Merge branch 'mailbox-for-next' of git://git.linaro.org/landing-teams/working/fujitsu...
[deliverable/linux.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/block.h>
39
40 #include "blk.h"
41 #include "blk-mq.h"
42
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
48
49 DEFINE_IDA(blk_queue_ida);
50
51 /*
52 * For the allocated request tables
53 */
54 struct kmem_cache *request_cachep = NULL;
55
56 /*
57 * For queue allocation
58 */
59 struct kmem_cache *blk_requestq_cachep;
60
61 /*
62 * Controlling structure to kblockd
63 */
64 static struct workqueue_struct *kblockd_workqueue;
65
66 static void blk_clear_congested(struct request_list *rl, int sync)
67 {
68 #ifdef CONFIG_CGROUP_WRITEBACK
69 clear_wb_congested(rl->blkg->wb_congested, sync);
70 #else
71 /*
72 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
73 * flip its congestion state for events on other blkcgs.
74 */
75 if (rl == &rl->q->root_rl)
76 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
77 #endif
78 }
79
80 static void blk_set_congested(struct request_list *rl, int sync)
81 {
82 #ifdef CONFIG_CGROUP_WRITEBACK
83 set_wb_congested(rl->blkg->wb_congested, sync);
84 #else
85 /* see blk_clear_congested() */
86 if (rl == &rl->q->root_rl)
87 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
88 #endif
89 }
90
91 void blk_queue_congestion_threshold(struct request_queue *q)
92 {
93 int nr;
94
95 nr = q->nr_requests - (q->nr_requests / 8) + 1;
96 if (nr > q->nr_requests)
97 nr = q->nr_requests;
98 q->nr_congestion_on = nr;
99
100 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
101 if (nr < 1)
102 nr = 1;
103 q->nr_congestion_off = nr;
104 }
105
106 /**
107 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
108 * @bdev: device
109 *
110 * Locates the passed device's request queue and returns the address of its
111 * backing_dev_info. This function can only be called if @bdev is opened
112 * and the return value is never NULL.
113 */
114 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
115 {
116 struct request_queue *q = bdev_get_queue(bdev);
117
118 return &q->backing_dev_info;
119 }
120 EXPORT_SYMBOL(blk_get_backing_dev_info);
121
122 void blk_rq_init(struct request_queue *q, struct request *rq)
123 {
124 memset(rq, 0, sizeof(*rq));
125
126 INIT_LIST_HEAD(&rq->queuelist);
127 INIT_LIST_HEAD(&rq->timeout_list);
128 rq->cpu = -1;
129 rq->q = q;
130 rq->__sector = (sector_t) -1;
131 INIT_HLIST_NODE(&rq->hash);
132 RB_CLEAR_NODE(&rq->rb_node);
133 rq->cmd = rq->__cmd;
134 rq->cmd_len = BLK_MAX_CDB;
135 rq->tag = -1;
136 rq->start_time = jiffies;
137 set_start_time_ns(rq);
138 rq->part = NULL;
139 }
140 EXPORT_SYMBOL(blk_rq_init);
141
142 static void req_bio_endio(struct request *rq, struct bio *bio,
143 unsigned int nbytes, int error)
144 {
145 if (error && !(rq->cmd_flags & REQ_CLONE))
146 clear_bit(BIO_UPTODATE, &bio->bi_flags);
147 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
148 error = -EIO;
149
150 if (unlikely(rq->cmd_flags & REQ_QUIET))
151 set_bit(BIO_QUIET, &bio->bi_flags);
152
153 bio_advance(bio, nbytes);
154
155 /* don't actually finish bio if it's part of flush sequence */
156 if (bio->bi_iter.bi_size == 0 &&
157 !(rq->cmd_flags & (REQ_FLUSH_SEQ|REQ_CLONE)))
158 bio_endio(bio, error);
159 }
160
161 void blk_dump_rq_flags(struct request *rq, char *msg)
162 {
163 int bit;
164
165 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
166 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
167 (unsigned long long) rq->cmd_flags);
168
169 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
170 (unsigned long long)blk_rq_pos(rq),
171 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
172 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
173 rq->bio, rq->biotail, blk_rq_bytes(rq));
174
175 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
176 printk(KERN_INFO " cdb: ");
177 for (bit = 0; bit < BLK_MAX_CDB; bit++)
178 printk("%02x ", rq->cmd[bit]);
179 printk("\n");
180 }
181 }
182 EXPORT_SYMBOL(blk_dump_rq_flags);
183
184 static void blk_delay_work(struct work_struct *work)
185 {
186 struct request_queue *q;
187
188 q = container_of(work, struct request_queue, delay_work.work);
189 spin_lock_irq(q->queue_lock);
190 __blk_run_queue(q);
191 spin_unlock_irq(q->queue_lock);
192 }
193
194 /**
195 * blk_delay_queue - restart queueing after defined interval
196 * @q: The &struct request_queue in question
197 * @msecs: Delay in msecs
198 *
199 * Description:
200 * Sometimes queueing needs to be postponed for a little while, to allow
201 * resources to come back. This function will make sure that queueing is
202 * restarted around the specified time. Queue lock must be held.
203 */
204 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
205 {
206 if (likely(!blk_queue_dead(q)))
207 queue_delayed_work(kblockd_workqueue, &q->delay_work,
208 msecs_to_jiffies(msecs));
209 }
210 EXPORT_SYMBOL(blk_delay_queue);
211
212 /**
213 * blk_start_queue - restart a previously stopped queue
214 * @q: The &struct request_queue in question
215 *
216 * Description:
217 * blk_start_queue() will clear the stop flag on the queue, and call
218 * the request_fn for the queue if it was in a stopped state when
219 * entered. Also see blk_stop_queue(). Queue lock must be held.
220 **/
221 void blk_start_queue(struct request_queue *q)
222 {
223 WARN_ON(!irqs_disabled());
224
225 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
226 __blk_run_queue(q);
227 }
228 EXPORT_SYMBOL(blk_start_queue);
229
230 /**
231 * blk_stop_queue - stop a queue
232 * @q: The &struct request_queue in question
233 *
234 * Description:
235 * The Linux block layer assumes that a block driver will consume all
236 * entries on the request queue when the request_fn strategy is called.
237 * Often this will not happen, because of hardware limitations (queue
238 * depth settings). If a device driver gets a 'queue full' response,
239 * or if it simply chooses not to queue more I/O at one point, it can
240 * call this function to prevent the request_fn from being called until
241 * the driver has signalled it's ready to go again. This happens by calling
242 * blk_start_queue() to restart queue operations. Queue lock must be held.
243 **/
244 void blk_stop_queue(struct request_queue *q)
245 {
246 cancel_delayed_work(&q->delay_work);
247 queue_flag_set(QUEUE_FLAG_STOPPED, q);
248 }
249 EXPORT_SYMBOL(blk_stop_queue);
250
251 /**
252 * blk_sync_queue - cancel any pending callbacks on a queue
253 * @q: the queue
254 *
255 * Description:
256 * The block layer may perform asynchronous callback activity
257 * on a queue, such as calling the unplug function after a timeout.
258 * A block device may call blk_sync_queue to ensure that any
259 * such activity is cancelled, thus allowing it to release resources
260 * that the callbacks might use. The caller must already have made sure
261 * that its ->make_request_fn will not re-add plugging prior to calling
262 * this function.
263 *
264 * This function does not cancel any asynchronous activity arising
265 * out of elevator or throttling code. That would require elevator_exit()
266 * and blkcg_exit_queue() to be called with queue lock initialized.
267 *
268 */
269 void blk_sync_queue(struct request_queue *q)
270 {
271 del_timer_sync(&q->timeout);
272
273 if (q->mq_ops) {
274 struct blk_mq_hw_ctx *hctx;
275 int i;
276
277 queue_for_each_hw_ctx(q, hctx, i) {
278 cancel_delayed_work_sync(&hctx->run_work);
279 cancel_delayed_work_sync(&hctx->delay_work);
280 }
281 } else {
282 cancel_delayed_work_sync(&q->delay_work);
283 }
284 }
285 EXPORT_SYMBOL(blk_sync_queue);
286
287 /**
288 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
289 * @q: The queue to run
290 *
291 * Description:
292 * Invoke request handling on a queue if there are any pending requests.
293 * May be used to restart request handling after a request has completed.
294 * This variant runs the queue whether or not the queue has been
295 * stopped. Must be called with the queue lock held and interrupts
296 * disabled. See also @blk_run_queue.
297 */
298 inline void __blk_run_queue_uncond(struct request_queue *q)
299 {
300 if (unlikely(blk_queue_dead(q)))
301 return;
302
303 /*
304 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
305 * the queue lock internally. As a result multiple threads may be
306 * running such a request function concurrently. Keep track of the
307 * number of active request_fn invocations such that blk_drain_queue()
308 * can wait until all these request_fn calls have finished.
309 */
310 q->request_fn_active++;
311 q->request_fn(q);
312 q->request_fn_active--;
313 }
314 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
315
316 /**
317 * __blk_run_queue - run a single device queue
318 * @q: The queue to run
319 *
320 * Description:
321 * See @blk_run_queue. This variant must be called with the queue lock
322 * held and interrupts disabled.
323 */
324 void __blk_run_queue(struct request_queue *q)
325 {
326 if (unlikely(blk_queue_stopped(q)))
327 return;
328
329 __blk_run_queue_uncond(q);
330 }
331 EXPORT_SYMBOL(__blk_run_queue);
332
333 /**
334 * blk_run_queue_async - run a single device queue in workqueue context
335 * @q: The queue to run
336 *
337 * Description:
338 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
339 * of us. The caller must hold the queue lock.
340 */
341 void blk_run_queue_async(struct request_queue *q)
342 {
343 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
344 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
345 }
346 EXPORT_SYMBOL(blk_run_queue_async);
347
348 /**
349 * blk_run_queue - run a single device queue
350 * @q: The queue to run
351 *
352 * Description:
353 * Invoke request handling on this queue, if it has pending work to do.
354 * May be used to restart queueing when a request has completed.
355 */
356 void blk_run_queue(struct request_queue *q)
357 {
358 unsigned long flags;
359
360 spin_lock_irqsave(q->queue_lock, flags);
361 __blk_run_queue(q);
362 spin_unlock_irqrestore(q->queue_lock, flags);
363 }
364 EXPORT_SYMBOL(blk_run_queue);
365
366 void blk_put_queue(struct request_queue *q)
367 {
368 kobject_put(&q->kobj);
369 }
370 EXPORT_SYMBOL(blk_put_queue);
371
372 /**
373 * __blk_drain_queue - drain requests from request_queue
374 * @q: queue to drain
375 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
376 *
377 * Drain requests from @q. If @drain_all is set, all requests are drained.
378 * If not, only ELVPRIV requests are drained. The caller is responsible
379 * for ensuring that no new requests which need to be drained are queued.
380 */
381 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
382 __releases(q->queue_lock)
383 __acquires(q->queue_lock)
384 {
385 int i;
386
387 lockdep_assert_held(q->queue_lock);
388
389 while (true) {
390 bool drain = false;
391
392 /*
393 * The caller might be trying to drain @q before its
394 * elevator is initialized.
395 */
396 if (q->elevator)
397 elv_drain_elevator(q);
398
399 blkcg_drain_queue(q);
400
401 /*
402 * This function might be called on a queue which failed
403 * driver init after queue creation or is not yet fully
404 * active yet. Some drivers (e.g. fd and loop) get unhappy
405 * in such cases. Kick queue iff dispatch queue has
406 * something on it and @q has request_fn set.
407 */
408 if (!list_empty(&q->queue_head) && q->request_fn)
409 __blk_run_queue(q);
410
411 drain |= q->nr_rqs_elvpriv;
412 drain |= q->request_fn_active;
413
414 /*
415 * Unfortunately, requests are queued at and tracked from
416 * multiple places and there's no single counter which can
417 * be drained. Check all the queues and counters.
418 */
419 if (drain_all) {
420 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
421 drain |= !list_empty(&q->queue_head);
422 for (i = 0; i < 2; i++) {
423 drain |= q->nr_rqs[i];
424 drain |= q->in_flight[i];
425 if (fq)
426 drain |= !list_empty(&fq->flush_queue[i]);
427 }
428 }
429
430 if (!drain)
431 break;
432
433 spin_unlock_irq(q->queue_lock);
434
435 msleep(10);
436
437 spin_lock_irq(q->queue_lock);
438 }
439
440 /*
441 * With queue marked dead, any woken up waiter will fail the
442 * allocation path, so the wakeup chaining is lost and we're
443 * left with hung waiters. We need to wake up those waiters.
444 */
445 if (q->request_fn) {
446 struct request_list *rl;
447
448 blk_queue_for_each_rl(rl, q)
449 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
450 wake_up_all(&rl->wait[i]);
451 }
452 }
453
454 /**
455 * blk_queue_bypass_start - enter queue bypass mode
456 * @q: queue of interest
457 *
458 * In bypass mode, only the dispatch FIFO queue of @q is used. This
459 * function makes @q enter bypass mode and drains all requests which were
460 * throttled or issued before. On return, it's guaranteed that no request
461 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
462 * inside queue or RCU read lock.
463 */
464 void blk_queue_bypass_start(struct request_queue *q)
465 {
466 spin_lock_irq(q->queue_lock);
467 q->bypass_depth++;
468 queue_flag_set(QUEUE_FLAG_BYPASS, q);
469 spin_unlock_irq(q->queue_lock);
470
471 /*
472 * Queues start drained. Skip actual draining till init is
473 * complete. This avoids lenghty delays during queue init which
474 * can happen many times during boot.
475 */
476 if (blk_queue_init_done(q)) {
477 spin_lock_irq(q->queue_lock);
478 __blk_drain_queue(q, false);
479 spin_unlock_irq(q->queue_lock);
480
481 /* ensure blk_queue_bypass() is %true inside RCU read lock */
482 synchronize_rcu();
483 }
484 }
485 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
486
487 /**
488 * blk_queue_bypass_end - leave queue bypass mode
489 * @q: queue of interest
490 *
491 * Leave bypass mode and restore the normal queueing behavior.
492 */
493 void blk_queue_bypass_end(struct request_queue *q)
494 {
495 spin_lock_irq(q->queue_lock);
496 if (!--q->bypass_depth)
497 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
498 WARN_ON_ONCE(q->bypass_depth < 0);
499 spin_unlock_irq(q->queue_lock);
500 }
501 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
502
503 void blk_set_queue_dying(struct request_queue *q)
504 {
505 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
506
507 if (q->mq_ops)
508 blk_mq_wake_waiters(q);
509 else {
510 struct request_list *rl;
511
512 blk_queue_for_each_rl(rl, q) {
513 if (rl->rq_pool) {
514 wake_up(&rl->wait[BLK_RW_SYNC]);
515 wake_up(&rl->wait[BLK_RW_ASYNC]);
516 }
517 }
518 }
519 }
520 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
521
522 /**
523 * blk_cleanup_queue - shutdown a request queue
524 * @q: request queue to shutdown
525 *
526 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
527 * put it. All future requests will be failed immediately with -ENODEV.
528 */
529 void blk_cleanup_queue(struct request_queue *q)
530 {
531 spinlock_t *lock = q->queue_lock;
532
533 /* mark @q DYING, no new request or merges will be allowed afterwards */
534 mutex_lock(&q->sysfs_lock);
535 blk_set_queue_dying(q);
536 spin_lock_irq(lock);
537
538 /*
539 * A dying queue is permanently in bypass mode till released. Note
540 * that, unlike blk_queue_bypass_start(), we aren't performing
541 * synchronize_rcu() after entering bypass mode to avoid the delay
542 * as some drivers create and destroy a lot of queues while
543 * probing. This is still safe because blk_release_queue() will be
544 * called only after the queue refcnt drops to zero and nothing,
545 * RCU or not, would be traversing the queue by then.
546 */
547 q->bypass_depth++;
548 queue_flag_set(QUEUE_FLAG_BYPASS, q);
549
550 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
551 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
552 queue_flag_set(QUEUE_FLAG_DYING, q);
553 spin_unlock_irq(lock);
554 mutex_unlock(&q->sysfs_lock);
555
556 /*
557 * Drain all requests queued before DYING marking. Set DEAD flag to
558 * prevent that q->request_fn() gets invoked after draining finished.
559 */
560 if (q->mq_ops) {
561 blk_mq_freeze_queue(q);
562 spin_lock_irq(lock);
563 } else {
564 spin_lock_irq(lock);
565 __blk_drain_queue(q, true);
566 }
567 queue_flag_set(QUEUE_FLAG_DEAD, q);
568 spin_unlock_irq(lock);
569
570 /* @q won't process any more request, flush async actions */
571 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
572 blk_sync_queue(q);
573
574 if (q->mq_ops)
575 blk_mq_free_queue(q);
576
577 spin_lock_irq(lock);
578 if (q->queue_lock != &q->__queue_lock)
579 q->queue_lock = &q->__queue_lock;
580 spin_unlock_irq(lock);
581
582 bdi_destroy(&q->backing_dev_info);
583
584 /* @q is and will stay empty, shutdown and put */
585 blk_put_queue(q);
586 }
587 EXPORT_SYMBOL(blk_cleanup_queue);
588
589 /* Allocate memory local to the request queue */
590 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
591 {
592 int nid = (int)(long)data;
593 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
594 }
595
596 static void free_request_struct(void *element, void *unused)
597 {
598 kmem_cache_free(request_cachep, element);
599 }
600
601 int blk_init_rl(struct request_list *rl, struct request_queue *q,
602 gfp_t gfp_mask)
603 {
604 if (unlikely(rl->rq_pool))
605 return 0;
606
607 rl->q = q;
608 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
609 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
610 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
611 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
612
613 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
614 free_request_struct,
615 (void *)(long)q->node, gfp_mask,
616 q->node);
617 if (!rl->rq_pool)
618 return -ENOMEM;
619
620 return 0;
621 }
622
623 void blk_exit_rl(struct request_list *rl)
624 {
625 if (rl->rq_pool)
626 mempool_destroy(rl->rq_pool);
627 }
628
629 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
630 {
631 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
632 }
633 EXPORT_SYMBOL(blk_alloc_queue);
634
635 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
636 {
637 struct request_queue *q;
638 int err;
639
640 q = kmem_cache_alloc_node(blk_requestq_cachep,
641 gfp_mask | __GFP_ZERO, node_id);
642 if (!q)
643 return NULL;
644
645 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
646 if (q->id < 0)
647 goto fail_q;
648
649 q->backing_dev_info.ra_pages =
650 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
651 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
652 q->backing_dev_info.name = "block";
653 q->node = node_id;
654
655 err = bdi_init(&q->backing_dev_info);
656 if (err)
657 goto fail_id;
658
659 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
660 laptop_mode_timer_fn, (unsigned long) q);
661 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
662 INIT_LIST_HEAD(&q->queue_head);
663 INIT_LIST_HEAD(&q->timeout_list);
664 INIT_LIST_HEAD(&q->icq_list);
665 #ifdef CONFIG_BLK_CGROUP
666 INIT_LIST_HEAD(&q->blkg_list);
667 #endif
668 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
669
670 kobject_init(&q->kobj, &blk_queue_ktype);
671
672 mutex_init(&q->sysfs_lock);
673 spin_lock_init(&q->__queue_lock);
674
675 /*
676 * By default initialize queue_lock to internal lock and driver can
677 * override it later if need be.
678 */
679 q->queue_lock = &q->__queue_lock;
680
681 /*
682 * A queue starts its life with bypass turned on to avoid
683 * unnecessary bypass on/off overhead and nasty surprises during
684 * init. The initial bypass will be finished when the queue is
685 * registered by blk_register_queue().
686 */
687 q->bypass_depth = 1;
688 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
689
690 init_waitqueue_head(&q->mq_freeze_wq);
691
692 if (blkcg_init_queue(q))
693 goto fail_bdi;
694
695 return q;
696
697 fail_bdi:
698 bdi_destroy(&q->backing_dev_info);
699 fail_id:
700 ida_simple_remove(&blk_queue_ida, q->id);
701 fail_q:
702 kmem_cache_free(blk_requestq_cachep, q);
703 return NULL;
704 }
705 EXPORT_SYMBOL(blk_alloc_queue_node);
706
707 /**
708 * blk_init_queue - prepare a request queue for use with a block device
709 * @rfn: The function to be called to process requests that have been
710 * placed on the queue.
711 * @lock: Request queue spin lock
712 *
713 * Description:
714 * If a block device wishes to use the standard request handling procedures,
715 * which sorts requests and coalesces adjacent requests, then it must
716 * call blk_init_queue(). The function @rfn will be called when there
717 * are requests on the queue that need to be processed. If the device
718 * supports plugging, then @rfn may not be called immediately when requests
719 * are available on the queue, but may be called at some time later instead.
720 * Plugged queues are generally unplugged when a buffer belonging to one
721 * of the requests on the queue is needed, or due to memory pressure.
722 *
723 * @rfn is not required, or even expected, to remove all requests off the
724 * queue, but only as many as it can handle at a time. If it does leave
725 * requests on the queue, it is responsible for arranging that the requests
726 * get dealt with eventually.
727 *
728 * The queue spin lock must be held while manipulating the requests on the
729 * request queue; this lock will be taken also from interrupt context, so irq
730 * disabling is needed for it.
731 *
732 * Function returns a pointer to the initialized request queue, or %NULL if
733 * it didn't succeed.
734 *
735 * Note:
736 * blk_init_queue() must be paired with a blk_cleanup_queue() call
737 * when the block device is deactivated (such as at module unload).
738 **/
739
740 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
741 {
742 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
743 }
744 EXPORT_SYMBOL(blk_init_queue);
745
746 struct request_queue *
747 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
748 {
749 struct request_queue *uninit_q, *q;
750
751 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
752 if (!uninit_q)
753 return NULL;
754
755 q = blk_init_allocated_queue(uninit_q, rfn, lock);
756 if (!q)
757 blk_cleanup_queue(uninit_q);
758
759 return q;
760 }
761 EXPORT_SYMBOL(blk_init_queue_node);
762
763 static void blk_queue_bio(struct request_queue *q, struct bio *bio);
764
765 struct request_queue *
766 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
767 spinlock_t *lock)
768 {
769 if (!q)
770 return NULL;
771
772 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
773 if (!q->fq)
774 return NULL;
775
776 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
777 goto fail;
778
779 q->request_fn = rfn;
780 q->prep_rq_fn = NULL;
781 q->unprep_rq_fn = NULL;
782 q->queue_flags |= QUEUE_FLAG_DEFAULT;
783
784 /* Override internal queue lock with supplied lock pointer */
785 if (lock)
786 q->queue_lock = lock;
787
788 /*
789 * This also sets hw/phys segments, boundary and size
790 */
791 blk_queue_make_request(q, blk_queue_bio);
792
793 q->sg_reserved_size = INT_MAX;
794
795 /* Protect q->elevator from elevator_change */
796 mutex_lock(&q->sysfs_lock);
797
798 /* init elevator */
799 if (elevator_init(q, NULL)) {
800 mutex_unlock(&q->sysfs_lock);
801 goto fail;
802 }
803
804 mutex_unlock(&q->sysfs_lock);
805
806 return q;
807
808 fail:
809 blk_free_flush_queue(q->fq);
810 return NULL;
811 }
812 EXPORT_SYMBOL(blk_init_allocated_queue);
813
814 bool blk_get_queue(struct request_queue *q)
815 {
816 if (likely(!blk_queue_dying(q))) {
817 __blk_get_queue(q);
818 return true;
819 }
820
821 return false;
822 }
823 EXPORT_SYMBOL(blk_get_queue);
824
825 static inline void blk_free_request(struct request_list *rl, struct request *rq)
826 {
827 if (rq->cmd_flags & REQ_ELVPRIV) {
828 elv_put_request(rl->q, rq);
829 if (rq->elv.icq)
830 put_io_context(rq->elv.icq->ioc);
831 }
832
833 mempool_free(rq, rl->rq_pool);
834 }
835
836 /*
837 * ioc_batching returns true if the ioc is a valid batching request and
838 * should be given priority access to a request.
839 */
840 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
841 {
842 if (!ioc)
843 return 0;
844
845 /*
846 * Make sure the process is able to allocate at least 1 request
847 * even if the batch times out, otherwise we could theoretically
848 * lose wakeups.
849 */
850 return ioc->nr_batch_requests == q->nr_batching ||
851 (ioc->nr_batch_requests > 0
852 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
853 }
854
855 /*
856 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
857 * will cause the process to be a "batcher" on all queues in the system. This
858 * is the behaviour we want though - once it gets a wakeup it should be given
859 * a nice run.
860 */
861 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
862 {
863 if (!ioc || ioc_batching(q, ioc))
864 return;
865
866 ioc->nr_batch_requests = q->nr_batching;
867 ioc->last_waited = jiffies;
868 }
869
870 static void __freed_request(struct request_list *rl, int sync)
871 {
872 struct request_queue *q = rl->q;
873
874 if (rl->count[sync] < queue_congestion_off_threshold(q))
875 blk_clear_congested(rl, sync);
876
877 if (rl->count[sync] + 1 <= q->nr_requests) {
878 if (waitqueue_active(&rl->wait[sync]))
879 wake_up(&rl->wait[sync]);
880
881 blk_clear_rl_full(rl, sync);
882 }
883 }
884
885 /*
886 * A request has just been released. Account for it, update the full and
887 * congestion status, wake up any waiters. Called under q->queue_lock.
888 */
889 static void freed_request(struct request_list *rl, unsigned int flags)
890 {
891 struct request_queue *q = rl->q;
892 int sync = rw_is_sync(flags);
893
894 q->nr_rqs[sync]--;
895 rl->count[sync]--;
896 if (flags & REQ_ELVPRIV)
897 q->nr_rqs_elvpriv--;
898
899 __freed_request(rl, sync);
900
901 if (unlikely(rl->starved[sync ^ 1]))
902 __freed_request(rl, sync ^ 1);
903 }
904
905 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
906 {
907 struct request_list *rl;
908 int on_thresh, off_thresh;
909
910 spin_lock_irq(q->queue_lock);
911 q->nr_requests = nr;
912 blk_queue_congestion_threshold(q);
913 on_thresh = queue_congestion_on_threshold(q);
914 off_thresh = queue_congestion_off_threshold(q);
915
916 blk_queue_for_each_rl(rl, q) {
917 if (rl->count[BLK_RW_SYNC] >= on_thresh)
918 blk_set_congested(rl, BLK_RW_SYNC);
919 else if (rl->count[BLK_RW_SYNC] < off_thresh)
920 blk_clear_congested(rl, BLK_RW_SYNC);
921
922 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
923 blk_set_congested(rl, BLK_RW_ASYNC);
924 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
925 blk_clear_congested(rl, BLK_RW_ASYNC);
926
927 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
928 blk_set_rl_full(rl, BLK_RW_SYNC);
929 } else {
930 blk_clear_rl_full(rl, BLK_RW_SYNC);
931 wake_up(&rl->wait[BLK_RW_SYNC]);
932 }
933
934 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
935 blk_set_rl_full(rl, BLK_RW_ASYNC);
936 } else {
937 blk_clear_rl_full(rl, BLK_RW_ASYNC);
938 wake_up(&rl->wait[BLK_RW_ASYNC]);
939 }
940 }
941
942 spin_unlock_irq(q->queue_lock);
943 return 0;
944 }
945
946 /*
947 * Determine if elevator data should be initialized when allocating the
948 * request associated with @bio.
949 */
950 static bool blk_rq_should_init_elevator(struct bio *bio)
951 {
952 if (!bio)
953 return true;
954
955 /*
956 * Flush requests do not use the elevator so skip initialization.
957 * This allows a request to share the flush and elevator data.
958 */
959 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
960 return false;
961
962 return true;
963 }
964
965 /**
966 * rq_ioc - determine io_context for request allocation
967 * @bio: request being allocated is for this bio (can be %NULL)
968 *
969 * Determine io_context to use for request allocation for @bio. May return
970 * %NULL if %current->io_context doesn't exist.
971 */
972 static struct io_context *rq_ioc(struct bio *bio)
973 {
974 #ifdef CONFIG_BLK_CGROUP
975 if (bio && bio->bi_ioc)
976 return bio->bi_ioc;
977 #endif
978 return current->io_context;
979 }
980
981 /**
982 * __get_request - get a free request
983 * @rl: request list to allocate from
984 * @rw_flags: RW and SYNC flags
985 * @bio: bio to allocate request for (can be %NULL)
986 * @gfp_mask: allocation mask
987 *
988 * Get a free request from @q. This function may fail under memory
989 * pressure or if @q is dead.
990 *
991 * Must be called with @q->queue_lock held and,
992 * Returns ERR_PTR on failure, with @q->queue_lock held.
993 * Returns request pointer on success, with @q->queue_lock *not held*.
994 */
995 static struct request *__get_request(struct request_list *rl, int rw_flags,
996 struct bio *bio, gfp_t gfp_mask)
997 {
998 struct request_queue *q = rl->q;
999 struct request *rq;
1000 struct elevator_type *et = q->elevator->type;
1001 struct io_context *ioc = rq_ioc(bio);
1002 struct io_cq *icq = NULL;
1003 const bool is_sync = rw_is_sync(rw_flags) != 0;
1004 int may_queue;
1005
1006 if (unlikely(blk_queue_dying(q)))
1007 return ERR_PTR(-ENODEV);
1008
1009 may_queue = elv_may_queue(q, rw_flags);
1010 if (may_queue == ELV_MQUEUE_NO)
1011 goto rq_starved;
1012
1013 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1014 if (rl->count[is_sync]+1 >= q->nr_requests) {
1015 /*
1016 * The queue will fill after this allocation, so set
1017 * it as full, and mark this process as "batching".
1018 * This process will be allowed to complete a batch of
1019 * requests, others will be blocked.
1020 */
1021 if (!blk_rl_full(rl, is_sync)) {
1022 ioc_set_batching(q, ioc);
1023 blk_set_rl_full(rl, is_sync);
1024 } else {
1025 if (may_queue != ELV_MQUEUE_MUST
1026 && !ioc_batching(q, ioc)) {
1027 /*
1028 * The queue is full and the allocating
1029 * process is not a "batcher", and not
1030 * exempted by the IO scheduler
1031 */
1032 return ERR_PTR(-ENOMEM);
1033 }
1034 }
1035 }
1036 blk_set_congested(rl, is_sync);
1037 }
1038
1039 /*
1040 * Only allow batching queuers to allocate up to 50% over the defined
1041 * limit of requests, otherwise we could have thousands of requests
1042 * allocated with any setting of ->nr_requests
1043 */
1044 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1045 return ERR_PTR(-ENOMEM);
1046
1047 q->nr_rqs[is_sync]++;
1048 rl->count[is_sync]++;
1049 rl->starved[is_sync] = 0;
1050
1051 /*
1052 * Decide whether the new request will be managed by elevator. If
1053 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1054 * prevent the current elevator from being destroyed until the new
1055 * request is freed. This guarantees icq's won't be destroyed and
1056 * makes creating new ones safe.
1057 *
1058 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1059 * it will be created after releasing queue_lock.
1060 */
1061 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1062 rw_flags |= REQ_ELVPRIV;
1063 q->nr_rqs_elvpriv++;
1064 if (et->icq_cache && ioc)
1065 icq = ioc_lookup_icq(ioc, q);
1066 }
1067
1068 if (blk_queue_io_stat(q))
1069 rw_flags |= REQ_IO_STAT;
1070 spin_unlock_irq(q->queue_lock);
1071
1072 /* allocate and init request */
1073 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1074 if (!rq)
1075 goto fail_alloc;
1076
1077 blk_rq_init(q, rq);
1078 blk_rq_set_rl(rq, rl);
1079 rq->cmd_flags = rw_flags | REQ_ALLOCED;
1080
1081 /* init elvpriv */
1082 if (rw_flags & REQ_ELVPRIV) {
1083 if (unlikely(et->icq_cache && !icq)) {
1084 if (ioc)
1085 icq = ioc_create_icq(ioc, q, gfp_mask);
1086 if (!icq)
1087 goto fail_elvpriv;
1088 }
1089
1090 rq->elv.icq = icq;
1091 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1092 goto fail_elvpriv;
1093
1094 /* @rq->elv.icq holds io_context until @rq is freed */
1095 if (icq)
1096 get_io_context(icq->ioc);
1097 }
1098 out:
1099 /*
1100 * ioc may be NULL here, and ioc_batching will be false. That's
1101 * OK, if the queue is under the request limit then requests need
1102 * not count toward the nr_batch_requests limit. There will always
1103 * be some limit enforced by BLK_BATCH_TIME.
1104 */
1105 if (ioc_batching(q, ioc))
1106 ioc->nr_batch_requests--;
1107
1108 trace_block_getrq(q, bio, rw_flags & 1);
1109 return rq;
1110
1111 fail_elvpriv:
1112 /*
1113 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1114 * and may fail indefinitely under memory pressure and thus
1115 * shouldn't stall IO. Treat this request as !elvpriv. This will
1116 * disturb iosched and blkcg but weird is bettern than dead.
1117 */
1118 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1119 __func__, dev_name(q->backing_dev_info.dev));
1120
1121 rq->cmd_flags &= ~REQ_ELVPRIV;
1122 rq->elv.icq = NULL;
1123
1124 spin_lock_irq(q->queue_lock);
1125 q->nr_rqs_elvpriv--;
1126 spin_unlock_irq(q->queue_lock);
1127 goto out;
1128
1129 fail_alloc:
1130 /*
1131 * Allocation failed presumably due to memory. Undo anything we
1132 * might have messed up.
1133 *
1134 * Allocating task should really be put onto the front of the wait
1135 * queue, but this is pretty rare.
1136 */
1137 spin_lock_irq(q->queue_lock);
1138 freed_request(rl, rw_flags);
1139
1140 /*
1141 * in the very unlikely event that allocation failed and no
1142 * requests for this direction was pending, mark us starved so that
1143 * freeing of a request in the other direction will notice
1144 * us. another possible fix would be to split the rq mempool into
1145 * READ and WRITE
1146 */
1147 rq_starved:
1148 if (unlikely(rl->count[is_sync] == 0))
1149 rl->starved[is_sync] = 1;
1150 return ERR_PTR(-ENOMEM);
1151 }
1152
1153 /**
1154 * get_request - get a free request
1155 * @q: request_queue to allocate request from
1156 * @rw_flags: RW and SYNC flags
1157 * @bio: bio to allocate request for (can be %NULL)
1158 * @gfp_mask: allocation mask
1159 *
1160 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1161 * function keeps retrying under memory pressure and fails iff @q is dead.
1162 *
1163 * Must be called with @q->queue_lock held and,
1164 * Returns ERR_PTR on failure, with @q->queue_lock held.
1165 * Returns request pointer on success, with @q->queue_lock *not held*.
1166 */
1167 static struct request *get_request(struct request_queue *q, int rw_flags,
1168 struct bio *bio, gfp_t gfp_mask)
1169 {
1170 const bool is_sync = rw_is_sync(rw_flags) != 0;
1171 DEFINE_WAIT(wait);
1172 struct request_list *rl;
1173 struct request *rq;
1174
1175 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1176 retry:
1177 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1178 if (!IS_ERR(rq))
1179 return rq;
1180
1181 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1182 blk_put_rl(rl);
1183 return rq;
1184 }
1185
1186 /* wait on @rl and retry */
1187 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1188 TASK_UNINTERRUPTIBLE);
1189
1190 trace_block_sleeprq(q, bio, rw_flags & 1);
1191
1192 spin_unlock_irq(q->queue_lock);
1193 io_schedule();
1194
1195 /*
1196 * After sleeping, we become a "batching" process and will be able
1197 * to allocate at least one request, and up to a big batch of them
1198 * for a small period time. See ioc_batching, ioc_set_batching
1199 */
1200 ioc_set_batching(q, current->io_context);
1201
1202 spin_lock_irq(q->queue_lock);
1203 finish_wait(&rl->wait[is_sync], &wait);
1204
1205 goto retry;
1206 }
1207
1208 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1209 gfp_t gfp_mask)
1210 {
1211 struct request *rq;
1212
1213 BUG_ON(rw != READ && rw != WRITE);
1214
1215 /* create ioc upfront */
1216 create_io_context(gfp_mask, q->node);
1217
1218 spin_lock_irq(q->queue_lock);
1219 rq = get_request(q, rw, NULL, gfp_mask);
1220 if (IS_ERR(rq))
1221 spin_unlock_irq(q->queue_lock);
1222 /* q->queue_lock is unlocked at this point */
1223
1224 return rq;
1225 }
1226
1227 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1228 {
1229 if (q->mq_ops)
1230 return blk_mq_alloc_request(q, rw, gfp_mask, false);
1231 else
1232 return blk_old_get_request(q, rw, gfp_mask);
1233 }
1234 EXPORT_SYMBOL(blk_get_request);
1235
1236 /**
1237 * blk_make_request - given a bio, allocate a corresponding struct request.
1238 * @q: target request queue
1239 * @bio: The bio describing the memory mappings that will be submitted for IO.
1240 * It may be a chained-bio properly constructed by block/bio layer.
1241 * @gfp_mask: gfp flags to be used for memory allocation
1242 *
1243 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1244 * type commands. Where the struct request needs to be farther initialized by
1245 * the caller. It is passed a &struct bio, which describes the memory info of
1246 * the I/O transfer.
1247 *
1248 * The caller of blk_make_request must make sure that bi_io_vec
1249 * are set to describe the memory buffers. That bio_data_dir() will return
1250 * the needed direction of the request. (And all bio's in the passed bio-chain
1251 * are properly set accordingly)
1252 *
1253 * If called under none-sleepable conditions, mapped bio buffers must not
1254 * need bouncing, by calling the appropriate masked or flagged allocator,
1255 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1256 * BUG.
1257 *
1258 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1259 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1260 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1261 * completion of a bio that hasn't been submitted yet, thus resulting in a
1262 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1263 * of bio_alloc(), as that avoids the mempool deadlock.
1264 * If possible a big IO should be split into smaller parts when allocation
1265 * fails. Partial allocation should not be an error, or you risk a live-lock.
1266 */
1267 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1268 gfp_t gfp_mask)
1269 {
1270 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1271
1272 if (IS_ERR(rq))
1273 return rq;
1274
1275 blk_rq_set_block_pc(rq);
1276
1277 for_each_bio(bio) {
1278 struct bio *bounce_bio = bio;
1279 int ret;
1280
1281 blk_queue_bounce(q, &bounce_bio);
1282 ret = blk_rq_append_bio(q, rq, bounce_bio);
1283 if (unlikely(ret)) {
1284 blk_put_request(rq);
1285 return ERR_PTR(ret);
1286 }
1287 }
1288
1289 return rq;
1290 }
1291 EXPORT_SYMBOL(blk_make_request);
1292
1293 /**
1294 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1295 * @rq: request to be initialized
1296 *
1297 */
1298 void blk_rq_set_block_pc(struct request *rq)
1299 {
1300 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1301 rq->__data_len = 0;
1302 rq->__sector = (sector_t) -1;
1303 rq->bio = rq->biotail = NULL;
1304 memset(rq->__cmd, 0, sizeof(rq->__cmd));
1305 }
1306 EXPORT_SYMBOL(blk_rq_set_block_pc);
1307
1308 /**
1309 * blk_requeue_request - put a request back on queue
1310 * @q: request queue where request should be inserted
1311 * @rq: request to be inserted
1312 *
1313 * Description:
1314 * Drivers often keep queueing requests until the hardware cannot accept
1315 * more, when that condition happens we need to put the request back
1316 * on the queue. Must be called with queue lock held.
1317 */
1318 void blk_requeue_request(struct request_queue *q, struct request *rq)
1319 {
1320 blk_delete_timer(rq);
1321 blk_clear_rq_complete(rq);
1322 trace_block_rq_requeue(q, rq);
1323
1324 if (rq->cmd_flags & REQ_QUEUED)
1325 blk_queue_end_tag(q, rq);
1326
1327 BUG_ON(blk_queued_rq(rq));
1328
1329 elv_requeue_request(q, rq);
1330 }
1331 EXPORT_SYMBOL(blk_requeue_request);
1332
1333 static void add_acct_request(struct request_queue *q, struct request *rq,
1334 int where)
1335 {
1336 blk_account_io_start(rq, true);
1337 __elv_add_request(q, rq, where);
1338 }
1339
1340 static void part_round_stats_single(int cpu, struct hd_struct *part,
1341 unsigned long now)
1342 {
1343 int inflight;
1344
1345 if (now == part->stamp)
1346 return;
1347
1348 inflight = part_in_flight(part);
1349 if (inflight) {
1350 __part_stat_add(cpu, part, time_in_queue,
1351 inflight * (now - part->stamp));
1352 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1353 }
1354 part->stamp = now;
1355 }
1356
1357 /**
1358 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1359 * @cpu: cpu number for stats access
1360 * @part: target partition
1361 *
1362 * The average IO queue length and utilisation statistics are maintained
1363 * by observing the current state of the queue length and the amount of
1364 * time it has been in this state for.
1365 *
1366 * Normally, that accounting is done on IO completion, but that can result
1367 * in more than a second's worth of IO being accounted for within any one
1368 * second, leading to >100% utilisation. To deal with that, we call this
1369 * function to do a round-off before returning the results when reading
1370 * /proc/diskstats. This accounts immediately for all queue usage up to
1371 * the current jiffies and restarts the counters again.
1372 */
1373 void part_round_stats(int cpu, struct hd_struct *part)
1374 {
1375 unsigned long now = jiffies;
1376
1377 if (part->partno)
1378 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1379 part_round_stats_single(cpu, part, now);
1380 }
1381 EXPORT_SYMBOL_GPL(part_round_stats);
1382
1383 #ifdef CONFIG_PM
1384 static void blk_pm_put_request(struct request *rq)
1385 {
1386 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1387 pm_runtime_mark_last_busy(rq->q->dev);
1388 }
1389 #else
1390 static inline void blk_pm_put_request(struct request *rq) {}
1391 #endif
1392
1393 /*
1394 * queue lock must be held
1395 */
1396 void __blk_put_request(struct request_queue *q, struct request *req)
1397 {
1398 if (unlikely(!q))
1399 return;
1400
1401 if (q->mq_ops) {
1402 blk_mq_free_request(req);
1403 return;
1404 }
1405
1406 blk_pm_put_request(req);
1407
1408 elv_completed_request(q, req);
1409
1410 /* this is a bio leak */
1411 WARN_ON(req->bio != NULL);
1412
1413 /*
1414 * Request may not have originated from ll_rw_blk. if not,
1415 * it didn't come out of our reserved rq pools
1416 */
1417 if (req->cmd_flags & REQ_ALLOCED) {
1418 unsigned int flags = req->cmd_flags;
1419 struct request_list *rl = blk_rq_rl(req);
1420
1421 BUG_ON(!list_empty(&req->queuelist));
1422 BUG_ON(ELV_ON_HASH(req));
1423
1424 blk_free_request(rl, req);
1425 freed_request(rl, flags);
1426 blk_put_rl(rl);
1427 }
1428 }
1429 EXPORT_SYMBOL_GPL(__blk_put_request);
1430
1431 void blk_put_request(struct request *req)
1432 {
1433 struct request_queue *q = req->q;
1434
1435 if (q->mq_ops)
1436 blk_mq_free_request(req);
1437 else {
1438 unsigned long flags;
1439
1440 spin_lock_irqsave(q->queue_lock, flags);
1441 __blk_put_request(q, req);
1442 spin_unlock_irqrestore(q->queue_lock, flags);
1443 }
1444 }
1445 EXPORT_SYMBOL(blk_put_request);
1446
1447 /**
1448 * blk_add_request_payload - add a payload to a request
1449 * @rq: request to update
1450 * @page: page backing the payload
1451 * @len: length of the payload.
1452 *
1453 * This allows to later add a payload to an already submitted request by
1454 * a block driver. The driver needs to take care of freeing the payload
1455 * itself.
1456 *
1457 * Note that this is a quite horrible hack and nothing but handling of
1458 * discard requests should ever use it.
1459 */
1460 void blk_add_request_payload(struct request *rq, struct page *page,
1461 unsigned int len)
1462 {
1463 struct bio *bio = rq->bio;
1464
1465 bio->bi_io_vec->bv_page = page;
1466 bio->bi_io_vec->bv_offset = 0;
1467 bio->bi_io_vec->bv_len = len;
1468
1469 bio->bi_iter.bi_size = len;
1470 bio->bi_vcnt = 1;
1471 bio->bi_phys_segments = 1;
1472
1473 rq->__data_len = rq->resid_len = len;
1474 rq->nr_phys_segments = 1;
1475 }
1476 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1477
1478 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1479 struct bio *bio)
1480 {
1481 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1482
1483 if (!ll_back_merge_fn(q, req, bio))
1484 return false;
1485
1486 trace_block_bio_backmerge(q, req, bio);
1487
1488 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1489 blk_rq_set_mixed_merge(req);
1490
1491 req->biotail->bi_next = bio;
1492 req->biotail = bio;
1493 req->__data_len += bio->bi_iter.bi_size;
1494 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1495
1496 blk_account_io_start(req, false);
1497 return true;
1498 }
1499
1500 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1501 struct bio *bio)
1502 {
1503 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1504
1505 if (!ll_front_merge_fn(q, req, bio))
1506 return false;
1507
1508 trace_block_bio_frontmerge(q, req, bio);
1509
1510 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1511 blk_rq_set_mixed_merge(req);
1512
1513 bio->bi_next = req->bio;
1514 req->bio = bio;
1515
1516 req->__sector = bio->bi_iter.bi_sector;
1517 req->__data_len += bio->bi_iter.bi_size;
1518 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1519
1520 blk_account_io_start(req, false);
1521 return true;
1522 }
1523
1524 /**
1525 * blk_attempt_plug_merge - try to merge with %current's plugged list
1526 * @q: request_queue new bio is being queued at
1527 * @bio: new bio being queued
1528 * @request_count: out parameter for number of traversed plugged requests
1529 *
1530 * Determine whether @bio being queued on @q can be merged with a request
1531 * on %current's plugged list. Returns %true if merge was successful,
1532 * otherwise %false.
1533 *
1534 * Plugging coalesces IOs from the same issuer for the same purpose without
1535 * going through @q->queue_lock. As such it's more of an issuing mechanism
1536 * than scheduling, and the request, while may have elvpriv data, is not
1537 * added on the elevator at this point. In addition, we don't have
1538 * reliable access to the elevator outside queue lock. Only check basic
1539 * merging parameters without querying the elevator.
1540 *
1541 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1542 */
1543 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1544 unsigned int *request_count,
1545 struct request **same_queue_rq)
1546 {
1547 struct blk_plug *plug;
1548 struct request *rq;
1549 bool ret = false;
1550 struct list_head *plug_list;
1551
1552 plug = current->plug;
1553 if (!plug)
1554 goto out;
1555 *request_count = 0;
1556
1557 if (q->mq_ops)
1558 plug_list = &plug->mq_list;
1559 else
1560 plug_list = &plug->list;
1561
1562 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1563 int el_ret;
1564
1565 if (rq->q == q) {
1566 (*request_count)++;
1567 /*
1568 * Only blk-mq multiple hardware queues case checks the
1569 * rq in the same queue, there should be only one such
1570 * rq in a queue
1571 **/
1572 if (same_queue_rq)
1573 *same_queue_rq = rq;
1574 }
1575
1576 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1577 continue;
1578
1579 el_ret = blk_try_merge(rq, bio);
1580 if (el_ret == ELEVATOR_BACK_MERGE) {
1581 ret = bio_attempt_back_merge(q, rq, bio);
1582 if (ret)
1583 break;
1584 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1585 ret = bio_attempt_front_merge(q, rq, bio);
1586 if (ret)
1587 break;
1588 }
1589 }
1590 out:
1591 return ret;
1592 }
1593
1594 void init_request_from_bio(struct request *req, struct bio *bio)
1595 {
1596 req->cmd_type = REQ_TYPE_FS;
1597
1598 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1599 if (bio->bi_rw & REQ_RAHEAD)
1600 req->cmd_flags |= REQ_FAILFAST_MASK;
1601
1602 req->errors = 0;
1603 req->__sector = bio->bi_iter.bi_sector;
1604 req->ioprio = bio_prio(bio);
1605 blk_rq_bio_prep(req->q, req, bio);
1606 }
1607
1608 static void blk_queue_bio(struct request_queue *q, struct bio *bio)
1609 {
1610 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1611 struct blk_plug *plug;
1612 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1613 struct request *req;
1614 unsigned int request_count = 0;
1615
1616 /*
1617 * low level driver can indicate that it wants pages above a
1618 * certain limit bounced to low memory (ie for highmem, or even
1619 * ISA dma in theory)
1620 */
1621 blk_queue_bounce(q, &bio);
1622
1623 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1624 bio_endio(bio, -EIO);
1625 return;
1626 }
1627
1628 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1629 spin_lock_irq(q->queue_lock);
1630 where = ELEVATOR_INSERT_FLUSH;
1631 goto get_rq;
1632 }
1633
1634 /*
1635 * Check if we can merge with the plugged list before grabbing
1636 * any locks.
1637 */
1638 if (!blk_queue_nomerges(q) &&
1639 blk_attempt_plug_merge(q, bio, &request_count, NULL))
1640 return;
1641
1642 spin_lock_irq(q->queue_lock);
1643
1644 el_ret = elv_merge(q, &req, bio);
1645 if (el_ret == ELEVATOR_BACK_MERGE) {
1646 if (bio_attempt_back_merge(q, req, bio)) {
1647 elv_bio_merged(q, req, bio);
1648 if (!attempt_back_merge(q, req))
1649 elv_merged_request(q, req, el_ret);
1650 goto out_unlock;
1651 }
1652 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1653 if (bio_attempt_front_merge(q, req, bio)) {
1654 elv_bio_merged(q, req, bio);
1655 if (!attempt_front_merge(q, req))
1656 elv_merged_request(q, req, el_ret);
1657 goto out_unlock;
1658 }
1659 }
1660
1661 get_rq:
1662 /*
1663 * This sync check and mask will be re-done in init_request_from_bio(),
1664 * but we need to set it earlier to expose the sync flag to the
1665 * rq allocator and io schedulers.
1666 */
1667 rw_flags = bio_data_dir(bio);
1668 if (sync)
1669 rw_flags |= REQ_SYNC;
1670
1671 /*
1672 * Grab a free request. This is might sleep but can not fail.
1673 * Returns with the queue unlocked.
1674 */
1675 req = get_request(q, rw_flags, bio, GFP_NOIO);
1676 if (IS_ERR(req)) {
1677 bio_endio(bio, PTR_ERR(req)); /* @q is dead */
1678 goto out_unlock;
1679 }
1680
1681 /*
1682 * After dropping the lock and possibly sleeping here, our request
1683 * may now be mergeable after it had proven unmergeable (above).
1684 * We don't worry about that case for efficiency. It won't happen
1685 * often, and the elevators are able to handle it.
1686 */
1687 init_request_from_bio(req, bio);
1688
1689 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1690 req->cpu = raw_smp_processor_id();
1691
1692 plug = current->plug;
1693 if (plug) {
1694 /*
1695 * If this is the first request added after a plug, fire
1696 * of a plug trace.
1697 */
1698 if (!request_count)
1699 trace_block_plug(q);
1700 else {
1701 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1702 blk_flush_plug_list(plug, false);
1703 trace_block_plug(q);
1704 }
1705 }
1706 list_add_tail(&req->queuelist, &plug->list);
1707 blk_account_io_start(req, true);
1708 } else {
1709 spin_lock_irq(q->queue_lock);
1710 add_acct_request(q, req, where);
1711 __blk_run_queue(q);
1712 out_unlock:
1713 spin_unlock_irq(q->queue_lock);
1714 }
1715 }
1716
1717 /*
1718 * If bio->bi_dev is a partition, remap the location
1719 */
1720 static inline void blk_partition_remap(struct bio *bio)
1721 {
1722 struct block_device *bdev = bio->bi_bdev;
1723
1724 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1725 struct hd_struct *p = bdev->bd_part;
1726
1727 bio->bi_iter.bi_sector += p->start_sect;
1728 bio->bi_bdev = bdev->bd_contains;
1729
1730 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1731 bdev->bd_dev,
1732 bio->bi_iter.bi_sector - p->start_sect);
1733 }
1734 }
1735
1736 static void handle_bad_sector(struct bio *bio)
1737 {
1738 char b[BDEVNAME_SIZE];
1739
1740 printk(KERN_INFO "attempt to access beyond end of device\n");
1741 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1742 bdevname(bio->bi_bdev, b),
1743 bio->bi_rw,
1744 (unsigned long long)bio_end_sector(bio),
1745 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1746 }
1747
1748 #ifdef CONFIG_FAIL_MAKE_REQUEST
1749
1750 static DECLARE_FAULT_ATTR(fail_make_request);
1751
1752 static int __init setup_fail_make_request(char *str)
1753 {
1754 return setup_fault_attr(&fail_make_request, str);
1755 }
1756 __setup("fail_make_request=", setup_fail_make_request);
1757
1758 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1759 {
1760 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1761 }
1762
1763 static int __init fail_make_request_debugfs(void)
1764 {
1765 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1766 NULL, &fail_make_request);
1767
1768 return PTR_ERR_OR_ZERO(dir);
1769 }
1770
1771 late_initcall(fail_make_request_debugfs);
1772
1773 #else /* CONFIG_FAIL_MAKE_REQUEST */
1774
1775 static inline bool should_fail_request(struct hd_struct *part,
1776 unsigned int bytes)
1777 {
1778 return false;
1779 }
1780
1781 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1782
1783 /*
1784 * Check whether this bio extends beyond the end of the device.
1785 */
1786 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1787 {
1788 sector_t maxsector;
1789
1790 if (!nr_sectors)
1791 return 0;
1792
1793 /* Test device or partition size, when known. */
1794 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1795 if (maxsector) {
1796 sector_t sector = bio->bi_iter.bi_sector;
1797
1798 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1799 /*
1800 * This may well happen - the kernel calls bread()
1801 * without checking the size of the device, e.g., when
1802 * mounting a device.
1803 */
1804 handle_bad_sector(bio);
1805 return 1;
1806 }
1807 }
1808
1809 return 0;
1810 }
1811
1812 static noinline_for_stack bool
1813 generic_make_request_checks(struct bio *bio)
1814 {
1815 struct request_queue *q;
1816 int nr_sectors = bio_sectors(bio);
1817 int err = -EIO;
1818 char b[BDEVNAME_SIZE];
1819 struct hd_struct *part;
1820
1821 might_sleep();
1822
1823 if (bio_check_eod(bio, nr_sectors))
1824 goto end_io;
1825
1826 q = bdev_get_queue(bio->bi_bdev);
1827 if (unlikely(!q)) {
1828 printk(KERN_ERR
1829 "generic_make_request: Trying to access "
1830 "nonexistent block-device %s (%Lu)\n",
1831 bdevname(bio->bi_bdev, b),
1832 (long long) bio->bi_iter.bi_sector);
1833 goto end_io;
1834 }
1835
1836 if (likely(bio_is_rw(bio) &&
1837 nr_sectors > queue_max_hw_sectors(q))) {
1838 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1839 bdevname(bio->bi_bdev, b),
1840 bio_sectors(bio),
1841 queue_max_hw_sectors(q));
1842 goto end_io;
1843 }
1844
1845 part = bio->bi_bdev->bd_part;
1846 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1847 should_fail_request(&part_to_disk(part)->part0,
1848 bio->bi_iter.bi_size))
1849 goto end_io;
1850
1851 /*
1852 * If this device has partitions, remap block n
1853 * of partition p to block n+start(p) of the disk.
1854 */
1855 blk_partition_remap(bio);
1856
1857 if (bio_check_eod(bio, nr_sectors))
1858 goto end_io;
1859
1860 /*
1861 * Filter flush bio's early so that make_request based
1862 * drivers without flush support don't have to worry
1863 * about them.
1864 */
1865 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1866 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1867 if (!nr_sectors) {
1868 err = 0;
1869 goto end_io;
1870 }
1871 }
1872
1873 if ((bio->bi_rw & REQ_DISCARD) &&
1874 (!blk_queue_discard(q) ||
1875 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1876 err = -EOPNOTSUPP;
1877 goto end_io;
1878 }
1879
1880 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1881 err = -EOPNOTSUPP;
1882 goto end_io;
1883 }
1884
1885 /*
1886 * Various block parts want %current->io_context and lazy ioc
1887 * allocation ends up trading a lot of pain for a small amount of
1888 * memory. Just allocate it upfront. This may fail and block
1889 * layer knows how to live with it.
1890 */
1891 create_io_context(GFP_ATOMIC, q->node);
1892
1893 if (blk_throtl_bio(q, bio))
1894 return false; /* throttled, will be resubmitted later */
1895
1896 trace_block_bio_queue(q, bio);
1897 return true;
1898
1899 end_io:
1900 bio_endio(bio, err);
1901 return false;
1902 }
1903
1904 /**
1905 * generic_make_request - hand a buffer to its device driver for I/O
1906 * @bio: The bio describing the location in memory and on the device.
1907 *
1908 * generic_make_request() is used to make I/O requests of block
1909 * devices. It is passed a &struct bio, which describes the I/O that needs
1910 * to be done.
1911 *
1912 * generic_make_request() does not return any status. The
1913 * success/failure status of the request, along with notification of
1914 * completion, is delivered asynchronously through the bio->bi_end_io
1915 * function described (one day) else where.
1916 *
1917 * The caller of generic_make_request must make sure that bi_io_vec
1918 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1919 * set to describe the device address, and the
1920 * bi_end_io and optionally bi_private are set to describe how
1921 * completion notification should be signaled.
1922 *
1923 * generic_make_request and the drivers it calls may use bi_next if this
1924 * bio happens to be merged with someone else, and may resubmit the bio to
1925 * a lower device by calling into generic_make_request recursively, which
1926 * means the bio should NOT be touched after the call to ->make_request_fn.
1927 */
1928 void generic_make_request(struct bio *bio)
1929 {
1930 struct bio_list bio_list_on_stack;
1931
1932 if (!generic_make_request_checks(bio))
1933 return;
1934
1935 /*
1936 * We only want one ->make_request_fn to be active at a time, else
1937 * stack usage with stacked devices could be a problem. So use
1938 * current->bio_list to keep a list of requests submited by a
1939 * make_request_fn function. current->bio_list is also used as a
1940 * flag to say if generic_make_request is currently active in this
1941 * task or not. If it is NULL, then no make_request is active. If
1942 * it is non-NULL, then a make_request is active, and new requests
1943 * should be added at the tail
1944 */
1945 if (current->bio_list) {
1946 bio_list_add(current->bio_list, bio);
1947 return;
1948 }
1949
1950 /* following loop may be a bit non-obvious, and so deserves some
1951 * explanation.
1952 * Before entering the loop, bio->bi_next is NULL (as all callers
1953 * ensure that) so we have a list with a single bio.
1954 * We pretend that we have just taken it off a longer list, so
1955 * we assign bio_list to a pointer to the bio_list_on_stack,
1956 * thus initialising the bio_list of new bios to be
1957 * added. ->make_request() may indeed add some more bios
1958 * through a recursive call to generic_make_request. If it
1959 * did, we find a non-NULL value in bio_list and re-enter the loop
1960 * from the top. In this case we really did just take the bio
1961 * of the top of the list (no pretending) and so remove it from
1962 * bio_list, and call into ->make_request() again.
1963 */
1964 BUG_ON(bio->bi_next);
1965 bio_list_init(&bio_list_on_stack);
1966 current->bio_list = &bio_list_on_stack;
1967 do {
1968 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1969
1970 q->make_request_fn(q, bio);
1971
1972 bio = bio_list_pop(current->bio_list);
1973 } while (bio);
1974 current->bio_list = NULL; /* deactivate */
1975 }
1976 EXPORT_SYMBOL(generic_make_request);
1977
1978 /**
1979 * submit_bio - submit a bio to the block device layer for I/O
1980 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1981 * @bio: The &struct bio which describes the I/O
1982 *
1983 * submit_bio() is very similar in purpose to generic_make_request(), and
1984 * uses that function to do most of the work. Both are fairly rough
1985 * interfaces; @bio must be presetup and ready for I/O.
1986 *
1987 */
1988 void submit_bio(int rw, struct bio *bio)
1989 {
1990 bio->bi_rw |= rw;
1991
1992 /*
1993 * If it's a regular read/write or a barrier with data attached,
1994 * go through the normal accounting stuff before submission.
1995 */
1996 if (bio_has_data(bio)) {
1997 unsigned int count;
1998
1999 if (unlikely(rw & REQ_WRITE_SAME))
2000 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2001 else
2002 count = bio_sectors(bio);
2003
2004 if (rw & WRITE) {
2005 count_vm_events(PGPGOUT, count);
2006 } else {
2007 task_io_account_read(bio->bi_iter.bi_size);
2008 count_vm_events(PGPGIN, count);
2009 }
2010
2011 if (unlikely(block_dump)) {
2012 char b[BDEVNAME_SIZE];
2013 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2014 current->comm, task_pid_nr(current),
2015 (rw & WRITE) ? "WRITE" : "READ",
2016 (unsigned long long)bio->bi_iter.bi_sector,
2017 bdevname(bio->bi_bdev, b),
2018 count);
2019 }
2020 }
2021
2022 generic_make_request(bio);
2023 }
2024 EXPORT_SYMBOL(submit_bio);
2025
2026 /**
2027 * blk_rq_check_limits - Helper function to check a request for the queue limit
2028 * @q: the queue
2029 * @rq: the request being checked
2030 *
2031 * Description:
2032 * @rq may have been made based on weaker limitations of upper-level queues
2033 * in request stacking drivers, and it may violate the limitation of @q.
2034 * Since the block layer and the underlying device driver trust @rq
2035 * after it is inserted to @q, it should be checked against @q before
2036 * the insertion using this generic function.
2037 *
2038 * This function should also be useful for request stacking drivers
2039 * in some cases below, so export this function.
2040 * Request stacking drivers like request-based dm may change the queue
2041 * limits while requests are in the queue (e.g. dm's table swapping).
2042 * Such request stacking drivers should check those requests against
2043 * the new queue limits again when they dispatch those requests,
2044 * although such checkings are also done against the old queue limits
2045 * when submitting requests.
2046 */
2047 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
2048 {
2049 if (!rq_mergeable(rq))
2050 return 0;
2051
2052 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
2053 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2054 return -EIO;
2055 }
2056
2057 /*
2058 * queue's settings related to segment counting like q->bounce_pfn
2059 * may differ from that of other stacking queues.
2060 * Recalculate it to check the request correctly on this queue's
2061 * limitation.
2062 */
2063 blk_recalc_rq_segments(rq);
2064 if (rq->nr_phys_segments > queue_max_segments(q)) {
2065 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2066 return -EIO;
2067 }
2068
2069 return 0;
2070 }
2071 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
2072
2073 /**
2074 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2075 * @q: the queue to submit the request
2076 * @rq: the request being queued
2077 */
2078 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2079 {
2080 unsigned long flags;
2081 int where = ELEVATOR_INSERT_BACK;
2082
2083 if (blk_rq_check_limits(q, rq))
2084 return -EIO;
2085
2086 if (rq->rq_disk &&
2087 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2088 return -EIO;
2089
2090 if (q->mq_ops) {
2091 if (blk_queue_io_stat(q))
2092 blk_account_io_start(rq, true);
2093 blk_mq_insert_request(rq, false, true, true);
2094 return 0;
2095 }
2096
2097 spin_lock_irqsave(q->queue_lock, flags);
2098 if (unlikely(blk_queue_dying(q))) {
2099 spin_unlock_irqrestore(q->queue_lock, flags);
2100 return -ENODEV;
2101 }
2102
2103 /*
2104 * Submitting request must be dequeued before calling this function
2105 * because it will be linked to another request_queue
2106 */
2107 BUG_ON(blk_queued_rq(rq));
2108
2109 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2110 where = ELEVATOR_INSERT_FLUSH;
2111
2112 add_acct_request(q, rq, where);
2113 if (where == ELEVATOR_INSERT_FLUSH)
2114 __blk_run_queue(q);
2115 spin_unlock_irqrestore(q->queue_lock, flags);
2116
2117 return 0;
2118 }
2119 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2120
2121 /**
2122 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2123 * @rq: request to examine
2124 *
2125 * Description:
2126 * A request could be merge of IOs which require different failure
2127 * handling. This function determines the number of bytes which
2128 * can be failed from the beginning of the request without
2129 * crossing into area which need to be retried further.
2130 *
2131 * Return:
2132 * The number of bytes to fail.
2133 *
2134 * Context:
2135 * queue_lock must be held.
2136 */
2137 unsigned int blk_rq_err_bytes(const struct request *rq)
2138 {
2139 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2140 unsigned int bytes = 0;
2141 struct bio *bio;
2142
2143 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2144 return blk_rq_bytes(rq);
2145
2146 /*
2147 * Currently the only 'mixing' which can happen is between
2148 * different fastfail types. We can safely fail portions
2149 * which have all the failfast bits that the first one has -
2150 * the ones which are at least as eager to fail as the first
2151 * one.
2152 */
2153 for (bio = rq->bio; bio; bio = bio->bi_next) {
2154 if ((bio->bi_rw & ff) != ff)
2155 break;
2156 bytes += bio->bi_iter.bi_size;
2157 }
2158
2159 /* this could lead to infinite loop */
2160 BUG_ON(blk_rq_bytes(rq) && !bytes);
2161 return bytes;
2162 }
2163 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2164
2165 void blk_account_io_completion(struct request *req, unsigned int bytes)
2166 {
2167 if (blk_do_io_stat(req)) {
2168 const int rw = rq_data_dir(req);
2169 struct hd_struct *part;
2170 int cpu;
2171
2172 cpu = part_stat_lock();
2173 part = req->part;
2174 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2175 part_stat_unlock();
2176 }
2177 }
2178
2179 void blk_account_io_done(struct request *req)
2180 {
2181 /*
2182 * Account IO completion. flush_rq isn't accounted as a
2183 * normal IO on queueing nor completion. Accounting the
2184 * containing request is enough.
2185 */
2186 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2187 unsigned long duration = jiffies - req->start_time;
2188 const int rw = rq_data_dir(req);
2189 struct hd_struct *part;
2190 int cpu;
2191
2192 cpu = part_stat_lock();
2193 part = req->part;
2194
2195 part_stat_inc(cpu, part, ios[rw]);
2196 part_stat_add(cpu, part, ticks[rw], duration);
2197 part_round_stats(cpu, part);
2198 part_dec_in_flight(part, rw);
2199
2200 hd_struct_put(part);
2201 part_stat_unlock();
2202 }
2203 }
2204
2205 #ifdef CONFIG_PM
2206 /*
2207 * Don't process normal requests when queue is suspended
2208 * or in the process of suspending/resuming
2209 */
2210 static struct request *blk_pm_peek_request(struct request_queue *q,
2211 struct request *rq)
2212 {
2213 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2214 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2215 return NULL;
2216 else
2217 return rq;
2218 }
2219 #else
2220 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2221 struct request *rq)
2222 {
2223 return rq;
2224 }
2225 #endif
2226
2227 void blk_account_io_start(struct request *rq, bool new_io)
2228 {
2229 struct hd_struct *part;
2230 int rw = rq_data_dir(rq);
2231 int cpu;
2232
2233 if (!blk_do_io_stat(rq))
2234 return;
2235
2236 cpu = part_stat_lock();
2237
2238 if (!new_io) {
2239 part = rq->part;
2240 part_stat_inc(cpu, part, merges[rw]);
2241 } else {
2242 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2243 if (!hd_struct_try_get(part)) {
2244 /*
2245 * The partition is already being removed,
2246 * the request will be accounted on the disk only
2247 *
2248 * We take a reference on disk->part0 although that
2249 * partition will never be deleted, so we can treat
2250 * it as any other partition.
2251 */
2252 part = &rq->rq_disk->part0;
2253 hd_struct_get(part);
2254 }
2255 part_round_stats(cpu, part);
2256 part_inc_in_flight(part, rw);
2257 rq->part = part;
2258 }
2259
2260 part_stat_unlock();
2261 }
2262
2263 /**
2264 * blk_peek_request - peek at the top of a request queue
2265 * @q: request queue to peek at
2266 *
2267 * Description:
2268 * Return the request at the top of @q. The returned request
2269 * should be started using blk_start_request() before LLD starts
2270 * processing it.
2271 *
2272 * Return:
2273 * Pointer to the request at the top of @q if available. Null
2274 * otherwise.
2275 *
2276 * Context:
2277 * queue_lock must be held.
2278 */
2279 struct request *blk_peek_request(struct request_queue *q)
2280 {
2281 struct request *rq;
2282 int ret;
2283
2284 while ((rq = __elv_next_request(q)) != NULL) {
2285
2286 rq = blk_pm_peek_request(q, rq);
2287 if (!rq)
2288 break;
2289
2290 if (!(rq->cmd_flags & REQ_STARTED)) {
2291 /*
2292 * This is the first time the device driver
2293 * sees this request (possibly after
2294 * requeueing). Notify IO scheduler.
2295 */
2296 if (rq->cmd_flags & REQ_SORTED)
2297 elv_activate_rq(q, rq);
2298
2299 /*
2300 * just mark as started even if we don't start
2301 * it, a request that has been delayed should
2302 * not be passed by new incoming requests
2303 */
2304 rq->cmd_flags |= REQ_STARTED;
2305 trace_block_rq_issue(q, rq);
2306 }
2307
2308 if (!q->boundary_rq || q->boundary_rq == rq) {
2309 q->end_sector = rq_end_sector(rq);
2310 q->boundary_rq = NULL;
2311 }
2312
2313 if (rq->cmd_flags & REQ_DONTPREP)
2314 break;
2315
2316 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2317 /*
2318 * make sure space for the drain appears we
2319 * know we can do this because max_hw_segments
2320 * has been adjusted to be one fewer than the
2321 * device can handle
2322 */
2323 rq->nr_phys_segments++;
2324 }
2325
2326 if (!q->prep_rq_fn)
2327 break;
2328
2329 ret = q->prep_rq_fn(q, rq);
2330 if (ret == BLKPREP_OK) {
2331 break;
2332 } else if (ret == BLKPREP_DEFER) {
2333 /*
2334 * the request may have been (partially) prepped.
2335 * we need to keep this request in the front to
2336 * avoid resource deadlock. REQ_STARTED will
2337 * prevent other fs requests from passing this one.
2338 */
2339 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2340 !(rq->cmd_flags & REQ_DONTPREP)) {
2341 /*
2342 * remove the space for the drain we added
2343 * so that we don't add it again
2344 */
2345 --rq->nr_phys_segments;
2346 }
2347
2348 rq = NULL;
2349 break;
2350 } else if (ret == BLKPREP_KILL) {
2351 rq->cmd_flags |= REQ_QUIET;
2352 /*
2353 * Mark this request as started so we don't trigger
2354 * any debug logic in the end I/O path.
2355 */
2356 blk_start_request(rq);
2357 __blk_end_request_all(rq, -EIO);
2358 } else {
2359 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2360 break;
2361 }
2362 }
2363
2364 return rq;
2365 }
2366 EXPORT_SYMBOL(blk_peek_request);
2367
2368 void blk_dequeue_request(struct request *rq)
2369 {
2370 struct request_queue *q = rq->q;
2371
2372 BUG_ON(list_empty(&rq->queuelist));
2373 BUG_ON(ELV_ON_HASH(rq));
2374
2375 list_del_init(&rq->queuelist);
2376
2377 /*
2378 * the time frame between a request being removed from the lists
2379 * and to it is freed is accounted as io that is in progress at
2380 * the driver side.
2381 */
2382 if (blk_account_rq(rq)) {
2383 q->in_flight[rq_is_sync(rq)]++;
2384 set_io_start_time_ns(rq);
2385 }
2386 }
2387
2388 /**
2389 * blk_start_request - start request processing on the driver
2390 * @req: request to dequeue
2391 *
2392 * Description:
2393 * Dequeue @req and start timeout timer on it. This hands off the
2394 * request to the driver.
2395 *
2396 * Block internal functions which don't want to start timer should
2397 * call blk_dequeue_request().
2398 *
2399 * Context:
2400 * queue_lock must be held.
2401 */
2402 void blk_start_request(struct request *req)
2403 {
2404 blk_dequeue_request(req);
2405
2406 /*
2407 * We are now handing the request to the hardware, initialize
2408 * resid_len to full count and add the timeout handler.
2409 */
2410 req->resid_len = blk_rq_bytes(req);
2411 if (unlikely(blk_bidi_rq(req)))
2412 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2413
2414 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2415 blk_add_timer(req);
2416 }
2417 EXPORT_SYMBOL(blk_start_request);
2418
2419 /**
2420 * blk_fetch_request - fetch a request from a request queue
2421 * @q: request queue to fetch a request from
2422 *
2423 * Description:
2424 * Return the request at the top of @q. The request is started on
2425 * return and LLD can start processing it immediately.
2426 *
2427 * Return:
2428 * Pointer to the request at the top of @q if available. Null
2429 * otherwise.
2430 *
2431 * Context:
2432 * queue_lock must be held.
2433 */
2434 struct request *blk_fetch_request(struct request_queue *q)
2435 {
2436 struct request *rq;
2437
2438 rq = blk_peek_request(q);
2439 if (rq)
2440 blk_start_request(rq);
2441 return rq;
2442 }
2443 EXPORT_SYMBOL(blk_fetch_request);
2444
2445 /**
2446 * blk_update_request - Special helper function for request stacking drivers
2447 * @req: the request being processed
2448 * @error: %0 for success, < %0 for error
2449 * @nr_bytes: number of bytes to complete @req
2450 *
2451 * Description:
2452 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2453 * the request structure even if @req doesn't have leftover.
2454 * If @req has leftover, sets it up for the next range of segments.
2455 *
2456 * This special helper function is only for request stacking drivers
2457 * (e.g. request-based dm) so that they can handle partial completion.
2458 * Actual device drivers should use blk_end_request instead.
2459 *
2460 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2461 * %false return from this function.
2462 *
2463 * Return:
2464 * %false - this request doesn't have any more data
2465 * %true - this request has more data
2466 **/
2467 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2468 {
2469 int total_bytes;
2470
2471 trace_block_rq_complete(req->q, req, nr_bytes);
2472
2473 if (!req->bio)
2474 return false;
2475
2476 /*
2477 * For fs requests, rq is just carrier of independent bio's
2478 * and each partial completion should be handled separately.
2479 * Reset per-request error on each partial completion.
2480 *
2481 * TODO: tj: This is too subtle. It would be better to let
2482 * low level drivers do what they see fit.
2483 */
2484 if (req->cmd_type == REQ_TYPE_FS)
2485 req->errors = 0;
2486
2487 if (error && req->cmd_type == REQ_TYPE_FS &&
2488 !(req->cmd_flags & REQ_QUIET)) {
2489 char *error_type;
2490
2491 switch (error) {
2492 case -ENOLINK:
2493 error_type = "recoverable transport";
2494 break;
2495 case -EREMOTEIO:
2496 error_type = "critical target";
2497 break;
2498 case -EBADE:
2499 error_type = "critical nexus";
2500 break;
2501 case -ETIMEDOUT:
2502 error_type = "timeout";
2503 break;
2504 case -ENOSPC:
2505 error_type = "critical space allocation";
2506 break;
2507 case -ENODATA:
2508 error_type = "critical medium";
2509 break;
2510 case -EIO:
2511 default:
2512 error_type = "I/O";
2513 break;
2514 }
2515 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2516 __func__, error_type, req->rq_disk ?
2517 req->rq_disk->disk_name : "?",
2518 (unsigned long long)blk_rq_pos(req));
2519
2520 }
2521
2522 blk_account_io_completion(req, nr_bytes);
2523
2524 total_bytes = 0;
2525 while (req->bio) {
2526 struct bio *bio = req->bio;
2527 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2528
2529 if (bio_bytes == bio->bi_iter.bi_size)
2530 req->bio = bio->bi_next;
2531
2532 req_bio_endio(req, bio, bio_bytes, error);
2533
2534 total_bytes += bio_bytes;
2535 nr_bytes -= bio_bytes;
2536
2537 if (!nr_bytes)
2538 break;
2539 }
2540
2541 /*
2542 * completely done
2543 */
2544 if (!req->bio) {
2545 /*
2546 * Reset counters so that the request stacking driver
2547 * can find how many bytes remain in the request
2548 * later.
2549 */
2550 req->__data_len = 0;
2551 return false;
2552 }
2553
2554 req->__data_len -= total_bytes;
2555
2556 /* update sector only for requests with clear definition of sector */
2557 if (req->cmd_type == REQ_TYPE_FS)
2558 req->__sector += total_bytes >> 9;
2559
2560 /* mixed attributes always follow the first bio */
2561 if (req->cmd_flags & REQ_MIXED_MERGE) {
2562 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2563 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2564 }
2565
2566 /*
2567 * If total number of sectors is less than the first segment
2568 * size, something has gone terribly wrong.
2569 */
2570 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2571 blk_dump_rq_flags(req, "request botched");
2572 req->__data_len = blk_rq_cur_bytes(req);
2573 }
2574
2575 /* recalculate the number of segments */
2576 blk_recalc_rq_segments(req);
2577
2578 return true;
2579 }
2580 EXPORT_SYMBOL_GPL(blk_update_request);
2581
2582 static bool blk_update_bidi_request(struct request *rq, int error,
2583 unsigned int nr_bytes,
2584 unsigned int bidi_bytes)
2585 {
2586 if (blk_update_request(rq, error, nr_bytes))
2587 return true;
2588
2589 /* Bidi request must be completed as a whole */
2590 if (unlikely(blk_bidi_rq(rq)) &&
2591 blk_update_request(rq->next_rq, error, bidi_bytes))
2592 return true;
2593
2594 if (blk_queue_add_random(rq->q))
2595 add_disk_randomness(rq->rq_disk);
2596
2597 return false;
2598 }
2599
2600 /**
2601 * blk_unprep_request - unprepare a request
2602 * @req: the request
2603 *
2604 * This function makes a request ready for complete resubmission (or
2605 * completion). It happens only after all error handling is complete,
2606 * so represents the appropriate moment to deallocate any resources
2607 * that were allocated to the request in the prep_rq_fn. The queue
2608 * lock is held when calling this.
2609 */
2610 void blk_unprep_request(struct request *req)
2611 {
2612 struct request_queue *q = req->q;
2613
2614 req->cmd_flags &= ~REQ_DONTPREP;
2615 if (q->unprep_rq_fn)
2616 q->unprep_rq_fn(q, req);
2617 }
2618 EXPORT_SYMBOL_GPL(blk_unprep_request);
2619
2620 /*
2621 * queue lock must be held
2622 */
2623 void blk_finish_request(struct request *req, int error)
2624 {
2625 if (req->cmd_flags & REQ_QUEUED)
2626 blk_queue_end_tag(req->q, req);
2627
2628 BUG_ON(blk_queued_rq(req));
2629
2630 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2631 laptop_io_completion(&req->q->backing_dev_info);
2632
2633 blk_delete_timer(req);
2634
2635 if (req->cmd_flags & REQ_DONTPREP)
2636 blk_unprep_request(req);
2637
2638 blk_account_io_done(req);
2639
2640 if (req->end_io)
2641 req->end_io(req, error);
2642 else {
2643 if (blk_bidi_rq(req))
2644 __blk_put_request(req->next_rq->q, req->next_rq);
2645
2646 __blk_put_request(req->q, req);
2647 }
2648 }
2649 EXPORT_SYMBOL(blk_finish_request);
2650
2651 /**
2652 * blk_end_bidi_request - Complete a bidi request
2653 * @rq: the request to complete
2654 * @error: %0 for success, < %0 for error
2655 * @nr_bytes: number of bytes to complete @rq
2656 * @bidi_bytes: number of bytes to complete @rq->next_rq
2657 *
2658 * Description:
2659 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2660 * Drivers that supports bidi can safely call this member for any
2661 * type of request, bidi or uni. In the later case @bidi_bytes is
2662 * just ignored.
2663 *
2664 * Return:
2665 * %false - we are done with this request
2666 * %true - still buffers pending for this request
2667 **/
2668 static bool blk_end_bidi_request(struct request *rq, int error,
2669 unsigned int nr_bytes, unsigned int bidi_bytes)
2670 {
2671 struct request_queue *q = rq->q;
2672 unsigned long flags;
2673
2674 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2675 return true;
2676
2677 spin_lock_irqsave(q->queue_lock, flags);
2678 blk_finish_request(rq, error);
2679 spin_unlock_irqrestore(q->queue_lock, flags);
2680
2681 return false;
2682 }
2683
2684 /**
2685 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2686 * @rq: the request to complete
2687 * @error: %0 for success, < %0 for error
2688 * @nr_bytes: number of bytes to complete @rq
2689 * @bidi_bytes: number of bytes to complete @rq->next_rq
2690 *
2691 * Description:
2692 * Identical to blk_end_bidi_request() except that queue lock is
2693 * assumed to be locked on entry and remains so on return.
2694 *
2695 * Return:
2696 * %false - we are done with this request
2697 * %true - still buffers pending for this request
2698 **/
2699 bool __blk_end_bidi_request(struct request *rq, int error,
2700 unsigned int nr_bytes, unsigned int bidi_bytes)
2701 {
2702 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2703 return true;
2704
2705 blk_finish_request(rq, error);
2706
2707 return false;
2708 }
2709
2710 /**
2711 * blk_end_request - Helper function for drivers to complete the request.
2712 * @rq: the request being processed
2713 * @error: %0 for success, < %0 for error
2714 * @nr_bytes: number of bytes to complete
2715 *
2716 * Description:
2717 * Ends I/O on a number of bytes attached to @rq.
2718 * If @rq has leftover, sets it up for the next range of segments.
2719 *
2720 * Return:
2721 * %false - we are done with this request
2722 * %true - still buffers pending for this request
2723 **/
2724 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2725 {
2726 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2727 }
2728 EXPORT_SYMBOL(blk_end_request);
2729
2730 /**
2731 * blk_end_request_all - Helper function for drives to finish the request.
2732 * @rq: the request to finish
2733 * @error: %0 for success, < %0 for error
2734 *
2735 * Description:
2736 * Completely finish @rq.
2737 */
2738 void blk_end_request_all(struct request *rq, int error)
2739 {
2740 bool pending;
2741 unsigned int bidi_bytes = 0;
2742
2743 if (unlikely(blk_bidi_rq(rq)))
2744 bidi_bytes = blk_rq_bytes(rq->next_rq);
2745
2746 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2747 BUG_ON(pending);
2748 }
2749 EXPORT_SYMBOL(blk_end_request_all);
2750
2751 /**
2752 * blk_end_request_cur - Helper function to finish the current request chunk.
2753 * @rq: the request to finish the current chunk for
2754 * @error: %0 for success, < %0 for error
2755 *
2756 * Description:
2757 * Complete the current consecutively mapped chunk from @rq.
2758 *
2759 * Return:
2760 * %false - we are done with this request
2761 * %true - still buffers pending for this request
2762 */
2763 bool blk_end_request_cur(struct request *rq, int error)
2764 {
2765 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2766 }
2767 EXPORT_SYMBOL(blk_end_request_cur);
2768
2769 /**
2770 * blk_end_request_err - Finish a request till the next failure boundary.
2771 * @rq: the request to finish till the next failure boundary for
2772 * @error: must be negative errno
2773 *
2774 * Description:
2775 * Complete @rq till the next failure boundary.
2776 *
2777 * Return:
2778 * %false - we are done with this request
2779 * %true - still buffers pending for this request
2780 */
2781 bool blk_end_request_err(struct request *rq, int error)
2782 {
2783 WARN_ON(error >= 0);
2784 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2785 }
2786 EXPORT_SYMBOL_GPL(blk_end_request_err);
2787
2788 /**
2789 * __blk_end_request - Helper function for drivers to complete the request.
2790 * @rq: the request being processed
2791 * @error: %0 for success, < %0 for error
2792 * @nr_bytes: number of bytes to complete
2793 *
2794 * Description:
2795 * Must be called with queue lock held unlike blk_end_request().
2796 *
2797 * Return:
2798 * %false - we are done with this request
2799 * %true - still buffers pending for this request
2800 **/
2801 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2802 {
2803 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2804 }
2805 EXPORT_SYMBOL(__blk_end_request);
2806
2807 /**
2808 * __blk_end_request_all - Helper function for drives to finish the request.
2809 * @rq: the request to finish
2810 * @error: %0 for success, < %0 for error
2811 *
2812 * Description:
2813 * Completely finish @rq. Must be called with queue lock held.
2814 */
2815 void __blk_end_request_all(struct request *rq, int error)
2816 {
2817 bool pending;
2818 unsigned int bidi_bytes = 0;
2819
2820 if (unlikely(blk_bidi_rq(rq)))
2821 bidi_bytes = blk_rq_bytes(rq->next_rq);
2822
2823 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2824 BUG_ON(pending);
2825 }
2826 EXPORT_SYMBOL(__blk_end_request_all);
2827
2828 /**
2829 * __blk_end_request_cur - Helper function to finish the current request chunk.
2830 * @rq: the request to finish the current chunk for
2831 * @error: %0 for success, < %0 for error
2832 *
2833 * Description:
2834 * Complete the current consecutively mapped chunk from @rq. Must
2835 * be called with queue lock held.
2836 *
2837 * Return:
2838 * %false - we are done with this request
2839 * %true - still buffers pending for this request
2840 */
2841 bool __blk_end_request_cur(struct request *rq, int error)
2842 {
2843 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2844 }
2845 EXPORT_SYMBOL(__blk_end_request_cur);
2846
2847 /**
2848 * __blk_end_request_err - Finish a request till the next failure boundary.
2849 * @rq: the request to finish till the next failure boundary for
2850 * @error: must be negative errno
2851 *
2852 * Description:
2853 * Complete @rq till the next failure boundary. Must be called
2854 * with queue lock held.
2855 *
2856 * Return:
2857 * %false - we are done with this request
2858 * %true - still buffers pending for this request
2859 */
2860 bool __blk_end_request_err(struct request *rq, int error)
2861 {
2862 WARN_ON(error >= 0);
2863 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2864 }
2865 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2866
2867 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2868 struct bio *bio)
2869 {
2870 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2871 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2872
2873 if (bio_has_data(bio))
2874 rq->nr_phys_segments = bio_phys_segments(q, bio);
2875
2876 rq->__data_len = bio->bi_iter.bi_size;
2877 rq->bio = rq->biotail = bio;
2878
2879 if (bio->bi_bdev)
2880 rq->rq_disk = bio->bi_bdev->bd_disk;
2881 }
2882
2883 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2884 /**
2885 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2886 * @rq: the request to be flushed
2887 *
2888 * Description:
2889 * Flush all pages in @rq.
2890 */
2891 void rq_flush_dcache_pages(struct request *rq)
2892 {
2893 struct req_iterator iter;
2894 struct bio_vec bvec;
2895
2896 rq_for_each_segment(bvec, rq, iter)
2897 flush_dcache_page(bvec.bv_page);
2898 }
2899 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2900 #endif
2901
2902 /**
2903 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2904 * @q : the queue of the device being checked
2905 *
2906 * Description:
2907 * Check if underlying low-level drivers of a device are busy.
2908 * If the drivers want to export their busy state, they must set own
2909 * exporting function using blk_queue_lld_busy() first.
2910 *
2911 * Basically, this function is used only by request stacking drivers
2912 * to stop dispatching requests to underlying devices when underlying
2913 * devices are busy. This behavior helps more I/O merging on the queue
2914 * of the request stacking driver and prevents I/O throughput regression
2915 * on burst I/O load.
2916 *
2917 * Return:
2918 * 0 - Not busy (The request stacking driver should dispatch request)
2919 * 1 - Busy (The request stacking driver should stop dispatching request)
2920 */
2921 int blk_lld_busy(struct request_queue *q)
2922 {
2923 if (q->lld_busy_fn)
2924 return q->lld_busy_fn(q);
2925
2926 return 0;
2927 }
2928 EXPORT_SYMBOL_GPL(blk_lld_busy);
2929
2930 void blk_rq_prep_clone(struct request *dst, struct request *src)
2931 {
2932 dst->cpu = src->cpu;
2933 dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK);
2934 dst->cmd_flags |= REQ_NOMERGE | REQ_CLONE;
2935 dst->cmd_type = src->cmd_type;
2936 dst->__sector = blk_rq_pos(src);
2937 dst->__data_len = blk_rq_bytes(src);
2938 dst->nr_phys_segments = src->nr_phys_segments;
2939 dst->ioprio = src->ioprio;
2940 dst->extra_len = src->extra_len;
2941 dst->bio = src->bio;
2942 dst->biotail = src->biotail;
2943 dst->cmd = src->cmd;
2944 dst->cmd_len = src->cmd_len;
2945 dst->sense = src->sense;
2946 }
2947 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2948
2949 int kblockd_schedule_work(struct work_struct *work)
2950 {
2951 return queue_work(kblockd_workqueue, work);
2952 }
2953 EXPORT_SYMBOL(kblockd_schedule_work);
2954
2955 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
2956 unsigned long delay)
2957 {
2958 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2959 }
2960 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2961
2962 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2963 unsigned long delay)
2964 {
2965 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
2966 }
2967 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
2968
2969 /**
2970 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2971 * @plug: The &struct blk_plug that needs to be initialized
2972 *
2973 * Description:
2974 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2975 * pending I/O should the task end up blocking between blk_start_plug() and
2976 * blk_finish_plug(). This is important from a performance perspective, but
2977 * also ensures that we don't deadlock. For instance, if the task is blocking
2978 * for a memory allocation, memory reclaim could end up wanting to free a
2979 * page belonging to that request that is currently residing in our private
2980 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2981 * this kind of deadlock.
2982 */
2983 void blk_start_plug(struct blk_plug *plug)
2984 {
2985 struct task_struct *tsk = current;
2986
2987 /*
2988 * If this is a nested plug, don't actually assign it.
2989 */
2990 if (tsk->plug)
2991 return;
2992
2993 INIT_LIST_HEAD(&plug->list);
2994 INIT_LIST_HEAD(&plug->mq_list);
2995 INIT_LIST_HEAD(&plug->cb_list);
2996 /*
2997 * Store ordering should not be needed here, since a potential
2998 * preempt will imply a full memory barrier
2999 */
3000 tsk->plug = plug;
3001 }
3002 EXPORT_SYMBOL(blk_start_plug);
3003
3004 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3005 {
3006 struct request *rqa = container_of(a, struct request, queuelist);
3007 struct request *rqb = container_of(b, struct request, queuelist);
3008
3009 return !(rqa->q < rqb->q ||
3010 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3011 }
3012
3013 /*
3014 * If 'from_schedule' is true, then postpone the dispatch of requests
3015 * until a safe kblockd context. We due this to avoid accidental big
3016 * additional stack usage in driver dispatch, in places where the originally
3017 * plugger did not intend it.
3018 */
3019 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3020 bool from_schedule)
3021 __releases(q->queue_lock)
3022 {
3023 trace_block_unplug(q, depth, !from_schedule);
3024
3025 if (from_schedule)
3026 blk_run_queue_async(q);
3027 else
3028 __blk_run_queue(q);
3029 spin_unlock(q->queue_lock);
3030 }
3031
3032 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3033 {
3034 LIST_HEAD(callbacks);
3035
3036 while (!list_empty(&plug->cb_list)) {
3037 list_splice_init(&plug->cb_list, &callbacks);
3038
3039 while (!list_empty(&callbacks)) {
3040 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3041 struct blk_plug_cb,
3042 list);
3043 list_del(&cb->list);
3044 cb->callback(cb, from_schedule);
3045 }
3046 }
3047 }
3048
3049 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3050 int size)
3051 {
3052 struct blk_plug *plug = current->plug;
3053 struct blk_plug_cb *cb;
3054
3055 if (!plug)
3056 return NULL;
3057
3058 list_for_each_entry(cb, &plug->cb_list, list)
3059 if (cb->callback == unplug && cb->data == data)
3060 return cb;
3061
3062 /* Not currently on the callback list */
3063 BUG_ON(size < sizeof(*cb));
3064 cb = kzalloc(size, GFP_ATOMIC);
3065 if (cb) {
3066 cb->data = data;
3067 cb->callback = unplug;
3068 list_add(&cb->list, &plug->cb_list);
3069 }
3070 return cb;
3071 }
3072 EXPORT_SYMBOL(blk_check_plugged);
3073
3074 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3075 {
3076 struct request_queue *q;
3077 unsigned long flags;
3078 struct request *rq;
3079 LIST_HEAD(list);
3080 unsigned int depth;
3081
3082 flush_plug_callbacks(plug, from_schedule);
3083
3084 if (!list_empty(&plug->mq_list))
3085 blk_mq_flush_plug_list(plug, from_schedule);
3086
3087 if (list_empty(&plug->list))
3088 return;
3089
3090 list_splice_init(&plug->list, &list);
3091
3092 list_sort(NULL, &list, plug_rq_cmp);
3093
3094 q = NULL;
3095 depth = 0;
3096
3097 /*
3098 * Save and disable interrupts here, to avoid doing it for every
3099 * queue lock we have to take.
3100 */
3101 local_irq_save(flags);
3102 while (!list_empty(&list)) {
3103 rq = list_entry_rq(list.next);
3104 list_del_init(&rq->queuelist);
3105 BUG_ON(!rq->q);
3106 if (rq->q != q) {
3107 /*
3108 * This drops the queue lock
3109 */
3110 if (q)
3111 queue_unplugged(q, depth, from_schedule);
3112 q = rq->q;
3113 depth = 0;
3114 spin_lock(q->queue_lock);
3115 }
3116
3117 /*
3118 * Short-circuit if @q is dead
3119 */
3120 if (unlikely(blk_queue_dying(q))) {
3121 __blk_end_request_all(rq, -ENODEV);
3122 continue;
3123 }
3124
3125 /*
3126 * rq is already accounted, so use raw insert
3127 */
3128 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3129 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3130 else
3131 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3132
3133 depth++;
3134 }
3135
3136 /*
3137 * This drops the queue lock
3138 */
3139 if (q)
3140 queue_unplugged(q, depth, from_schedule);
3141
3142 local_irq_restore(flags);
3143 }
3144
3145 void blk_finish_plug(struct blk_plug *plug)
3146 {
3147 if (plug != current->plug)
3148 return;
3149 blk_flush_plug_list(plug, false);
3150
3151 current->plug = NULL;
3152 }
3153 EXPORT_SYMBOL(blk_finish_plug);
3154
3155 #ifdef CONFIG_PM
3156 /**
3157 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3158 * @q: the queue of the device
3159 * @dev: the device the queue belongs to
3160 *
3161 * Description:
3162 * Initialize runtime-PM-related fields for @q and start auto suspend for
3163 * @dev. Drivers that want to take advantage of request-based runtime PM
3164 * should call this function after @dev has been initialized, and its
3165 * request queue @q has been allocated, and runtime PM for it can not happen
3166 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3167 * cases, driver should call this function before any I/O has taken place.
3168 *
3169 * This function takes care of setting up using auto suspend for the device,
3170 * the autosuspend delay is set to -1 to make runtime suspend impossible
3171 * until an updated value is either set by user or by driver. Drivers do
3172 * not need to touch other autosuspend settings.
3173 *
3174 * The block layer runtime PM is request based, so only works for drivers
3175 * that use request as their IO unit instead of those directly use bio's.
3176 */
3177 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3178 {
3179 q->dev = dev;
3180 q->rpm_status = RPM_ACTIVE;
3181 pm_runtime_set_autosuspend_delay(q->dev, -1);
3182 pm_runtime_use_autosuspend(q->dev);
3183 }
3184 EXPORT_SYMBOL(blk_pm_runtime_init);
3185
3186 /**
3187 * blk_pre_runtime_suspend - Pre runtime suspend check
3188 * @q: the queue of the device
3189 *
3190 * Description:
3191 * This function will check if runtime suspend is allowed for the device
3192 * by examining if there are any requests pending in the queue. If there
3193 * are requests pending, the device can not be runtime suspended; otherwise,
3194 * the queue's status will be updated to SUSPENDING and the driver can
3195 * proceed to suspend the device.
3196 *
3197 * For the not allowed case, we mark last busy for the device so that
3198 * runtime PM core will try to autosuspend it some time later.
3199 *
3200 * This function should be called near the start of the device's
3201 * runtime_suspend callback.
3202 *
3203 * Return:
3204 * 0 - OK to runtime suspend the device
3205 * -EBUSY - Device should not be runtime suspended
3206 */
3207 int blk_pre_runtime_suspend(struct request_queue *q)
3208 {
3209 int ret = 0;
3210
3211 spin_lock_irq(q->queue_lock);
3212 if (q->nr_pending) {
3213 ret = -EBUSY;
3214 pm_runtime_mark_last_busy(q->dev);
3215 } else {
3216 q->rpm_status = RPM_SUSPENDING;
3217 }
3218 spin_unlock_irq(q->queue_lock);
3219 return ret;
3220 }
3221 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3222
3223 /**
3224 * blk_post_runtime_suspend - Post runtime suspend processing
3225 * @q: the queue of the device
3226 * @err: return value of the device's runtime_suspend function
3227 *
3228 * Description:
3229 * Update the queue's runtime status according to the return value of the
3230 * device's runtime suspend function and mark last busy for the device so
3231 * that PM core will try to auto suspend the device at a later time.
3232 *
3233 * This function should be called near the end of the device's
3234 * runtime_suspend callback.
3235 */
3236 void blk_post_runtime_suspend(struct request_queue *q, int err)
3237 {
3238 spin_lock_irq(q->queue_lock);
3239 if (!err) {
3240 q->rpm_status = RPM_SUSPENDED;
3241 } else {
3242 q->rpm_status = RPM_ACTIVE;
3243 pm_runtime_mark_last_busy(q->dev);
3244 }
3245 spin_unlock_irq(q->queue_lock);
3246 }
3247 EXPORT_SYMBOL(blk_post_runtime_suspend);
3248
3249 /**
3250 * blk_pre_runtime_resume - Pre runtime resume processing
3251 * @q: the queue of the device
3252 *
3253 * Description:
3254 * Update the queue's runtime status to RESUMING in preparation for the
3255 * runtime resume of the device.
3256 *
3257 * This function should be called near the start of the device's
3258 * runtime_resume callback.
3259 */
3260 void blk_pre_runtime_resume(struct request_queue *q)
3261 {
3262 spin_lock_irq(q->queue_lock);
3263 q->rpm_status = RPM_RESUMING;
3264 spin_unlock_irq(q->queue_lock);
3265 }
3266 EXPORT_SYMBOL(blk_pre_runtime_resume);
3267
3268 /**
3269 * blk_post_runtime_resume - Post runtime resume processing
3270 * @q: the queue of the device
3271 * @err: return value of the device's runtime_resume function
3272 *
3273 * Description:
3274 * Update the queue's runtime status according to the return value of the
3275 * device's runtime_resume function. If it is successfully resumed, process
3276 * the requests that are queued into the device's queue when it is resuming
3277 * and then mark last busy and initiate autosuspend for it.
3278 *
3279 * This function should be called near the end of the device's
3280 * runtime_resume callback.
3281 */
3282 void blk_post_runtime_resume(struct request_queue *q, int err)
3283 {
3284 spin_lock_irq(q->queue_lock);
3285 if (!err) {
3286 q->rpm_status = RPM_ACTIVE;
3287 __blk_run_queue(q);
3288 pm_runtime_mark_last_busy(q->dev);
3289 pm_request_autosuspend(q->dev);
3290 } else {
3291 q->rpm_status = RPM_SUSPENDED;
3292 }
3293 spin_unlock_irq(q->queue_lock);
3294 }
3295 EXPORT_SYMBOL(blk_post_runtime_resume);
3296 #endif
3297
3298 int __init blk_dev_init(void)
3299 {
3300 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3301 sizeof(((struct request *)0)->cmd_flags));
3302
3303 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3304 kblockd_workqueue = alloc_workqueue("kblockd",
3305 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3306 if (!kblockd_workqueue)
3307 panic("Failed to create kblockd\n");
3308
3309 request_cachep = kmem_cache_create("blkdev_requests",
3310 sizeof(struct request), 0, SLAB_PANIC, NULL);
3311
3312 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3313 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3314
3315 return 0;
3316 }
This page took 0.133286 seconds and 6 git commands to generate.