Merge branch 'for-2.6.37/barrier' of git://git.kernel.dk/linux-2.6-block
[deliverable/linux.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/block.h>
33
34 #include "blk.h"
35
36 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
39
40 static int __make_request(struct request_queue *q, struct bio *bio);
41
42 /*
43 * For the allocated request tables
44 */
45 static struct kmem_cache *request_cachep;
46
47 /*
48 * For queue allocation
49 */
50 struct kmem_cache *blk_requestq_cachep;
51
52 /*
53 * Controlling structure to kblockd
54 */
55 static struct workqueue_struct *kblockd_workqueue;
56
57 static void drive_stat_acct(struct request *rq, int new_io)
58 {
59 struct hd_struct *part;
60 int rw = rq_data_dir(rq);
61 int cpu;
62
63 if (!blk_do_io_stat(rq))
64 return;
65
66 cpu = part_stat_lock();
67
68 if (!new_io) {
69 part = rq->part;
70 part_stat_inc(cpu, part, merges[rw]);
71 } else {
72 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
73 part_round_stats(cpu, part);
74 part_inc_in_flight(part, rw);
75 rq->part = part;
76 }
77
78 part_stat_unlock();
79 }
80
81 void blk_queue_congestion_threshold(struct request_queue *q)
82 {
83 int nr;
84
85 nr = q->nr_requests - (q->nr_requests / 8) + 1;
86 if (nr > q->nr_requests)
87 nr = q->nr_requests;
88 q->nr_congestion_on = nr;
89
90 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
91 if (nr < 1)
92 nr = 1;
93 q->nr_congestion_off = nr;
94 }
95
96 /**
97 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
98 * @bdev: device
99 *
100 * Locates the passed device's request queue and returns the address of its
101 * backing_dev_info
102 *
103 * Will return NULL if the request queue cannot be located.
104 */
105 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
106 {
107 struct backing_dev_info *ret = NULL;
108 struct request_queue *q = bdev_get_queue(bdev);
109
110 if (q)
111 ret = &q->backing_dev_info;
112 return ret;
113 }
114 EXPORT_SYMBOL(blk_get_backing_dev_info);
115
116 void blk_rq_init(struct request_queue *q, struct request *rq)
117 {
118 memset(rq, 0, sizeof(*rq));
119
120 INIT_LIST_HEAD(&rq->queuelist);
121 INIT_LIST_HEAD(&rq->timeout_list);
122 rq->cpu = -1;
123 rq->q = q;
124 rq->__sector = (sector_t) -1;
125 INIT_HLIST_NODE(&rq->hash);
126 RB_CLEAR_NODE(&rq->rb_node);
127 rq->cmd = rq->__cmd;
128 rq->cmd_len = BLK_MAX_CDB;
129 rq->tag = -1;
130 rq->ref_count = 1;
131 rq->start_time = jiffies;
132 set_start_time_ns(rq);
133 rq->part = NULL;
134 }
135 EXPORT_SYMBOL(blk_rq_init);
136
137 static void req_bio_endio(struct request *rq, struct bio *bio,
138 unsigned int nbytes, int error)
139 {
140 struct request_queue *q = rq->q;
141
142 if (&q->flush_rq != rq) {
143 if (error)
144 clear_bit(BIO_UPTODATE, &bio->bi_flags);
145 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
146 error = -EIO;
147
148 if (unlikely(nbytes > bio->bi_size)) {
149 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
150 __func__, nbytes, bio->bi_size);
151 nbytes = bio->bi_size;
152 }
153
154 if (unlikely(rq->cmd_flags & REQ_QUIET))
155 set_bit(BIO_QUIET, &bio->bi_flags);
156
157 bio->bi_size -= nbytes;
158 bio->bi_sector += (nbytes >> 9);
159
160 if (bio_integrity(bio))
161 bio_integrity_advance(bio, nbytes);
162
163 if (bio->bi_size == 0)
164 bio_endio(bio, error);
165 } else {
166 /*
167 * Okay, this is the sequenced flush request in
168 * progress, just record the error;
169 */
170 if (error && !q->flush_err)
171 q->flush_err = error;
172 }
173 }
174
175 void blk_dump_rq_flags(struct request *rq, char *msg)
176 {
177 int bit;
178
179 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
180 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
181 rq->cmd_flags);
182
183 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
184 (unsigned long long)blk_rq_pos(rq),
185 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
186 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
187 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
188
189 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
190 printk(KERN_INFO " cdb: ");
191 for (bit = 0; bit < BLK_MAX_CDB; bit++)
192 printk("%02x ", rq->cmd[bit]);
193 printk("\n");
194 }
195 }
196 EXPORT_SYMBOL(blk_dump_rq_flags);
197
198 /*
199 * "plug" the device if there are no outstanding requests: this will
200 * force the transfer to start only after we have put all the requests
201 * on the list.
202 *
203 * This is called with interrupts off and no requests on the queue and
204 * with the queue lock held.
205 */
206 void blk_plug_device(struct request_queue *q)
207 {
208 WARN_ON(!irqs_disabled());
209
210 /*
211 * don't plug a stopped queue, it must be paired with blk_start_queue()
212 * which will restart the queueing
213 */
214 if (blk_queue_stopped(q))
215 return;
216
217 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
218 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
219 trace_block_plug(q);
220 }
221 }
222 EXPORT_SYMBOL(blk_plug_device);
223
224 /**
225 * blk_plug_device_unlocked - plug a device without queue lock held
226 * @q: The &struct request_queue to plug
227 *
228 * Description:
229 * Like @blk_plug_device(), but grabs the queue lock and disables
230 * interrupts.
231 **/
232 void blk_plug_device_unlocked(struct request_queue *q)
233 {
234 unsigned long flags;
235
236 spin_lock_irqsave(q->queue_lock, flags);
237 blk_plug_device(q);
238 spin_unlock_irqrestore(q->queue_lock, flags);
239 }
240 EXPORT_SYMBOL(blk_plug_device_unlocked);
241
242 /*
243 * remove the queue from the plugged list, if present. called with
244 * queue lock held and interrupts disabled.
245 */
246 int blk_remove_plug(struct request_queue *q)
247 {
248 WARN_ON(!irqs_disabled());
249
250 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
251 return 0;
252
253 del_timer(&q->unplug_timer);
254 return 1;
255 }
256 EXPORT_SYMBOL(blk_remove_plug);
257
258 /*
259 * remove the plug and let it rip..
260 */
261 void __generic_unplug_device(struct request_queue *q)
262 {
263 if (unlikely(blk_queue_stopped(q)))
264 return;
265 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
266 return;
267
268 q->request_fn(q);
269 }
270
271 /**
272 * generic_unplug_device - fire a request queue
273 * @q: The &struct request_queue in question
274 *
275 * Description:
276 * Linux uses plugging to build bigger requests queues before letting
277 * the device have at them. If a queue is plugged, the I/O scheduler
278 * is still adding and merging requests on the queue. Once the queue
279 * gets unplugged, the request_fn defined for the queue is invoked and
280 * transfers started.
281 **/
282 void generic_unplug_device(struct request_queue *q)
283 {
284 if (blk_queue_plugged(q)) {
285 spin_lock_irq(q->queue_lock);
286 __generic_unplug_device(q);
287 spin_unlock_irq(q->queue_lock);
288 }
289 }
290 EXPORT_SYMBOL(generic_unplug_device);
291
292 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
293 struct page *page)
294 {
295 struct request_queue *q = bdi->unplug_io_data;
296
297 blk_unplug(q);
298 }
299
300 void blk_unplug_work(struct work_struct *work)
301 {
302 struct request_queue *q =
303 container_of(work, struct request_queue, unplug_work);
304
305 trace_block_unplug_io(q);
306 q->unplug_fn(q);
307 }
308
309 void blk_unplug_timeout(unsigned long data)
310 {
311 struct request_queue *q = (struct request_queue *)data;
312
313 trace_block_unplug_timer(q);
314 kblockd_schedule_work(q, &q->unplug_work);
315 }
316
317 void blk_unplug(struct request_queue *q)
318 {
319 /*
320 * devices don't necessarily have an ->unplug_fn defined
321 */
322 if (q->unplug_fn) {
323 trace_block_unplug_io(q);
324 q->unplug_fn(q);
325 }
326 }
327 EXPORT_SYMBOL(blk_unplug);
328
329 /**
330 * blk_start_queue - restart a previously stopped queue
331 * @q: The &struct request_queue in question
332 *
333 * Description:
334 * blk_start_queue() will clear the stop flag on the queue, and call
335 * the request_fn for the queue if it was in a stopped state when
336 * entered. Also see blk_stop_queue(). Queue lock must be held.
337 **/
338 void blk_start_queue(struct request_queue *q)
339 {
340 WARN_ON(!irqs_disabled());
341
342 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
343 __blk_run_queue(q);
344 }
345 EXPORT_SYMBOL(blk_start_queue);
346
347 /**
348 * blk_stop_queue - stop a queue
349 * @q: The &struct request_queue in question
350 *
351 * Description:
352 * The Linux block layer assumes that a block driver will consume all
353 * entries on the request queue when the request_fn strategy is called.
354 * Often this will not happen, because of hardware limitations (queue
355 * depth settings). If a device driver gets a 'queue full' response,
356 * or if it simply chooses not to queue more I/O at one point, it can
357 * call this function to prevent the request_fn from being called until
358 * the driver has signalled it's ready to go again. This happens by calling
359 * blk_start_queue() to restart queue operations. Queue lock must be held.
360 **/
361 void blk_stop_queue(struct request_queue *q)
362 {
363 blk_remove_plug(q);
364 queue_flag_set(QUEUE_FLAG_STOPPED, q);
365 }
366 EXPORT_SYMBOL(blk_stop_queue);
367
368 /**
369 * blk_sync_queue - cancel any pending callbacks on a queue
370 * @q: the queue
371 *
372 * Description:
373 * The block layer may perform asynchronous callback activity
374 * on a queue, such as calling the unplug function after a timeout.
375 * A block device may call blk_sync_queue to ensure that any
376 * such activity is cancelled, thus allowing it to release resources
377 * that the callbacks might use. The caller must already have made sure
378 * that its ->make_request_fn will not re-add plugging prior to calling
379 * this function.
380 *
381 */
382 void blk_sync_queue(struct request_queue *q)
383 {
384 del_timer_sync(&q->unplug_timer);
385 del_timer_sync(&q->timeout);
386 cancel_work_sync(&q->unplug_work);
387 throtl_shutdown_timer_wq(q);
388 }
389 EXPORT_SYMBOL(blk_sync_queue);
390
391 /**
392 * __blk_run_queue - run a single device queue
393 * @q: The queue to run
394 *
395 * Description:
396 * See @blk_run_queue. This variant must be called with the queue lock
397 * held and interrupts disabled.
398 *
399 */
400 void __blk_run_queue(struct request_queue *q)
401 {
402 blk_remove_plug(q);
403
404 if (unlikely(blk_queue_stopped(q)))
405 return;
406
407 if (elv_queue_empty(q))
408 return;
409
410 /*
411 * Only recurse once to avoid overrunning the stack, let the unplug
412 * handling reinvoke the handler shortly if we already got there.
413 */
414 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
415 q->request_fn(q);
416 queue_flag_clear(QUEUE_FLAG_REENTER, q);
417 } else {
418 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
419 kblockd_schedule_work(q, &q->unplug_work);
420 }
421 }
422 EXPORT_SYMBOL(__blk_run_queue);
423
424 /**
425 * blk_run_queue - run a single device queue
426 * @q: The queue to run
427 *
428 * Description:
429 * Invoke request handling on this queue, if it has pending work to do.
430 * May be used to restart queueing when a request has completed.
431 */
432 void blk_run_queue(struct request_queue *q)
433 {
434 unsigned long flags;
435
436 spin_lock_irqsave(q->queue_lock, flags);
437 __blk_run_queue(q);
438 spin_unlock_irqrestore(q->queue_lock, flags);
439 }
440 EXPORT_SYMBOL(blk_run_queue);
441
442 void blk_put_queue(struct request_queue *q)
443 {
444 kobject_put(&q->kobj);
445 }
446
447 void blk_cleanup_queue(struct request_queue *q)
448 {
449 /*
450 * We know we have process context here, so we can be a little
451 * cautious and ensure that pending block actions on this device
452 * are done before moving on. Going into this function, we should
453 * not have processes doing IO to this device.
454 */
455 blk_sync_queue(q);
456
457 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
458 mutex_lock(&q->sysfs_lock);
459 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
460 mutex_unlock(&q->sysfs_lock);
461
462 if (q->elevator)
463 elevator_exit(q->elevator);
464
465 blk_throtl_exit(q);
466
467 blk_put_queue(q);
468 }
469 EXPORT_SYMBOL(blk_cleanup_queue);
470
471 static int blk_init_free_list(struct request_queue *q)
472 {
473 struct request_list *rl = &q->rq;
474
475 if (unlikely(rl->rq_pool))
476 return 0;
477
478 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
479 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
480 rl->elvpriv = 0;
481 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
482 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
483
484 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
485 mempool_free_slab, request_cachep, q->node);
486
487 if (!rl->rq_pool)
488 return -ENOMEM;
489
490 return 0;
491 }
492
493 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
494 {
495 return blk_alloc_queue_node(gfp_mask, -1);
496 }
497 EXPORT_SYMBOL(blk_alloc_queue);
498
499 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
500 {
501 struct request_queue *q;
502 int err;
503
504 q = kmem_cache_alloc_node(blk_requestq_cachep,
505 gfp_mask | __GFP_ZERO, node_id);
506 if (!q)
507 return NULL;
508
509 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
510 q->backing_dev_info.unplug_io_data = q;
511 q->backing_dev_info.ra_pages =
512 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
513 q->backing_dev_info.state = 0;
514 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
515 q->backing_dev_info.name = "block";
516
517 err = bdi_init(&q->backing_dev_info);
518 if (err) {
519 kmem_cache_free(blk_requestq_cachep, q);
520 return NULL;
521 }
522
523 if (blk_throtl_init(q)) {
524 kmem_cache_free(blk_requestq_cachep, q);
525 return NULL;
526 }
527
528 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
529 laptop_mode_timer_fn, (unsigned long) q);
530 init_timer(&q->unplug_timer);
531 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
532 INIT_LIST_HEAD(&q->timeout_list);
533 INIT_LIST_HEAD(&q->pending_flushes);
534 INIT_WORK(&q->unplug_work, blk_unplug_work);
535
536 kobject_init(&q->kobj, &blk_queue_ktype);
537
538 mutex_init(&q->sysfs_lock);
539 spin_lock_init(&q->__queue_lock);
540
541 return q;
542 }
543 EXPORT_SYMBOL(blk_alloc_queue_node);
544
545 /**
546 * blk_init_queue - prepare a request queue for use with a block device
547 * @rfn: The function to be called to process requests that have been
548 * placed on the queue.
549 * @lock: Request queue spin lock
550 *
551 * Description:
552 * If a block device wishes to use the standard request handling procedures,
553 * which sorts requests and coalesces adjacent requests, then it must
554 * call blk_init_queue(). The function @rfn will be called when there
555 * are requests on the queue that need to be processed. If the device
556 * supports plugging, then @rfn may not be called immediately when requests
557 * are available on the queue, but may be called at some time later instead.
558 * Plugged queues are generally unplugged when a buffer belonging to one
559 * of the requests on the queue is needed, or due to memory pressure.
560 *
561 * @rfn is not required, or even expected, to remove all requests off the
562 * queue, but only as many as it can handle at a time. If it does leave
563 * requests on the queue, it is responsible for arranging that the requests
564 * get dealt with eventually.
565 *
566 * The queue spin lock must be held while manipulating the requests on the
567 * request queue; this lock will be taken also from interrupt context, so irq
568 * disabling is needed for it.
569 *
570 * Function returns a pointer to the initialized request queue, or %NULL if
571 * it didn't succeed.
572 *
573 * Note:
574 * blk_init_queue() must be paired with a blk_cleanup_queue() call
575 * when the block device is deactivated (such as at module unload).
576 **/
577
578 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
579 {
580 return blk_init_queue_node(rfn, lock, -1);
581 }
582 EXPORT_SYMBOL(blk_init_queue);
583
584 struct request_queue *
585 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
586 {
587 struct request_queue *uninit_q, *q;
588
589 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
590 if (!uninit_q)
591 return NULL;
592
593 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
594 if (!q)
595 blk_cleanup_queue(uninit_q);
596
597 return q;
598 }
599 EXPORT_SYMBOL(blk_init_queue_node);
600
601 struct request_queue *
602 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
603 spinlock_t *lock)
604 {
605 return blk_init_allocated_queue_node(q, rfn, lock, -1);
606 }
607 EXPORT_SYMBOL(blk_init_allocated_queue);
608
609 struct request_queue *
610 blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
611 spinlock_t *lock, int node_id)
612 {
613 if (!q)
614 return NULL;
615
616 q->node = node_id;
617 if (blk_init_free_list(q))
618 return NULL;
619
620 q->request_fn = rfn;
621 q->prep_rq_fn = NULL;
622 q->unprep_rq_fn = NULL;
623 q->unplug_fn = generic_unplug_device;
624 q->queue_flags = QUEUE_FLAG_DEFAULT;
625 q->queue_lock = lock;
626
627 /*
628 * This also sets hw/phys segments, boundary and size
629 */
630 blk_queue_make_request(q, __make_request);
631
632 q->sg_reserved_size = INT_MAX;
633
634 /*
635 * all done
636 */
637 if (!elevator_init(q, NULL)) {
638 blk_queue_congestion_threshold(q);
639 return q;
640 }
641
642 return NULL;
643 }
644 EXPORT_SYMBOL(blk_init_allocated_queue_node);
645
646 int blk_get_queue(struct request_queue *q)
647 {
648 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
649 kobject_get(&q->kobj);
650 return 0;
651 }
652
653 return 1;
654 }
655
656 static inline void blk_free_request(struct request_queue *q, struct request *rq)
657 {
658 if (rq->cmd_flags & REQ_ELVPRIV)
659 elv_put_request(q, rq);
660 mempool_free(rq, q->rq.rq_pool);
661 }
662
663 static struct request *
664 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
665 {
666 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
667
668 if (!rq)
669 return NULL;
670
671 blk_rq_init(q, rq);
672
673 rq->cmd_flags = flags | REQ_ALLOCED;
674
675 if (priv) {
676 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
677 mempool_free(rq, q->rq.rq_pool);
678 return NULL;
679 }
680 rq->cmd_flags |= REQ_ELVPRIV;
681 }
682
683 return rq;
684 }
685
686 /*
687 * ioc_batching returns true if the ioc is a valid batching request and
688 * should be given priority access to a request.
689 */
690 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
691 {
692 if (!ioc)
693 return 0;
694
695 /*
696 * Make sure the process is able to allocate at least 1 request
697 * even if the batch times out, otherwise we could theoretically
698 * lose wakeups.
699 */
700 return ioc->nr_batch_requests == q->nr_batching ||
701 (ioc->nr_batch_requests > 0
702 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
703 }
704
705 /*
706 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
707 * will cause the process to be a "batcher" on all queues in the system. This
708 * is the behaviour we want though - once it gets a wakeup it should be given
709 * a nice run.
710 */
711 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
712 {
713 if (!ioc || ioc_batching(q, ioc))
714 return;
715
716 ioc->nr_batch_requests = q->nr_batching;
717 ioc->last_waited = jiffies;
718 }
719
720 static void __freed_request(struct request_queue *q, int sync)
721 {
722 struct request_list *rl = &q->rq;
723
724 if (rl->count[sync] < queue_congestion_off_threshold(q))
725 blk_clear_queue_congested(q, sync);
726
727 if (rl->count[sync] + 1 <= q->nr_requests) {
728 if (waitqueue_active(&rl->wait[sync]))
729 wake_up(&rl->wait[sync]);
730
731 blk_clear_queue_full(q, sync);
732 }
733 }
734
735 /*
736 * A request has just been released. Account for it, update the full and
737 * congestion status, wake up any waiters. Called under q->queue_lock.
738 */
739 static void freed_request(struct request_queue *q, int sync, int priv)
740 {
741 struct request_list *rl = &q->rq;
742
743 rl->count[sync]--;
744 if (priv)
745 rl->elvpriv--;
746
747 __freed_request(q, sync);
748
749 if (unlikely(rl->starved[sync ^ 1]))
750 __freed_request(q, sync ^ 1);
751 }
752
753 /*
754 * Get a free request, queue_lock must be held.
755 * Returns NULL on failure, with queue_lock held.
756 * Returns !NULL on success, with queue_lock *not held*.
757 */
758 static struct request *get_request(struct request_queue *q, int rw_flags,
759 struct bio *bio, gfp_t gfp_mask)
760 {
761 struct request *rq = NULL;
762 struct request_list *rl = &q->rq;
763 struct io_context *ioc = NULL;
764 const bool is_sync = rw_is_sync(rw_flags) != 0;
765 int may_queue, priv;
766
767 may_queue = elv_may_queue(q, rw_flags);
768 if (may_queue == ELV_MQUEUE_NO)
769 goto rq_starved;
770
771 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
772 if (rl->count[is_sync]+1 >= q->nr_requests) {
773 ioc = current_io_context(GFP_ATOMIC, q->node);
774 /*
775 * The queue will fill after this allocation, so set
776 * it as full, and mark this process as "batching".
777 * This process will be allowed to complete a batch of
778 * requests, others will be blocked.
779 */
780 if (!blk_queue_full(q, is_sync)) {
781 ioc_set_batching(q, ioc);
782 blk_set_queue_full(q, is_sync);
783 } else {
784 if (may_queue != ELV_MQUEUE_MUST
785 && !ioc_batching(q, ioc)) {
786 /*
787 * The queue is full and the allocating
788 * process is not a "batcher", and not
789 * exempted by the IO scheduler
790 */
791 goto out;
792 }
793 }
794 }
795 blk_set_queue_congested(q, is_sync);
796 }
797
798 /*
799 * Only allow batching queuers to allocate up to 50% over the defined
800 * limit of requests, otherwise we could have thousands of requests
801 * allocated with any setting of ->nr_requests
802 */
803 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
804 goto out;
805
806 rl->count[is_sync]++;
807 rl->starved[is_sync] = 0;
808
809 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
810 if (priv) {
811 rl->elvpriv++;
812
813 /*
814 * Don't do stats for non-priv requests
815 */
816 if (blk_queue_io_stat(q))
817 rw_flags |= REQ_IO_STAT;
818 }
819
820 spin_unlock_irq(q->queue_lock);
821
822 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
823 if (unlikely(!rq)) {
824 /*
825 * Allocation failed presumably due to memory. Undo anything
826 * we might have messed up.
827 *
828 * Allocating task should really be put onto the front of the
829 * wait queue, but this is pretty rare.
830 */
831 spin_lock_irq(q->queue_lock);
832 freed_request(q, is_sync, priv);
833
834 /*
835 * in the very unlikely event that allocation failed and no
836 * requests for this direction was pending, mark us starved
837 * so that freeing of a request in the other direction will
838 * notice us. another possible fix would be to split the
839 * rq mempool into READ and WRITE
840 */
841 rq_starved:
842 if (unlikely(rl->count[is_sync] == 0))
843 rl->starved[is_sync] = 1;
844
845 goto out;
846 }
847
848 /*
849 * ioc may be NULL here, and ioc_batching will be false. That's
850 * OK, if the queue is under the request limit then requests need
851 * not count toward the nr_batch_requests limit. There will always
852 * be some limit enforced by BLK_BATCH_TIME.
853 */
854 if (ioc_batching(q, ioc))
855 ioc->nr_batch_requests--;
856
857 trace_block_getrq(q, bio, rw_flags & 1);
858 out:
859 return rq;
860 }
861
862 /*
863 * No available requests for this queue, unplug the device and wait for some
864 * requests to become available.
865 *
866 * Called with q->queue_lock held, and returns with it unlocked.
867 */
868 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
869 struct bio *bio)
870 {
871 const bool is_sync = rw_is_sync(rw_flags) != 0;
872 struct request *rq;
873
874 rq = get_request(q, rw_flags, bio, GFP_NOIO);
875 while (!rq) {
876 DEFINE_WAIT(wait);
877 struct io_context *ioc;
878 struct request_list *rl = &q->rq;
879
880 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
881 TASK_UNINTERRUPTIBLE);
882
883 trace_block_sleeprq(q, bio, rw_flags & 1);
884
885 __generic_unplug_device(q);
886 spin_unlock_irq(q->queue_lock);
887 io_schedule();
888
889 /*
890 * After sleeping, we become a "batching" process and
891 * will be able to allocate at least one request, and
892 * up to a big batch of them for a small period time.
893 * See ioc_batching, ioc_set_batching
894 */
895 ioc = current_io_context(GFP_NOIO, q->node);
896 ioc_set_batching(q, ioc);
897
898 spin_lock_irq(q->queue_lock);
899 finish_wait(&rl->wait[is_sync], &wait);
900
901 rq = get_request(q, rw_flags, bio, GFP_NOIO);
902 };
903
904 return rq;
905 }
906
907 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
908 {
909 struct request *rq;
910
911 BUG_ON(rw != READ && rw != WRITE);
912
913 spin_lock_irq(q->queue_lock);
914 if (gfp_mask & __GFP_WAIT) {
915 rq = get_request_wait(q, rw, NULL);
916 } else {
917 rq = get_request(q, rw, NULL, gfp_mask);
918 if (!rq)
919 spin_unlock_irq(q->queue_lock);
920 }
921 /* q->queue_lock is unlocked at this point */
922
923 return rq;
924 }
925 EXPORT_SYMBOL(blk_get_request);
926
927 /**
928 * blk_make_request - given a bio, allocate a corresponding struct request.
929 * @q: target request queue
930 * @bio: The bio describing the memory mappings that will be submitted for IO.
931 * It may be a chained-bio properly constructed by block/bio layer.
932 * @gfp_mask: gfp flags to be used for memory allocation
933 *
934 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
935 * type commands. Where the struct request needs to be farther initialized by
936 * the caller. It is passed a &struct bio, which describes the memory info of
937 * the I/O transfer.
938 *
939 * The caller of blk_make_request must make sure that bi_io_vec
940 * are set to describe the memory buffers. That bio_data_dir() will return
941 * the needed direction of the request. (And all bio's in the passed bio-chain
942 * are properly set accordingly)
943 *
944 * If called under none-sleepable conditions, mapped bio buffers must not
945 * need bouncing, by calling the appropriate masked or flagged allocator,
946 * suitable for the target device. Otherwise the call to blk_queue_bounce will
947 * BUG.
948 *
949 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
950 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
951 * anything but the first bio in the chain. Otherwise you risk waiting for IO
952 * completion of a bio that hasn't been submitted yet, thus resulting in a
953 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
954 * of bio_alloc(), as that avoids the mempool deadlock.
955 * If possible a big IO should be split into smaller parts when allocation
956 * fails. Partial allocation should not be an error, or you risk a live-lock.
957 */
958 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
959 gfp_t gfp_mask)
960 {
961 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
962
963 if (unlikely(!rq))
964 return ERR_PTR(-ENOMEM);
965
966 for_each_bio(bio) {
967 struct bio *bounce_bio = bio;
968 int ret;
969
970 blk_queue_bounce(q, &bounce_bio);
971 ret = blk_rq_append_bio(q, rq, bounce_bio);
972 if (unlikely(ret)) {
973 blk_put_request(rq);
974 return ERR_PTR(ret);
975 }
976 }
977
978 return rq;
979 }
980 EXPORT_SYMBOL(blk_make_request);
981
982 /**
983 * blk_requeue_request - put a request back on queue
984 * @q: request queue where request should be inserted
985 * @rq: request to be inserted
986 *
987 * Description:
988 * Drivers often keep queueing requests until the hardware cannot accept
989 * more, when that condition happens we need to put the request back
990 * on the queue. Must be called with queue lock held.
991 */
992 void blk_requeue_request(struct request_queue *q, struct request *rq)
993 {
994 blk_delete_timer(rq);
995 blk_clear_rq_complete(rq);
996 trace_block_rq_requeue(q, rq);
997
998 if (blk_rq_tagged(rq))
999 blk_queue_end_tag(q, rq);
1000
1001 BUG_ON(blk_queued_rq(rq));
1002
1003 elv_requeue_request(q, rq);
1004 }
1005 EXPORT_SYMBOL(blk_requeue_request);
1006
1007 /**
1008 * blk_insert_request - insert a special request into a request queue
1009 * @q: request queue where request should be inserted
1010 * @rq: request to be inserted
1011 * @at_head: insert request at head or tail of queue
1012 * @data: private data
1013 *
1014 * Description:
1015 * Many block devices need to execute commands asynchronously, so they don't
1016 * block the whole kernel from preemption during request execution. This is
1017 * accomplished normally by inserting aritficial requests tagged as
1018 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
1019 * be scheduled for actual execution by the request queue.
1020 *
1021 * We have the option of inserting the head or the tail of the queue.
1022 * Typically we use the tail for new ioctls and so forth. We use the head
1023 * of the queue for things like a QUEUE_FULL message from a device, or a
1024 * host that is unable to accept a particular command.
1025 */
1026 void blk_insert_request(struct request_queue *q, struct request *rq,
1027 int at_head, void *data)
1028 {
1029 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1030 unsigned long flags;
1031
1032 /*
1033 * tell I/O scheduler that this isn't a regular read/write (ie it
1034 * must not attempt merges on this) and that it acts as a soft
1035 * barrier
1036 */
1037 rq->cmd_type = REQ_TYPE_SPECIAL;
1038
1039 rq->special = data;
1040
1041 spin_lock_irqsave(q->queue_lock, flags);
1042
1043 /*
1044 * If command is tagged, release the tag
1045 */
1046 if (blk_rq_tagged(rq))
1047 blk_queue_end_tag(q, rq);
1048
1049 drive_stat_acct(rq, 1);
1050 __elv_add_request(q, rq, where, 0);
1051 __blk_run_queue(q);
1052 spin_unlock_irqrestore(q->queue_lock, flags);
1053 }
1054 EXPORT_SYMBOL(blk_insert_request);
1055
1056 static void part_round_stats_single(int cpu, struct hd_struct *part,
1057 unsigned long now)
1058 {
1059 if (now == part->stamp)
1060 return;
1061
1062 if (part_in_flight(part)) {
1063 __part_stat_add(cpu, part, time_in_queue,
1064 part_in_flight(part) * (now - part->stamp));
1065 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1066 }
1067 part->stamp = now;
1068 }
1069
1070 /**
1071 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1072 * @cpu: cpu number for stats access
1073 * @part: target partition
1074 *
1075 * The average IO queue length and utilisation statistics are maintained
1076 * by observing the current state of the queue length and the amount of
1077 * time it has been in this state for.
1078 *
1079 * Normally, that accounting is done on IO completion, but that can result
1080 * in more than a second's worth of IO being accounted for within any one
1081 * second, leading to >100% utilisation. To deal with that, we call this
1082 * function to do a round-off before returning the results when reading
1083 * /proc/diskstats. This accounts immediately for all queue usage up to
1084 * the current jiffies and restarts the counters again.
1085 */
1086 void part_round_stats(int cpu, struct hd_struct *part)
1087 {
1088 unsigned long now = jiffies;
1089
1090 if (part->partno)
1091 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1092 part_round_stats_single(cpu, part, now);
1093 }
1094 EXPORT_SYMBOL_GPL(part_round_stats);
1095
1096 /*
1097 * queue lock must be held
1098 */
1099 void __blk_put_request(struct request_queue *q, struct request *req)
1100 {
1101 if (unlikely(!q))
1102 return;
1103 if (unlikely(--req->ref_count))
1104 return;
1105
1106 elv_completed_request(q, req);
1107
1108 /* this is a bio leak */
1109 WARN_ON(req->bio != NULL);
1110
1111 /*
1112 * Request may not have originated from ll_rw_blk. if not,
1113 * it didn't come out of our reserved rq pools
1114 */
1115 if (req->cmd_flags & REQ_ALLOCED) {
1116 int is_sync = rq_is_sync(req) != 0;
1117 int priv = req->cmd_flags & REQ_ELVPRIV;
1118
1119 BUG_ON(!list_empty(&req->queuelist));
1120 BUG_ON(!hlist_unhashed(&req->hash));
1121
1122 blk_free_request(q, req);
1123 freed_request(q, is_sync, priv);
1124 }
1125 }
1126 EXPORT_SYMBOL_GPL(__blk_put_request);
1127
1128 void blk_put_request(struct request *req)
1129 {
1130 unsigned long flags;
1131 struct request_queue *q = req->q;
1132
1133 spin_lock_irqsave(q->queue_lock, flags);
1134 __blk_put_request(q, req);
1135 spin_unlock_irqrestore(q->queue_lock, flags);
1136 }
1137 EXPORT_SYMBOL(blk_put_request);
1138
1139 /**
1140 * blk_add_request_payload - add a payload to a request
1141 * @rq: request to update
1142 * @page: page backing the payload
1143 * @len: length of the payload.
1144 *
1145 * This allows to later add a payload to an already submitted request by
1146 * a block driver. The driver needs to take care of freeing the payload
1147 * itself.
1148 *
1149 * Note that this is a quite horrible hack and nothing but handling of
1150 * discard requests should ever use it.
1151 */
1152 void blk_add_request_payload(struct request *rq, struct page *page,
1153 unsigned int len)
1154 {
1155 struct bio *bio = rq->bio;
1156
1157 bio->bi_io_vec->bv_page = page;
1158 bio->bi_io_vec->bv_offset = 0;
1159 bio->bi_io_vec->bv_len = len;
1160
1161 bio->bi_size = len;
1162 bio->bi_vcnt = 1;
1163 bio->bi_phys_segments = 1;
1164
1165 rq->__data_len = rq->resid_len = len;
1166 rq->nr_phys_segments = 1;
1167 rq->buffer = bio_data(bio);
1168 }
1169 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1170
1171 void init_request_from_bio(struct request *req, struct bio *bio)
1172 {
1173 req->cpu = bio->bi_comp_cpu;
1174 req->cmd_type = REQ_TYPE_FS;
1175
1176 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1177 if (bio->bi_rw & REQ_RAHEAD)
1178 req->cmd_flags |= REQ_FAILFAST_MASK;
1179
1180 req->errors = 0;
1181 req->__sector = bio->bi_sector;
1182 req->ioprio = bio_prio(bio);
1183 blk_rq_bio_prep(req->q, req, bio);
1184 }
1185
1186 /*
1187 * Only disabling plugging for non-rotational devices if it does tagging
1188 * as well, otherwise we do need the proper merging
1189 */
1190 static inline bool queue_should_plug(struct request_queue *q)
1191 {
1192 return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
1193 }
1194
1195 static int __make_request(struct request_queue *q, struct bio *bio)
1196 {
1197 struct request *req;
1198 int el_ret;
1199 unsigned int bytes = bio->bi_size;
1200 const unsigned short prio = bio_prio(bio);
1201 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1202 const bool unplug = !!(bio->bi_rw & REQ_UNPLUG);
1203 const unsigned long ff = bio->bi_rw & REQ_FAILFAST_MASK;
1204 int where = ELEVATOR_INSERT_SORT;
1205 int rw_flags;
1206
1207 /* REQ_HARDBARRIER is no more */
1208 if (WARN_ONCE(bio->bi_rw & REQ_HARDBARRIER,
1209 "block: HARDBARRIER is deprecated, use FLUSH/FUA instead\n")) {
1210 bio_endio(bio, -EOPNOTSUPP);
1211 return 0;
1212 }
1213
1214 /*
1215 * low level driver can indicate that it wants pages above a
1216 * certain limit bounced to low memory (ie for highmem, or even
1217 * ISA dma in theory)
1218 */
1219 blk_queue_bounce(q, &bio);
1220
1221 spin_lock_irq(q->queue_lock);
1222
1223 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1224 where = ELEVATOR_INSERT_FRONT;
1225 goto get_rq;
1226 }
1227
1228 if (elv_queue_empty(q))
1229 goto get_rq;
1230
1231 el_ret = elv_merge(q, &req, bio);
1232 switch (el_ret) {
1233 case ELEVATOR_BACK_MERGE:
1234 BUG_ON(!rq_mergeable(req));
1235
1236 if (!ll_back_merge_fn(q, req, bio))
1237 break;
1238
1239 trace_block_bio_backmerge(q, bio);
1240
1241 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1242 blk_rq_set_mixed_merge(req);
1243
1244 req->biotail->bi_next = bio;
1245 req->biotail = bio;
1246 req->__data_len += bytes;
1247 req->ioprio = ioprio_best(req->ioprio, prio);
1248 if (!blk_rq_cpu_valid(req))
1249 req->cpu = bio->bi_comp_cpu;
1250 drive_stat_acct(req, 0);
1251 elv_bio_merged(q, req, bio);
1252 if (!attempt_back_merge(q, req))
1253 elv_merged_request(q, req, el_ret);
1254 goto out;
1255
1256 case ELEVATOR_FRONT_MERGE:
1257 BUG_ON(!rq_mergeable(req));
1258
1259 if (!ll_front_merge_fn(q, req, bio))
1260 break;
1261
1262 trace_block_bio_frontmerge(q, bio);
1263
1264 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) {
1265 blk_rq_set_mixed_merge(req);
1266 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1267 req->cmd_flags |= ff;
1268 }
1269
1270 bio->bi_next = req->bio;
1271 req->bio = bio;
1272
1273 /*
1274 * may not be valid. if the low level driver said
1275 * it didn't need a bounce buffer then it better
1276 * not touch req->buffer either...
1277 */
1278 req->buffer = bio_data(bio);
1279 req->__sector = bio->bi_sector;
1280 req->__data_len += bytes;
1281 req->ioprio = ioprio_best(req->ioprio, prio);
1282 if (!blk_rq_cpu_valid(req))
1283 req->cpu = bio->bi_comp_cpu;
1284 drive_stat_acct(req, 0);
1285 elv_bio_merged(q, req, bio);
1286 if (!attempt_front_merge(q, req))
1287 elv_merged_request(q, req, el_ret);
1288 goto out;
1289
1290 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1291 default:
1292 ;
1293 }
1294
1295 get_rq:
1296 /*
1297 * This sync check and mask will be re-done in init_request_from_bio(),
1298 * but we need to set it earlier to expose the sync flag to the
1299 * rq allocator and io schedulers.
1300 */
1301 rw_flags = bio_data_dir(bio);
1302 if (sync)
1303 rw_flags |= REQ_SYNC;
1304
1305 /*
1306 * Grab a free request. This is might sleep but can not fail.
1307 * Returns with the queue unlocked.
1308 */
1309 req = get_request_wait(q, rw_flags, bio);
1310
1311 /*
1312 * After dropping the lock and possibly sleeping here, our request
1313 * may now be mergeable after it had proven unmergeable (above).
1314 * We don't worry about that case for efficiency. It won't happen
1315 * often, and the elevators are able to handle it.
1316 */
1317 init_request_from_bio(req, bio);
1318
1319 spin_lock_irq(q->queue_lock);
1320 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1321 bio_flagged(bio, BIO_CPU_AFFINE))
1322 req->cpu = blk_cpu_to_group(smp_processor_id());
1323 if (queue_should_plug(q) && elv_queue_empty(q))
1324 blk_plug_device(q);
1325
1326 /* insert the request into the elevator */
1327 drive_stat_acct(req, 1);
1328 __elv_add_request(q, req, where, 0);
1329 out:
1330 if (unplug || !queue_should_plug(q))
1331 __generic_unplug_device(q);
1332 spin_unlock_irq(q->queue_lock);
1333 return 0;
1334 }
1335
1336 /*
1337 * If bio->bi_dev is a partition, remap the location
1338 */
1339 static inline void blk_partition_remap(struct bio *bio)
1340 {
1341 struct block_device *bdev = bio->bi_bdev;
1342
1343 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1344 struct hd_struct *p = bdev->bd_part;
1345
1346 bio->bi_sector += p->start_sect;
1347 bio->bi_bdev = bdev->bd_contains;
1348
1349 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
1350 bdev->bd_dev,
1351 bio->bi_sector - p->start_sect);
1352 }
1353 }
1354
1355 static void handle_bad_sector(struct bio *bio)
1356 {
1357 char b[BDEVNAME_SIZE];
1358
1359 printk(KERN_INFO "attempt to access beyond end of device\n");
1360 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1361 bdevname(bio->bi_bdev, b),
1362 bio->bi_rw,
1363 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1364 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1365
1366 set_bit(BIO_EOF, &bio->bi_flags);
1367 }
1368
1369 #ifdef CONFIG_FAIL_MAKE_REQUEST
1370
1371 static DECLARE_FAULT_ATTR(fail_make_request);
1372
1373 static int __init setup_fail_make_request(char *str)
1374 {
1375 return setup_fault_attr(&fail_make_request, str);
1376 }
1377 __setup("fail_make_request=", setup_fail_make_request);
1378
1379 static int should_fail_request(struct bio *bio)
1380 {
1381 struct hd_struct *part = bio->bi_bdev->bd_part;
1382
1383 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1384 return should_fail(&fail_make_request, bio->bi_size);
1385
1386 return 0;
1387 }
1388
1389 static int __init fail_make_request_debugfs(void)
1390 {
1391 return init_fault_attr_dentries(&fail_make_request,
1392 "fail_make_request");
1393 }
1394
1395 late_initcall(fail_make_request_debugfs);
1396
1397 #else /* CONFIG_FAIL_MAKE_REQUEST */
1398
1399 static inline int should_fail_request(struct bio *bio)
1400 {
1401 return 0;
1402 }
1403
1404 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1405
1406 /*
1407 * Check whether this bio extends beyond the end of the device.
1408 */
1409 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1410 {
1411 sector_t maxsector;
1412
1413 if (!nr_sectors)
1414 return 0;
1415
1416 /* Test device or partition size, when known. */
1417 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1418 if (maxsector) {
1419 sector_t sector = bio->bi_sector;
1420
1421 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1422 /*
1423 * This may well happen - the kernel calls bread()
1424 * without checking the size of the device, e.g., when
1425 * mounting a device.
1426 */
1427 handle_bad_sector(bio);
1428 return 1;
1429 }
1430 }
1431
1432 return 0;
1433 }
1434
1435 /**
1436 * generic_make_request - hand a buffer to its device driver for I/O
1437 * @bio: The bio describing the location in memory and on the device.
1438 *
1439 * generic_make_request() is used to make I/O requests of block
1440 * devices. It is passed a &struct bio, which describes the I/O that needs
1441 * to be done.
1442 *
1443 * generic_make_request() does not return any status. The
1444 * success/failure status of the request, along with notification of
1445 * completion, is delivered asynchronously through the bio->bi_end_io
1446 * function described (one day) else where.
1447 *
1448 * The caller of generic_make_request must make sure that bi_io_vec
1449 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1450 * set to describe the device address, and the
1451 * bi_end_io and optionally bi_private are set to describe how
1452 * completion notification should be signaled.
1453 *
1454 * generic_make_request and the drivers it calls may use bi_next if this
1455 * bio happens to be merged with someone else, and may change bi_dev and
1456 * bi_sector for remaps as it sees fit. So the values of these fields
1457 * should NOT be depended on after the call to generic_make_request.
1458 */
1459 static inline void __generic_make_request(struct bio *bio)
1460 {
1461 struct request_queue *q;
1462 sector_t old_sector;
1463 int ret, nr_sectors = bio_sectors(bio);
1464 dev_t old_dev;
1465 int err = -EIO;
1466
1467 might_sleep();
1468
1469 if (bio_check_eod(bio, nr_sectors))
1470 goto end_io;
1471
1472 /*
1473 * Resolve the mapping until finished. (drivers are
1474 * still free to implement/resolve their own stacking
1475 * by explicitly returning 0)
1476 *
1477 * NOTE: we don't repeat the blk_size check for each new device.
1478 * Stacking drivers are expected to know what they are doing.
1479 */
1480 old_sector = -1;
1481 old_dev = 0;
1482 do {
1483 char b[BDEVNAME_SIZE];
1484
1485 q = bdev_get_queue(bio->bi_bdev);
1486 if (unlikely(!q)) {
1487 printk(KERN_ERR
1488 "generic_make_request: Trying to access "
1489 "nonexistent block-device %s (%Lu)\n",
1490 bdevname(bio->bi_bdev, b),
1491 (long long) bio->bi_sector);
1492 goto end_io;
1493 }
1494
1495 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1496 nr_sectors > queue_max_hw_sectors(q))) {
1497 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1498 bdevname(bio->bi_bdev, b),
1499 bio_sectors(bio),
1500 queue_max_hw_sectors(q));
1501 goto end_io;
1502 }
1503
1504 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1505 goto end_io;
1506
1507 if (should_fail_request(bio))
1508 goto end_io;
1509
1510 /*
1511 * If this device has partitions, remap block n
1512 * of partition p to block n+start(p) of the disk.
1513 */
1514 blk_partition_remap(bio);
1515
1516 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1517 goto end_io;
1518
1519 if (old_sector != -1)
1520 trace_block_remap(q, bio, old_dev, old_sector);
1521
1522 old_sector = bio->bi_sector;
1523 old_dev = bio->bi_bdev->bd_dev;
1524
1525 if (bio_check_eod(bio, nr_sectors))
1526 goto end_io;
1527
1528 /*
1529 * Filter flush bio's early so that make_request based
1530 * drivers without flush support don't have to worry
1531 * about them.
1532 */
1533 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1534 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1535 if (!nr_sectors) {
1536 err = 0;
1537 goto end_io;
1538 }
1539 }
1540
1541 if ((bio->bi_rw & REQ_DISCARD) &&
1542 (!blk_queue_discard(q) ||
1543 ((bio->bi_rw & REQ_SECURE) &&
1544 !blk_queue_secdiscard(q)))) {
1545 err = -EOPNOTSUPP;
1546 goto end_io;
1547 }
1548
1549 blk_throtl_bio(q, &bio);
1550
1551 /*
1552 * If bio = NULL, bio has been throttled and will be submitted
1553 * later.
1554 */
1555 if (!bio)
1556 break;
1557
1558 trace_block_bio_queue(q, bio);
1559
1560 ret = q->make_request_fn(q, bio);
1561 } while (ret);
1562
1563 return;
1564
1565 end_io:
1566 bio_endio(bio, err);
1567 }
1568
1569 /*
1570 * We only want one ->make_request_fn to be active at a time,
1571 * else stack usage with stacked devices could be a problem.
1572 * So use current->bio_list to keep a list of requests
1573 * submited by a make_request_fn function.
1574 * current->bio_list is also used as a flag to say if
1575 * generic_make_request is currently active in this task or not.
1576 * If it is NULL, then no make_request is active. If it is non-NULL,
1577 * then a make_request is active, and new requests should be added
1578 * at the tail
1579 */
1580 void generic_make_request(struct bio *bio)
1581 {
1582 struct bio_list bio_list_on_stack;
1583
1584 if (current->bio_list) {
1585 /* make_request is active */
1586 bio_list_add(current->bio_list, bio);
1587 return;
1588 }
1589 /* following loop may be a bit non-obvious, and so deserves some
1590 * explanation.
1591 * Before entering the loop, bio->bi_next is NULL (as all callers
1592 * ensure that) so we have a list with a single bio.
1593 * We pretend that we have just taken it off a longer list, so
1594 * we assign bio_list to a pointer to the bio_list_on_stack,
1595 * thus initialising the bio_list of new bios to be
1596 * added. __generic_make_request may indeed add some more bios
1597 * through a recursive call to generic_make_request. If it
1598 * did, we find a non-NULL value in bio_list and re-enter the loop
1599 * from the top. In this case we really did just take the bio
1600 * of the top of the list (no pretending) and so remove it from
1601 * bio_list, and call into __generic_make_request again.
1602 *
1603 * The loop was structured like this to make only one call to
1604 * __generic_make_request (which is important as it is large and
1605 * inlined) and to keep the structure simple.
1606 */
1607 BUG_ON(bio->bi_next);
1608 bio_list_init(&bio_list_on_stack);
1609 current->bio_list = &bio_list_on_stack;
1610 do {
1611 __generic_make_request(bio);
1612 bio = bio_list_pop(current->bio_list);
1613 } while (bio);
1614 current->bio_list = NULL; /* deactivate */
1615 }
1616 EXPORT_SYMBOL(generic_make_request);
1617
1618 /**
1619 * submit_bio - submit a bio to the block device layer for I/O
1620 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1621 * @bio: The &struct bio which describes the I/O
1622 *
1623 * submit_bio() is very similar in purpose to generic_make_request(), and
1624 * uses that function to do most of the work. Both are fairly rough
1625 * interfaces; @bio must be presetup and ready for I/O.
1626 *
1627 */
1628 void submit_bio(int rw, struct bio *bio)
1629 {
1630 int count = bio_sectors(bio);
1631
1632 bio->bi_rw |= rw;
1633
1634 /*
1635 * If it's a regular read/write or a barrier with data attached,
1636 * go through the normal accounting stuff before submission.
1637 */
1638 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1639 if (rw & WRITE) {
1640 count_vm_events(PGPGOUT, count);
1641 } else {
1642 task_io_account_read(bio->bi_size);
1643 count_vm_events(PGPGIN, count);
1644 }
1645
1646 if (unlikely(block_dump)) {
1647 char b[BDEVNAME_SIZE];
1648 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1649 current->comm, task_pid_nr(current),
1650 (rw & WRITE) ? "WRITE" : "READ",
1651 (unsigned long long)bio->bi_sector,
1652 bdevname(bio->bi_bdev, b),
1653 count);
1654 }
1655 }
1656
1657 generic_make_request(bio);
1658 }
1659 EXPORT_SYMBOL(submit_bio);
1660
1661 /**
1662 * blk_rq_check_limits - Helper function to check a request for the queue limit
1663 * @q: the queue
1664 * @rq: the request being checked
1665 *
1666 * Description:
1667 * @rq may have been made based on weaker limitations of upper-level queues
1668 * in request stacking drivers, and it may violate the limitation of @q.
1669 * Since the block layer and the underlying device driver trust @rq
1670 * after it is inserted to @q, it should be checked against @q before
1671 * the insertion using this generic function.
1672 *
1673 * This function should also be useful for request stacking drivers
1674 * in some cases below, so export this fuction.
1675 * Request stacking drivers like request-based dm may change the queue
1676 * limits while requests are in the queue (e.g. dm's table swapping).
1677 * Such request stacking drivers should check those requests agaist
1678 * the new queue limits again when they dispatch those requests,
1679 * although such checkings are also done against the old queue limits
1680 * when submitting requests.
1681 */
1682 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1683 {
1684 if (rq->cmd_flags & REQ_DISCARD)
1685 return 0;
1686
1687 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1688 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1689 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1690 return -EIO;
1691 }
1692
1693 /*
1694 * queue's settings related to segment counting like q->bounce_pfn
1695 * may differ from that of other stacking queues.
1696 * Recalculate it to check the request correctly on this queue's
1697 * limitation.
1698 */
1699 blk_recalc_rq_segments(rq);
1700 if (rq->nr_phys_segments > queue_max_segments(q)) {
1701 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1702 return -EIO;
1703 }
1704
1705 return 0;
1706 }
1707 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1708
1709 /**
1710 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1711 * @q: the queue to submit the request
1712 * @rq: the request being queued
1713 */
1714 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1715 {
1716 unsigned long flags;
1717
1718 if (blk_rq_check_limits(q, rq))
1719 return -EIO;
1720
1721 #ifdef CONFIG_FAIL_MAKE_REQUEST
1722 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1723 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1724 return -EIO;
1725 #endif
1726
1727 spin_lock_irqsave(q->queue_lock, flags);
1728
1729 /*
1730 * Submitting request must be dequeued before calling this function
1731 * because it will be linked to another request_queue
1732 */
1733 BUG_ON(blk_queued_rq(rq));
1734
1735 drive_stat_acct(rq, 1);
1736 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1737
1738 spin_unlock_irqrestore(q->queue_lock, flags);
1739
1740 return 0;
1741 }
1742 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1743
1744 /**
1745 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1746 * @rq: request to examine
1747 *
1748 * Description:
1749 * A request could be merge of IOs which require different failure
1750 * handling. This function determines the number of bytes which
1751 * can be failed from the beginning of the request without
1752 * crossing into area which need to be retried further.
1753 *
1754 * Return:
1755 * The number of bytes to fail.
1756 *
1757 * Context:
1758 * queue_lock must be held.
1759 */
1760 unsigned int blk_rq_err_bytes(const struct request *rq)
1761 {
1762 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1763 unsigned int bytes = 0;
1764 struct bio *bio;
1765
1766 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1767 return blk_rq_bytes(rq);
1768
1769 /*
1770 * Currently the only 'mixing' which can happen is between
1771 * different fastfail types. We can safely fail portions
1772 * which have all the failfast bits that the first one has -
1773 * the ones which are at least as eager to fail as the first
1774 * one.
1775 */
1776 for (bio = rq->bio; bio; bio = bio->bi_next) {
1777 if ((bio->bi_rw & ff) != ff)
1778 break;
1779 bytes += bio->bi_size;
1780 }
1781
1782 /* this could lead to infinite loop */
1783 BUG_ON(blk_rq_bytes(rq) && !bytes);
1784 return bytes;
1785 }
1786 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1787
1788 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1789 {
1790 if (blk_do_io_stat(req)) {
1791 const int rw = rq_data_dir(req);
1792 struct hd_struct *part;
1793 int cpu;
1794
1795 cpu = part_stat_lock();
1796 part = req->part;
1797 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1798 part_stat_unlock();
1799 }
1800 }
1801
1802 static void blk_account_io_done(struct request *req)
1803 {
1804 /*
1805 * Account IO completion. flush_rq isn't accounted as a
1806 * normal IO on queueing nor completion. Accounting the
1807 * containing request is enough.
1808 */
1809 if (blk_do_io_stat(req) && req != &req->q->flush_rq) {
1810 unsigned long duration = jiffies - req->start_time;
1811 const int rw = rq_data_dir(req);
1812 struct hd_struct *part;
1813 int cpu;
1814
1815 cpu = part_stat_lock();
1816 part = req->part;
1817
1818 part_stat_inc(cpu, part, ios[rw]);
1819 part_stat_add(cpu, part, ticks[rw], duration);
1820 part_round_stats(cpu, part);
1821 part_dec_in_flight(part, rw);
1822
1823 part_stat_unlock();
1824 }
1825 }
1826
1827 /**
1828 * blk_peek_request - peek at the top of a request queue
1829 * @q: request queue to peek at
1830 *
1831 * Description:
1832 * Return the request at the top of @q. The returned request
1833 * should be started using blk_start_request() before LLD starts
1834 * processing it.
1835 *
1836 * Return:
1837 * Pointer to the request at the top of @q if available. Null
1838 * otherwise.
1839 *
1840 * Context:
1841 * queue_lock must be held.
1842 */
1843 struct request *blk_peek_request(struct request_queue *q)
1844 {
1845 struct request *rq;
1846 int ret;
1847
1848 while ((rq = __elv_next_request(q)) != NULL) {
1849 if (!(rq->cmd_flags & REQ_STARTED)) {
1850 /*
1851 * This is the first time the device driver
1852 * sees this request (possibly after
1853 * requeueing). Notify IO scheduler.
1854 */
1855 if (rq->cmd_flags & REQ_SORTED)
1856 elv_activate_rq(q, rq);
1857
1858 /*
1859 * just mark as started even if we don't start
1860 * it, a request that has been delayed should
1861 * not be passed by new incoming requests
1862 */
1863 rq->cmd_flags |= REQ_STARTED;
1864 trace_block_rq_issue(q, rq);
1865 }
1866
1867 if (!q->boundary_rq || q->boundary_rq == rq) {
1868 q->end_sector = rq_end_sector(rq);
1869 q->boundary_rq = NULL;
1870 }
1871
1872 if (rq->cmd_flags & REQ_DONTPREP)
1873 break;
1874
1875 if (q->dma_drain_size && blk_rq_bytes(rq)) {
1876 /*
1877 * make sure space for the drain appears we
1878 * know we can do this because max_hw_segments
1879 * has been adjusted to be one fewer than the
1880 * device can handle
1881 */
1882 rq->nr_phys_segments++;
1883 }
1884
1885 if (!q->prep_rq_fn)
1886 break;
1887
1888 ret = q->prep_rq_fn(q, rq);
1889 if (ret == BLKPREP_OK) {
1890 break;
1891 } else if (ret == BLKPREP_DEFER) {
1892 /*
1893 * the request may have been (partially) prepped.
1894 * we need to keep this request in the front to
1895 * avoid resource deadlock. REQ_STARTED will
1896 * prevent other fs requests from passing this one.
1897 */
1898 if (q->dma_drain_size && blk_rq_bytes(rq) &&
1899 !(rq->cmd_flags & REQ_DONTPREP)) {
1900 /*
1901 * remove the space for the drain we added
1902 * so that we don't add it again
1903 */
1904 --rq->nr_phys_segments;
1905 }
1906
1907 rq = NULL;
1908 break;
1909 } else if (ret == BLKPREP_KILL) {
1910 rq->cmd_flags |= REQ_QUIET;
1911 /*
1912 * Mark this request as started so we don't trigger
1913 * any debug logic in the end I/O path.
1914 */
1915 blk_start_request(rq);
1916 __blk_end_request_all(rq, -EIO);
1917 } else {
1918 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1919 break;
1920 }
1921 }
1922
1923 return rq;
1924 }
1925 EXPORT_SYMBOL(blk_peek_request);
1926
1927 void blk_dequeue_request(struct request *rq)
1928 {
1929 struct request_queue *q = rq->q;
1930
1931 BUG_ON(list_empty(&rq->queuelist));
1932 BUG_ON(ELV_ON_HASH(rq));
1933
1934 list_del_init(&rq->queuelist);
1935
1936 /*
1937 * the time frame between a request being removed from the lists
1938 * and to it is freed is accounted as io that is in progress at
1939 * the driver side.
1940 */
1941 if (blk_account_rq(rq)) {
1942 q->in_flight[rq_is_sync(rq)]++;
1943 set_io_start_time_ns(rq);
1944 }
1945 }
1946
1947 /**
1948 * blk_start_request - start request processing on the driver
1949 * @req: request to dequeue
1950 *
1951 * Description:
1952 * Dequeue @req and start timeout timer on it. This hands off the
1953 * request to the driver.
1954 *
1955 * Block internal functions which don't want to start timer should
1956 * call blk_dequeue_request().
1957 *
1958 * Context:
1959 * queue_lock must be held.
1960 */
1961 void blk_start_request(struct request *req)
1962 {
1963 blk_dequeue_request(req);
1964
1965 /*
1966 * We are now handing the request to the hardware, initialize
1967 * resid_len to full count and add the timeout handler.
1968 */
1969 req->resid_len = blk_rq_bytes(req);
1970 if (unlikely(blk_bidi_rq(req)))
1971 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1972
1973 blk_add_timer(req);
1974 }
1975 EXPORT_SYMBOL(blk_start_request);
1976
1977 /**
1978 * blk_fetch_request - fetch a request from a request queue
1979 * @q: request queue to fetch a request from
1980 *
1981 * Description:
1982 * Return the request at the top of @q. The request is started on
1983 * return and LLD can start processing it immediately.
1984 *
1985 * Return:
1986 * Pointer to the request at the top of @q if available. Null
1987 * otherwise.
1988 *
1989 * Context:
1990 * queue_lock must be held.
1991 */
1992 struct request *blk_fetch_request(struct request_queue *q)
1993 {
1994 struct request *rq;
1995
1996 rq = blk_peek_request(q);
1997 if (rq)
1998 blk_start_request(rq);
1999 return rq;
2000 }
2001 EXPORT_SYMBOL(blk_fetch_request);
2002
2003 /**
2004 * blk_update_request - Special helper function for request stacking drivers
2005 * @req: the request being processed
2006 * @error: %0 for success, < %0 for error
2007 * @nr_bytes: number of bytes to complete @req
2008 *
2009 * Description:
2010 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2011 * the request structure even if @req doesn't have leftover.
2012 * If @req has leftover, sets it up for the next range of segments.
2013 *
2014 * This special helper function is only for request stacking drivers
2015 * (e.g. request-based dm) so that they can handle partial completion.
2016 * Actual device drivers should use blk_end_request instead.
2017 *
2018 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2019 * %false return from this function.
2020 *
2021 * Return:
2022 * %false - this request doesn't have any more data
2023 * %true - this request has more data
2024 **/
2025 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2026 {
2027 int total_bytes, bio_nbytes, next_idx = 0;
2028 struct bio *bio;
2029
2030 if (!req->bio)
2031 return false;
2032
2033 trace_block_rq_complete(req->q, req);
2034
2035 /*
2036 * For fs requests, rq is just carrier of independent bio's
2037 * and each partial completion should be handled separately.
2038 * Reset per-request error on each partial completion.
2039 *
2040 * TODO: tj: This is too subtle. It would be better to let
2041 * low level drivers do what they see fit.
2042 */
2043 if (req->cmd_type == REQ_TYPE_FS)
2044 req->errors = 0;
2045
2046 if (error && req->cmd_type == REQ_TYPE_FS &&
2047 !(req->cmd_flags & REQ_QUIET)) {
2048 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
2049 req->rq_disk ? req->rq_disk->disk_name : "?",
2050 (unsigned long long)blk_rq_pos(req));
2051 }
2052
2053 blk_account_io_completion(req, nr_bytes);
2054
2055 total_bytes = bio_nbytes = 0;
2056 while ((bio = req->bio) != NULL) {
2057 int nbytes;
2058
2059 if (nr_bytes >= bio->bi_size) {
2060 req->bio = bio->bi_next;
2061 nbytes = bio->bi_size;
2062 req_bio_endio(req, bio, nbytes, error);
2063 next_idx = 0;
2064 bio_nbytes = 0;
2065 } else {
2066 int idx = bio->bi_idx + next_idx;
2067
2068 if (unlikely(idx >= bio->bi_vcnt)) {
2069 blk_dump_rq_flags(req, "__end_that");
2070 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2071 __func__, idx, bio->bi_vcnt);
2072 break;
2073 }
2074
2075 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2076 BIO_BUG_ON(nbytes > bio->bi_size);
2077
2078 /*
2079 * not a complete bvec done
2080 */
2081 if (unlikely(nbytes > nr_bytes)) {
2082 bio_nbytes += nr_bytes;
2083 total_bytes += nr_bytes;
2084 break;
2085 }
2086
2087 /*
2088 * advance to the next vector
2089 */
2090 next_idx++;
2091 bio_nbytes += nbytes;
2092 }
2093
2094 total_bytes += nbytes;
2095 nr_bytes -= nbytes;
2096
2097 bio = req->bio;
2098 if (bio) {
2099 /*
2100 * end more in this run, or just return 'not-done'
2101 */
2102 if (unlikely(nr_bytes <= 0))
2103 break;
2104 }
2105 }
2106
2107 /*
2108 * completely done
2109 */
2110 if (!req->bio) {
2111 /*
2112 * Reset counters so that the request stacking driver
2113 * can find how many bytes remain in the request
2114 * later.
2115 */
2116 req->__data_len = 0;
2117 return false;
2118 }
2119
2120 /*
2121 * if the request wasn't completed, update state
2122 */
2123 if (bio_nbytes) {
2124 req_bio_endio(req, bio, bio_nbytes, error);
2125 bio->bi_idx += next_idx;
2126 bio_iovec(bio)->bv_offset += nr_bytes;
2127 bio_iovec(bio)->bv_len -= nr_bytes;
2128 }
2129
2130 req->__data_len -= total_bytes;
2131 req->buffer = bio_data(req->bio);
2132
2133 /* update sector only for requests with clear definition of sector */
2134 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2135 req->__sector += total_bytes >> 9;
2136
2137 /* mixed attributes always follow the first bio */
2138 if (req->cmd_flags & REQ_MIXED_MERGE) {
2139 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2140 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2141 }
2142
2143 /*
2144 * If total number of sectors is less than the first segment
2145 * size, something has gone terribly wrong.
2146 */
2147 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2148 printk(KERN_ERR "blk: request botched\n");
2149 req->__data_len = blk_rq_cur_bytes(req);
2150 }
2151
2152 /* recalculate the number of segments */
2153 blk_recalc_rq_segments(req);
2154
2155 return true;
2156 }
2157 EXPORT_SYMBOL_GPL(blk_update_request);
2158
2159 static bool blk_update_bidi_request(struct request *rq, int error,
2160 unsigned int nr_bytes,
2161 unsigned int bidi_bytes)
2162 {
2163 if (blk_update_request(rq, error, nr_bytes))
2164 return true;
2165
2166 /* Bidi request must be completed as a whole */
2167 if (unlikely(blk_bidi_rq(rq)) &&
2168 blk_update_request(rq->next_rq, error, bidi_bytes))
2169 return true;
2170
2171 if (blk_queue_add_random(rq->q))
2172 add_disk_randomness(rq->rq_disk);
2173
2174 return false;
2175 }
2176
2177 /**
2178 * blk_unprep_request - unprepare a request
2179 * @req: the request
2180 *
2181 * This function makes a request ready for complete resubmission (or
2182 * completion). It happens only after all error handling is complete,
2183 * so represents the appropriate moment to deallocate any resources
2184 * that were allocated to the request in the prep_rq_fn. The queue
2185 * lock is held when calling this.
2186 */
2187 void blk_unprep_request(struct request *req)
2188 {
2189 struct request_queue *q = req->q;
2190
2191 req->cmd_flags &= ~REQ_DONTPREP;
2192 if (q->unprep_rq_fn)
2193 q->unprep_rq_fn(q, req);
2194 }
2195 EXPORT_SYMBOL_GPL(blk_unprep_request);
2196
2197 /*
2198 * queue lock must be held
2199 */
2200 static void blk_finish_request(struct request *req, int error)
2201 {
2202 if (blk_rq_tagged(req))
2203 blk_queue_end_tag(req->q, req);
2204
2205 BUG_ON(blk_queued_rq(req));
2206
2207 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2208 laptop_io_completion(&req->q->backing_dev_info);
2209
2210 blk_delete_timer(req);
2211
2212 if (req->cmd_flags & REQ_DONTPREP)
2213 blk_unprep_request(req);
2214
2215
2216 blk_account_io_done(req);
2217
2218 if (req->end_io)
2219 req->end_io(req, error);
2220 else {
2221 if (blk_bidi_rq(req))
2222 __blk_put_request(req->next_rq->q, req->next_rq);
2223
2224 __blk_put_request(req->q, req);
2225 }
2226 }
2227
2228 /**
2229 * blk_end_bidi_request - Complete a bidi request
2230 * @rq: the request to complete
2231 * @error: %0 for success, < %0 for error
2232 * @nr_bytes: number of bytes to complete @rq
2233 * @bidi_bytes: number of bytes to complete @rq->next_rq
2234 *
2235 * Description:
2236 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2237 * Drivers that supports bidi can safely call this member for any
2238 * type of request, bidi or uni. In the later case @bidi_bytes is
2239 * just ignored.
2240 *
2241 * Return:
2242 * %false - we are done with this request
2243 * %true - still buffers pending for this request
2244 **/
2245 static bool blk_end_bidi_request(struct request *rq, int error,
2246 unsigned int nr_bytes, unsigned int bidi_bytes)
2247 {
2248 struct request_queue *q = rq->q;
2249 unsigned long flags;
2250
2251 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2252 return true;
2253
2254 spin_lock_irqsave(q->queue_lock, flags);
2255 blk_finish_request(rq, error);
2256 spin_unlock_irqrestore(q->queue_lock, flags);
2257
2258 return false;
2259 }
2260
2261 /**
2262 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2263 * @rq: the request to complete
2264 * @error: %0 for success, < %0 for error
2265 * @nr_bytes: number of bytes to complete @rq
2266 * @bidi_bytes: number of bytes to complete @rq->next_rq
2267 *
2268 * Description:
2269 * Identical to blk_end_bidi_request() except that queue lock is
2270 * assumed to be locked on entry and remains so on return.
2271 *
2272 * Return:
2273 * %false - we are done with this request
2274 * %true - still buffers pending for this request
2275 **/
2276 static bool __blk_end_bidi_request(struct request *rq, int error,
2277 unsigned int nr_bytes, unsigned int bidi_bytes)
2278 {
2279 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2280 return true;
2281
2282 blk_finish_request(rq, error);
2283
2284 return false;
2285 }
2286
2287 /**
2288 * blk_end_request - Helper function for drivers to complete the request.
2289 * @rq: the request being processed
2290 * @error: %0 for success, < %0 for error
2291 * @nr_bytes: number of bytes to complete
2292 *
2293 * Description:
2294 * Ends I/O on a number of bytes attached to @rq.
2295 * If @rq has leftover, sets it up for the next range of segments.
2296 *
2297 * Return:
2298 * %false - we are done with this request
2299 * %true - still buffers pending for this request
2300 **/
2301 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2302 {
2303 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2304 }
2305 EXPORT_SYMBOL(blk_end_request);
2306
2307 /**
2308 * blk_end_request_all - Helper function for drives to finish the request.
2309 * @rq: the request to finish
2310 * @error: %0 for success, < %0 for error
2311 *
2312 * Description:
2313 * Completely finish @rq.
2314 */
2315 void blk_end_request_all(struct request *rq, int error)
2316 {
2317 bool pending;
2318 unsigned int bidi_bytes = 0;
2319
2320 if (unlikely(blk_bidi_rq(rq)))
2321 bidi_bytes = blk_rq_bytes(rq->next_rq);
2322
2323 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2324 BUG_ON(pending);
2325 }
2326 EXPORT_SYMBOL(blk_end_request_all);
2327
2328 /**
2329 * blk_end_request_cur - Helper function to finish the current request chunk.
2330 * @rq: the request to finish the current chunk for
2331 * @error: %0 for success, < %0 for error
2332 *
2333 * Description:
2334 * Complete the current consecutively mapped chunk from @rq.
2335 *
2336 * Return:
2337 * %false - we are done with this request
2338 * %true - still buffers pending for this request
2339 */
2340 bool blk_end_request_cur(struct request *rq, int error)
2341 {
2342 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2343 }
2344 EXPORT_SYMBOL(blk_end_request_cur);
2345
2346 /**
2347 * blk_end_request_err - Finish a request till the next failure boundary.
2348 * @rq: the request to finish till the next failure boundary for
2349 * @error: must be negative errno
2350 *
2351 * Description:
2352 * Complete @rq till the next failure boundary.
2353 *
2354 * Return:
2355 * %false - we are done with this request
2356 * %true - still buffers pending for this request
2357 */
2358 bool blk_end_request_err(struct request *rq, int error)
2359 {
2360 WARN_ON(error >= 0);
2361 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2362 }
2363 EXPORT_SYMBOL_GPL(blk_end_request_err);
2364
2365 /**
2366 * __blk_end_request - Helper function for drivers to complete the request.
2367 * @rq: the request being processed
2368 * @error: %0 for success, < %0 for error
2369 * @nr_bytes: number of bytes to complete
2370 *
2371 * Description:
2372 * Must be called with queue lock held unlike blk_end_request().
2373 *
2374 * Return:
2375 * %false - we are done with this request
2376 * %true - still buffers pending for this request
2377 **/
2378 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2379 {
2380 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2381 }
2382 EXPORT_SYMBOL(__blk_end_request);
2383
2384 /**
2385 * __blk_end_request_all - Helper function for drives to finish the request.
2386 * @rq: the request to finish
2387 * @error: %0 for success, < %0 for error
2388 *
2389 * Description:
2390 * Completely finish @rq. Must be called with queue lock held.
2391 */
2392 void __blk_end_request_all(struct request *rq, int error)
2393 {
2394 bool pending;
2395 unsigned int bidi_bytes = 0;
2396
2397 if (unlikely(blk_bidi_rq(rq)))
2398 bidi_bytes = blk_rq_bytes(rq->next_rq);
2399
2400 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2401 BUG_ON(pending);
2402 }
2403 EXPORT_SYMBOL(__blk_end_request_all);
2404
2405 /**
2406 * __blk_end_request_cur - Helper function to finish the current request chunk.
2407 * @rq: the request to finish the current chunk for
2408 * @error: %0 for success, < %0 for error
2409 *
2410 * Description:
2411 * Complete the current consecutively mapped chunk from @rq. Must
2412 * be called with queue lock held.
2413 *
2414 * Return:
2415 * %false - we are done with this request
2416 * %true - still buffers pending for this request
2417 */
2418 bool __blk_end_request_cur(struct request *rq, int error)
2419 {
2420 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2421 }
2422 EXPORT_SYMBOL(__blk_end_request_cur);
2423
2424 /**
2425 * __blk_end_request_err - Finish a request till the next failure boundary.
2426 * @rq: the request to finish till the next failure boundary for
2427 * @error: must be negative errno
2428 *
2429 * Description:
2430 * Complete @rq till the next failure boundary. Must be called
2431 * with queue lock held.
2432 *
2433 * Return:
2434 * %false - we are done with this request
2435 * %true - still buffers pending for this request
2436 */
2437 bool __blk_end_request_err(struct request *rq, int error)
2438 {
2439 WARN_ON(error >= 0);
2440 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2441 }
2442 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2443
2444 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2445 struct bio *bio)
2446 {
2447 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2448 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2449
2450 if (bio_has_data(bio)) {
2451 rq->nr_phys_segments = bio_phys_segments(q, bio);
2452 rq->buffer = bio_data(bio);
2453 }
2454 rq->__data_len = bio->bi_size;
2455 rq->bio = rq->biotail = bio;
2456
2457 if (bio->bi_bdev)
2458 rq->rq_disk = bio->bi_bdev->bd_disk;
2459 }
2460
2461 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2462 /**
2463 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2464 * @rq: the request to be flushed
2465 *
2466 * Description:
2467 * Flush all pages in @rq.
2468 */
2469 void rq_flush_dcache_pages(struct request *rq)
2470 {
2471 struct req_iterator iter;
2472 struct bio_vec *bvec;
2473
2474 rq_for_each_segment(bvec, rq, iter)
2475 flush_dcache_page(bvec->bv_page);
2476 }
2477 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2478 #endif
2479
2480 /**
2481 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2482 * @q : the queue of the device being checked
2483 *
2484 * Description:
2485 * Check if underlying low-level drivers of a device are busy.
2486 * If the drivers want to export their busy state, they must set own
2487 * exporting function using blk_queue_lld_busy() first.
2488 *
2489 * Basically, this function is used only by request stacking drivers
2490 * to stop dispatching requests to underlying devices when underlying
2491 * devices are busy. This behavior helps more I/O merging on the queue
2492 * of the request stacking driver and prevents I/O throughput regression
2493 * on burst I/O load.
2494 *
2495 * Return:
2496 * 0 - Not busy (The request stacking driver should dispatch request)
2497 * 1 - Busy (The request stacking driver should stop dispatching request)
2498 */
2499 int blk_lld_busy(struct request_queue *q)
2500 {
2501 if (q->lld_busy_fn)
2502 return q->lld_busy_fn(q);
2503
2504 return 0;
2505 }
2506 EXPORT_SYMBOL_GPL(blk_lld_busy);
2507
2508 /**
2509 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2510 * @rq: the clone request to be cleaned up
2511 *
2512 * Description:
2513 * Free all bios in @rq for a cloned request.
2514 */
2515 void blk_rq_unprep_clone(struct request *rq)
2516 {
2517 struct bio *bio;
2518
2519 while ((bio = rq->bio) != NULL) {
2520 rq->bio = bio->bi_next;
2521
2522 bio_put(bio);
2523 }
2524 }
2525 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2526
2527 /*
2528 * Copy attributes of the original request to the clone request.
2529 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2530 */
2531 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2532 {
2533 dst->cpu = src->cpu;
2534 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2535 dst->cmd_type = src->cmd_type;
2536 dst->__sector = blk_rq_pos(src);
2537 dst->__data_len = blk_rq_bytes(src);
2538 dst->nr_phys_segments = src->nr_phys_segments;
2539 dst->ioprio = src->ioprio;
2540 dst->extra_len = src->extra_len;
2541 }
2542
2543 /**
2544 * blk_rq_prep_clone - Helper function to setup clone request
2545 * @rq: the request to be setup
2546 * @rq_src: original request to be cloned
2547 * @bs: bio_set that bios for clone are allocated from
2548 * @gfp_mask: memory allocation mask for bio
2549 * @bio_ctr: setup function to be called for each clone bio.
2550 * Returns %0 for success, non %0 for failure.
2551 * @data: private data to be passed to @bio_ctr
2552 *
2553 * Description:
2554 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2555 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2556 * are not copied, and copying such parts is the caller's responsibility.
2557 * Also, pages which the original bios are pointing to are not copied
2558 * and the cloned bios just point same pages.
2559 * So cloned bios must be completed before original bios, which means
2560 * the caller must complete @rq before @rq_src.
2561 */
2562 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2563 struct bio_set *bs, gfp_t gfp_mask,
2564 int (*bio_ctr)(struct bio *, struct bio *, void *),
2565 void *data)
2566 {
2567 struct bio *bio, *bio_src;
2568
2569 if (!bs)
2570 bs = fs_bio_set;
2571
2572 blk_rq_init(NULL, rq);
2573
2574 __rq_for_each_bio(bio_src, rq_src) {
2575 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2576 if (!bio)
2577 goto free_and_out;
2578
2579 __bio_clone(bio, bio_src);
2580
2581 if (bio_integrity(bio_src) &&
2582 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2583 goto free_and_out;
2584
2585 if (bio_ctr && bio_ctr(bio, bio_src, data))
2586 goto free_and_out;
2587
2588 if (rq->bio) {
2589 rq->biotail->bi_next = bio;
2590 rq->biotail = bio;
2591 } else
2592 rq->bio = rq->biotail = bio;
2593 }
2594
2595 __blk_rq_prep_clone(rq, rq_src);
2596
2597 return 0;
2598
2599 free_and_out:
2600 if (bio)
2601 bio_free(bio, bs);
2602 blk_rq_unprep_clone(rq);
2603
2604 return -ENOMEM;
2605 }
2606 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2607
2608 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2609 {
2610 return queue_work(kblockd_workqueue, work);
2611 }
2612 EXPORT_SYMBOL(kblockd_schedule_work);
2613
2614 int kblockd_schedule_delayed_work(struct request_queue *q,
2615 struct delayed_work *dwork, unsigned long delay)
2616 {
2617 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2618 }
2619 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2620
2621 int __init blk_dev_init(void)
2622 {
2623 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2624 sizeof(((struct request *)0)->cmd_flags));
2625
2626 kblockd_workqueue = create_workqueue("kblockd");
2627 if (!kblockd_workqueue)
2628 panic("Failed to create kblockd\n");
2629
2630 request_cachep = kmem_cache_create("blkdev_requests",
2631 sizeof(struct request), 0, SLAB_PANIC, NULL);
2632
2633 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2634 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2635
2636 return 0;
2637 }
This page took 0.105372 seconds and 6 git commands to generate.