 }
626
627 static struct request *
628 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
629 {
630 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
631
632 if (!rq)
633 return NULL;
634
635 blk_rq_init(q, rq);
636
637 rq->cmd_flags = flags | REQ_ALLOCED;
638
639 if (priv) {
640 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
641 mempool_free(rq, q->rq.rq_pool);
642 return NULL;
643 }
644 rq->cmd_flags |= REQ_ELVPRIV;
645 }
646
647 return rq;
648 }
649
650 /*
651 * ioc_batching returns true if the ioc is a valid batching request and
652 * should be given priority access to a request.
653 */
654 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
655 {
656 if (!ioc)
657 return 0;
658
659 /*
660 * Make sure the process is able to allocate at least 1 request
661 * even if the batch times out, otherwise we could theoretically
662 * lose wakeups.
663 */
664 return ioc->nr_batch_requests == q->nr_batching ||
665 (ioc->nr_batch_requests > 0
666 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
667 }
668
669 /*
670 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
671 * will cause the process to be a "batcher" on all queues in the system. This
672 * is the behaviour we want though - once it gets a wakeup it should be given
673 * a nice run.
674 */
675 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
676 {
677 if (!ioc || ioc_batching(q, ioc))
678 return;
679
680 ioc->nr_batch_requests = q->nr_batching;
681 ioc->last_waited = jiffies;
682 }
683
684 static void __freed_request(struct request_queue *q, int sync)
685 {
686 struct request_list *rl = &q->rq;
687
688 if (rl->count[sync] < queue_congestion_off_threshold(q))
689 blk_clear_queue_congested(q, sync);
690
691 if (rl->count[sync] + 1 <= q->nr_requests) {
692 if (waitqueue_active(&rl->wait[sync]))
693 wake_up(&rl->wait[sync]);
694
695 blk_clear_queue_full(q, sync);
696 }
697 }
698
699 /*
700 * A request has just been released. Account for it, update the full and
701 * congestion status, wake up any waiters. Called under q->queue_lock.
702 */
703 static void freed_request(struct request_queue *q, int sync, int priv)
704 {
705 struct request_list *rl = &q->rq;
706
707 rl->count[sync]--;
708 if (priv)
709 rl->elvpriv--;
710
711 __freed_request(q, sync);
712
713 if (unlikely(rl->starved[sync ^ 1]))
714 __freed_request(q, sync ^ 1);
715 }
716
717 /*
718 * Get a free request, queue_lock must be held.
719 * Returns NULL on failure, with queue_lock held.
720 * Returns !NULL on success, with queue_lock *not held*.
721 */
722 static struct request *get_request(struct request_queue *q, int rw_flags,
723 struct bio *bio, gfp_t gfp_mask)
724 {
725 struct request *rq = NULL;
726 struct request_list *rl = &q->rq;
727 struct io_context *ioc = NULL;
728 const bool is_sync = rw_is_sync(rw_flags) != 0;
729 int may_queue, priv;
730
731 may_queue = elv_may_queue(q, rw_flags);
732 if (may_queue == ELV_MQUEUE_NO)
733 goto rq_starved;
734
735 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
736 if (rl->count[is_sync]+1 >= q->nr_requests) {
737 ioc = current_io_context(GFP_ATOMIC, q->node);
738 /*
739 * The queue will fill after this allocation, so set
740 * it as full, and mark this process as "batching".
741 * This process will be allowed to complete a batch of
742 * requests, others will be blocked.
743 */
744 if (!blk_queue_full(q, is_sync)) {
745 ioc_set_batching(q, ioc);
746 blk_set_queue_full(q, is_sync);
747 } else {
748 if (may_queue != ELV_MQUEUE_MUST
749 && !ioc_batching(q, ioc)) {
750 /*
751 * The queue is full and the allocating
752 * process is not a "batcher", and not
753 * exempted by the IO scheduler
754 */
755 goto out;
756 }
757 }
758 }
759 blk_set_queue_congested(q, is_sync);
760 }
761
762 /*
763 * Only allow batching queuers to allocate up to 50% over the defined
764 * limit of requests, otherwise we could have thousands of requests
765 * allocated with any setting of ->nr_requests
766 */
767 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
768 goto out;
769
770 rl->count[is_sync]++;
771 rl->starved[is_sync] = 0;
772
773 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
774 if (priv)
775 rl->elvpriv++;
776
777 if (blk_queue_io_stat(q))
778 rw_flags |= REQ_IO_STAT;
779 spin_unlock_irq(q->queue_lock);
780
781 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
782 if (unlikely(!rq)) {
783 /*
784 * Allocation failed presumably due to memory. Undo anything
785 * we might have messed up.
786 *
787 * Allocating task should really be put onto the front of the
788 * wait queue, but this is pretty rare.
789 */
790 spin_lock_irq(q->queue_lock);
791 freed_request(q, is_sync, priv);
792
793 /*
794 * in the very unlikely event that allocation failed and no
795 * requests for this direction was pending, mark us starved
796 * so that freeing of a request in the other direction will
797 * notice us. another possible fix would be to split the
798 * rq mempool into READ and WRITE
799 */
800 rq_starved:
801 if (unlikely(rl->count[is_sync] == 0))
802 rl->starved[is_sync] = 1;
803
804 goto out;
805 }
806
807 /*
808 * ioc may be NULL here, and ioc_batching will be false. That's
809 * OK, if the queue is under the request limit then requests need
810 * not count toward the nr_batch_requests limit. There will always
811 * be some limit enforced by BLK_BATCH_TIME.
812 */
813 if (ioc_batching(q, ioc))
814 ioc->nr_batch_requests--;
815
816 trace_block_getrq(q, bio, rw_flags & 1);
817 out:
818 return rq;
819 }
820
821 /*
822 * No available requests for this queue, unplug the device and wait for some
823 * requests to become available.
824 *
825 * Called with q->queue_lock held, and returns with it unlocked.
826 */
827 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
828 struct bio *bio)
829 {
830 const bool is_sync = rw_is_sync(rw_flags) != 0;
831 struct request *rq;
832
833 rq = get_request(q, rw_flags, bio, GFP_NOIO);
834 while (!rq) {
835 DEFINE_WAIT(wait);
836 struct io_context *ioc;
837 struct request_list *rl = &q->rq;
838
839 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
840 TASK_UNINTERRUPTIBLE);
841
842 trace_block_sleeprq(q, bio, rw_flags & 1);
843
844 __generic_unplug_device(q);
845 spin_unlock_irq(q->queue_lock);
846 io_schedule();
847
848 /*
849 * After sleeping, we become a "batching" process and
850 * will be able to allocate at least one request, and
851 * up to a big batch of them for a small period time.
852 * See ioc_batching, ioc_set_batching
853 */
854 ioc = current_io_context(GFP_NOIO, q->node);
855 ioc_set_batching(q, ioc);
856
857 spin_lock_irq(q->queue_lock);
858 finish_wait(&rl->wait[is_sync], &wait);
859
860 rq = get_request(q, rw_flags, bio, GFP_NOIO);
861 };
862
863 return rq;
864 }
865
866 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
867 {
868 struct request *rq;
869
870 BUG_ON(rw != READ && rw != WRITE);
871
872 spin_lock_irq(q->queue_lock);
873 if (gfp_mask & __GFP_WAIT) {
874 rq = get_request_wait(q, rw, NULL);
875 } else {
876 rq = get_request(q, rw, NULL, gfp_mask);
877 if (!rq)
878 spin_unlock_irq(q->queue_lock);
879 }
880 /* q->queue_lock is unlocked at this point */
881
882 return rq;
883 }
884 EXPORT_SYMBOL(blk_get_request);
885
886 /**
887 * blk_make_request - given a bio, allocate a corresponding struct request.
888 * @q: target request queue
889 * @bio: The bio describing the memory mappings that will be submitted for IO.
890 * It may be a chained-bio properly constructed by block/bio layer.
891 * @gfp_mask: gfp flags to be used for memory allocation
892 *
893 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
894 * type commands. Where the struct request needs to be farther initialized by
895 * the caller. It is passed a &struct bio, which describes the memory info of
896 * the I/O transfer.
897 *
898 * The caller of blk_make_request must make sure that bi_io_vec
899 * are set to describe the memory buffers. That bio_data_dir() will return
900 * the needed direction of the request. (And all bio's in the passed bio-chain
901 * are properly set accordingly)
902 *
903 * If called under none-sleepable conditions, mapped bio buffers must not
904 * need bouncing, by calling the appropriate masked or flagged allocator,
905 * suitable for the target device. Otherwise the call to blk_queue_bounce will
906 * BUG.
907 *
908 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
909 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
910 * anything but the first bio in the chain. Otherwise you risk waiting for IO
911 * completion of a bio that hasn't been submitted yet, thus resulting in a
912 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
913 * of bio_alloc(), as that avoids the mempool deadlock.
914 * If possible a big IO should be split into smaller parts when allocation
915 * fails. Partial allocation should not be an error, or you risk a live-lock.
916 */
917 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
918 gfp_t gfp_mask)
919 {
920 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
921
922 if (unlikely(!rq))
923 return ERR_PTR(-ENOMEM);
924
925 for_each_bio(bio) {
926 struct bio *bounce_bio = bio;
927 int ret;
928
929 blk_queue_bounce(q, &bounce_bio);
930 ret = blk_rq_append_bio(q, rq, bounce_bio);
931 if (unlikely(ret)) {
932 blk_put_request(rq);
933 return ERR_PTR(ret);
934 }
935 }
936
937 return rq;
938 }
939 EXPORT_SYMBOL(blk_make_request);
940
941 /**
942 * blk_requeue_request - put a request back on queue
943 * @q: request queue where request should be inserted
944 * @rq: request to be inserted
945 *
946 * Description:
947 * Drivers often keep queueing requests until the hardware cannot accept
948 * more, when that condition happens we need to put the request back
949 * on the queue. Must be called with queue lock held.
950 */
951 void blk_requeue_request(struct request_queue *q, struct request *rq)
952 {
953 blk_delete_timer(rq);
954 blk_clear_rq_complete(rq);
955 trace_block_rq_requeue(q, rq);
956
957 if (blk_rq_tagged(rq))
958 blk_queue_end_tag(q, rq);
959
960 BUG_ON(blk_queued_rq(rq));
961
962 elv_requeue_request(q, rq);
963 }
964 EXPORT_SYMBOL(blk_requeue_request);
965
966 /**
967 * blk_insert_request - insert a special request into a request queue
968 * @q: request queue where request should be inserted
969 * @rq: request to be inserted
970 * @at_head: insert request at head or tail of queue
971 * @data: private data
972 *
973 * Description:
974 * Many block devices need to execute commands asynchronously, so they don't
975 * block the whole kernel from preemption during request execution. This is
976 * accomplished normally by inserting aritficial requests tagged as
977 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
978 * be scheduled for actual execution by the request queue.
979 *
980 * We have the option of inserting the head or the tail of the queue.
981 * Typically we use the tail for new ioctls and so forth. We use the head
982 * of the queue for things like a QUEUE_FULL message from a device, or a
983 * host that is unable to accept a particular command.
984 */
985 void blk_insert_request(struct request_queue *q, struct request *rq,
986 int at_head, void *data)
987 {
988 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
989 unsigned long flags;
990
991 /*
992 * tell I/O scheduler that this isn't a regular read/write (ie it
993 * must not attempt merges on this) and that it acts as a soft
994 * barrier
995 */
996 rq->cmd_type = REQ_TYPE_SPECIAL;
997
998 rq->special = data;
999
1000 spin_lock_irqsave(q->queue_lock, flags);
1001
1002 /*
1003 * If command is tagged, release the tag
1004 */
1005 if (blk_rq_tagged(rq))
1006 blk_queue_end_tag(q, rq);
1007
1008 drive_stat_acct(rq, 1);
1009 __elv_add_request(q, rq, where, 0);
1010 __blk_run_queue(q);
1011 spin_unlock_irqrestore(q->queue_lock, flags);
1012 }
1013 EXPORT_SYMBOL(blk_insert_request);
1014
1015 /*
1016 * add-request adds a request to the linked list.
1017 * queue lock is held and interrupts disabled, as we muck with the
1018 * request queue list.
1019 */
1020 static inline void add_request(struct request_queue *q, struct request *req)
1021 {
1022 drive_stat_acct(req, 1);
1023
1024 /*
1025 * elevator indicated where it wants this request to be
1026 * inserted at elevator_merge time
1027 */
1028 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1029 }
1030
1031 static void part_round_stats_single(int cpu, struct hd_struct *part,
1032 unsigned long now)
1033 {
1034 if (now == part->stamp)
1035 return;
1036
1037 if (part_in_flight(part)) {
1038 __part_stat_add(cpu, part, time_in_queue,
1039 part_in_flight(part) * (now - part->stamp));
1040 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1041 }
1042 part->stamp = now;
1043 }
1044
1045 /**
1046 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1047 * @cpu: cpu number for stats access
1048 * @part: target partition
1049 *
1050 * The average IO queue length and utilisation statistics are maintained
1051 * by observing the current state of the queue length and the amount of
1052 * time it has been in this state for.
1053 *
1054 * Normally, that accounting is done on IO completion, but that can result
1055 * in more than a second's worth of IO being accounted for within any one
1056 * second, leading to >100% utilisation. To deal with that, we call this
1057 * function to do a round-off before returning the results when reading
1058 * /proc/diskstats. This accounts immediately for all queue usage up to
1059 * the current jiffies and restarts the counters again.
1060 */
1061 void part_round_stats(int cpu, struct hd_struct *part)
1062 {
1063 unsigned long now = jiffies;
1064
1065 if (part->partno)
1066 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1067 part_round_stats_single(cpu, part, now);
1068 }
1069 EXPORT_SYMBOL_GPL(part_round_stats);
1070
1071 /*
1072 * queue lock must be held
1073 */
1074 void __blk_put_request(struct request_queue *q, struct request *req)
1075 {
1076 if (unlikely(!q))
1077 return;
1078 if (unlikely(--req->ref_count))
1079 return;
1080
1081 elv_completed_request(q, req);
1082
1083 /* this is a bio leak */
1084 WARN_ON(req->bio != NULL);
1085
1086 /*
1087 * Request may not have originated from ll_rw_blk. if not,
1088 * it didn't come out of our reserved rq pools
1089 */
1090 if (req->cmd_flags & REQ_ALLOCED) {
1091 int is_sync = rq_is_sync(req) != 0;
1092 int priv = req->cmd_flags & REQ_ELVPRIV;
1093
1094 BUG_ON(!list_empty(&req->queuelist));
1095 BUG_ON(!hlist_unhashed(&req->hash));
1096
1097 blk_free_request(q, req);
1098 freed_request(q, is_sync, priv);
1099 }
1100 }
1101 EXPORT_SYMBOL_GPL(__blk_put_request);
1102
1103 void blk_put_request(struct request *req)
1104 {
1105 unsigned long flags;
1106 struct request_queue *q = req->q;
1107
1108 spin_lock_irqsave(q->queue_lock, flags);
1109 __blk_put_request(q, req);
1110 spin_unlock_irqrestore(q->queue_lock, flags);
1111 }
1112 EXPORT_SYMBOL(blk_put_request);
1113
1114 void init_request_from_bio(struct request *req, struct bio *bio)
1115 {
1116 req->cpu = bio->bi_comp_cpu;
1117 req->cmd_type = REQ_TYPE_FS;
1118
1119 /*
1120 * Inherit FAILFAST from bio (for read-ahead, and explicit
1121 * FAILFAST). FAILFAST flags are identical for req and bio.
1122 */
1123 if (bio_rw_flagged(bio, BIO_RW_AHEAD))
1124 req->cmd_flags |= REQ_FAILFAST_MASK;
1125 else
1126 req->cmd_flags |= bio->bi_rw & REQ_FAILFAST_MASK;
1127
1128 if (unlikely(bio_rw_flagged(bio, BIO_RW_DISCARD))) {
1129 req->cmd_flags |= REQ_DISCARD;
1130 if (bio_rw_flagged(bio, BIO_RW_BARRIER))
1131 req->cmd_flags |= REQ_SOFTBARRIER;
1132 } else if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER)))
1133 req->cmd_flags |= REQ_HARDBARRIER;
1134
1135 if (bio_rw_flagged(bio, BIO_RW_SYNCIO))
1136 req->cmd_flags |= REQ_RW_SYNC;
1137 if (bio_rw_flagged(bio, BIO_RW_META))
1138 req->cmd_flags |= REQ_RW_META;
1139 if (bio_rw_flagged(bio, BIO_RW_NOIDLE))
1140 req->cmd_flags |= REQ_NOIDLE;
1141
1142 req->errors = 0;
1143 req->__sector = bio->bi_sector;
1144 req->ioprio = bio_prio(bio);
1145 blk_rq_bio_prep(req->q, req, bio);
1146 }
1147
1148 /*
1149 * Only disabling plugging for non-rotational devices if it does tagging
1150 * as well, otherwise we do need the proper merging
1151 */
1152 static inline bool queue_should_plug(struct request_queue *q)
1153 {
1154 return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
1155 }
1156
1157 static int __make_request(struct request_queue *q, struct bio *bio)
1158 {
1159 struct request *req;
1160 int el_ret;
1161 unsigned int bytes = bio->bi_size;
1162 const unsigned short prio = bio_prio(bio);
1163 const bool sync = bio_rw_flagged(bio, BIO_RW_SYNCIO);
1164 const bool unplug = bio_rw_flagged(bio, BIO_RW_UNPLUG);
1165 const unsigned int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1166 int rw_flags;
1167
1168 if (bio_rw_flagged(bio, BIO_RW_BARRIER) &&
1169 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1170 bio_endio(bio, -EOPNOTSUPP);
1171 return 0;
1172 }
1173 /*
1174 * low level driver can indicate that it wants pages above a
1175 * certain limit bounced to low memory (ie for highmem, or even
1176 * ISA dma in theory)
1177 */
1178 blk_queue_bounce(q, &bio);
1179
1180 spin_lock_irq(q->queue_lock);
1181
1182 if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER)) || elv_queue_empty(q))
1183 goto get_rq;
1184
1185 el_ret = elv_merge(q, &req, bio);
1186 switch (el_ret) {
1187 case ELEVATOR_BACK_MERGE:
1188 BUG_ON(!rq_mergeable(req));
1189
1190 if (!ll_back_merge_fn(q, req, bio))
1191 break;
1192
1193 trace_block_bio_backmerge(q, bio);
1194
1195 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1196 blk_rq_set_mixed_merge(req);
1197
1198 req->biotail->bi_next = bio;
1199 req->biotail = bio;
1200 req->__data_len += bytes;
1201 req->ioprio = ioprio_best(req->ioprio, prio);
1202 if (!blk_rq_cpu_valid(req))
1203 req->cpu = bio->bi_comp_cpu;
1204 drive_stat_acct(req, 0);
1205 elv_bio_merged(q, req, bio);
1206 if (!attempt_back_merge(q, req))
1207 elv_merged_request(q, req, el_ret);
1208 goto out;
1209
1210 case ELEVATOR_FRONT_MERGE:
1211 BUG_ON(!rq_mergeable(req));
1212
1213 if (!ll_front_merge_fn(q, req, bio))
1214 break;
1215
1216 trace_block_bio_frontmerge(q, bio);
1217
1218 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) {
1219 blk_rq_set_mixed_merge(req);
1220 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1221 req->cmd_flags |= ff;
1222 }
1223
1224 bio->bi_next = req->bio;
1225 req->bio = bio;
1226
1227 /*
1228 * may not be valid. if the low level driver said
1229 * it didn't need a bounce buffer then it better
1230 * not touch req->buffer either...
1231 */
1232 req->buffer = bio_data(bio);
1233 req->__sector = bio->bi_sector;
1234 req->__data_len += bytes;
1235 req->ioprio = ioprio_best(req->ioprio, prio);
1236 if (!blk_rq_cpu_valid(req))
1237 req->cpu = bio->bi_comp_cpu;
1238 drive_stat_acct(req, 0);
1239 elv_bio_merged(q, req, bio);
1240 if (!attempt_front_merge(q, req))
1241 elv_merged_request(q, req, el_ret);
1242 goto out;
1243
1244 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1245 default:
1246 ;
1247 }
1248
1249 get_rq:
1250 /*
1251 * This sync check and mask will be re-done in init_request_from_bio(),
1252 * but we need to set it earlier to expose the sync flag to the
1253 * rq allocator and io schedulers.
1254 */
1255 rw_flags = bio_data_dir(bio);
1256 if (sync)
1257 rw_flags |= REQ_RW_SYNC;
1258
1259 /*
1260 * Grab a free request. This is might sleep but can not fail.
1261 * Returns with the queue unlocked.
1262 */
1263 req = get_request_wait(q, rw_flags, bio);
1264
1265 /*
1266 * After dropping the lock and possibly sleeping here, our request
1267 * may now be mergeable after it had proven unmergeable (above).
1268 * We don't worry about that case for efficiency. It won't happen
1269 * often, and the elevators are able to handle it.
1270 */
1271 init_request_from_bio(req, bio);
1272
1273 spin_lock_irq(q->queue_lock);
1274 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1275 bio_flagged(bio, BIO_CPU_AFFINE))
1276 req->cpu = blk_cpu_to_group(smp_processor_id());
1277 if (queue_should_plug(q) && elv_queue_empty(q))
1278 blk_plug_device(q);
1279 add_request(q, req);
1280 out:
1281 if (unplug || !queue_should_plug(q))
1282 __generic_unplug_device(q);
1283 spin_unlock_irq(q->queue_lock);
1284 return 0;
1285 }
1286
1287 /*
1288 * If bio->bi_dev is a partition, remap the location
1289 */
1290 static inline void blk_partition_remap(struct bio *bio)
1291 {
1292 struct block_device *bdev = bio->bi_bdev;
1293
1294 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1295 struct hd_struct *p = bdev->bd_part;
1296
1297 bio->bi_sector += p->start_sect;
1298 bio->bi_bdev = bdev->bd_contains;
1299
1300 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
1301 bdev->bd_dev,
1302 bio->bi_sector - p->start_sect);
1303 }
1304 }
1305
1306 static void handle_bad_sector(struct bio *bio)
1307 {
1308 char b[BDEVNAME_SIZE];
1309
1310 printk(KERN_INFO "attempt to access beyond end of device\n");
1311 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1312 bdevname(bio->bi_bdev, b),
1313 bio->bi_rw,
1314 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1315 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1316
1317 set_bit(BIO_EOF, &bio->bi_flags);
1318 }
1319
1320 #ifdef CONFIG_FAIL_MAKE_REQUEST
1321
1322 static DECLARE_FAULT_ATTR(fail_make_request);
1323
1324 static int __init setup_fail_make_request(char *str)
1325 {
1326 return setup_fault_attr(&fail_make_request, str);
1327 }
1328 __setup("fail_make_request=", setup_fail_make_request);
1329
1330 static int should_fail_request(struct bio *bio)
1331 {
1332 struct hd_struct *part = bio->bi_bdev->bd_part;
1333
1334 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1335 return should_fail(&fail_make_request, bio->bi_size);
1336
1337 return 0;
1338 }
1339
1340 static int __init fail_make_request_debugfs(void)
1341 {
1342 return init_fault_attr_dentries(&fail_make_request,
1343 "fail_make_request");
1344 }
1345
1346 late_initcall(fail_make_request_debugfs);
1347
1348 #else /* CONFIG_FAIL_MAKE_REQUEST */
1349
1350 static inline int should_fail_request(struct bio *bio)
1351 {
1352 return 0;
1353 }
1354
1355 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1356
1357 /*
1358 * Check whether this bio extends beyond the end of the device.
1359 */
1360 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1361 {
1362 sector_t maxsector;
1363
1364 if (!nr_sectors)
1365 return 0;
1366
1367 /* Test device or partition size, when known. */
1368 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1369 if (maxsector) {
1370 sector_t sector = bio->bi_sector;
1371
1372 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1373 /*
1374 * This may well happen - the kernel calls bread()
1375 * without checking the size of the device, e.g., when
1376 * mounting a device.
1377 */
1378 handle_bad_sector(bio);
1379 return 1;
1380 }
1381 }
1382
1383 return 0;
1384 }
1385
1386 /**
1387 * generic_make_request - hand a buffer to its device driver for I/O
1388 * @bio: The bio describing the location in memory and on the device.
1389 *
1390 * generic_make_request() is used to make I/O requests of block
1391 * devices. It is passed a &struct bio, which describes the I/O that needs
1392 * to be done.
1393 *
1394 * generic_make_request() does not return any status. The
1395 * success/failure status of the request, along with notification of
1396 * completion, is delivered asynchronously through the bio->bi_end_io
1397 * function described (one day) else where.
1398 *
1399 * The caller of generic_make_request must make sure that bi_io_vec
1400 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1401 * set to describe the device address, and the
1402 * bi_end_io and optionally bi_private are set to describe how
1403 * completion notification should be signaled.
1404 *
1405 * generic_make_request and the drivers it calls may use bi_next if this
1406 * bio happens to be merged with someone else, and may change bi_dev and
1407 * bi_sector for remaps as it sees fit. So the values of these fields
1408 * should NOT be depended on after the call to generic_make_request.
1409 */
1410 static inline void __generic_make_request(struct bio *bio)
1411 {
1412 struct request_queue *q;
1413 sector_t old_sector;
1414 int ret, nr_sectors = bio_sectors(bio);
1415 dev_t old_dev;
1416 int err = -EIO;
1417
1418 might_sleep();
1419
1420 if (bio_check_eod(bio, nr_sectors))
1421 goto end_io;
1422
1423 /*
1424 * Resolve the mapping until finished. (drivers are
1425 * still free to implement/resolve their own stacking
1426 * by explicitly returning 0)
1427 *
1428 * NOTE: we don't repeat the blk_size check for each new device.
1429 * Stacking drivers are expected to know what they are doing.
1430 */
1431 old_sector = -1;
1432 old_dev = 0;
1433 do {
1434 char b[BDEVNAME_SIZE];
1435
1436 q = bdev_get_queue(bio->bi_bdev);
1437 if (unlikely(!q)) {
1438 printk(KERN_ERR
1439 "generic_make_request: Trying to access "
1440 "nonexistent block-device %s (%Lu)\n",
1441 bdevname(bio->bi_bdev, b),
1442 (long long) bio->bi_sector);
1443 goto end_io;
1444 }
1445
1446 if (unlikely(!bio_rw_flagged(bio, BIO_RW_DISCARD) &&
1447 nr_sectors > queue_max_hw_sectors(q))) {
1448 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1449 bdevname(bio->bi_bdev, b),
1450 bio_sectors(bio),
1451 queue_max_hw_sectors(q));
1452 goto end_io;
1453 }
1454
1455 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1456 goto end_io;
1457
1458 if (should_fail_request(bio))
1459 goto end_io;
1460
1461 /*
1462 * If this device has partitions, remap block n
1463 * of partition p to block n+start(p) of the disk.
1464 */
1465 blk_partition_remap(bio);
1466
1467 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1468 goto end_io;
1469
1470 if (old_sector != -1)
1471 trace_block_remap(q, bio, old_dev, old_sector);
1472
1473 old_sector = bio->bi_sector;
1474 old_dev = bio->bi_bdev->bd_dev;
1475
1476 if (bio_check_eod(bio, nr_sectors))
1477 goto end_io;
1478
1479 if (bio_rw_flagged(bio, BIO_RW_DISCARD) &&
1480 !blk_queue_discard(q)) {
1481 err = -EOPNOTSUPP;
1482 goto end_io;
1483 }
1484
1485 trace_block_bio_queue(q, bio);
1486
1487 ret = q->make_request_fn(q, bio);
1488 } while (ret);
1489
1490 return;
1491
1492 end_io:
1493 bio_endio(bio, err);
1494 }
1495
1496 /*
1497 * We only want one ->make_request_fn to be active at a time,
1498 * else stack usage with stacked devices could be a problem.
1499 * So use current->bio_list to keep a list of requests
1500 * submited by a make_request_fn function.
1501 * current->bio_list is also used as a flag to say if
1502 * generic_make_request is currently active in this task or not.
1503 * If it is NULL, then no make_request is active. If it is non-NULL,
1504 * then a make_request is active, and new requests should be added
1505 * at the tail
1506 */
1507 void generic_make_request(struct bio *bio)
1508 {
1509 struct bio_list bio_list_on_stack;
1510
1511 if (current->bio_list) {
1512 /* make_request is active */
1513 bio_list_add(current->bio_list, bio);
1514 return;
1515 }
1516 /* following loop may be a bit non-obvious, and so deserves some
1517 * explanation.
1518 * Before entering the loop, bio->bi_next is NULL (as all callers
1519 * ensure that) so we have a list with a single bio.
1520 * We pretend that we have just taken it off a longer list, so
1521 * we assign bio_list to a pointer to the bio_list_on_stack,
1522 * thus initialising the bio_list of new bios to be
1523 * added. __generic_make_request may indeed add some more bios
1524 * through a recursive call to generic_make_request. If it
1525 * did, we find a non-NULL value in bio_list and re-enter the loop
1526 * from the top. In this case we really did just take the bio
1527 * of the top of the list (no pretending) and so remove it from
1528 * bio_list, and call into __generic_make_request again.
1529 *
1530 * The loop was structured like this to make only one call to
1531 * __generic_make_request (which is important as it is large and
1532 * inlined) and to keep the structure simple.
1533 */
1534 BUG_ON(bio->bi_next);
1535 bio_list_init(&bio_list_on_stack);
1536 current->bio_list = &bio_list_on_stack;
1537 do {
1538 __generic_make_request(bio);
1539 bio = bio_list_pop(current->bio_list);
1540 } while (bio);
1541 current->bio_list = NULL; /* deactivate */
1542 }
1543 EXPORT_SYMBOL(generic_make_request);
1544
1545 /**
1546 * submit_bio - submit a bio to the block device layer for I/O
1547 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1548 * @bio: The &struct bio which describes the I/O
1549 *
1550 * submit_bio() is very similar in purpose to generic_make_request(), and
1551 * uses that function to do most of the work. Both are fairly rough
1552 * interfaces; @bio must be presetup and ready for I/O.
1553 *
1554 */
1555 void submit_bio(int rw, struct bio *bio)
1556 {
1557 int count = bio_sectors(bio);
1558
1559 bio->bi_rw |= rw;
1560
1561 /*
1562 * If it's a regular read/write or a barrier with data attached,
1563 * go through the normal accounting stuff before submission.
1564 */
1565 if (bio_has_data(bio)) {
1566 if (rw & WRITE) {
1567 count_vm_events(PGPGOUT, count);
1568 } else {
1569 task_io_account_read(bio->bi_size);
1570 count_vm_events(PGPGIN, count);
1571 }
1572
1573 if (unlikely(block_dump)) {
1574 char b[BDEVNAME_SIZE];
1575 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1576 current->comm, task_pid_nr(current),
1577 (rw & WRITE) ? "WRITE" : "READ",
1578 (unsigned long long)bio->bi_sector,
1579 bdevname(bio->bi_bdev, b));
1580 }
1581 }
1582
1583 generic_make_request(bio);
1584 }
1585 EXPORT_SYMBOL(submit_bio);
1586
1587 /**
1588 * blk_rq_check_limits - Helper function to check a request for the queue limit
1589 * @q: the queue
1590 * @rq: the request being checked
1591 *
1592 * Description:
1593 * @rq may have been made based on weaker limitations of upper-level queues
1594 * in request stacking drivers, and it may violate the limitation of @q.
1595 * Since the block layer and the underlying device driver trust @rq
1596 * after it is inserted to @q, it should be checked against @q before
1597 * the insertion using this generic function.
1598 *
1599 * This function should also be useful for request stacking drivers
1600 * in some cases below, so export this fuction.
1601 * Request stacking drivers like request-based dm may change the queue
1602 * limits while requests are in the queue (e.g. dm's table swapping).
1603 * Such request stacking drivers should check those requests agaist
1604 * the new queue limits again when they dispatch those requests,
1605 * although such checkings are also done against the old queue limits
1606 * when submitting requests.
1607 */
1608 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1609 {
1610 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1611 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1612 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1613 return -EIO;
1614 }
1615
1616 /*
1617 * queue's settings related to segment counting like q->bounce_pfn
1618 * may differ from that of other stacking queues.
1619 * Recalculate it to check the request correctly on this queue's
1620 * limitation.
1621 */
1622 blk_recalc_rq_segments(rq);
1623 if (rq->nr_phys_segments > queue_max_segments(q)) {
1624 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1625 return -EIO;
1626 }
1627
1628 return 0;
1629 }
1630 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1631
1632 /**
1633 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1634 * @q: the queue to submit the request
1635 * @rq: the request being queued
1636 */
1637 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1638 {
1639 unsigned long flags;
1640
1641 if (blk_rq_check_limits(q, rq))
1642 return -EIO;
1643
1644 #ifdef CONFIG_FAIL_MAKE_REQUEST
1645 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1646 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1647 return -EIO;
1648 #endif
1649
1650 spin_lock_irqsave(q->queue_lock, flags);
1651
1652 /*
1653 * Submitting request must be dequeued before calling this function
1654 * because it will be linked to another request_queue
1655 */
1656 BUG_ON(blk_queued_rq(rq));
1657
1658 drive_stat_acct(rq, 1);
1659 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1660
1661 spin_unlock_irqrestore(q->queue_lock, flags);
1662
1663 return 0;
1664 }
1665 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1666
1667 /**
1668 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1669 * @rq: request to examine
1670 *
1671 * Description:
1672 * A request could be merge of IOs which require different failure
1673 * handling. This function determines the number of bytes which
1674 * can be failed from the beginning of the request without
1675 * crossing into area which need to be retried further.
1676 *
1677 * Return:
1678 * The number of bytes to fail.
1679 *
1680 * Context:
1681 * queue_lock must be held.
1682 */
1683 unsigned int blk_rq_err_bytes(const struct request *rq)
1684 {
1685 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1686 unsigned int bytes = 0;
1687 struct bio *bio;
1688
1689 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1690 return blk_rq_bytes(rq);
1691
1692 /*
1693 * Currently the only 'mixing' which can happen is between
1694 * different fastfail types. We can safely fail portions
1695 * which have all the failfast bits that the first one has -
1696 * the ones which are at least as eager to fail as the first
1697 * one.
1698 */
1699 for (bio = rq->bio; bio; bio = bio->bi_next) {
1700 if ((bio->bi_rw & ff) != ff)
1701 break;
1702 bytes += bio->bi_size;
1703 }
1704
1705 /* this could lead to infinite loop */
1706 BUG_ON(blk_rq_bytes(rq) && !bytes);
1707 return bytes;
1708 }
1709 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1710
1711 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1712 {
1713 if (blk_do_io_stat(req)) {
1714 const int rw = rq_data_dir(req);
1715 struct hd_struct *part;
1716 int cpu;
1717
1718 cpu = part_stat_lock();
1719 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
1720 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1721 part_stat_unlock();
1722 }
1723 }
1724
1725 static void blk_account_io_done(struct request *req)
1726 {
1727 /*
1728 * Account IO completion. bar_rq isn't accounted as a normal
1729 * IO on queueing nor completion. Accounting the containing
1730 * request is enough.
1731 */
1732 if (blk_do_io_stat(req) && req != &req->q->bar_rq) {
1733 unsigned long duration = jiffies - req->start_time;
1734 const int rw = rq_data_dir(req);
1735 struct hd_struct *part;
1736 int cpu;
1737
1738 cpu = part_stat_lock();
1739 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
1740
1741 part_stat_inc(cpu, part, ios[rw]);
1742 part_stat_add(cpu, part, ticks[rw], duration);
1743 part_round_stats(cpu, part);
1744 part_dec_in_flight(part, rw);
1745
1746 part_stat_unlock();
1747 }
1748 }
1749
1750 /**
1751 * blk_peek_request - peek at the top of a request queue
1752 * @q: request queue to peek at
1753 *
1754 * Description:
1755 * Return the request at the top of @q. The returned request
1756 * should be started using blk_start_request() before LLD starts
1757 * processing it.
1758 *
1759 * Return:
1760 * Pointer to the request at the top of @q if available. Null
1761 * otherwise.
1762 *
1763 * Context:
1764 * queue_lock must be held.
1765 */
1766 struct request *blk_peek_request(struct request_queue *q)
1767 {
1768 struct request *rq;
1769 int ret;
1770
1771 while ((rq = __elv_next_request(q)) != NULL) {
1772 if (!(rq->cmd_flags & REQ_STARTED)) {
1773 /*
1774 * This is the first time the device driver
1775 * sees this request (possibly after
1776 * requeueing). Notify IO scheduler.
1777 */
1778 if (blk_sorted_rq(rq))
1779 elv_activate_rq(q, rq);
1780
1781 /*
1782 * just mark as started even if we don't start
1783 * it, a request that has been delayed should
1784 * not be passed by new incoming requests
1785 */
1786 rq->cmd_flags |= REQ_STARTED;
1787 trace_block_rq_issue(q, rq);
1788 }
1789
1790 if (!q->boundary_rq || q->boundary_rq == rq) {
1791 q->end_sector = rq_end_sector(rq);
1792 q->boundary_rq = NULL;
1793 }
1794
1795 if (rq->cmd_flags & REQ_DONTPREP)
1796 break;
1797
1798 if (q->dma_drain_size && blk_rq_bytes(rq)) {
1799 /*
1800 * make sure space for the drain appears we
1801 * know we can do this because max_hw_segments
1802 * has been adjusted to be one fewer than the
1803 * device can handle
1804 */
1805 rq->nr_phys_segments++;
1806 }
1807
1808 if (!q->prep_rq_fn)
1809 break;
1810
1811 ret = q->prep_rq_fn(q, rq);
1812 if (ret == BLKPREP_OK) {
1813 break;
1814 } else if (ret == BLKPREP_DEFER) {
1815 /*
1816 * the request may have been (partially) prepped.
1817 * we need to keep this request in the front to
1818 * avoid resource deadlock. REQ_STARTED will
1819 * prevent other fs requests from passing this one.
1820 */
1821 if (q->dma_drain_size && blk_rq_bytes(rq) &&
1822 !(rq->cmd_flags & REQ_DONTPREP)) {
1823 /*
1824 * remove the space for the drain we added
1825 * so that we don't add it again
1826 */
1827 --rq->nr_phys_segments;
1828 }
1829
1830 rq = NULL;
1831 break;
1832 } else if (ret == BLKPREP_KILL) {
1833 rq->cmd_flags |= REQ_QUIET;
1834 /*
1835 * Mark this request as started so we don't trigger
1836 * any debug logic in the end I/O path.
1837 */
1838 blk_start_request(rq);
1839 __blk_end_request_all(rq, -EIO);
1840 } else {
1841 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1842 break;
1843 }
1844 }
1845
1846 return rq;
1847 }
1848 EXPORT_SYMBOL(blk_peek_request);
1849
1850 void blk_dequeue_request(struct request *rq)
1851 {
1852 struct request_queue *q = rq->q;
1853
1854 BUG_ON(list_empty(&rq->queuelist));
1855 BUG_ON(ELV_ON_HASH(rq));
1856
1857 list_del_init(&rq->queuelist);
1858
1859 /*
1860 * the time frame between a request being removed from the lists
1861 * and to it is freed is accounted as io that is in progress at
1862 * the driver side.
1863 */
1864 if (blk_account_rq(rq)) {
1865 q->in_flight[rq_is_sync(rq)]++;
1866 set_io_start_time_ns(rq);
1867 }
1868 }
1869
1870 /**
1871 * blk_start_request - start request processing on the driver
1872 * @req: request to dequeue
1873 *
1874 * Description:
1875 * Dequeue @req and start timeout timer on it. This hands off the
1876 * request to the driver.
1877 *
1878 * Block internal functions which don't want to start timer should
1879 * call blk_dequeue_request().
1880 *
1881 * Context:
1882 * queue_lock must be held.
1883 */
1884 void blk_start_request(struct request *req)
1885 {
1886 blk_dequeue_request(req);
1887
1888 /*
1889 * We are now handing the request to the hardware, initialize
1890 * resid_len to full count and add the timeout handler.
1891 */
1892 req->resid_len = blk_rq_bytes(req);
1893 if (unlikely(blk_bidi_rq(req)))
1894 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1895
1896 blk_add_timer(req);
1897 }
1898 EXPORT_SYMBOL(blk_start_request);
1899
1900 /**
1901 * blk_fetch_request - fetch a request from a request queue
1902 * @q: request queue to fetch a request from
1903 *
1904 * Description:
1905 * Return the request at the top of @q. The request is started on
1906 * return and LLD can start processing it immediately.
1907 *
1908 * Return:
1909 * Pointer to the request at the top of @q if available. Null
1910 * otherwise.
1911 *
1912 * Context:
1913 * queue_lock must be held.
1914 */
1915 struct request *blk_fetch_request(struct request_queue *q)
1916 {
1917 struct request *rq;
1918
1919 rq = blk_peek_request(q);
1920 if (rq)
1921 blk_start_request(rq);
1922 return rq;
1923 }
1924 EXPORT_SYMBOL(blk_fetch_request);
1925
1926 /**
1927 * blk_update_request - Special helper function for request stacking drivers
1928 * @req: the request being processed
1929 * @error: %0 for success, < %0 for error
1930 * @nr_bytes: number of bytes to complete @req
1931 *
1932 * Description:
1933 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1934 * the request structure even if @req doesn't have leftover.
1935 * If @req has leftover, sets it up for the next range of segments.
1936 *
1937 * This special helper function is only for request stacking drivers
1938 * (e.g. request-based dm) so that they can handle partial completion.
1939 * Actual device drivers should use blk_end_request instead.
1940 *
1941 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1942 * %false return from this function.
1943 *
1944 * Return:
1945 * %false - this request doesn't have any more data
1946 * %true - this request has more data
1947 **/
1948 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1949 {
1950 int total_bytes, bio_nbytes, next_idx = 0;
1951 struct bio *bio;
1952
1953 if (!req->bio)
1954 return false;
1955
1956 trace_block_rq_complete(req->q, req);
1957
1958 /*
1959 * For fs requests, rq is just carrier of independent bio's
1960 * and each partial completion should be handled separately.
1961 * Reset per-request error on each partial completion.
1962 *
1963 * TODO: tj: This is too subtle. It would be better to let
1964 * low level drivers do what they see fit.
1965 */
1966 if (blk_fs_request(req))
1967 req->errors = 0;
1968
1969 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1970 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1971 req->rq_disk ? req->rq_disk->disk_name : "?",
1972 (unsigned long long)blk_rq_pos(req));
1973 }
1974
1975 blk_account_io_completion(req, nr_bytes);
1976
1977 total_bytes = bio_nbytes = 0;
1978 while ((bio = req->bio) != NULL) {
1979 int nbytes;
1980
1981 if (nr_bytes >= bio->bi_size) {
1982 req->bio = bio->bi_next;
1983 nbytes = bio->bi_size;
1984 req_bio_endio(req, bio, nbytes, error);
1985 next_idx = 0;
1986 bio_nbytes = 0;
1987 } else {
1988 int idx = bio->bi_idx + next_idx;
1989
1990 if (unlikely(idx >= bio->bi_vcnt)) {
1991 blk_dump_rq_flags(req, "__end_that");
1992 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1993 __func__, idx, bio->bi_vcnt);
1994 break;
1995 }
1996
1997 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1998 BIO_BUG_ON(nbytes > bio->bi_size);
1999
2000 /*
2001 * not a complete bvec done
2002 */
2003 if (unlikely(nbytes > nr_bytes)) {
2004 bio_nbytes += nr_bytes;
2005 total_bytes += nr_bytes;
2006 break;
2007 }
2008
2009 /*
2010 * advance to the next vector
2011 */
2012 next_idx++;
2013 bio_nbytes += nbytes;
2014 }
2015
2016 total_bytes += nbytes;
2017 nr_bytes -= nbytes;
2018
2019 bio = req->bio;
2020 if (bio) {
2021 /*
2022 * end more in this run, or just return 'not-done'
2023 */
2024 if (unlikely(nr_bytes <= 0))
2025 break;
2026 }
2027 }
2028
2029 /*
2030 * completely done
2031 */
2032 if (!req->bio) {
2033 /*
2034 * Reset counters so that the request stacking driver
2035 * can find how many bytes remain in the request
2036 * later.
2037 */
2038 req->__data_len = 0;
2039 return false;
2040 }
2041
2042 /*
2043 * if the request wasn't completed, update state
2044 */
2045 if (bio_nbytes) {
2046 req_bio_endio(req, bio, bio_nbytes, error);
2047 bio->bi_idx += next_idx;
2048 bio_iovec(bio)->bv_offset += nr_bytes;
2049 bio_iovec(bio)->bv_len -= nr_bytes;
2050 }
2051
2052 req->__data_len -= total_bytes;
2053 req->buffer = bio_data(req->bio);
2054
2055 /* update sector only for requests with clear definition of sector */
2056 if (blk_fs_request(req) || blk_discard_rq(req))
2057 req->__sector += total_bytes >> 9;
2058
2059 /* mixed attributes always follow the first bio */
2060 if (req->cmd_flags & REQ_MIXED_MERGE) {
2061 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2062 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2063 }
2064
2065 /*
2066 * If total number of sectors is less than the first segment
2067 * size, something has gone terribly wrong.
2068 */
2069 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2070 printk(KERN_ERR "blk: request botched\n");
2071 req->__data_len = blk_rq_cur_bytes(req);
2072 }
2073
2074 /* recalculate the number of segments */
2075 blk_recalc_rq_segments(req);
2076
2077 return true;
2078 }
2079 EXPORT_SYMBOL_GPL(blk_update_request);
2080
2081 static bool blk_update_bidi_request(struct request *rq, int error,
2082 unsigned int nr_bytes,
2083 unsigned int bidi_bytes)
2084 {
2085 if (blk_update_request(rq, error, nr_bytes))
2086 return true;
2087
2088 /* Bidi request must be completed as a whole */
2089 if (unlikely(blk_bidi_rq(rq)) &&
2090 blk_update_request(rq->next_rq, error, bidi_bytes))
2091 return true;
2092
2093 add_disk_randomness(rq->rq_disk);
2094
2095 return false;
2096 }
2097
2098 /*
2099 * queue lock must be held
2100 */
2101 static void blk_finish_request(struct request *req, int error)
2102 {
2103 if (blk_rq_tagged(req))
2104 blk_queue_end_tag(req->q, req);
2105
2106 BUG_ON(blk_queued_rq(req));
2107
2108 if (unlikely(laptop_mode) && blk_fs_request(req))
2109 laptop_io_completion(&req->q->backing_dev_info);
2110
2111 blk_delete_timer(req);
2112
2113 blk_account_io_done(req);
2114
2115 if (req->end_io)
2116 req->end_io(req, error);
2117 else {
2118 if (blk_bidi_rq(req))
2119 __blk_put_request(req->next_rq->q, req->next_rq);
2120
2121 __blk_put_request(req->q, req);
2122 }
2123 }
2124
2125 /**
2126 * blk_end_bidi_request - Complete a bidi request
2127 * @rq: the request to complete
2128 * @error: %0 for success, < %0 for error
2129 * @nr_bytes: number of bytes to complete @rq
2130 * @bidi_bytes: number of bytes to complete @rq->next_rq
2131 *
2132 * Description:
2133 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2134 * Drivers that supports bidi can safely call this member for any
2135 * type of request, bidi or uni. In the later case @bidi_bytes is
2136 * just ignored.
2137 *
2138 * Return:
2139 * %false - we are done with this request
2140 * %true - still buffers pending for this request
2141 **/
2142 static bool blk_end_bidi_request(struct request *rq, int error,
2143 unsigned int nr_bytes, unsigned int bidi_bytes)
2144 {
2145 struct request_queue *q = rq->q;
2146 unsigned long flags;
2147
2148 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2149 return true;
2150
2151 spin_lock_irqsave(q->queue_lock, flags);
2152 blk_finish_request(rq, error);
2153 spin_unlock_irqrestore(q->queue_lock, flags);
2154
2155 return false;
2156 }
2157
2158 /**
2159 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2160 * @rq: the request to complete
2161 * @error: %0 for success, < %0 for error
2162 * @nr_bytes: number of bytes to complete @rq
2163 * @bidi_bytes: number of bytes to complete @rq->next_rq
2164 *
2165 * Description:
2166 * Identical to blk_end_bidi_request() except that queue lock is
2167 * assumed to be locked on entry and remains so on return.
2168 *
2169 * Return:
2170 * %false - we are done with this request
2171 * %true - still buffers pending for this request
2172 **/
2173 static bool __blk_end_bidi_request(struct request *rq, int error,
2174 unsigned int nr_bytes, unsigned int bidi_bytes)
2175 {
2176 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2177 return true;
2178
2179 blk_finish_request(rq, error);
2180
2181 return false;
2182 }
2183
2184 /**
2185 * blk_end_request - Helper function for drivers to complete the request.
2186 * @rq: the request being processed
2187 * @error: %0 for success, < %0 for error
2188 * @nr_bytes: number of bytes to complete
2189 *
2190 * Description:
2191 * Ends I/O on a number of bytes attached to @rq.
2192 * If @rq has leftover, sets it up for the next range of segments.
2193 *
2194 * Return:
2195 * %false - we are done with this request
2196 * %true - still buffers pending for this request
2197 **/
2198 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2199 {
2200 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2201 }
2202 EXPORT_SYMBOL(blk_end_request);
2203
2204 /**
2205 * blk_end_request_all - Helper function for drives to finish the request.
2206 * @rq: the request to finish
2207 * @error: %0 for success, < %0 for error
2208 *
2209 * Description:
2210 * Completely finish @rq.
2211 */
2212 void blk_end_request_all(struct request *rq, int error)
2213 {
2214 bool pending;
2215 unsigned int bidi_bytes = 0;
2216
2217 if (unlikely(blk_bidi_rq(rq)))
2218 bidi_bytes = blk_rq_bytes(rq->next_rq);
2219
2220 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2221 BUG_ON(pending);
2222 }
2223 EXPORT_SYMBOL(blk_end_request_all);
2224
2225 /**
2226 * blk_end_request_cur - Helper function to finish the current request chunk.
2227 * @rq: the request to finish the current chunk for
2228 * @error: %0 for success, < %0 for error
2229 *
2230 * Description:
2231 * Complete the current consecutively mapped chunk from @rq.
2232 *
2233 * Return:
2234 * %false - we are done with this request
2235 * %true - still buffers pending for this request
2236 */
2237 bool blk_end_request_cur(struct request *rq, int error)
2238 {
2239 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2240 }
2241 EXPORT_SYMBOL(blk_end_request_cur);
2242
2243 /**
2244 * blk_end_request_err - Finish a request till the next failure boundary.
2245 * @rq: the request to finish till the next failure boundary for
2246 * @error: must be negative errno
2247 *
2248 * Description:
2249 * Complete @rq till the next failure boundary.
2250 *
2251 * Return:
2252 * %false - we are done with this request
2253 * %true - still buffers pending for this request
2254 */
2255 bool blk_end_request_err(struct request *rq, int error)
2256 {
2257 WARN_ON(error >= 0);
2258 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2259 }
2260 EXPORT_SYMBOL_GPL(blk_end_request_err);
2261
2262 /**
2263 * __blk_end_request - Helper function for drivers to complete the request.
2264 * @rq: the request being processed
2265 * @error: %0 for success, < %0 for error
2266 * @nr_bytes: number of bytes to complete
2267 *
2268 * Description:
2269 * Must be called with queue lock held unlike blk_end_request().
2270 *
2271 * Return:
2272 * %false - we are done with this request
2273 * %true - still buffers pending for this request
2274 **/
2275 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2276 {
2277 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2278 }
2279 EXPORT_SYMBOL(__blk_end_request);
2280
2281 /**
2282 * __blk_end_request_all - Helper function for drives to finish the request.
2283 * @rq: the request to finish
2284 * @error: %0 for success, < %0 for error
2285 *
2286 * Description:
2287 * Completely finish @rq. Must be called with queue lock held.
2288 */
2289 void __blk_end_request_all(struct request *rq, int error)
2290 {
2291 bool pending;
2292 unsigned int bidi_bytes = 0;
2293
2294 if (unlikely(blk_bidi_rq(rq)))
2295 bidi_bytes = blk_rq_bytes(rq->next_rq);
2296
2297 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2298 BUG_ON(pending);
2299 }
2300 EXPORT_SYMBOL(__blk_end_request_all);
2301
2302 /**
2303 * __blk_end_request_cur - Helper function to finish the current request chunk.
2304 * @rq: the request to finish the current chunk for
2305 * @error: %0 for success, < %0 for error
2306 *
2307 * Description:
2308 * Complete the current consecutively mapped chunk from @rq. Must
2309 * be called with queue lock held.
2310 *
2311 * Return:
2312 * %false - we are done with this request
2313 * %true - still buffers pending for this request
2314 */
2315 bool __blk_end_request_cur(struct request *rq, int error)
2316 {
2317 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2318 }
2319 EXPORT_SYMBOL(__blk_end_request_cur);
2320
2321 /**
2322 * __blk_end_request_err - Finish a request till the next failure boundary.
2323 * @rq: the request to finish till the next failure boundary for
2324 * @error: must be negative errno
2325 *
2326 * Description:
2327 * Complete @rq till the next failure boundary. Must be called
2328 * with queue lock held.
2329 *
2330 * Return:
2331 * %false - we are done with this request
2332 * %true - still buffers pending for this request
2333 */
2334 bool __blk_end_request_err(struct request *rq, int error)
2335 {
2336 WARN_ON(error >= 0);
2337 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2338 }
2339 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2340
2341 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2342 struct bio *bio)
2343 {
2344 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2345 rq->cmd_flags |= bio->bi_rw & REQ_RW;
2346
2347 if (bio_has_data(bio)) {
2348 rq->nr_phys_segments = bio_phys_segments(q, bio);
2349 rq->buffer = bio_data(bio);
2350 }
2351 rq->__data_len = bio->bi_size;
2352 rq->bio = rq->biotail = bio;
2353
2354 if (bio->bi_bdev)
2355 rq->rq_disk = bio->bi_bdev->bd_disk;
2356 }
2357
2358 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2359 /**
2360 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2361 * @rq: the request to be flushed
2362 *
2363 * Description:
2364 * Flush all pages in @rq.
2365 */
2366 void rq_flush_dcache_pages(struct request *rq)
2367 {
2368 struct req_iterator iter;
2369 struct bio_vec *bvec;
2370
2371 rq_for_each_segment(bvec, rq, iter)
2372 flush_dcache_page(bvec->bv_page);
2373 }
2374 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2375 #endif
2376
2377 /**
2378 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2379 * @q : the queue of the device being checked
2380 *
2381 * Description:
2382 * Check if underlying low-level drivers of a device are busy.
2383 * If the drivers want to export their busy state, they must set own
2384 * exporting function using blk_queue_lld_busy() first.
2385 *
2386 * Basically, this function is used only by request stacking drivers
2387 * to stop dispatching requests to underlying devices when underlying
2388 * devices are busy. This behavior helps more I/O merging on the queue
2389 * of the request stacking driver and prevents I/O throughput regression
2390 * on burst I/O load.
2391 *
2392 * Return:
2393 * 0 - Not busy (The request stacking driver should dispatch request)
2394 * 1 - Busy (The request stacking driver should stop dispatching request)
2395 */
2396 int blk_lld_busy(struct request_queue *q)
2397 {
2398 if (q->lld_busy_fn)
2399 return q->lld_busy_fn(q);
2400
2401 return 0;
2402 }
2403 EXPORT_SYMBOL_GPL(blk_lld_busy);
2404
2405 /**
2406 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2407 * @rq: the clone request to be cleaned up
2408 *
2409 * Description:
2410 * Free all bios in @rq for a cloned request.
2411 */
2412 void blk_rq_unprep_clone(struct request *rq)
2413 {
2414 struct bio *bio;
2415
2416 while ((bio = rq->bio) != NULL) {
2417 rq->bio = bio->bi_next;
2418
2419 bio_put(bio);
2420 }
2421 }
2422 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2423
2424 /*
2425 * Copy attributes of the original request to the clone request.
2426 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2427 */
2428 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2429 {
2430 dst->cpu = src->cpu;
2431 dst->cmd_flags = (rq_data_dir(src) | REQ_NOMERGE);
2432 dst->cmd_type = src->cmd_type;
2433 dst->__sector = blk_rq_pos(src);
2434 dst->__data_len = blk_rq_bytes(src);
2435 dst->nr_phys_segments = src->nr_phys_segments;
2436 dst->ioprio = src->ioprio;
2437 dst->extra_len = src->extra_len;
2438 }
2439
2440 /**
2441 * blk_rq_prep_clone - Helper function to setup clone request
2442 * @rq: the request to be setup
2443 * @rq_src: original request to be cloned
2444 * @bs: bio_set that bios for clone are allocated from
2445 * @gfp_mask: memory allocation mask for bio
2446 * @bio_ctr: setup function to be called for each clone bio.
2447 * Returns %0 for success, non %0 for failure.
2448 * @data: private data to be passed to @bio_ctr
2449 *
2450 * Description:
2451 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2452 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2453 * are not copied, and copying such parts is the caller's responsibility.
2454 * Also, pages which the original bios are pointing to are not copied
2455 * and the cloned bios just point same pages.
2456 * So cloned bios must be completed before original bios, which means
2457 * the caller must complete @rq before @rq_src.
2458 */
2459 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2460 struct bio_set *bs, gfp_t gfp_mask,
2461 int (*bio_ctr)(struct bio *, struct bio *, void *),
2462 void *data)
2463 {
2464 struct bio *bio, *bio_src;
2465
2466 if (!bs)
2467 bs = fs_bio_set;
2468
2469 blk_rq_init(NULL, rq);
2470
2471 __rq_for_each_bio(bio_src, rq_src) {
2472 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2473 if (!bio)
2474 goto free_and_out;
2475
2476 __bio_clone(bio, bio_src);
2477
2478 if (bio_integrity(bio_src) &&
2479 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2480 goto free_and_out;
2481
2482 if (bio_ctr && bio_ctr(bio, bio_src, data))
2483 goto free_and_out;
2484
2485 if (rq->bio) {
2486 rq->biotail->bi_next = bio;
2487 rq->biotail = bio;
2488 } else
2489 rq->bio = rq->biotail = bio;
2490 }
2491
2492 __blk_rq_prep_clone(rq, rq_src);
2493
2494 return 0;
2495
2496 free_and_out:
2497 if (bio)
2498 bio_free(bio, bs);
2499 blk_rq_unprep_clone(rq);
2500
2501 return -ENOMEM;
2502 }
2503 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2504
2505 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2506 {
2507 return queue_work(kblockd_workqueue, work);
2508 }
2509 EXPORT_SYMBOL(kblockd_schedule_work);
2510
2511 int __init blk_dev_init(void)
2512 {
2513 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2514 sizeof(((struct request *)0)->cmd_flags));
2515
2516 kblockd_workqueue = create_workqueue("kblockd");
2517 if (!kblockd_workqueue)
2518 panic("Failed to create kblockd\n");
2519
2520 request_cachep = kmem_cache_create("blkdev_requests",
2521 sizeof(struct request), 0, SLAB_PANIC, NULL);
2522
2523 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2524 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2525
2526 return 0;
2527 }
This page took 0.152893 seconds and 6 git commands to generate.