Merge branch 'for-4.2/drivers' of git://git.kernel.dk/linux-block
[deliverable/linux.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/block.h>
38
39 #include "blk.h"
40 #include "blk-cgroup.h"
41 #include "blk-mq.h"
42
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
48
49 DEFINE_IDA(blk_queue_ida);
50
51 /*
52 * For the allocated request tables
53 */
54 struct kmem_cache *request_cachep = NULL;
55
56 /*
57 * For queue allocation
58 */
59 struct kmem_cache *blk_requestq_cachep;
60
61 /*
62 * Controlling structure to kblockd
63 */
64 static struct workqueue_struct *kblockd_workqueue;
65
66 void blk_queue_congestion_threshold(struct request_queue *q)
67 {
68 int nr;
69
70 nr = q->nr_requests - (q->nr_requests / 8) + 1;
71 if (nr > q->nr_requests)
72 nr = q->nr_requests;
73 q->nr_congestion_on = nr;
74
75 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
76 if (nr < 1)
77 nr = 1;
78 q->nr_congestion_off = nr;
79 }
80
81 /**
82 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
83 * @bdev: device
84 *
85 * Locates the passed device's request queue and returns the address of its
86 * backing_dev_info. This function can only be called if @bdev is opened
87 * and the return value is never NULL.
88 */
89 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
90 {
91 struct request_queue *q = bdev_get_queue(bdev);
92
93 return &q->backing_dev_info;
94 }
95 EXPORT_SYMBOL(blk_get_backing_dev_info);
96
97 void blk_rq_init(struct request_queue *q, struct request *rq)
98 {
99 memset(rq, 0, sizeof(*rq));
100
101 INIT_LIST_HEAD(&rq->queuelist);
102 INIT_LIST_HEAD(&rq->timeout_list);
103 rq->cpu = -1;
104 rq->q = q;
105 rq->__sector = (sector_t) -1;
106 INIT_HLIST_NODE(&rq->hash);
107 RB_CLEAR_NODE(&rq->rb_node);
108 rq->cmd = rq->__cmd;
109 rq->cmd_len = BLK_MAX_CDB;
110 rq->tag = -1;
111 rq->start_time = jiffies;
112 set_start_time_ns(rq);
113 rq->part = NULL;
114 }
115 EXPORT_SYMBOL(blk_rq_init);
116
117 static void req_bio_endio(struct request *rq, struct bio *bio,
118 unsigned int nbytes, int error)
119 {
120 if (error && !(rq->cmd_flags & REQ_CLONE))
121 clear_bit(BIO_UPTODATE, &bio->bi_flags);
122 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
123 error = -EIO;
124
125 if (unlikely(rq->cmd_flags & REQ_QUIET))
126 set_bit(BIO_QUIET, &bio->bi_flags);
127
128 bio_advance(bio, nbytes);
129
130 /* don't actually finish bio if it's part of flush sequence */
131 if (bio->bi_iter.bi_size == 0 &&
132 !(rq->cmd_flags & (REQ_FLUSH_SEQ|REQ_CLONE)))
133 bio_endio(bio, error);
134 }
135
136 void blk_dump_rq_flags(struct request *rq, char *msg)
137 {
138 int bit;
139
140 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
141 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
142 (unsigned long long) rq->cmd_flags);
143
144 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
145 (unsigned long long)blk_rq_pos(rq),
146 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
147 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
148 rq->bio, rq->biotail, blk_rq_bytes(rq));
149
150 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
151 printk(KERN_INFO " cdb: ");
152 for (bit = 0; bit < BLK_MAX_CDB; bit++)
153 printk("%02x ", rq->cmd[bit]);
154 printk("\n");
155 }
156 }
157 EXPORT_SYMBOL(blk_dump_rq_flags);
158
159 static void blk_delay_work(struct work_struct *work)
160 {
161 struct request_queue *q;
162
163 q = container_of(work, struct request_queue, delay_work.work);
164 spin_lock_irq(q->queue_lock);
165 __blk_run_queue(q);
166 spin_unlock_irq(q->queue_lock);
167 }
168
169 /**
170 * blk_delay_queue - restart queueing after defined interval
171 * @q: The &struct request_queue in question
172 * @msecs: Delay in msecs
173 *
174 * Description:
175 * Sometimes queueing needs to be postponed for a little while, to allow
176 * resources to come back. This function will make sure that queueing is
177 * restarted around the specified time. Queue lock must be held.
178 */
179 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
180 {
181 if (likely(!blk_queue_dead(q)))
182 queue_delayed_work(kblockd_workqueue, &q->delay_work,
183 msecs_to_jiffies(msecs));
184 }
185 EXPORT_SYMBOL(blk_delay_queue);
186
187 /**
188 * blk_start_queue - restart a previously stopped queue
189 * @q: The &struct request_queue in question
190 *
191 * Description:
192 * blk_start_queue() will clear the stop flag on the queue, and call
193 * the request_fn for the queue if it was in a stopped state when
194 * entered. Also see blk_stop_queue(). Queue lock must be held.
195 **/
196 void blk_start_queue(struct request_queue *q)
197 {
198 WARN_ON(!irqs_disabled());
199
200 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
201 __blk_run_queue(q);
202 }
203 EXPORT_SYMBOL(blk_start_queue);
204
205 /**
206 * blk_stop_queue - stop a queue
207 * @q: The &struct request_queue in question
208 *
209 * Description:
210 * The Linux block layer assumes that a block driver will consume all
211 * entries on the request queue when the request_fn strategy is called.
212 * Often this will not happen, because of hardware limitations (queue
213 * depth settings). If a device driver gets a 'queue full' response,
214 * or if it simply chooses not to queue more I/O at one point, it can
215 * call this function to prevent the request_fn from being called until
216 * the driver has signalled it's ready to go again. This happens by calling
217 * blk_start_queue() to restart queue operations. Queue lock must be held.
218 **/
219 void blk_stop_queue(struct request_queue *q)
220 {
221 cancel_delayed_work(&q->delay_work);
222 queue_flag_set(QUEUE_FLAG_STOPPED, q);
223 }
224 EXPORT_SYMBOL(blk_stop_queue);
225
226 /**
227 * blk_sync_queue - cancel any pending callbacks on a queue
228 * @q: the queue
229 *
230 * Description:
231 * The block layer may perform asynchronous callback activity
232 * on a queue, such as calling the unplug function after a timeout.
233 * A block device may call blk_sync_queue to ensure that any
234 * such activity is cancelled, thus allowing it to release resources
235 * that the callbacks might use. The caller must already have made sure
236 * that its ->make_request_fn will not re-add plugging prior to calling
237 * this function.
238 *
239 * This function does not cancel any asynchronous activity arising
240 * out of elevator or throttling code. That would require elevator_exit()
241 * and blkcg_exit_queue() to be called with queue lock initialized.
242 *
243 */
244 void blk_sync_queue(struct request_queue *q)
245 {
246 del_timer_sync(&q->timeout);
247
248 if (q->mq_ops) {
249 struct blk_mq_hw_ctx *hctx;
250 int i;
251
252 queue_for_each_hw_ctx(q, hctx, i) {
253 cancel_delayed_work_sync(&hctx->run_work);
254 cancel_delayed_work_sync(&hctx->delay_work);
255 }
256 } else {
257 cancel_delayed_work_sync(&q->delay_work);
258 }
259 }
260 EXPORT_SYMBOL(blk_sync_queue);
261
262 /**
263 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
264 * @q: The queue to run
265 *
266 * Description:
267 * Invoke request handling on a queue if there are any pending requests.
268 * May be used to restart request handling after a request has completed.
269 * This variant runs the queue whether or not the queue has been
270 * stopped. Must be called with the queue lock held and interrupts
271 * disabled. See also @blk_run_queue.
272 */
273 inline void __blk_run_queue_uncond(struct request_queue *q)
274 {
275 if (unlikely(blk_queue_dead(q)))
276 return;
277
278 /*
279 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
280 * the queue lock internally. As a result multiple threads may be
281 * running such a request function concurrently. Keep track of the
282 * number of active request_fn invocations such that blk_drain_queue()
283 * can wait until all these request_fn calls have finished.
284 */
285 q->request_fn_active++;
286 q->request_fn(q);
287 q->request_fn_active--;
288 }
289 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
290
291 /**
292 * __blk_run_queue - run a single device queue
293 * @q: The queue to run
294 *
295 * Description:
296 * See @blk_run_queue. This variant must be called with the queue lock
297 * held and interrupts disabled.
298 */
299 void __blk_run_queue(struct request_queue *q)
300 {
301 if (unlikely(blk_queue_stopped(q)))
302 return;
303
304 __blk_run_queue_uncond(q);
305 }
306 EXPORT_SYMBOL(__blk_run_queue);
307
308 /**
309 * blk_run_queue_async - run a single device queue in workqueue context
310 * @q: The queue to run
311 *
312 * Description:
313 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
314 * of us. The caller must hold the queue lock.
315 */
316 void blk_run_queue_async(struct request_queue *q)
317 {
318 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
319 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
320 }
321 EXPORT_SYMBOL(blk_run_queue_async);
322
323 /**
324 * blk_run_queue - run a single device queue
325 * @q: The queue to run
326 *
327 * Description:
328 * Invoke request handling on this queue, if it has pending work to do.
329 * May be used to restart queueing when a request has completed.
330 */
331 void blk_run_queue(struct request_queue *q)
332 {
333 unsigned long flags;
334
335 spin_lock_irqsave(q->queue_lock, flags);
336 __blk_run_queue(q);
337 spin_unlock_irqrestore(q->queue_lock, flags);
338 }
339 EXPORT_SYMBOL(blk_run_queue);
340
341 void blk_put_queue(struct request_queue *q)
342 {
343 kobject_put(&q->kobj);
344 }
345 EXPORT_SYMBOL(blk_put_queue);
346
347 /**
348 * __blk_drain_queue - drain requests from request_queue
349 * @q: queue to drain
350 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
351 *
352 * Drain requests from @q. If @drain_all is set, all requests are drained.
353 * If not, only ELVPRIV requests are drained. The caller is responsible
354 * for ensuring that no new requests which need to be drained are queued.
355 */
356 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
357 __releases(q->queue_lock)
358 __acquires(q->queue_lock)
359 {
360 int i;
361
362 lockdep_assert_held(q->queue_lock);
363
364 while (true) {
365 bool drain = false;
366
367 /*
368 * The caller might be trying to drain @q before its
369 * elevator is initialized.
370 */
371 if (q->elevator)
372 elv_drain_elevator(q);
373
374 blkcg_drain_queue(q);
375
376 /*
377 * This function might be called on a queue which failed
378 * driver init after queue creation or is not yet fully
379 * active yet. Some drivers (e.g. fd and loop) get unhappy
380 * in such cases. Kick queue iff dispatch queue has
381 * something on it and @q has request_fn set.
382 */
383 if (!list_empty(&q->queue_head) && q->request_fn)
384 __blk_run_queue(q);
385
386 drain |= q->nr_rqs_elvpriv;
387 drain |= q->request_fn_active;
388
389 /*
390 * Unfortunately, requests are queued at and tracked from
391 * multiple places and there's no single counter which can
392 * be drained. Check all the queues and counters.
393 */
394 if (drain_all) {
395 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
396 drain |= !list_empty(&q->queue_head);
397 for (i = 0; i < 2; i++) {
398 drain |= q->nr_rqs[i];
399 drain |= q->in_flight[i];
400 if (fq)
401 drain |= !list_empty(&fq->flush_queue[i]);
402 }
403 }
404
405 if (!drain)
406 break;
407
408 spin_unlock_irq(q->queue_lock);
409
410 msleep(10);
411
412 spin_lock_irq(q->queue_lock);
413 }
414
415 /*
416 * With queue marked dead, any woken up waiter will fail the
417 * allocation path, so the wakeup chaining is lost and we're
418 * left with hung waiters. We need to wake up those waiters.
419 */
420 if (q->request_fn) {
421 struct request_list *rl;
422
423 blk_queue_for_each_rl(rl, q)
424 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
425 wake_up_all(&rl->wait[i]);
426 }
427 }
428
429 /**
430 * blk_queue_bypass_start - enter queue bypass mode
431 * @q: queue of interest
432 *
433 * In bypass mode, only the dispatch FIFO queue of @q is used. This
434 * function makes @q enter bypass mode and drains all requests which were
435 * throttled or issued before. On return, it's guaranteed that no request
436 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
437 * inside queue or RCU read lock.
438 */
439 void blk_queue_bypass_start(struct request_queue *q)
440 {
441 spin_lock_irq(q->queue_lock);
442 q->bypass_depth++;
443 queue_flag_set(QUEUE_FLAG_BYPASS, q);
444 spin_unlock_irq(q->queue_lock);
445
446 /*
447 * Queues start drained. Skip actual draining till init is
448 * complete. This avoids lenghty delays during queue init which
449 * can happen many times during boot.
450 */
451 if (blk_queue_init_done(q)) {
452 spin_lock_irq(q->queue_lock);
453 __blk_drain_queue(q, false);
454 spin_unlock_irq(q->queue_lock);
455
456 /* ensure blk_queue_bypass() is %true inside RCU read lock */
457 synchronize_rcu();
458 }
459 }
460 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
461
462 /**
463 * blk_queue_bypass_end - leave queue bypass mode
464 * @q: queue of interest
465 *
466 * Leave bypass mode and restore the normal queueing behavior.
467 */
468 void blk_queue_bypass_end(struct request_queue *q)
469 {
470 spin_lock_irq(q->queue_lock);
471 if (!--q->bypass_depth)
472 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
473 WARN_ON_ONCE(q->bypass_depth < 0);
474 spin_unlock_irq(q->queue_lock);
475 }
476 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
477
478 void blk_set_queue_dying(struct request_queue *q)
479 {
480 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
481
482 if (q->mq_ops)
483 blk_mq_wake_waiters(q);
484 else {
485 struct request_list *rl;
486
487 blk_queue_for_each_rl(rl, q) {
488 if (rl->rq_pool) {
489 wake_up(&rl->wait[BLK_RW_SYNC]);
490 wake_up(&rl->wait[BLK_RW_ASYNC]);
491 }
492 }
493 }
494 }
495 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
496
497 /**
498 * blk_cleanup_queue - shutdown a request queue
499 * @q: request queue to shutdown
500 *
501 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
502 * put it. All future requests will be failed immediately with -ENODEV.
503 */
504 void blk_cleanup_queue(struct request_queue *q)
505 {
506 spinlock_t *lock = q->queue_lock;
507
508 /* mark @q DYING, no new request or merges will be allowed afterwards */
509 mutex_lock(&q->sysfs_lock);
510 blk_set_queue_dying(q);
511 spin_lock_irq(lock);
512
513 /*
514 * A dying queue is permanently in bypass mode till released. Note
515 * that, unlike blk_queue_bypass_start(), we aren't performing
516 * synchronize_rcu() after entering bypass mode to avoid the delay
517 * as some drivers create and destroy a lot of queues while
518 * probing. This is still safe because blk_release_queue() will be
519 * called only after the queue refcnt drops to zero and nothing,
520 * RCU or not, would be traversing the queue by then.
521 */
522 q->bypass_depth++;
523 queue_flag_set(QUEUE_FLAG_BYPASS, q);
524
525 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
526 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
527 queue_flag_set(QUEUE_FLAG_DYING, q);
528 spin_unlock_irq(lock);
529 mutex_unlock(&q->sysfs_lock);
530
531 /*
532 * Drain all requests queued before DYING marking. Set DEAD flag to
533 * prevent that q->request_fn() gets invoked after draining finished.
534 */
535 if (q->mq_ops) {
536 blk_mq_freeze_queue(q);
537 spin_lock_irq(lock);
538 } else {
539 spin_lock_irq(lock);
540 __blk_drain_queue(q, true);
541 }
542 queue_flag_set(QUEUE_FLAG_DEAD, q);
543 spin_unlock_irq(lock);
544
545 /* @q won't process any more request, flush async actions */
546 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
547 blk_sync_queue(q);
548
549 if (q->mq_ops)
550 blk_mq_free_queue(q);
551
552 spin_lock_irq(lock);
553 if (q->queue_lock != &q->__queue_lock)
554 q->queue_lock = &q->__queue_lock;
555 spin_unlock_irq(lock);
556
557 bdi_destroy(&q->backing_dev_info);
558
559 /* @q is and will stay empty, shutdown and put */
560 blk_put_queue(q);
561 }
562 EXPORT_SYMBOL(blk_cleanup_queue);
563
564 /* Allocate memory local to the request queue */
565 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
566 {
567 int nid = (int)(long)data;
568 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
569 }
570
571 static void free_request_struct(void *element, void *unused)
572 {
573 kmem_cache_free(request_cachep, element);
574 }
575
576 int blk_init_rl(struct request_list *rl, struct request_queue *q,
577 gfp_t gfp_mask)
578 {
579 if (unlikely(rl->rq_pool))
580 return 0;
581
582 rl->q = q;
583 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
584 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
585 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
586 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
587
588 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
589 free_request_struct,
590 (void *)(long)q->node, gfp_mask,
591 q->node);
592 if (!rl->rq_pool)
593 return -ENOMEM;
594
595 return 0;
596 }
597
598 void blk_exit_rl(struct request_list *rl)
599 {
600 if (rl->rq_pool)
601 mempool_destroy(rl->rq_pool);
602 }
603
604 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
605 {
606 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
607 }
608 EXPORT_SYMBOL(blk_alloc_queue);
609
610 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
611 {
612 struct request_queue *q;
613 int err;
614
615 q = kmem_cache_alloc_node(blk_requestq_cachep,
616 gfp_mask | __GFP_ZERO, node_id);
617 if (!q)
618 return NULL;
619
620 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
621 if (q->id < 0)
622 goto fail_q;
623
624 q->backing_dev_info.ra_pages =
625 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
626 q->backing_dev_info.state = 0;
627 q->backing_dev_info.capabilities = 0;
628 q->backing_dev_info.name = "block";
629 q->node = node_id;
630
631 err = bdi_init(&q->backing_dev_info);
632 if (err)
633 goto fail_id;
634
635 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
636 laptop_mode_timer_fn, (unsigned long) q);
637 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
638 INIT_LIST_HEAD(&q->queue_head);
639 INIT_LIST_HEAD(&q->timeout_list);
640 INIT_LIST_HEAD(&q->icq_list);
641 #ifdef CONFIG_BLK_CGROUP
642 INIT_LIST_HEAD(&q->blkg_list);
643 #endif
644 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
645
646 kobject_init(&q->kobj, &blk_queue_ktype);
647
648 mutex_init(&q->sysfs_lock);
649 spin_lock_init(&q->__queue_lock);
650
651 /*
652 * By default initialize queue_lock to internal lock and driver can
653 * override it later if need be.
654 */
655 q->queue_lock = &q->__queue_lock;
656
657 /*
658 * A queue starts its life with bypass turned on to avoid
659 * unnecessary bypass on/off overhead and nasty surprises during
660 * init. The initial bypass will be finished when the queue is
661 * registered by blk_register_queue().
662 */
663 q->bypass_depth = 1;
664 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
665
666 init_waitqueue_head(&q->mq_freeze_wq);
667
668 if (blkcg_init_queue(q))
669 goto fail_bdi;
670
671 return q;
672
673 fail_bdi:
674 bdi_destroy(&q->backing_dev_info);
675 fail_id:
676 ida_simple_remove(&blk_queue_ida, q->id);
677 fail_q:
678 kmem_cache_free(blk_requestq_cachep, q);
679 return NULL;
680 }
681 EXPORT_SYMBOL(blk_alloc_queue_node);
682
683 /**
684 * blk_init_queue - prepare a request queue for use with a block device
685 * @rfn: The function to be called to process requests that have been
686 * placed on the queue.
687 * @lock: Request queue spin lock
688 *
689 * Description:
690 * If a block device wishes to use the standard request handling procedures,
691 * which sorts requests and coalesces adjacent requests, then it must
692 * call blk_init_queue(). The function @rfn will be called when there
693 * are requests on the queue that need to be processed. If the device
694 * supports plugging, then @rfn may not be called immediately when requests
695 * are available on the queue, but may be called at some time later instead.
696 * Plugged queues are generally unplugged when a buffer belonging to one
697 * of the requests on the queue is needed, or due to memory pressure.
698 *
699 * @rfn is not required, or even expected, to remove all requests off the
700 * queue, but only as many as it can handle at a time. If it does leave
701 * requests on the queue, it is responsible for arranging that the requests
702 * get dealt with eventually.
703 *
704 * The queue spin lock must be held while manipulating the requests on the
705 * request queue; this lock will be taken also from interrupt context, so irq
706 * disabling is needed for it.
707 *
708 * Function returns a pointer to the initialized request queue, or %NULL if
709 * it didn't succeed.
710 *
711 * Note:
712 * blk_init_queue() must be paired with a blk_cleanup_queue() call
713 * when the block device is deactivated (such as at module unload).
714 **/
715
716 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
717 {
718 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
719 }
720 EXPORT_SYMBOL(blk_init_queue);
721
722 struct request_queue *
723 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
724 {
725 struct request_queue *uninit_q, *q;
726
727 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
728 if (!uninit_q)
729 return NULL;
730
731 q = blk_init_allocated_queue(uninit_q, rfn, lock);
732 if (!q)
733 blk_cleanup_queue(uninit_q);
734
735 return q;
736 }
737 EXPORT_SYMBOL(blk_init_queue_node);
738
739 static void blk_queue_bio(struct request_queue *q, struct bio *bio);
740
741 struct request_queue *
742 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
743 spinlock_t *lock)
744 {
745 if (!q)
746 return NULL;
747
748 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
749 if (!q->fq)
750 return NULL;
751
752 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
753 goto fail;
754
755 q->request_fn = rfn;
756 q->prep_rq_fn = NULL;
757 q->unprep_rq_fn = NULL;
758 q->queue_flags |= QUEUE_FLAG_DEFAULT;
759
760 /* Override internal queue lock with supplied lock pointer */
761 if (lock)
762 q->queue_lock = lock;
763
764 /*
765 * This also sets hw/phys segments, boundary and size
766 */
767 blk_queue_make_request(q, blk_queue_bio);
768
769 q->sg_reserved_size = INT_MAX;
770
771 /* Protect q->elevator from elevator_change */
772 mutex_lock(&q->sysfs_lock);
773
774 /* init elevator */
775 if (elevator_init(q, NULL)) {
776 mutex_unlock(&q->sysfs_lock);
777 goto fail;
778 }
779
780 mutex_unlock(&q->sysfs_lock);
781
782 return q;
783
784 fail:
785 blk_free_flush_queue(q->fq);
786 return NULL;
787 }
788 EXPORT_SYMBOL(blk_init_allocated_queue);
789
790 bool blk_get_queue(struct request_queue *q)
791 {
792 if (likely(!blk_queue_dying(q))) {
793 __blk_get_queue(q);
794 return true;
795 }
796
797 return false;
798 }
799 EXPORT_SYMBOL(blk_get_queue);
800
801 static inline void blk_free_request(struct request_list *rl, struct request *rq)
802 {
803 if (rq->cmd_flags & REQ_ELVPRIV) {
804 elv_put_request(rl->q, rq);
805 if (rq->elv.icq)
806 put_io_context(rq->elv.icq->ioc);
807 }
808
809 mempool_free(rq, rl->rq_pool);
810 }
811
812 /*
813 * ioc_batching returns true if the ioc is a valid batching request and
814 * should be given priority access to a request.
815 */
816 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
817 {
818 if (!ioc)
819 return 0;
820
821 /*
822 * Make sure the process is able to allocate at least 1 request
823 * even if the batch times out, otherwise we could theoretically
824 * lose wakeups.
825 */
826 return ioc->nr_batch_requests == q->nr_batching ||
827 (ioc->nr_batch_requests > 0
828 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
829 }
830
831 /*
832 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
833 * will cause the process to be a "batcher" on all queues in the system. This
834 * is the behaviour we want though - once it gets a wakeup it should be given
835 * a nice run.
836 */
837 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
838 {
839 if (!ioc || ioc_batching(q, ioc))
840 return;
841
842 ioc->nr_batch_requests = q->nr_batching;
843 ioc->last_waited = jiffies;
844 }
845
846 static void __freed_request(struct request_list *rl, int sync)
847 {
848 struct request_queue *q = rl->q;
849
850 /*
851 * bdi isn't aware of blkcg yet. As all async IOs end up root
852 * blkcg anyway, just use root blkcg state.
853 */
854 if (rl == &q->root_rl &&
855 rl->count[sync] < queue_congestion_off_threshold(q))
856 blk_clear_queue_congested(q, sync);
857
858 if (rl->count[sync] + 1 <= q->nr_requests) {
859 if (waitqueue_active(&rl->wait[sync]))
860 wake_up(&rl->wait[sync]);
861
862 blk_clear_rl_full(rl, sync);
863 }
864 }
865
866 /*
867 * A request has just been released. Account for it, update the full and
868 * congestion status, wake up any waiters. Called under q->queue_lock.
869 */
870 static void freed_request(struct request_list *rl, unsigned int flags)
871 {
872 struct request_queue *q = rl->q;
873 int sync = rw_is_sync(flags);
874
875 q->nr_rqs[sync]--;
876 rl->count[sync]--;
877 if (flags & REQ_ELVPRIV)
878 q->nr_rqs_elvpriv--;
879
880 __freed_request(rl, sync);
881
882 if (unlikely(rl->starved[sync ^ 1]))
883 __freed_request(rl, sync ^ 1);
884 }
885
886 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
887 {
888 struct request_list *rl;
889
890 spin_lock_irq(q->queue_lock);
891 q->nr_requests = nr;
892 blk_queue_congestion_threshold(q);
893
894 /* congestion isn't cgroup aware and follows root blkcg for now */
895 rl = &q->root_rl;
896
897 if (rl->count[BLK_RW_SYNC] >= queue_congestion_on_threshold(q))
898 blk_set_queue_congested(q, BLK_RW_SYNC);
899 else if (rl->count[BLK_RW_SYNC] < queue_congestion_off_threshold(q))
900 blk_clear_queue_congested(q, BLK_RW_SYNC);
901
902 if (rl->count[BLK_RW_ASYNC] >= queue_congestion_on_threshold(q))
903 blk_set_queue_congested(q, BLK_RW_ASYNC);
904 else if (rl->count[BLK_RW_ASYNC] < queue_congestion_off_threshold(q))
905 blk_clear_queue_congested(q, BLK_RW_ASYNC);
906
907 blk_queue_for_each_rl(rl, q) {
908 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
909 blk_set_rl_full(rl, BLK_RW_SYNC);
910 } else {
911 blk_clear_rl_full(rl, BLK_RW_SYNC);
912 wake_up(&rl->wait[BLK_RW_SYNC]);
913 }
914
915 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
916 blk_set_rl_full(rl, BLK_RW_ASYNC);
917 } else {
918 blk_clear_rl_full(rl, BLK_RW_ASYNC);
919 wake_up(&rl->wait[BLK_RW_ASYNC]);
920 }
921 }
922
923 spin_unlock_irq(q->queue_lock);
924 return 0;
925 }
926
927 /*
928 * Determine if elevator data should be initialized when allocating the
929 * request associated with @bio.
930 */
931 static bool blk_rq_should_init_elevator(struct bio *bio)
932 {
933 if (!bio)
934 return true;
935
936 /*
937 * Flush requests do not use the elevator so skip initialization.
938 * This allows a request to share the flush and elevator data.
939 */
940 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
941 return false;
942
943 return true;
944 }
945
946 /**
947 * rq_ioc - determine io_context for request allocation
948 * @bio: request being allocated is for this bio (can be %NULL)
949 *
950 * Determine io_context to use for request allocation for @bio. May return
951 * %NULL if %current->io_context doesn't exist.
952 */
953 static struct io_context *rq_ioc(struct bio *bio)
954 {
955 #ifdef CONFIG_BLK_CGROUP
956 if (bio && bio->bi_ioc)
957 return bio->bi_ioc;
958 #endif
959 return current->io_context;
960 }
961
962 /**
963 * __get_request - get a free request
964 * @rl: request list to allocate from
965 * @rw_flags: RW and SYNC flags
966 * @bio: bio to allocate request for (can be %NULL)
967 * @gfp_mask: allocation mask
968 *
969 * Get a free request from @q. This function may fail under memory
970 * pressure or if @q is dead.
971 *
972 * Must be called with @q->queue_lock held and,
973 * Returns ERR_PTR on failure, with @q->queue_lock held.
974 * Returns request pointer on success, with @q->queue_lock *not held*.
975 */
976 static struct request *__get_request(struct request_list *rl, int rw_flags,
977 struct bio *bio, gfp_t gfp_mask)
978 {
979 struct request_queue *q = rl->q;
980 struct request *rq;
981 struct elevator_type *et = q->elevator->type;
982 struct io_context *ioc = rq_ioc(bio);
983 struct io_cq *icq = NULL;
984 const bool is_sync = rw_is_sync(rw_flags) != 0;
985 int may_queue;
986
987 if (unlikely(blk_queue_dying(q)))
988 return ERR_PTR(-ENODEV);
989
990 may_queue = elv_may_queue(q, rw_flags);
991 if (may_queue == ELV_MQUEUE_NO)
992 goto rq_starved;
993
994 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
995 if (rl->count[is_sync]+1 >= q->nr_requests) {
996 /*
997 * The queue will fill after this allocation, so set
998 * it as full, and mark this process as "batching".
999 * This process will be allowed to complete a batch of
1000 * requests, others will be blocked.
1001 */
1002 if (!blk_rl_full(rl, is_sync)) {
1003 ioc_set_batching(q, ioc);
1004 blk_set_rl_full(rl, is_sync);
1005 } else {
1006 if (may_queue != ELV_MQUEUE_MUST
1007 && !ioc_batching(q, ioc)) {
1008 /*
1009 * The queue is full and the allocating
1010 * process is not a "batcher", and not
1011 * exempted by the IO scheduler
1012 */
1013 return ERR_PTR(-ENOMEM);
1014 }
1015 }
1016 }
1017 /*
1018 * bdi isn't aware of blkcg yet. As all async IOs end up
1019 * root blkcg anyway, just use root blkcg state.
1020 */
1021 if (rl == &q->root_rl)
1022 blk_set_queue_congested(q, is_sync);
1023 }
1024
1025 /*
1026 * Only allow batching queuers to allocate up to 50% over the defined
1027 * limit of requests, otherwise we could have thousands of requests
1028 * allocated with any setting of ->nr_requests
1029 */
1030 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1031 return ERR_PTR(-ENOMEM);
1032
1033 q->nr_rqs[is_sync]++;
1034 rl->count[is_sync]++;
1035 rl->starved[is_sync] = 0;
1036
1037 /*
1038 * Decide whether the new request will be managed by elevator. If
1039 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1040 * prevent the current elevator from being destroyed until the new
1041 * request is freed. This guarantees icq's won't be destroyed and
1042 * makes creating new ones safe.
1043 *
1044 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1045 * it will be created after releasing queue_lock.
1046 */
1047 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1048 rw_flags |= REQ_ELVPRIV;
1049 q->nr_rqs_elvpriv++;
1050 if (et->icq_cache && ioc)
1051 icq = ioc_lookup_icq(ioc, q);
1052 }
1053
1054 if (blk_queue_io_stat(q))
1055 rw_flags |= REQ_IO_STAT;
1056 spin_unlock_irq(q->queue_lock);
1057
1058 /* allocate and init request */
1059 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1060 if (!rq)
1061 goto fail_alloc;
1062
1063 blk_rq_init(q, rq);
1064 blk_rq_set_rl(rq, rl);
1065 rq->cmd_flags = rw_flags | REQ_ALLOCED;
1066
1067 /* init elvpriv */
1068 if (rw_flags & REQ_ELVPRIV) {
1069 if (unlikely(et->icq_cache && !icq)) {
1070 if (ioc)
1071 icq = ioc_create_icq(ioc, q, gfp_mask);
1072 if (!icq)
1073 goto fail_elvpriv;
1074 }
1075
1076 rq->elv.icq = icq;
1077 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1078 goto fail_elvpriv;
1079
1080 /* @rq->elv.icq holds io_context until @rq is freed */
1081 if (icq)
1082 get_io_context(icq->ioc);
1083 }
1084 out:
1085 /*
1086 * ioc may be NULL here, and ioc_batching will be false. That's
1087 * OK, if the queue is under the request limit then requests need
1088 * not count toward the nr_batch_requests limit. There will always
1089 * be some limit enforced by BLK_BATCH_TIME.
1090 */
1091 if (ioc_batching(q, ioc))
1092 ioc->nr_batch_requests--;
1093
1094 trace_block_getrq(q, bio, rw_flags & 1);
1095 return rq;
1096
1097 fail_elvpriv:
1098 /*
1099 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1100 * and may fail indefinitely under memory pressure and thus
1101 * shouldn't stall IO. Treat this request as !elvpriv. This will
1102 * disturb iosched and blkcg but weird is bettern than dead.
1103 */
1104 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1105 __func__, dev_name(q->backing_dev_info.dev));
1106
1107 rq->cmd_flags &= ~REQ_ELVPRIV;
1108 rq->elv.icq = NULL;
1109
1110 spin_lock_irq(q->queue_lock);
1111 q->nr_rqs_elvpriv--;
1112 spin_unlock_irq(q->queue_lock);
1113 goto out;
1114
1115 fail_alloc:
1116 /*
1117 * Allocation failed presumably due to memory. Undo anything we
1118 * might have messed up.
1119 *
1120 * Allocating task should really be put onto the front of the wait
1121 * queue, but this is pretty rare.
1122 */
1123 spin_lock_irq(q->queue_lock);
1124 freed_request(rl, rw_flags);
1125
1126 /*
1127 * in the very unlikely event that allocation failed and no
1128 * requests for this direction was pending, mark us starved so that
1129 * freeing of a request in the other direction will notice
1130 * us. another possible fix would be to split the rq mempool into
1131 * READ and WRITE
1132 */
1133 rq_starved:
1134 if (unlikely(rl->count[is_sync] == 0))
1135 rl->starved[is_sync] = 1;
1136 return ERR_PTR(-ENOMEM);
1137 }
1138
1139 /**
1140 * get_request - get a free request
1141 * @q: request_queue to allocate request from
1142 * @rw_flags: RW and SYNC flags
1143 * @bio: bio to allocate request for (can be %NULL)
1144 * @gfp_mask: allocation mask
1145 *
1146 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1147 * function keeps retrying under memory pressure and fails iff @q is dead.
1148 *
1149 * Must be called with @q->queue_lock held and,
1150 * Returns ERR_PTR on failure, with @q->queue_lock held.
1151 * Returns request pointer on success, with @q->queue_lock *not held*.
1152 */
1153 static struct request *get_request(struct request_queue *q, int rw_flags,
1154 struct bio *bio, gfp_t gfp_mask)
1155 {
1156 const bool is_sync = rw_is_sync(rw_flags) != 0;
1157 DEFINE_WAIT(wait);
1158 struct request_list *rl;
1159 struct request *rq;
1160
1161 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1162 retry:
1163 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1164 if (!IS_ERR(rq))
1165 return rq;
1166
1167 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1168 blk_put_rl(rl);
1169 return rq;
1170 }
1171
1172 /* wait on @rl and retry */
1173 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1174 TASK_UNINTERRUPTIBLE);
1175
1176 trace_block_sleeprq(q, bio, rw_flags & 1);
1177
1178 spin_unlock_irq(q->queue_lock);
1179 io_schedule();
1180
1181 /*
1182 * After sleeping, we become a "batching" process and will be able
1183 * to allocate at least one request, and up to a big batch of them
1184 * for a small period time. See ioc_batching, ioc_set_batching
1185 */
1186 ioc_set_batching(q, current->io_context);
1187
1188 spin_lock_irq(q->queue_lock);
1189 finish_wait(&rl->wait[is_sync], &wait);
1190
1191 goto retry;
1192 }
1193
1194 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1195 gfp_t gfp_mask)
1196 {
1197 struct request *rq;
1198
1199 BUG_ON(rw != READ && rw != WRITE);
1200
1201 /* create ioc upfront */
1202 create_io_context(gfp_mask, q->node);
1203
1204 spin_lock_irq(q->queue_lock);
1205 rq = get_request(q, rw, NULL, gfp_mask);
1206 if (IS_ERR(rq))
1207 spin_unlock_irq(q->queue_lock);
1208 /* q->queue_lock is unlocked at this point */
1209
1210 return rq;
1211 }
1212
1213 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1214 {
1215 if (q->mq_ops)
1216 return blk_mq_alloc_request(q, rw, gfp_mask, false);
1217 else
1218 return blk_old_get_request(q, rw, gfp_mask);
1219 }
1220 EXPORT_SYMBOL(blk_get_request);
1221
1222 /**
1223 * blk_make_request - given a bio, allocate a corresponding struct request.
1224 * @q: target request queue
1225 * @bio: The bio describing the memory mappings that will be submitted for IO.
1226 * It may be a chained-bio properly constructed by block/bio layer.
1227 * @gfp_mask: gfp flags to be used for memory allocation
1228 *
1229 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1230 * type commands. Where the struct request needs to be farther initialized by
1231 * the caller. It is passed a &struct bio, which describes the memory info of
1232 * the I/O transfer.
1233 *
1234 * The caller of blk_make_request must make sure that bi_io_vec
1235 * are set to describe the memory buffers. That bio_data_dir() will return
1236 * the needed direction of the request. (And all bio's in the passed bio-chain
1237 * are properly set accordingly)
1238 *
1239 * If called under none-sleepable conditions, mapped bio buffers must not
1240 * need bouncing, by calling the appropriate masked or flagged allocator,
1241 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1242 * BUG.
1243 *
1244 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1245 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1246 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1247 * completion of a bio that hasn't been submitted yet, thus resulting in a
1248 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1249 * of bio_alloc(), as that avoids the mempool deadlock.
1250 * If possible a big IO should be split into smaller parts when allocation
1251 * fails. Partial allocation should not be an error, or you risk a live-lock.
1252 */
1253 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1254 gfp_t gfp_mask)
1255 {
1256 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1257
1258 if (IS_ERR(rq))
1259 return rq;
1260
1261 blk_rq_set_block_pc(rq);
1262
1263 for_each_bio(bio) {
1264 struct bio *bounce_bio = bio;
1265 int ret;
1266
1267 blk_queue_bounce(q, &bounce_bio);
1268 ret = blk_rq_append_bio(q, rq, bounce_bio);
1269 if (unlikely(ret)) {
1270 blk_put_request(rq);
1271 return ERR_PTR(ret);
1272 }
1273 }
1274
1275 return rq;
1276 }
1277 EXPORT_SYMBOL(blk_make_request);
1278
1279 /**
1280 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1281 * @rq: request to be initialized
1282 *
1283 */
1284 void blk_rq_set_block_pc(struct request *rq)
1285 {
1286 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1287 rq->__data_len = 0;
1288 rq->__sector = (sector_t) -1;
1289 rq->bio = rq->biotail = NULL;
1290 memset(rq->__cmd, 0, sizeof(rq->__cmd));
1291 }
1292 EXPORT_SYMBOL(blk_rq_set_block_pc);
1293
1294 /**
1295 * blk_requeue_request - put a request back on queue
1296 * @q: request queue where request should be inserted
1297 * @rq: request to be inserted
1298 *
1299 * Description:
1300 * Drivers often keep queueing requests until the hardware cannot accept
1301 * more, when that condition happens we need to put the request back
1302 * on the queue. Must be called with queue lock held.
1303 */
1304 void blk_requeue_request(struct request_queue *q, struct request *rq)
1305 {
1306 blk_delete_timer(rq);
1307 blk_clear_rq_complete(rq);
1308 trace_block_rq_requeue(q, rq);
1309
1310 if (rq->cmd_flags & REQ_QUEUED)
1311 blk_queue_end_tag(q, rq);
1312
1313 BUG_ON(blk_queued_rq(rq));
1314
1315 elv_requeue_request(q, rq);
1316 }
1317 EXPORT_SYMBOL(blk_requeue_request);
1318
1319 static void add_acct_request(struct request_queue *q, struct request *rq,
1320 int where)
1321 {
1322 blk_account_io_start(rq, true);
1323 __elv_add_request(q, rq, where);
1324 }
1325
1326 static void part_round_stats_single(int cpu, struct hd_struct *part,
1327 unsigned long now)
1328 {
1329 int inflight;
1330
1331 if (now == part->stamp)
1332 return;
1333
1334 inflight = part_in_flight(part);
1335 if (inflight) {
1336 __part_stat_add(cpu, part, time_in_queue,
1337 inflight * (now - part->stamp));
1338 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1339 }
1340 part->stamp = now;
1341 }
1342
1343 /**
1344 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1345 * @cpu: cpu number for stats access
1346 * @part: target partition
1347 *
1348 * The average IO queue length and utilisation statistics are maintained
1349 * by observing the current state of the queue length and the amount of
1350 * time it has been in this state for.
1351 *
1352 * Normally, that accounting is done on IO completion, but that can result
1353 * in more than a second's worth of IO being accounted for within any one
1354 * second, leading to >100% utilisation. To deal with that, we call this
1355 * function to do a round-off before returning the results when reading
1356 * /proc/diskstats. This accounts immediately for all queue usage up to
1357 * the current jiffies and restarts the counters again.
1358 */
1359 void part_round_stats(int cpu, struct hd_struct *part)
1360 {
1361 unsigned long now = jiffies;
1362
1363 if (part->partno)
1364 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1365 part_round_stats_single(cpu, part, now);
1366 }
1367 EXPORT_SYMBOL_GPL(part_round_stats);
1368
1369 #ifdef CONFIG_PM
1370 static void blk_pm_put_request(struct request *rq)
1371 {
1372 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1373 pm_runtime_mark_last_busy(rq->q->dev);
1374 }
1375 #else
1376 static inline void blk_pm_put_request(struct request *rq) {}
1377 #endif
1378
1379 /*
1380 * queue lock must be held
1381 */
1382 void __blk_put_request(struct request_queue *q, struct request *req)
1383 {
1384 if (unlikely(!q))
1385 return;
1386
1387 if (q->mq_ops) {
1388 blk_mq_free_request(req);
1389 return;
1390 }
1391
1392 blk_pm_put_request(req);
1393
1394 elv_completed_request(q, req);
1395
1396 /* this is a bio leak */
1397 WARN_ON(req->bio != NULL);
1398
1399 /*
1400 * Request may not have originated from ll_rw_blk. if not,
1401 * it didn't come out of our reserved rq pools
1402 */
1403 if (req->cmd_flags & REQ_ALLOCED) {
1404 unsigned int flags = req->cmd_flags;
1405 struct request_list *rl = blk_rq_rl(req);
1406
1407 BUG_ON(!list_empty(&req->queuelist));
1408 BUG_ON(ELV_ON_HASH(req));
1409
1410 blk_free_request(rl, req);
1411 freed_request(rl, flags);
1412 blk_put_rl(rl);
1413 }
1414 }
1415 EXPORT_SYMBOL_GPL(__blk_put_request);
1416
1417 void blk_put_request(struct request *req)
1418 {
1419 struct request_queue *q = req->q;
1420
1421 if (q->mq_ops)
1422 blk_mq_free_request(req);
1423 else {
1424 unsigned long flags;
1425
1426 spin_lock_irqsave(q->queue_lock, flags);
1427 __blk_put_request(q, req);
1428 spin_unlock_irqrestore(q->queue_lock, flags);
1429 }
1430 }
1431 EXPORT_SYMBOL(blk_put_request);
1432
1433 /**
1434 * blk_add_request_payload - add a payload to a request
1435 * @rq: request to update
1436 * @page: page backing the payload
1437 * @len: length of the payload.
1438 *
1439 * This allows to later add a payload to an already submitted request by
1440 * a block driver. The driver needs to take care of freeing the payload
1441 * itself.
1442 *
1443 * Note that this is a quite horrible hack and nothing but handling of
1444 * discard requests should ever use it.
1445 */
1446 void blk_add_request_payload(struct request *rq, struct page *page,
1447 unsigned int len)
1448 {
1449 struct bio *bio = rq->bio;
1450
1451 bio->bi_io_vec->bv_page = page;
1452 bio->bi_io_vec->bv_offset = 0;
1453 bio->bi_io_vec->bv_len = len;
1454
1455 bio->bi_iter.bi_size = len;
1456 bio->bi_vcnt = 1;
1457 bio->bi_phys_segments = 1;
1458
1459 rq->__data_len = rq->resid_len = len;
1460 rq->nr_phys_segments = 1;
1461 }
1462 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1463
1464 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1465 struct bio *bio)
1466 {
1467 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1468
1469 if (!ll_back_merge_fn(q, req, bio))
1470 return false;
1471
1472 trace_block_bio_backmerge(q, req, bio);
1473
1474 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1475 blk_rq_set_mixed_merge(req);
1476
1477 req->biotail->bi_next = bio;
1478 req->biotail = bio;
1479 req->__data_len += bio->bi_iter.bi_size;
1480 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1481
1482 blk_account_io_start(req, false);
1483 return true;
1484 }
1485
1486 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1487 struct bio *bio)
1488 {
1489 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1490
1491 if (!ll_front_merge_fn(q, req, bio))
1492 return false;
1493
1494 trace_block_bio_frontmerge(q, req, bio);
1495
1496 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1497 blk_rq_set_mixed_merge(req);
1498
1499 bio->bi_next = req->bio;
1500 req->bio = bio;
1501
1502 req->__sector = bio->bi_iter.bi_sector;
1503 req->__data_len += bio->bi_iter.bi_size;
1504 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1505
1506 blk_account_io_start(req, false);
1507 return true;
1508 }
1509
1510 /**
1511 * blk_attempt_plug_merge - try to merge with %current's plugged list
1512 * @q: request_queue new bio is being queued at
1513 * @bio: new bio being queued
1514 * @request_count: out parameter for number of traversed plugged requests
1515 *
1516 * Determine whether @bio being queued on @q can be merged with a request
1517 * on %current's plugged list. Returns %true if merge was successful,
1518 * otherwise %false.
1519 *
1520 * Plugging coalesces IOs from the same issuer for the same purpose without
1521 * going through @q->queue_lock. As such it's more of an issuing mechanism
1522 * than scheduling, and the request, while may have elvpriv data, is not
1523 * added on the elevator at this point. In addition, we don't have
1524 * reliable access to the elevator outside queue lock. Only check basic
1525 * merging parameters without querying the elevator.
1526 *
1527 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1528 */
1529 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1530 unsigned int *request_count,
1531 struct request **same_queue_rq)
1532 {
1533 struct blk_plug *plug;
1534 struct request *rq;
1535 bool ret = false;
1536 struct list_head *plug_list;
1537
1538 plug = current->plug;
1539 if (!plug)
1540 goto out;
1541 *request_count = 0;
1542
1543 if (q->mq_ops)
1544 plug_list = &plug->mq_list;
1545 else
1546 plug_list = &plug->list;
1547
1548 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1549 int el_ret;
1550
1551 if (rq->q == q) {
1552 (*request_count)++;
1553 /*
1554 * Only blk-mq multiple hardware queues case checks the
1555 * rq in the same queue, there should be only one such
1556 * rq in a queue
1557 **/
1558 if (same_queue_rq)
1559 *same_queue_rq = rq;
1560 }
1561
1562 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1563 continue;
1564
1565 el_ret = blk_try_merge(rq, bio);
1566 if (el_ret == ELEVATOR_BACK_MERGE) {
1567 ret = bio_attempt_back_merge(q, rq, bio);
1568 if (ret)
1569 break;
1570 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1571 ret = bio_attempt_front_merge(q, rq, bio);
1572 if (ret)
1573 break;
1574 }
1575 }
1576 out:
1577 return ret;
1578 }
1579
1580 void init_request_from_bio(struct request *req, struct bio *bio)
1581 {
1582 req->cmd_type = REQ_TYPE_FS;
1583
1584 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1585 if (bio->bi_rw & REQ_RAHEAD)
1586 req->cmd_flags |= REQ_FAILFAST_MASK;
1587
1588 req->errors = 0;
1589 req->__sector = bio->bi_iter.bi_sector;
1590 req->ioprio = bio_prio(bio);
1591 blk_rq_bio_prep(req->q, req, bio);
1592 }
1593
1594 static void blk_queue_bio(struct request_queue *q, struct bio *bio)
1595 {
1596 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1597 struct blk_plug *plug;
1598 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1599 struct request *req;
1600 unsigned int request_count = 0;
1601
1602 /*
1603 * low level driver can indicate that it wants pages above a
1604 * certain limit bounced to low memory (ie for highmem, or even
1605 * ISA dma in theory)
1606 */
1607 blk_queue_bounce(q, &bio);
1608
1609 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1610 bio_endio(bio, -EIO);
1611 return;
1612 }
1613
1614 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1615 spin_lock_irq(q->queue_lock);
1616 where = ELEVATOR_INSERT_FLUSH;
1617 goto get_rq;
1618 }
1619
1620 /*
1621 * Check if we can merge with the plugged list before grabbing
1622 * any locks.
1623 */
1624 if (!blk_queue_nomerges(q) &&
1625 blk_attempt_plug_merge(q, bio, &request_count, NULL))
1626 return;
1627
1628 spin_lock_irq(q->queue_lock);
1629
1630 el_ret = elv_merge(q, &req, bio);
1631 if (el_ret == ELEVATOR_BACK_MERGE) {
1632 if (bio_attempt_back_merge(q, req, bio)) {
1633 elv_bio_merged(q, req, bio);
1634 if (!attempt_back_merge(q, req))
1635 elv_merged_request(q, req, el_ret);
1636 goto out_unlock;
1637 }
1638 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1639 if (bio_attempt_front_merge(q, req, bio)) {
1640 elv_bio_merged(q, req, bio);
1641 if (!attempt_front_merge(q, req))
1642 elv_merged_request(q, req, el_ret);
1643 goto out_unlock;
1644 }
1645 }
1646
1647 get_rq:
1648 /*
1649 * This sync check and mask will be re-done in init_request_from_bio(),
1650 * but we need to set it earlier to expose the sync flag to the
1651 * rq allocator and io schedulers.
1652 */
1653 rw_flags = bio_data_dir(bio);
1654 if (sync)
1655 rw_flags |= REQ_SYNC;
1656
1657 /*
1658 * Grab a free request. This is might sleep but can not fail.
1659 * Returns with the queue unlocked.
1660 */
1661 req = get_request(q, rw_flags, bio, GFP_NOIO);
1662 if (IS_ERR(req)) {
1663 bio_endio(bio, PTR_ERR(req)); /* @q is dead */
1664 goto out_unlock;
1665 }
1666
1667 /*
1668 * After dropping the lock and possibly sleeping here, our request
1669 * may now be mergeable after it had proven unmergeable (above).
1670 * We don't worry about that case for efficiency. It won't happen
1671 * often, and the elevators are able to handle it.
1672 */
1673 init_request_from_bio(req, bio);
1674
1675 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1676 req->cpu = raw_smp_processor_id();
1677
1678 plug = current->plug;
1679 if (plug) {
1680 /*
1681 * If this is the first request added after a plug, fire
1682 * of a plug trace.
1683 */
1684 if (!request_count)
1685 trace_block_plug(q);
1686 else {
1687 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1688 blk_flush_plug_list(plug, false);
1689 trace_block_plug(q);
1690 }
1691 }
1692 list_add_tail(&req->queuelist, &plug->list);
1693 blk_account_io_start(req, true);
1694 } else {
1695 spin_lock_irq(q->queue_lock);
1696 add_acct_request(q, req, where);
1697 __blk_run_queue(q);
1698 out_unlock:
1699 spin_unlock_irq(q->queue_lock);
1700 }
1701 }
1702
1703 /*
1704 * If bio->bi_dev is a partition, remap the location
1705 */
1706 static inline void blk_partition_remap(struct bio *bio)
1707 {
1708 struct block_device *bdev = bio->bi_bdev;
1709
1710 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1711 struct hd_struct *p = bdev->bd_part;
1712
1713 bio->bi_iter.bi_sector += p->start_sect;
1714 bio->bi_bdev = bdev->bd_contains;
1715
1716 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1717 bdev->bd_dev,
1718 bio->bi_iter.bi_sector - p->start_sect);
1719 }
1720 }
1721
1722 static void handle_bad_sector(struct bio *bio)
1723 {
1724 char b[BDEVNAME_SIZE];
1725
1726 printk(KERN_INFO "attempt to access beyond end of device\n");
1727 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1728 bdevname(bio->bi_bdev, b),
1729 bio->bi_rw,
1730 (unsigned long long)bio_end_sector(bio),
1731 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1732 }
1733
1734 #ifdef CONFIG_FAIL_MAKE_REQUEST
1735
1736 static DECLARE_FAULT_ATTR(fail_make_request);
1737
1738 static int __init setup_fail_make_request(char *str)
1739 {
1740 return setup_fault_attr(&fail_make_request, str);
1741 }
1742 __setup("fail_make_request=", setup_fail_make_request);
1743
1744 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1745 {
1746 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1747 }
1748
1749 static int __init fail_make_request_debugfs(void)
1750 {
1751 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1752 NULL, &fail_make_request);
1753
1754 return PTR_ERR_OR_ZERO(dir);
1755 }
1756
1757 late_initcall(fail_make_request_debugfs);
1758
1759 #else /* CONFIG_FAIL_MAKE_REQUEST */
1760
1761 static inline bool should_fail_request(struct hd_struct *part,
1762 unsigned int bytes)
1763 {
1764 return false;
1765 }
1766
1767 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1768
1769 /*
1770 * Check whether this bio extends beyond the end of the device.
1771 */
1772 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1773 {
1774 sector_t maxsector;
1775
1776 if (!nr_sectors)
1777 return 0;
1778
1779 /* Test device or partition size, when known. */
1780 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1781 if (maxsector) {
1782 sector_t sector = bio->bi_iter.bi_sector;
1783
1784 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1785 /*
1786 * This may well happen - the kernel calls bread()
1787 * without checking the size of the device, e.g., when
1788 * mounting a device.
1789 */
1790 handle_bad_sector(bio);
1791 return 1;
1792 }
1793 }
1794
1795 return 0;
1796 }
1797
1798 static noinline_for_stack bool
1799 generic_make_request_checks(struct bio *bio)
1800 {
1801 struct request_queue *q;
1802 int nr_sectors = bio_sectors(bio);
1803 int err = -EIO;
1804 char b[BDEVNAME_SIZE];
1805 struct hd_struct *part;
1806
1807 might_sleep();
1808
1809 if (bio_check_eod(bio, nr_sectors))
1810 goto end_io;
1811
1812 q = bdev_get_queue(bio->bi_bdev);
1813 if (unlikely(!q)) {
1814 printk(KERN_ERR
1815 "generic_make_request: Trying to access "
1816 "nonexistent block-device %s (%Lu)\n",
1817 bdevname(bio->bi_bdev, b),
1818 (long long) bio->bi_iter.bi_sector);
1819 goto end_io;
1820 }
1821
1822 if (likely(bio_is_rw(bio) &&
1823 nr_sectors > queue_max_hw_sectors(q))) {
1824 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1825 bdevname(bio->bi_bdev, b),
1826 bio_sectors(bio),
1827 queue_max_hw_sectors(q));
1828 goto end_io;
1829 }
1830
1831 part = bio->bi_bdev->bd_part;
1832 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1833 should_fail_request(&part_to_disk(part)->part0,
1834 bio->bi_iter.bi_size))
1835 goto end_io;
1836
1837 /*
1838 * If this device has partitions, remap block n
1839 * of partition p to block n+start(p) of the disk.
1840 */
1841 blk_partition_remap(bio);
1842
1843 if (bio_check_eod(bio, nr_sectors))
1844 goto end_io;
1845
1846 /*
1847 * Filter flush bio's early so that make_request based
1848 * drivers without flush support don't have to worry
1849 * about them.
1850 */
1851 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1852 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1853 if (!nr_sectors) {
1854 err = 0;
1855 goto end_io;
1856 }
1857 }
1858
1859 if ((bio->bi_rw & REQ_DISCARD) &&
1860 (!blk_queue_discard(q) ||
1861 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1862 err = -EOPNOTSUPP;
1863 goto end_io;
1864 }
1865
1866 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1867 err = -EOPNOTSUPP;
1868 goto end_io;
1869 }
1870
1871 /*
1872 * Various block parts want %current->io_context and lazy ioc
1873 * allocation ends up trading a lot of pain for a small amount of
1874 * memory. Just allocate it upfront. This may fail and block
1875 * layer knows how to live with it.
1876 */
1877 create_io_context(GFP_ATOMIC, q->node);
1878
1879 if (blk_throtl_bio(q, bio))
1880 return false; /* throttled, will be resubmitted later */
1881
1882 trace_block_bio_queue(q, bio);
1883 return true;
1884
1885 end_io:
1886 bio_endio(bio, err);
1887 return false;
1888 }
1889
1890 /**
1891 * generic_make_request - hand a buffer to its device driver for I/O
1892 * @bio: The bio describing the location in memory and on the device.
1893 *
1894 * generic_make_request() is used to make I/O requests of block
1895 * devices. It is passed a &struct bio, which describes the I/O that needs
1896 * to be done.
1897 *
1898 * generic_make_request() does not return any status. The
1899 * success/failure status of the request, along with notification of
1900 * completion, is delivered asynchronously through the bio->bi_end_io
1901 * function described (one day) else where.
1902 *
1903 * The caller of generic_make_request must make sure that bi_io_vec
1904 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1905 * set to describe the device address, and the
1906 * bi_end_io and optionally bi_private are set to describe how
1907 * completion notification should be signaled.
1908 *
1909 * generic_make_request and the drivers it calls may use bi_next if this
1910 * bio happens to be merged with someone else, and may resubmit the bio to
1911 * a lower device by calling into generic_make_request recursively, which
1912 * means the bio should NOT be touched after the call to ->make_request_fn.
1913 */
1914 void generic_make_request(struct bio *bio)
1915 {
1916 struct bio_list bio_list_on_stack;
1917
1918 if (!generic_make_request_checks(bio))
1919 return;
1920
1921 /*
1922 * We only want one ->make_request_fn to be active at a time, else
1923 * stack usage with stacked devices could be a problem. So use
1924 * current->bio_list to keep a list of requests submited by a
1925 * make_request_fn function. current->bio_list is also used as a
1926 * flag to say if generic_make_request is currently active in this
1927 * task or not. If it is NULL, then no make_request is active. If
1928 * it is non-NULL, then a make_request is active, and new requests
1929 * should be added at the tail
1930 */
1931 if (current->bio_list) {
1932 bio_list_add(current->bio_list, bio);
1933 return;
1934 }
1935
1936 /* following loop may be a bit non-obvious, and so deserves some
1937 * explanation.
1938 * Before entering the loop, bio->bi_next is NULL (as all callers
1939 * ensure that) so we have a list with a single bio.
1940 * We pretend that we have just taken it off a longer list, so
1941 * we assign bio_list to a pointer to the bio_list_on_stack,
1942 * thus initialising the bio_list of new bios to be
1943 * added. ->make_request() may indeed add some more bios
1944 * through a recursive call to generic_make_request. If it
1945 * did, we find a non-NULL value in bio_list and re-enter the loop
1946 * from the top. In this case we really did just take the bio
1947 * of the top of the list (no pretending) and so remove it from
1948 * bio_list, and call into ->make_request() again.
1949 */
1950 BUG_ON(bio->bi_next);
1951 bio_list_init(&bio_list_on_stack);
1952 current->bio_list = &bio_list_on_stack;
1953 do {
1954 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1955
1956 q->make_request_fn(q, bio);
1957
1958 bio = bio_list_pop(current->bio_list);
1959 } while (bio);
1960 current->bio_list = NULL; /* deactivate */
1961 }
1962 EXPORT_SYMBOL(generic_make_request);
1963
1964 /**
1965 * submit_bio - submit a bio to the block device layer for I/O
1966 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1967 * @bio: The &struct bio which describes the I/O
1968 *
1969 * submit_bio() is very similar in purpose to generic_make_request(), and
1970 * uses that function to do most of the work. Both are fairly rough
1971 * interfaces; @bio must be presetup and ready for I/O.
1972 *
1973 */
1974 void submit_bio(int rw, struct bio *bio)
1975 {
1976 bio->bi_rw |= rw;
1977
1978 /*
1979 * If it's a regular read/write or a barrier with data attached,
1980 * go through the normal accounting stuff before submission.
1981 */
1982 if (bio_has_data(bio)) {
1983 unsigned int count;
1984
1985 if (unlikely(rw & REQ_WRITE_SAME))
1986 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1987 else
1988 count = bio_sectors(bio);
1989
1990 if (rw & WRITE) {
1991 count_vm_events(PGPGOUT, count);
1992 } else {
1993 task_io_account_read(bio->bi_iter.bi_size);
1994 count_vm_events(PGPGIN, count);
1995 }
1996
1997 if (unlikely(block_dump)) {
1998 char b[BDEVNAME_SIZE];
1999 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2000 current->comm, task_pid_nr(current),
2001 (rw & WRITE) ? "WRITE" : "READ",
2002 (unsigned long long)bio->bi_iter.bi_sector,
2003 bdevname(bio->bi_bdev, b),
2004 count);
2005 }
2006 }
2007
2008 generic_make_request(bio);
2009 }
2010 EXPORT_SYMBOL(submit_bio);
2011
2012 /**
2013 * blk_rq_check_limits - Helper function to check a request for the queue limit
2014 * @q: the queue
2015 * @rq: the request being checked
2016 *
2017 * Description:
2018 * @rq may have been made based on weaker limitations of upper-level queues
2019 * in request stacking drivers, and it may violate the limitation of @q.
2020 * Since the block layer and the underlying device driver trust @rq
2021 * after it is inserted to @q, it should be checked against @q before
2022 * the insertion using this generic function.
2023 *
2024 * This function should also be useful for request stacking drivers
2025 * in some cases below, so export this function.
2026 * Request stacking drivers like request-based dm may change the queue
2027 * limits while requests are in the queue (e.g. dm's table swapping).
2028 * Such request stacking drivers should check those requests against
2029 * the new queue limits again when they dispatch those requests,
2030 * although such checkings are also done against the old queue limits
2031 * when submitting requests.
2032 */
2033 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
2034 {
2035 if (!rq_mergeable(rq))
2036 return 0;
2037
2038 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
2039 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2040 return -EIO;
2041 }
2042
2043 /*
2044 * queue's settings related to segment counting like q->bounce_pfn
2045 * may differ from that of other stacking queues.
2046 * Recalculate it to check the request correctly on this queue's
2047 * limitation.
2048 */
2049 blk_recalc_rq_segments(rq);
2050 if (rq->nr_phys_segments > queue_max_segments(q)) {
2051 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2052 return -EIO;
2053 }
2054
2055 return 0;
2056 }
2057 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
2058
2059 /**
2060 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2061 * @q: the queue to submit the request
2062 * @rq: the request being queued
2063 */
2064 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2065 {
2066 unsigned long flags;
2067 int where = ELEVATOR_INSERT_BACK;
2068
2069 if (blk_rq_check_limits(q, rq))
2070 return -EIO;
2071
2072 if (rq->rq_disk &&
2073 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2074 return -EIO;
2075
2076 if (q->mq_ops) {
2077 if (blk_queue_io_stat(q))
2078 blk_account_io_start(rq, true);
2079 blk_mq_insert_request(rq, false, true, true);
2080 return 0;
2081 }
2082
2083 spin_lock_irqsave(q->queue_lock, flags);
2084 if (unlikely(blk_queue_dying(q))) {
2085 spin_unlock_irqrestore(q->queue_lock, flags);
2086 return -ENODEV;
2087 }
2088
2089 /*
2090 * Submitting request must be dequeued before calling this function
2091 * because it will be linked to another request_queue
2092 */
2093 BUG_ON(blk_queued_rq(rq));
2094
2095 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2096 where = ELEVATOR_INSERT_FLUSH;
2097
2098 add_acct_request(q, rq, where);
2099 if (where == ELEVATOR_INSERT_FLUSH)
2100 __blk_run_queue(q);
2101 spin_unlock_irqrestore(q->queue_lock, flags);
2102
2103 return 0;
2104 }
2105 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2106
2107 /**
2108 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2109 * @rq: request to examine
2110 *
2111 * Description:
2112 * A request could be merge of IOs which require different failure
2113 * handling. This function determines the number of bytes which
2114 * can be failed from the beginning of the request without
2115 * crossing into area which need to be retried further.
2116 *
2117 * Return:
2118 * The number of bytes to fail.
2119 *
2120 * Context:
2121 * queue_lock must be held.
2122 */
2123 unsigned int blk_rq_err_bytes(const struct request *rq)
2124 {
2125 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2126 unsigned int bytes = 0;
2127 struct bio *bio;
2128
2129 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2130 return blk_rq_bytes(rq);
2131
2132 /*
2133 * Currently the only 'mixing' which can happen is between
2134 * different fastfail types. We can safely fail portions
2135 * which have all the failfast bits that the first one has -
2136 * the ones which are at least as eager to fail as the first
2137 * one.
2138 */
2139 for (bio = rq->bio; bio; bio = bio->bi_next) {
2140 if ((bio->bi_rw & ff) != ff)
2141 break;
2142 bytes += bio->bi_iter.bi_size;
2143 }
2144
2145 /* this could lead to infinite loop */
2146 BUG_ON(blk_rq_bytes(rq) && !bytes);
2147 return bytes;
2148 }
2149 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2150
2151 void blk_account_io_completion(struct request *req, unsigned int bytes)
2152 {
2153 if (blk_do_io_stat(req)) {
2154 const int rw = rq_data_dir(req);
2155 struct hd_struct *part;
2156 int cpu;
2157
2158 cpu = part_stat_lock();
2159 part = req->part;
2160 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2161 part_stat_unlock();
2162 }
2163 }
2164
2165 void blk_account_io_done(struct request *req)
2166 {
2167 /*
2168 * Account IO completion. flush_rq isn't accounted as a
2169 * normal IO on queueing nor completion. Accounting the
2170 * containing request is enough.
2171 */
2172 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2173 unsigned long duration = jiffies - req->start_time;
2174 const int rw = rq_data_dir(req);
2175 struct hd_struct *part;
2176 int cpu;
2177
2178 cpu = part_stat_lock();
2179 part = req->part;
2180
2181 part_stat_inc(cpu, part, ios[rw]);
2182 part_stat_add(cpu, part, ticks[rw], duration);
2183 part_round_stats(cpu, part);
2184 part_dec_in_flight(part, rw);
2185
2186 hd_struct_put(part);
2187 part_stat_unlock();
2188 }
2189 }
2190
2191 #ifdef CONFIG_PM
2192 /*
2193 * Don't process normal requests when queue is suspended
2194 * or in the process of suspending/resuming
2195 */
2196 static struct request *blk_pm_peek_request(struct request_queue *q,
2197 struct request *rq)
2198 {
2199 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2200 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2201 return NULL;
2202 else
2203 return rq;
2204 }
2205 #else
2206 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2207 struct request *rq)
2208 {
2209 return rq;
2210 }
2211 #endif
2212
2213 void blk_account_io_start(struct request *rq, bool new_io)
2214 {
2215 struct hd_struct *part;
2216 int rw = rq_data_dir(rq);
2217 int cpu;
2218
2219 if (!blk_do_io_stat(rq))
2220 return;
2221
2222 cpu = part_stat_lock();
2223
2224 if (!new_io) {
2225 part = rq->part;
2226 part_stat_inc(cpu, part, merges[rw]);
2227 } else {
2228 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2229 if (!hd_struct_try_get(part)) {
2230 /*
2231 * The partition is already being removed,
2232 * the request will be accounted on the disk only
2233 *
2234 * We take a reference on disk->part0 although that
2235 * partition will never be deleted, so we can treat
2236 * it as any other partition.
2237 */
2238 part = &rq->rq_disk->part0;
2239 hd_struct_get(part);
2240 }
2241 part_round_stats(cpu, part);
2242 part_inc_in_flight(part, rw);
2243 rq->part = part;
2244 }
2245
2246 part_stat_unlock();
2247 }
2248
2249 /**
2250 * blk_peek_request - peek at the top of a request queue
2251 * @q: request queue to peek at
2252 *
2253 * Description:
2254 * Return the request at the top of @q. The returned request
2255 * should be started using blk_start_request() before LLD starts
2256 * processing it.
2257 *
2258 * Return:
2259 * Pointer to the request at the top of @q if available. Null
2260 * otherwise.
2261 *
2262 * Context:
2263 * queue_lock must be held.
2264 */
2265 struct request *blk_peek_request(struct request_queue *q)
2266 {
2267 struct request *rq;
2268 int ret;
2269
2270 while ((rq = __elv_next_request(q)) != NULL) {
2271
2272 rq = blk_pm_peek_request(q, rq);
2273 if (!rq)
2274 break;
2275
2276 if (!(rq->cmd_flags & REQ_STARTED)) {
2277 /*
2278 * This is the first time the device driver
2279 * sees this request (possibly after
2280 * requeueing). Notify IO scheduler.
2281 */
2282 if (rq->cmd_flags & REQ_SORTED)
2283 elv_activate_rq(q, rq);
2284
2285 /*
2286 * just mark as started even if we don't start
2287 * it, a request that has been delayed should
2288 * not be passed by new incoming requests
2289 */
2290 rq->cmd_flags |= REQ_STARTED;
2291 trace_block_rq_issue(q, rq);
2292 }
2293
2294 if (!q->boundary_rq || q->boundary_rq == rq) {
2295 q->end_sector = rq_end_sector(rq);
2296 q->boundary_rq = NULL;
2297 }
2298
2299 if (rq->cmd_flags & REQ_DONTPREP)
2300 break;
2301
2302 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2303 /*
2304 * make sure space for the drain appears we
2305 * know we can do this because max_hw_segments
2306 * has been adjusted to be one fewer than the
2307 * device can handle
2308 */
2309 rq->nr_phys_segments++;
2310 }
2311
2312 if (!q->prep_rq_fn)
2313 break;
2314
2315 ret = q->prep_rq_fn(q, rq);
2316 if (ret == BLKPREP_OK) {
2317 break;
2318 } else if (ret == BLKPREP_DEFER) {
2319 /*
2320 * the request may have been (partially) prepped.
2321 * we need to keep this request in the front to
2322 * avoid resource deadlock. REQ_STARTED will
2323 * prevent other fs requests from passing this one.
2324 */
2325 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2326 !(rq->cmd_flags & REQ_DONTPREP)) {
2327 /*
2328 * remove the space for the drain we added
2329 * so that we don't add it again
2330 */
2331 --rq->nr_phys_segments;
2332 }
2333
2334 rq = NULL;
2335 break;
2336 } else if (ret == BLKPREP_KILL) {
2337 rq->cmd_flags |= REQ_QUIET;
2338 /*
2339 * Mark this request as started so we don't trigger
2340 * any debug logic in the end I/O path.
2341 */
2342 blk_start_request(rq);
2343 __blk_end_request_all(rq, -EIO);
2344 } else {
2345 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2346 break;
2347 }
2348 }
2349
2350 return rq;
2351 }
2352 EXPORT_SYMBOL(blk_peek_request);
2353
2354 void blk_dequeue_request(struct request *rq)
2355 {
2356 struct request_queue *q = rq->q;
2357
2358 BUG_ON(list_empty(&rq->queuelist));
2359 BUG_ON(ELV_ON_HASH(rq));
2360
2361 list_del_init(&rq->queuelist);
2362
2363 /*
2364 * the time frame between a request being removed from the lists
2365 * and to it is freed is accounted as io that is in progress at
2366 * the driver side.
2367 */
2368 if (blk_account_rq(rq)) {
2369 q->in_flight[rq_is_sync(rq)]++;
2370 set_io_start_time_ns(rq);
2371 }
2372 }
2373
2374 /**
2375 * blk_start_request - start request processing on the driver
2376 * @req: request to dequeue
2377 *
2378 * Description:
2379 * Dequeue @req and start timeout timer on it. This hands off the
2380 * request to the driver.
2381 *
2382 * Block internal functions which don't want to start timer should
2383 * call blk_dequeue_request().
2384 *
2385 * Context:
2386 * queue_lock must be held.
2387 */
2388 void blk_start_request(struct request *req)
2389 {
2390 blk_dequeue_request(req);
2391
2392 /*
2393 * We are now handing the request to the hardware, initialize
2394 * resid_len to full count and add the timeout handler.
2395 */
2396 req->resid_len = blk_rq_bytes(req);
2397 if (unlikely(blk_bidi_rq(req)))
2398 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2399
2400 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2401 blk_add_timer(req);
2402 }
2403 EXPORT_SYMBOL(blk_start_request);
2404
2405 /**
2406 * blk_fetch_request - fetch a request from a request queue
2407 * @q: request queue to fetch a request from
2408 *
2409 * Description:
2410 * Return the request at the top of @q. The request is started on
2411 * return and LLD can start processing it immediately.
2412 *
2413 * Return:
2414 * Pointer to the request at the top of @q if available. Null
2415 * otherwise.
2416 *
2417 * Context:
2418 * queue_lock must be held.
2419 */
2420 struct request *blk_fetch_request(struct request_queue *q)
2421 {
2422 struct request *rq;
2423
2424 rq = blk_peek_request(q);
2425 if (rq)
2426 blk_start_request(rq);
2427 return rq;
2428 }
2429 EXPORT_SYMBOL(blk_fetch_request);
2430
2431 /**
2432 * blk_update_request - Special helper function for request stacking drivers
2433 * @req: the request being processed
2434 * @error: %0 for success, < %0 for error
2435 * @nr_bytes: number of bytes to complete @req
2436 *
2437 * Description:
2438 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2439 * the request structure even if @req doesn't have leftover.
2440 * If @req has leftover, sets it up for the next range of segments.
2441 *
2442 * This special helper function is only for request stacking drivers
2443 * (e.g. request-based dm) so that they can handle partial completion.
2444 * Actual device drivers should use blk_end_request instead.
2445 *
2446 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2447 * %false return from this function.
2448 *
2449 * Return:
2450 * %false - this request doesn't have any more data
2451 * %true - this request has more data
2452 **/
2453 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2454 {
2455 int total_bytes;
2456
2457 trace_block_rq_complete(req->q, req, nr_bytes);
2458
2459 if (!req->bio)
2460 return false;
2461
2462 /*
2463 * For fs requests, rq is just carrier of independent bio's
2464 * and each partial completion should be handled separately.
2465 * Reset per-request error on each partial completion.
2466 *
2467 * TODO: tj: This is too subtle. It would be better to let
2468 * low level drivers do what they see fit.
2469 */
2470 if (req->cmd_type == REQ_TYPE_FS)
2471 req->errors = 0;
2472
2473 if (error && req->cmd_type == REQ_TYPE_FS &&
2474 !(req->cmd_flags & REQ_QUIET)) {
2475 char *error_type;
2476
2477 switch (error) {
2478 case -ENOLINK:
2479 error_type = "recoverable transport";
2480 break;
2481 case -EREMOTEIO:
2482 error_type = "critical target";
2483 break;
2484 case -EBADE:
2485 error_type = "critical nexus";
2486 break;
2487 case -ETIMEDOUT:
2488 error_type = "timeout";
2489 break;
2490 case -ENOSPC:
2491 error_type = "critical space allocation";
2492 break;
2493 case -ENODATA:
2494 error_type = "critical medium";
2495 break;
2496 case -EIO:
2497 default:
2498 error_type = "I/O";
2499 break;
2500 }
2501 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2502 __func__, error_type, req->rq_disk ?
2503 req->rq_disk->disk_name : "?",
2504 (unsigned long long)blk_rq_pos(req));
2505
2506 }
2507
2508 blk_account_io_completion(req, nr_bytes);
2509
2510 total_bytes = 0;
2511 while (req->bio) {
2512 struct bio *bio = req->bio;
2513 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2514
2515 if (bio_bytes == bio->bi_iter.bi_size)
2516 req->bio = bio->bi_next;
2517
2518 req_bio_endio(req, bio, bio_bytes, error);
2519
2520 total_bytes += bio_bytes;
2521 nr_bytes -= bio_bytes;
2522
2523 if (!nr_bytes)
2524 break;
2525 }
2526
2527 /*
2528 * completely done
2529 */
2530 if (!req->bio) {
2531 /*
2532 * Reset counters so that the request stacking driver
2533 * can find how many bytes remain in the request
2534 * later.
2535 */
2536 req->__data_len = 0;
2537 return false;
2538 }
2539
2540 req->__data_len -= total_bytes;
2541
2542 /* update sector only for requests with clear definition of sector */
2543 if (req->cmd_type == REQ_TYPE_FS)
2544 req->__sector += total_bytes >> 9;
2545
2546 /* mixed attributes always follow the first bio */
2547 if (req->cmd_flags & REQ_MIXED_MERGE) {
2548 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2549 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2550 }
2551
2552 /*
2553 * If total number of sectors is less than the first segment
2554 * size, something has gone terribly wrong.
2555 */
2556 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2557 blk_dump_rq_flags(req, "request botched");
2558 req->__data_len = blk_rq_cur_bytes(req);
2559 }
2560
2561 /* recalculate the number of segments */
2562 blk_recalc_rq_segments(req);
2563
2564 return true;
2565 }
2566 EXPORT_SYMBOL_GPL(blk_update_request);
2567
2568 static bool blk_update_bidi_request(struct request *rq, int error,
2569 unsigned int nr_bytes,
2570 unsigned int bidi_bytes)
2571 {
2572 if (blk_update_request(rq, error, nr_bytes))
2573 return true;
2574
2575 /* Bidi request must be completed as a whole */
2576 if (unlikely(blk_bidi_rq(rq)) &&
2577 blk_update_request(rq->next_rq, error, bidi_bytes))
2578 return true;
2579
2580 if (blk_queue_add_random(rq->q))
2581 add_disk_randomness(rq->rq_disk);
2582
2583 return false;
2584 }
2585
2586 /**
2587 * blk_unprep_request - unprepare a request
2588 * @req: the request
2589 *
2590 * This function makes a request ready for complete resubmission (or
2591 * completion). It happens only after all error handling is complete,
2592 * so represents the appropriate moment to deallocate any resources
2593 * that were allocated to the request in the prep_rq_fn. The queue
2594 * lock is held when calling this.
2595 */
2596 void blk_unprep_request(struct request *req)
2597 {
2598 struct request_queue *q = req->q;
2599
2600 req->cmd_flags &= ~REQ_DONTPREP;
2601 if (q->unprep_rq_fn)
2602 q->unprep_rq_fn(q, req);
2603 }
2604 EXPORT_SYMBOL_GPL(blk_unprep_request);
2605
2606 /*
2607 * queue lock must be held
2608 */
2609 void blk_finish_request(struct request *req, int error)
2610 {
2611 if (req->cmd_flags & REQ_QUEUED)
2612 blk_queue_end_tag(req->q, req);
2613
2614 BUG_ON(blk_queued_rq(req));
2615
2616 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2617 laptop_io_completion(&req->q->backing_dev_info);
2618
2619 blk_delete_timer(req);
2620
2621 if (req->cmd_flags & REQ_DONTPREP)
2622 blk_unprep_request(req);
2623
2624 blk_account_io_done(req);
2625
2626 if (req->end_io)
2627 req->end_io(req, error);
2628 else {
2629 if (blk_bidi_rq(req))
2630 __blk_put_request(req->next_rq->q, req->next_rq);
2631
2632 __blk_put_request(req->q, req);
2633 }
2634 }
2635 EXPORT_SYMBOL(blk_finish_request);
2636
2637 /**
2638 * blk_end_bidi_request - Complete a bidi request
2639 * @rq: the request to complete
2640 * @error: %0 for success, < %0 for error
2641 * @nr_bytes: number of bytes to complete @rq
2642 * @bidi_bytes: number of bytes to complete @rq->next_rq
2643 *
2644 * Description:
2645 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2646 * Drivers that supports bidi can safely call this member for any
2647 * type of request, bidi or uni. In the later case @bidi_bytes is
2648 * just ignored.
2649 *
2650 * Return:
2651 * %false - we are done with this request
2652 * %true - still buffers pending for this request
2653 **/
2654 static bool blk_end_bidi_request(struct request *rq, int error,
2655 unsigned int nr_bytes, unsigned int bidi_bytes)
2656 {
2657 struct request_queue *q = rq->q;
2658 unsigned long flags;
2659
2660 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2661 return true;
2662
2663 spin_lock_irqsave(q->queue_lock, flags);
2664 blk_finish_request(rq, error);
2665 spin_unlock_irqrestore(q->queue_lock, flags);
2666
2667 return false;
2668 }
2669
2670 /**
2671 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2672 * @rq: the request to complete
2673 * @error: %0 for success, < %0 for error
2674 * @nr_bytes: number of bytes to complete @rq
2675 * @bidi_bytes: number of bytes to complete @rq->next_rq
2676 *
2677 * Description:
2678 * Identical to blk_end_bidi_request() except that queue lock is
2679 * assumed to be locked on entry and remains so on return.
2680 *
2681 * Return:
2682 * %false - we are done with this request
2683 * %true - still buffers pending for this request
2684 **/
2685 bool __blk_end_bidi_request(struct request *rq, int error,
2686 unsigned int nr_bytes, unsigned int bidi_bytes)
2687 {
2688 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2689 return true;
2690
2691 blk_finish_request(rq, error);
2692
2693 return false;
2694 }
2695
2696 /**
2697 * blk_end_request - Helper function for drivers to complete the request.
2698 * @rq: the request being processed
2699 * @error: %0 for success, < %0 for error
2700 * @nr_bytes: number of bytes to complete
2701 *
2702 * Description:
2703 * Ends I/O on a number of bytes attached to @rq.
2704 * If @rq has leftover, sets it up for the next range of segments.
2705 *
2706 * Return:
2707 * %false - we are done with this request
2708 * %true - still buffers pending for this request
2709 **/
2710 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2711 {
2712 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2713 }
2714 EXPORT_SYMBOL(blk_end_request);
2715
2716 /**
2717 * blk_end_request_all - Helper function for drives to finish the request.
2718 * @rq: the request to finish
2719 * @error: %0 for success, < %0 for error
2720 *
2721 * Description:
2722 * Completely finish @rq.
2723 */
2724 void blk_end_request_all(struct request *rq, int error)
2725 {
2726 bool pending;
2727 unsigned int bidi_bytes = 0;
2728
2729 if (unlikely(blk_bidi_rq(rq)))
2730 bidi_bytes = blk_rq_bytes(rq->next_rq);
2731
2732 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2733 BUG_ON(pending);
2734 }
2735 EXPORT_SYMBOL(blk_end_request_all);
2736
2737 /**
2738 * blk_end_request_cur - Helper function to finish the current request chunk.
2739 * @rq: the request to finish the current chunk for
2740 * @error: %0 for success, < %0 for error
2741 *
2742 * Description:
2743 * Complete the current consecutively mapped chunk from @rq.
2744 *
2745 * Return:
2746 * %false - we are done with this request
2747 * %true - still buffers pending for this request
2748 */
2749 bool blk_end_request_cur(struct request *rq, int error)
2750 {
2751 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2752 }
2753 EXPORT_SYMBOL(blk_end_request_cur);
2754
2755 /**
2756 * blk_end_request_err - Finish a request till the next failure boundary.
2757 * @rq: the request to finish till the next failure boundary for
2758 * @error: must be negative errno
2759 *
2760 * Description:
2761 * Complete @rq till the next failure boundary.
2762 *
2763 * Return:
2764 * %false - we are done with this request
2765 * %true - still buffers pending for this request
2766 */
2767 bool blk_end_request_err(struct request *rq, int error)
2768 {
2769 WARN_ON(error >= 0);
2770 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2771 }
2772 EXPORT_SYMBOL_GPL(blk_end_request_err);
2773
2774 /**
2775 * __blk_end_request - Helper function for drivers to complete the request.
2776 * @rq: the request being processed
2777 * @error: %0 for success, < %0 for error
2778 * @nr_bytes: number of bytes to complete
2779 *
2780 * Description:
2781 * Must be called with queue lock held unlike blk_end_request().
2782 *
2783 * Return:
2784 * %false - we are done with this request
2785 * %true - still buffers pending for this request
2786 **/
2787 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2788 {
2789 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2790 }
2791 EXPORT_SYMBOL(__blk_end_request);
2792
2793 /**
2794 * __blk_end_request_all - Helper function for drives to finish the request.
2795 * @rq: the request to finish
2796 * @error: %0 for success, < %0 for error
2797 *
2798 * Description:
2799 * Completely finish @rq. Must be called with queue lock held.
2800 */
2801 void __blk_end_request_all(struct request *rq, int error)
2802 {
2803 bool pending;
2804 unsigned int bidi_bytes = 0;
2805
2806 if (unlikely(blk_bidi_rq(rq)))
2807 bidi_bytes = blk_rq_bytes(rq->next_rq);
2808
2809 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2810 BUG_ON(pending);
2811 }
2812 EXPORT_SYMBOL(__blk_end_request_all);
2813
2814 /**
2815 * __blk_end_request_cur - Helper function to finish the current request chunk.
2816 * @rq: the request to finish the current chunk for
2817 * @error: %0 for success, < %0 for error
2818 *
2819 * Description:
2820 * Complete the current consecutively mapped chunk from @rq. Must
2821 * be called with queue lock held.
2822 *
2823 * Return:
2824 * %false - we are done with this request
2825 * %true - still buffers pending for this request
2826 */
2827 bool __blk_end_request_cur(struct request *rq, int error)
2828 {
2829 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2830 }
2831 EXPORT_SYMBOL(__blk_end_request_cur);
2832
2833 /**
2834 * __blk_end_request_err - Finish a request till the next failure boundary.
2835 * @rq: the request to finish till the next failure boundary for
2836 * @error: must be negative errno
2837 *
2838 * Description:
2839 * Complete @rq till the next failure boundary. Must be called
2840 * with queue lock held.
2841 *
2842 * Return:
2843 * %false - we are done with this request
2844 * %true - still buffers pending for this request
2845 */
2846 bool __blk_end_request_err(struct request *rq, int error)
2847 {
2848 WARN_ON(error >= 0);
2849 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2850 }
2851 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2852
2853 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2854 struct bio *bio)
2855 {
2856 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2857 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2858
2859 if (bio_has_data(bio))
2860 rq->nr_phys_segments = bio_phys_segments(q, bio);
2861
2862 rq->__data_len = bio->bi_iter.bi_size;
2863 rq->bio = rq->biotail = bio;
2864
2865 if (bio->bi_bdev)
2866 rq->rq_disk = bio->bi_bdev->bd_disk;
2867 }
2868
2869 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2870 /**
2871 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2872 * @rq: the request to be flushed
2873 *
2874 * Description:
2875 * Flush all pages in @rq.
2876 */
2877 void rq_flush_dcache_pages(struct request *rq)
2878 {
2879 struct req_iterator iter;
2880 struct bio_vec bvec;
2881
2882 rq_for_each_segment(bvec, rq, iter)
2883 flush_dcache_page(bvec.bv_page);
2884 }
2885 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2886 #endif
2887
2888 /**
2889 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2890 * @q : the queue of the device being checked
2891 *
2892 * Description:
2893 * Check if underlying low-level drivers of a device are busy.
2894 * If the drivers want to export their busy state, they must set own
2895 * exporting function using blk_queue_lld_busy() first.
2896 *
2897 * Basically, this function is used only by request stacking drivers
2898 * to stop dispatching requests to underlying devices when underlying
2899 * devices are busy. This behavior helps more I/O merging on the queue
2900 * of the request stacking driver and prevents I/O throughput regression
2901 * on burst I/O load.
2902 *
2903 * Return:
2904 * 0 - Not busy (The request stacking driver should dispatch request)
2905 * 1 - Busy (The request stacking driver should stop dispatching request)
2906 */
2907 int blk_lld_busy(struct request_queue *q)
2908 {
2909 if (q->lld_busy_fn)
2910 return q->lld_busy_fn(q);
2911
2912 return 0;
2913 }
2914 EXPORT_SYMBOL_GPL(blk_lld_busy);
2915
2916 void blk_rq_prep_clone(struct request *dst, struct request *src)
2917 {
2918 dst->cpu = src->cpu;
2919 dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK);
2920 dst->cmd_flags |= REQ_NOMERGE | REQ_CLONE;
2921 dst->cmd_type = src->cmd_type;
2922 dst->__sector = blk_rq_pos(src);
2923 dst->__data_len = blk_rq_bytes(src);
2924 dst->nr_phys_segments = src->nr_phys_segments;
2925 dst->ioprio = src->ioprio;
2926 dst->extra_len = src->extra_len;
2927 dst->bio = src->bio;
2928 dst->biotail = src->biotail;
2929 dst->cmd = src->cmd;
2930 dst->cmd_len = src->cmd_len;
2931 dst->sense = src->sense;
2932 }
2933 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2934
2935 int kblockd_schedule_work(struct work_struct *work)
2936 {
2937 return queue_work(kblockd_workqueue, work);
2938 }
2939 EXPORT_SYMBOL(kblockd_schedule_work);
2940
2941 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
2942 unsigned long delay)
2943 {
2944 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2945 }
2946 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2947
2948 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2949 unsigned long delay)
2950 {
2951 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
2952 }
2953 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
2954
2955 /**
2956 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2957 * @plug: The &struct blk_plug that needs to be initialized
2958 *
2959 * Description:
2960 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2961 * pending I/O should the task end up blocking between blk_start_plug() and
2962 * blk_finish_plug(). This is important from a performance perspective, but
2963 * also ensures that we don't deadlock. For instance, if the task is blocking
2964 * for a memory allocation, memory reclaim could end up wanting to free a
2965 * page belonging to that request that is currently residing in our private
2966 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2967 * this kind of deadlock.
2968 */
2969 void blk_start_plug(struct blk_plug *plug)
2970 {
2971 struct task_struct *tsk = current;
2972
2973 /*
2974 * If this is a nested plug, don't actually assign it.
2975 */
2976 if (tsk->plug)
2977 return;
2978
2979 INIT_LIST_HEAD(&plug->list);
2980 INIT_LIST_HEAD(&plug->mq_list);
2981 INIT_LIST_HEAD(&plug->cb_list);
2982 /*
2983 * Store ordering should not be needed here, since a potential
2984 * preempt will imply a full memory barrier
2985 */
2986 tsk->plug = plug;
2987 }
2988 EXPORT_SYMBOL(blk_start_plug);
2989
2990 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2991 {
2992 struct request *rqa = container_of(a, struct request, queuelist);
2993 struct request *rqb = container_of(b, struct request, queuelist);
2994
2995 return !(rqa->q < rqb->q ||
2996 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
2997 }
2998
2999 /*
3000 * If 'from_schedule' is true, then postpone the dispatch of requests
3001 * until a safe kblockd context. We due this to avoid accidental big
3002 * additional stack usage in driver dispatch, in places where the originally
3003 * plugger did not intend it.
3004 */
3005 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3006 bool from_schedule)
3007 __releases(q->queue_lock)
3008 {
3009 trace_block_unplug(q, depth, !from_schedule);
3010
3011 if (from_schedule)
3012 blk_run_queue_async(q);
3013 else
3014 __blk_run_queue(q);
3015 spin_unlock(q->queue_lock);
3016 }
3017
3018 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3019 {
3020 LIST_HEAD(callbacks);
3021
3022 while (!list_empty(&plug->cb_list)) {
3023 list_splice_init(&plug->cb_list, &callbacks);
3024
3025 while (!list_empty(&callbacks)) {
3026 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3027 struct blk_plug_cb,
3028 list);
3029 list_del(&cb->list);
3030 cb->callback(cb, from_schedule);
3031 }
3032 }
3033 }
3034
3035 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3036 int size)
3037 {
3038 struct blk_plug *plug = current->plug;
3039 struct blk_plug_cb *cb;
3040
3041 if (!plug)
3042 return NULL;
3043
3044 list_for_each_entry(cb, &plug->cb_list, list)
3045 if (cb->callback == unplug && cb->data == data)
3046 return cb;
3047
3048 /* Not currently on the callback list */
3049 BUG_ON(size < sizeof(*cb));
3050 cb = kzalloc(size, GFP_ATOMIC);
3051 if (cb) {
3052 cb->data = data;
3053 cb->callback = unplug;
3054 list_add(&cb->list, &plug->cb_list);
3055 }
3056 return cb;
3057 }
3058 EXPORT_SYMBOL(blk_check_plugged);
3059
3060 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3061 {
3062 struct request_queue *q;
3063 unsigned long flags;
3064 struct request *rq;
3065 LIST_HEAD(list);
3066 unsigned int depth;
3067
3068 flush_plug_callbacks(plug, from_schedule);
3069
3070 if (!list_empty(&plug->mq_list))
3071 blk_mq_flush_plug_list(plug, from_schedule);
3072
3073 if (list_empty(&plug->list))
3074 return;
3075
3076 list_splice_init(&plug->list, &list);
3077
3078 list_sort(NULL, &list, plug_rq_cmp);
3079
3080 q = NULL;
3081 depth = 0;
3082
3083 /*
3084 * Save and disable interrupts here, to avoid doing it for every
3085 * queue lock we have to take.
3086 */
3087 local_irq_save(flags);
3088 while (!list_empty(&list)) {
3089 rq = list_entry_rq(list.next);
3090 list_del_init(&rq->queuelist);
3091 BUG_ON(!rq->q);
3092 if (rq->q != q) {
3093 /*
3094 * This drops the queue lock
3095 */
3096 if (q)
3097 queue_unplugged(q, depth, from_schedule);
3098 q = rq->q;
3099 depth = 0;
3100 spin_lock(q->queue_lock);
3101 }
3102
3103 /*
3104 * Short-circuit if @q is dead
3105 */
3106 if (unlikely(blk_queue_dying(q))) {
3107 __blk_end_request_all(rq, -ENODEV);
3108 continue;
3109 }
3110
3111 /*
3112 * rq is already accounted, so use raw insert
3113 */
3114 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3115 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3116 else
3117 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3118
3119 depth++;
3120 }
3121
3122 /*
3123 * This drops the queue lock
3124 */
3125 if (q)
3126 queue_unplugged(q, depth, from_schedule);
3127
3128 local_irq_restore(flags);
3129 }
3130
3131 void blk_finish_plug(struct blk_plug *plug)
3132 {
3133 if (plug != current->plug)
3134 return;
3135 blk_flush_plug_list(plug, false);
3136
3137 current->plug = NULL;
3138 }
3139 EXPORT_SYMBOL(blk_finish_plug);
3140
3141 #ifdef CONFIG_PM
3142 /**
3143 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3144 * @q: the queue of the device
3145 * @dev: the device the queue belongs to
3146 *
3147 * Description:
3148 * Initialize runtime-PM-related fields for @q and start auto suspend for
3149 * @dev. Drivers that want to take advantage of request-based runtime PM
3150 * should call this function after @dev has been initialized, and its
3151 * request queue @q has been allocated, and runtime PM for it can not happen
3152 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3153 * cases, driver should call this function before any I/O has taken place.
3154 *
3155 * This function takes care of setting up using auto suspend for the device,
3156 * the autosuspend delay is set to -1 to make runtime suspend impossible
3157 * until an updated value is either set by user or by driver. Drivers do
3158 * not need to touch other autosuspend settings.
3159 *
3160 * The block layer runtime PM is request based, so only works for drivers
3161 * that use request as their IO unit instead of those directly use bio's.
3162 */
3163 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3164 {
3165 q->dev = dev;
3166 q->rpm_status = RPM_ACTIVE;
3167 pm_runtime_set_autosuspend_delay(q->dev, -1);
3168 pm_runtime_use_autosuspend(q->dev);
3169 }
3170 EXPORT_SYMBOL(blk_pm_runtime_init);
3171
3172 /**
3173 * blk_pre_runtime_suspend - Pre runtime suspend check
3174 * @q: the queue of the device
3175 *
3176 * Description:
3177 * This function will check if runtime suspend is allowed for the device
3178 * by examining if there are any requests pending in the queue. If there
3179 * are requests pending, the device can not be runtime suspended; otherwise,
3180 * the queue's status will be updated to SUSPENDING and the driver can
3181 * proceed to suspend the device.
3182 *
3183 * For the not allowed case, we mark last busy for the device so that
3184 * runtime PM core will try to autosuspend it some time later.
3185 *
3186 * This function should be called near the start of the device's
3187 * runtime_suspend callback.
3188 *
3189 * Return:
3190 * 0 - OK to runtime suspend the device
3191 * -EBUSY - Device should not be runtime suspended
3192 */
3193 int blk_pre_runtime_suspend(struct request_queue *q)
3194 {
3195 int ret = 0;
3196
3197 spin_lock_irq(q->queue_lock);
3198 if (q->nr_pending) {
3199 ret = -EBUSY;
3200 pm_runtime_mark_last_busy(q->dev);
3201 } else {
3202 q->rpm_status = RPM_SUSPENDING;
3203 }
3204 spin_unlock_irq(q->queue_lock);
3205 return ret;
3206 }
3207 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3208
3209 /**
3210 * blk_post_runtime_suspend - Post runtime suspend processing
3211 * @q: the queue of the device
3212 * @err: return value of the device's runtime_suspend function
3213 *
3214 * Description:
3215 * Update the queue's runtime status according to the return value of the
3216 * device's runtime suspend function and mark last busy for the device so
3217 * that PM core will try to auto suspend the device at a later time.
3218 *
3219 * This function should be called near the end of the device's
3220 * runtime_suspend callback.
3221 */
3222 void blk_post_runtime_suspend(struct request_queue *q, int err)
3223 {
3224 spin_lock_irq(q->queue_lock);
3225 if (!err) {
3226 q->rpm_status = RPM_SUSPENDED;
3227 } else {
3228 q->rpm_status = RPM_ACTIVE;
3229 pm_runtime_mark_last_busy(q->dev);
3230 }
3231 spin_unlock_irq(q->queue_lock);
3232 }
3233 EXPORT_SYMBOL(blk_post_runtime_suspend);
3234
3235 /**
3236 * blk_pre_runtime_resume - Pre runtime resume processing
3237 * @q: the queue of the device
3238 *
3239 * Description:
3240 * Update the queue's runtime status to RESUMING in preparation for the
3241 * runtime resume of the device.
3242 *
3243 * This function should be called near the start of the device's
3244 * runtime_resume callback.
3245 */
3246 void blk_pre_runtime_resume(struct request_queue *q)
3247 {
3248 spin_lock_irq(q->queue_lock);
3249 q->rpm_status = RPM_RESUMING;
3250 spin_unlock_irq(q->queue_lock);
3251 }
3252 EXPORT_SYMBOL(blk_pre_runtime_resume);
3253
3254 /**
3255 * blk_post_runtime_resume - Post runtime resume processing
3256 * @q: the queue of the device
3257 * @err: return value of the device's runtime_resume function
3258 *
3259 * Description:
3260 * Update the queue's runtime status according to the return value of the
3261 * device's runtime_resume function. If it is successfully resumed, process
3262 * the requests that are queued into the device's queue when it is resuming
3263 * and then mark last busy and initiate autosuspend for it.
3264 *
3265 * This function should be called near the end of the device's
3266 * runtime_resume callback.
3267 */
3268 void blk_post_runtime_resume(struct request_queue *q, int err)
3269 {
3270 spin_lock_irq(q->queue_lock);
3271 if (!err) {
3272 q->rpm_status = RPM_ACTIVE;
3273 __blk_run_queue(q);
3274 pm_runtime_mark_last_busy(q->dev);
3275 pm_request_autosuspend(q->dev);
3276 } else {
3277 q->rpm_status = RPM_SUSPENDED;
3278 }
3279 spin_unlock_irq(q->queue_lock);
3280 }
3281 EXPORT_SYMBOL(blk_post_runtime_resume);
3282 #endif
3283
3284 int __init blk_dev_init(void)
3285 {
3286 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3287 sizeof(((struct request *)0)->cmd_flags));
3288
3289 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3290 kblockd_workqueue = alloc_workqueue("kblockd",
3291 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3292 if (!kblockd_workqueue)
3293 panic("Failed to create kblockd\n");
3294
3295 request_cachep = kmem_cache_create("blkdev_requests",
3296 sizeof(struct request), 0, SLAB_PANIC, NULL);
3297
3298 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3299 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3300
3301 return 0;
3302 }
This page took 0.137418 seconds and 6 git commands to generate.