block: remove struct request buffer member
[deliverable/linux.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/block.h>
38
39 #include "blk.h"
40 #include "blk-cgroup.h"
41 #include "blk-mq.h"
42
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
47
48 DEFINE_IDA(blk_queue_ida);
49
50 /*
51 * For the allocated request tables
52 */
53 struct kmem_cache *request_cachep = NULL;
54
55 /*
56 * For queue allocation
57 */
58 struct kmem_cache *blk_requestq_cachep;
59
60 /*
61 * Controlling structure to kblockd
62 */
63 static struct workqueue_struct *kblockd_workqueue;
64
65 void blk_queue_congestion_threshold(struct request_queue *q)
66 {
67 int nr;
68
69 nr = q->nr_requests - (q->nr_requests / 8) + 1;
70 if (nr > q->nr_requests)
71 nr = q->nr_requests;
72 q->nr_congestion_on = nr;
73
74 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
75 if (nr < 1)
76 nr = 1;
77 q->nr_congestion_off = nr;
78 }
79
80 /**
81 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
82 * @bdev: device
83 *
84 * Locates the passed device's request queue and returns the address of its
85 * backing_dev_info
86 *
87 * Will return NULL if the request queue cannot be located.
88 */
89 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
90 {
91 struct backing_dev_info *ret = NULL;
92 struct request_queue *q = bdev_get_queue(bdev);
93
94 if (q)
95 ret = &q->backing_dev_info;
96 return ret;
97 }
98 EXPORT_SYMBOL(blk_get_backing_dev_info);
99
100 void blk_rq_init(struct request_queue *q, struct request *rq)
101 {
102 memset(rq, 0, sizeof(*rq));
103
104 INIT_LIST_HEAD(&rq->queuelist);
105 INIT_LIST_HEAD(&rq->timeout_list);
106 rq->cpu = -1;
107 rq->q = q;
108 rq->__sector = (sector_t) -1;
109 INIT_HLIST_NODE(&rq->hash);
110 RB_CLEAR_NODE(&rq->rb_node);
111 rq->cmd = rq->__cmd;
112 rq->cmd_len = BLK_MAX_CDB;
113 rq->tag = -1;
114 rq->start_time = jiffies;
115 set_start_time_ns(rq);
116 rq->part = NULL;
117 }
118 EXPORT_SYMBOL(blk_rq_init);
119
120 static void req_bio_endio(struct request *rq, struct bio *bio,
121 unsigned int nbytes, int error)
122 {
123 if (error)
124 clear_bit(BIO_UPTODATE, &bio->bi_flags);
125 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
126 error = -EIO;
127
128 if (unlikely(rq->cmd_flags & REQ_QUIET))
129 set_bit(BIO_QUIET, &bio->bi_flags);
130
131 bio_advance(bio, nbytes);
132
133 /* don't actually finish bio if it's part of flush sequence */
134 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
135 bio_endio(bio, error);
136 }
137
138 void blk_dump_rq_flags(struct request *rq, char *msg)
139 {
140 int bit;
141
142 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
143 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
144 (unsigned long long) rq->cmd_flags);
145
146 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
147 (unsigned long long)blk_rq_pos(rq),
148 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
149 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
150 rq->bio, rq->biotail, blk_rq_bytes(rq));
151
152 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
153 printk(KERN_INFO " cdb: ");
154 for (bit = 0; bit < BLK_MAX_CDB; bit++)
155 printk("%02x ", rq->cmd[bit]);
156 printk("\n");
157 }
158 }
159 EXPORT_SYMBOL(blk_dump_rq_flags);
160
161 static void blk_delay_work(struct work_struct *work)
162 {
163 struct request_queue *q;
164
165 q = container_of(work, struct request_queue, delay_work.work);
166 spin_lock_irq(q->queue_lock);
167 __blk_run_queue(q);
168 spin_unlock_irq(q->queue_lock);
169 }
170
171 /**
172 * blk_delay_queue - restart queueing after defined interval
173 * @q: The &struct request_queue in question
174 * @msecs: Delay in msecs
175 *
176 * Description:
177 * Sometimes queueing needs to be postponed for a little while, to allow
178 * resources to come back. This function will make sure that queueing is
179 * restarted around the specified time. Queue lock must be held.
180 */
181 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
182 {
183 if (likely(!blk_queue_dead(q)))
184 queue_delayed_work(kblockd_workqueue, &q->delay_work,
185 msecs_to_jiffies(msecs));
186 }
187 EXPORT_SYMBOL(blk_delay_queue);
188
189 /**
190 * blk_start_queue - restart a previously stopped queue
191 * @q: The &struct request_queue in question
192 *
193 * Description:
194 * blk_start_queue() will clear the stop flag on the queue, and call
195 * the request_fn for the queue if it was in a stopped state when
196 * entered. Also see blk_stop_queue(). Queue lock must be held.
197 **/
198 void blk_start_queue(struct request_queue *q)
199 {
200 WARN_ON(!irqs_disabled());
201
202 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
203 __blk_run_queue(q);
204 }
205 EXPORT_SYMBOL(blk_start_queue);
206
207 /**
208 * blk_stop_queue - stop a queue
209 * @q: The &struct request_queue in question
210 *
211 * Description:
212 * The Linux block layer assumes that a block driver will consume all
213 * entries on the request queue when the request_fn strategy is called.
214 * Often this will not happen, because of hardware limitations (queue
215 * depth settings). If a device driver gets a 'queue full' response,
216 * or if it simply chooses not to queue more I/O at one point, it can
217 * call this function to prevent the request_fn from being called until
218 * the driver has signalled it's ready to go again. This happens by calling
219 * blk_start_queue() to restart queue operations. Queue lock must be held.
220 **/
221 void blk_stop_queue(struct request_queue *q)
222 {
223 cancel_delayed_work(&q->delay_work);
224 queue_flag_set(QUEUE_FLAG_STOPPED, q);
225 }
226 EXPORT_SYMBOL(blk_stop_queue);
227
228 /**
229 * blk_sync_queue - cancel any pending callbacks on a queue
230 * @q: the queue
231 *
232 * Description:
233 * The block layer may perform asynchronous callback activity
234 * on a queue, such as calling the unplug function after a timeout.
235 * A block device may call blk_sync_queue to ensure that any
236 * such activity is cancelled, thus allowing it to release resources
237 * that the callbacks might use. The caller must already have made sure
238 * that its ->make_request_fn will not re-add plugging prior to calling
239 * this function.
240 *
241 * This function does not cancel any asynchronous activity arising
242 * out of elevator or throttling code. That would require elevaotor_exit()
243 * and blkcg_exit_queue() to be called with queue lock initialized.
244 *
245 */
246 void blk_sync_queue(struct request_queue *q)
247 {
248 del_timer_sync(&q->timeout);
249
250 if (q->mq_ops) {
251 struct blk_mq_hw_ctx *hctx;
252 int i;
253
254 queue_for_each_hw_ctx(q, hctx, i)
255 cancel_delayed_work_sync(&hctx->delayed_work);
256 } else {
257 cancel_delayed_work_sync(&q->delay_work);
258 }
259 }
260 EXPORT_SYMBOL(blk_sync_queue);
261
262 /**
263 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
264 * @q: The queue to run
265 *
266 * Description:
267 * Invoke request handling on a queue if there are any pending requests.
268 * May be used to restart request handling after a request has completed.
269 * This variant runs the queue whether or not the queue has been
270 * stopped. Must be called with the queue lock held and interrupts
271 * disabled. See also @blk_run_queue.
272 */
273 inline void __blk_run_queue_uncond(struct request_queue *q)
274 {
275 if (unlikely(blk_queue_dead(q)))
276 return;
277
278 /*
279 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
280 * the queue lock internally. As a result multiple threads may be
281 * running such a request function concurrently. Keep track of the
282 * number of active request_fn invocations such that blk_drain_queue()
283 * can wait until all these request_fn calls have finished.
284 */
285 q->request_fn_active++;
286 q->request_fn(q);
287 q->request_fn_active--;
288 }
289
290 /**
291 * __blk_run_queue - run a single device queue
292 * @q: The queue to run
293 *
294 * Description:
295 * See @blk_run_queue. This variant must be called with the queue lock
296 * held and interrupts disabled.
297 */
298 void __blk_run_queue(struct request_queue *q)
299 {
300 if (unlikely(blk_queue_stopped(q)))
301 return;
302
303 __blk_run_queue_uncond(q);
304 }
305 EXPORT_SYMBOL(__blk_run_queue);
306
307 /**
308 * blk_run_queue_async - run a single device queue in workqueue context
309 * @q: The queue to run
310 *
311 * Description:
312 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
313 * of us. The caller must hold the queue lock.
314 */
315 void blk_run_queue_async(struct request_queue *q)
316 {
317 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
318 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
319 }
320 EXPORT_SYMBOL(blk_run_queue_async);
321
322 /**
323 * blk_run_queue - run a single device queue
324 * @q: The queue to run
325 *
326 * Description:
327 * Invoke request handling on this queue, if it has pending work to do.
328 * May be used to restart queueing when a request has completed.
329 */
330 void blk_run_queue(struct request_queue *q)
331 {
332 unsigned long flags;
333
334 spin_lock_irqsave(q->queue_lock, flags);
335 __blk_run_queue(q);
336 spin_unlock_irqrestore(q->queue_lock, flags);
337 }
338 EXPORT_SYMBOL(blk_run_queue);
339
340 void blk_put_queue(struct request_queue *q)
341 {
342 kobject_put(&q->kobj);
343 }
344 EXPORT_SYMBOL(blk_put_queue);
345
346 /**
347 * __blk_drain_queue - drain requests from request_queue
348 * @q: queue to drain
349 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
350 *
351 * Drain requests from @q. If @drain_all is set, all requests are drained.
352 * If not, only ELVPRIV requests are drained. The caller is responsible
353 * for ensuring that no new requests which need to be drained are queued.
354 */
355 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
356 __releases(q->queue_lock)
357 __acquires(q->queue_lock)
358 {
359 int i;
360
361 lockdep_assert_held(q->queue_lock);
362
363 while (true) {
364 bool drain = false;
365
366 /*
367 * The caller might be trying to drain @q before its
368 * elevator is initialized.
369 */
370 if (q->elevator)
371 elv_drain_elevator(q);
372
373 blkcg_drain_queue(q);
374
375 /*
376 * This function might be called on a queue which failed
377 * driver init after queue creation or is not yet fully
378 * active yet. Some drivers (e.g. fd and loop) get unhappy
379 * in such cases. Kick queue iff dispatch queue has
380 * something on it and @q has request_fn set.
381 */
382 if (!list_empty(&q->queue_head) && q->request_fn)
383 __blk_run_queue(q);
384
385 drain |= q->nr_rqs_elvpriv;
386 drain |= q->request_fn_active;
387
388 /*
389 * Unfortunately, requests are queued at and tracked from
390 * multiple places and there's no single counter which can
391 * be drained. Check all the queues and counters.
392 */
393 if (drain_all) {
394 drain |= !list_empty(&q->queue_head);
395 for (i = 0; i < 2; i++) {
396 drain |= q->nr_rqs[i];
397 drain |= q->in_flight[i];
398 drain |= !list_empty(&q->flush_queue[i]);
399 }
400 }
401
402 if (!drain)
403 break;
404
405 spin_unlock_irq(q->queue_lock);
406
407 msleep(10);
408
409 spin_lock_irq(q->queue_lock);
410 }
411
412 /*
413 * With queue marked dead, any woken up waiter will fail the
414 * allocation path, so the wakeup chaining is lost and we're
415 * left with hung waiters. We need to wake up those waiters.
416 */
417 if (q->request_fn) {
418 struct request_list *rl;
419
420 blk_queue_for_each_rl(rl, q)
421 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
422 wake_up_all(&rl->wait[i]);
423 }
424 }
425
426 /**
427 * blk_queue_bypass_start - enter queue bypass mode
428 * @q: queue of interest
429 *
430 * In bypass mode, only the dispatch FIFO queue of @q is used. This
431 * function makes @q enter bypass mode and drains all requests which were
432 * throttled or issued before. On return, it's guaranteed that no request
433 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
434 * inside queue or RCU read lock.
435 */
436 void blk_queue_bypass_start(struct request_queue *q)
437 {
438 bool drain;
439
440 spin_lock_irq(q->queue_lock);
441 drain = !q->bypass_depth++;
442 queue_flag_set(QUEUE_FLAG_BYPASS, q);
443 spin_unlock_irq(q->queue_lock);
444
445 if (drain) {
446 spin_lock_irq(q->queue_lock);
447 __blk_drain_queue(q, false);
448 spin_unlock_irq(q->queue_lock);
449
450 /* ensure blk_queue_bypass() is %true inside RCU read lock */
451 synchronize_rcu();
452 }
453 }
454 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
455
456 /**
457 * blk_queue_bypass_end - leave queue bypass mode
458 * @q: queue of interest
459 *
460 * Leave bypass mode and restore the normal queueing behavior.
461 */
462 void blk_queue_bypass_end(struct request_queue *q)
463 {
464 spin_lock_irq(q->queue_lock);
465 if (!--q->bypass_depth)
466 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
467 WARN_ON_ONCE(q->bypass_depth < 0);
468 spin_unlock_irq(q->queue_lock);
469 }
470 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
471
472 /**
473 * blk_cleanup_queue - shutdown a request queue
474 * @q: request queue to shutdown
475 *
476 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
477 * put it. All future requests will be failed immediately with -ENODEV.
478 */
479 void blk_cleanup_queue(struct request_queue *q)
480 {
481 spinlock_t *lock = q->queue_lock;
482
483 /* mark @q DYING, no new request or merges will be allowed afterwards */
484 mutex_lock(&q->sysfs_lock);
485 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
486 spin_lock_irq(lock);
487
488 /*
489 * A dying queue is permanently in bypass mode till released. Note
490 * that, unlike blk_queue_bypass_start(), we aren't performing
491 * synchronize_rcu() after entering bypass mode to avoid the delay
492 * as some drivers create and destroy a lot of queues while
493 * probing. This is still safe because blk_release_queue() will be
494 * called only after the queue refcnt drops to zero and nothing,
495 * RCU or not, would be traversing the queue by then.
496 */
497 q->bypass_depth++;
498 queue_flag_set(QUEUE_FLAG_BYPASS, q);
499
500 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
501 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
502 queue_flag_set(QUEUE_FLAG_DYING, q);
503 spin_unlock_irq(lock);
504 mutex_unlock(&q->sysfs_lock);
505
506 /*
507 * Drain all requests queued before DYING marking. Set DEAD flag to
508 * prevent that q->request_fn() gets invoked after draining finished.
509 */
510 if (q->mq_ops) {
511 blk_mq_drain_queue(q);
512 spin_lock_irq(lock);
513 } else {
514 spin_lock_irq(lock);
515 __blk_drain_queue(q, true);
516 }
517 queue_flag_set(QUEUE_FLAG_DEAD, q);
518 spin_unlock_irq(lock);
519
520 /* @q won't process any more request, flush async actions */
521 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
522 blk_sync_queue(q);
523
524 spin_lock_irq(lock);
525 if (q->queue_lock != &q->__queue_lock)
526 q->queue_lock = &q->__queue_lock;
527 spin_unlock_irq(lock);
528
529 /* @q is and will stay empty, shutdown and put */
530 blk_put_queue(q);
531 }
532 EXPORT_SYMBOL(blk_cleanup_queue);
533
534 int blk_init_rl(struct request_list *rl, struct request_queue *q,
535 gfp_t gfp_mask)
536 {
537 if (unlikely(rl->rq_pool))
538 return 0;
539
540 rl->q = q;
541 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
542 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
543 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
544 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
545
546 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
547 mempool_free_slab, request_cachep,
548 gfp_mask, q->node);
549 if (!rl->rq_pool)
550 return -ENOMEM;
551
552 return 0;
553 }
554
555 void blk_exit_rl(struct request_list *rl)
556 {
557 if (rl->rq_pool)
558 mempool_destroy(rl->rq_pool);
559 }
560
561 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
562 {
563 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
564 }
565 EXPORT_SYMBOL(blk_alloc_queue);
566
567 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
568 {
569 struct request_queue *q;
570 int err;
571
572 q = kmem_cache_alloc_node(blk_requestq_cachep,
573 gfp_mask | __GFP_ZERO, node_id);
574 if (!q)
575 return NULL;
576
577 if (percpu_counter_init(&q->mq_usage_counter, 0))
578 goto fail_q;
579
580 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
581 if (q->id < 0)
582 goto fail_c;
583
584 q->backing_dev_info.ra_pages =
585 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
586 q->backing_dev_info.state = 0;
587 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
588 q->backing_dev_info.name = "block";
589 q->node = node_id;
590
591 err = bdi_init(&q->backing_dev_info);
592 if (err)
593 goto fail_id;
594
595 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
596 laptop_mode_timer_fn, (unsigned long) q);
597 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
598 INIT_LIST_HEAD(&q->queue_head);
599 INIT_LIST_HEAD(&q->timeout_list);
600 INIT_LIST_HEAD(&q->icq_list);
601 #ifdef CONFIG_BLK_CGROUP
602 INIT_LIST_HEAD(&q->blkg_list);
603 #endif
604 INIT_LIST_HEAD(&q->flush_queue[0]);
605 INIT_LIST_HEAD(&q->flush_queue[1]);
606 INIT_LIST_HEAD(&q->flush_data_in_flight);
607 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
608
609 kobject_init(&q->kobj, &blk_queue_ktype);
610
611 mutex_init(&q->sysfs_lock);
612 spin_lock_init(&q->__queue_lock);
613
614 /*
615 * By default initialize queue_lock to internal lock and driver can
616 * override it later if need be.
617 */
618 q->queue_lock = &q->__queue_lock;
619
620 /*
621 * A queue starts its life with bypass turned on to avoid
622 * unnecessary bypass on/off overhead and nasty surprises during
623 * init. The initial bypass will be finished when the queue is
624 * registered by blk_register_queue().
625 */
626 q->bypass_depth = 1;
627 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
628
629 init_waitqueue_head(&q->mq_freeze_wq);
630
631 if (blkcg_init_queue(q))
632 goto fail_bdi;
633
634 return q;
635
636 fail_bdi:
637 bdi_destroy(&q->backing_dev_info);
638 fail_id:
639 ida_simple_remove(&blk_queue_ida, q->id);
640 fail_c:
641 percpu_counter_destroy(&q->mq_usage_counter);
642 fail_q:
643 kmem_cache_free(blk_requestq_cachep, q);
644 return NULL;
645 }
646 EXPORT_SYMBOL(blk_alloc_queue_node);
647
648 /**
649 * blk_init_queue - prepare a request queue for use with a block device
650 * @rfn: The function to be called to process requests that have been
651 * placed on the queue.
652 * @lock: Request queue spin lock
653 *
654 * Description:
655 * If a block device wishes to use the standard request handling procedures,
656 * which sorts requests and coalesces adjacent requests, then it must
657 * call blk_init_queue(). The function @rfn will be called when there
658 * are requests on the queue that need to be processed. If the device
659 * supports plugging, then @rfn may not be called immediately when requests
660 * are available on the queue, but may be called at some time later instead.
661 * Plugged queues are generally unplugged when a buffer belonging to one
662 * of the requests on the queue is needed, or due to memory pressure.
663 *
664 * @rfn is not required, or even expected, to remove all requests off the
665 * queue, but only as many as it can handle at a time. If it does leave
666 * requests on the queue, it is responsible for arranging that the requests
667 * get dealt with eventually.
668 *
669 * The queue spin lock must be held while manipulating the requests on the
670 * request queue; this lock will be taken also from interrupt context, so irq
671 * disabling is needed for it.
672 *
673 * Function returns a pointer to the initialized request queue, or %NULL if
674 * it didn't succeed.
675 *
676 * Note:
677 * blk_init_queue() must be paired with a blk_cleanup_queue() call
678 * when the block device is deactivated (such as at module unload).
679 **/
680
681 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
682 {
683 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
684 }
685 EXPORT_SYMBOL(blk_init_queue);
686
687 struct request_queue *
688 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
689 {
690 struct request_queue *uninit_q, *q;
691
692 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
693 if (!uninit_q)
694 return NULL;
695
696 q = blk_init_allocated_queue(uninit_q, rfn, lock);
697 if (!q)
698 blk_cleanup_queue(uninit_q);
699
700 return q;
701 }
702 EXPORT_SYMBOL(blk_init_queue_node);
703
704 struct request_queue *
705 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
706 spinlock_t *lock)
707 {
708 if (!q)
709 return NULL;
710
711 q->flush_rq = kzalloc(sizeof(struct request), GFP_KERNEL);
712 if (!q->flush_rq)
713 return NULL;
714
715 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
716 goto fail;
717
718 q->request_fn = rfn;
719 q->prep_rq_fn = NULL;
720 q->unprep_rq_fn = NULL;
721 q->queue_flags |= QUEUE_FLAG_DEFAULT;
722
723 /* Override internal queue lock with supplied lock pointer */
724 if (lock)
725 q->queue_lock = lock;
726
727 /*
728 * This also sets hw/phys segments, boundary and size
729 */
730 blk_queue_make_request(q, blk_queue_bio);
731
732 q->sg_reserved_size = INT_MAX;
733
734 /* Protect q->elevator from elevator_change */
735 mutex_lock(&q->sysfs_lock);
736
737 /* init elevator */
738 if (elevator_init(q, NULL)) {
739 mutex_unlock(&q->sysfs_lock);
740 goto fail;
741 }
742
743 mutex_unlock(&q->sysfs_lock);
744
745 return q;
746
747 fail:
748 kfree(q->flush_rq);
749 return NULL;
750 }
751 EXPORT_SYMBOL(blk_init_allocated_queue);
752
753 bool blk_get_queue(struct request_queue *q)
754 {
755 if (likely(!blk_queue_dying(q))) {
756 __blk_get_queue(q);
757 return true;
758 }
759
760 return false;
761 }
762 EXPORT_SYMBOL(blk_get_queue);
763
764 static inline void blk_free_request(struct request_list *rl, struct request *rq)
765 {
766 if (rq->cmd_flags & REQ_ELVPRIV) {
767 elv_put_request(rl->q, rq);
768 if (rq->elv.icq)
769 put_io_context(rq->elv.icq->ioc);
770 }
771
772 mempool_free(rq, rl->rq_pool);
773 }
774
775 /*
776 * ioc_batching returns true if the ioc is a valid batching request and
777 * should be given priority access to a request.
778 */
779 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
780 {
781 if (!ioc)
782 return 0;
783
784 /*
785 * Make sure the process is able to allocate at least 1 request
786 * even if the batch times out, otherwise we could theoretically
787 * lose wakeups.
788 */
789 return ioc->nr_batch_requests == q->nr_batching ||
790 (ioc->nr_batch_requests > 0
791 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
792 }
793
794 /*
795 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
796 * will cause the process to be a "batcher" on all queues in the system. This
797 * is the behaviour we want though - once it gets a wakeup it should be given
798 * a nice run.
799 */
800 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
801 {
802 if (!ioc || ioc_batching(q, ioc))
803 return;
804
805 ioc->nr_batch_requests = q->nr_batching;
806 ioc->last_waited = jiffies;
807 }
808
809 static void __freed_request(struct request_list *rl, int sync)
810 {
811 struct request_queue *q = rl->q;
812
813 /*
814 * bdi isn't aware of blkcg yet. As all async IOs end up root
815 * blkcg anyway, just use root blkcg state.
816 */
817 if (rl == &q->root_rl &&
818 rl->count[sync] < queue_congestion_off_threshold(q))
819 blk_clear_queue_congested(q, sync);
820
821 if (rl->count[sync] + 1 <= q->nr_requests) {
822 if (waitqueue_active(&rl->wait[sync]))
823 wake_up(&rl->wait[sync]);
824
825 blk_clear_rl_full(rl, sync);
826 }
827 }
828
829 /*
830 * A request has just been released. Account for it, update the full and
831 * congestion status, wake up any waiters. Called under q->queue_lock.
832 */
833 static void freed_request(struct request_list *rl, unsigned int flags)
834 {
835 struct request_queue *q = rl->q;
836 int sync = rw_is_sync(flags);
837
838 q->nr_rqs[sync]--;
839 rl->count[sync]--;
840 if (flags & REQ_ELVPRIV)
841 q->nr_rqs_elvpriv--;
842
843 __freed_request(rl, sync);
844
845 if (unlikely(rl->starved[sync ^ 1]))
846 __freed_request(rl, sync ^ 1);
847 }
848
849 /*
850 * Determine if elevator data should be initialized when allocating the
851 * request associated with @bio.
852 */
853 static bool blk_rq_should_init_elevator(struct bio *bio)
854 {
855 if (!bio)
856 return true;
857
858 /*
859 * Flush requests do not use the elevator so skip initialization.
860 * This allows a request to share the flush and elevator data.
861 */
862 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
863 return false;
864
865 return true;
866 }
867
868 /**
869 * rq_ioc - determine io_context for request allocation
870 * @bio: request being allocated is for this bio (can be %NULL)
871 *
872 * Determine io_context to use for request allocation for @bio. May return
873 * %NULL if %current->io_context doesn't exist.
874 */
875 static struct io_context *rq_ioc(struct bio *bio)
876 {
877 #ifdef CONFIG_BLK_CGROUP
878 if (bio && bio->bi_ioc)
879 return bio->bi_ioc;
880 #endif
881 return current->io_context;
882 }
883
884 /**
885 * __get_request - get a free request
886 * @rl: request list to allocate from
887 * @rw_flags: RW and SYNC flags
888 * @bio: bio to allocate request for (can be %NULL)
889 * @gfp_mask: allocation mask
890 *
891 * Get a free request from @q. This function may fail under memory
892 * pressure or if @q is dead.
893 *
894 * Must be callled with @q->queue_lock held and,
895 * Returns %NULL on failure, with @q->queue_lock held.
896 * Returns !%NULL on success, with @q->queue_lock *not held*.
897 */
898 static struct request *__get_request(struct request_list *rl, int rw_flags,
899 struct bio *bio, gfp_t gfp_mask)
900 {
901 struct request_queue *q = rl->q;
902 struct request *rq;
903 struct elevator_type *et = q->elevator->type;
904 struct io_context *ioc = rq_ioc(bio);
905 struct io_cq *icq = NULL;
906 const bool is_sync = rw_is_sync(rw_flags) != 0;
907 int may_queue;
908
909 if (unlikely(blk_queue_dying(q)))
910 return NULL;
911
912 may_queue = elv_may_queue(q, rw_flags);
913 if (may_queue == ELV_MQUEUE_NO)
914 goto rq_starved;
915
916 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
917 if (rl->count[is_sync]+1 >= q->nr_requests) {
918 /*
919 * The queue will fill after this allocation, so set
920 * it as full, and mark this process as "batching".
921 * This process will be allowed to complete a batch of
922 * requests, others will be blocked.
923 */
924 if (!blk_rl_full(rl, is_sync)) {
925 ioc_set_batching(q, ioc);
926 blk_set_rl_full(rl, is_sync);
927 } else {
928 if (may_queue != ELV_MQUEUE_MUST
929 && !ioc_batching(q, ioc)) {
930 /*
931 * The queue is full and the allocating
932 * process is not a "batcher", and not
933 * exempted by the IO scheduler
934 */
935 return NULL;
936 }
937 }
938 }
939 /*
940 * bdi isn't aware of blkcg yet. As all async IOs end up
941 * root blkcg anyway, just use root blkcg state.
942 */
943 if (rl == &q->root_rl)
944 blk_set_queue_congested(q, is_sync);
945 }
946
947 /*
948 * Only allow batching queuers to allocate up to 50% over the defined
949 * limit of requests, otherwise we could have thousands of requests
950 * allocated with any setting of ->nr_requests
951 */
952 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
953 return NULL;
954
955 q->nr_rqs[is_sync]++;
956 rl->count[is_sync]++;
957 rl->starved[is_sync] = 0;
958
959 /*
960 * Decide whether the new request will be managed by elevator. If
961 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
962 * prevent the current elevator from being destroyed until the new
963 * request is freed. This guarantees icq's won't be destroyed and
964 * makes creating new ones safe.
965 *
966 * Also, lookup icq while holding queue_lock. If it doesn't exist,
967 * it will be created after releasing queue_lock.
968 */
969 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
970 rw_flags |= REQ_ELVPRIV;
971 q->nr_rqs_elvpriv++;
972 if (et->icq_cache && ioc)
973 icq = ioc_lookup_icq(ioc, q);
974 }
975
976 if (blk_queue_io_stat(q))
977 rw_flags |= REQ_IO_STAT;
978 spin_unlock_irq(q->queue_lock);
979
980 /* allocate and init request */
981 rq = mempool_alloc(rl->rq_pool, gfp_mask);
982 if (!rq)
983 goto fail_alloc;
984
985 blk_rq_init(q, rq);
986 blk_rq_set_rl(rq, rl);
987 rq->cmd_flags = rw_flags | REQ_ALLOCED;
988
989 /* init elvpriv */
990 if (rw_flags & REQ_ELVPRIV) {
991 if (unlikely(et->icq_cache && !icq)) {
992 if (ioc)
993 icq = ioc_create_icq(ioc, q, gfp_mask);
994 if (!icq)
995 goto fail_elvpriv;
996 }
997
998 rq->elv.icq = icq;
999 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1000 goto fail_elvpriv;
1001
1002 /* @rq->elv.icq holds io_context until @rq is freed */
1003 if (icq)
1004 get_io_context(icq->ioc);
1005 }
1006 out:
1007 /*
1008 * ioc may be NULL here, and ioc_batching will be false. That's
1009 * OK, if the queue is under the request limit then requests need
1010 * not count toward the nr_batch_requests limit. There will always
1011 * be some limit enforced by BLK_BATCH_TIME.
1012 */
1013 if (ioc_batching(q, ioc))
1014 ioc->nr_batch_requests--;
1015
1016 trace_block_getrq(q, bio, rw_flags & 1);
1017 return rq;
1018
1019 fail_elvpriv:
1020 /*
1021 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1022 * and may fail indefinitely under memory pressure and thus
1023 * shouldn't stall IO. Treat this request as !elvpriv. This will
1024 * disturb iosched and blkcg but weird is bettern than dead.
1025 */
1026 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1027 dev_name(q->backing_dev_info.dev));
1028
1029 rq->cmd_flags &= ~REQ_ELVPRIV;
1030 rq->elv.icq = NULL;
1031
1032 spin_lock_irq(q->queue_lock);
1033 q->nr_rqs_elvpriv--;
1034 spin_unlock_irq(q->queue_lock);
1035 goto out;
1036
1037 fail_alloc:
1038 /*
1039 * Allocation failed presumably due to memory. Undo anything we
1040 * might have messed up.
1041 *
1042 * Allocating task should really be put onto the front of the wait
1043 * queue, but this is pretty rare.
1044 */
1045 spin_lock_irq(q->queue_lock);
1046 freed_request(rl, rw_flags);
1047
1048 /*
1049 * in the very unlikely event that allocation failed and no
1050 * requests for this direction was pending, mark us starved so that
1051 * freeing of a request in the other direction will notice
1052 * us. another possible fix would be to split the rq mempool into
1053 * READ and WRITE
1054 */
1055 rq_starved:
1056 if (unlikely(rl->count[is_sync] == 0))
1057 rl->starved[is_sync] = 1;
1058 return NULL;
1059 }
1060
1061 /**
1062 * get_request - get a free request
1063 * @q: request_queue to allocate request from
1064 * @rw_flags: RW and SYNC flags
1065 * @bio: bio to allocate request for (can be %NULL)
1066 * @gfp_mask: allocation mask
1067 *
1068 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1069 * function keeps retrying under memory pressure and fails iff @q is dead.
1070 *
1071 * Must be callled with @q->queue_lock held and,
1072 * Returns %NULL on failure, with @q->queue_lock held.
1073 * Returns !%NULL on success, with @q->queue_lock *not held*.
1074 */
1075 static struct request *get_request(struct request_queue *q, int rw_flags,
1076 struct bio *bio, gfp_t gfp_mask)
1077 {
1078 const bool is_sync = rw_is_sync(rw_flags) != 0;
1079 DEFINE_WAIT(wait);
1080 struct request_list *rl;
1081 struct request *rq;
1082
1083 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1084 retry:
1085 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1086 if (rq)
1087 return rq;
1088
1089 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1090 blk_put_rl(rl);
1091 return NULL;
1092 }
1093
1094 /* wait on @rl and retry */
1095 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1096 TASK_UNINTERRUPTIBLE);
1097
1098 trace_block_sleeprq(q, bio, rw_flags & 1);
1099
1100 spin_unlock_irq(q->queue_lock);
1101 io_schedule();
1102
1103 /*
1104 * After sleeping, we become a "batching" process and will be able
1105 * to allocate at least one request, and up to a big batch of them
1106 * for a small period time. See ioc_batching, ioc_set_batching
1107 */
1108 ioc_set_batching(q, current->io_context);
1109
1110 spin_lock_irq(q->queue_lock);
1111 finish_wait(&rl->wait[is_sync], &wait);
1112
1113 goto retry;
1114 }
1115
1116 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1117 gfp_t gfp_mask)
1118 {
1119 struct request *rq;
1120
1121 BUG_ON(rw != READ && rw != WRITE);
1122
1123 /* create ioc upfront */
1124 create_io_context(gfp_mask, q->node);
1125
1126 spin_lock_irq(q->queue_lock);
1127 rq = get_request(q, rw, NULL, gfp_mask);
1128 if (!rq)
1129 spin_unlock_irq(q->queue_lock);
1130 /* q->queue_lock is unlocked at this point */
1131
1132 return rq;
1133 }
1134
1135 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1136 {
1137 if (q->mq_ops)
1138 return blk_mq_alloc_request(q, rw, gfp_mask);
1139 else
1140 return blk_old_get_request(q, rw, gfp_mask);
1141 }
1142 EXPORT_SYMBOL(blk_get_request);
1143
1144 /**
1145 * blk_make_request - given a bio, allocate a corresponding struct request.
1146 * @q: target request queue
1147 * @bio: The bio describing the memory mappings that will be submitted for IO.
1148 * It may be a chained-bio properly constructed by block/bio layer.
1149 * @gfp_mask: gfp flags to be used for memory allocation
1150 *
1151 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1152 * type commands. Where the struct request needs to be farther initialized by
1153 * the caller. It is passed a &struct bio, which describes the memory info of
1154 * the I/O transfer.
1155 *
1156 * The caller of blk_make_request must make sure that bi_io_vec
1157 * are set to describe the memory buffers. That bio_data_dir() will return
1158 * the needed direction of the request. (And all bio's in the passed bio-chain
1159 * are properly set accordingly)
1160 *
1161 * If called under none-sleepable conditions, mapped bio buffers must not
1162 * need bouncing, by calling the appropriate masked or flagged allocator,
1163 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1164 * BUG.
1165 *
1166 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1167 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1168 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1169 * completion of a bio that hasn't been submitted yet, thus resulting in a
1170 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1171 * of bio_alloc(), as that avoids the mempool deadlock.
1172 * If possible a big IO should be split into smaller parts when allocation
1173 * fails. Partial allocation should not be an error, or you risk a live-lock.
1174 */
1175 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1176 gfp_t gfp_mask)
1177 {
1178 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1179
1180 if (unlikely(!rq))
1181 return ERR_PTR(-ENOMEM);
1182
1183 for_each_bio(bio) {
1184 struct bio *bounce_bio = bio;
1185 int ret;
1186
1187 blk_queue_bounce(q, &bounce_bio);
1188 ret = blk_rq_append_bio(q, rq, bounce_bio);
1189 if (unlikely(ret)) {
1190 blk_put_request(rq);
1191 return ERR_PTR(ret);
1192 }
1193 }
1194
1195 return rq;
1196 }
1197 EXPORT_SYMBOL(blk_make_request);
1198
1199 /**
1200 * blk_requeue_request - put a request back on queue
1201 * @q: request queue where request should be inserted
1202 * @rq: request to be inserted
1203 *
1204 * Description:
1205 * Drivers often keep queueing requests until the hardware cannot accept
1206 * more, when that condition happens we need to put the request back
1207 * on the queue. Must be called with queue lock held.
1208 */
1209 void blk_requeue_request(struct request_queue *q, struct request *rq)
1210 {
1211 blk_delete_timer(rq);
1212 blk_clear_rq_complete(rq);
1213 trace_block_rq_requeue(q, rq);
1214
1215 if (blk_rq_tagged(rq))
1216 blk_queue_end_tag(q, rq);
1217
1218 BUG_ON(blk_queued_rq(rq));
1219
1220 elv_requeue_request(q, rq);
1221 }
1222 EXPORT_SYMBOL(blk_requeue_request);
1223
1224 static void add_acct_request(struct request_queue *q, struct request *rq,
1225 int where)
1226 {
1227 blk_account_io_start(rq, true);
1228 __elv_add_request(q, rq, where);
1229 }
1230
1231 static void part_round_stats_single(int cpu, struct hd_struct *part,
1232 unsigned long now)
1233 {
1234 if (now == part->stamp)
1235 return;
1236
1237 if (part_in_flight(part)) {
1238 __part_stat_add(cpu, part, time_in_queue,
1239 part_in_flight(part) * (now - part->stamp));
1240 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1241 }
1242 part->stamp = now;
1243 }
1244
1245 /**
1246 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1247 * @cpu: cpu number for stats access
1248 * @part: target partition
1249 *
1250 * The average IO queue length and utilisation statistics are maintained
1251 * by observing the current state of the queue length and the amount of
1252 * time it has been in this state for.
1253 *
1254 * Normally, that accounting is done on IO completion, but that can result
1255 * in more than a second's worth of IO being accounted for within any one
1256 * second, leading to >100% utilisation. To deal with that, we call this
1257 * function to do a round-off before returning the results when reading
1258 * /proc/diskstats. This accounts immediately for all queue usage up to
1259 * the current jiffies and restarts the counters again.
1260 */
1261 void part_round_stats(int cpu, struct hd_struct *part)
1262 {
1263 unsigned long now = jiffies;
1264
1265 if (part->partno)
1266 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1267 part_round_stats_single(cpu, part, now);
1268 }
1269 EXPORT_SYMBOL_GPL(part_round_stats);
1270
1271 #ifdef CONFIG_PM_RUNTIME
1272 static void blk_pm_put_request(struct request *rq)
1273 {
1274 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1275 pm_runtime_mark_last_busy(rq->q->dev);
1276 }
1277 #else
1278 static inline void blk_pm_put_request(struct request *rq) {}
1279 #endif
1280
1281 /*
1282 * queue lock must be held
1283 */
1284 void __blk_put_request(struct request_queue *q, struct request *req)
1285 {
1286 if (unlikely(!q))
1287 return;
1288
1289 if (q->mq_ops) {
1290 blk_mq_free_request(req);
1291 return;
1292 }
1293
1294 blk_pm_put_request(req);
1295
1296 elv_completed_request(q, req);
1297
1298 /* this is a bio leak */
1299 WARN_ON(req->bio != NULL);
1300
1301 /*
1302 * Request may not have originated from ll_rw_blk. if not,
1303 * it didn't come out of our reserved rq pools
1304 */
1305 if (req->cmd_flags & REQ_ALLOCED) {
1306 unsigned int flags = req->cmd_flags;
1307 struct request_list *rl = blk_rq_rl(req);
1308
1309 BUG_ON(!list_empty(&req->queuelist));
1310 BUG_ON(ELV_ON_HASH(req));
1311
1312 blk_free_request(rl, req);
1313 freed_request(rl, flags);
1314 blk_put_rl(rl);
1315 }
1316 }
1317 EXPORT_SYMBOL_GPL(__blk_put_request);
1318
1319 void blk_put_request(struct request *req)
1320 {
1321 struct request_queue *q = req->q;
1322
1323 if (q->mq_ops)
1324 blk_mq_free_request(req);
1325 else {
1326 unsigned long flags;
1327
1328 spin_lock_irqsave(q->queue_lock, flags);
1329 __blk_put_request(q, req);
1330 spin_unlock_irqrestore(q->queue_lock, flags);
1331 }
1332 }
1333 EXPORT_SYMBOL(blk_put_request);
1334
1335 /**
1336 * blk_add_request_payload - add a payload to a request
1337 * @rq: request to update
1338 * @page: page backing the payload
1339 * @len: length of the payload.
1340 *
1341 * This allows to later add a payload to an already submitted request by
1342 * a block driver. The driver needs to take care of freeing the payload
1343 * itself.
1344 *
1345 * Note that this is a quite horrible hack and nothing but handling of
1346 * discard requests should ever use it.
1347 */
1348 void blk_add_request_payload(struct request *rq, struct page *page,
1349 unsigned int len)
1350 {
1351 struct bio *bio = rq->bio;
1352
1353 bio->bi_io_vec->bv_page = page;
1354 bio->bi_io_vec->bv_offset = 0;
1355 bio->bi_io_vec->bv_len = len;
1356
1357 bio->bi_iter.bi_size = len;
1358 bio->bi_vcnt = 1;
1359 bio->bi_phys_segments = 1;
1360
1361 rq->__data_len = rq->resid_len = len;
1362 rq->nr_phys_segments = 1;
1363 }
1364 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1365
1366 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1367 struct bio *bio)
1368 {
1369 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1370
1371 if (!ll_back_merge_fn(q, req, bio))
1372 return false;
1373
1374 trace_block_bio_backmerge(q, req, bio);
1375
1376 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1377 blk_rq_set_mixed_merge(req);
1378
1379 req->biotail->bi_next = bio;
1380 req->biotail = bio;
1381 req->__data_len += bio->bi_iter.bi_size;
1382 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1383
1384 blk_account_io_start(req, false);
1385 return true;
1386 }
1387
1388 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1389 struct bio *bio)
1390 {
1391 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1392
1393 if (!ll_front_merge_fn(q, req, bio))
1394 return false;
1395
1396 trace_block_bio_frontmerge(q, req, bio);
1397
1398 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1399 blk_rq_set_mixed_merge(req);
1400
1401 bio->bi_next = req->bio;
1402 req->bio = bio;
1403
1404 req->__sector = bio->bi_iter.bi_sector;
1405 req->__data_len += bio->bi_iter.bi_size;
1406 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1407
1408 blk_account_io_start(req, false);
1409 return true;
1410 }
1411
1412 /**
1413 * blk_attempt_plug_merge - try to merge with %current's plugged list
1414 * @q: request_queue new bio is being queued at
1415 * @bio: new bio being queued
1416 * @request_count: out parameter for number of traversed plugged requests
1417 *
1418 * Determine whether @bio being queued on @q can be merged with a request
1419 * on %current's plugged list. Returns %true if merge was successful,
1420 * otherwise %false.
1421 *
1422 * Plugging coalesces IOs from the same issuer for the same purpose without
1423 * going through @q->queue_lock. As such it's more of an issuing mechanism
1424 * than scheduling, and the request, while may have elvpriv data, is not
1425 * added on the elevator at this point. In addition, we don't have
1426 * reliable access to the elevator outside queue lock. Only check basic
1427 * merging parameters without querying the elevator.
1428 */
1429 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1430 unsigned int *request_count)
1431 {
1432 struct blk_plug *plug;
1433 struct request *rq;
1434 bool ret = false;
1435 struct list_head *plug_list;
1436
1437 if (blk_queue_nomerges(q))
1438 goto out;
1439
1440 plug = current->plug;
1441 if (!plug)
1442 goto out;
1443 *request_count = 0;
1444
1445 if (q->mq_ops)
1446 plug_list = &plug->mq_list;
1447 else
1448 plug_list = &plug->list;
1449
1450 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1451 int el_ret;
1452
1453 if (rq->q == q)
1454 (*request_count)++;
1455
1456 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1457 continue;
1458
1459 el_ret = blk_try_merge(rq, bio);
1460 if (el_ret == ELEVATOR_BACK_MERGE) {
1461 ret = bio_attempt_back_merge(q, rq, bio);
1462 if (ret)
1463 break;
1464 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1465 ret = bio_attempt_front_merge(q, rq, bio);
1466 if (ret)
1467 break;
1468 }
1469 }
1470 out:
1471 return ret;
1472 }
1473
1474 void init_request_from_bio(struct request *req, struct bio *bio)
1475 {
1476 req->cmd_type = REQ_TYPE_FS;
1477
1478 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1479 if (bio->bi_rw & REQ_RAHEAD)
1480 req->cmd_flags |= REQ_FAILFAST_MASK;
1481
1482 req->errors = 0;
1483 req->__sector = bio->bi_iter.bi_sector;
1484 req->ioprio = bio_prio(bio);
1485 blk_rq_bio_prep(req->q, req, bio);
1486 }
1487
1488 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1489 {
1490 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1491 struct blk_plug *plug;
1492 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1493 struct request *req;
1494 unsigned int request_count = 0;
1495
1496 /*
1497 * low level driver can indicate that it wants pages above a
1498 * certain limit bounced to low memory (ie for highmem, or even
1499 * ISA dma in theory)
1500 */
1501 blk_queue_bounce(q, &bio);
1502
1503 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1504 bio_endio(bio, -EIO);
1505 return;
1506 }
1507
1508 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1509 spin_lock_irq(q->queue_lock);
1510 where = ELEVATOR_INSERT_FLUSH;
1511 goto get_rq;
1512 }
1513
1514 /*
1515 * Check if we can merge with the plugged list before grabbing
1516 * any locks.
1517 */
1518 if (blk_attempt_plug_merge(q, bio, &request_count))
1519 return;
1520
1521 spin_lock_irq(q->queue_lock);
1522
1523 el_ret = elv_merge(q, &req, bio);
1524 if (el_ret == ELEVATOR_BACK_MERGE) {
1525 if (bio_attempt_back_merge(q, req, bio)) {
1526 elv_bio_merged(q, req, bio);
1527 if (!attempt_back_merge(q, req))
1528 elv_merged_request(q, req, el_ret);
1529 goto out_unlock;
1530 }
1531 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1532 if (bio_attempt_front_merge(q, req, bio)) {
1533 elv_bio_merged(q, req, bio);
1534 if (!attempt_front_merge(q, req))
1535 elv_merged_request(q, req, el_ret);
1536 goto out_unlock;
1537 }
1538 }
1539
1540 get_rq:
1541 /*
1542 * This sync check and mask will be re-done in init_request_from_bio(),
1543 * but we need to set it earlier to expose the sync flag to the
1544 * rq allocator and io schedulers.
1545 */
1546 rw_flags = bio_data_dir(bio);
1547 if (sync)
1548 rw_flags |= REQ_SYNC;
1549
1550 /*
1551 * Grab a free request. This is might sleep but can not fail.
1552 * Returns with the queue unlocked.
1553 */
1554 req = get_request(q, rw_flags, bio, GFP_NOIO);
1555 if (unlikely(!req)) {
1556 bio_endio(bio, -ENODEV); /* @q is dead */
1557 goto out_unlock;
1558 }
1559
1560 /*
1561 * After dropping the lock and possibly sleeping here, our request
1562 * may now be mergeable after it had proven unmergeable (above).
1563 * We don't worry about that case for efficiency. It won't happen
1564 * often, and the elevators are able to handle it.
1565 */
1566 init_request_from_bio(req, bio);
1567
1568 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1569 req->cpu = raw_smp_processor_id();
1570
1571 plug = current->plug;
1572 if (plug) {
1573 /*
1574 * If this is the first request added after a plug, fire
1575 * of a plug trace.
1576 */
1577 if (!request_count)
1578 trace_block_plug(q);
1579 else {
1580 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1581 blk_flush_plug_list(plug, false);
1582 trace_block_plug(q);
1583 }
1584 }
1585 list_add_tail(&req->queuelist, &plug->list);
1586 blk_account_io_start(req, true);
1587 } else {
1588 spin_lock_irq(q->queue_lock);
1589 add_acct_request(q, req, where);
1590 __blk_run_queue(q);
1591 out_unlock:
1592 spin_unlock_irq(q->queue_lock);
1593 }
1594 }
1595 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1596
1597 /*
1598 * If bio->bi_dev is a partition, remap the location
1599 */
1600 static inline void blk_partition_remap(struct bio *bio)
1601 {
1602 struct block_device *bdev = bio->bi_bdev;
1603
1604 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1605 struct hd_struct *p = bdev->bd_part;
1606
1607 bio->bi_iter.bi_sector += p->start_sect;
1608 bio->bi_bdev = bdev->bd_contains;
1609
1610 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1611 bdev->bd_dev,
1612 bio->bi_iter.bi_sector - p->start_sect);
1613 }
1614 }
1615
1616 static void handle_bad_sector(struct bio *bio)
1617 {
1618 char b[BDEVNAME_SIZE];
1619
1620 printk(KERN_INFO "attempt to access beyond end of device\n");
1621 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1622 bdevname(bio->bi_bdev, b),
1623 bio->bi_rw,
1624 (unsigned long long)bio_end_sector(bio),
1625 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1626
1627 set_bit(BIO_EOF, &bio->bi_flags);
1628 }
1629
1630 #ifdef CONFIG_FAIL_MAKE_REQUEST
1631
1632 static DECLARE_FAULT_ATTR(fail_make_request);
1633
1634 static int __init setup_fail_make_request(char *str)
1635 {
1636 return setup_fault_attr(&fail_make_request, str);
1637 }
1638 __setup("fail_make_request=", setup_fail_make_request);
1639
1640 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1641 {
1642 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1643 }
1644
1645 static int __init fail_make_request_debugfs(void)
1646 {
1647 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1648 NULL, &fail_make_request);
1649
1650 return PTR_ERR_OR_ZERO(dir);
1651 }
1652
1653 late_initcall(fail_make_request_debugfs);
1654
1655 #else /* CONFIG_FAIL_MAKE_REQUEST */
1656
1657 static inline bool should_fail_request(struct hd_struct *part,
1658 unsigned int bytes)
1659 {
1660 return false;
1661 }
1662
1663 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1664
1665 /*
1666 * Check whether this bio extends beyond the end of the device.
1667 */
1668 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1669 {
1670 sector_t maxsector;
1671
1672 if (!nr_sectors)
1673 return 0;
1674
1675 /* Test device or partition size, when known. */
1676 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1677 if (maxsector) {
1678 sector_t sector = bio->bi_iter.bi_sector;
1679
1680 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1681 /*
1682 * This may well happen - the kernel calls bread()
1683 * without checking the size of the device, e.g., when
1684 * mounting a device.
1685 */
1686 handle_bad_sector(bio);
1687 return 1;
1688 }
1689 }
1690
1691 return 0;
1692 }
1693
1694 static noinline_for_stack bool
1695 generic_make_request_checks(struct bio *bio)
1696 {
1697 struct request_queue *q;
1698 int nr_sectors = bio_sectors(bio);
1699 int err = -EIO;
1700 char b[BDEVNAME_SIZE];
1701 struct hd_struct *part;
1702
1703 might_sleep();
1704
1705 if (bio_check_eod(bio, nr_sectors))
1706 goto end_io;
1707
1708 q = bdev_get_queue(bio->bi_bdev);
1709 if (unlikely(!q)) {
1710 printk(KERN_ERR
1711 "generic_make_request: Trying to access "
1712 "nonexistent block-device %s (%Lu)\n",
1713 bdevname(bio->bi_bdev, b),
1714 (long long) bio->bi_iter.bi_sector);
1715 goto end_io;
1716 }
1717
1718 if (likely(bio_is_rw(bio) &&
1719 nr_sectors > queue_max_hw_sectors(q))) {
1720 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1721 bdevname(bio->bi_bdev, b),
1722 bio_sectors(bio),
1723 queue_max_hw_sectors(q));
1724 goto end_io;
1725 }
1726
1727 part = bio->bi_bdev->bd_part;
1728 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1729 should_fail_request(&part_to_disk(part)->part0,
1730 bio->bi_iter.bi_size))
1731 goto end_io;
1732
1733 /*
1734 * If this device has partitions, remap block n
1735 * of partition p to block n+start(p) of the disk.
1736 */
1737 blk_partition_remap(bio);
1738
1739 if (bio_check_eod(bio, nr_sectors))
1740 goto end_io;
1741
1742 /*
1743 * Filter flush bio's early so that make_request based
1744 * drivers without flush support don't have to worry
1745 * about them.
1746 */
1747 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1748 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1749 if (!nr_sectors) {
1750 err = 0;
1751 goto end_io;
1752 }
1753 }
1754
1755 if ((bio->bi_rw & REQ_DISCARD) &&
1756 (!blk_queue_discard(q) ||
1757 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1758 err = -EOPNOTSUPP;
1759 goto end_io;
1760 }
1761
1762 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1763 err = -EOPNOTSUPP;
1764 goto end_io;
1765 }
1766
1767 /*
1768 * Various block parts want %current->io_context and lazy ioc
1769 * allocation ends up trading a lot of pain for a small amount of
1770 * memory. Just allocate it upfront. This may fail and block
1771 * layer knows how to live with it.
1772 */
1773 create_io_context(GFP_ATOMIC, q->node);
1774
1775 if (blk_throtl_bio(q, bio))
1776 return false; /* throttled, will be resubmitted later */
1777
1778 trace_block_bio_queue(q, bio);
1779 return true;
1780
1781 end_io:
1782 bio_endio(bio, err);
1783 return false;
1784 }
1785
1786 /**
1787 * generic_make_request - hand a buffer to its device driver for I/O
1788 * @bio: The bio describing the location in memory and on the device.
1789 *
1790 * generic_make_request() is used to make I/O requests of block
1791 * devices. It is passed a &struct bio, which describes the I/O that needs
1792 * to be done.
1793 *
1794 * generic_make_request() does not return any status. The
1795 * success/failure status of the request, along with notification of
1796 * completion, is delivered asynchronously through the bio->bi_end_io
1797 * function described (one day) else where.
1798 *
1799 * The caller of generic_make_request must make sure that bi_io_vec
1800 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1801 * set to describe the device address, and the
1802 * bi_end_io and optionally bi_private are set to describe how
1803 * completion notification should be signaled.
1804 *
1805 * generic_make_request and the drivers it calls may use bi_next if this
1806 * bio happens to be merged with someone else, and may resubmit the bio to
1807 * a lower device by calling into generic_make_request recursively, which
1808 * means the bio should NOT be touched after the call to ->make_request_fn.
1809 */
1810 void generic_make_request(struct bio *bio)
1811 {
1812 struct bio_list bio_list_on_stack;
1813
1814 if (!generic_make_request_checks(bio))
1815 return;
1816
1817 /*
1818 * We only want one ->make_request_fn to be active at a time, else
1819 * stack usage with stacked devices could be a problem. So use
1820 * current->bio_list to keep a list of requests submited by a
1821 * make_request_fn function. current->bio_list is also used as a
1822 * flag to say if generic_make_request is currently active in this
1823 * task or not. If it is NULL, then no make_request is active. If
1824 * it is non-NULL, then a make_request is active, and new requests
1825 * should be added at the tail
1826 */
1827 if (current->bio_list) {
1828 bio_list_add(current->bio_list, bio);
1829 return;
1830 }
1831
1832 /* following loop may be a bit non-obvious, and so deserves some
1833 * explanation.
1834 * Before entering the loop, bio->bi_next is NULL (as all callers
1835 * ensure that) so we have a list with a single bio.
1836 * We pretend that we have just taken it off a longer list, so
1837 * we assign bio_list to a pointer to the bio_list_on_stack,
1838 * thus initialising the bio_list of new bios to be
1839 * added. ->make_request() may indeed add some more bios
1840 * through a recursive call to generic_make_request. If it
1841 * did, we find a non-NULL value in bio_list and re-enter the loop
1842 * from the top. In this case we really did just take the bio
1843 * of the top of the list (no pretending) and so remove it from
1844 * bio_list, and call into ->make_request() again.
1845 */
1846 BUG_ON(bio->bi_next);
1847 bio_list_init(&bio_list_on_stack);
1848 current->bio_list = &bio_list_on_stack;
1849 do {
1850 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1851
1852 q->make_request_fn(q, bio);
1853
1854 bio = bio_list_pop(current->bio_list);
1855 } while (bio);
1856 current->bio_list = NULL; /* deactivate */
1857 }
1858 EXPORT_SYMBOL(generic_make_request);
1859
1860 /**
1861 * submit_bio - submit a bio to the block device layer for I/O
1862 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1863 * @bio: The &struct bio which describes the I/O
1864 *
1865 * submit_bio() is very similar in purpose to generic_make_request(), and
1866 * uses that function to do most of the work. Both are fairly rough
1867 * interfaces; @bio must be presetup and ready for I/O.
1868 *
1869 */
1870 void submit_bio(int rw, struct bio *bio)
1871 {
1872 bio->bi_rw |= rw;
1873
1874 /*
1875 * If it's a regular read/write or a barrier with data attached,
1876 * go through the normal accounting stuff before submission.
1877 */
1878 if (bio_has_data(bio)) {
1879 unsigned int count;
1880
1881 if (unlikely(rw & REQ_WRITE_SAME))
1882 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1883 else
1884 count = bio_sectors(bio);
1885
1886 if (rw & WRITE) {
1887 count_vm_events(PGPGOUT, count);
1888 } else {
1889 task_io_account_read(bio->bi_iter.bi_size);
1890 count_vm_events(PGPGIN, count);
1891 }
1892
1893 if (unlikely(block_dump)) {
1894 char b[BDEVNAME_SIZE];
1895 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1896 current->comm, task_pid_nr(current),
1897 (rw & WRITE) ? "WRITE" : "READ",
1898 (unsigned long long)bio->bi_iter.bi_sector,
1899 bdevname(bio->bi_bdev, b),
1900 count);
1901 }
1902 }
1903
1904 generic_make_request(bio);
1905 }
1906 EXPORT_SYMBOL(submit_bio);
1907
1908 /**
1909 * blk_rq_check_limits - Helper function to check a request for the queue limit
1910 * @q: the queue
1911 * @rq: the request being checked
1912 *
1913 * Description:
1914 * @rq may have been made based on weaker limitations of upper-level queues
1915 * in request stacking drivers, and it may violate the limitation of @q.
1916 * Since the block layer and the underlying device driver trust @rq
1917 * after it is inserted to @q, it should be checked against @q before
1918 * the insertion using this generic function.
1919 *
1920 * This function should also be useful for request stacking drivers
1921 * in some cases below, so export this function.
1922 * Request stacking drivers like request-based dm may change the queue
1923 * limits while requests are in the queue (e.g. dm's table swapping).
1924 * Such request stacking drivers should check those requests against
1925 * the new queue limits again when they dispatch those requests,
1926 * although such checkings are also done against the old queue limits
1927 * when submitting requests.
1928 */
1929 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1930 {
1931 if (!rq_mergeable(rq))
1932 return 0;
1933
1934 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
1935 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1936 return -EIO;
1937 }
1938
1939 /*
1940 * queue's settings related to segment counting like q->bounce_pfn
1941 * may differ from that of other stacking queues.
1942 * Recalculate it to check the request correctly on this queue's
1943 * limitation.
1944 */
1945 blk_recalc_rq_segments(rq);
1946 if (rq->nr_phys_segments > queue_max_segments(q)) {
1947 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1948 return -EIO;
1949 }
1950
1951 return 0;
1952 }
1953 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1954
1955 /**
1956 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1957 * @q: the queue to submit the request
1958 * @rq: the request being queued
1959 */
1960 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1961 {
1962 unsigned long flags;
1963 int where = ELEVATOR_INSERT_BACK;
1964
1965 if (blk_rq_check_limits(q, rq))
1966 return -EIO;
1967
1968 if (rq->rq_disk &&
1969 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1970 return -EIO;
1971
1972 spin_lock_irqsave(q->queue_lock, flags);
1973 if (unlikely(blk_queue_dying(q))) {
1974 spin_unlock_irqrestore(q->queue_lock, flags);
1975 return -ENODEV;
1976 }
1977
1978 /*
1979 * Submitting request must be dequeued before calling this function
1980 * because it will be linked to another request_queue
1981 */
1982 BUG_ON(blk_queued_rq(rq));
1983
1984 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1985 where = ELEVATOR_INSERT_FLUSH;
1986
1987 add_acct_request(q, rq, where);
1988 if (where == ELEVATOR_INSERT_FLUSH)
1989 __blk_run_queue(q);
1990 spin_unlock_irqrestore(q->queue_lock, flags);
1991
1992 return 0;
1993 }
1994 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1995
1996 /**
1997 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1998 * @rq: request to examine
1999 *
2000 * Description:
2001 * A request could be merge of IOs which require different failure
2002 * handling. This function determines the number of bytes which
2003 * can be failed from the beginning of the request without
2004 * crossing into area which need to be retried further.
2005 *
2006 * Return:
2007 * The number of bytes to fail.
2008 *
2009 * Context:
2010 * queue_lock must be held.
2011 */
2012 unsigned int blk_rq_err_bytes(const struct request *rq)
2013 {
2014 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2015 unsigned int bytes = 0;
2016 struct bio *bio;
2017
2018 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2019 return blk_rq_bytes(rq);
2020
2021 /*
2022 * Currently the only 'mixing' which can happen is between
2023 * different fastfail types. We can safely fail portions
2024 * which have all the failfast bits that the first one has -
2025 * the ones which are at least as eager to fail as the first
2026 * one.
2027 */
2028 for (bio = rq->bio; bio; bio = bio->bi_next) {
2029 if ((bio->bi_rw & ff) != ff)
2030 break;
2031 bytes += bio->bi_iter.bi_size;
2032 }
2033
2034 /* this could lead to infinite loop */
2035 BUG_ON(blk_rq_bytes(rq) && !bytes);
2036 return bytes;
2037 }
2038 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2039
2040 void blk_account_io_completion(struct request *req, unsigned int bytes)
2041 {
2042 if (blk_do_io_stat(req)) {
2043 const int rw = rq_data_dir(req);
2044 struct hd_struct *part;
2045 int cpu;
2046
2047 cpu = part_stat_lock();
2048 part = req->part;
2049 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2050 part_stat_unlock();
2051 }
2052 }
2053
2054 void blk_account_io_done(struct request *req)
2055 {
2056 /*
2057 * Account IO completion. flush_rq isn't accounted as a
2058 * normal IO on queueing nor completion. Accounting the
2059 * containing request is enough.
2060 */
2061 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2062 unsigned long duration = jiffies - req->start_time;
2063 const int rw = rq_data_dir(req);
2064 struct hd_struct *part;
2065 int cpu;
2066
2067 cpu = part_stat_lock();
2068 part = req->part;
2069
2070 part_stat_inc(cpu, part, ios[rw]);
2071 part_stat_add(cpu, part, ticks[rw], duration);
2072 part_round_stats(cpu, part);
2073 part_dec_in_flight(part, rw);
2074
2075 hd_struct_put(part);
2076 part_stat_unlock();
2077 }
2078 }
2079
2080 #ifdef CONFIG_PM_RUNTIME
2081 /*
2082 * Don't process normal requests when queue is suspended
2083 * or in the process of suspending/resuming
2084 */
2085 static struct request *blk_pm_peek_request(struct request_queue *q,
2086 struct request *rq)
2087 {
2088 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2089 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2090 return NULL;
2091 else
2092 return rq;
2093 }
2094 #else
2095 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2096 struct request *rq)
2097 {
2098 return rq;
2099 }
2100 #endif
2101
2102 void blk_account_io_start(struct request *rq, bool new_io)
2103 {
2104 struct hd_struct *part;
2105 int rw = rq_data_dir(rq);
2106 int cpu;
2107
2108 if (!blk_do_io_stat(rq))
2109 return;
2110
2111 cpu = part_stat_lock();
2112
2113 if (!new_io) {
2114 part = rq->part;
2115 part_stat_inc(cpu, part, merges[rw]);
2116 } else {
2117 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2118 if (!hd_struct_try_get(part)) {
2119 /*
2120 * The partition is already being removed,
2121 * the request will be accounted on the disk only
2122 *
2123 * We take a reference on disk->part0 although that
2124 * partition will never be deleted, so we can treat
2125 * it as any other partition.
2126 */
2127 part = &rq->rq_disk->part0;
2128 hd_struct_get(part);
2129 }
2130 part_round_stats(cpu, part);
2131 part_inc_in_flight(part, rw);
2132 rq->part = part;
2133 }
2134
2135 part_stat_unlock();
2136 }
2137
2138 /**
2139 * blk_peek_request - peek at the top of a request queue
2140 * @q: request queue to peek at
2141 *
2142 * Description:
2143 * Return the request at the top of @q. The returned request
2144 * should be started using blk_start_request() before LLD starts
2145 * processing it.
2146 *
2147 * Return:
2148 * Pointer to the request at the top of @q if available. Null
2149 * otherwise.
2150 *
2151 * Context:
2152 * queue_lock must be held.
2153 */
2154 struct request *blk_peek_request(struct request_queue *q)
2155 {
2156 struct request *rq;
2157 int ret;
2158
2159 while ((rq = __elv_next_request(q)) != NULL) {
2160
2161 rq = blk_pm_peek_request(q, rq);
2162 if (!rq)
2163 break;
2164
2165 if (!(rq->cmd_flags & REQ_STARTED)) {
2166 /*
2167 * This is the first time the device driver
2168 * sees this request (possibly after
2169 * requeueing). Notify IO scheduler.
2170 */
2171 if (rq->cmd_flags & REQ_SORTED)
2172 elv_activate_rq(q, rq);
2173
2174 /*
2175 * just mark as started even if we don't start
2176 * it, a request that has been delayed should
2177 * not be passed by new incoming requests
2178 */
2179 rq->cmd_flags |= REQ_STARTED;
2180 trace_block_rq_issue(q, rq);
2181 }
2182
2183 if (!q->boundary_rq || q->boundary_rq == rq) {
2184 q->end_sector = rq_end_sector(rq);
2185 q->boundary_rq = NULL;
2186 }
2187
2188 if (rq->cmd_flags & REQ_DONTPREP)
2189 break;
2190
2191 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2192 /*
2193 * make sure space for the drain appears we
2194 * know we can do this because max_hw_segments
2195 * has been adjusted to be one fewer than the
2196 * device can handle
2197 */
2198 rq->nr_phys_segments++;
2199 }
2200
2201 if (!q->prep_rq_fn)
2202 break;
2203
2204 ret = q->prep_rq_fn(q, rq);
2205 if (ret == BLKPREP_OK) {
2206 break;
2207 } else if (ret == BLKPREP_DEFER) {
2208 /*
2209 * the request may have been (partially) prepped.
2210 * we need to keep this request in the front to
2211 * avoid resource deadlock. REQ_STARTED will
2212 * prevent other fs requests from passing this one.
2213 */
2214 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2215 !(rq->cmd_flags & REQ_DONTPREP)) {
2216 /*
2217 * remove the space for the drain we added
2218 * so that we don't add it again
2219 */
2220 --rq->nr_phys_segments;
2221 }
2222
2223 rq = NULL;
2224 break;
2225 } else if (ret == BLKPREP_KILL) {
2226 rq->cmd_flags |= REQ_QUIET;
2227 /*
2228 * Mark this request as started so we don't trigger
2229 * any debug logic in the end I/O path.
2230 */
2231 blk_start_request(rq);
2232 __blk_end_request_all(rq, -EIO);
2233 } else {
2234 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2235 break;
2236 }
2237 }
2238
2239 return rq;
2240 }
2241 EXPORT_SYMBOL(blk_peek_request);
2242
2243 void blk_dequeue_request(struct request *rq)
2244 {
2245 struct request_queue *q = rq->q;
2246
2247 BUG_ON(list_empty(&rq->queuelist));
2248 BUG_ON(ELV_ON_HASH(rq));
2249
2250 list_del_init(&rq->queuelist);
2251
2252 /*
2253 * the time frame between a request being removed from the lists
2254 * and to it is freed is accounted as io that is in progress at
2255 * the driver side.
2256 */
2257 if (blk_account_rq(rq)) {
2258 q->in_flight[rq_is_sync(rq)]++;
2259 set_io_start_time_ns(rq);
2260 }
2261 }
2262
2263 /**
2264 * blk_start_request - start request processing on the driver
2265 * @req: request to dequeue
2266 *
2267 * Description:
2268 * Dequeue @req and start timeout timer on it. This hands off the
2269 * request to the driver.
2270 *
2271 * Block internal functions which don't want to start timer should
2272 * call blk_dequeue_request().
2273 *
2274 * Context:
2275 * queue_lock must be held.
2276 */
2277 void blk_start_request(struct request *req)
2278 {
2279 blk_dequeue_request(req);
2280
2281 /*
2282 * We are now handing the request to the hardware, initialize
2283 * resid_len to full count and add the timeout handler.
2284 */
2285 req->resid_len = blk_rq_bytes(req);
2286 if (unlikely(blk_bidi_rq(req)))
2287 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2288
2289 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2290 blk_add_timer(req);
2291 }
2292 EXPORT_SYMBOL(blk_start_request);
2293
2294 /**
2295 * blk_fetch_request - fetch a request from a request queue
2296 * @q: request queue to fetch a request from
2297 *
2298 * Description:
2299 * Return the request at the top of @q. The request is started on
2300 * return and LLD can start processing it immediately.
2301 *
2302 * Return:
2303 * Pointer to the request at the top of @q if available. Null
2304 * otherwise.
2305 *
2306 * Context:
2307 * queue_lock must be held.
2308 */
2309 struct request *blk_fetch_request(struct request_queue *q)
2310 {
2311 struct request *rq;
2312
2313 rq = blk_peek_request(q);
2314 if (rq)
2315 blk_start_request(rq);
2316 return rq;
2317 }
2318 EXPORT_SYMBOL(blk_fetch_request);
2319
2320 /**
2321 * blk_update_request - Special helper function for request stacking drivers
2322 * @req: the request being processed
2323 * @error: %0 for success, < %0 for error
2324 * @nr_bytes: number of bytes to complete @req
2325 *
2326 * Description:
2327 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2328 * the request structure even if @req doesn't have leftover.
2329 * If @req has leftover, sets it up for the next range of segments.
2330 *
2331 * This special helper function is only for request stacking drivers
2332 * (e.g. request-based dm) so that they can handle partial completion.
2333 * Actual device drivers should use blk_end_request instead.
2334 *
2335 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2336 * %false return from this function.
2337 *
2338 * Return:
2339 * %false - this request doesn't have any more data
2340 * %true - this request has more data
2341 **/
2342 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2343 {
2344 int total_bytes;
2345
2346 if (!req->bio)
2347 return false;
2348
2349 trace_block_rq_complete(req->q, req, nr_bytes);
2350
2351 /*
2352 * For fs requests, rq is just carrier of independent bio's
2353 * and each partial completion should be handled separately.
2354 * Reset per-request error on each partial completion.
2355 *
2356 * TODO: tj: This is too subtle. It would be better to let
2357 * low level drivers do what they see fit.
2358 */
2359 if (req->cmd_type == REQ_TYPE_FS)
2360 req->errors = 0;
2361
2362 if (error && req->cmd_type == REQ_TYPE_FS &&
2363 !(req->cmd_flags & REQ_QUIET)) {
2364 char *error_type;
2365
2366 switch (error) {
2367 case -ENOLINK:
2368 error_type = "recoverable transport";
2369 break;
2370 case -EREMOTEIO:
2371 error_type = "critical target";
2372 break;
2373 case -EBADE:
2374 error_type = "critical nexus";
2375 break;
2376 case -ETIMEDOUT:
2377 error_type = "timeout";
2378 break;
2379 case -ENOSPC:
2380 error_type = "critical space allocation";
2381 break;
2382 case -ENODATA:
2383 error_type = "critical medium";
2384 break;
2385 case -EIO:
2386 default:
2387 error_type = "I/O";
2388 break;
2389 }
2390 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2391 error_type, req->rq_disk ?
2392 req->rq_disk->disk_name : "?",
2393 (unsigned long long)blk_rq_pos(req));
2394
2395 }
2396
2397 blk_account_io_completion(req, nr_bytes);
2398
2399 total_bytes = 0;
2400 while (req->bio) {
2401 struct bio *bio = req->bio;
2402 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2403
2404 if (bio_bytes == bio->bi_iter.bi_size)
2405 req->bio = bio->bi_next;
2406
2407 req_bio_endio(req, bio, bio_bytes, error);
2408
2409 total_bytes += bio_bytes;
2410 nr_bytes -= bio_bytes;
2411
2412 if (!nr_bytes)
2413 break;
2414 }
2415
2416 /*
2417 * completely done
2418 */
2419 if (!req->bio) {
2420 /*
2421 * Reset counters so that the request stacking driver
2422 * can find how many bytes remain in the request
2423 * later.
2424 */
2425 req->__data_len = 0;
2426 return false;
2427 }
2428
2429 req->__data_len -= total_bytes;
2430
2431 /* update sector only for requests with clear definition of sector */
2432 if (req->cmd_type == REQ_TYPE_FS)
2433 req->__sector += total_bytes >> 9;
2434
2435 /* mixed attributes always follow the first bio */
2436 if (req->cmd_flags & REQ_MIXED_MERGE) {
2437 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2438 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2439 }
2440
2441 /*
2442 * If total number of sectors is less than the first segment
2443 * size, something has gone terribly wrong.
2444 */
2445 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2446 blk_dump_rq_flags(req, "request botched");
2447 req->__data_len = blk_rq_cur_bytes(req);
2448 }
2449
2450 /* recalculate the number of segments */
2451 blk_recalc_rq_segments(req);
2452
2453 return true;
2454 }
2455 EXPORT_SYMBOL_GPL(blk_update_request);
2456
2457 static bool blk_update_bidi_request(struct request *rq, int error,
2458 unsigned int nr_bytes,
2459 unsigned int bidi_bytes)
2460 {
2461 if (blk_update_request(rq, error, nr_bytes))
2462 return true;
2463
2464 /* Bidi request must be completed as a whole */
2465 if (unlikely(blk_bidi_rq(rq)) &&
2466 blk_update_request(rq->next_rq, error, bidi_bytes))
2467 return true;
2468
2469 if (blk_queue_add_random(rq->q))
2470 add_disk_randomness(rq->rq_disk);
2471
2472 return false;
2473 }
2474
2475 /**
2476 * blk_unprep_request - unprepare a request
2477 * @req: the request
2478 *
2479 * This function makes a request ready for complete resubmission (or
2480 * completion). It happens only after all error handling is complete,
2481 * so represents the appropriate moment to deallocate any resources
2482 * that were allocated to the request in the prep_rq_fn. The queue
2483 * lock is held when calling this.
2484 */
2485 void blk_unprep_request(struct request *req)
2486 {
2487 struct request_queue *q = req->q;
2488
2489 req->cmd_flags &= ~REQ_DONTPREP;
2490 if (q->unprep_rq_fn)
2491 q->unprep_rq_fn(q, req);
2492 }
2493 EXPORT_SYMBOL_GPL(blk_unprep_request);
2494
2495 /*
2496 * queue lock must be held
2497 */
2498 static void blk_finish_request(struct request *req, int error)
2499 {
2500 if (blk_rq_tagged(req))
2501 blk_queue_end_tag(req->q, req);
2502
2503 BUG_ON(blk_queued_rq(req));
2504
2505 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2506 laptop_io_completion(&req->q->backing_dev_info);
2507
2508 blk_delete_timer(req);
2509
2510 if (req->cmd_flags & REQ_DONTPREP)
2511 blk_unprep_request(req);
2512
2513 blk_account_io_done(req);
2514
2515 if (req->end_io)
2516 req->end_io(req, error);
2517 else {
2518 if (blk_bidi_rq(req))
2519 __blk_put_request(req->next_rq->q, req->next_rq);
2520
2521 __blk_put_request(req->q, req);
2522 }
2523 }
2524
2525 /**
2526 * blk_end_bidi_request - Complete a bidi request
2527 * @rq: the request to complete
2528 * @error: %0 for success, < %0 for error
2529 * @nr_bytes: number of bytes to complete @rq
2530 * @bidi_bytes: number of bytes to complete @rq->next_rq
2531 *
2532 * Description:
2533 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2534 * Drivers that supports bidi can safely call this member for any
2535 * type of request, bidi or uni. In the later case @bidi_bytes is
2536 * just ignored.
2537 *
2538 * Return:
2539 * %false - we are done with this request
2540 * %true - still buffers pending for this request
2541 **/
2542 static bool blk_end_bidi_request(struct request *rq, int error,
2543 unsigned int nr_bytes, unsigned int bidi_bytes)
2544 {
2545 struct request_queue *q = rq->q;
2546 unsigned long flags;
2547
2548 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2549 return true;
2550
2551 spin_lock_irqsave(q->queue_lock, flags);
2552 blk_finish_request(rq, error);
2553 spin_unlock_irqrestore(q->queue_lock, flags);
2554
2555 return false;
2556 }
2557
2558 /**
2559 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2560 * @rq: the request to complete
2561 * @error: %0 for success, < %0 for error
2562 * @nr_bytes: number of bytes to complete @rq
2563 * @bidi_bytes: number of bytes to complete @rq->next_rq
2564 *
2565 * Description:
2566 * Identical to blk_end_bidi_request() except that queue lock is
2567 * assumed to be locked on entry and remains so on return.
2568 *
2569 * Return:
2570 * %false - we are done with this request
2571 * %true - still buffers pending for this request
2572 **/
2573 bool __blk_end_bidi_request(struct request *rq, int error,
2574 unsigned int nr_bytes, unsigned int bidi_bytes)
2575 {
2576 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2577 return true;
2578
2579 blk_finish_request(rq, error);
2580
2581 return false;
2582 }
2583
2584 /**
2585 * blk_end_request - Helper function for drivers to complete the request.
2586 * @rq: the request being processed
2587 * @error: %0 for success, < %0 for error
2588 * @nr_bytes: number of bytes to complete
2589 *
2590 * Description:
2591 * Ends I/O on a number of bytes attached to @rq.
2592 * If @rq has leftover, sets it up for the next range of segments.
2593 *
2594 * Return:
2595 * %false - we are done with this request
2596 * %true - still buffers pending for this request
2597 **/
2598 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2599 {
2600 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2601 }
2602 EXPORT_SYMBOL(blk_end_request);
2603
2604 /**
2605 * blk_end_request_all - Helper function for drives to finish the request.
2606 * @rq: the request to finish
2607 * @error: %0 for success, < %0 for error
2608 *
2609 * Description:
2610 * Completely finish @rq.
2611 */
2612 void blk_end_request_all(struct request *rq, int error)
2613 {
2614 bool pending;
2615 unsigned int bidi_bytes = 0;
2616
2617 if (unlikely(blk_bidi_rq(rq)))
2618 bidi_bytes = blk_rq_bytes(rq->next_rq);
2619
2620 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2621 BUG_ON(pending);
2622 }
2623 EXPORT_SYMBOL(blk_end_request_all);
2624
2625 /**
2626 * blk_end_request_cur - Helper function to finish the current request chunk.
2627 * @rq: the request to finish the current chunk for
2628 * @error: %0 for success, < %0 for error
2629 *
2630 * Description:
2631 * Complete the current consecutively mapped chunk from @rq.
2632 *
2633 * Return:
2634 * %false - we are done with this request
2635 * %true - still buffers pending for this request
2636 */
2637 bool blk_end_request_cur(struct request *rq, int error)
2638 {
2639 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2640 }
2641 EXPORT_SYMBOL(blk_end_request_cur);
2642
2643 /**
2644 * blk_end_request_err - Finish a request till the next failure boundary.
2645 * @rq: the request to finish till the next failure boundary for
2646 * @error: must be negative errno
2647 *
2648 * Description:
2649 * Complete @rq till the next failure boundary.
2650 *
2651 * Return:
2652 * %false - we are done with this request
2653 * %true - still buffers pending for this request
2654 */
2655 bool blk_end_request_err(struct request *rq, int error)
2656 {
2657 WARN_ON(error >= 0);
2658 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2659 }
2660 EXPORT_SYMBOL_GPL(blk_end_request_err);
2661
2662 /**
2663 * __blk_end_request - Helper function for drivers to complete the request.
2664 * @rq: the request being processed
2665 * @error: %0 for success, < %0 for error
2666 * @nr_bytes: number of bytes to complete
2667 *
2668 * Description:
2669 * Must be called with queue lock held unlike blk_end_request().
2670 *
2671 * Return:
2672 * %false - we are done with this request
2673 * %true - still buffers pending for this request
2674 **/
2675 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2676 {
2677 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2678 }
2679 EXPORT_SYMBOL(__blk_end_request);
2680
2681 /**
2682 * __blk_end_request_all - Helper function for drives to finish the request.
2683 * @rq: the request to finish
2684 * @error: %0 for success, < %0 for error
2685 *
2686 * Description:
2687 * Completely finish @rq. Must be called with queue lock held.
2688 */
2689 void __blk_end_request_all(struct request *rq, int error)
2690 {
2691 bool pending;
2692 unsigned int bidi_bytes = 0;
2693
2694 if (unlikely(blk_bidi_rq(rq)))
2695 bidi_bytes = blk_rq_bytes(rq->next_rq);
2696
2697 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2698 BUG_ON(pending);
2699 }
2700 EXPORT_SYMBOL(__blk_end_request_all);
2701
2702 /**
2703 * __blk_end_request_cur - Helper function to finish the current request chunk.
2704 * @rq: the request to finish the current chunk for
2705 * @error: %0 for success, < %0 for error
2706 *
2707 * Description:
2708 * Complete the current consecutively mapped chunk from @rq. Must
2709 * be called with queue lock held.
2710 *
2711 * Return:
2712 * %false - we are done with this request
2713 * %true - still buffers pending for this request
2714 */
2715 bool __blk_end_request_cur(struct request *rq, int error)
2716 {
2717 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2718 }
2719 EXPORT_SYMBOL(__blk_end_request_cur);
2720
2721 /**
2722 * __blk_end_request_err - Finish a request till the next failure boundary.
2723 * @rq: the request to finish till the next failure boundary for
2724 * @error: must be negative errno
2725 *
2726 * Description:
2727 * Complete @rq till the next failure boundary. Must be called
2728 * with queue lock held.
2729 *
2730 * Return:
2731 * %false - we are done with this request
2732 * %true - still buffers pending for this request
2733 */
2734 bool __blk_end_request_err(struct request *rq, int error)
2735 {
2736 WARN_ON(error >= 0);
2737 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2738 }
2739 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2740
2741 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2742 struct bio *bio)
2743 {
2744 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2745 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2746
2747 if (bio_has_data(bio))
2748 rq->nr_phys_segments = bio_phys_segments(q, bio);
2749
2750 rq->__data_len = bio->bi_iter.bi_size;
2751 rq->bio = rq->biotail = bio;
2752
2753 if (bio->bi_bdev)
2754 rq->rq_disk = bio->bi_bdev->bd_disk;
2755 }
2756
2757 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2758 /**
2759 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2760 * @rq: the request to be flushed
2761 *
2762 * Description:
2763 * Flush all pages in @rq.
2764 */
2765 void rq_flush_dcache_pages(struct request *rq)
2766 {
2767 struct req_iterator iter;
2768 struct bio_vec bvec;
2769
2770 rq_for_each_segment(bvec, rq, iter)
2771 flush_dcache_page(bvec.bv_page);
2772 }
2773 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2774 #endif
2775
2776 /**
2777 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2778 * @q : the queue of the device being checked
2779 *
2780 * Description:
2781 * Check if underlying low-level drivers of a device are busy.
2782 * If the drivers want to export their busy state, they must set own
2783 * exporting function using blk_queue_lld_busy() first.
2784 *
2785 * Basically, this function is used only by request stacking drivers
2786 * to stop dispatching requests to underlying devices when underlying
2787 * devices are busy. This behavior helps more I/O merging on the queue
2788 * of the request stacking driver and prevents I/O throughput regression
2789 * on burst I/O load.
2790 *
2791 * Return:
2792 * 0 - Not busy (The request stacking driver should dispatch request)
2793 * 1 - Busy (The request stacking driver should stop dispatching request)
2794 */
2795 int blk_lld_busy(struct request_queue *q)
2796 {
2797 if (q->lld_busy_fn)
2798 return q->lld_busy_fn(q);
2799
2800 return 0;
2801 }
2802 EXPORT_SYMBOL_GPL(blk_lld_busy);
2803
2804 /**
2805 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2806 * @rq: the clone request to be cleaned up
2807 *
2808 * Description:
2809 * Free all bios in @rq for a cloned request.
2810 */
2811 void blk_rq_unprep_clone(struct request *rq)
2812 {
2813 struct bio *bio;
2814
2815 while ((bio = rq->bio) != NULL) {
2816 rq->bio = bio->bi_next;
2817
2818 bio_put(bio);
2819 }
2820 }
2821 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2822
2823 /*
2824 * Copy attributes of the original request to the clone request.
2825 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
2826 */
2827 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2828 {
2829 dst->cpu = src->cpu;
2830 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2831 dst->cmd_type = src->cmd_type;
2832 dst->__sector = blk_rq_pos(src);
2833 dst->__data_len = blk_rq_bytes(src);
2834 dst->nr_phys_segments = src->nr_phys_segments;
2835 dst->ioprio = src->ioprio;
2836 dst->extra_len = src->extra_len;
2837 }
2838
2839 /**
2840 * blk_rq_prep_clone - Helper function to setup clone request
2841 * @rq: the request to be setup
2842 * @rq_src: original request to be cloned
2843 * @bs: bio_set that bios for clone are allocated from
2844 * @gfp_mask: memory allocation mask for bio
2845 * @bio_ctr: setup function to be called for each clone bio.
2846 * Returns %0 for success, non %0 for failure.
2847 * @data: private data to be passed to @bio_ctr
2848 *
2849 * Description:
2850 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2851 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
2852 * are not copied, and copying such parts is the caller's responsibility.
2853 * Also, pages which the original bios are pointing to are not copied
2854 * and the cloned bios just point same pages.
2855 * So cloned bios must be completed before original bios, which means
2856 * the caller must complete @rq before @rq_src.
2857 */
2858 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2859 struct bio_set *bs, gfp_t gfp_mask,
2860 int (*bio_ctr)(struct bio *, struct bio *, void *),
2861 void *data)
2862 {
2863 struct bio *bio, *bio_src;
2864
2865 if (!bs)
2866 bs = fs_bio_set;
2867
2868 blk_rq_init(NULL, rq);
2869
2870 __rq_for_each_bio(bio_src, rq_src) {
2871 bio = bio_clone_bioset(bio_src, gfp_mask, bs);
2872 if (!bio)
2873 goto free_and_out;
2874
2875 if (bio_ctr && bio_ctr(bio, bio_src, data))
2876 goto free_and_out;
2877
2878 if (rq->bio) {
2879 rq->biotail->bi_next = bio;
2880 rq->biotail = bio;
2881 } else
2882 rq->bio = rq->biotail = bio;
2883 }
2884
2885 __blk_rq_prep_clone(rq, rq_src);
2886
2887 return 0;
2888
2889 free_and_out:
2890 if (bio)
2891 bio_put(bio);
2892 blk_rq_unprep_clone(rq);
2893
2894 return -ENOMEM;
2895 }
2896 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2897
2898 int kblockd_schedule_work(struct work_struct *work)
2899 {
2900 return queue_work(kblockd_workqueue, work);
2901 }
2902 EXPORT_SYMBOL(kblockd_schedule_work);
2903
2904 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
2905 unsigned long delay)
2906 {
2907 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2908 }
2909 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2910
2911 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2912 unsigned long delay)
2913 {
2914 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
2915 }
2916 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
2917
2918 #define PLUG_MAGIC 0x91827364
2919
2920 /**
2921 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2922 * @plug: The &struct blk_plug that needs to be initialized
2923 *
2924 * Description:
2925 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2926 * pending I/O should the task end up blocking between blk_start_plug() and
2927 * blk_finish_plug(). This is important from a performance perspective, but
2928 * also ensures that we don't deadlock. For instance, if the task is blocking
2929 * for a memory allocation, memory reclaim could end up wanting to free a
2930 * page belonging to that request that is currently residing in our private
2931 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2932 * this kind of deadlock.
2933 */
2934 void blk_start_plug(struct blk_plug *plug)
2935 {
2936 struct task_struct *tsk = current;
2937
2938 plug->magic = PLUG_MAGIC;
2939 INIT_LIST_HEAD(&plug->list);
2940 INIT_LIST_HEAD(&plug->mq_list);
2941 INIT_LIST_HEAD(&plug->cb_list);
2942
2943 /*
2944 * If this is a nested plug, don't actually assign it. It will be
2945 * flushed on its own.
2946 */
2947 if (!tsk->plug) {
2948 /*
2949 * Store ordering should not be needed here, since a potential
2950 * preempt will imply a full memory barrier
2951 */
2952 tsk->plug = plug;
2953 }
2954 }
2955 EXPORT_SYMBOL(blk_start_plug);
2956
2957 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2958 {
2959 struct request *rqa = container_of(a, struct request, queuelist);
2960 struct request *rqb = container_of(b, struct request, queuelist);
2961
2962 return !(rqa->q < rqb->q ||
2963 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
2964 }
2965
2966 /*
2967 * If 'from_schedule' is true, then postpone the dispatch of requests
2968 * until a safe kblockd context. We due this to avoid accidental big
2969 * additional stack usage in driver dispatch, in places where the originally
2970 * plugger did not intend it.
2971 */
2972 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2973 bool from_schedule)
2974 __releases(q->queue_lock)
2975 {
2976 trace_block_unplug(q, depth, !from_schedule);
2977
2978 if (from_schedule)
2979 blk_run_queue_async(q);
2980 else
2981 __blk_run_queue(q);
2982 spin_unlock(q->queue_lock);
2983 }
2984
2985 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
2986 {
2987 LIST_HEAD(callbacks);
2988
2989 while (!list_empty(&plug->cb_list)) {
2990 list_splice_init(&plug->cb_list, &callbacks);
2991
2992 while (!list_empty(&callbacks)) {
2993 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2994 struct blk_plug_cb,
2995 list);
2996 list_del(&cb->list);
2997 cb->callback(cb, from_schedule);
2998 }
2999 }
3000 }
3001
3002 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3003 int size)
3004 {
3005 struct blk_plug *plug = current->plug;
3006 struct blk_plug_cb *cb;
3007
3008 if (!plug)
3009 return NULL;
3010
3011 list_for_each_entry(cb, &plug->cb_list, list)
3012 if (cb->callback == unplug && cb->data == data)
3013 return cb;
3014
3015 /* Not currently on the callback list */
3016 BUG_ON(size < sizeof(*cb));
3017 cb = kzalloc(size, GFP_ATOMIC);
3018 if (cb) {
3019 cb->data = data;
3020 cb->callback = unplug;
3021 list_add(&cb->list, &plug->cb_list);
3022 }
3023 return cb;
3024 }
3025 EXPORT_SYMBOL(blk_check_plugged);
3026
3027 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3028 {
3029 struct request_queue *q;
3030 unsigned long flags;
3031 struct request *rq;
3032 LIST_HEAD(list);
3033 unsigned int depth;
3034
3035 BUG_ON(plug->magic != PLUG_MAGIC);
3036
3037 flush_plug_callbacks(plug, from_schedule);
3038
3039 if (!list_empty(&plug->mq_list))
3040 blk_mq_flush_plug_list(plug, from_schedule);
3041
3042 if (list_empty(&plug->list))
3043 return;
3044
3045 list_splice_init(&plug->list, &list);
3046
3047 list_sort(NULL, &list, plug_rq_cmp);
3048
3049 q = NULL;
3050 depth = 0;
3051
3052 /*
3053 * Save and disable interrupts here, to avoid doing it for every
3054 * queue lock we have to take.
3055 */
3056 local_irq_save(flags);
3057 while (!list_empty(&list)) {
3058 rq = list_entry_rq(list.next);
3059 list_del_init(&rq->queuelist);
3060 BUG_ON(!rq->q);
3061 if (rq->q != q) {
3062 /*
3063 * This drops the queue lock
3064 */
3065 if (q)
3066 queue_unplugged(q, depth, from_schedule);
3067 q = rq->q;
3068 depth = 0;
3069 spin_lock(q->queue_lock);
3070 }
3071
3072 /*
3073 * Short-circuit if @q is dead
3074 */
3075 if (unlikely(blk_queue_dying(q))) {
3076 __blk_end_request_all(rq, -ENODEV);
3077 continue;
3078 }
3079
3080 /*
3081 * rq is already accounted, so use raw insert
3082 */
3083 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3084 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3085 else
3086 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3087
3088 depth++;
3089 }
3090
3091 /*
3092 * This drops the queue lock
3093 */
3094 if (q)
3095 queue_unplugged(q, depth, from_schedule);
3096
3097 local_irq_restore(flags);
3098 }
3099
3100 void blk_finish_plug(struct blk_plug *plug)
3101 {
3102 blk_flush_plug_list(plug, false);
3103
3104 if (plug == current->plug)
3105 current->plug = NULL;
3106 }
3107 EXPORT_SYMBOL(blk_finish_plug);
3108
3109 #ifdef CONFIG_PM_RUNTIME
3110 /**
3111 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3112 * @q: the queue of the device
3113 * @dev: the device the queue belongs to
3114 *
3115 * Description:
3116 * Initialize runtime-PM-related fields for @q and start auto suspend for
3117 * @dev. Drivers that want to take advantage of request-based runtime PM
3118 * should call this function after @dev has been initialized, and its
3119 * request queue @q has been allocated, and runtime PM for it can not happen
3120 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3121 * cases, driver should call this function before any I/O has taken place.
3122 *
3123 * This function takes care of setting up using auto suspend for the device,
3124 * the autosuspend delay is set to -1 to make runtime suspend impossible
3125 * until an updated value is either set by user or by driver. Drivers do
3126 * not need to touch other autosuspend settings.
3127 *
3128 * The block layer runtime PM is request based, so only works for drivers
3129 * that use request as their IO unit instead of those directly use bio's.
3130 */
3131 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3132 {
3133 q->dev = dev;
3134 q->rpm_status = RPM_ACTIVE;
3135 pm_runtime_set_autosuspend_delay(q->dev, -1);
3136 pm_runtime_use_autosuspend(q->dev);
3137 }
3138 EXPORT_SYMBOL(blk_pm_runtime_init);
3139
3140 /**
3141 * blk_pre_runtime_suspend - Pre runtime suspend check
3142 * @q: the queue of the device
3143 *
3144 * Description:
3145 * This function will check if runtime suspend is allowed for the device
3146 * by examining if there are any requests pending in the queue. If there
3147 * are requests pending, the device can not be runtime suspended; otherwise,
3148 * the queue's status will be updated to SUSPENDING and the driver can
3149 * proceed to suspend the device.
3150 *
3151 * For the not allowed case, we mark last busy for the device so that
3152 * runtime PM core will try to autosuspend it some time later.
3153 *
3154 * This function should be called near the start of the device's
3155 * runtime_suspend callback.
3156 *
3157 * Return:
3158 * 0 - OK to runtime suspend the device
3159 * -EBUSY - Device should not be runtime suspended
3160 */
3161 int blk_pre_runtime_suspend(struct request_queue *q)
3162 {
3163 int ret = 0;
3164
3165 spin_lock_irq(q->queue_lock);
3166 if (q->nr_pending) {
3167 ret = -EBUSY;
3168 pm_runtime_mark_last_busy(q->dev);
3169 } else {
3170 q->rpm_status = RPM_SUSPENDING;
3171 }
3172 spin_unlock_irq(q->queue_lock);
3173 return ret;
3174 }
3175 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3176
3177 /**
3178 * blk_post_runtime_suspend - Post runtime suspend processing
3179 * @q: the queue of the device
3180 * @err: return value of the device's runtime_suspend function
3181 *
3182 * Description:
3183 * Update the queue's runtime status according to the return value of the
3184 * device's runtime suspend function and mark last busy for the device so
3185 * that PM core will try to auto suspend the device at a later time.
3186 *
3187 * This function should be called near the end of the device's
3188 * runtime_suspend callback.
3189 */
3190 void blk_post_runtime_suspend(struct request_queue *q, int err)
3191 {
3192 spin_lock_irq(q->queue_lock);
3193 if (!err) {
3194 q->rpm_status = RPM_SUSPENDED;
3195 } else {
3196 q->rpm_status = RPM_ACTIVE;
3197 pm_runtime_mark_last_busy(q->dev);
3198 }
3199 spin_unlock_irq(q->queue_lock);
3200 }
3201 EXPORT_SYMBOL(blk_post_runtime_suspend);
3202
3203 /**
3204 * blk_pre_runtime_resume - Pre runtime resume processing
3205 * @q: the queue of the device
3206 *
3207 * Description:
3208 * Update the queue's runtime status to RESUMING in preparation for the
3209 * runtime resume of the device.
3210 *
3211 * This function should be called near the start of the device's
3212 * runtime_resume callback.
3213 */
3214 void blk_pre_runtime_resume(struct request_queue *q)
3215 {
3216 spin_lock_irq(q->queue_lock);
3217 q->rpm_status = RPM_RESUMING;
3218 spin_unlock_irq(q->queue_lock);
3219 }
3220 EXPORT_SYMBOL(blk_pre_runtime_resume);
3221
3222 /**
3223 * blk_post_runtime_resume - Post runtime resume processing
3224 * @q: the queue of the device
3225 * @err: return value of the device's runtime_resume function
3226 *
3227 * Description:
3228 * Update the queue's runtime status according to the return value of the
3229 * device's runtime_resume function. If it is successfully resumed, process
3230 * the requests that are queued into the device's queue when it is resuming
3231 * and then mark last busy and initiate autosuspend for it.
3232 *
3233 * This function should be called near the end of the device's
3234 * runtime_resume callback.
3235 */
3236 void blk_post_runtime_resume(struct request_queue *q, int err)
3237 {
3238 spin_lock_irq(q->queue_lock);
3239 if (!err) {
3240 q->rpm_status = RPM_ACTIVE;
3241 __blk_run_queue(q);
3242 pm_runtime_mark_last_busy(q->dev);
3243 pm_request_autosuspend(q->dev);
3244 } else {
3245 q->rpm_status = RPM_SUSPENDED;
3246 }
3247 spin_unlock_irq(q->queue_lock);
3248 }
3249 EXPORT_SYMBOL(blk_post_runtime_resume);
3250 #endif
3251
3252 int __init blk_dev_init(void)
3253 {
3254 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3255 sizeof(((struct request *)0)->cmd_flags));
3256
3257 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3258 kblockd_workqueue = alloc_workqueue("kblockd",
3259 WQ_MEM_RECLAIM | WQ_HIGHPRI |
3260 WQ_POWER_EFFICIENT, 0);
3261 if (!kblockd_workqueue)
3262 panic("Failed to create kblockd\n");
3263
3264 request_cachep = kmem_cache_create("blkdev_requests",
3265 sizeof(struct request), 0, SLAB_PANIC, NULL);
3266
3267 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3268 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3269
3270 return 0;
3271 }
This page took 0.095346 seconds and 6 git commands to generate.