Merge branch 'v2.6.36-rc8' into for-2.6.37/barrier
[deliverable/linux.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/block.h>
33
34 #include "blk.h"
35
36 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
39
40 static int __make_request(struct request_queue *q, struct bio *bio);
41
42 /*
43 * For the allocated request tables
44 */
45 static struct kmem_cache *request_cachep;
46
47 /*
48 * For queue allocation
49 */
50 struct kmem_cache *blk_requestq_cachep;
51
52 /*
53 * Controlling structure to kblockd
54 */
55 static struct workqueue_struct *kblockd_workqueue;
56
57 static void drive_stat_acct(struct request *rq, int new_io)
58 {
59 struct hd_struct *part;
60 int rw = rq_data_dir(rq);
61 int cpu;
62
63 if (!blk_do_io_stat(rq))
64 return;
65
66 cpu = part_stat_lock();
67 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
68
69 if (!new_io)
70 part_stat_inc(cpu, part, merges[rw]);
71 else {
72 part_round_stats(cpu, part);
73 part_inc_in_flight(part, rw);
74 }
75
76 part_stat_unlock();
77 }
78
79 void blk_queue_congestion_threshold(struct request_queue *q)
80 {
81 int nr;
82
83 nr = q->nr_requests - (q->nr_requests / 8) + 1;
84 if (nr > q->nr_requests)
85 nr = q->nr_requests;
86 q->nr_congestion_on = nr;
87
88 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
89 if (nr < 1)
90 nr = 1;
91 q->nr_congestion_off = nr;
92 }
93
94 /**
95 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
96 * @bdev: device
97 *
98 * Locates the passed device's request queue and returns the address of its
99 * backing_dev_info
100 *
101 * Will return NULL if the request queue cannot be located.
102 */
103 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
104 {
105 struct backing_dev_info *ret = NULL;
106 struct request_queue *q = bdev_get_queue(bdev);
107
108 if (q)
109 ret = &q->backing_dev_info;
110 return ret;
111 }
112 EXPORT_SYMBOL(blk_get_backing_dev_info);
113
114 void blk_rq_init(struct request_queue *q, struct request *rq)
115 {
116 memset(rq, 0, sizeof(*rq));
117
118 INIT_LIST_HEAD(&rq->queuelist);
119 INIT_LIST_HEAD(&rq->timeout_list);
120 rq->cpu = -1;
121 rq->q = q;
122 rq->__sector = (sector_t) -1;
123 INIT_HLIST_NODE(&rq->hash);
124 RB_CLEAR_NODE(&rq->rb_node);
125 rq->cmd = rq->__cmd;
126 rq->cmd_len = BLK_MAX_CDB;
127 rq->tag = -1;
128 rq->ref_count = 1;
129 rq->start_time = jiffies;
130 set_start_time_ns(rq);
131 }
132 EXPORT_SYMBOL(blk_rq_init);
133
134 static void req_bio_endio(struct request *rq, struct bio *bio,
135 unsigned int nbytes, int error)
136 {
137 struct request_queue *q = rq->q;
138
139 if (&q->flush_rq != rq) {
140 if (error)
141 clear_bit(BIO_UPTODATE, &bio->bi_flags);
142 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
143 error = -EIO;
144
145 if (unlikely(nbytes > bio->bi_size)) {
146 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
147 __func__, nbytes, bio->bi_size);
148 nbytes = bio->bi_size;
149 }
150
151 if (unlikely(rq->cmd_flags & REQ_QUIET))
152 set_bit(BIO_QUIET, &bio->bi_flags);
153
154 bio->bi_size -= nbytes;
155 bio->bi_sector += (nbytes >> 9);
156
157 if (bio_integrity(bio))
158 bio_integrity_advance(bio, nbytes);
159
160 if (bio->bi_size == 0)
161 bio_endio(bio, error);
162 } else {
163 /*
164 * Okay, this is the sequenced flush request in
165 * progress, just record the error;
166 */
167 if (error && !q->flush_err)
168 q->flush_err = error;
169 }
170 }
171
172 void blk_dump_rq_flags(struct request *rq, char *msg)
173 {
174 int bit;
175
176 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
177 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
178 rq->cmd_flags);
179
180 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
181 (unsigned long long)blk_rq_pos(rq),
182 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
183 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
184 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
185
186 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
187 printk(KERN_INFO " cdb: ");
188 for (bit = 0; bit < BLK_MAX_CDB; bit++)
189 printk("%02x ", rq->cmd[bit]);
190 printk("\n");
191 }
192 }
193 EXPORT_SYMBOL(blk_dump_rq_flags);
194
195 /*
196 * "plug" the device if there are no outstanding requests: this will
197 * force the transfer to start only after we have put all the requests
198 * on the list.
199 *
200 * This is called with interrupts off and no requests on the queue and
201 * with the queue lock held.
202 */
203 void blk_plug_device(struct request_queue *q)
204 {
205 WARN_ON(!irqs_disabled());
206
207 /*
208 * don't plug a stopped queue, it must be paired with blk_start_queue()
209 * which will restart the queueing
210 */
211 if (blk_queue_stopped(q))
212 return;
213
214 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
215 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
216 trace_block_plug(q);
217 }
218 }
219 EXPORT_SYMBOL(blk_plug_device);
220
221 /**
222 * blk_plug_device_unlocked - plug a device without queue lock held
223 * @q: The &struct request_queue to plug
224 *
225 * Description:
226 * Like @blk_plug_device(), but grabs the queue lock and disables
227 * interrupts.
228 **/
229 void blk_plug_device_unlocked(struct request_queue *q)
230 {
231 unsigned long flags;
232
233 spin_lock_irqsave(q->queue_lock, flags);
234 blk_plug_device(q);
235 spin_unlock_irqrestore(q->queue_lock, flags);
236 }
237 EXPORT_SYMBOL(blk_plug_device_unlocked);
238
239 /*
240 * remove the queue from the plugged list, if present. called with
241 * queue lock held and interrupts disabled.
242 */
243 int blk_remove_plug(struct request_queue *q)
244 {
245 WARN_ON(!irqs_disabled());
246
247 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
248 return 0;
249
250 del_timer(&q->unplug_timer);
251 return 1;
252 }
253 EXPORT_SYMBOL(blk_remove_plug);
254
255 /*
256 * remove the plug and let it rip..
257 */
258 void __generic_unplug_device(struct request_queue *q)
259 {
260 if (unlikely(blk_queue_stopped(q)))
261 return;
262 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
263 return;
264
265 q->request_fn(q);
266 }
267
268 /**
269 * generic_unplug_device - fire a request queue
270 * @q: The &struct request_queue in question
271 *
272 * Description:
273 * Linux uses plugging to build bigger requests queues before letting
274 * the device have at them. If a queue is plugged, the I/O scheduler
275 * is still adding and merging requests on the queue. Once the queue
276 * gets unplugged, the request_fn defined for the queue is invoked and
277 * transfers started.
278 **/
279 void generic_unplug_device(struct request_queue *q)
280 {
281 if (blk_queue_plugged(q)) {
282 spin_lock_irq(q->queue_lock);
283 __generic_unplug_device(q);
284 spin_unlock_irq(q->queue_lock);
285 }
286 }
287 EXPORT_SYMBOL(generic_unplug_device);
288
289 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
290 struct page *page)
291 {
292 struct request_queue *q = bdi->unplug_io_data;
293
294 blk_unplug(q);
295 }
296
297 void blk_unplug_work(struct work_struct *work)
298 {
299 struct request_queue *q =
300 container_of(work, struct request_queue, unplug_work);
301
302 trace_block_unplug_io(q);
303 q->unplug_fn(q);
304 }
305
306 void blk_unplug_timeout(unsigned long data)
307 {
308 struct request_queue *q = (struct request_queue *)data;
309
310 trace_block_unplug_timer(q);
311 kblockd_schedule_work(q, &q->unplug_work);
312 }
313
314 void blk_unplug(struct request_queue *q)
315 {
316 /*
317 * devices don't necessarily have an ->unplug_fn defined
318 */
319 if (q->unplug_fn) {
320 trace_block_unplug_io(q);
321 q->unplug_fn(q);
322 }
323 }
324 EXPORT_SYMBOL(blk_unplug);
325
326 /**
327 * blk_start_queue - restart a previously stopped queue
328 * @q: The &struct request_queue in question
329 *
330 * Description:
331 * blk_start_queue() will clear the stop flag on the queue, and call
332 * the request_fn for the queue if it was in a stopped state when
333 * entered. Also see blk_stop_queue(). Queue lock must be held.
334 **/
335 void blk_start_queue(struct request_queue *q)
336 {
337 WARN_ON(!irqs_disabled());
338
339 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
340 __blk_run_queue(q);
341 }
342 EXPORT_SYMBOL(blk_start_queue);
343
344 /**
345 * blk_stop_queue - stop a queue
346 * @q: The &struct request_queue in question
347 *
348 * Description:
349 * The Linux block layer assumes that a block driver will consume all
350 * entries on the request queue when the request_fn strategy is called.
351 * Often this will not happen, because of hardware limitations (queue
352 * depth settings). If a device driver gets a 'queue full' response,
353 * or if it simply chooses not to queue more I/O at one point, it can
354 * call this function to prevent the request_fn from being called until
355 * the driver has signalled it's ready to go again. This happens by calling
356 * blk_start_queue() to restart queue operations. Queue lock must be held.
357 **/
358 void blk_stop_queue(struct request_queue *q)
359 {
360 blk_remove_plug(q);
361 queue_flag_set(QUEUE_FLAG_STOPPED, q);
362 }
363 EXPORT_SYMBOL(blk_stop_queue);
364
365 /**
366 * blk_sync_queue - cancel any pending callbacks on a queue
367 * @q: the queue
368 *
369 * Description:
370 * The block layer may perform asynchronous callback activity
371 * on a queue, such as calling the unplug function after a timeout.
372 * A block device may call blk_sync_queue to ensure that any
373 * such activity is cancelled, thus allowing it to release resources
374 * that the callbacks might use. The caller must already have made sure
375 * that its ->make_request_fn will not re-add plugging prior to calling
376 * this function.
377 *
378 */
379 void blk_sync_queue(struct request_queue *q)
380 {
381 del_timer_sync(&q->unplug_timer);
382 del_timer_sync(&q->timeout);
383 cancel_work_sync(&q->unplug_work);
384 }
385 EXPORT_SYMBOL(blk_sync_queue);
386
387 /**
388 * __blk_run_queue - run a single device queue
389 * @q: The queue to run
390 *
391 * Description:
392 * See @blk_run_queue. This variant must be called with the queue lock
393 * held and interrupts disabled.
394 *
395 */
396 void __blk_run_queue(struct request_queue *q)
397 {
398 blk_remove_plug(q);
399
400 if (unlikely(blk_queue_stopped(q)))
401 return;
402
403 if (elv_queue_empty(q))
404 return;
405
406 /*
407 * Only recurse once to avoid overrunning the stack, let the unplug
408 * handling reinvoke the handler shortly if we already got there.
409 */
410 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
411 q->request_fn(q);
412 queue_flag_clear(QUEUE_FLAG_REENTER, q);
413 } else {
414 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
415 kblockd_schedule_work(q, &q->unplug_work);
416 }
417 }
418 EXPORT_SYMBOL(__blk_run_queue);
419
420 /**
421 * blk_run_queue - run a single device queue
422 * @q: The queue to run
423 *
424 * Description:
425 * Invoke request handling on this queue, if it has pending work to do.
426 * May be used to restart queueing when a request has completed.
427 */
428 void blk_run_queue(struct request_queue *q)
429 {
430 unsigned long flags;
431
432 spin_lock_irqsave(q->queue_lock, flags);
433 __blk_run_queue(q);
434 spin_unlock_irqrestore(q->queue_lock, flags);
435 }
436 EXPORT_SYMBOL(blk_run_queue);
437
438 void blk_put_queue(struct request_queue *q)
439 {
440 kobject_put(&q->kobj);
441 }
442
443 void blk_cleanup_queue(struct request_queue *q)
444 {
445 /*
446 * We know we have process context here, so we can be a little
447 * cautious and ensure that pending block actions on this device
448 * are done before moving on. Going into this function, we should
449 * not have processes doing IO to this device.
450 */
451 blk_sync_queue(q);
452
453 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
454 mutex_lock(&q->sysfs_lock);
455 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
456 mutex_unlock(&q->sysfs_lock);
457
458 if (q->elevator)
459 elevator_exit(q->elevator);
460
461 blk_put_queue(q);
462 }
463 EXPORT_SYMBOL(blk_cleanup_queue);
464
465 static int blk_init_free_list(struct request_queue *q)
466 {
467 struct request_list *rl = &q->rq;
468
469 if (unlikely(rl->rq_pool))
470 return 0;
471
472 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
473 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
474 rl->elvpriv = 0;
475 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
476 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
477
478 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
479 mempool_free_slab, request_cachep, q->node);
480
481 if (!rl->rq_pool)
482 return -ENOMEM;
483
484 return 0;
485 }
486
487 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
488 {
489 return blk_alloc_queue_node(gfp_mask, -1);
490 }
491 EXPORT_SYMBOL(blk_alloc_queue);
492
493 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
494 {
495 struct request_queue *q;
496 int err;
497
498 q = kmem_cache_alloc_node(blk_requestq_cachep,
499 gfp_mask | __GFP_ZERO, node_id);
500 if (!q)
501 return NULL;
502
503 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
504 q->backing_dev_info.unplug_io_data = q;
505 q->backing_dev_info.ra_pages =
506 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
507 q->backing_dev_info.state = 0;
508 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
509 q->backing_dev_info.name = "block";
510
511 err = bdi_init(&q->backing_dev_info);
512 if (err) {
513 kmem_cache_free(blk_requestq_cachep, q);
514 return NULL;
515 }
516
517 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
518 laptop_mode_timer_fn, (unsigned long) q);
519 init_timer(&q->unplug_timer);
520 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
521 INIT_LIST_HEAD(&q->timeout_list);
522 INIT_LIST_HEAD(&q->pending_flushes);
523 INIT_WORK(&q->unplug_work, blk_unplug_work);
524
525 kobject_init(&q->kobj, &blk_queue_ktype);
526
527 mutex_init(&q->sysfs_lock);
528 spin_lock_init(&q->__queue_lock);
529
530 return q;
531 }
532 EXPORT_SYMBOL(blk_alloc_queue_node);
533
534 /**
535 * blk_init_queue - prepare a request queue for use with a block device
536 * @rfn: The function to be called to process requests that have been
537 * placed on the queue.
538 * @lock: Request queue spin lock
539 *
540 * Description:
541 * If a block device wishes to use the standard request handling procedures,
542 * which sorts requests and coalesces adjacent requests, then it must
543 * call blk_init_queue(). The function @rfn will be called when there
544 * are requests on the queue that need to be processed. If the device
545 * supports plugging, then @rfn may not be called immediately when requests
546 * are available on the queue, but may be called at some time later instead.
547 * Plugged queues are generally unplugged when a buffer belonging to one
548 * of the requests on the queue is needed, or due to memory pressure.
549 *
550 * @rfn is not required, or even expected, to remove all requests off the
551 * queue, but only as many as it can handle at a time. If it does leave
552 * requests on the queue, it is responsible for arranging that the requests
553 * get dealt with eventually.
554 *
555 * The queue spin lock must be held while manipulating the requests on the
556 * request queue; this lock will be taken also from interrupt context, so irq
557 * disabling is needed for it.
558 *
559 * Function returns a pointer to the initialized request queue, or %NULL if
560 * it didn't succeed.
561 *
562 * Note:
563 * blk_init_queue() must be paired with a blk_cleanup_queue() call
564 * when the block device is deactivated (such as at module unload).
565 **/
566
567 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
568 {
569 return blk_init_queue_node(rfn, lock, -1);
570 }
571 EXPORT_SYMBOL(blk_init_queue);
572
573 struct request_queue *
574 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
575 {
576 struct request_queue *uninit_q, *q;
577
578 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
579 if (!uninit_q)
580 return NULL;
581
582 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
583 if (!q)
584 blk_cleanup_queue(uninit_q);
585
586 return q;
587 }
588 EXPORT_SYMBOL(blk_init_queue_node);
589
590 struct request_queue *
591 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
592 spinlock_t *lock)
593 {
594 return blk_init_allocated_queue_node(q, rfn, lock, -1);
595 }
596 EXPORT_SYMBOL(blk_init_allocated_queue);
597
598 struct request_queue *
599 blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
600 spinlock_t *lock, int node_id)
601 {
602 if (!q)
603 return NULL;
604
605 q->node = node_id;
606 if (blk_init_free_list(q))
607 return NULL;
608
609 q->request_fn = rfn;
610 q->prep_rq_fn = NULL;
611 q->unprep_rq_fn = NULL;
612 q->unplug_fn = generic_unplug_device;
613 q->queue_flags = QUEUE_FLAG_DEFAULT;
614 q->queue_lock = lock;
615
616 /*
617 * This also sets hw/phys segments, boundary and size
618 */
619 blk_queue_make_request(q, __make_request);
620
621 q->sg_reserved_size = INT_MAX;
622
623 /*
624 * all done
625 */
626 if (!elevator_init(q, NULL)) {
627 blk_queue_congestion_threshold(q);
628 return q;
629 }
630
631 return NULL;
632 }
633 EXPORT_SYMBOL(blk_init_allocated_queue_node);
634
635 int blk_get_queue(struct request_queue *q)
636 {
637 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
638 kobject_get(&q->kobj);
639 return 0;
640 }
641
642 return 1;
643 }
644
645 static inline void blk_free_request(struct request_queue *q, struct request *rq)
646 {
647 if (rq->cmd_flags & REQ_ELVPRIV)
648 elv_put_request(q, rq);
649 mempool_free(rq, q->rq.rq_pool);
650 }
651
652 static struct request *
653 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
654 {
655 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
656
657 if (!rq)
658 return NULL;
659
660 blk_rq_init(q, rq);
661
662 rq->cmd_flags = flags | REQ_ALLOCED;
663
664 if (priv) {
665 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
666 mempool_free(rq, q->rq.rq_pool);
667 return NULL;
668 }
669 rq->cmd_flags |= REQ_ELVPRIV;
670 }
671
672 return rq;
673 }
674
675 /*
676 * ioc_batching returns true if the ioc is a valid batching request and
677 * should be given priority access to a request.
678 */
679 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
680 {
681 if (!ioc)
682 return 0;
683
684 /*
685 * Make sure the process is able to allocate at least 1 request
686 * even if the batch times out, otherwise we could theoretically
687 * lose wakeups.
688 */
689 return ioc->nr_batch_requests == q->nr_batching ||
690 (ioc->nr_batch_requests > 0
691 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
692 }
693
694 /*
695 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
696 * will cause the process to be a "batcher" on all queues in the system. This
697 * is the behaviour we want though - once it gets a wakeup it should be given
698 * a nice run.
699 */
700 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
701 {
702 if (!ioc || ioc_batching(q, ioc))
703 return;
704
705 ioc->nr_batch_requests = q->nr_batching;
706 ioc->last_waited = jiffies;
707 }
708
709 static void __freed_request(struct request_queue *q, int sync)
710 {
711 struct request_list *rl = &q->rq;
712
713 if (rl->count[sync] < queue_congestion_off_threshold(q))
714 blk_clear_queue_congested(q, sync);
715
716 if (rl->count[sync] + 1 <= q->nr_requests) {
717 if (waitqueue_active(&rl->wait[sync]))
718 wake_up(&rl->wait[sync]);
719
720 blk_clear_queue_full(q, sync);
721 }
722 }
723
724 /*
725 * A request has just been released. Account for it, update the full and
726 * congestion status, wake up any waiters. Called under q->queue_lock.
727 */
728 static void freed_request(struct request_queue *q, int sync, int priv)
729 {
730 struct request_list *rl = &q->rq;
731
732 rl->count[sync]--;
733 if (priv)
734 rl->elvpriv--;
735
736 __freed_request(q, sync);
737
738 if (unlikely(rl->starved[sync ^ 1]))
739 __freed_request(q, sync ^ 1);
740 }
741
742 /*
743 * Get a free request, queue_lock must be held.
744 * Returns NULL on failure, with queue_lock held.
745 * Returns !NULL on success, with queue_lock *not held*.
746 */
747 static struct request *get_request(struct request_queue *q, int rw_flags,
748 struct bio *bio, gfp_t gfp_mask)
749 {
750 struct request *rq = NULL;
751 struct request_list *rl = &q->rq;
752 struct io_context *ioc = NULL;
753 const bool is_sync = rw_is_sync(rw_flags) != 0;
754 int may_queue, priv;
755
756 may_queue = elv_may_queue(q, rw_flags);
757 if (may_queue == ELV_MQUEUE_NO)
758 goto rq_starved;
759
760 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
761 if (rl->count[is_sync]+1 >= q->nr_requests) {
762 ioc = current_io_context(GFP_ATOMIC, q->node);
763 /*
764 * The queue will fill after this allocation, so set
765 * it as full, and mark this process as "batching".
766 * This process will be allowed to complete a batch of
767 * requests, others will be blocked.
768 */
769 if (!blk_queue_full(q, is_sync)) {
770 ioc_set_batching(q, ioc);
771 blk_set_queue_full(q, is_sync);
772 } else {
773 if (may_queue != ELV_MQUEUE_MUST
774 && !ioc_batching(q, ioc)) {
775 /*
776 * The queue is full and the allocating
777 * process is not a "batcher", and not
778 * exempted by the IO scheduler
779 */
780 goto out;
781 }
782 }
783 }
784 blk_set_queue_congested(q, is_sync);
785 }
786
787 /*
788 * Only allow batching queuers to allocate up to 50% over the defined
789 * limit of requests, otherwise we could have thousands of requests
790 * allocated with any setting of ->nr_requests
791 */
792 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
793 goto out;
794
795 rl->count[is_sync]++;
796 rl->starved[is_sync] = 0;
797
798 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
799 if (priv)
800 rl->elvpriv++;
801
802 if (blk_queue_io_stat(q))
803 rw_flags |= REQ_IO_STAT;
804 spin_unlock_irq(q->queue_lock);
805
806 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
807 if (unlikely(!rq)) {
808 /*
809 * Allocation failed presumably due to memory. Undo anything
810 * we might have messed up.
811 *
812 * Allocating task should really be put onto the front of the
813 * wait queue, but this is pretty rare.
814 */
815 spin_lock_irq(q->queue_lock);
816 freed_request(q, is_sync, priv);
817
818 /*
819 * in the very unlikely event that allocation failed and no
820 * requests for this direction was pending, mark us starved
821 * so that freeing of a request in the other direction will
822 * notice us. another possible fix would be to split the
823 * rq mempool into READ and WRITE
824 */
825 rq_starved:
826 if (unlikely(rl->count[is_sync] == 0))
827 rl->starved[is_sync] = 1;
828
829 goto out;
830 }
831
832 /*
833 * ioc may be NULL here, and ioc_batching will be false. That's
834 * OK, if the queue is under the request limit then requests need
835 * not count toward the nr_batch_requests limit. There will always
836 * be some limit enforced by BLK_BATCH_TIME.
837 */
838 if (ioc_batching(q, ioc))
839 ioc->nr_batch_requests--;
840
841 trace_block_getrq(q, bio, rw_flags & 1);
842 out:
843 return rq;
844 }
845
846 /*
847 * No available requests for this queue, unplug the device and wait for some
848 * requests to become available.
849 *
850 * Called with q->queue_lock held, and returns with it unlocked.
851 */
852 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
853 struct bio *bio)
854 {
855 const bool is_sync = rw_is_sync(rw_flags) != 0;
856 struct request *rq;
857
858 rq = get_request(q, rw_flags, bio, GFP_NOIO);
859 while (!rq) {
860 DEFINE_WAIT(wait);
861 struct io_context *ioc;
862 struct request_list *rl = &q->rq;
863
864 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
865 TASK_UNINTERRUPTIBLE);
866
867 trace_block_sleeprq(q, bio, rw_flags & 1);
868
869 __generic_unplug_device(q);
870 spin_unlock_irq(q->queue_lock);
871 io_schedule();
872
873 /*
874 * After sleeping, we become a "batching" process and
875 * will be able to allocate at least one request, and
876 * up to a big batch of them for a small period time.
877 * See ioc_batching, ioc_set_batching
878 */
879 ioc = current_io_context(GFP_NOIO, q->node);
880 ioc_set_batching(q, ioc);
881
882 spin_lock_irq(q->queue_lock);
883 finish_wait(&rl->wait[is_sync], &wait);
884
885 rq = get_request(q, rw_flags, bio, GFP_NOIO);
886 };
887
888 return rq;
889 }
890
891 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
892 {
893 struct request *rq;
894
895 BUG_ON(rw != READ && rw != WRITE);
896
897 spin_lock_irq(q->queue_lock);
898 if (gfp_mask & __GFP_WAIT) {
899 rq = get_request_wait(q, rw, NULL);
900 } else {
901 rq = get_request(q, rw, NULL, gfp_mask);
902 if (!rq)
903 spin_unlock_irq(q->queue_lock);
904 }
905 /* q->queue_lock is unlocked at this point */
906
907 return rq;
908 }
909 EXPORT_SYMBOL(blk_get_request);
910
911 /**
912 * blk_make_request - given a bio, allocate a corresponding struct request.
913 * @q: target request queue
914 * @bio: The bio describing the memory mappings that will be submitted for IO.
915 * It may be a chained-bio properly constructed by block/bio layer.
916 * @gfp_mask: gfp flags to be used for memory allocation
917 *
918 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
919 * type commands. Where the struct request needs to be farther initialized by
920 * the caller. It is passed a &struct bio, which describes the memory info of
921 * the I/O transfer.
922 *
923 * The caller of blk_make_request must make sure that bi_io_vec
924 * are set to describe the memory buffers. That bio_data_dir() will return
925 * the needed direction of the request. (And all bio's in the passed bio-chain
926 * are properly set accordingly)
927 *
928 * If called under none-sleepable conditions, mapped bio buffers must not
929 * need bouncing, by calling the appropriate masked or flagged allocator,
930 * suitable for the target device. Otherwise the call to blk_queue_bounce will
931 * BUG.
932 *
933 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
934 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
935 * anything but the first bio in the chain. Otherwise you risk waiting for IO
936 * completion of a bio that hasn't been submitted yet, thus resulting in a
937 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
938 * of bio_alloc(), as that avoids the mempool deadlock.
939 * If possible a big IO should be split into smaller parts when allocation
940 * fails. Partial allocation should not be an error, or you risk a live-lock.
941 */
942 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
943 gfp_t gfp_mask)
944 {
945 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
946
947 if (unlikely(!rq))
948 return ERR_PTR(-ENOMEM);
949
950 for_each_bio(bio) {
951 struct bio *bounce_bio = bio;
952 int ret;
953
954 blk_queue_bounce(q, &bounce_bio);
955 ret = blk_rq_append_bio(q, rq, bounce_bio);
956 if (unlikely(ret)) {
957 blk_put_request(rq);
958 return ERR_PTR(ret);
959 }
960 }
961
962 return rq;
963 }
964 EXPORT_SYMBOL(blk_make_request);
965
966 /**
967 * blk_requeue_request - put a request back on queue
968 * @q: request queue where request should be inserted
969 * @rq: request to be inserted
970 *
971 * Description:
972 * Drivers often keep queueing requests until the hardware cannot accept
973 * more, when that condition happens we need to put the request back
974 * on the queue. Must be called with queue lock held.
975 */
976 void blk_requeue_request(struct request_queue *q, struct request *rq)
977 {
978 blk_delete_timer(rq);
979 blk_clear_rq_complete(rq);
980 trace_block_rq_requeue(q, rq);
981
982 if (blk_rq_tagged(rq))
983 blk_queue_end_tag(q, rq);
984
985 BUG_ON(blk_queued_rq(rq));
986
987 elv_requeue_request(q, rq);
988 }
989 EXPORT_SYMBOL(blk_requeue_request);
990
991 /**
992 * blk_insert_request - insert a special request into a request queue
993 * @q: request queue where request should be inserted
994 * @rq: request to be inserted
995 * @at_head: insert request at head or tail of queue
996 * @data: private data
997 *
998 * Description:
999 * Many block devices need to execute commands asynchronously, so they don't
1000 * block the whole kernel from preemption during request execution. This is
1001 * accomplished normally by inserting aritficial requests tagged as
1002 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
1003 * be scheduled for actual execution by the request queue.
1004 *
1005 * We have the option of inserting the head or the tail of the queue.
1006 * Typically we use the tail for new ioctls and so forth. We use the head
1007 * of the queue for things like a QUEUE_FULL message from a device, or a
1008 * host that is unable to accept a particular command.
1009 */
1010 void blk_insert_request(struct request_queue *q, struct request *rq,
1011 int at_head, void *data)
1012 {
1013 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1014 unsigned long flags;
1015
1016 /*
1017 * tell I/O scheduler that this isn't a regular read/write (ie it
1018 * must not attempt merges on this) and that it acts as a soft
1019 * barrier
1020 */
1021 rq->cmd_type = REQ_TYPE_SPECIAL;
1022
1023 rq->special = data;
1024
1025 spin_lock_irqsave(q->queue_lock, flags);
1026
1027 /*
1028 * If command is tagged, release the tag
1029 */
1030 if (blk_rq_tagged(rq))
1031 blk_queue_end_tag(q, rq);
1032
1033 drive_stat_acct(rq, 1);
1034 __elv_add_request(q, rq, where, 0);
1035 __blk_run_queue(q);
1036 spin_unlock_irqrestore(q->queue_lock, flags);
1037 }
1038 EXPORT_SYMBOL(blk_insert_request);
1039
1040 static void part_round_stats_single(int cpu, struct hd_struct *part,
1041 unsigned long now)
1042 {
1043 if (now == part->stamp)
1044 return;
1045
1046 if (part_in_flight(part)) {
1047 __part_stat_add(cpu, part, time_in_queue,
1048 part_in_flight(part) * (now - part->stamp));
1049 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1050 }
1051 part->stamp = now;
1052 }
1053
1054 /**
1055 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1056 * @cpu: cpu number for stats access
1057 * @part: target partition
1058 *
1059 * The average IO queue length and utilisation statistics are maintained
1060 * by observing the current state of the queue length and the amount of
1061 * time it has been in this state for.
1062 *
1063 * Normally, that accounting is done on IO completion, but that can result
1064 * in more than a second's worth of IO being accounted for within any one
1065 * second, leading to >100% utilisation. To deal with that, we call this
1066 * function to do a round-off before returning the results when reading
1067 * /proc/diskstats. This accounts immediately for all queue usage up to
1068 * the current jiffies and restarts the counters again.
1069 */
1070 void part_round_stats(int cpu, struct hd_struct *part)
1071 {
1072 unsigned long now = jiffies;
1073
1074 if (part->partno)
1075 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1076 part_round_stats_single(cpu, part, now);
1077 }
1078 EXPORT_SYMBOL_GPL(part_round_stats);
1079
1080 /*
1081 * queue lock must be held
1082 */
1083 void __blk_put_request(struct request_queue *q, struct request *req)
1084 {
1085 if (unlikely(!q))
1086 return;
1087 if (unlikely(--req->ref_count))
1088 return;
1089
1090 elv_completed_request(q, req);
1091
1092 /* this is a bio leak */
1093 WARN_ON(req->bio != NULL);
1094
1095 /*
1096 * Request may not have originated from ll_rw_blk. if not,
1097 * it didn't come out of our reserved rq pools
1098 */
1099 if (req->cmd_flags & REQ_ALLOCED) {
1100 int is_sync = rq_is_sync(req) != 0;
1101 int priv = req->cmd_flags & REQ_ELVPRIV;
1102
1103 BUG_ON(!list_empty(&req->queuelist));
1104 BUG_ON(!hlist_unhashed(&req->hash));
1105
1106 blk_free_request(q, req);
1107 freed_request(q, is_sync, priv);
1108 }
1109 }
1110 EXPORT_SYMBOL_GPL(__blk_put_request);
1111
1112 void blk_put_request(struct request *req)
1113 {
1114 unsigned long flags;
1115 struct request_queue *q = req->q;
1116
1117 spin_lock_irqsave(q->queue_lock, flags);
1118 __blk_put_request(q, req);
1119 spin_unlock_irqrestore(q->queue_lock, flags);
1120 }
1121 EXPORT_SYMBOL(blk_put_request);
1122
1123 /**
1124 * blk_add_request_payload - add a payload to a request
1125 * @rq: request to update
1126 * @page: page backing the payload
1127 * @len: length of the payload.
1128 *
1129 * This allows to later add a payload to an already submitted request by
1130 * a block driver. The driver needs to take care of freeing the payload
1131 * itself.
1132 *
1133 * Note that this is a quite horrible hack and nothing but handling of
1134 * discard requests should ever use it.
1135 */
1136 void blk_add_request_payload(struct request *rq, struct page *page,
1137 unsigned int len)
1138 {
1139 struct bio *bio = rq->bio;
1140
1141 bio->bi_io_vec->bv_page = page;
1142 bio->bi_io_vec->bv_offset = 0;
1143 bio->bi_io_vec->bv_len = len;
1144
1145 bio->bi_size = len;
1146 bio->bi_vcnt = 1;
1147 bio->bi_phys_segments = 1;
1148
1149 rq->__data_len = rq->resid_len = len;
1150 rq->nr_phys_segments = 1;
1151 rq->buffer = bio_data(bio);
1152 }
1153 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1154
1155 void init_request_from_bio(struct request *req, struct bio *bio)
1156 {
1157 req->cpu = bio->bi_comp_cpu;
1158 req->cmd_type = REQ_TYPE_FS;
1159
1160 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1161 if (bio->bi_rw & REQ_RAHEAD)
1162 req->cmd_flags |= REQ_FAILFAST_MASK;
1163
1164 req->errors = 0;
1165 req->__sector = bio->bi_sector;
1166 req->ioprio = bio_prio(bio);
1167 blk_rq_bio_prep(req->q, req, bio);
1168 }
1169
1170 /*
1171 * Only disabling plugging for non-rotational devices if it does tagging
1172 * as well, otherwise we do need the proper merging
1173 */
1174 static inline bool queue_should_plug(struct request_queue *q)
1175 {
1176 return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
1177 }
1178
1179 static int __make_request(struct request_queue *q, struct bio *bio)
1180 {
1181 struct request *req;
1182 int el_ret;
1183 unsigned int bytes = bio->bi_size;
1184 const unsigned short prio = bio_prio(bio);
1185 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1186 const bool unplug = !!(bio->bi_rw & REQ_UNPLUG);
1187 const unsigned long ff = bio->bi_rw & REQ_FAILFAST_MASK;
1188 int where = ELEVATOR_INSERT_SORT;
1189 int rw_flags;
1190
1191 /* REQ_HARDBARRIER is no more */
1192 if (WARN_ONCE(bio->bi_rw & REQ_HARDBARRIER,
1193 "block: HARDBARRIER is deprecated, use FLUSH/FUA instead\n")) {
1194 bio_endio(bio, -EOPNOTSUPP);
1195 return 0;
1196 }
1197
1198 /*
1199 * low level driver can indicate that it wants pages above a
1200 * certain limit bounced to low memory (ie for highmem, or even
1201 * ISA dma in theory)
1202 */
1203 blk_queue_bounce(q, &bio);
1204
1205 spin_lock_irq(q->queue_lock);
1206
1207 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1208 where = ELEVATOR_INSERT_FRONT;
1209 goto get_rq;
1210 }
1211
1212 if (elv_queue_empty(q))
1213 goto get_rq;
1214
1215 el_ret = elv_merge(q, &req, bio);
1216 switch (el_ret) {
1217 case ELEVATOR_BACK_MERGE:
1218 BUG_ON(!rq_mergeable(req));
1219
1220 if (!ll_back_merge_fn(q, req, bio))
1221 break;
1222
1223 trace_block_bio_backmerge(q, bio);
1224
1225 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1226 blk_rq_set_mixed_merge(req);
1227
1228 req->biotail->bi_next = bio;
1229 req->biotail = bio;
1230 req->__data_len += bytes;
1231 req->ioprio = ioprio_best(req->ioprio, prio);
1232 if (!blk_rq_cpu_valid(req))
1233 req->cpu = bio->bi_comp_cpu;
1234 drive_stat_acct(req, 0);
1235 elv_bio_merged(q, req, bio);
1236 if (!attempt_back_merge(q, req))
1237 elv_merged_request(q, req, el_ret);
1238 goto out;
1239
1240 case ELEVATOR_FRONT_MERGE:
1241 BUG_ON(!rq_mergeable(req));
1242
1243 if (!ll_front_merge_fn(q, req, bio))
1244 break;
1245
1246 trace_block_bio_frontmerge(q, bio);
1247
1248 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) {
1249 blk_rq_set_mixed_merge(req);
1250 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1251 req->cmd_flags |= ff;
1252 }
1253
1254 bio->bi_next = req->bio;
1255 req->bio = bio;
1256
1257 /*
1258 * may not be valid. if the low level driver said
1259 * it didn't need a bounce buffer then it better
1260 * not touch req->buffer either...
1261 */
1262 req->buffer = bio_data(bio);
1263 req->__sector = bio->bi_sector;
1264 req->__data_len += bytes;
1265 req->ioprio = ioprio_best(req->ioprio, prio);
1266 if (!blk_rq_cpu_valid(req))
1267 req->cpu = bio->bi_comp_cpu;
1268 drive_stat_acct(req, 0);
1269 elv_bio_merged(q, req, bio);
1270 if (!attempt_front_merge(q, req))
1271 elv_merged_request(q, req, el_ret);
1272 goto out;
1273
1274 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1275 default:
1276 ;
1277 }
1278
1279 get_rq:
1280 /*
1281 * This sync check and mask will be re-done in init_request_from_bio(),
1282 * but we need to set it earlier to expose the sync flag to the
1283 * rq allocator and io schedulers.
1284 */
1285 rw_flags = bio_data_dir(bio);
1286 if (sync)
1287 rw_flags |= REQ_SYNC;
1288
1289 /*
1290 * Grab a free request. This is might sleep but can not fail.
1291 * Returns with the queue unlocked.
1292 */
1293 req = get_request_wait(q, rw_flags, bio);
1294
1295 /*
1296 * After dropping the lock and possibly sleeping here, our request
1297 * may now be mergeable after it had proven unmergeable (above).
1298 * We don't worry about that case for efficiency. It won't happen
1299 * often, and the elevators are able to handle it.
1300 */
1301 init_request_from_bio(req, bio);
1302
1303 spin_lock_irq(q->queue_lock);
1304 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1305 bio_flagged(bio, BIO_CPU_AFFINE))
1306 req->cpu = blk_cpu_to_group(smp_processor_id());
1307 if (queue_should_plug(q) && elv_queue_empty(q))
1308 blk_plug_device(q);
1309
1310 /* insert the request into the elevator */
1311 drive_stat_acct(req, 1);
1312 __elv_add_request(q, req, where, 0);
1313 out:
1314 if (unplug || !queue_should_plug(q))
1315 __generic_unplug_device(q);
1316 spin_unlock_irq(q->queue_lock);
1317 return 0;
1318 }
1319
1320 /*
1321 * If bio->bi_dev is a partition, remap the location
1322 */
1323 static inline void blk_partition_remap(struct bio *bio)
1324 {
1325 struct block_device *bdev = bio->bi_bdev;
1326
1327 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1328 struct hd_struct *p = bdev->bd_part;
1329
1330 bio->bi_sector += p->start_sect;
1331 bio->bi_bdev = bdev->bd_contains;
1332
1333 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
1334 bdev->bd_dev,
1335 bio->bi_sector - p->start_sect);
1336 }
1337 }
1338
1339 static void handle_bad_sector(struct bio *bio)
1340 {
1341 char b[BDEVNAME_SIZE];
1342
1343 printk(KERN_INFO "attempt to access beyond end of device\n");
1344 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1345 bdevname(bio->bi_bdev, b),
1346 bio->bi_rw,
1347 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1348 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1349
1350 set_bit(BIO_EOF, &bio->bi_flags);
1351 }
1352
1353 #ifdef CONFIG_FAIL_MAKE_REQUEST
1354
1355 static DECLARE_FAULT_ATTR(fail_make_request);
1356
1357 static int __init setup_fail_make_request(char *str)
1358 {
1359 return setup_fault_attr(&fail_make_request, str);
1360 }
1361 __setup("fail_make_request=", setup_fail_make_request);
1362
1363 static int should_fail_request(struct bio *bio)
1364 {
1365 struct hd_struct *part = bio->bi_bdev->bd_part;
1366
1367 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1368 return should_fail(&fail_make_request, bio->bi_size);
1369
1370 return 0;
1371 }
1372
1373 static int __init fail_make_request_debugfs(void)
1374 {
1375 return init_fault_attr_dentries(&fail_make_request,
1376 "fail_make_request");
1377 }
1378
1379 late_initcall(fail_make_request_debugfs);
1380
1381 #else /* CONFIG_FAIL_MAKE_REQUEST */
1382
1383 static inline int should_fail_request(struct bio *bio)
1384 {
1385 return 0;
1386 }
1387
1388 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1389
1390 /*
1391 * Check whether this bio extends beyond the end of the device.
1392 */
1393 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1394 {
1395 sector_t maxsector;
1396
1397 if (!nr_sectors)
1398 return 0;
1399
1400 /* Test device or partition size, when known. */
1401 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1402 if (maxsector) {
1403 sector_t sector = bio->bi_sector;
1404
1405 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1406 /*
1407 * This may well happen - the kernel calls bread()
1408 * without checking the size of the device, e.g., when
1409 * mounting a device.
1410 */
1411 handle_bad_sector(bio);
1412 return 1;
1413 }
1414 }
1415
1416 return 0;
1417 }
1418
1419 /**
1420 * generic_make_request - hand a buffer to its device driver for I/O
1421 * @bio: The bio describing the location in memory and on the device.
1422 *
1423 * generic_make_request() is used to make I/O requests of block
1424 * devices. It is passed a &struct bio, which describes the I/O that needs
1425 * to be done.
1426 *
1427 * generic_make_request() does not return any status. The
1428 * success/failure status of the request, along with notification of
1429 * completion, is delivered asynchronously through the bio->bi_end_io
1430 * function described (one day) else where.
1431 *
1432 * The caller of generic_make_request must make sure that bi_io_vec
1433 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1434 * set to describe the device address, and the
1435 * bi_end_io and optionally bi_private are set to describe how
1436 * completion notification should be signaled.
1437 *
1438 * generic_make_request and the drivers it calls may use bi_next if this
1439 * bio happens to be merged with someone else, and may change bi_dev and
1440 * bi_sector for remaps as it sees fit. So the values of these fields
1441 * should NOT be depended on after the call to generic_make_request.
1442 */
1443 static inline void __generic_make_request(struct bio *bio)
1444 {
1445 struct request_queue *q;
1446 sector_t old_sector;
1447 int ret, nr_sectors = bio_sectors(bio);
1448 dev_t old_dev;
1449 int err = -EIO;
1450
1451 might_sleep();
1452
1453 if (bio_check_eod(bio, nr_sectors))
1454 goto end_io;
1455
1456 /*
1457 * Resolve the mapping until finished. (drivers are
1458 * still free to implement/resolve their own stacking
1459 * by explicitly returning 0)
1460 *
1461 * NOTE: we don't repeat the blk_size check for each new device.
1462 * Stacking drivers are expected to know what they are doing.
1463 */
1464 old_sector = -1;
1465 old_dev = 0;
1466 do {
1467 char b[BDEVNAME_SIZE];
1468
1469 q = bdev_get_queue(bio->bi_bdev);
1470 if (unlikely(!q)) {
1471 printk(KERN_ERR
1472 "generic_make_request: Trying to access "
1473 "nonexistent block-device %s (%Lu)\n",
1474 bdevname(bio->bi_bdev, b),
1475 (long long) bio->bi_sector);
1476 goto end_io;
1477 }
1478
1479 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1480 nr_sectors > queue_max_hw_sectors(q))) {
1481 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1482 bdevname(bio->bi_bdev, b),
1483 bio_sectors(bio),
1484 queue_max_hw_sectors(q));
1485 goto end_io;
1486 }
1487
1488 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1489 goto end_io;
1490
1491 if (should_fail_request(bio))
1492 goto end_io;
1493
1494 /*
1495 * If this device has partitions, remap block n
1496 * of partition p to block n+start(p) of the disk.
1497 */
1498 blk_partition_remap(bio);
1499
1500 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1501 goto end_io;
1502
1503 if (old_sector != -1)
1504 trace_block_remap(q, bio, old_dev, old_sector);
1505
1506 old_sector = bio->bi_sector;
1507 old_dev = bio->bi_bdev->bd_dev;
1508
1509 if (bio_check_eod(bio, nr_sectors))
1510 goto end_io;
1511
1512 /*
1513 * Filter flush bio's early so that make_request based
1514 * drivers without flush support don't have to worry
1515 * about them.
1516 */
1517 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1518 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1519 if (!nr_sectors) {
1520 err = 0;
1521 goto end_io;
1522 }
1523 }
1524
1525 if ((bio->bi_rw & REQ_DISCARD) &&
1526 (!blk_queue_discard(q) ||
1527 ((bio->bi_rw & REQ_SECURE) &&
1528 !blk_queue_secdiscard(q)))) {
1529 err = -EOPNOTSUPP;
1530 goto end_io;
1531 }
1532
1533 trace_block_bio_queue(q, bio);
1534
1535 ret = q->make_request_fn(q, bio);
1536 } while (ret);
1537
1538 return;
1539
1540 end_io:
1541 bio_endio(bio, err);
1542 }
1543
1544 /*
1545 * We only want one ->make_request_fn to be active at a time,
1546 * else stack usage with stacked devices could be a problem.
1547 * So use current->bio_list to keep a list of requests
1548 * submited by a make_request_fn function.
1549 * current->bio_list is also used as a flag to say if
1550 * generic_make_request is currently active in this task or not.
1551 * If it is NULL, then no make_request is active. If it is non-NULL,
1552 * then a make_request is active, and new requests should be added
1553 * at the tail
1554 */
1555 void generic_make_request(struct bio *bio)
1556 {
1557 struct bio_list bio_list_on_stack;
1558
1559 if (current->bio_list) {
1560 /* make_request is active */
1561 bio_list_add(current->bio_list, bio);
1562 return;
1563 }
1564 /* following loop may be a bit non-obvious, and so deserves some
1565 * explanation.
1566 * Before entering the loop, bio->bi_next is NULL (as all callers
1567 * ensure that) so we have a list with a single bio.
1568 * We pretend that we have just taken it off a longer list, so
1569 * we assign bio_list to a pointer to the bio_list_on_stack,
1570 * thus initialising the bio_list of new bios to be
1571 * added. __generic_make_request may indeed add some more bios
1572 * through a recursive call to generic_make_request. If it
1573 * did, we find a non-NULL value in bio_list and re-enter the loop
1574 * from the top. In this case we really did just take the bio
1575 * of the top of the list (no pretending) and so remove it from
1576 * bio_list, and call into __generic_make_request again.
1577 *
1578 * The loop was structured like this to make only one call to
1579 * __generic_make_request (which is important as it is large and
1580 * inlined) and to keep the structure simple.
1581 */
1582 BUG_ON(bio->bi_next);
1583 bio_list_init(&bio_list_on_stack);
1584 current->bio_list = &bio_list_on_stack;
1585 do {
1586 __generic_make_request(bio);
1587 bio = bio_list_pop(current->bio_list);
1588 } while (bio);
1589 current->bio_list = NULL; /* deactivate */
1590 }
1591 EXPORT_SYMBOL(generic_make_request);
1592
1593 /**
1594 * submit_bio - submit a bio to the block device layer for I/O
1595 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1596 * @bio: The &struct bio which describes the I/O
1597 *
1598 * submit_bio() is very similar in purpose to generic_make_request(), and
1599 * uses that function to do most of the work. Both are fairly rough
1600 * interfaces; @bio must be presetup and ready for I/O.
1601 *
1602 */
1603 void submit_bio(int rw, struct bio *bio)
1604 {
1605 int count = bio_sectors(bio);
1606
1607 bio->bi_rw |= rw;
1608
1609 /*
1610 * If it's a regular read/write or a barrier with data attached,
1611 * go through the normal accounting stuff before submission.
1612 */
1613 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1614 if (rw & WRITE) {
1615 count_vm_events(PGPGOUT, count);
1616 } else {
1617 task_io_account_read(bio->bi_size);
1618 count_vm_events(PGPGIN, count);
1619 }
1620
1621 if (unlikely(block_dump)) {
1622 char b[BDEVNAME_SIZE];
1623 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1624 current->comm, task_pid_nr(current),
1625 (rw & WRITE) ? "WRITE" : "READ",
1626 (unsigned long long)bio->bi_sector,
1627 bdevname(bio->bi_bdev, b));
1628 }
1629 }
1630
1631 generic_make_request(bio);
1632 }
1633 EXPORT_SYMBOL(submit_bio);
1634
1635 /**
1636 * blk_rq_check_limits - Helper function to check a request for the queue limit
1637 * @q: the queue
1638 * @rq: the request being checked
1639 *
1640 * Description:
1641 * @rq may have been made based on weaker limitations of upper-level queues
1642 * in request stacking drivers, and it may violate the limitation of @q.
1643 * Since the block layer and the underlying device driver trust @rq
1644 * after it is inserted to @q, it should be checked against @q before
1645 * the insertion using this generic function.
1646 *
1647 * This function should also be useful for request stacking drivers
1648 * in some cases below, so export this fuction.
1649 * Request stacking drivers like request-based dm may change the queue
1650 * limits while requests are in the queue (e.g. dm's table swapping).
1651 * Such request stacking drivers should check those requests agaist
1652 * the new queue limits again when they dispatch those requests,
1653 * although such checkings are also done against the old queue limits
1654 * when submitting requests.
1655 */
1656 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1657 {
1658 if (rq->cmd_flags & REQ_DISCARD)
1659 return 0;
1660
1661 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1662 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1663 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1664 return -EIO;
1665 }
1666
1667 /*
1668 * queue's settings related to segment counting like q->bounce_pfn
1669 * may differ from that of other stacking queues.
1670 * Recalculate it to check the request correctly on this queue's
1671 * limitation.
1672 */
1673 blk_recalc_rq_segments(rq);
1674 if (rq->nr_phys_segments > queue_max_segments(q)) {
1675 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1676 return -EIO;
1677 }
1678
1679 return 0;
1680 }
1681 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1682
1683 /**
1684 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1685 * @q: the queue to submit the request
1686 * @rq: the request being queued
1687 */
1688 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1689 {
1690 unsigned long flags;
1691
1692 if (blk_rq_check_limits(q, rq))
1693 return -EIO;
1694
1695 #ifdef CONFIG_FAIL_MAKE_REQUEST
1696 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1697 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1698 return -EIO;
1699 #endif
1700
1701 spin_lock_irqsave(q->queue_lock, flags);
1702
1703 /*
1704 * Submitting request must be dequeued before calling this function
1705 * because it will be linked to another request_queue
1706 */
1707 BUG_ON(blk_queued_rq(rq));
1708
1709 drive_stat_acct(rq, 1);
1710 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1711
1712 spin_unlock_irqrestore(q->queue_lock, flags);
1713
1714 return 0;
1715 }
1716 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1717
1718 /**
1719 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1720 * @rq: request to examine
1721 *
1722 * Description:
1723 * A request could be merge of IOs which require different failure
1724 * handling. This function determines the number of bytes which
1725 * can be failed from the beginning of the request without
1726 * crossing into area which need to be retried further.
1727 *
1728 * Return:
1729 * The number of bytes to fail.
1730 *
1731 * Context:
1732 * queue_lock must be held.
1733 */
1734 unsigned int blk_rq_err_bytes(const struct request *rq)
1735 {
1736 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1737 unsigned int bytes = 0;
1738 struct bio *bio;
1739
1740 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1741 return blk_rq_bytes(rq);
1742
1743 /*
1744 * Currently the only 'mixing' which can happen is between
1745 * different fastfail types. We can safely fail portions
1746 * which have all the failfast bits that the first one has -
1747 * the ones which are at least as eager to fail as the first
1748 * one.
1749 */
1750 for (bio = rq->bio; bio; bio = bio->bi_next) {
1751 if ((bio->bi_rw & ff) != ff)
1752 break;
1753 bytes += bio->bi_size;
1754 }
1755
1756 /* this could lead to infinite loop */
1757 BUG_ON(blk_rq_bytes(rq) && !bytes);
1758 return bytes;
1759 }
1760 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1761
1762 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1763 {
1764 if (blk_do_io_stat(req)) {
1765 const int rw = rq_data_dir(req);
1766 struct hd_struct *part;
1767 int cpu;
1768
1769 cpu = part_stat_lock();
1770 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
1771 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1772 part_stat_unlock();
1773 }
1774 }
1775
1776 static void blk_account_io_done(struct request *req)
1777 {
1778 /*
1779 * Account IO completion. flush_rq isn't accounted as a
1780 * normal IO on queueing nor completion. Accounting the
1781 * containing request is enough.
1782 */
1783 if (blk_do_io_stat(req) && req != &req->q->flush_rq) {
1784 unsigned long duration = jiffies - req->start_time;
1785 const int rw = rq_data_dir(req);
1786 struct hd_struct *part;
1787 int cpu;
1788
1789 cpu = part_stat_lock();
1790 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
1791
1792 part_stat_inc(cpu, part, ios[rw]);
1793 part_stat_add(cpu, part, ticks[rw], duration);
1794 part_round_stats(cpu, part);
1795 part_dec_in_flight(part, rw);
1796
1797 part_stat_unlock();
1798 }
1799 }
1800
1801 /**
1802 * blk_peek_request - peek at the top of a request queue
1803 * @q: request queue to peek at
1804 *
1805 * Description:
1806 * Return the request at the top of @q. The returned request
1807 * should be started using blk_start_request() before LLD starts
1808 * processing it.
1809 *
1810 * Return:
1811 * Pointer to the request at the top of @q if available. Null
1812 * otherwise.
1813 *
1814 * Context:
1815 * queue_lock must be held.
1816 */
1817 struct request *blk_peek_request(struct request_queue *q)
1818 {
1819 struct request *rq;
1820 int ret;
1821
1822 while ((rq = __elv_next_request(q)) != NULL) {
1823 if (!(rq->cmd_flags & REQ_STARTED)) {
1824 /*
1825 * This is the first time the device driver
1826 * sees this request (possibly after
1827 * requeueing). Notify IO scheduler.
1828 */
1829 if (rq->cmd_flags & REQ_SORTED)
1830 elv_activate_rq(q, rq);
1831
1832 /*
1833 * just mark as started even if we don't start
1834 * it, a request that has been delayed should
1835 * not be passed by new incoming requests
1836 */
1837 rq->cmd_flags |= REQ_STARTED;
1838 trace_block_rq_issue(q, rq);
1839 }
1840
1841 if (!q->boundary_rq || q->boundary_rq == rq) {
1842 q->end_sector = rq_end_sector(rq);
1843 q->boundary_rq = NULL;
1844 }
1845
1846 if (rq->cmd_flags & REQ_DONTPREP)
1847 break;
1848
1849 if (q->dma_drain_size && blk_rq_bytes(rq)) {
1850 /*
1851 * make sure space for the drain appears we
1852 * know we can do this because max_hw_segments
1853 * has been adjusted to be one fewer than the
1854 * device can handle
1855 */
1856 rq->nr_phys_segments++;
1857 }
1858
1859 if (!q->prep_rq_fn)
1860 break;
1861
1862 ret = q->prep_rq_fn(q, rq);
1863 if (ret == BLKPREP_OK) {
1864 break;
1865 } else if (ret == BLKPREP_DEFER) {
1866 /*
1867 * the request may have been (partially) prepped.
1868 * we need to keep this request in the front to
1869 * avoid resource deadlock. REQ_STARTED will
1870 * prevent other fs requests from passing this one.
1871 */
1872 if (q->dma_drain_size && blk_rq_bytes(rq) &&
1873 !(rq->cmd_flags & REQ_DONTPREP)) {
1874 /*
1875 * remove the space for the drain we added
1876 * so that we don't add it again
1877 */
1878 --rq->nr_phys_segments;
1879 }
1880
1881 rq = NULL;
1882 break;
1883 } else if (ret == BLKPREP_KILL) {
1884 rq->cmd_flags |= REQ_QUIET;
1885 /*
1886 * Mark this request as started so we don't trigger
1887 * any debug logic in the end I/O path.
1888 */
1889 blk_start_request(rq);
1890 __blk_end_request_all(rq, -EIO);
1891 } else {
1892 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1893 break;
1894 }
1895 }
1896
1897 return rq;
1898 }
1899 EXPORT_SYMBOL(blk_peek_request);
1900
1901 void blk_dequeue_request(struct request *rq)
1902 {
1903 struct request_queue *q = rq->q;
1904
1905 BUG_ON(list_empty(&rq->queuelist));
1906 BUG_ON(ELV_ON_HASH(rq));
1907
1908 list_del_init(&rq->queuelist);
1909
1910 /*
1911 * the time frame between a request being removed from the lists
1912 * and to it is freed is accounted as io that is in progress at
1913 * the driver side.
1914 */
1915 if (blk_account_rq(rq)) {
1916 q->in_flight[rq_is_sync(rq)]++;
1917 set_io_start_time_ns(rq);
1918 }
1919 }
1920
1921 /**
1922 * blk_start_request - start request processing on the driver
1923 * @req: request to dequeue
1924 *
1925 * Description:
1926 * Dequeue @req and start timeout timer on it. This hands off the
1927 * request to the driver.
1928 *
1929 * Block internal functions which don't want to start timer should
1930 * call blk_dequeue_request().
1931 *
1932 * Context:
1933 * queue_lock must be held.
1934 */
1935 void blk_start_request(struct request *req)
1936 {
1937 blk_dequeue_request(req);
1938
1939 /*
1940 * We are now handing the request to the hardware, initialize
1941 * resid_len to full count and add the timeout handler.
1942 */
1943 req->resid_len = blk_rq_bytes(req);
1944 if (unlikely(blk_bidi_rq(req)))
1945 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1946
1947 blk_add_timer(req);
1948 }
1949 EXPORT_SYMBOL(blk_start_request);
1950
1951 /**
1952 * blk_fetch_request - fetch a request from a request queue
1953 * @q: request queue to fetch a request from
1954 *
1955 * Description:
1956 * Return the request at the top of @q. The request is started on
1957 * return and LLD can start processing it immediately.
1958 *
1959 * Return:
1960 * Pointer to the request at the top of @q if available. Null
1961 * otherwise.
1962 *
1963 * Context:
1964 * queue_lock must be held.
1965 */
1966 struct request *blk_fetch_request(struct request_queue *q)
1967 {
1968 struct request *rq;
1969
1970 rq = blk_peek_request(q);
1971 if (rq)
1972 blk_start_request(rq);
1973 return rq;
1974 }
1975 EXPORT_SYMBOL(blk_fetch_request);
1976
1977 /**
1978 * blk_update_request - Special helper function for request stacking drivers
1979 * @req: the request being processed
1980 * @error: %0 for success, < %0 for error
1981 * @nr_bytes: number of bytes to complete @req
1982 *
1983 * Description:
1984 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1985 * the request structure even if @req doesn't have leftover.
1986 * If @req has leftover, sets it up for the next range of segments.
1987 *
1988 * This special helper function is only for request stacking drivers
1989 * (e.g. request-based dm) so that they can handle partial completion.
1990 * Actual device drivers should use blk_end_request instead.
1991 *
1992 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1993 * %false return from this function.
1994 *
1995 * Return:
1996 * %false - this request doesn't have any more data
1997 * %true - this request has more data
1998 **/
1999 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2000 {
2001 int total_bytes, bio_nbytes, next_idx = 0;
2002 struct bio *bio;
2003
2004 if (!req->bio)
2005 return false;
2006
2007 trace_block_rq_complete(req->q, req);
2008
2009 /*
2010 * For fs requests, rq is just carrier of independent bio's
2011 * and each partial completion should be handled separately.
2012 * Reset per-request error on each partial completion.
2013 *
2014 * TODO: tj: This is too subtle. It would be better to let
2015 * low level drivers do what they see fit.
2016 */
2017 if (req->cmd_type == REQ_TYPE_FS)
2018 req->errors = 0;
2019
2020 if (error && req->cmd_type == REQ_TYPE_FS &&
2021 !(req->cmd_flags & REQ_QUIET)) {
2022 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
2023 req->rq_disk ? req->rq_disk->disk_name : "?",
2024 (unsigned long long)blk_rq_pos(req));
2025 }
2026
2027 blk_account_io_completion(req, nr_bytes);
2028
2029 total_bytes = bio_nbytes = 0;
2030 while ((bio = req->bio) != NULL) {
2031 int nbytes;
2032
2033 if (nr_bytes >= bio->bi_size) {
2034 req->bio = bio->bi_next;
2035 nbytes = bio->bi_size;
2036 req_bio_endio(req, bio, nbytes, error);
2037 next_idx = 0;
2038 bio_nbytes = 0;
2039 } else {
2040 int idx = bio->bi_idx + next_idx;
2041
2042 if (unlikely(idx >= bio->bi_vcnt)) {
2043 blk_dump_rq_flags(req, "__end_that");
2044 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2045 __func__, idx, bio->bi_vcnt);
2046 break;
2047 }
2048
2049 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2050 BIO_BUG_ON(nbytes > bio->bi_size);
2051
2052 /*
2053 * not a complete bvec done
2054 */
2055 if (unlikely(nbytes > nr_bytes)) {
2056 bio_nbytes += nr_bytes;
2057 total_bytes += nr_bytes;
2058 break;
2059 }
2060
2061 /*
2062 * advance to the next vector
2063 */
2064 next_idx++;
2065 bio_nbytes += nbytes;
2066 }
2067
2068 total_bytes += nbytes;
2069 nr_bytes -= nbytes;
2070
2071 bio = req->bio;
2072 if (bio) {
2073 /*
2074 * end more in this run, or just return 'not-done'
2075 */
2076 if (unlikely(nr_bytes <= 0))
2077 break;
2078 }
2079 }
2080
2081 /*
2082 * completely done
2083 */
2084 if (!req->bio) {
2085 /*
2086 * Reset counters so that the request stacking driver
2087 * can find how many bytes remain in the request
2088 * later.
2089 */
2090 req->__data_len = 0;
2091 return false;
2092 }
2093
2094 /*
2095 * if the request wasn't completed, update state
2096 */
2097 if (bio_nbytes) {
2098 req_bio_endio(req, bio, bio_nbytes, error);
2099 bio->bi_idx += next_idx;
2100 bio_iovec(bio)->bv_offset += nr_bytes;
2101 bio_iovec(bio)->bv_len -= nr_bytes;
2102 }
2103
2104 req->__data_len -= total_bytes;
2105 req->buffer = bio_data(req->bio);
2106
2107 /* update sector only for requests with clear definition of sector */
2108 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2109 req->__sector += total_bytes >> 9;
2110
2111 /* mixed attributes always follow the first bio */
2112 if (req->cmd_flags & REQ_MIXED_MERGE) {
2113 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2114 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2115 }
2116
2117 /*
2118 * If total number of sectors is less than the first segment
2119 * size, something has gone terribly wrong.
2120 */
2121 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2122 printk(KERN_ERR "blk: request botched\n");
2123 req->__data_len = blk_rq_cur_bytes(req);
2124 }
2125
2126 /* recalculate the number of segments */
2127 blk_recalc_rq_segments(req);
2128
2129 return true;
2130 }
2131 EXPORT_SYMBOL_GPL(blk_update_request);
2132
2133 static bool blk_update_bidi_request(struct request *rq, int error,
2134 unsigned int nr_bytes,
2135 unsigned int bidi_bytes)
2136 {
2137 if (blk_update_request(rq, error, nr_bytes))
2138 return true;
2139
2140 /* Bidi request must be completed as a whole */
2141 if (unlikely(blk_bidi_rq(rq)) &&
2142 blk_update_request(rq->next_rq, error, bidi_bytes))
2143 return true;
2144
2145 if (blk_queue_add_random(rq->q))
2146 add_disk_randomness(rq->rq_disk);
2147
2148 return false;
2149 }
2150
2151 /**
2152 * blk_unprep_request - unprepare a request
2153 * @req: the request
2154 *
2155 * This function makes a request ready for complete resubmission (or
2156 * completion). It happens only after all error handling is complete,
2157 * so represents the appropriate moment to deallocate any resources
2158 * that were allocated to the request in the prep_rq_fn. The queue
2159 * lock is held when calling this.
2160 */
2161 void blk_unprep_request(struct request *req)
2162 {
2163 struct request_queue *q = req->q;
2164
2165 req->cmd_flags &= ~REQ_DONTPREP;
2166 if (q->unprep_rq_fn)
2167 q->unprep_rq_fn(q, req);
2168 }
2169 EXPORT_SYMBOL_GPL(blk_unprep_request);
2170
2171 /*
2172 * queue lock must be held
2173 */
2174 static void blk_finish_request(struct request *req, int error)
2175 {
2176 if (blk_rq_tagged(req))
2177 blk_queue_end_tag(req->q, req);
2178
2179 BUG_ON(blk_queued_rq(req));
2180
2181 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2182 laptop_io_completion(&req->q->backing_dev_info);
2183
2184 blk_delete_timer(req);
2185
2186 if (req->cmd_flags & REQ_DONTPREP)
2187 blk_unprep_request(req);
2188
2189
2190 blk_account_io_done(req);
2191
2192 if (req->end_io)
2193 req->end_io(req, error);
2194 else {
2195 if (blk_bidi_rq(req))
2196 __blk_put_request(req->next_rq->q, req->next_rq);
2197
2198 __blk_put_request(req->q, req);
2199 }
2200 }
2201
2202 /**
2203 * blk_end_bidi_request - Complete a bidi request
2204 * @rq: the request to complete
2205 * @error: %0 for success, < %0 for error
2206 * @nr_bytes: number of bytes to complete @rq
2207 * @bidi_bytes: number of bytes to complete @rq->next_rq
2208 *
2209 * Description:
2210 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2211 * Drivers that supports bidi can safely call this member for any
2212 * type of request, bidi or uni. In the later case @bidi_bytes is
2213 * just ignored.
2214 *
2215 * Return:
2216 * %false - we are done with this request
2217 * %true - still buffers pending for this request
2218 **/
2219 static bool blk_end_bidi_request(struct request *rq, int error,
2220 unsigned int nr_bytes, unsigned int bidi_bytes)
2221 {
2222 struct request_queue *q = rq->q;
2223 unsigned long flags;
2224
2225 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2226 return true;
2227
2228 spin_lock_irqsave(q->queue_lock, flags);
2229 blk_finish_request(rq, error);
2230 spin_unlock_irqrestore(q->queue_lock, flags);
2231
2232 return false;
2233 }
2234
2235 /**
2236 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2237 * @rq: the request to complete
2238 * @error: %0 for success, < %0 for error
2239 * @nr_bytes: number of bytes to complete @rq
2240 * @bidi_bytes: number of bytes to complete @rq->next_rq
2241 *
2242 * Description:
2243 * Identical to blk_end_bidi_request() except that queue lock is
2244 * assumed to be locked on entry and remains so on return.
2245 *
2246 * Return:
2247 * %false - we are done with this request
2248 * %true - still buffers pending for this request
2249 **/
2250 static bool __blk_end_bidi_request(struct request *rq, int error,
2251 unsigned int nr_bytes, unsigned int bidi_bytes)
2252 {
2253 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2254 return true;
2255
2256 blk_finish_request(rq, error);
2257
2258 return false;
2259 }
2260
2261 /**
2262 * blk_end_request - Helper function for drivers to complete the request.
2263 * @rq: the request being processed
2264 * @error: %0 for success, < %0 for error
2265 * @nr_bytes: number of bytes to complete
2266 *
2267 * Description:
2268 * Ends I/O on a number of bytes attached to @rq.
2269 * If @rq has leftover, sets it up for the next range of segments.
2270 *
2271 * Return:
2272 * %false - we are done with this request
2273 * %true - still buffers pending for this request
2274 **/
2275 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2276 {
2277 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2278 }
2279 EXPORT_SYMBOL(blk_end_request);
2280
2281 /**
2282 * blk_end_request_all - Helper function for drives to finish the request.
2283 * @rq: the request to finish
2284 * @error: %0 for success, < %0 for error
2285 *
2286 * Description:
2287 * Completely finish @rq.
2288 */
2289 void blk_end_request_all(struct request *rq, int error)
2290 {
2291 bool pending;
2292 unsigned int bidi_bytes = 0;
2293
2294 if (unlikely(blk_bidi_rq(rq)))
2295 bidi_bytes = blk_rq_bytes(rq->next_rq);
2296
2297 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2298 BUG_ON(pending);
2299 }
2300 EXPORT_SYMBOL(blk_end_request_all);
2301
2302 /**
2303 * blk_end_request_cur - Helper function to finish the current request chunk.
2304 * @rq: the request to finish the current chunk for
2305 * @error: %0 for success, < %0 for error
2306 *
2307 * Description:
2308 * Complete the current consecutively mapped chunk from @rq.
2309 *
2310 * Return:
2311 * %false - we are done with this request
2312 * %true - still buffers pending for this request
2313 */
2314 bool blk_end_request_cur(struct request *rq, int error)
2315 {
2316 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2317 }
2318 EXPORT_SYMBOL(blk_end_request_cur);
2319
2320 /**
2321 * blk_end_request_err - Finish a request till the next failure boundary.
2322 * @rq: the request to finish till the next failure boundary for
2323 * @error: must be negative errno
2324 *
2325 * Description:
2326 * Complete @rq till the next failure boundary.
2327 *
2328 * Return:
2329 * %false - we are done with this request
2330 * %true - still buffers pending for this request
2331 */
2332 bool blk_end_request_err(struct request *rq, int error)
2333 {
2334 WARN_ON(error >= 0);
2335 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2336 }
2337 EXPORT_SYMBOL_GPL(blk_end_request_err);
2338
2339 /**
2340 * __blk_end_request - Helper function for drivers to complete the request.
2341 * @rq: the request being processed
2342 * @error: %0 for success, < %0 for error
2343 * @nr_bytes: number of bytes to complete
2344 *
2345 * Description:
2346 * Must be called with queue lock held unlike blk_end_request().
2347 *
2348 * Return:
2349 * %false - we are done with this request
2350 * %true - still buffers pending for this request
2351 **/
2352 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2353 {
2354 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2355 }
2356 EXPORT_SYMBOL(__blk_end_request);
2357
2358 /**
2359 * __blk_end_request_all - Helper function for drives to finish the request.
2360 * @rq: the request to finish
2361 * @error: %0 for success, < %0 for error
2362 *
2363 * Description:
2364 * Completely finish @rq. Must be called with queue lock held.
2365 */
2366 void __blk_end_request_all(struct request *rq, int error)
2367 {
2368 bool pending;
2369 unsigned int bidi_bytes = 0;
2370
2371 if (unlikely(blk_bidi_rq(rq)))
2372 bidi_bytes = blk_rq_bytes(rq->next_rq);
2373
2374 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2375 BUG_ON(pending);
2376 }
2377 EXPORT_SYMBOL(__blk_end_request_all);
2378
2379 /**
2380 * __blk_end_request_cur - Helper function to finish the current request chunk.
2381 * @rq: the request to finish the current chunk for
2382 * @error: %0 for success, < %0 for error
2383 *
2384 * Description:
2385 * Complete the current consecutively mapped chunk from @rq. Must
2386 * be called with queue lock held.
2387 *
2388 * Return:
2389 * %false - we are done with this request
2390 * %true - still buffers pending for this request
2391 */
2392 bool __blk_end_request_cur(struct request *rq, int error)
2393 {
2394 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2395 }
2396 EXPORT_SYMBOL(__blk_end_request_cur);
2397
2398 /**
2399 * __blk_end_request_err - Finish a request till the next failure boundary.
2400 * @rq: the request to finish till the next failure boundary for
2401 * @error: must be negative errno
2402 *
2403 * Description:
2404 * Complete @rq till the next failure boundary. Must be called
2405 * with queue lock held.
2406 *
2407 * Return:
2408 * %false - we are done with this request
2409 * %true - still buffers pending for this request
2410 */
2411 bool __blk_end_request_err(struct request *rq, int error)
2412 {
2413 WARN_ON(error >= 0);
2414 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2415 }
2416 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2417
2418 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2419 struct bio *bio)
2420 {
2421 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2422 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2423
2424 if (bio_has_data(bio)) {
2425 rq->nr_phys_segments = bio_phys_segments(q, bio);
2426 rq->buffer = bio_data(bio);
2427 }
2428 rq->__data_len = bio->bi_size;
2429 rq->bio = rq->biotail = bio;
2430
2431 if (bio->bi_bdev)
2432 rq->rq_disk = bio->bi_bdev->bd_disk;
2433 }
2434
2435 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2436 /**
2437 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2438 * @rq: the request to be flushed
2439 *
2440 * Description:
2441 * Flush all pages in @rq.
2442 */
2443 void rq_flush_dcache_pages(struct request *rq)
2444 {
2445 struct req_iterator iter;
2446 struct bio_vec *bvec;
2447
2448 rq_for_each_segment(bvec, rq, iter)
2449 flush_dcache_page(bvec->bv_page);
2450 }
2451 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2452 #endif
2453
2454 /**
2455 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2456 * @q : the queue of the device being checked
2457 *
2458 * Description:
2459 * Check if underlying low-level drivers of a device are busy.
2460 * If the drivers want to export their busy state, they must set own
2461 * exporting function using blk_queue_lld_busy() first.
2462 *
2463 * Basically, this function is used only by request stacking drivers
2464 * to stop dispatching requests to underlying devices when underlying
2465 * devices are busy. This behavior helps more I/O merging on the queue
2466 * of the request stacking driver and prevents I/O throughput regression
2467 * on burst I/O load.
2468 *
2469 * Return:
2470 * 0 - Not busy (The request stacking driver should dispatch request)
2471 * 1 - Busy (The request stacking driver should stop dispatching request)
2472 */
2473 int blk_lld_busy(struct request_queue *q)
2474 {
2475 if (q->lld_busy_fn)
2476 return q->lld_busy_fn(q);
2477
2478 return 0;
2479 }
2480 EXPORT_SYMBOL_GPL(blk_lld_busy);
2481
2482 /**
2483 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2484 * @rq: the clone request to be cleaned up
2485 *
2486 * Description:
2487 * Free all bios in @rq for a cloned request.
2488 */
2489 void blk_rq_unprep_clone(struct request *rq)
2490 {
2491 struct bio *bio;
2492
2493 while ((bio = rq->bio) != NULL) {
2494 rq->bio = bio->bi_next;
2495
2496 bio_put(bio);
2497 }
2498 }
2499 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2500
2501 /*
2502 * Copy attributes of the original request to the clone request.
2503 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2504 */
2505 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2506 {
2507 dst->cpu = src->cpu;
2508 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2509 dst->cmd_type = src->cmd_type;
2510 dst->__sector = blk_rq_pos(src);
2511 dst->__data_len = blk_rq_bytes(src);
2512 dst->nr_phys_segments = src->nr_phys_segments;
2513 dst->ioprio = src->ioprio;
2514 dst->extra_len = src->extra_len;
2515 }
2516
2517 /**
2518 * blk_rq_prep_clone - Helper function to setup clone request
2519 * @rq: the request to be setup
2520 * @rq_src: original request to be cloned
2521 * @bs: bio_set that bios for clone are allocated from
2522 * @gfp_mask: memory allocation mask for bio
2523 * @bio_ctr: setup function to be called for each clone bio.
2524 * Returns %0 for success, non %0 for failure.
2525 * @data: private data to be passed to @bio_ctr
2526 *
2527 * Description:
2528 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2529 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2530 * are not copied, and copying such parts is the caller's responsibility.
2531 * Also, pages which the original bios are pointing to are not copied
2532 * and the cloned bios just point same pages.
2533 * So cloned bios must be completed before original bios, which means
2534 * the caller must complete @rq before @rq_src.
2535 */
2536 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2537 struct bio_set *bs, gfp_t gfp_mask,
2538 int (*bio_ctr)(struct bio *, struct bio *, void *),
2539 void *data)
2540 {
2541 struct bio *bio, *bio_src;
2542
2543 if (!bs)
2544 bs = fs_bio_set;
2545
2546 blk_rq_init(NULL, rq);
2547
2548 __rq_for_each_bio(bio_src, rq_src) {
2549 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2550 if (!bio)
2551 goto free_and_out;
2552
2553 __bio_clone(bio, bio_src);
2554
2555 if (bio_integrity(bio_src) &&
2556 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2557 goto free_and_out;
2558
2559 if (bio_ctr && bio_ctr(bio, bio_src, data))
2560 goto free_and_out;
2561
2562 if (rq->bio) {
2563 rq->biotail->bi_next = bio;
2564 rq->biotail = bio;
2565 } else
2566 rq->bio = rq->biotail = bio;
2567 }
2568
2569 __blk_rq_prep_clone(rq, rq_src);
2570
2571 return 0;
2572
2573 free_and_out:
2574 if (bio)
2575 bio_free(bio, bs);
2576 blk_rq_unprep_clone(rq);
2577
2578 return -ENOMEM;
2579 }
2580 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2581
2582 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2583 {
2584 return queue_work(kblockd_workqueue, work);
2585 }
2586 EXPORT_SYMBOL(kblockd_schedule_work);
2587
2588 int __init blk_dev_init(void)
2589 {
2590 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2591 sizeof(((struct request *)0)->cmd_flags));
2592
2593 kblockd_workqueue = create_workqueue("kblockd");
2594 if (!kblockd_workqueue)
2595 panic("Failed to create kblockd\n");
2596
2597 request_cachep = kmem_cache_create("blkdev_requests",
2598 sizeof(struct request), 0, SLAB_PANIC, NULL);
2599
2600 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2601 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2602
2603 return 0;
2604 }
This page took 0.114096 seconds and 6 git commands to generate.