Revert "block, dm: don't copy bios for request clones"
[deliverable/linux.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/block.h>
38
39 #include "blk.h"
40 #include "blk-cgroup.h"
41 #include "blk-mq.h"
42
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
48
49 DEFINE_IDA(blk_queue_ida);
50
51 /*
52 * For the allocated request tables
53 */
54 struct kmem_cache *request_cachep = NULL;
55
56 /*
57 * For queue allocation
58 */
59 struct kmem_cache *blk_requestq_cachep;
60
61 /*
62 * Controlling structure to kblockd
63 */
64 static struct workqueue_struct *kblockd_workqueue;
65
66 void blk_queue_congestion_threshold(struct request_queue *q)
67 {
68 int nr;
69
70 nr = q->nr_requests - (q->nr_requests / 8) + 1;
71 if (nr > q->nr_requests)
72 nr = q->nr_requests;
73 q->nr_congestion_on = nr;
74
75 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
76 if (nr < 1)
77 nr = 1;
78 q->nr_congestion_off = nr;
79 }
80
81 /**
82 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
83 * @bdev: device
84 *
85 * Locates the passed device's request queue and returns the address of its
86 * backing_dev_info. This function can only be called if @bdev is opened
87 * and the return value is never NULL.
88 */
89 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
90 {
91 struct request_queue *q = bdev_get_queue(bdev);
92
93 return &q->backing_dev_info;
94 }
95 EXPORT_SYMBOL(blk_get_backing_dev_info);
96
97 void blk_rq_init(struct request_queue *q, struct request *rq)
98 {
99 memset(rq, 0, sizeof(*rq));
100
101 INIT_LIST_HEAD(&rq->queuelist);
102 INIT_LIST_HEAD(&rq->timeout_list);
103 rq->cpu = -1;
104 rq->q = q;
105 rq->__sector = (sector_t) -1;
106 INIT_HLIST_NODE(&rq->hash);
107 RB_CLEAR_NODE(&rq->rb_node);
108 rq->cmd = rq->__cmd;
109 rq->cmd_len = BLK_MAX_CDB;
110 rq->tag = -1;
111 rq->start_time = jiffies;
112 set_start_time_ns(rq);
113 rq->part = NULL;
114 }
115 EXPORT_SYMBOL(blk_rq_init);
116
117 static void req_bio_endio(struct request *rq, struct bio *bio,
118 unsigned int nbytes, int error)
119 {
120 if (error)
121 clear_bit(BIO_UPTODATE, &bio->bi_flags);
122 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
123 error = -EIO;
124
125 if (unlikely(rq->cmd_flags & REQ_QUIET))
126 set_bit(BIO_QUIET, &bio->bi_flags);
127
128 bio_advance(bio, nbytes);
129
130 /* don't actually finish bio if it's part of flush sequence */
131 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
132 bio_endio(bio, error);
133 }
134
135 void blk_dump_rq_flags(struct request *rq, char *msg)
136 {
137 int bit;
138
139 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
140 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
141 (unsigned long long) rq->cmd_flags);
142
143 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
144 (unsigned long long)blk_rq_pos(rq),
145 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
146 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
147 rq->bio, rq->biotail, blk_rq_bytes(rq));
148
149 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
150 printk(KERN_INFO " cdb: ");
151 for (bit = 0; bit < BLK_MAX_CDB; bit++)
152 printk("%02x ", rq->cmd[bit]);
153 printk("\n");
154 }
155 }
156 EXPORT_SYMBOL(blk_dump_rq_flags);
157
158 static void blk_delay_work(struct work_struct *work)
159 {
160 struct request_queue *q;
161
162 q = container_of(work, struct request_queue, delay_work.work);
163 spin_lock_irq(q->queue_lock);
164 __blk_run_queue(q);
165 spin_unlock_irq(q->queue_lock);
166 }
167
168 /**
169 * blk_delay_queue - restart queueing after defined interval
170 * @q: The &struct request_queue in question
171 * @msecs: Delay in msecs
172 *
173 * Description:
174 * Sometimes queueing needs to be postponed for a little while, to allow
175 * resources to come back. This function will make sure that queueing is
176 * restarted around the specified time. Queue lock must be held.
177 */
178 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
179 {
180 if (likely(!blk_queue_dead(q)))
181 queue_delayed_work(kblockd_workqueue, &q->delay_work,
182 msecs_to_jiffies(msecs));
183 }
184 EXPORT_SYMBOL(blk_delay_queue);
185
186 /**
187 * blk_start_queue - restart a previously stopped queue
188 * @q: The &struct request_queue in question
189 *
190 * Description:
191 * blk_start_queue() will clear the stop flag on the queue, and call
192 * the request_fn for the queue if it was in a stopped state when
193 * entered. Also see blk_stop_queue(). Queue lock must be held.
194 **/
195 void blk_start_queue(struct request_queue *q)
196 {
197 WARN_ON(!irqs_disabled());
198
199 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
200 __blk_run_queue(q);
201 }
202 EXPORT_SYMBOL(blk_start_queue);
203
204 /**
205 * blk_stop_queue - stop a queue
206 * @q: The &struct request_queue in question
207 *
208 * Description:
209 * The Linux block layer assumes that a block driver will consume all
210 * entries on the request queue when the request_fn strategy is called.
211 * Often this will not happen, because of hardware limitations (queue
212 * depth settings). If a device driver gets a 'queue full' response,
213 * or if it simply chooses not to queue more I/O at one point, it can
214 * call this function to prevent the request_fn from being called until
215 * the driver has signalled it's ready to go again. This happens by calling
216 * blk_start_queue() to restart queue operations. Queue lock must be held.
217 **/
218 void blk_stop_queue(struct request_queue *q)
219 {
220 cancel_delayed_work(&q->delay_work);
221 queue_flag_set(QUEUE_FLAG_STOPPED, q);
222 }
223 EXPORT_SYMBOL(blk_stop_queue);
224
225 /**
226 * blk_sync_queue - cancel any pending callbacks on a queue
227 * @q: the queue
228 *
229 * Description:
230 * The block layer may perform asynchronous callback activity
231 * on a queue, such as calling the unplug function after a timeout.
232 * A block device may call blk_sync_queue to ensure that any
233 * such activity is cancelled, thus allowing it to release resources
234 * that the callbacks might use. The caller must already have made sure
235 * that its ->make_request_fn will not re-add plugging prior to calling
236 * this function.
237 *
238 * This function does not cancel any asynchronous activity arising
239 * out of elevator or throttling code. That would require elevator_exit()
240 * and blkcg_exit_queue() to be called with queue lock initialized.
241 *
242 */
243 void blk_sync_queue(struct request_queue *q)
244 {
245 del_timer_sync(&q->timeout);
246
247 if (q->mq_ops) {
248 struct blk_mq_hw_ctx *hctx;
249 int i;
250
251 queue_for_each_hw_ctx(q, hctx, i) {
252 cancel_delayed_work_sync(&hctx->run_work);
253 cancel_delayed_work_sync(&hctx->delay_work);
254 }
255 } else {
256 cancel_delayed_work_sync(&q->delay_work);
257 }
258 }
259 EXPORT_SYMBOL(blk_sync_queue);
260
261 /**
262 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
263 * @q: The queue to run
264 *
265 * Description:
266 * Invoke request handling on a queue if there are any pending requests.
267 * May be used to restart request handling after a request has completed.
268 * This variant runs the queue whether or not the queue has been
269 * stopped. Must be called with the queue lock held and interrupts
270 * disabled. See also @blk_run_queue.
271 */
272 inline void __blk_run_queue_uncond(struct request_queue *q)
273 {
274 if (unlikely(blk_queue_dead(q)))
275 return;
276
277 /*
278 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
279 * the queue lock internally. As a result multiple threads may be
280 * running such a request function concurrently. Keep track of the
281 * number of active request_fn invocations such that blk_drain_queue()
282 * can wait until all these request_fn calls have finished.
283 */
284 q->request_fn_active++;
285 q->request_fn(q);
286 q->request_fn_active--;
287 }
288 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
289
290 /**
291 * __blk_run_queue - run a single device queue
292 * @q: The queue to run
293 *
294 * Description:
295 * See @blk_run_queue. This variant must be called with the queue lock
296 * held and interrupts disabled.
297 */
298 void __blk_run_queue(struct request_queue *q)
299 {
300 if (unlikely(blk_queue_stopped(q)))
301 return;
302
303 __blk_run_queue_uncond(q);
304 }
305 EXPORT_SYMBOL(__blk_run_queue);
306
307 /**
308 * blk_run_queue_async - run a single device queue in workqueue context
309 * @q: The queue to run
310 *
311 * Description:
312 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
313 * of us. The caller must hold the queue lock.
314 */
315 void blk_run_queue_async(struct request_queue *q)
316 {
317 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
318 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
319 }
320 EXPORT_SYMBOL(blk_run_queue_async);
321
322 /**
323 * blk_run_queue - run a single device queue
324 * @q: The queue to run
325 *
326 * Description:
327 * Invoke request handling on this queue, if it has pending work to do.
328 * May be used to restart queueing when a request has completed.
329 */
330 void blk_run_queue(struct request_queue *q)
331 {
332 unsigned long flags;
333
334 spin_lock_irqsave(q->queue_lock, flags);
335 __blk_run_queue(q);
336 spin_unlock_irqrestore(q->queue_lock, flags);
337 }
338 EXPORT_SYMBOL(blk_run_queue);
339
340 void blk_put_queue(struct request_queue *q)
341 {
342 kobject_put(&q->kobj);
343 }
344 EXPORT_SYMBOL(blk_put_queue);
345
346 /**
347 * __blk_drain_queue - drain requests from request_queue
348 * @q: queue to drain
349 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
350 *
351 * Drain requests from @q. If @drain_all is set, all requests are drained.
352 * If not, only ELVPRIV requests are drained. The caller is responsible
353 * for ensuring that no new requests which need to be drained are queued.
354 */
355 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
356 __releases(q->queue_lock)
357 __acquires(q->queue_lock)
358 {
359 int i;
360
361 lockdep_assert_held(q->queue_lock);
362
363 while (true) {
364 bool drain = false;
365
366 /*
367 * The caller might be trying to drain @q before its
368 * elevator is initialized.
369 */
370 if (q->elevator)
371 elv_drain_elevator(q);
372
373 blkcg_drain_queue(q);
374
375 /*
376 * This function might be called on a queue which failed
377 * driver init after queue creation or is not yet fully
378 * active yet. Some drivers (e.g. fd and loop) get unhappy
379 * in such cases. Kick queue iff dispatch queue has
380 * something on it and @q has request_fn set.
381 */
382 if (!list_empty(&q->queue_head) && q->request_fn)
383 __blk_run_queue(q);
384
385 drain |= q->nr_rqs_elvpriv;
386 drain |= q->request_fn_active;
387
388 /*
389 * Unfortunately, requests are queued at and tracked from
390 * multiple places and there's no single counter which can
391 * be drained. Check all the queues and counters.
392 */
393 if (drain_all) {
394 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
395 drain |= !list_empty(&q->queue_head);
396 for (i = 0; i < 2; i++) {
397 drain |= q->nr_rqs[i];
398 drain |= q->in_flight[i];
399 if (fq)
400 drain |= !list_empty(&fq->flush_queue[i]);
401 }
402 }
403
404 if (!drain)
405 break;
406
407 spin_unlock_irq(q->queue_lock);
408
409 msleep(10);
410
411 spin_lock_irq(q->queue_lock);
412 }
413
414 /*
415 * With queue marked dead, any woken up waiter will fail the
416 * allocation path, so the wakeup chaining is lost and we're
417 * left with hung waiters. We need to wake up those waiters.
418 */
419 if (q->request_fn) {
420 struct request_list *rl;
421
422 blk_queue_for_each_rl(rl, q)
423 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
424 wake_up_all(&rl->wait[i]);
425 }
426 }
427
428 /**
429 * blk_queue_bypass_start - enter queue bypass mode
430 * @q: queue of interest
431 *
432 * In bypass mode, only the dispatch FIFO queue of @q is used. This
433 * function makes @q enter bypass mode and drains all requests which were
434 * throttled or issued before. On return, it's guaranteed that no request
435 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
436 * inside queue or RCU read lock.
437 */
438 void blk_queue_bypass_start(struct request_queue *q)
439 {
440 spin_lock_irq(q->queue_lock);
441 q->bypass_depth++;
442 queue_flag_set(QUEUE_FLAG_BYPASS, q);
443 spin_unlock_irq(q->queue_lock);
444
445 /*
446 * Queues start drained. Skip actual draining till init is
447 * complete. This avoids lenghty delays during queue init which
448 * can happen many times during boot.
449 */
450 if (blk_queue_init_done(q)) {
451 spin_lock_irq(q->queue_lock);
452 __blk_drain_queue(q, false);
453 spin_unlock_irq(q->queue_lock);
454
455 /* ensure blk_queue_bypass() is %true inside RCU read lock */
456 synchronize_rcu();
457 }
458 }
459 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
460
461 /**
462 * blk_queue_bypass_end - leave queue bypass mode
463 * @q: queue of interest
464 *
465 * Leave bypass mode and restore the normal queueing behavior.
466 */
467 void blk_queue_bypass_end(struct request_queue *q)
468 {
469 spin_lock_irq(q->queue_lock);
470 if (!--q->bypass_depth)
471 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
472 WARN_ON_ONCE(q->bypass_depth < 0);
473 spin_unlock_irq(q->queue_lock);
474 }
475 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
476
477 void blk_set_queue_dying(struct request_queue *q)
478 {
479 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
480
481 if (q->mq_ops)
482 blk_mq_wake_waiters(q);
483 else {
484 struct request_list *rl;
485
486 blk_queue_for_each_rl(rl, q) {
487 if (rl->rq_pool) {
488 wake_up(&rl->wait[BLK_RW_SYNC]);
489 wake_up(&rl->wait[BLK_RW_ASYNC]);
490 }
491 }
492 }
493 }
494 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
495
496 /**
497 * blk_cleanup_queue - shutdown a request queue
498 * @q: request queue to shutdown
499 *
500 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
501 * put it. All future requests will be failed immediately with -ENODEV.
502 */
503 void blk_cleanup_queue(struct request_queue *q)
504 {
505 spinlock_t *lock = q->queue_lock;
506
507 /* mark @q DYING, no new request or merges will be allowed afterwards */
508 mutex_lock(&q->sysfs_lock);
509 blk_set_queue_dying(q);
510 spin_lock_irq(lock);
511
512 /*
513 * A dying queue is permanently in bypass mode till released. Note
514 * that, unlike blk_queue_bypass_start(), we aren't performing
515 * synchronize_rcu() after entering bypass mode to avoid the delay
516 * as some drivers create and destroy a lot of queues while
517 * probing. This is still safe because blk_release_queue() will be
518 * called only after the queue refcnt drops to zero and nothing,
519 * RCU or not, would be traversing the queue by then.
520 */
521 q->bypass_depth++;
522 queue_flag_set(QUEUE_FLAG_BYPASS, q);
523
524 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
525 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
526 queue_flag_set(QUEUE_FLAG_DYING, q);
527 spin_unlock_irq(lock);
528 mutex_unlock(&q->sysfs_lock);
529
530 /*
531 * Drain all requests queued before DYING marking. Set DEAD flag to
532 * prevent that q->request_fn() gets invoked after draining finished.
533 */
534 if (q->mq_ops) {
535 blk_mq_freeze_queue(q);
536 spin_lock_irq(lock);
537 } else {
538 spin_lock_irq(lock);
539 __blk_drain_queue(q, true);
540 }
541 queue_flag_set(QUEUE_FLAG_DEAD, q);
542 spin_unlock_irq(lock);
543
544 /* @q won't process any more request, flush async actions */
545 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
546 blk_sync_queue(q);
547
548 if (q->mq_ops)
549 blk_mq_free_queue(q);
550
551 spin_lock_irq(lock);
552 if (q->queue_lock != &q->__queue_lock)
553 q->queue_lock = &q->__queue_lock;
554 spin_unlock_irq(lock);
555
556 bdi_destroy(&q->backing_dev_info);
557
558 /* @q is and will stay empty, shutdown and put */
559 blk_put_queue(q);
560 }
561 EXPORT_SYMBOL(blk_cleanup_queue);
562
563 /* Allocate memory local to the request queue */
564 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
565 {
566 int nid = (int)(long)data;
567 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
568 }
569
570 static void free_request_struct(void *element, void *unused)
571 {
572 kmem_cache_free(request_cachep, element);
573 }
574
575 int blk_init_rl(struct request_list *rl, struct request_queue *q,
576 gfp_t gfp_mask)
577 {
578 if (unlikely(rl->rq_pool))
579 return 0;
580
581 rl->q = q;
582 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
583 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
584 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
585 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
586
587 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
588 free_request_struct,
589 (void *)(long)q->node, gfp_mask,
590 q->node);
591 if (!rl->rq_pool)
592 return -ENOMEM;
593
594 return 0;
595 }
596
597 void blk_exit_rl(struct request_list *rl)
598 {
599 if (rl->rq_pool)
600 mempool_destroy(rl->rq_pool);
601 }
602
603 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
604 {
605 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
606 }
607 EXPORT_SYMBOL(blk_alloc_queue);
608
609 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
610 {
611 struct request_queue *q;
612 int err;
613
614 q = kmem_cache_alloc_node(blk_requestq_cachep,
615 gfp_mask | __GFP_ZERO, node_id);
616 if (!q)
617 return NULL;
618
619 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
620 if (q->id < 0)
621 goto fail_q;
622
623 q->backing_dev_info.ra_pages =
624 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
625 q->backing_dev_info.state = 0;
626 q->backing_dev_info.capabilities = 0;
627 q->backing_dev_info.name = "block";
628 q->node = node_id;
629
630 err = bdi_init(&q->backing_dev_info);
631 if (err)
632 goto fail_id;
633
634 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
635 laptop_mode_timer_fn, (unsigned long) q);
636 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
637 INIT_LIST_HEAD(&q->queue_head);
638 INIT_LIST_HEAD(&q->timeout_list);
639 INIT_LIST_HEAD(&q->icq_list);
640 #ifdef CONFIG_BLK_CGROUP
641 INIT_LIST_HEAD(&q->blkg_list);
642 #endif
643 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
644
645 kobject_init(&q->kobj, &blk_queue_ktype);
646
647 mutex_init(&q->sysfs_lock);
648 spin_lock_init(&q->__queue_lock);
649
650 /*
651 * By default initialize queue_lock to internal lock and driver can
652 * override it later if need be.
653 */
654 q->queue_lock = &q->__queue_lock;
655
656 /*
657 * A queue starts its life with bypass turned on to avoid
658 * unnecessary bypass on/off overhead and nasty surprises during
659 * init. The initial bypass will be finished when the queue is
660 * registered by blk_register_queue().
661 */
662 q->bypass_depth = 1;
663 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
664
665 init_waitqueue_head(&q->mq_freeze_wq);
666
667 if (blkcg_init_queue(q))
668 goto fail_bdi;
669
670 return q;
671
672 fail_bdi:
673 bdi_destroy(&q->backing_dev_info);
674 fail_id:
675 ida_simple_remove(&blk_queue_ida, q->id);
676 fail_q:
677 kmem_cache_free(blk_requestq_cachep, q);
678 return NULL;
679 }
680 EXPORT_SYMBOL(blk_alloc_queue_node);
681
682 /**
683 * blk_init_queue - prepare a request queue for use with a block device
684 * @rfn: The function to be called to process requests that have been
685 * placed on the queue.
686 * @lock: Request queue spin lock
687 *
688 * Description:
689 * If a block device wishes to use the standard request handling procedures,
690 * which sorts requests and coalesces adjacent requests, then it must
691 * call blk_init_queue(). The function @rfn will be called when there
692 * are requests on the queue that need to be processed. If the device
693 * supports plugging, then @rfn may not be called immediately when requests
694 * are available on the queue, but may be called at some time later instead.
695 * Plugged queues are generally unplugged when a buffer belonging to one
696 * of the requests on the queue is needed, or due to memory pressure.
697 *
698 * @rfn is not required, or even expected, to remove all requests off the
699 * queue, but only as many as it can handle at a time. If it does leave
700 * requests on the queue, it is responsible for arranging that the requests
701 * get dealt with eventually.
702 *
703 * The queue spin lock must be held while manipulating the requests on the
704 * request queue; this lock will be taken also from interrupt context, so irq
705 * disabling is needed for it.
706 *
707 * Function returns a pointer to the initialized request queue, or %NULL if
708 * it didn't succeed.
709 *
710 * Note:
711 * blk_init_queue() must be paired with a blk_cleanup_queue() call
712 * when the block device is deactivated (such as at module unload).
713 **/
714
715 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
716 {
717 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
718 }
719 EXPORT_SYMBOL(blk_init_queue);
720
721 struct request_queue *
722 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
723 {
724 struct request_queue *uninit_q, *q;
725
726 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
727 if (!uninit_q)
728 return NULL;
729
730 q = blk_init_allocated_queue(uninit_q, rfn, lock);
731 if (!q)
732 blk_cleanup_queue(uninit_q);
733
734 return q;
735 }
736 EXPORT_SYMBOL(blk_init_queue_node);
737
738 static void blk_queue_bio(struct request_queue *q, struct bio *bio);
739
740 struct request_queue *
741 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
742 spinlock_t *lock)
743 {
744 if (!q)
745 return NULL;
746
747 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
748 if (!q->fq)
749 return NULL;
750
751 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
752 goto fail;
753
754 q->request_fn = rfn;
755 q->prep_rq_fn = NULL;
756 q->unprep_rq_fn = NULL;
757 q->queue_flags |= QUEUE_FLAG_DEFAULT;
758
759 /* Override internal queue lock with supplied lock pointer */
760 if (lock)
761 q->queue_lock = lock;
762
763 /*
764 * This also sets hw/phys segments, boundary and size
765 */
766 blk_queue_make_request(q, blk_queue_bio);
767
768 q->sg_reserved_size = INT_MAX;
769
770 /* Protect q->elevator from elevator_change */
771 mutex_lock(&q->sysfs_lock);
772
773 /* init elevator */
774 if (elevator_init(q, NULL)) {
775 mutex_unlock(&q->sysfs_lock);
776 goto fail;
777 }
778
779 mutex_unlock(&q->sysfs_lock);
780
781 return q;
782
783 fail:
784 blk_free_flush_queue(q->fq);
785 return NULL;
786 }
787 EXPORT_SYMBOL(blk_init_allocated_queue);
788
789 bool blk_get_queue(struct request_queue *q)
790 {
791 if (likely(!blk_queue_dying(q))) {
792 __blk_get_queue(q);
793 return true;
794 }
795
796 return false;
797 }
798 EXPORT_SYMBOL(blk_get_queue);
799
800 static inline void blk_free_request(struct request_list *rl, struct request *rq)
801 {
802 if (rq->cmd_flags & REQ_ELVPRIV) {
803 elv_put_request(rl->q, rq);
804 if (rq->elv.icq)
805 put_io_context(rq->elv.icq->ioc);
806 }
807
808 mempool_free(rq, rl->rq_pool);
809 }
810
811 /*
812 * ioc_batching returns true if the ioc is a valid batching request and
813 * should be given priority access to a request.
814 */
815 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
816 {
817 if (!ioc)
818 return 0;
819
820 /*
821 * Make sure the process is able to allocate at least 1 request
822 * even if the batch times out, otherwise we could theoretically
823 * lose wakeups.
824 */
825 return ioc->nr_batch_requests == q->nr_batching ||
826 (ioc->nr_batch_requests > 0
827 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
828 }
829
830 /*
831 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
832 * will cause the process to be a "batcher" on all queues in the system. This
833 * is the behaviour we want though - once it gets a wakeup it should be given
834 * a nice run.
835 */
836 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
837 {
838 if (!ioc || ioc_batching(q, ioc))
839 return;
840
841 ioc->nr_batch_requests = q->nr_batching;
842 ioc->last_waited = jiffies;
843 }
844
845 static void __freed_request(struct request_list *rl, int sync)
846 {
847 struct request_queue *q = rl->q;
848
849 /*
850 * bdi isn't aware of blkcg yet. As all async IOs end up root
851 * blkcg anyway, just use root blkcg state.
852 */
853 if (rl == &q->root_rl &&
854 rl->count[sync] < queue_congestion_off_threshold(q))
855 blk_clear_queue_congested(q, sync);
856
857 if (rl->count[sync] + 1 <= q->nr_requests) {
858 if (waitqueue_active(&rl->wait[sync]))
859 wake_up(&rl->wait[sync]);
860
861 blk_clear_rl_full(rl, sync);
862 }
863 }
864
865 /*
866 * A request has just been released. Account for it, update the full and
867 * congestion status, wake up any waiters. Called under q->queue_lock.
868 */
869 static void freed_request(struct request_list *rl, unsigned int flags)
870 {
871 struct request_queue *q = rl->q;
872 int sync = rw_is_sync(flags);
873
874 q->nr_rqs[sync]--;
875 rl->count[sync]--;
876 if (flags & REQ_ELVPRIV)
877 q->nr_rqs_elvpriv--;
878
879 __freed_request(rl, sync);
880
881 if (unlikely(rl->starved[sync ^ 1]))
882 __freed_request(rl, sync ^ 1);
883 }
884
885 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
886 {
887 struct request_list *rl;
888
889 spin_lock_irq(q->queue_lock);
890 q->nr_requests = nr;
891 blk_queue_congestion_threshold(q);
892
893 /* congestion isn't cgroup aware and follows root blkcg for now */
894 rl = &q->root_rl;
895
896 if (rl->count[BLK_RW_SYNC] >= queue_congestion_on_threshold(q))
897 blk_set_queue_congested(q, BLK_RW_SYNC);
898 else if (rl->count[BLK_RW_SYNC] < queue_congestion_off_threshold(q))
899 blk_clear_queue_congested(q, BLK_RW_SYNC);
900
901 if (rl->count[BLK_RW_ASYNC] >= queue_congestion_on_threshold(q))
902 blk_set_queue_congested(q, BLK_RW_ASYNC);
903 else if (rl->count[BLK_RW_ASYNC] < queue_congestion_off_threshold(q))
904 blk_clear_queue_congested(q, BLK_RW_ASYNC);
905
906 blk_queue_for_each_rl(rl, q) {
907 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
908 blk_set_rl_full(rl, BLK_RW_SYNC);
909 } else {
910 blk_clear_rl_full(rl, BLK_RW_SYNC);
911 wake_up(&rl->wait[BLK_RW_SYNC]);
912 }
913
914 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
915 blk_set_rl_full(rl, BLK_RW_ASYNC);
916 } else {
917 blk_clear_rl_full(rl, BLK_RW_ASYNC);
918 wake_up(&rl->wait[BLK_RW_ASYNC]);
919 }
920 }
921
922 spin_unlock_irq(q->queue_lock);
923 return 0;
924 }
925
926 /*
927 * Determine if elevator data should be initialized when allocating the
928 * request associated with @bio.
929 */
930 static bool blk_rq_should_init_elevator(struct bio *bio)
931 {
932 if (!bio)
933 return true;
934
935 /*
936 * Flush requests do not use the elevator so skip initialization.
937 * This allows a request to share the flush and elevator data.
938 */
939 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
940 return false;
941
942 return true;
943 }
944
945 /**
946 * rq_ioc - determine io_context for request allocation
947 * @bio: request being allocated is for this bio (can be %NULL)
948 *
949 * Determine io_context to use for request allocation for @bio. May return
950 * %NULL if %current->io_context doesn't exist.
951 */
952 static struct io_context *rq_ioc(struct bio *bio)
953 {
954 #ifdef CONFIG_BLK_CGROUP
955 if (bio && bio->bi_ioc)
956 return bio->bi_ioc;
957 #endif
958 return current->io_context;
959 }
960
961 /**
962 * __get_request - get a free request
963 * @rl: request list to allocate from
964 * @rw_flags: RW and SYNC flags
965 * @bio: bio to allocate request for (can be %NULL)
966 * @gfp_mask: allocation mask
967 *
968 * Get a free request from @q. This function may fail under memory
969 * pressure or if @q is dead.
970 *
971 * Must be called with @q->queue_lock held and,
972 * Returns ERR_PTR on failure, with @q->queue_lock held.
973 * Returns request pointer on success, with @q->queue_lock *not held*.
974 */
975 static struct request *__get_request(struct request_list *rl, int rw_flags,
976 struct bio *bio, gfp_t gfp_mask)
977 {
978 struct request_queue *q = rl->q;
979 struct request *rq;
980 struct elevator_type *et = q->elevator->type;
981 struct io_context *ioc = rq_ioc(bio);
982 struct io_cq *icq = NULL;
983 const bool is_sync = rw_is_sync(rw_flags) != 0;
984 int may_queue;
985
986 if (unlikely(blk_queue_dying(q)))
987 return ERR_PTR(-ENODEV);
988
989 may_queue = elv_may_queue(q, rw_flags);
990 if (may_queue == ELV_MQUEUE_NO)
991 goto rq_starved;
992
993 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
994 if (rl->count[is_sync]+1 >= q->nr_requests) {
995 /*
996 * The queue will fill after this allocation, so set
997 * it as full, and mark this process as "batching".
998 * This process will be allowed to complete a batch of
999 * requests, others will be blocked.
1000 */
1001 if (!blk_rl_full(rl, is_sync)) {
1002 ioc_set_batching(q, ioc);
1003 blk_set_rl_full(rl, is_sync);
1004 } else {
1005 if (may_queue != ELV_MQUEUE_MUST
1006 && !ioc_batching(q, ioc)) {
1007 /*
1008 * The queue is full and the allocating
1009 * process is not a "batcher", and not
1010 * exempted by the IO scheduler
1011 */
1012 return ERR_PTR(-ENOMEM);
1013 }
1014 }
1015 }
1016 /*
1017 * bdi isn't aware of blkcg yet. As all async IOs end up
1018 * root blkcg anyway, just use root blkcg state.
1019 */
1020 if (rl == &q->root_rl)
1021 blk_set_queue_congested(q, is_sync);
1022 }
1023
1024 /*
1025 * Only allow batching queuers to allocate up to 50% over the defined
1026 * limit of requests, otherwise we could have thousands of requests
1027 * allocated with any setting of ->nr_requests
1028 */
1029 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1030 return ERR_PTR(-ENOMEM);
1031
1032 q->nr_rqs[is_sync]++;
1033 rl->count[is_sync]++;
1034 rl->starved[is_sync] = 0;
1035
1036 /*
1037 * Decide whether the new request will be managed by elevator. If
1038 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1039 * prevent the current elevator from being destroyed until the new
1040 * request is freed. This guarantees icq's won't be destroyed and
1041 * makes creating new ones safe.
1042 *
1043 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1044 * it will be created after releasing queue_lock.
1045 */
1046 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1047 rw_flags |= REQ_ELVPRIV;
1048 q->nr_rqs_elvpriv++;
1049 if (et->icq_cache && ioc)
1050 icq = ioc_lookup_icq(ioc, q);
1051 }
1052
1053 if (blk_queue_io_stat(q))
1054 rw_flags |= REQ_IO_STAT;
1055 spin_unlock_irq(q->queue_lock);
1056
1057 /* allocate and init request */
1058 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1059 if (!rq)
1060 goto fail_alloc;
1061
1062 blk_rq_init(q, rq);
1063 blk_rq_set_rl(rq, rl);
1064 rq->cmd_flags = rw_flags | REQ_ALLOCED;
1065
1066 /* init elvpriv */
1067 if (rw_flags & REQ_ELVPRIV) {
1068 if (unlikely(et->icq_cache && !icq)) {
1069 if (ioc)
1070 icq = ioc_create_icq(ioc, q, gfp_mask);
1071 if (!icq)
1072 goto fail_elvpriv;
1073 }
1074
1075 rq->elv.icq = icq;
1076 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1077 goto fail_elvpriv;
1078
1079 /* @rq->elv.icq holds io_context until @rq is freed */
1080 if (icq)
1081 get_io_context(icq->ioc);
1082 }
1083 out:
1084 /*
1085 * ioc may be NULL here, and ioc_batching will be false. That's
1086 * OK, if the queue is under the request limit then requests need
1087 * not count toward the nr_batch_requests limit. There will always
1088 * be some limit enforced by BLK_BATCH_TIME.
1089 */
1090 if (ioc_batching(q, ioc))
1091 ioc->nr_batch_requests--;
1092
1093 trace_block_getrq(q, bio, rw_flags & 1);
1094 return rq;
1095
1096 fail_elvpriv:
1097 /*
1098 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1099 * and may fail indefinitely under memory pressure and thus
1100 * shouldn't stall IO. Treat this request as !elvpriv. This will
1101 * disturb iosched and blkcg but weird is bettern than dead.
1102 */
1103 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1104 __func__, dev_name(q->backing_dev_info.dev));
1105
1106 rq->cmd_flags &= ~REQ_ELVPRIV;
1107 rq->elv.icq = NULL;
1108
1109 spin_lock_irq(q->queue_lock);
1110 q->nr_rqs_elvpriv--;
1111 spin_unlock_irq(q->queue_lock);
1112 goto out;
1113
1114 fail_alloc:
1115 /*
1116 * Allocation failed presumably due to memory. Undo anything we
1117 * might have messed up.
1118 *
1119 * Allocating task should really be put onto the front of the wait
1120 * queue, but this is pretty rare.
1121 */
1122 spin_lock_irq(q->queue_lock);
1123 freed_request(rl, rw_flags);
1124
1125 /*
1126 * in the very unlikely event that allocation failed and no
1127 * requests for this direction was pending, mark us starved so that
1128 * freeing of a request in the other direction will notice
1129 * us. another possible fix would be to split the rq mempool into
1130 * READ and WRITE
1131 */
1132 rq_starved:
1133 if (unlikely(rl->count[is_sync] == 0))
1134 rl->starved[is_sync] = 1;
1135 return ERR_PTR(-ENOMEM);
1136 }
1137
1138 /**
1139 * get_request - get a free request
1140 * @q: request_queue to allocate request from
1141 * @rw_flags: RW and SYNC flags
1142 * @bio: bio to allocate request for (can be %NULL)
1143 * @gfp_mask: allocation mask
1144 *
1145 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1146 * function keeps retrying under memory pressure and fails iff @q is dead.
1147 *
1148 * Must be called with @q->queue_lock held and,
1149 * Returns ERR_PTR on failure, with @q->queue_lock held.
1150 * Returns request pointer on success, with @q->queue_lock *not held*.
1151 */
1152 static struct request *get_request(struct request_queue *q, int rw_flags,
1153 struct bio *bio, gfp_t gfp_mask)
1154 {
1155 const bool is_sync = rw_is_sync(rw_flags) != 0;
1156 DEFINE_WAIT(wait);
1157 struct request_list *rl;
1158 struct request *rq;
1159
1160 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1161 retry:
1162 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1163 if (!IS_ERR(rq))
1164 return rq;
1165
1166 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1167 blk_put_rl(rl);
1168 return rq;
1169 }
1170
1171 /* wait on @rl and retry */
1172 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1173 TASK_UNINTERRUPTIBLE);
1174
1175 trace_block_sleeprq(q, bio, rw_flags & 1);
1176
1177 spin_unlock_irq(q->queue_lock);
1178 io_schedule();
1179
1180 /*
1181 * After sleeping, we become a "batching" process and will be able
1182 * to allocate at least one request, and up to a big batch of them
1183 * for a small period time. See ioc_batching, ioc_set_batching
1184 */
1185 ioc_set_batching(q, current->io_context);
1186
1187 spin_lock_irq(q->queue_lock);
1188 finish_wait(&rl->wait[is_sync], &wait);
1189
1190 goto retry;
1191 }
1192
1193 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1194 gfp_t gfp_mask)
1195 {
1196 struct request *rq;
1197
1198 BUG_ON(rw != READ && rw != WRITE);
1199
1200 /* create ioc upfront */
1201 create_io_context(gfp_mask, q->node);
1202
1203 spin_lock_irq(q->queue_lock);
1204 rq = get_request(q, rw, NULL, gfp_mask);
1205 if (IS_ERR(rq))
1206 spin_unlock_irq(q->queue_lock);
1207 /* q->queue_lock is unlocked at this point */
1208
1209 return rq;
1210 }
1211
1212 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1213 {
1214 if (q->mq_ops)
1215 return blk_mq_alloc_request(q, rw, gfp_mask, false);
1216 else
1217 return blk_old_get_request(q, rw, gfp_mask);
1218 }
1219 EXPORT_SYMBOL(blk_get_request);
1220
1221 /**
1222 * blk_make_request - given a bio, allocate a corresponding struct request.
1223 * @q: target request queue
1224 * @bio: The bio describing the memory mappings that will be submitted for IO.
1225 * It may be a chained-bio properly constructed by block/bio layer.
1226 * @gfp_mask: gfp flags to be used for memory allocation
1227 *
1228 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1229 * type commands. Where the struct request needs to be farther initialized by
1230 * the caller. It is passed a &struct bio, which describes the memory info of
1231 * the I/O transfer.
1232 *
1233 * The caller of blk_make_request must make sure that bi_io_vec
1234 * are set to describe the memory buffers. That bio_data_dir() will return
1235 * the needed direction of the request. (And all bio's in the passed bio-chain
1236 * are properly set accordingly)
1237 *
1238 * If called under none-sleepable conditions, mapped bio buffers must not
1239 * need bouncing, by calling the appropriate masked or flagged allocator,
1240 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1241 * BUG.
1242 *
1243 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1244 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1245 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1246 * completion of a bio that hasn't been submitted yet, thus resulting in a
1247 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1248 * of bio_alloc(), as that avoids the mempool deadlock.
1249 * If possible a big IO should be split into smaller parts when allocation
1250 * fails. Partial allocation should not be an error, or you risk a live-lock.
1251 */
1252 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1253 gfp_t gfp_mask)
1254 {
1255 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1256
1257 if (IS_ERR(rq))
1258 return rq;
1259
1260 blk_rq_set_block_pc(rq);
1261
1262 for_each_bio(bio) {
1263 struct bio *bounce_bio = bio;
1264 int ret;
1265
1266 blk_queue_bounce(q, &bounce_bio);
1267 ret = blk_rq_append_bio(q, rq, bounce_bio);
1268 if (unlikely(ret)) {
1269 blk_put_request(rq);
1270 return ERR_PTR(ret);
1271 }
1272 }
1273
1274 return rq;
1275 }
1276 EXPORT_SYMBOL(blk_make_request);
1277
1278 /**
1279 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1280 * @rq: request to be initialized
1281 *
1282 */
1283 void blk_rq_set_block_pc(struct request *rq)
1284 {
1285 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1286 rq->__data_len = 0;
1287 rq->__sector = (sector_t) -1;
1288 rq->bio = rq->biotail = NULL;
1289 memset(rq->__cmd, 0, sizeof(rq->__cmd));
1290 }
1291 EXPORT_SYMBOL(blk_rq_set_block_pc);
1292
1293 /**
1294 * blk_requeue_request - put a request back on queue
1295 * @q: request queue where request should be inserted
1296 * @rq: request to be inserted
1297 *
1298 * Description:
1299 * Drivers often keep queueing requests until the hardware cannot accept
1300 * more, when that condition happens we need to put the request back
1301 * on the queue. Must be called with queue lock held.
1302 */
1303 void blk_requeue_request(struct request_queue *q, struct request *rq)
1304 {
1305 blk_delete_timer(rq);
1306 blk_clear_rq_complete(rq);
1307 trace_block_rq_requeue(q, rq);
1308
1309 if (rq->cmd_flags & REQ_QUEUED)
1310 blk_queue_end_tag(q, rq);
1311
1312 BUG_ON(blk_queued_rq(rq));
1313
1314 elv_requeue_request(q, rq);
1315 }
1316 EXPORT_SYMBOL(blk_requeue_request);
1317
1318 static void add_acct_request(struct request_queue *q, struct request *rq,
1319 int where)
1320 {
1321 blk_account_io_start(rq, true);
1322 __elv_add_request(q, rq, where);
1323 }
1324
1325 static void part_round_stats_single(int cpu, struct hd_struct *part,
1326 unsigned long now)
1327 {
1328 int inflight;
1329
1330 if (now == part->stamp)
1331 return;
1332
1333 inflight = part_in_flight(part);
1334 if (inflight) {
1335 __part_stat_add(cpu, part, time_in_queue,
1336 inflight * (now - part->stamp));
1337 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1338 }
1339 part->stamp = now;
1340 }
1341
1342 /**
1343 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1344 * @cpu: cpu number for stats access
1345 * @part: target partition
1346 *
1347 * The average IO queue length and utilisation statistics are maintained
1348 * by observing the current state of the queue length and the amount of
1349 * time it has been in this state for.
1350 *
1351 * Normally, that accounting is done on IO completion, but that can result
1352 * in more than a second's worth of IO being accounted for within any one
1353 * second, leading to >100% utilisation. To deal with that, we call this
1354 * function to do a round-off before returning the results when reading
1355 * /proc/diskstats. This accounts immediately for all queue usage up to
1356 * the current jiffies and restarts the counters again.
1357 */
1358 void part_round_stats(int cpu, struct hd_struct *part)
1359 {
1360 unsigned long now = jiffies;
1361
1362 if (part->partno)
1363 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1364 part_round_stats_single(cpu, part, now);
1365 }
1366 EXPORT_SYMBOL_GPL(part_round_stats);
1367
1368 #ifdef CONFIG_PM
1369 static void blk_pm_put_request(struct request *rq)
1370 {
1371 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1372 pm_runtime_mark_last_busy(rq->q->dev);
1373 }
1374 #else
1375 static inline void blk_pm_put_request(struct request *rq) {}
1376 #endif
1377
1378 /*
1379 * queue lock must be held
1380 */
1381 void __blk_put_request(struct request_queue *q, struct request *req)
1382 {
1383 if (unlikely(!q))
1384 return;
1385
1386 if (q->mq_ops) {
1387 blk_mq_free_request(req);
1388 return;
1389 }
1390
1391 blk_pm_put_request(req);
1392
1393 elv_completed_request(q, req);
1394
1395 /* this is a bio leak */
1396 WARN_ON(req->bio != NULL);
1397
1398 /*
1399 * Request may not have originated from ll_rw_blk. if not,
1400 * it didn't come out of our reserved rq pools
1401 */
1402 if (req->cmd_flags & REQ_ALLOCED) {
1403 unsigned int flags = req->cmd_flags;
1404 struct request_list *rl = blk_rq_rl(req);
1405
1406 BUG_ON(!list_empty(&req->queuelist));
1407 BUG_ON(ELV_ON_HASH(req));
1408
1409 blk_free_request(rl, req);
1410 freed_request(rl, flags);
1411 blk_put_rl(rl);
1412 }
1413 }
1414 EXPORT_SYMBOL_GPL(__blk_put_request);
1415
1416 void blk_put_request(struct request *req)
1417 {
1418 struct request_queue *q = req->q;
1419
1420 if (q->mq_ops)
1421 blk_mq_free_request(req);
1422 else {
1423 unsigned long flags;
1424
1425 spin_lock_irqsave(q->queue_lock, flags);
1426 __blk_put_request(q, req);
1427 spin_unlock_irqrestore(q->queue_lock, flags);
1428 }
1429 }
1430 EXPORT_SYMBOL(blk_put_request);
1431
1432 /**
1433 * blk_add_request_payload - add a payload to a request
1434 * @rq: request to update
1435 * @page: page backing the payload
1436 * @len: length of the payload.
1437 *
1438 * This allows to later add a payload to an already submitted request by
1439 * a block driver. The driver needs to take care of freeing the payload
1440 * itself.
1441 *
1442 * Note that this is a quite horrible hack and nothing but handling of
1443 * discard requests should ever use it.
1444 */
1445 void blk_add_request_payload(struct request *rq, struct page *page,
1446 unsigned int len)
1447 {
1448 struct bio *bio = rq->bio;
1449
1450 bio->bi_io_vec->bv_page = page;
1451 bio->bi_io_vec->bv_offset = 0;
1452 bio->bi_io_vec->bv_len = len;
1453
1454 bio->bi_iter.bi_size = len;
1455 bio->bi_vcnt = 1;
1456 bio->bi_phys_segments = 1;
1457
1458 rq->__data_len = rq->resid_len = len;
1459 rq->nr_phys_segments = 1;
1460 }
1461 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1462
1463 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1464 struct bio *bio)
1465 {
1466 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1467
1468 if (!ll_back_merge_fn(q, req, bio))
1469 return false;
1470
1471 trace_block_bio_backmerge(q, req, bio);
1472
1473 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1474 blk_rq_set_mixed_merge(req);
1475
1476 req->biotail->bi_next = bio;
1477 req->biotail = bio;
1478 req->__data_len += bio->bi_iter.bi_size;
1479 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1480
1481 blk_account_io_start(req, false);
1482 return true;
1483 }
1484
1485 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1486 struct bio *bio)
1487 {
1488 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1489
1490 if (!ll_front_merge_fn(q, req, bio))
1491 return false;
1492
1493 trace_block_bio_frontmerge(q, req, bio);
1494
1495 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1496 blk_rq_set_mixed_merge(req);
1497
1498 bio->bi_next = req->bio;
1499 req->bio = bio;
1500
1501 req->__sector = bio->bi_iter.bi_sector;
1502 req->__data_len += bio->bi_iter.bi_size;
1503 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1504
1505 blk_account_io_start(req, false);
1506 return true;
1507 }
1508
1509 /**
1510 * blk_attempt_plug_merge - try to merge with %current's plugged list
1511 * @q: request_queue new bio is being queued at
1512 * @bio: new bio being queued
1513 * @request_count: out parameter for number of traversed plugged requests
1514 *
1515 * Determine whether @bio being queued on @q can be merged with a request
1516 * on %current's plugged list. Returns %true if merge was successful,
1517 * otherwise %false.
1518 *
1519 * Plugging coalesces IOs from the same issuer for the same purpose without
1520 * going through @q->queue_lock. As such it's more of an issuing mechanism
1521 * than scheduling, and the request, while may have elvpriv data, is not
1522 * added on the elevator at this point. In addition, we don't have
1523 * reliable access to the elevator outside queue lock. Only check basic
1524 * merging parameters without querying the elevator.
1525 *
1526 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1527 */
1528 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1529 unsigned int *request_count,
1530 struct request **same_queue_rq)
1531 {
1532 struct blk_plug *plug;
1533 struct request *rq;
1534 bool ret = false;
1535 struct list_head *plug_list;
1536
1537 plug = current->plug;
1538 if (!plug)
1539 goto out;
1540 *request_count = 0;
1541
1542 if (q->mq_ops)
1543 plug_list = &plug->mq_list;
1544 else
1545 plug_list = &plug->list;
1546
1547 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1548 int el_ret;
1549
1550 if (rq->q == q) {
1551 (*request_count)++;
1552 /*
1553 * Only blk-mq multiple hardware queues case checks the
1554 * rq in the same queue, there should be only one such
1555 * rq in a queue
1556 **/
1557 if (same_queue_rq)
1558 *same_queue_rq = rq;
1559 }
1560
1561 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1562 continue;
1563
1564 el_ret = blk_try_merge(rq, bio);
1565 if (el_ret == ELEVATOR_BACK_MERGE) {
1566 ret = bio_attempt_back_merge(q, rq, bio);
1567 if (ret)
1568 break;
1569 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1570 ret = bio_attempt_front_merge(q, rq, bio);
1571 if (ret)
1572 break;
1573 }
1574 }
1575 out:
1576 return ret;
1577 }
1578
1579 void init_request_from_bio(struct request *req, struct bio *bio)
1580 {
1581 req->cmd_type = REQ_TYPE_FS;
1582
1583 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1584 if (bio->bi_rw & REQ_RAHEAD)
1585 req->cmd_flags |= REQ_FAILFAST_MASK;
1586
1587 req->errors = 0;
1588 req->__sector = bio->bi_iter.bi_sector;
1589 req->ioprio = bio_prio(bio);
1590 blk_rq_bio_prep(req->q, req, bio);
1591 }
1592
1593 static void blk_queue_bio(struct request_queue *q, struct bio *bio)
1594 {
1595 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1596 struct blk_plug *plug;
1597 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1598 struct request *req;
1599 unsigned int request_count = 0;
1600
1601 /*
1602 * low level driver can indicate that it wants pages above a
1603 * certain limit bounced to low memory (ie for highmem, or even
1604 * ISA dma in theory)
1605 */
1606 blk_queue_bounce(q, &bio);
1607
1608 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1609 bio_endio(bio, -EIO);
1610 return;
1611 }
1612
1613 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1614 spin_lock_irq(q->queue_lock);
1615 where = ELEVATOR_INSERT_FLUSH;
1616 goto get_rq;
1617 }
1618
1619 /*
1620 * Check if we can merge with the plugged list before grabbing
1621 * any locks.
1622 */
1623 if (!blk_queue_nomerges(q) &&
1624 blk_attempt_plug_merge(q, bio, &request_count, NULL))
1625 return;
1626
1627 spin_lock_irq(q->queue_lock);
1628
1629 el_ret = elv_merge(q, &req, bio);
1630 if (el_ret == ELEVATOR_BACK_MERGE) {
1631 if (bio_attempt_back_merge(q, req, bio)) {
1632 elv_bio_merged(q, req, bio);
1633 if (!attempt_back_merge(q, req))
1634 elv_merged_request(q, req, el_ret);
1635 goto out_unlock;
1636 }
1637 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1638 if (bio_attempt_front_merge(q, req, bio)) {
1639 elv_bio_merged(q, req, bio);
1640 if (!attempt_front_merge(q, req))
1641 elv_merged_request(q, req, el_ret);
1642 goto out_unlock;
1643 }
1644 }
1645
1646 get_rq:
1647 /*
1648 * This sync check and mask will be re-done in init_request_from_bio(),
1649 * but we need to set it earlier to expose the sync flag to the
1650 * rq allocator and io schedulers.
1651 */
1652 rw_flags = bio_data_dir(bio);
1653 if (sync)
1654 rw_flags |= REQ_SYNC;
1655
1656 /*
1657 * Grab a free request. This is might sleep but can not fail.
1658 * Returns with the queue unlocked.
1659 */
1660 req = get_request(q, rw_flags, bio, GFP_NOIO);
1661 if (IS_ERR(req)) {
1662 bio_endio(bio, PTR_ERR(req)); /* @q is dead */
1663 goto out_unlock;
1664 }
1665
1666 /*
1667 * After dropping the lock and possibly sleeping here, our request
1668 * may now be mergeable after it had proven unmergeable (above).
1669 * We don't worry about that case for efficiency. It won't happen
1670 * often, and the elevators are able to handle it.
1671 */
1672 init_request_from_bio(req, bio);
1673
1674 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1675 req->cpu = raw_smp_processor_id();
1676
1677 plug = current->plug;
1678 if (plug) {
1679 /*
1680 * If this is the first request added after a plug, fire
1681 * of a plug trace.
1682 */
1683 if (!request_count)
1684 trace_block_plug(q);
1685 else {
1686 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1687 blk_flush_plug_list(plug, false);
1688 trace_block_plug(q);
1689 }
1690 }
1691 list_add_tail(&req->queuelist, &plug->list);
1692 blk_account_io_start(req, true);
1693 } else {
1694 spin_lock_irq(q->queue_lock);
1695 add_acct_request(q, req, where);
1696 __blk_run_queue(q);
1697 out_unlock:
1698 spin_unlock_irq(q->queue_lock);
1699 }
1700 }
1701
1702 /*
1703 * If bio->bi_dev is a partition, remap the location
1704 */
1705 static inline void blk_partition_remap(struct bio *bio)
1706 {
1707 struct block_device *bdev = bio->bi_bdev;
1708
1709 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1710 struct hd_struct *p = bdev->bd_part;
1711
1712 bio->bi_iter.bi_sector += p->start_sect;
1713 bio->bi_bdev = bdev->bd_contains;
1714
1715 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1716 bdev->bd_dev,
1717 bio->bi_iter.bi_sector - p->start_sect);
1718 }
1719 }
1720
1721 static void handle_bad_sector(struct bio *bio)
1722 {
1723 char b[BDEVNAME_SIZE];
1724
1725 printk(KERN_INFO "attempt to access beyond end of device\n");
1726 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1727 bdevname(bio->bi_bdev, b),
1728 bio->bi_rw,
1729 (unsigned long long)bio_end_sector(bio),
1730 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1731 }
1732
1733 #ifdef CONFIG_FAIL_MAKE_REQUEST
1734
1735 static DECLARE_FAULT_ATTR(fail_make_request);
1736
1737 static int __init setup_fail_make_request(char *str)
1738 {
1739 return setup_fault_attr(&fail_make_request, str);
1740 }
1741 __setup("fail_make_request=", setup_fail_make_request);
1742
1743 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1744 {
1745 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1746 }
1747
1748 static int __init fail_make_request_debugfs(void)
1749 {
1750 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1751 NULL, &fail_make_request);
1752
1753 return PTR_ERR_OR_ZERO(dir);
1754 }
1755
1756 late_initcall(fail_make_request_debugfs);
1757
1758 #else /* CONFIG_FAIL_MAKE_REQUEST */
1759
1760 static inline bool should_fail_request(struct hd_struct *part,
1761 unsigned int bytes)
1762 {
1763 return false;
1764 }
1765
1766 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1767
1768 /*
1769 * Check whether this bio extends beyond the end of the device.
1770 */
1771 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1772 {
1773 sector_t maxsector;
1774
1775 if (!nr_sectors)
1776 return 0;
1777
1778 /* Test device or partition size, when known. */
1779 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1780 if (maxsector) {
1781 sector_t sector = bio->bi_iter.bi_sector;
1782
1783 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1784 /*
1785 * This may well happen - the kernel calls bread()
1786 * without checking the size of the device, e.g., when
1787 * mounting a device.
1788 */
1789 handle_bad_sector(bio);
1790 return 1;
1791 }
1792 }
1793
1794 return 0;
1795 }
1796
1797 static noinline_for_stack bool
1798 generic_make_request_checks(struct bio *bio)
1799 {
1800 struct request_queue *q;
1801 int nr_sectors = bio_sectors(bio);
1802 int err = -EIO;
1803 char b[BDEVNAME_SIZE];
1804 struct hd_struct *part;
1805
1806 might_sleep();
1807
1808 if (bio_check_eod(bio, nr_sectors))
1809 goto end_io;
1810
1811 q = bdev_get_queue(bio->bi_bdev);
1812 if (unlikely(!q)) {
1813 printk(KERN_ERR
1814 "generic_make_request: Trying to access "
1815 "nonexistent block-device %s (%Lu)\n",
1816 bdevname(bio->bi_bdev, b),
1817 (long long) bio->bi_iter.bi_sector);
1818 goto end_io;
1819 }
1820
1821 if (likely(bio_is_rw(bio) &&
1822 nr_sectors > queue_max_hw_sectors(q))) {
1823 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1824 bdevname(bio->bi_bdev, b),
1825 bio_sectors(bio),
1826 queue_max_hw_sectors(q));
1827 goto end_io;
1828 }
1829
1830 part = bio->bi_bdev->bd_part;
1831 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1832 should_fail_request(&part_to_disk(part)->part0,
1833 bio->bi_iter.bi_size))
1834 goto end_io;
1835
1836 /*
1837 * If this device has partitions, remap block n
1838 * of partition p to block n+start(p) of the disk.
1839 */
1840 blk_partition_remap(bio);
1841
1842 if (bio_check_eod(bio, nr_sectors))
1843 goto end_io;
1844
1845 /*
1846 * Filter flush bio's early so that make_request based
1847 * drivers without flush support don't have to worry
1848 * about them.
1849 */
1850 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1851 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1852 if (!nr_sectors) {
1853 err = 0;
1854 goto end_io;
1855 }
1856 }
1857
1858 if ((bio->bi_rw & REQ_DISCARD) &&
1859 (!blk_queue_discard(q) ||
1860 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1861 err = -EOPNOTSUPP;
1862 goto end_io;
1863 }
1864
1865 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1866 err = -EOPNOTSUPP;
1867 goto end_io;
1868 }
1869
1870 /*
1871 * Various block parts want %current->io_context and lazy ioc
1872 * allocation ends up trading a lot of pain for a small amount of
1873 * memory. Just allocate it upfront. This may fail and block
1874 * layer knows how to live with it.
1875 */
1876 create_io_context(GFP_ATOMIC, q->node);
1877
1878 if (blk_throtl_bio(q, bio))
1879 return false; /* throttled, will be resubmitted later */
1880
1881 trace_block_bio_queue(q, bio);
1882 return true;
1883
1884 end_io:
1885 bio_endio(bio, err);
1886 return false;
1887 }
1888
1889 /**
1890 * generic_make_request - hand a buffer to its device driver for I/O
1891 * @bio: The bio describing the location in memory and on the device.
1892 *
1893 * generic_make_request() is used to make I/O requests of block
1894 * devices. It is passed a &struct bio, which describes the I/O that needs
1895 * to be done.
1896 *
1897 * generic_make_request() does not return any status. The
1898 * success/failure status of the request, along with notification of
1899 * completion, is delivered asynchronously through the bio->bi_end_io
1900 * function described (one day) else where.
1901 *
1902 * The caller of generic_make_request must make sure that bi_io_vec
1903 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1904 * set to describe the device address, and the
1905 * bi_end_io and optionally bi_private are set to describe how
1906 * completion notification should be signaled.
1907 *
1908 * generic_make_request and the drivers it calls may use bi_next if this
1909 * bio happens to be merged with someone else, and may resubmit the bio to
1910 * a lower device by calling into generic_make_request recursively, which
1911 * means the bio should NOT be touched after the call to ->make_request_fn.
1912 */
1913 void generic_make_request(struct bio *bio)
1914 {
1915 struct bio_list bio_list_on_stack;
1916
1917 if (!generic_make_request_checks(bio))
1918 return;
1919
1920 /*
1921 * We only want one ->make_request_fn to be active at a time, else
1922 * stack usage with stacked devices could be a problem. So use
1923 * current->bio_list to keep a list of requests submited by a
1924 * make_request_fn function. current->bio_list is also used as a
1925 * flag to say if generic_make_request is currently active in this
1926 * task or not. If it is NULL, then no make_request is active. If
1927 * it is non-NULL, then a make_request is active, and new requests
1928 * should be added at the tail
1929 */
1930 if (current->bio_list) {
1931 bio_list_add(current->bio_list, bio);
1932 return;
1933 }
1934
1935 /* following loop may be a bit non-obvious, and so deserves some
1936 * explanation.
1937 * Before entering the loop, bio->bi_next is NULL (as all callers
1938 * ensure that) so we have a list with a single bio.
1939 * We pretend that we have just taken it off a longer list, so
1940 * we assign bio_list to a pointer to the bio_list_on_stack,
1941 * thus initialising the bio_list of new bios to be
1942 * added. ->make_request() may indeed add some more bios
1943 * through a recursive call to generic_make_request. If it
1944 * did, we find a non-NULL value in bio_list and re-enter the loop
1945 * from the top. In this case we really did just take the bio
1946 * of the top of the list (no pretending) and so remove it from
1947 * bio_list, and call into ->make_request() again.
1948 */
1949 BUG_ON(bio->bi_next);
1950 bio_list_init(&bio_list_on_stack);
1951 current->bio_list = &bio_list_on_stack;
1952 do {
1953 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1954
1955 q->make_request_fn(q, bio);
1956
1957 bio = bio_list_pop(current->bio_list);
1958 } while (bio);
1959 current->bio_list = NULL; /* deactivate */
1960 }
1961 EXPORT_SYMBOL(generic_make_request);
1962
1963 /**
1964 * submit_bio - submit a bio to the block device layer for I/O
1965 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1966 * @bio: The &struct bio which describes the I/O
1967 *
1968 * submit_bio() is very similar in purpose to generic_make_request(), and
1969 * uses that function to do most of the work. Both are fairly rough
1970 * interfaces; @bio must be presetup and ready for I/O.
1971 *
1972 */
1973 void submit_bio(int rw, struct bio *bio)
1974 {
1975 bio->bi_rw |= rw;
1976
1977 /*
1978 * If it's a regular read/write or a barrier with data attached,
1979 * go through the normal accounting stuff before submission.
1980 */
1981 if (bio_has_data(bio)) {
1982 unsigned int count;
1983
1984 if (unlikely(rw & REQ_WRITE_SAME))
1985 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1986 else
1987 count = bio_sectors(bio);
1988
1989 if (rw & WRITE) {
1990 count_vm_events(PGPGOUT, count);
1991 } else {
1992 task_io_account_read(bio->bi_iter.bi_size);
1993 count_vm_events(PGPGIN, count);
1994 }
1995
1996 if (unlikely(block_dump)) {
1997 char b[BDEVNAME_SIZE];
1998 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1999 current->comm, task_pid_nr(current),
2000 (rw & WRITE) ? "WRITE" : "READ",
2001 (unsigned long long)bio->bi_iter.bi_sector,
2002 bdevname(bio->bi_bdev, b),
2003 count);
2004 }
2005 }
2006
2007 generic_make_request(bio);
2008 }
2009 EXPORT_SYMBOL(submit_bio);
2010
2011 /**
2012 * blk_rq_check_limits - Helper function to check a request for the queue limit
2013 * @q: the queue
2014 * @rq: the request being checked
2015 *
2016 * Description:
2017 * @rq may have been made based on weaker limitations of upper-level queues
2018 * in request stacking drivers, and it may violate the limitation of @q.
2019 * Since the block layer and the underlying device driver trust @rq
2020 * after it is inserted to @q, it should be checked against @q before
2021 * the insertion using this generic function.
2022 *
2023 * This function should also be useful for request stacking drivers
2024 * in some cases below, so export this function.
2025 * Request stacking drivers like request-based dm may change the queue
2026 * limits while requests are in the queue (e.g. dm's table swapping).
2027 * Such request stacking drivers should check those requests against
2028 * the new queue limits again when they dispatch those requests,
2029 * although such checkings are also done against the old queue limits
2030 * when submitting requests.
2031 */
2032 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
2033 {
2034 if (!rq_mergeable(rq))
2035 return 0;
2036
2037 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
2038 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2039 return -EIO;
2040 }
2041
2042 /*
2043 * queue's settings related to segment counting like q->bounce_pfn
2044 * may differ from that of other stacking queues.
2045 * Recalculate it to check the request correctly on this queue's
2046 * limitation.
2047 */
2048 blk_recalc_rq_segments(rq);
2049 if (rq->nr_phys_segments > queue_max_segments(q)) {
2050 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2051 return -EIO;
2052 }
2053
2054 return 0;
2055 }
2056 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
2057
2058 /**
2059 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2060 * @q: the queue to submit the request
2061 * @rq: the request being queued
2062 */
2063 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2064 {
2065 unsigned long flags;
2066 int where = ELEVATOR_INSERT_BACK;
2067
2068 if (blk_rq_check_limits(q, rq))
2069 return -EIO;
2070
2071 if (rq->rq_disk &&
2072 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2073 return -EIO;
2074
2075 if (q->mq_ops) {
2076 if (blk_queue_io_stat(q))
2077 blk_account_io_start(rq, true);
2078 blk_mq_insert_request(rq, false, true, true);
2079 return 0;
2080 }
2081
2082 spin_lock_irqsave(q->queue_lock, flags);
2083 if (unlikely(blk_queue_dying(q))) {
2084 spin_unlock_irqrestore(q->queue_lock, flags);
2085 return -ENODEV;
2086 }
2087
2088 /*
2089 * Submitting request must be dequeued before calling this function
2090 * because it will be linked to another request_queue
2091 */
2092 BUG_ON(blk_queued_rq(rq));
2093
2094 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2095 where = ELEVATOR_INSERT_FLUSH;
2096
2097 add_acct_request(q, rq, where);
2098 if (where == ELEVATOR_INSERT_FLUSH)
2099 __blk_run_queue(q);
2100 spin_unlock_irqrestore(q->queue_lock, flags);
2101
2102 return 0;
2103 }
2104 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2105
2106 /**
2107 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2108 * @rq: request to examine
2109 *
2110 * Description:
2111 * A request could be merge of IOs which require different failure
2112 * handling. This function determines the number of bytes which
2113 * can be failed from the beginning of the request without
2114 * crossing into area which need to be retried further.
2115 *
2116 * Return:
2117 * The number of bytes to fail.
2118 *
2119 * Context:
2120 * queue_lock must be held.
2121 */
2122 unsigned int blk_rq_err_bytes(const struct request *rq)
2123 {
2124 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2125 unsigned int bytes = 0;
2126 struct bio *bio;
2127
2128 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2129 return blk_rq_bytes(rq);
2130
2131 /*
2132 * Currently the only 'mixing' which can happen is between
2133 * different fastfail types. We can safely fail portions
2134 * which have all the failfast bits that the first one has -
2135 * the ones which are at least as eager to fail as the first
2136 * one.
2137 */
2138 for (bio = rq->bio; bio; bio = bio->bi_next) {
2139 if ((bio->bi_rw & ff) != ff)
2140 break;
2141 bytes += bio->bi_iter.bi_size;
2142 }
2143
2144 /* this could lead to infinite loop */
2145 BUG_ON(blk_rq_bytes(rq) && !bytes);
2146 return bytes;
2147 }
2148 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2149
2150 void blk_account_io_completion(struct request *req, unsigned int bytes)
2151 {
2152 if (blk_do_io_stat(req)) {
2153 const int rw = rq_data_dir(req);
2154 struct hd_struct *part;
2155 int cpu;
2156
2157 cpu = part_stat_lock();
2158 part = req->part;
2159 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2160 part_stat_unlock();
2161 }
2162 }
2163
2164 void blk_account_io_done(struct request *req)
2165 {
2166 /*
2167 * Account IO completion. flush_rq isn't accounted as a
2168 * normal IO on queueing nor completion. Accounting the
2169 * containing request is enough.
2170 */
2171 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2172 unsigned long duration = jiffies - req->start_time;
2173 const int rw = rq_data_dir(req);
2174 struct hd_struct *part;
2175 int cpu;
2176
2177 cpu = part_stat_lock();
2178 part = req->part;
2179
2180 part_stat_inc(cpu, part, ios[rw]);
2181 part_stat_add(cpu, part, ticks[rw], duration);
2182 part_round_stats(cpu, part);
2183 part_dec_in_flight(part, rw);
2184
2185 hd_struct_put(part);
2186 part_stat_unlock();
2187 }
2188 }
2189
2190 #ifdef CONFIG_PM
2191 /*
2192 * Don't process normal requests when queue is suspended
2193 * or in the process of suspending/resuming
2194 */
2195 static struct request *blk_pm_peek_request(struct request_queue *q,
2196 struct request *rq)
2197 {
2198 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2199 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2200 return NULL;
2201 else
2202 return rq;
2203 }
2204 #else
2205 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2206 struct request *rq)
2207 {
2208 return rq;
2209 }
2210 #endif
2211
2212 void blk_account_io_start(struct request *rq, bool new_io)
2213 {
2214 struct hd_struct *part;
2215 int rw = rq_data_dir(rq);
2216 int cpu;
2217
2218 if (!blk_do_io_stat(rq))
2219 return;
2220
2221 cpu = part_stat_lock();
2222
2223 if (!new_io) {
2224 part = rq->part;
2225 part_stat_inc(cpu, part, merges[rw]);
2226 } else {
2227 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2228 if (!hd_struct_try_get(part)) {
2229 /*
2230 * The partition is already being removed,
2231 * the request will be accounted on the disk only
2232 *
2233 * We take a reference on disk->part0 although that
2234 * partition will never be deleted, so we can treat
2235 * it as any other partition.
2236 */
2237 part = &rq->rq_disk->part0;
2238 hd_struct_get(part);
2239 }
2240 part_round_stats(cpu, part);
2241 part_inc_in_flight(part, rw);
2242 rq->part = part;
2243 }
2244
2245 part_stat_unlock();
2246 }
2247
2248 /**
2249 * blk_peek_request - peek at the top of a request queue
2250 * @q: request queue to peek at
2251 *
2252 * Description:
2253 * Return the request at the top of @q. The returned request
2254 * should be started using blk_start_request() before LLD starts
2255 * processing it.
2256 *
2257 * Return:
2258 * Pointer to the request at the top of @q if available. Null
2259 * otherwise.
2260 *
2261 * Context:
2262 * queue_lock must be held.
2263 */
2264 struct request *blk_peek_request(struct request_queue *q)
2265 {
2266 struct request *rq;
2267 int ret;
2268
2269 while ((rq = __elv_next_request(q)) != NULL) {
2270
2271 rq = blk_pm_peek_request(q, rq);
2272 if (!rq)
2273 break;
2274
2275 if (!(rq->cmd_flags & REQ_STARTED)) {
2276 /*
2277 * This is the first time the device driver
2278 * sees this request (possibly after
2279 * requeueing). Notify IO scheduler.
2280 */
2281 if (rq->cmd_flags & REQ_SORTED)
2282 elv_activate_rq(q, rq);
2283
2284 /*
2285 * just mark as started even if we don't start
2286 * it, a request that has been delayed should
2287 * not be passed by new incoming requests
2288 */
2289 rq->cmd_flags |= REQ_STARTED;
2290 trace_block_rq_issue(q, rq);
2291 }
2292
2293 if (!q->boundary_rq || q->boundary_rq == rq) {
2294 q->end_sector = rq_end_sector(rq);
2295 q->boundary_rq = NULL;
2296 }
2297
2298 if (rq->cmd_flags & REQ_DONTPREP)
2299 break;
2300
2301 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2302 /*
2303 * make sure space for the drain appears we
2304 * know we can do this because max_hw_segments
2305 * has been adjusted to be one fewer than the
2306 * device can handle
2307 */
2308 rq->nr_phys_segments++;
2309 }
2310
2311 if (!q->prep_rq_fn)
2312 break;
2313
2314 ret = q->prep_rq_fn(q, rq);
2315 if (ret == BLKPREP_OK) {
2316 break;
2317 } else if (ret == BLKPREP_DEFER) {
2318 /*
2319 * the request may have been (partially) prepped.
2320 * we need to keep this request in the front to
2321 * avoid resource deadlock. REQ_STARTED will
2322 * prevent other fs requests from passing this one.
2323 */
2324 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2325 !(rq->cmd_flags & REQ_DONTPREP)) {
2326 /*
2327 * remove the space for the drain we added
2328 * so that we don't add it again
2329 */
2330 --rq->nr_phys_segments;
2331 }
2332
2333 rq = NULL;
2334 break;
2335 } else if (ret == BLKPREP_KILL) {
2336 rq->cmd_flags |= REQ_QUIET;
2337 /*
2338 * Mark this request as started so we don't trigger
2339 * any debug logic in the end I/O path.
2340 */
2341 blk_start_request(rq);
2342 __blk_end_request_all(rq, -EIO);
2343 } else {
2344 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2345 break;
2346 }
2347 }
2348
2349 return rq;
2350 }
2351 EXPORT_SYMBOL(blk_peek_request);
2352
2353 void blk_dequeue_request(struct request *rq)
2354 {
2355 struct request_queue *q = rq->q;
2356
2357 BUG_ON(list_empty(&rq->queuelist));
2358 BUG_ON(ELV_ON_HASH(rq));
2359
2360 list_del_init(&rq->queuelist);
2361
2362 /*
2363 * the time frame between a request being removed from the lists
2364 * and to it is freed is accounted as io that is in progress at
2365 * the driver side.
2366 */
2367 if (blk_account_rq(rq)) {
2368 q->in_flight[rq_is_sync(rq)]++;
2369 set_io_start_time_ns(rq);
2370 }
2371 }
2372
2373 /**
2374 * blk_start_request - start request processing on the driver
2375 * @req: request to dequeue
2376 *
2377 * Description:
2378 * Dequeue @req and start timeout timer on it. This hands off the
2379 * request to the driver.
2380 *
2381 * Block internal functions which don't want to start timer should
2382 * call blk_dequeue_request().
2383 *
2384 * Context:
2385 * queue_lock must be held.
2386 */
2387 void blk_start_request(struct request *req)
2388 {
2389 blk_dequeue_request(req);
2390
2391 /*
2392 * We are now handing the request to the hardware, initialize
2393 * resid_len to full count and add the timeout handler.
2394 */
2395 req->resid_len = blk_rq_bytes(req);
2396 if (unlikely(blk_bidi_rq(req)))
2397 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2398
2399 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2400 blk_add_timer(req);
2401 }
2402 EXPORT_SYMBOL(blk_start_request);
2403
2404 /**
2405 * blk_fetch_request - fetch a request from a request queue
2406 * @q: request queue to fetch a request from
2407 *
2408 * Description:
2409 * Return the request at the top of @q. The request is started on
2410 * return and LLD can start processing it immediately.
2411 *
2412 * Return:
2413 * Pointer to the request at the top of @q if available. Null
2414 * otherwise.
2415 *
2416 * Context:
2417 * queue_lock must be held.
2418 */
2419 struct request *blk_fetch_request(struct request_queue *q)
2420 {
2421 struct request *rq;
2422
2423 rq = blk_peek_request(q);
2424 if (rq)
2425 blk_start_request(rq);
2426 return rq;
2427 }
2428 EXPORT_SYMBOL(blk_fetch_request);
2429
2430 /**
2431 * blk_update_request - Special helper function for request stacking drivers
2432 * @req: the request being processed
2433 * @error: %0 for success, < %0 for error
2434 * @nr_bytes: number of bytes to complete @req
2435 *
2436 * Description:
2437 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2438 * the request structure even if @req doesn't have leftover.
2439 * If @req has leftover, sets it up for the next range of segments.
2440 *
2441 * This special helper function is only for request stacking drivers
2442 * (e.g. request-based dm) so that they can handle partial completion.
2443 * Actual device drivers should use blk_end_request instead.
2444 *
2445 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2446 * %false return from this function.
2447 *
2448 * Return:
2449 * %false - this request doesn't have any more data
2450 * %true - this request has more data
2451 **/
2452 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2453 {
2454 int total_bytes;
2455
2456 trace_block_rq_complete(req->q, req, nr_bytes);
2457
2458 if (!req->bio)
2459 return false;
2460
2461 /*
2462 * For fs requests, rq is just carrier of independent bio's
2463 * and each partial completion should be handled separately.
2464 * Reset per-request error on each partial completion.
2465 *
2466 * TODO: tj: This is too subtle. It would be better to let
2467 * low level drivers do what they see fit.
2468 */
2469 if (req->cmd_type == REQ_TYPE_FS)
2470 req->errors = 0;
2471
2472 if (error && req->cmd_type == REQ_TYPE_FS &&
2473 !(req->cmd_flags & REQ_QUIET)) {
2474 char *error_type;
2475
2476 switch (error) {
2477 case -ENOLINK:
2478 error_type = "recoverable transport";
2479 break;
2480 case -EREMOTEIO:
2481 error_type = "critical target";
2482 break;
2483 case -EBADE:
2484 error_type = "critical nexus";
2485 break;
2486 case -ETIMEDOUT:
2487 error_type = "timeout";
2488 break;
2489 case -ENOSPC:
2490 error_type = "critical space allocation";
2491 break;
2492 case -ENODATA:
2493 error_type = "critical medium";
2494 break;
2495 case -EIO:
2496 default:
2497 error_type = "I/O";
2498 break;
2499 }
2500 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2501 __func__, error_type, req->rq_disk ?
2502 req->rq_disk->disk_name : "?",
2503 (unsigned long long)blk_rq_pos(req));
2504
2505 }
2506
2507 blk_account_io_completion(req, nr_bytes);
2508
2509 total_bytes = 0;
2510 while (req->bio) {
2511 struct bio *bio = req->bio;
2512 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2513
2514 if (bio_bytes == bio->bi_iter.bi_size)
2515 req->bio = bio->bi_next;
2516
2517 req_bio_endio(req, bio, bio_bytes, error);
2518
2519 total_bytes += bio_bytes;
2520 nr_bytes -= bio_bytes;
2521
2522 if (!nr_bytes)
2523 break;
2524 }
2525
2526 /*
2527 * completely done
2528 */
2529 if (!req->bio) {
2530 /*
2531 * Reset counters so that the request stacking driver
2532 * can find how many bytes remain in the request
2533 * later.
2534 */
2535 req->__data_len = 0;
2536 return false;
2537 }
2538
2539 req->__data_len -= total_bytes;
2540
2541 /* update sector only for requests with clear definition of sector */
2542 if (req->cmd_type == REQ_TYPE_FS)
2543 req->__sector += total_bytes >> 9;
2544
2545 /* mixed attributes always follow the first bio */
2546 if (req->cmd_flags & REQ_MIXED_MERGE) {
2547 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2548 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2549 }
2550
2551 /*
2552 * If total number of sectors is less than the first segment
2553 * size, something has gone terribly wrong.
2554 */
2555 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2556 blk_dump_rq_flags(req, "request botched");
2557 req->__data_len = blk_rq_cur_bytes(req);
2558 }
2559
2560 /* recalculate the number of segments */
2561 blk_recalc_rq_segments(req);
2562
2563 return true;
2564 }
2565 EXPORT_SYMBOL_GPL(blk_update_request);
2566
2567 static bool blk_update_bidi_request(struct request *rq, int error,
2568 unsigned int nr_bytes,
2569 unsigned int bidi_bytes)
2570 {
2571 if (blk_update_request(rq, error, nr_bytes))
2572 return true;
2573
2574 /* Bidi request must be completed as a whole */
2575 if (unlikely(blk_bidi_rq(rq)) &&
2576 blk_update_request(rq->next_rq, error, bidi_bytes))
2577 return true;
2578
2579 if (blk_queue_add_random(rq->q))
2580 add_disk_randomness(rq->rq_disk);
2581
2582 return false;
2583 }
2584
2585 /**
2586 * blk_unprep_request - unprepare a request
2587 * @req: the request
2588 *
2589 * This function makes a request ready for complete resubmission (or
2590 * completion). It happens only after all error handling is complete,
2591 * so represents the appropriate moment to deallocate any resources
2592 * that were allocated to the request in the prep_rq_fn. The queue
2593 * lock is held when calling this.
2594 */
2595 void blk_unprep_request(struct request *req)
2596 {
2597 struct request_queue *q = req->q;
2598
2599 req->cmd_flags &= ~REQ_DONTPREP;
2600 if (q->unprep_rq_fn)
2601 q->unprep_rq_fn(q, req);
2602 }
2603 EXPORT_SYMBOL_GPL(blk_unprep_request);
2604
2605 /*
2606 * queue lock must be held
2607 */
2608 void blk_finish_request(struct request *req, int error)
2609 {
2610 if (req->cmd_flags & REQ_QUEUED)
2611 blk_queue_end_tag(req->q, req);
2612
2613 BUG_ON(blk_queued_rq(req));
2614
2615 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2616 laptop_io_completion(&req->q->backing_dev_info);
2617
2618 blk_delete_timer(req);
2619
2620 if (req->cmd_flags & REQ_DONTPREP)
2621 blk_unprep_request(req);
2622
2623 blk_account_io_done(req);
2624
2625 if (req->end_io)
2626 req->end_io(req, error);
2627 else {
2628 if (blk_bidi_rq(req))
2629 __blk_put_request(req->next_rq->q, req->next_rq);
2630
2631 __blk_put_request(req->q, req);
2632 }
2633 }
2634 EXPORT_SYMBOL(blk_finish_request);
2635
2636 /**
2637 * blk_end_bidi_request - Complete a bidi request
2638 * @rq: the request to complete
2639 * @error: %0 for success, < %0 for error
2640 * @nr_bytes: number of bytes to complete @rq
2641 * @bidi_bytes: number of bytes to complete @rq->next_rq
2642 *
2643 * Description:
2644 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2645 * Drivers that supports bidi can safely call this member for any
2646 * type of request, bidi or uni. In the later case @bidi_bytes is
2647 * just ignored.
2648 *
2649 * Return:
2650 * %false - we are done with this request
2651 * %true - still buffers pending for this request
2652 **/
2653 static bool blk_end_bidi_request(struct request *rq, int error,
2654 unsigned int nr_bytes, unsigned int bidi_bytes)
2655 {
2656 struct request_queue *q = rq->q;
2657 unsigned long flags;
2658
2659 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2660 return true;
2661
2662 spin_lock_irqsave(q->queue_lock, flags);
2663 blk_finish_request(rq, error);
2664 spin_unlock_irqrestore(q->queue_lock, flags);
2665
2666 return false;
2667 }
2668
2669 /**
2670 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2671 * @rq: the request to complete
2672 * @error: %0 for success, < %0 for error
2673 * @nr_bytes: number of bytes to complete @rq
2674 * @bidi_bytes: number of bytes to complete @rq->next_rq
2675 *
2676 * Description:
2677 * Identical to blk_end_bidi_request() except that queue lock is
2678 * assumed to be locked on entry and remains so on return.
2679 *
2680 * Return:
2681 * %false - we are done with this request
2682 * %true - still buffers pending for this request
2683 **/
2684 bool __blk_end_bidi_request(struct request *rq, int error,
2685 unsigned int nr_bytes, unsigned int bidi_bytes)
2686 {
2687 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2688 return true;
2689
2690 blk_finish_request(rq, error);
2691
2692 return false;
2693 }
2694
2695 /**
2696 * blk_end_request - Helper function for drivers to complete the request.
2697 * @rq: the request being processed
2698 * @error: %0 for success, < %0 for error
2699 * @nr_bytes: number of bytes to complete
2700 *
2701 * Description:
2702 * Ends I/O on a number of bytes attached to @rq.
2703 * If @rq has leftover, sets it up for the next range of segments.
2704 *
2705 * Return:
2706 * %false - we are done with this request
2707 * %true - still buffers pending for this request
2708 **/
2709 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2710 {
2711 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2712 }
2713 EXPORT_SYMBOL(blk_end_request);
2714
2715 /**
2716 * blk_end_request_all - Helper function for drives to finish the request.
2717 * @rq: the request to finish
2718 * @error: %0 for success, < %0 for error
2719 *
2720 * Description:
2721 * Completely finish @rq.
2722 */
2723 void blk_end_request_all(struct request *rq, int error)
2724 {
2725 bool pending;
2726 unsigned int bidi_bytes = 0;
2727
2728 if (unlikely(blk_bidi_rq(rq)))
2729 bidi_bytes = blk_rq_bytes(rq->next_rq);
2730
2731 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2732 BUG_ON(pending);
2733 }
2734 EXPORT_SYMBOL(blk_end_request_all);
2735
2736 /**
2737 * blk_end_request_cur - Helper function to finish the current request chunk.
2738 * @rq: the request to finish the current chunk for
2739 * @error: %0 for success, < %0 for error
2740 *
2741 * Description:
2742 * Complete the current consecutively mapped chunk from @rq.
2743 *
2744 * Return:
2745 * %false - we are done with this request
2746 * %true - still buffers pending for this request
2747 */
2748 bool blk_end_request_cur(struct request *rq, int error)
2749 {
2750 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2751 }
2752 EXPORT_SYMBOL(blk_end_request_cur);
2753
2754 /**
2755 * blk_end_request_err - Finish a request till the next failure boundary.
2756 * @rq: the request to finish till the next failure boundary for
2757 * @error: must be negative errno
2758 *
2759 * Description:
2760 * Complete @rq till the next failure boundary.
2761 *
2762 * Return:
2763 * %false - we are done with this request
2764 * %true - still buffers pending for this request
2765 */
2766 bool blk_end_request_err(struct request *rq, int error)
2767 {
2768 WARN_ON(error >= 0);
2769 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2770 }
2771 EXPORT_SYMBOL_GPL(blk_end_request_err);
2772
2773 /**
2774 * __blk_end_request - Helper function for drivers to complete the request.
2775 * @rq: the request being processed
2776 * @error: %0 for success, < %0 for error
2777 * @nr_bytes: number of bytes to complete
2778 *
2779 * Description:
2780 * Must be called with queue lock held unlike blk_end_request().
2781 *
2782 * Return:
2783 * %false - we are done with this request
2784 * %true - still buffers pending for this request
2785 **/
2786 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2787 {
2788 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2789 }
2790 EXPORT_SYMBOL(__blk_end_request);
2791
2792 /**
2793 * __blk_end_request_all - Helper function for drives to finish the request.
2794 * @rq: the request to finish
2795 * @error: %0 for success, < %0 for error
2796 *
2797 * Description:
2798 * Completely finish @rq. Must be called with queue lock held.
2799 */
2800 void __blk_end_request_all(struct request *rq, int error)
2801 {
2802 bool pending;
2803 unsigned int bidi_bytes = 0;
2804
2805 if (unlikely(blk_bidi_rq(rq)))
2806 bidi_bytes = blk_rq_bytes(rq->next_rq);
2807
2808 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2809 BUG_ON(pending);
2810 }
2811 EXPORT_SYMBOL(__blk_end_request_all);
2812
2813 /**
2814 * __blk_end_request_cur - Helper function to finish the current request chunk.
2815 * @rq: the request to finish the current chunk for
2816 * @error: %0 for success, < %0 for error
2817 *
2818 * Description:
2819 * Complete the current consecutively mapped chunk from @rq. Must
2820 * be called with queue lock held.
2821 *
2822 * Return:
2823 * %false - we are done with this request
2824 * %true - still buffers pending for this request
2825 */
2826 bool __blk_end_request_cur(struct request *rq, int error)
2827 {
2828 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2829 }
2830 EXPORT_SYMBOL(__blk_end_request_cur);
2831
2832 /**
2833 * __blk_end_request_err - Finish a request till the next failure boundary.
2834 * @rq: the request to finish till the next failure boundary for
2835 * @error: must be negative errno
2836 *
2837 * Description:
2838 * Complete @rq till the next failure boundary. Must be called
2839 * with queue lock held.
2840 *
2841 * Return:
2842 * %false - we are done with this request
2843 * %true - still buffers pending for this request
2844 */
2845 bool __blk_end_request_err(struct request *rq, int error)
2846 {
2847 WARN_ON(error >= 0);
2848 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2849 }
2850 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2851
2852 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2853 struct bio *bio)
2854 {
2855 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2856 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2857
2858 if (bio_has_data(bio))
2859 rq->nr_phys_segments = bio_phys_segments(q, bio);
2860
2861 rq->__data_len = bio->bi_iter.bi_size;
2862 rq->bio = rq->biotail = bio;
2863
2864 if (bio->bi_bdev)
2865 rq->rq_disk = bio->bi_bdev->bd_disk;
2866 }
2867
2868 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2869 /**
2870 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2871 * @rq: the request to be flushed
2872 *
2873 * Description:
2874 * Flush all pages in @rq.
2875 */
2876 void rq_flush_dcache_pages(struct request *rq)
2877 {
2878 struct req_iterator iter;
2879 struct bio_vec bvec;
2880
2881 rq_for_each_segment(bvec, rq, iter)
2882 flush_dcache_page(bvec.bv_page);
2883 }
2884 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2885 #endif
2886
2887 /**
2888 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2889 * @q : the queue of the device being checked
2890 *
2891 * Description:
2892 * Check if underlying low-level drivers of a device are busy.
2893 * If the drivers want to export their busy state, they must set own
2894 * exporting function using blk_queue_lld_busy() first.
2895 *
2896 * Basically, this function is used only by request stacking drivers
2897 * to stop dispatching requests to underlying devices when underlying
2898 * devices are busy. This behavior helps more I/O merging on the queue
2899 * of the request stacking driver and prevents I/O throughput regression
2900 * on burst I/O load.
2901 *
2902 * Return:
2903 * 0 - Not busy (The request stacking driver should dispatch request)
2904 * 1 - Busy (The request stacking driver should stop dispatching request)
2905 */
2906 int blk_lld_busy(struct request_queue *q)
2907 {
2908 if (q->lld_busy_fn)
2909 return q->lld_busy_fn(q);
2910
2911 return 0;
2912 }
2913 EXPORT_SYMBOL_GPL(blk_lld_busy);
2914
2915 /**
2916 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2917 * @rq: the clone request to be cleaned up
2918 *
2919 * Description:
2920 * Free all bios in @rq for a cloned request.
2921 */
2922 void blk_rq_unprep_clone(struct request *rq)
2923 {
2924 struct bio *bio;
2925
2926 while ((bio = rq->bio) != NULL) {
2927 rq->bio = bio->bi_next;
2928
2929 bio_put(bio);
2930 }
2931 }
2932 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2933
2934 /*
2935 * Copy attributes of the original request to the clone request.
2936 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
2937 */
2938 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2939 {
2940 dst->cpu = src->cpu;
2941 dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2942 dst->cmd_type = src->cmd_type;
2943 dst->__sector = blk_rq_pos(src);
2944 dst->__data_len = blk_rq_bytes(src);
2945 dst->nr_phys_segments = src->nr_phys_segments;
2946 dst->ioprio = src->ioprio;
2947 dst->extra_len = src->extra_len;
2948 }
2949
2950 /**
2951 * blk_rq_prep_clone - Helper function to setup clone request
2952 * @rq: the request to be setup
2953 * @rq_src: original request to be cloned
2954 * @bs: bio_set that bios for clone are allocated from
2955 * @gfp_mask: memory allocation mask for bio
2956 * @bio_ctr: setup function to be called for each clone bio.
2957 * Returns %0 for success, non %0 for failure.
2958 * @data: private data to be passed to @bio_ctr
2959 *
2960 * Description:
2961 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2962 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
2963 * are not copied, and copying such parts is the caller's responsibility.
2964 * Also, pages which the original bios are pointing to are not copied
2965 * and the cloned bios just point same pages.
2966 * So cloned bios must be completed before original bios, which means
2967 * the caller must complete @rq before @rq_src.
2968 */
2969 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2970 struct bio_set *bs, gfp_t gfp_mask,
2971 int (*bio_ctr)(struct bio *, struct bio *, void *),
2972 void *data)
2973 {
2974 struct bio *bio, *bio_src;
2975
2976 if (!bs)
2977 bs = fs_bio_set;
2978
2979 __rq_for_each_bio(bio_src, rq_src) {
2980 bio = bio_clone_fast(bio_src, gfp_mask, bs);
2981 if (!bio)
2982 goto free_and_out;
2983
2984 if (bio_ctr && bio_ctr(bio, bio_src, data))
2985 goto free_and_out;
2986
2987 if (rq->bio) {
2988 rq->biotail->bi_next = bio;
2989 rq->biotail = bio;
2990 } else
2991 rq->bio = rq->biotail = bio;
2992 }
2993
2994 __blk_rq_prep_clone(rq, rq_src);
2995
2996 return 0;
2997
2998 free_and_out:
2999 if (bio)
3000 bio_put(bio);
3001 blk_rq_unprep_clone(rq);
3002
3003 return -ENOMEM;
3004 }
3005 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3006
3007 int kblockd_schedule_work(struct work_struct *work)
3008 {
3009 return queue_work(kblockd_workqueue, work);
3010 }
3011 EXPORT_SYMBOL(kblockd_schedule_work);
3012
3013 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3014 unsigned long delay)
3015 {
3016 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3017 }
3018 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3019
3020 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3021 unsigned long delay)
3022 {
3023 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3024 }
3025 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3026
3027 /**
3028 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3029 * @plug: The &struct blk_plug that needs to be initialized
3030 *
3031 * Description:
3032 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3033 * pending I/O should the task end up blocking between blk_start_plug() and
3034 * blk_finish_plug(). This is important from a performance perspective, but
3035 * also ensures that we don't deadlock. For instance, if the task is blocking
3036 * for a memory allocation, memory reclaim could end up wanting to free a
3037 * page belonging to that request that is currently residing in our private
3038 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3039 * this kind of deadlock.
3040 */
3041 void blk_start_plug(struct blk_plug *plug)
3042 {
3043 struct task_struct *tsk = current;
3044
3045 /*
3046 * If this is a nested plug, don't actually assign it.
3047 */
3048 if (tsk->plug)
3049 return;
3050
3051 INIT_LIST_HEAD(&plug->list);
3052 INIT_LIST_HEAD(&plug->mq_list);
3053 INIT_LIST_HEAD(&plug->cb_list);
3054 /*
3055 * Store ordering should not be needed here, since a potential
3056 * preempt will imply a full memory barrier
3057 */
3058 tsk->plug = plug;
3059 }
3060 EXPORT_SYMBOL(blk_start_plug);
3061
3062 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3063 {
3064 struct request *rqa = container_of(a, struct request, queuelist);
3065 struct request *rqb = container_of(b, struct request, queuelist);
3066
3067 return !(rqa->q < rqb->q ||
3068 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3069 }
3070
3071 /*
3072 * If 'from_schedule' is true, then postpone the dispatch of requests
3073 * until a safe kblockd context. We due this to avoid accidental big
3074 * additional stack usage in driver dispatch, in places where the originally
3075 * plugger did not intend it.
3076 */
3077 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3078 bool from_schedule)
3079 __releases(q->queue_lock)
3080 {
3081 trace_block_unplug(q, depth, !from_schedule);
3082
3083 if (from_schedule)
3084 blk_run_queue_async(q);
3085 else
3086 __blk_run_queue(q);
3087 spin_unlock(q->queue_lock);
3088 }
3089
3090 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3091 {
3092 LIST_HEAD(callbacks);
3093
3094 while (!list_empty(&plug->cb_list)) {
3095 list_splice_init(&plug->cb_list, &callbacks);
3096
3097 while (!list_empty(&callbacks)) {
3098 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3099 struct blk_plug_cb,
3100 list);
3101 list_del(&cb->list);
3102 cb->callback(cb, from_schedule);
3103 }
3104 }
3105 }
3106
3107 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3108 int size)
3109 {
3110 struct blk_plug *plug = current->plug;
3111 struct blk_plug_cb *cb;
3112
3113 if (!plug)
3114 return NULL;
3115
3116 list_for_each_entry(cb, &plug->cb_list, list)
3117 if (cb->callback == unplug && cb->data == data)
3118 return cb;
3119
3120 /* Not currently on the callback list */
3121 BUG_ON(size < sizeof(*cb));
3122 cb = kzalloc(size, GFP_ATOMIC);
3123 if (cb) {
3124 cb->data = data;
3125 cb->callback = unplug;
3126 list_add(&cb->list, &plug->cb_list);
3127 }
3128 return cb;
3129 }
3130 EXPORT_SYMBOL(blk_check_plugged);
3131
3132 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3133 {
3134 struct request_queue *q;
3135 unsigned long flags;
3136 struct request *rq;
3137 LIST_HEAD(list);
3138 unsigned int depth;
3139
3140 flush_plug_callbacks(plug, from_schedule);
3141
3142 if (!list_empty(&plug->mq_list))
3143 blk_mq_flush_plug_list(plug, from_schedule);
3144
3145 if (list_empty(&plug->list))
3146 return;
3147
3148 list_splice_init(&plug->list, &list);
3149
3150 list_sort(NULL, &list, plug_rq_cmp);
3151
3152 q = NULL;
3153 depth = 0;
3154
3155 /*
3156 * Save and disable interrupts here, to avoid doing it for every
3157 * queue lock we have to take.
3158 */
3159 local_irq_save(flags);
3160 while (!list_empty(&list)) {
3161 rq = list_entry_rq(list.next);
3162 list_del_init(&rq->queuelist);
3163 BUG_ON(!rq->q);
3164 if (rq->q != q) {
3165 /*
3166 * This drops the queue lock
3167 */
3168 if (q)
3169 queue_unplugged(q, depth, from_schedule);
3170 q = rq->q;
3171 depth = 0;
3172 spin_lock(q->queue_lock);
3173 }
3174
3175 /*
3176 * Short-circuit if @q is dead
3177 */
3178 if (unlikely(blk_queue_dying(q))) {
3179 __blk_end_request_all(rq, -ENODEV);
3180 continue;
3181 }
3182
3183 /*
3184 * rq is already accounted, so use raw insert
3185 */
3186 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3187 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3188 else
3189 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3190
3191 depth++;
3192 }
3193
3194 /*
3195 * This drops the queue lock
3196 */
3197 if (q)
3198 queue_unplugged(q, depth, from_schedule);
3199
3200 local_irq_restore(flags);
3201 }
3202
3203 void blk_finish_plug(struct blk_plug *plug)
3204 {
3205 if (plug != current->plug)
3206 return;
3207 blk_flush_plug_list(plug, false);
3208
3209 current->plug = NULL;
3210 }
3211 EXPORT_SYMBOL(blk_finish_plug);
3212
3213 #ifdef CONFIG_PM
3214 /**
3215 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3216 * @q: the queue of the device
3217 * @dev: the device the queue belongs to
3218 *
3219 * Description:
3220 * Initialize runtime-PM-related fields for @q and start auto suspend for
3221 * @dev. Drivers that want to take advantage of request-based runtime PM
3222 * should call this function after @dev has been initialized, and its
3223 * request queue @q has been allocated, and runtime PM for it can not happen
3224 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3225 * cases, driver should call this function before any I/O has taken place.
3226 *
3227 * This function takes care of setting up using auto suspend for the device,
3228 * the autosuspend delay is set to -1 to make runtime suspend impossible
3229 * until an updated value is either set by user or by driver. Drivers do
3230 * not need to touch other autosuspend settings.
3231 *
3232 * The block layer runtime PM is request based, so only works for drivers
3233 * that use request as their IO unit instead of those directly use bio's.
3234 */
3235 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3236 {
3237 q->dev = dev;
3238 q->rpm_status = RPM_ACTIVE;
3239 pm_runtime_set_autosuspend_delay(q->dev, -1);
3240 pm_runtime_use_autosuspend(q->dev);
3241 }
3242 EXPORT_SYMBOL(blk_pm_runtime_init);
3243
3244 /**
3245 * blk_pre_runtime_suspend - Pre runtime suspend check
3246 * @q: the queue of the device
3247 *
3248 * Description:
3249 * This function will check if runtime suspend is allowed for the device
3250 * by examining if there are any requests pending in the queue. If there
3251 * are requests pending, the device can not be runtime suspended; otherwise,
3252 * the queue's status will be updated to SUSPENDING and the driver can
3253 * proceed to suspend the device.
3254 *
3255 * For the not allowed case, we mark last busy for the device so that
3256 * runtime PM core will try to autosuspend it some time later.
3257 *
3258 * This function should be called near the start of the device's
3259 * runtime_suspend callback.
3260 *
3261 * Return:
3262 * 0 - OK to runtime suspend the device
3263 * -EBUSY - Device should not be runtime suspended
3264 */
3265 int blk_pre_runtime_suspend(struct request_queue *q)
3266 {
3267 int ret = 0;
3268
3269 spin_lock_irq(q->queue_lock);
3270 if (q->nr_pending) {
3271 ret = -EBUSY;
3272 pm_runtime_mark_last_busy(q->dev);
3273 } else {
3274 q->rpm_status = RPM_SUSPENDING;
3275 }
3276 spin_unlock_irq(q->queue_lock);
3277 return ret;
3278 }
3279 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3280
3281 /**
3282 * blk_post_runtime_suspend - Post runtime suspend processing
3283 * @q: the queue of the device
3284 * @err: return value of the device's runtime_suspend function
3285 *
3286 * Description:
3287 * Update the queue's runtime status according to the return value of the
3288 * device's runtime suspend function and mark last busy for the device so
3289 * that PM core will try to auto suspend the device at a later time.
3290 *
3291 * This function should be called near the end of the device's
3292 * runtime_suspend callback.
3293 */
3294 void blk_post_runtime_suspend(struct request_queue *q, int err)
3295 {
3296 spin_lock_irq(q->queue_lock);
3297 if (!err) {
3298 q->rpm_status = RPM_SUSPENDED;
3299 } else {
3300 q->rpm_status = RPM_ACTIVE;
3301 pm_runtime_mark_last_busy(q->dev);
3302 }
3303 spin_unlock_irq(q->queue_lock);
3304 }
3305 EXPORT_SYMBOL(blk_post_runtime_suspend);
3306
3307 /**
3308 * blk_pre_runtime_resume - Pre runtime resume processing
3309 * @q: the queue of the device
3310 *
3311 * Description:
3312 * Update the queue's runtime status to RESUMING in preparation for the
3313 * runtime resume of the device.
3314 *
3315 * This function should be called near the start of the device's
3316 * runtime_resume callback.
3317 */
3318 void blk_pre_runtime_resume(struct request_queue *q)
3319 {
3320 spin_lock_irq(q->queue_lock);
3321 q->rpm_status = RPM_RESUMING;
3322 spin_unlock_irq(q->queue_lock);
3323 }
3324 EXPORT_SYMBOL(blk_pre_runtime_resume);
3325
3326 /**
3327 * blk_post_runtime_resume - Post runtime resume processing
3328 * @q: the queue of the device
3329 * @err: return value of the device's runtime_resume function
3330 *
3331 * Description:
3332 * Update the queue's runtime status according to the return value of the
3333 * device's runtime_resume function. If it is successfully resumed, process
3334 * the requests that are queued into the device's queue when it is resuming
3335 * and then mark last busy and initiate autosuspend for it.
3336 *
3337 * This function should be called near the end of the device's
3338 * runtime_resume callback.
3339 */
3340 void blk_post_runtime_resume(struct request_queue *q, int err)
3341 {
3342 spin_lock_irq(q->queue_lock);
3343 if (!err) {
3344 q->rpm_status = RPM_ACTIVE;
3345 __blk_run_queue(q);
3346 pm_runtime_mark_last_busy(q->dev);
3347 pm_request_autosuspend(q->dev);
3348 } else {
3349 q->rpm_status = RPM_SUSPENDED;
3350 }
3351 spin_unlock_irq(q->queue_lock);
3352 }
3353 EXPORT_SYMBOL(blk_post_runtime_resume);
3354 #endif
3355
3356 int __init blk_dev_init(void)
3357 {
3358 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3359 sizeof(((struct request *)0)->cmd_flags));
3360
3361 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3362 kblockd_workqueue = alloc_workqueue("kblockd",
3363 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3364 if (!kblockd_workqueue)
3365 panic("Failed to create kblockd\n");
3366
3367 request_cachep = kmem_cache_create("blkdev_requests",
3368 sizeof(struct request), 0, SLAB_PANIC, NULL);
3369
3370 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3371 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3372
3373 return 0;
3374 }
This page took 0.136395 seconds and 6 git commands to generate.