Merge branch 'r6040' of git://git.kernel.org/pub/scm/linux/kernel/git/romieu/netdev...
[deliverable/linux.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
33
34 #include "blk.h"
35
36 static int __make_request(struct request_queue *q, struct bio *bio);
37
38 /*
39 * For the allocated request tables
40 */
41 struct kmem_cache *request_cachep;
42
43 /*
44 * For queue allocation
45 */
46 struct kmem_cache *blk_requestq_cachep;
47
48 /*
49 * Controlling structure to kblockd
50 */
51 static struct workqueue_struct *kblockd_workqueue;
52
53 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
54
55 static void drive_stat_acct(struct request *rq, int new_io)
56 {
57 int rw = rq_data_dir(rq);
58
59 if (!blk_fs_request(rq) || !rq->rq_disk)
60 return;
61
62 if (!new_io) {
63 __all_stat_inc(rq->rq_disk, merges[rw], rq->sector);
64 } else {
65 struct hd_struct *part = get_part(rq->rq_disk, rq->sector);
66 disk_round_stats(rq->rq_disk);
67 rq->rq_disk->in_flight++;
68 if (part) {
69 part_round_stats(part);
70 part->in_flight++;
71 }
72 }
73 }
74
75 void blk_queue_congestion_threshold(struct request_queue *q)
76 {
77 int nr;
78
79 nr = q->nr_requests - (q->nr_requests / 8) + 1;
80 if (nr > q->nr_requests)
81 nr = q->nr_requests;
82 q->nr_congestion_on = nr;
83
84 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
85 if (nr < 1)
86 nr = 1;
87 q->nr_congestion_off = nr;
88 }
89
90 /**
91 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
92 * @bdev: device
93 *
94 * Locates the passed device's request queue and returns the address of its
95 * backing_dev_info
96 *
97 * Will return NULL if the request queue cannot be located.
98 */
99 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
100 {
101 struct backing_dev_info *ret = NULL;
102 struct request_queue *q = bdev_get_queue(bdev);
103
104 if (q)
105 ret = &q->backing_dev_info;
106 return ret;
107 }
108 EXPORT_SYMBOL(blk_get_backing_dev_info);
109
110 /*
111 * We can't just memset() the structure, since the allocation path
112 * already stored some information in the request.
113 */
114 void rq_init(struct request_queue *q, struct request *rq)
115 {
116 INIT_LIST_HEAD(&rq->queuelist);
117 INIT_LIST_HEAD(&rq->donelist);
118 rq->q = q;
119 rq->sector = rq->hard_sector = (sector_t) -1;
120 rq->nr_sectors = rq->hard_nr_sectors = 0;
121 rq->current_nr_sectors = rq->hard_cur_sectors = 0;
122 rq->bio = rq->biotail = NULL;
123 INIT_HLIST_NODE(&rq->hash);
124 RB_CLEAR_NODE(&rq->rb_node);
125 rq->rq_disk = NULL;
126 rq->nr_phys_segments = 0;
127 rq->nr_hw_segments = 0;
128 rq->ioprio = 0;
129 rq->special = NULL;
130 rq->buffer = NULL;
131 rq->tag = -1;
132 rq->errors = 0;
133 rq->ref_count = 1;
134 rq->cmd_len = 0;
135 memset(rq->cmd, 0, sizeof(rq->cmd));
136 rq->data_len = 0;
137 rq->sense_len = 0;
138 rq->data = NULL;
139 rq->sense = NULL;
140 rq->end_io = NULL;
141 rq->end_io_data = NULL;
142 rq->next_rq = NULL;
143 }
144
145 static void req_bio_endio(struct request *rq, struct bio *bio,
146 unsigned int nbytes, int error)
147 {
148 struct request_queue *q = rq->q;
149
150 if (&q->bar_rq != rq) {
151 if (error)
152 clear_bit(BIO_UPTODATE, &bio->bi_flags);
153 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
154 error = -EIO;
155
156 if (unlikely(nbytes > bio->bi_size)) {
157 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
158 __FUNCTION__, nbytes, bio->bi_size);
159 nbytes = bio->bi_size;
160 }
161
162 bio->bi_size -= nbytes;
163 bio->bi_sector += (nbytes >> 9);
164 if (bio->bi_size == 0)
165 bio_endio(bio, error);
166 } else {
167
168 /*
169 * Okay, this is the barrier request in progress, just
170 * record the error;
171 */
172 if (error && !q->orderr)
173 q->orderr = error;
174 }
175 }
176
177 void blk_dump_rq_flags(struct request *rq, char *msg)
178 {
179 int bit;
180
181 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
182 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
183 rq->cmd_flags);
184
185 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n",
186 (unsigned long long)rq->sector,
187 rq->nr_sectors,
188 rq->current_nr_sectors);
189 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n",
190 rq->bio, rq->biotail,
191 rq->buffer, rq->data,
192 rq->data_len);
193
194 if (blk_pc_request(rq)) {
195 printk(KERN_INFO " cdb: ");
196 for (bit = 0; bit < sizeof(rq->cmd); bit++)
197 printk("%02x ", rq->cmd[bit]);
198 printk("\n");
199 }
200 }
201 EXPORT_SYMBOL(blk_dump_rq_flags);
202
203 /*
204 * "plug" the device if there are no outstanding requests: this will
205 * force the transfer to start only after we have put all the requests
206 * on the list.
207 *
208 * This is called with interrupts off and no requests on the queue and
209 * with the queue lock held.
210 */
211 void blk_plug_device(struct request_queue *q)
212 {
213 WARN_ON(!irqs_disabled());
214
215 /*
216 * don't plug a stopped queue, it must be paired with blk_start_queue()
217 * which will restart the queueing
218 */
219 if (blk_queue_stopped(q))
220 return;
221
222 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
223 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
224 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
225 }
226 }
227 EXPORT_SYMBOL(blk_plug_device);
228
229 /*
230 * remove the queue from the plugged list, if present. called with
231 * queue lock held and interrupts disabled.
232 */
233 int blk_remove_plug(struct request_queue *q)
234 {
235 WARN_ON(!irqs_disabled());
236
237 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
238 return 0;
239
240 del_timer(&q->unplug_timer);
241 return 1;
242 }
243 EXPORT_SYMBOL(blk_remove_plug);
244
245 /*
246 * remove the plug and let it rip..
247 */
248 void __generic_unplug_device(struct request_queue *q)
249 {
250 if (unlikely(blk_queue_stopped(q)))
251 return;
252
253 if (!blk_remove_plug(q))
254 return;
255
256 q->request_fn(q);
257 }
258 EXPORT_SYMBOL(__generic_unplug_device);
259
260 /**
261 * generic_unplug_device - fire a request queue
262 * @q: The &struct request_queue in question
263 *
264 * Description:
265 * Linux uses plugging to build bigger requests queues before letting
266 * the device have at them. If a queue is plugged, the I/O scheduler
267 * is still adding and merging requests on the queue. Once the queue
268 * gets unplugged, the request_fn defined for the queue is invoked and
269 * transfers started.
270 **/
271 void generic_unplug_device(struct request_queue *q)
272 {
273 spin_lock_irq(q->queue_lock);
274 __generic_unplug_device(q);
275 spin_unlock_irq(q->queue_lock);
276 }
277 EXPORT_SYMBOL(generic_unplug_device);
278
279 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
280 struct page *page)
281 {
282 struct request_queue *q = bdi->unplug_io_data;
283
284 blk_unplug(q);
285 }
286
287 void blk_unplug_work(struct work_struct *work)
288 {
289 struct request_queue *q =
290 container_of(work, struct request_queue, unplug_work);
291
292 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
293 q->rq.count[READ] + q->rq.count[WRITE]);
294
295 q->unplug_fn(q);
296 }
297
298 void blk_unplug_timeout(unsigned long data)
299 {
300 struct request_queue *q = (struct request_queue *)data;
301
302 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
303 q->rq.count[READ] + q->rq.count[WRITE]);
304
305 kblockd_schedule_work(&q->unplug_work);
306 }
307
308 void blk_unplug(struct request_queue *q)
309 {
310 /*
311 * devices don't necessarily have an ->unplug_fn defined
312 */
313 if (q->unplug_fn) {
314 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
315 q->rq.count[READ] + q->rq.count[WRITE]);
316
317 q->unplug_fn(q);
318 }
319 }
320 EXPORT_SYMBOL(blk_unplug);
321
322 /**
323 * blk_start_queue - restart a previously stopped queue
324 * @q: The &struct request_queue in question
325 *
326 * Description:
327 * blk_start_queue() will clear the stop flag on the queue, and call
328 * the request_fn for the queue if it was in a stopped state when
329 * entered. Also see blk_stop_queue(). Queue lock must be held.
330 **/
331 void blk_start_queue(struct request_queue *q)
332 {
333 WARN_ON(!irqs_disabled());
334
335 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
336
337 /*
338 * one level of recursion is ok and is much faster than kicking
339 * the unplug handling
340 */
341 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
342 q->request_fn(q);
343 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
344 } else {
345 blk_plug_device(q);
346 kblockd_schedule_work(&q->unplug_work);
347 }
348 }
349 EXPORT_SYMBOL(blk_start_queue);
350
351 /**
352 * blk_stop_queue - stop a queue
353 * @q: The &struct request_queue in question
354 *
355 * Description:
356 * The Linux block layer assumes that a block driver will consume all
357 * entries on the request queue when the request_fn strategy is called.
358 * Often this will not happen, because of hardware limitations (queue
359 * depth settings). If a device driver gets a 'queue full' response,
360 * or if it simply chooses not to queue more I/O at one point, it can
361 * call this function to prevent the request_fn from being called until
362 * the driver has signalled it's ready to go again. This happens by calling
363 * blk_start_queue() to restart queue operations. Queue lock must be held.
364 **/
365 void blk_stop_queue(struct request_queue *q)
366 {
367 blk_remove_plug(q);
368 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
369 }
370 EXPORT_SYMBOL(blk_stop_queue);
371
372 /**
373 * blk_sync_queue - cancel any pending callbacks on a queue
374 * @q: the queue
375 *
376 * Description:
377 * The block layer may perform asynchronous callback activity
378 * on a queue, such as calling the unplug function after a timeout.
379 * A block device may call blk_sync_queue to ensure that any
380 * such activity is cancelled, thus allowing it to release resources
381 * that the callbacks might use. The caller must already have made sure
382 * that its ->make_request_fn will not re-add plugging prior to calling
383 * this function.
384 *
385 */
386 void blk_sync_queue(struct request_queue *q)
387 {
388 del_timer_sync(&q->unplug_timer);
389 kblockd_flush_work(&q->unplug_work);
390 }
391 EXPORT_SYMBOL(blk_sync_queue);
392
393 /**
394 * blk_run_queue - run a single device queue
395 * @q: The queue to run
396 */
397 void blk_run_queue(struct request_queue *q)
398 {
399 unsigned long flags;
400
401 spin_lock_irqsave(q->queue_lock, flags);
402 blk_remove_plug(q);
403
404 /*
405 * Only recurse once to avoid overrunning the stack, let the unplug
406 * handling reinvoke the handler shortly if we already got there.
407 */
408 if (!elv_queue_empty(q)) {
409 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
410 q->request_fn(q);
411 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
412 } else {
413 blk_plug_device(q);
414 kblockd_schedule_work(&q->unplug_work);
415 }
416 }
417
418 spin_unlock_irqrestore(q->queue_lock, flags);
419 }
420 EXPORT_SYMBOL(blk_run_queue);
421
422 void blk_put_queue(struct request_queue *q)
423 {
424 kobject_put(&q->kobj);
425 }
426 EXPORT_SYMBOL(blk_put_queue);
427
428 void blk_cleanup_queue(struct request_queue *q)
429 {
430 mutex_lock(&q->sysfs_lock);
431 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
432 mutex_unlock(&q->sysfs_lock);
433
434 if (q->elevator)
435 elevator_exit(q->elevator);
436
437 blk_put_queue(q);
438 }
439 EXPORT_SYMBOL(blk_cleanup_queue);
440
441 static int blk_init_free_list(struct request_queue *q)
442 {
443 struct request_list *rl = &q->rq;
444
445 rl->count[READ] = rl->count[WRITE] = 0;
446 rl->starved[READ] = rl->starved[WRITE] = 0;
447 rl->elvpriv = 0;
448 init_waitqueue_head(&rl->wait[READ]);
449 init_waitqueue_head(&rl->wait[WRITE]);
450
451 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
452 mempool_free_slab, request_cachep, q->node);
453
454 if (!rl->rq_pool)
455 return -ENOMEM;
456
457 return 0;
458 }
459
460 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
461 {
462 return blk_alloc_queue_node(gfp_mask, -1);
463 }
464 EXPORT_SYMBOL(blk_alloc_queue);
465
466 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
467 {
468 struct request_queue *q;
469 int err;
470
471 q = kmem_cache_alloc_node(blk_requestq_cachep,
472 gfp_mask | __GFP_ZERO, node_id);
473 if (!q)
474 return NULL;
475
476 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
477 q->backing_dev_info.unplug_io_data = q;
478 err = bdi_init(&q->backing_dev_info);
479 if (err) {
480 kmem_cache_free(blk_requestq_cachep, q);
481 return NULL;
482 }
483
484 init_timer(&q->unplug_timer);
485
486 kobject_init(&q->kobj, &blk_queue_ktype);
487
488 mutex_init(&q->sysfs_lock);
489
490 return q;
491 }
492 EXPORT_SYMBOL(blk_alloc_queue_node);
493
494 /**
495 * blk_init_queue - prepare a request queue for use with a block device
496 * @rfn: The function to be called to process requests that have been
497 * placed on the queue.
498 * @lock: Request queue spin lock
499 *
500 * Description:
501 * If a block device wishes to use the standard request handling procedures,
502 * which sorts requests and coalesces adjacent requests, then it must
503 * call blk_init_queue(). The function @rfn will be called when there
504 * are requests on the queue that need to be processed. If the device
505 * supports plugging, then @rfn may not be called immediately when requests
506 * are available on the queue, but may be called at some time later instead.
507 * Plugged queues are generally unplugged when a buffer belonging to one
508 * of the requests on the queue is needed, or due to memory pressure.
509 *
510 * @rfn is not required, or even expected, to remove all requests off the
511 * queue, but only as many as it can handle at a time. If it does leave
512 * requests on the queue, it is responsible for arranging that the requests
513 * get dealt with eventually.
514 *
515 * The queue spin lock must be held while manipulating the requests on the
516 * request queue; this lock will be taken also from interrupt context, so irq
517 * disabling is needed for it.
518 *
519 * Function returns a pointer to the initialized request queue, or NULL if
520 * it didn't succeed.
521 *
522 * Note:
523 * blk_init_queue() must be paired with a blk_cleanup_queue() call
524 * when the block device is deactivated (such as at module unload).
525 **/
526
527 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
528 {
529 return blk_init_queue_node(rfn, lock, -1);
530 }
531 EXPORT_SYMBOL(blk_init_queue);
532
533 struct request_queue *
534 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
535 {
536 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
537
538 if (!q)
539 return NULL;
540
541 q->node = node_id;
542 if (blk_init_free_list(q)) {
543 kmem_cache_free(blk_requestq_cachep, q);
544 return NULL;
545 }
546
547 /*
548 * if caller didn't supply a lock, they get per-queue locking with
549 * our embedded lock
550 */
551 if (!lock) {
552 spin_lock_init(&q->__queue_lock);
553 lock = &q->__queue_lock;
554 }
555
556 q->request_fn = rfn;
557 q->prep_rq_fn = NULL;
558 q->unplug_fn = generic_unplug_device;
559 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
560 q->queue_lock = lock;
561
562 blk_queue_segment_boundary(q, 0xffffffff);
563
564 blk_queue_make_request(q, __make_request);
565 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
566
567 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
568 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
569
570 q->sg_reserved_size = INT_MAX;
571
572 /*
573 * all done
574 */
575 if (!elevator_init(q, NULL)) {
576 blk_queue_congestion_threshold(q);
577 return q;
578 }
579
580 blk_put_queue(q);
581 return NULL;
582 }
583 EXPORT_SYMBOL(blk_init_queue_node);
584
585 int blk_get_queue(struct request_queue *q)
586 {
587 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
588 kobject_get(&q->kobj);
589 return 0;
590 }
591
592 return 1;
593 }
594 EXPORT_SYMBOL(blk_get_queue);
595
596 static inline void blk_free_request(struct request_queue *q, struct request *rq)
597 {
598 if (rq->cmd_flags & REQ_ELVPRIV)
599 elv_put_request(q, rq);
600 mempool_free(rq, q->rq.rq_pool);
601 }
602
603 static struct request *
604 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
605 {
606 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
607
608 if (!rq)
609 return NULL;
610
611 /*
612 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
613 * see bio.h and blkdev.h
614 */
615 rq->cmd_flags = rw | REQ_ALLOCED;
616
617 if (priv) {
618 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
619 mempool_free(rq, q->rq.rq_pool);
620 return NULL;
621 }
622 rq->cmd_flags |= REQ_ELVPRIV;
623 }
624
625 return rq;
626 }
627
628 /*
629 * ioc_batching returns true if the ioc is a valid batching request and
630 * should be given priority access to a request.
631 */
632 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
633 {
634 if (!ioc)
635 return 0;
636
637 /*
638 * Make sure the process is able to allocate at least 1 request
639 * even if the batch times out, otherwise we could theoretically
640 * lose wakeups.
641 */
642 return ioc->nr_batch_requests == q->nr_batching ||
643 (ioc->nr_batch_requests > 0
644 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
645 }
646
647 /*
648 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
649 * will cause the process to be a "batcher" on all queues in the system. This
650 * is the behaviour we want though - once it gets a wakeup it should be given
651 * a nice run.
652 */
653 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
654 {
655 if (!ioc || ioc_batching(q, ioc))
656 return;
657
658 ioc->nr_batch_requests = q->nr_batching;
659 ioc->last_waited = jiffies;
660 }
661
662 static void __freed_request(struct request_queue *q, int rw)
663 {
664 struct request_list *rl = &q->rq;
665
666 if (rl->count[rw] < queue_congestion_off_threshold(q))
667 blk_clear_queue_congested(q, rw);
668
669 if (rl->count[rw] + 1 <= q->nr_requests) {
670 if (waitqueue_active(&rl->wait[rw]))
671 wake_up(&rl->wait[rw]);
672
673 blk_clear_queue_full(q, rw);
674 }
675 }
676
677 /*
678 * A request has just been released. Account for it, update the full and
679 * congestion status, wake up any waiters. Called under q->queue_lock.
680 */
681 static void freed_request(struct request_queue *q, int rw, int priv)
682 {
683 struct request_list *rl = &q->rq;
684
685 rl->count[rw]--;
686 if (priv)
687 rl->elvpriv--;
688
689 __freed_request(q, rw);
690
691 if (unlikely(rl->starved[rw ^ 1]))
692 __freed_request(q, rw ^ 1);
693 }
694
695 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
696 /*
697 * Get a free request, queue_lock must be held.
698 * Returns NULL on failure, with queue_lock held.
699 * Returns !NULL on success, with queue_lock *not held*.
700 */
701 static struct request *get_request(struct request_queue *q, int rw_flags,
702 struct bio *bio, gfp_t gfp_mask)
703 {
704 struct request *rq = NULL;
705 struct request_list *rl = &q->rq;
706 struct io_context *ioc = NULL;
707 const int rw = rw_flags & 0x01;
708 int may_queue, priv;
709
710 may_queue = elv_may_queue(q, rw_flags);
711 if (may_queue == ELV_MQUEUE_NO)
712 goto rq_starved;
713
714 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
715 if (rl->count[rw]+1 >= q->nr_requests) {
716 ioc = current_io_context(GFP_ATOMIC, q->node);
717 /*
718 * The queue will fill after this allocation, so set
719 * it as full, and mark this process as "batching".
720 * This process will be allowed to complete a batch of
721 * requests, others will be blocked.
722 */
723 if (!blk_queue_full(q, rw)) {
724 ioc_set_batching(q, ioc);
725 blk_set_queue_full(q, rw);
726 } else {
727 if (may_queue != ELV_MQUEUE_MUST
728 && !ioc_batching(q, ioc)) {
729 /*
730 * The queue is full and the allocating
731 * process is not a "batcher", and not
732 * exempted by the IO scheduler
733 */
734 goto out;
735 }
736 }
737 }
738 blk_set_queue_congested(q, rw);
739 }
740
741 /*
742 * Only allow batching queuers to allocate up to 50% over the defined
743 * limit of requests, otherwise we could have thousands of requests
744 * allocated with any setting of ->nr_requests
745 */
746 if (rl->count[rw] >= (3 * q->nr_requests / 2))
747 goto out;
748
749 rl->count[rw]++;
750 rl->starved[rw] = 0;
751
752 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
753 if (priv)
754 rl->elvpriv++;
755
756 spin_unlock_irq(q->queue_lock);
757
758 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
759 if (unlikely(!rq)) {
760 /*
761 * Allocation failed presumably due to memory. Undo anything
762 * we might have messed up.
763 *
764 * Allocating task should really be put onto the front of the
765 * wait queue, but this is pretty rare.
766 */
767 spin_lock_irq(q->queue_lock);
768 freed_request(q, rw, priv);
769
770 /*
771 * in the very unlikely event that allocation failed and no
772 * requests for this direction was pending, mark us starved
773 * so that freeing of a request in the other direction will
774 * notice us. another possible fix would be to split the
775 * rq mempool into READ and WRITE
776 */
777 rq_starved:
778 if (unlikely(rl->count[rw] == 0))
779 rl->starved[rw] = 1;
780
781 goto out;
782 }
783
784 /*
785 * ioc may be NULL here, and ioc_batching will be false. That's
786 * OK, if the queue is under the request limit then requests need
787 * not count toward the nr_batch_requests limit. There will always
788 * be some limit enforced by BLK_BATCH_TIME.
789 */
790 if (ioc_batching(q, ioc))
791 ioc->nr_batch_requests--;
792
793 rq_init(q, rq);
794
795 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
796 out:
797 return rq;
798 }
799
800 /*
801 * No available requests for this queue, unplug the device and wait for some
802 * requests to become available.
803 *
804 * Called with q->queue_lock held, and returns with it unlocked.
805 */
806 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
807 struct bio *bio)
808 {
809 const int rw = rw_flags & 0x01;
810 struct request *rq;
811
812 rq = get_request(q, rw_flags, bio, GFP_NOIO);
813 while (!rq) {
814 DEFINE_WAIT(wait);
815 struct request_list *rl = &q->rq;
816
817 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
818 TASK_UNINTERRUPTIBLE);
819
820 rq = get_request(q, rw_flags, bio, GFP_NOIO);
821
822 if (!rq) {
823 struct io_context *ioc;
824
825 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
826
827 __generic_unplug_device(q);
828 spin_unlock_irq(q->queue_lock);
829 io_schedule();
830
831 /*
832 * After sleeping, we become a "batching" process and
833 * will be able to allocate at least one request, and
834 * up to a big batch of them for a small period time.
835 * See ioc_batching, ioc_set_batching
836 */
837 ioc = current_io_context(GFP_NOIO, q->node);
838 ioc_set_batching(q, ioc);
839
840 spin_lock_irq(q->queue_lock);
841 }
842 finish_wait(&rl->wait[rw], &wait);
843 }
844
845 return rq;
846 }
847
848 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
849 {
850 struct request *rq;
851
852 BUG_ON(rw != READ && rw != WRITE);
853
854 spin_lock_irq(q->queue_lock);
855 if (gfp_mask & __GFP_WAIT) {
856 rq = get_request_wait(q, rw, NULL);
857 } else {
858 rq = get_request(q, rw, NULL, gfp_mask);
859 if (!rq)
860 spin_unlock_irq(q->queue_lock);
861 }
862 /* q->queue_lock is unlocked at this point */
863
864 return rq;
865 }
866 EXPORT_SYMBOL(blk_get_request);
867
868 /**
869 * blk_start_queueing - initiate dispatch of requests to device
870 * @q: request queue to kick into gear
871 *
872 * This is basically a helper to remove the need to know whether a queue
873 * is plugged or not if someone just wants to initiate dispatch of requests
874 * for this queue.
875 *
876 * The queue lock must be held with interrupts disabled.
877 */
878 void blk_start_queueing(struct request_queue *q)
879 {
880 if (!blk_queue_plugged(q))
881 q->request_fn(q);
882 else
883 __generic_unplug_device(q);
884 }
885 EXPORT_SYMBOL(blk_start_queueing);
886
887 /**
888 * blk_requeue_request - put a request back on queue
889 * @q: request queue where request should be inserted
890 * @rq: request to be inserted
891 *
892 * Description:
893 * Drivers often keep queueing requests until the hardware cannot accept
894 * more, when that condition happens we need to put the request back
895 * on the queue. Must be called with queue lock held.
896 */
897 void blk_requeue_request(struct request_queue *q, struct request *rq)
898 {
899 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
900
901 if (blk_rq_tagged(rq))
902 blk_queue_end_tag(q, rq);
903
904 elv_requeue_request(q, rq);
905 }
906 EXPORT_SYMBOL(blk_requeue_request);
907
908 /**
909 * blk_insert_request - insert a special request in to a request queue
910 * @q: request queue where request should be inserted
911 * @rq: request to be inserted
912 * @at_head: insert request at head or tail of queue
913 * @data: private data
914 *
915 * Description:
916 * Many block devices need to execute commands asynchronously, so they don't
917 * block the whole kernel from preemption during request execution. This is
918 * accomplished normally by inserting aritficial requests tagged as
919 * REQ_SPECIAL in to the corresponding request queue, and letting them be
920 * scheduled for actual execution by the request queue.
921 *
922 * We have the option of inserting the head or the tail of the queue.
923 * Typically we use the tail for new ioctls and so forth. We use the head
924 * of the queue for things like a QUEUE_FULL message from a device, or a
925 * host that is unable to accept a particular command.
926 */
927 void blk_insert_request(struct request_queue *q, struct request *rq,
928 int at_head, void *data)
929 {
930 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
931 unsigned long flags;
932
933 /*
934 * tell I/O scheduler that this isn't a regular read/write (ie it
935 * must not attempt merges on this) and that it acts as a soft
936 * barrier
937 */
938 rq->cmd_type = REQ_TYPE_SPECIAL;
939 rq->cmd_flags |= REQ_SOFTBARRIER;
940
941 rq->special = data;
942
943 spin_lock_irqsave(q->queue_lock, flags);
944
945 /*
946 * If command is tagged, release the tag
947 */
948 if (blk_rq_tagged(rq))
949 blk_queue_end_tag(q, rq);
950
951 drive_stat_acct(rq, 1);
952 __elv_add_request(q, rq, where, 0);
953 blk_start_queueing(q);
954 spin_unlock_irqrestore(q->queue_lock, flags);
955 }
956 EXPORT_SYMBOL(blk_insert_request);
957
958 /*
959 * add-request adds a request to the linked list.
960 * queue lock is held and interrupts disabled, as we muck with the
961 * request queue list.
962 */
963 static inline void add_request(struct request_queue *q, struct request *req)
964 {
965 drive_stat_acct(req, 1);
966
967 /*
968 * elevator indicated where it wants this request to be
969 * inserted at elevator_merge time
970 */
971 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
972 }
973
974 /*
975 * disk_round_stats() - Round off the performance stats on a struct
976 * disk_stats.
977 *
978 * The average IO queue length and utilisation statistics are maintained
979 * by observing the current state of the queue length and the amount of
980 * time it has been in this state for.
981 *
982 * Normally, that accounting is done on IO completion, but that can result
983 * in more than a second's worth of IO being accounted for within any one
984 * second, leading to >100% utilisation. To deal with that, we call this
985 * function to do a round-off before returning the results when reading
986 * /proc/diskstats. This accounts immediately for all queue usage up to
987 * the current jiffies and restarts the counters again.
988 */
989 void disk_round_stats(struct gendisk *disk)
990 {
991 unsigned long now = jiffies;
992
993 if (now == disk->stamp)
994 return;
995
996 if (disk->in_flight) {
997 __disk_stat_add(disk, time_in_queue,
998 disk->in_flight * (now - disk->stamp));
999 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
1000 }
1001 disk->stamp = now;
1002 }
1003 EXPORT_SYMBOL_GPL(disk_round_stats);
1004
1005 void part_round_stats(struct hd_struct *part)
1006 {
1007 unsigned long now = jiffies;
1008
1009 if (now == part->stamp)
1010 return;
1011
1012 if (part->in_flight) {
1013 __part_stat_add(part, time_in_queue,
1014 part->in_flight * (now - part->stamp));
1015 __part_stat_add(part, io_ticks, (now - part->stamp));
1016 }
1017 part->stamp = now;
1018 }
1019
1020 /*
1021 * queue lock must be held
1022 */
1023 void __blk_put_request(struct request_queue *q, struct request *req)
1024 {
1025 if (unlikely(!q))
1026 return;
1027 if (unlikely(--req->ref_count))
1028 return;
1029
1030 elv_completed_request(q, req);
1031
1032 /*
1033 * Request may not have originated from ll_rw_blk. if not,
1034 * it didn't come out of our reserved rq pools
1035 */
1036 if (req->cmd_flags & REQ_ALLOCED) {
1037 int rw = rq_data_dir(req);
1038 int priv = req->cmd_flags & REQ_ELVPRIV;
1039
1040 BUG_ON(!list_empty(&req->queuelist));
1041 BUG_ON(!hlist_unhashed(&req->hash));
1042
1043 blk_free_request(q, req);
1044 freed_request(q, rw, priv);
1045 }
1046 }
1047 EXPORT_SYMBOL_GPL(__blk_put_request);
1048
1049 void blk_put_request(struct request *req)
1050 {
1051 unsigned long flags;
1052 struct request_queue *q = req->q;
1053
1054 /*
1055 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
1056 * following if (q) test.
1057 */
1058 if (q) {
1059 spin_lock_irqsave(q->queue_lock, flags);
1060 __blk_put_request(q, req);
1061 spin_unlock_irqrestore(q->queue_lock, flags);
1062 }
1063 }
1064 EXPORT_SYMBOL(blk_put_request);
1065
1066 void init_request_from_bio(struct request *req, struct bio *bio)
1067 {
1068 req->cmd_type = REQ_TYPE_FS;
1069
1070 /*
1071 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1072 */
1073 if (bio_rw_ahead(bio) || bio_failfast(bio))
1074 req->cmd_flags |= REQ_FAILFAST;
1075
1076 /*
1077 * REQ_BARRIER implies no merging, but lets make it explicit
1078 */
1079 if (unlikely(bio_barrier(bio)))
1080 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
1081
1082 if (bio_sync(bio))
1083 req->cmd_flags |= REQ_RW_SYNC;
1084 if (bio_rw_meta(bio))
1085 req->cmd_flags |= REQ_RW_META;
1086
1087 req->errors = 0;
1088 req->hard_sector = req->sector = bio->bi_sector;
1089 req->ioprio = bio_prio(bio);
1090 req->start_time = jiffies;
1091 blk_rq_bio_prep(req->q, req, bio);
1092 }
1093
1094 static int __make_request(struct request_queue *q, struct bio *bio)
1095 {
1096 struct request *req;
1097 int el_ret, nr_sectors, barrier, err;
1098 const unsigned short prio = bio_prio(bio);
1099 const int sync = bio_sync(bio);
1100 int rw_flags;
1101
1102 nr_sectors = bio_sectors(bio);
1103
1104 /*
1105 * low level driver can indicate that it wants pages above a
1106 * certain limit bounced to low memory (ie for highmem, or even
1107 * ISA dma in theory)
1108 */
1109 blk_queue_bounce(q, &bio);
1110
1111 barrier = bio_barrier(bio);
1112 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
1113 err = -EOPNOTSUPP;
1114 goto end_io;
1115 }
1116
1117 spin_lock_irq(q->queue_lock);
1118
1119 if (unlikely(barrier) || elv_queue_empty(q))
1120 goto get_rq;
1121
1122 el_ret = elv_merge(q, &req, bio);
1123 switch (el_ret) {
1124 case ELEVATOR_BACK_MERGE:
1125 BUG_ON(!rq_mergeable(req));
1126
1127 if (!ll_back_merge_fn(q, req, bio))
1128 break;
1129
1130 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
1131
1132 req->biotail->bi_next = bio;
1133 req->biotail = bio;
1134 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1135 req->ioprio = ioprio_best(req->ioprio, prio);
1136 drive_stat_acct(req, 0);
1137 if (!attempt_back_merge(q, req))
1138 elv_merged_request(q, req, el_ret);
1139 goto out;
1140
1141 case ELEVATOR_FRONT_MERGE:
1142 BUG_ON(!rq_mergeable(req));
1143
1144 if (!ll_front_merge_fn(q, req, bio))
1145 break;
1146
1147 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
1148
1149 bio->bi_next = req->bio;
1150 req->bio = bio;
1151
1152 /*
1153 * may not be valid. if the low level driver said
1154 * it didn't need a bounce buffer then it better
1155 * not touch req->buffer either...
1156 */
1157 req->buffer = bio_data(bio);
1158 req->current_nr_sectors = bio_cur_sectors(bio);
1159 req->hard_cur_sectors = req->current_nr_sectors;
1160 req->sector = req->hard_sector = bio->bi_sector;
1161 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1162 req->ioprio = ioprio_best(req->ioprio, prio);
1163 drive_stat_acct(req, 0);
1164 if (!attempt_front_merge(q, req))
1165 elv_merged_request(q, req, el_ret);
1166 goto out;
1167
1168 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1169 default:
1170 ;
1171 }
1172
1173 get_rq:
1174 /*
1175 * This sync check and mask will be re-done in init_request_from_bio(),
1176 * but we need to set it earlier to expose the sync flag to the
1177 * rq allocator and io schedulers.
1178 */
1179 rw_flags = bio_data_dir(bio);
1180 if (sync)
1181 rw_flags |= REQ_RW_SYNC;
1182
1183 /*
1184 * Grab a free request. This is might sleep but can not fail.
1185 * Returns with the queue unlocked.
1186 */
1187 req = get_request_wait(q, rw_flags, bio);
1188
1189 /*
1190 * After dropping the lock and possibly sleeping here, our request
1191 * may now be mergeable after it had proven unmergeable (above).
1192 * We don't worry about that case for efficiency. It won't happen
1193 * often, and the elevators are able to handle it.
1194 */
1195 init_request_from_bio(req, bio);
1196
1197 spin_lock_irq(q->queue_lock);
1198 if (elv_queue_empty(q))
1199 blk_plug_device(q);
1200 add_request(q, req);
1201 out:
1202 if (sync)
1203 __generic_unplug_device(q);
1204
1205 spin_unlock_irq(q->queue_lock);
1206 return 0;
1207
1208 end_io:
1209 bio_endio(bio, err);
1210 return 0;
1211 }
1212
1213 /*
1214 * If bio->bi_dev is a partition, remap the location
1215 */
1216 static inline void blk_partition_remap(struct bio *bio)
1217 {
1218 struct block_device *bdev = bio->bi_bdev;
1219
1220 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1221 struct hd_struct *p = bdev->bd_part;
1222
1223 bio->bi_sector += p->start_sect;
1224 bio->bi_bdev = bdev->bd_contains;
1225
1226 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
1227 bdev->bd_dev, bio->bi_sector,
1228 bio->bi_sector - p->start_sect);
1229 }
1230 }
1231
1232 static void handle_bad_sector(struct bio *bio)
1233 {
1234 char b[BDEVNAME_SIZE];
1235
1236 printk(KERN_INFO "attempt to access beyond end of device\n");
1237 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1238 bdevname(bio->bi_bdev, b),
1239 bio->bi_rw,
1240 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1241 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1242
1243 set_bit(BIO_EOF, &bio->bi_flags);
1244 }
1245
1246 #ifdef CONFIG_FAIL_MAKE_REQUEST
1247
1248 static DECLARE_FAULT_ATTR(fail_make_request);
1249
1250 static int __init setup_fail_make_request(char *str)
1251 {
1252 return setup_fault_attr(&fail_make_request, str);
1253 }
1254 __setup("fail_make_request=", setup_fail_make_request);
1255
1256 static int should_fail_request(struct bio *bio)
1257 {
1258 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
1259 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
1260 return should_fail(&fail_make_request, bio->bi_size);
1261
1262 return 0;
1263 }
1264
1265 static int __init fail_make_request_debugfs(void)
1266 {
1267 return init_fault_attr_dentries(&fail_make_request,
1268 "fail_make_request");
1269 }
1270
1271 late_initcall(fail_make_request_debugfs);
1272
1273 #else /* CONFIG_FAIL_MAKE_REQUEST */
1274
1275 static inline int should_fail_request(struct bio *bio)
1276 {
1277 return 0;
1278 }
1279
1280 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1281
1282 /*
1283 * Check whether this bio extends beyond the end of the device.
1284 */
1285 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1286 {
1287 sector_t maxsector;
1288
1289 if (!nr_sectors)
1290 return 0;
1291
1292 /* Test device or partition size, when known. */
1293 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1294 if (maxsector) {
1295 sector_t sector = bio->bi_sector;
1296
1297 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1298 /*
1299 * This may well happen - the kernel calls bread()
1300 * without checking the size of the device, e.g., when
1301 * mounting a device.
1302 */
1303 handle_bad_sector(bio);
1304 return 1;
1305 }
1306 }
1307
1308 return 0;
1309 }
1310
1311 /**
1312 * generic_make_request: hand a buffer to its device driver for I/O
1313 * @bio: The bio describing the location in memory and on the device.
1314 *
1315 * generic_make_request() is used to make I/O requests of block
1316 * devices. It is passed a &struct bio, which describes the I/O that needs
1317 * to be done.
1318 *
1319 * generic_make_request() does not return any status. The
1320 * success/failure status of the request, along with notification of
1321 * completion, is delivered asynchronously through the bio->bi_end_io
1322 * function described (one day) else where.
1323 *
1324 * The caller of generic_make_request must make sure that bi_io_vec
1325 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1326 * set to describe the device address, and the
1327 * bi_end_io and optionally bi_private are set to describe how
1328 * completion notification should be signaled.
1329 *
1330 * generic_make_request and the drivers it calls may use bi_next if this
1331 * bio happens to be merged with someone else, and may change bi_dev and
1332 * bi_sector for remaps as it sees fit. So the values of these fields
1333 * should NOT be depended on after the call to generic_make_request.
1334 */
1335 static inline void __generic_make_request(struct bio *bio)
1336 {
1337 struct request_queue *q;
1338 sector_t old_sector;
1339 int ret, nr_sectors = bio_sectors(bio);
1340 dev_t old_dev;
1341 int err = -EIO;
1342
1343 might_sleep();
1344
1345 if (bio_check_eod(bio, nr_sectors))
1346 goto end_io;
1347
1348 /*
1349 * Resolve the mapping until finished. (drivers are
1350 * still free to implement/resolve their own stacking
1351 * by explicitly returning 0)
1352 *
1353 * NOTE: we don't repeat the blk_size check for each new device.
1354 * Stacking drivers are expected to know what they are doing.
1355 */
1356 old_sector = -1;
1357 old_dev = 0;
1358 do {
1359 char b[BDEVNAME_SIZE];
1360
1361 q = bdev_get_queue(bio->bi_bdev);
1362 if (!q) {
1363 printk(KERN_ERR
1364 "generic_make_request: Trying to access "
1365 "nonexistent block-device %s (%Lu)\n",
1366 bdevname(bio->bi_bdev, b),
1367 (long long) bio->bi_sector);
1368 end_io:
1369 bio_endio(bio, err);
1370 break;
1371 }
1372
1373 if (unlikely(nr_sectors > q->max_hw_sectors)) {
1374 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1375 bdevname(bio->bi_bdev, b),
1376 bio_sectors(bio),
1377 q->max_hw_sectors);
1378 goto end_io;
1379 }
1380
1381 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1382 goto end_io;
1383
1384 if (should_fail_request(bio))
1385 goto end_io;
1386
1387 /*
1388 * If this device has partitions, remap block n
1389 * of partition p to block n+start(p) of the disk.
1390 */
1391 blk_partition_remap(bio);
1392
1393 if (old_sector != -1)
1394 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
1395 old_sector);
1396
1397 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
1398
1399 old_sector = bio->bi_sector;
1400 old_dev = bio->bi_bdev->bd_dev;
1401
1402 if (bio_check_eod(bio, nr_sectors))
1403 goto end_io;
1404 if (bio_empty_barrier(bio) && !q->prepare_flush_fn) {
1405 err = -EOPNOTSUPP;
1406 goto end_io;
1407 }
1408
1409 ret = q->make_request_fn(q, bio);
1410 } while (ret);
1411 }
1412
1413 /*
1414 * We only want one ->make_request_fn to be active at a time,
1415 * else stack usage with stacked devices could be a problem.
1416 * So use current->bio_{list,tail} to keep a list of requests
1417 * submited by a make_request_fn function.
1418 * current->bio_tail is also used as a flag to say if
1419 * generic_make_request is currently active in this task or not.
1420 * If it is NULL, then no make_request is active. If it is non-NULL,
1421 * then a make_request is active, and new requests should be added
1422 * at the tail
1423 */
1424 void generic_make_request(struct bio *bio)
1425 {
1426 if (current->bio_tail) {
1427 /* make_request is active */
1428 *(current->bio_tail) = bio;
1429 bio->bi_next = NULL;
1430 current->bio_tail = &bio->bi_next;
1431 return;
1432 }
1433 /* following loop may be a bit non-obvious, and so deserves some
1434 * explanation.
1435 * Before entering the loop, bio->bi_next is NULL (as all callers
1436 * ensure that) so we have a list with a single bio.
1437 * We pretend that we have just taken it off a longer list, so
1438 * we assign bio_list to the next (which is NULL) and bio_tail
1439 * to &bio_list, thus initialising the bio_list of new bios to be
1440 * added. __generic_make_request may indeed add some more bios
1441 * through a recursive call to generic_make_request. If it
1442 * did, we find a non-NULL value in bio_list and re-enter the loop
1443 * from the top. In this case we really did just take the bio
1444 * of the top of the list (no pretending) and so fixup bio_list and
1445 * bio_tail or bi_next, and call into __generic_make_request again.
1446 *
1447 * The loop was structured like this to make only one call to
1448 * __generic_make_request (which is important as it is large and
1449 * inlined) and to keep the structure simple.
1450 */
1451 BUG_ON(bio->bi_next);
1452 do {
1453 current->bio_list = bio->bi_next;
1454 if (bio->bi_next == NULL)
1455 current->bio_tail = &current->bio_list;
1456 else
1457 bio->bi_next = NULL;
1458 __generic_make_request(bio);
1459 bio = current->bio_list;
1460 } while (bio);
1461 current->bio_tail = NULL; /* deactivate */
1462 }
1463 EXPORT_SYMBOL(generic_make_request);
1464
1465 /**
1466 * submit_bio: submit a bio to the block device layer for I/O
1467 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1468 * @bio: The &struct bio which describes the I/O
1469 *
1470 * submit_bio() is very similar in purpose to generic_make_request(), and
1471 * uses that function to do most of the work. Both are fairly rough
1472 * interfaces, @bio must be presetup and ready for I/O.
1473 *
1474 */
1475 void submit_bio(int rw, struct bio *bio)
1476 {
1477 int count = bio_sectors(bio);
1478
1479 bio->bi_rw |= rw;
1480
1481 /*
1482 * If it's a regular read/write or a barrier with data attached,
1483 * go through the normal accounting stuff before submission.
1484 */
1485 if (!bio_empty_barrier(bio)) {
1486
1487 BIO_BUG_ON(!bio->bi_size);
1488 BIO_BUG_ON(!bio->bi_io_vec);
1489
1490 if (rw & WRITE) {
1491 count_vm_events(PGPGOUT, count);
1492 } else {
1493 task_io_account_read(bio->bi_size);
1494 count_vm_events(PGPGIN, count);
1495 }
1496
1497 if (unlikely(block_dump)) {
1498 char b[BDEVNAME_SIZE];
1499 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1500 current->comm, task_pid_nr(current),
1501 (rw & WRITE) ? "WRITE" : "READ",
1502 (unsigned long long)bio->bi_sector,
1503 bdevname(bio->bi_bdev, b));
1504 }
1505 }
1506
1507 generic_make_request(bio);
1508 }
1509 EXPORT_SYMBOL(submit_bio);
1510
1511 /**
1512 * __end_that_request_first - end I/O on a request
1513 * @req: the request being processed
1514 * @error: 0 for success, < 0 for error
1515 * @nr_bytes: number of bytes to complete
1516 *
1517 * Description:
1518 * Ends I/O on a number of bytes attached to @req, and sets it up
1519 * for the next range of segments (if any) in the cluster.
1520 *
1521 * Return:
1522 * 0 - we are done with this request, call end_that_request_last()
1523 * 1 - still buffers pending for this request
1524 **/
1525 static int __end_that_request_first(struct request *req, int error,
1526 int nr_bytes)
1527 {
1528 int total_bytes, bio_nbytes, next_idx = 0;
1529 struct bio *bio;
1530
1531 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
1532
1533 /*
1534 * for a REQ_BLOCK_PC request, we want to carry any eventual
1535 * sense key with us all the way through
1536 */
1537 if (!blk_pc_request(req))
1538 req->errors = 0;
1539
1540 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1541 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1542 req->rq_disk ? req->rq_disk->disk_name : "?",
1543 (unsigned long long)req->sector);
1544 }
1545
1546 if (blk_fs_request(req) && req->rq_disk) {
1547 const int rw = rq_data_dir(req);
1548
1549 all_stat_add(req->rq_disk, sectors[rw],
1550 nr_bytes >> 9, req->sector);
1551 }
1552
1553 total_bytes = bio_nbytes = 0;
1554 while ((bio = req->bio) != NULL) {
1555 int nbytes;
1556
1557 /*
1558 * For an empty barrier request, the low level driver must
1559 * store a potential error location in ->sector. We pass
1560 * that back up in ->bi_sector.
1561 */
1562 if (blk_empty_barrier(req))
1563 bio->bi_sector = req->sector;
1564
1565 if (nr_bytes >= bio->bi_size) {
1566 req->bio = bio->bi_next;
1567 nbytes = bio->bi_size;
1568 req_bio_endio(req, bio, nbytes, error);
1569 next_idx = 0;
1570 bio_nbytes = 0;
1571 } else {
1572 int idx = bio->bi_idx + next_idx;
1573
1574 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1575 blk_dump_rq_flags(req, "__end_that");
1576 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1577 __FUNCTION__, bio->bi_idx,
1578 bio->bi_vcnt);
1579 break;
1580 }
1581
1582 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1583 BIO_BUG_ON(nbytes > bio->bi_size);
1584
1585 /*
1586 * not a complete bvec done
1587 */
1588 if (unlikely(nbytes > nr_bytes)) {
1589 bio_nbytes += nr_bytes;
1590 total_bytes += nr_bytes;
1591 break;
1592 }
1593
1594 /*
1595 * advance to the next vector
1596 */
1597 next_idx++;
1598 bio_nbytes += nbytes;
1599 }
1600
1601 total_bytes += nbytes;
1602 nr_bytes -= nbytes;
1603
1604 bio = req->bio;
1605 if (bio) {
1606 /*
1607 * end more in this run, or just return 'not-done'
1608 */
1609 if (unlikely(nr_bytes <= 0))
1610 break;
1611 }
1612 }
1613
1614 /*
1615 * completely done
1616 */
1617 if (!req->bio)
1618 return 0;
1619
1620 /*
1621 * if the request wasn't completed, update state
1622 */
1623 if (bio_nbytes) {
1624 req_bio_endio(req, bio, bio_nbytes, error);
1625 bio->bi_idx += next_idx;
1626 bio_iovec(bio)->bv_offset += nr_bytes;
1627 bio_iovec(bio)->bv_len -= nr_bytes;
1628 }
1629
1630 blk_recalc_rq_sectors(req, total_bytes >> 9);
1631 blk_recalc_rq_segments(req);
1632 return 1;
1633 }
1634
1635 /*
1636 * splice the completion data to a local structure and hand off to
1637 * process_completion_queue() to complete the requests
1638 */
1639 static void blk_done_softirq(struct softirq_action *h)
1640 {
1641 struct list_head *cpu_list, local_list;
1642
1643 local_irq_disable();
1644 cpu_list = &__get_cpu_var(blk_cpu_done);
1645 list_replace_init(cpu_list, &local_list);
1646 local_irq_enable();
1647
1648 while (!list_empty(&local_list)) {
1649 struct request *rq;
1650
1651 rq = list_entry(local_list.next, struct request, donelist);
1652 list_del_init(&rq->donelist);
1653 rq->q->softirq_done_fn(rq);
1654 }
1655 }
1656
1657 static int __cpuinit blk_cpu_notify(struct notifier_block *self,
1658 unsigned long action, void *hcpu)
1659 {
1660 /*
1661 * If a CPU goes away, splice its entries to the current CPU
1662 * and trigger a run of the softirq
1663 */
1664 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1665 int cpu = (unsigned long) hcpu;
1666
1667 local_irq_disable();
1668 list_splice_init(&per_cpu(blk_cpu_done, cpu),
1669 &__get_cpu_var(blk_cpu_done));
1670 raise_softirq_irqoff(BLOCK_SOFTIRQ);
1671 local_irq_enable();
1672 }
1673
1674 return NOTIFY_OK;
1675 }
1676
1677
1678 static struct notifier_block blk_cpu_notifier __cpuinitdata = {
1679 .notifier_call = blk_cpu_notify,
1680 };
1681
1682 /**
1683 * blk_complete_request - end I/O on a request
1684 * @req: the request being processed
1685 *
1686 * Description:
1687 * Ends all I/O on a request. It does not handle partial completions,
1688 * unless the driver actually implements this in its completion callback
1689 * through requeueing. The actual completion happens out-of-order,
1690 * through a softirq handler. The user must have registered a completion
1691 * callback through blk_queue_softirq_done().
1692 **/
1693
1694 void blk_complete_request(struct request *req)
1695 {
1696 struct list_head *cpu_list;
1697 unsigned long flags;
1698
1699 BUG_ON(!req->q->softirq_done_fn);
1700
1701 local_irq_save(flags);
1702
1703 cpu_list = &__get_cpu_var(blk_cpu_done);
1704 list_add_tail(&req->donelist, cpu_list);
1705 raise_softirq_irqoff(BLOCK_SOFTIRQ);
1706
1707 local_irq_restore(flags);
1708 }
1709 EXPORT_SYMBOL(blk_complete_request);
1710
1711 /*
1712 * queue lock must be held
1713 */
1714 static void end_that_request_last(struct request *req, int error)
1715 {
1716 struct gendisk *disk = req->rq_disk;
1717
1718 if (blk_rq_tagged(req))
1719 blk_queue_end_tag(req->q, req);
1720
1721 if (blk_queued_rq(req))
1722 blkdev_dequeue_request(req);
1723
1724 if (unlikely(laptop_mode) && blk_fs_request(req))
1725 laptop_io_completion();
1726
1727 /*
1728 * Account IO completion. bar_rq isn't accounted as a normal
1729 * IO on queueing nor completion. Accounting the containing
1730 * request is enough.
1731 */
1732 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1733 unsigned long duration = jiffies - req->start_time;
1734 const int rw = rq_data_dir(req);
1735 struct hd_struct *part = get_part(disk, req->sector);
1736
1737 __all_stat_inc(disk, ios[rw], req->sector);
1738 __all_stat_add(disk, ticks[rw], duration, req->sector);
1739 disk_round_stats(disk);
1740 disk->in_flight--;
1741 if (part) {
1742 part_round_stats(part);
1743 part->in_flight--;
1744 }
1745 }
1746
1747 if (req->end_io)
1748 req->end_io(req, error);
1749 else {
1750 if (blk_bidi_rq(req))
1751 __blk_put_request(req->next_rq->q, req->next_rq);
1752
1753 __blk_put_request(req->q, req);
1754 }
1755 }
1756
1757 static inline void __end_request(struct request *rq, int uptodate,
1758 unsigned int nr_bytes)
1759 {
1760 int error = 0;
1761
1762 if (uptodate <= 0)
1763 error = uptodate ? uptodate : -EIO;
1764
1765 __blk_end_request(rq, error, nr_bytes);
1766 }
1767
1768 /**
1769 * blk_rq_bytes - Returns bytes left to complete in the entire request
1770 **/
1771 unsigned int blk_rq_bytes(struct request *rq)
1772 {
1773 if (blk_fs_request(rq))
1774 return rq->hard_nr_sectors << 9;
1775
1776 return rq->data_len;
1777 }
1778 EXPORT_SYMBOL_GPL(blk_rq_bytes);
1779
1780 /**
1781 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
1782 **/
1783 unsigned int blk_rq_cur_bytes(struct request *rq)
1784 {
1785 if (blk_fs_request(rq))
1786 return rq->current_nr_sectors << 9;
1787
1788 if (rq->bio)
1789 return rq->bio->bi_size;
1790
1791 return rq->data_len;
1792 }
1793 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
1794
1795 /**
1796 * end_queued_request - end all I/O on a queued request
1797 * @rq: the request being processed
1798 * @uptodate: error value or 0/1 uptodate flag
1799 *
1800 * Description:
1801 * Ends all I/O on a request, and removes it from the block layer queues.
1802 * Not suitable for normal IO completion, unless the driver still has
1803 * the request attached to the block layer.
1804 *
1805 **/
1806 void end_queued_request(struct request *rq, int uptodate)
1807 {
1808 __end_request(rq, uptodate, blk_rq_bytes(rq));
1809 }
1810 EXPORT_SYMBOL(end_queued_request);
1811
1812 /**
1813 * end_dequeued_request - end all I/O on a dequeued request
1814 * @rq: the request being processed
1815 * @uptodate: error value or 0/1 uptodate flag
1816 *
1817 * Description:
1818 * Ends all I/O on a request. The request must already have been
1819 * dequeued using blkdev_dequeue_request(), as is normally the case
1820 * for most drivers.
1821 *
1822 **/
1823 void end_dequeued_request(struct request *rq, int uptodate)
1824 {
1825 __end_request(rq, uptodate, blk_rq_bytes(rq));
1826 }
1827 EXPORT_SYMBOL(end_dequeued_request);
1828
1829
1830 /**
1831 * end_request - end I/O on the current segment of the request
1832 * @req: the request being processed
1833 * @uptodate: error value or 0/1 uptodate flag
1834 *
1835 * Description:
1836 * Ends I/O on the current segment of a request. If that is the only
1837 * remaining segment, the request is also completed and freed.
1838 *
1839 * This is a remnant of how older block drivers handled IO completions.
1840 * Modern drivers typically end IO on the full request in one go, unless
1841 * they have a residual value to account for. For that case this function
1842 * isn't really useful, unless the residual just happens to be the
1843 * full current segment. In other words, don't use this function in new
1844 * code. Either use end_request_completely(), or the
1845 * end_that_request_chunk() (along with end_that_request_last()) for
1846 * partial completions.
1847 *
1848 **/
1849 void end_request(struct request *req, int uptodate)
1850 {
1851 __end_request(req, uptodate, req->hard_cur_sectors << 9);
1852 }
1853 EXPORT_SYMBOL(end_request);
1854
1855 /**
1856 * blk_end_io - Generic end_io function to complete a request.
1857 * @rq: the request being processed
1858 * @error: 0 for success, < 0 for error
1859 * @nr_bytes: number of bytes to complete @rq
1860 * @bidi_bytes: number of bytes to complete @rq->next_rq
1861 * @drv_callback: function called between completion of bios in the request
1862 * and completion of the request.
1863 * If the callback returns non 0, this helper returns without
1864 * completion of the request.
1865 *
1866 * Description:
1867 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1868 * If @rq has leftover, sets it up for the next range of segments.
1869 *
1870 * Return:
1871 * 0 - we are done with this request
1872 * 1 - this request is not freed yet, it still has pending buffers.
1873 **/
1874 static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1875 unsigned int bidi_bytes,
1876 int (drv_callback)(struct request *))
1877 {
1878 struct request_queue *q = rq->q;
1879 unsigned long flags = 0UL;
1880
1881 if (blk_fs_request(rq) || blk_pc_request(rq)) {
1882 if (__end_that_request_first(rq, error, nr_bytes))
1883 return 1;
1884
1885 /* Bidi request must be completed as a whole */
1886 if (blk_bidi_rq(rq) &&
1887 __end_that_request_first(rq->next_rq, error, bidi_bytes))
1888 return 1;
1889 }
1890
1891 /* Special feature for tricky drivers */
1892 if (drv_callback && drv_callback(rq))
1893 return 1;
1894
1895 add_disk_randomness(rq->rq_disk);
1896
1897 spin_lock_irqsave(q->queue_lock, flags);
1898 end_that_request_last(rq, error);
1899 spin_unlock_irqrestore(q->queue_lock, flags);
1900
1901 return 0;
1902 }
1903
1904 /**
1905 * blk_end_request - Helper function for drivers to complete the request.
1906 * @rq: the request being processed
1907 * @error: 0 for success, < 0 for error
1908 * @nr_bytes: number of bytes to complete
1909 *
1910 * Description:
1911 * Ends I/O on a number of bytes attached to @rq.
1912 * If @rq has leftover, sets it up for the next range of segments.
1913 *
1914 * Return:
1915 * 0 - we are done with this request
1916 * 1 - still buffers pending for this request
1917 **/
1918 int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1919 {
1920 return blk_end_io(rq, error, nr_bytes, 0, NULL);
1921 }
1922 EXPORT_SYMBOL_GPL(blk_end_request);
1923
1924 /**
1925 * __blk_end_request - Helper function for drivers to complete the request.
1926 * @rq: the request being processed
1927 * @error: 0 for success, < 0 for error
1928 * @nr_bytes: number of bytes to complete
1929 *
1930 * Description:
1931 * Must be called with queue lock held unlike blk_end_request().
1932 *
1933 * Return:
1934 * 0 - we are done with this request
1935 * 1 - still buffers pending for this request
1936 **/
1937 int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1938 {
1939 if (blk_fs_request(rq) || blk_pc_request(rq)) {
1940 if (__end_that_request_first(rq, error, nr_bytes))
1941 return 1;
1942 }
1943
1944 add_disk_randomness(rq->rq_disk);
1945
1946 end_that_request_last(rq, error);
1947
1948 return 0;
1949 }
1950 EXPORT_SYMBOL_GPL(__blk_end_request);
1951
1952 /**
1953 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
1954 * @rq: the bidi request being processed
1955 * @error: 0 for success, < 0 for error
1956 * @nr_bytes: number of bytes to complete @rq
1957 * @bidi_bytes: number of bytes to complete @rq->next_rq
1958 *
1959 * Description:
1960 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1961 *
1962 * Return:
1963 * 0 - we are done with this request
1964 * 1 - still buffers pending for this request
1965 **/
1966 int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
1967 unsigned int bidi_bytes)
1968 {
1969 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
1970 }
1971 EXPORT_SYMBOL_GPL(blk_end_bidi_request);
1972
1973 /**
1974 * blk_end_request_callback - Special helper function for tricky drivers
1975 * @rq: the request being processed
1976 * @error: 0 for success, < 0 for error
1977 * @nr_bytes: number of bytes to complete
1978 * @drv_callback: function called between completion of bios in the request
1979 * and completion of the request.
1980 * If the callback returns non 0, this helper returns without
1981 * completion of the request.
1982 *
1983 * Description:
1984 * Ends I/O on a number of bytes attached to @rq.
1985 * If @rq has leftover, sets it up for the next range of segments.
1986 *
1987 * This special helper function is used only for existing tricky drivers.
1988 * (e.g. cdrom_newpc_intr() of ide-cd)
1989 * This interface will be removed when such drivers are rewritten.
1990 * Don't use this interface in other places anymore.
1991 *
1992 * Return:
1993 * 0 - we are done with this request
1994 * 1 - this request is not freed yet.
1995 * this request still has pending buffers or
1996 * the driver doesn't want to finish this request yet.
1997 **/
1998 int blk_end_request_callback(struct request *rq, int error,
1999 unsigned int nr_bytes,
2000 int (drv_callback)(struct request *))
2001 {
2002 return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
2003 }
2004 EXPORT_SYMBOL_GPL(blk_end_request_callback);
2005
2006 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2007 struct bio *bio)
2008 {
2009 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
2010 rq->cmd_flags |= (bio->bi_rw & 3);
2011
2012 rq->nr_phys_segments = bio_phys_segments(q, bio);
2013 rq->nr_hw_segments = bio_hw_segments(q, bio);
2014 rq->current_nr_sectors = bio_cur_sectors(bio);
2015 rq->hard_cur_sectors = rq->current_nr_sectors;
2016 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
2017 rq->buffer = bio_data(bio);
2018 rq->data_len = bio->bi_size;
2019
2020 rq->bio = rq->biotail = bio;
2021
2022 if (bio->bi_bdev)
2023 rq->rq_disk = bio->bi_bdev->bd_disk;
2024 }
2025
2026 int kblockd_schedule_work(struct work_struct *work)
2027 {
2028 return queue_work(kblockd_workqueue, work);
2029 }
2030 EXPORT_SYMBOL(kblockd_schedule_work);
2031
2032 void kblockd_flush_work(struct work_struct *work)
2033 {
2034 cancel_work_sync(work);
2035 }
2036 EXPORT_SYMBOL(kblockd_flush_work);
2037
2038 int __init blk_dev_init(void)
2039 {
2040 int i;
2041
2042 kblockd_workqueue = create_workqueue("kblockd");
2043 if (!kblockd_workqueue)
2044 panic("Failed to create kblockd\n");
2045
2046 request_cachep = kmem_cache_create("blkdev_requests",
2047 sizeof(struct request), 0, SLAB_PANIC, NULL);
2048
2049 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2050 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2051
2052 for_each_possible_cpu(i)
2053 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
2054
2055 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
2056 register_hotcpu_notifier(&blk_cpu_notifier);
2057
2058 return 0;
2059 }
2060
This page took 0.093484 seconds and 6 git commands to generate.