Add 'discard' request handling
[deliverable/linux.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
33
34 #include "blk.h"
35
36 static int __make_request(struct request_queue *q, struct bio *bio);
37
38 /*
39 * For the allocated request tables
40 */
41 static struct kmem_cache *request_cachep;
42
43 /*
44 * For queue allocation
45 */
46 struct kmem_cache *blk_requestq_cachep;
47
48 /*
49 * Controlling structure to kblockd
50 */
51 static struct workqueue_struct *kblockd_workqueue;
52
53 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
54
55 static void drive_stat_acct(struct request *rq, int new_io)
56 {
57 struct hd_struct *part;
58 int rw = rq_data_dir(rq);
59
60 if (!blk_fs_request(rq) || !rq->rq_disk)
61 return;
62
63 part = get_part(rq->rq_disk, rq->sector);
64 if (!new_io)
65 __all_stat_inc(rq->rq_disk, part, merges[rw], rq->sector);
66 else {
67 disk_round_stats(rq->rq_disk);
68 rq->rq_disk->in_flight++;
69 if (part) {
70 part_round_stats(part);
71 part->in_flight++;
72 }
73 }
74 }
75
76 void blk_queue_congestion_threshold(struct request_queue *q)
77 {
78 int nr;
79
80 nr = q->nr_requests - (q->nr_requests / 8) + 1;
81 if (nr > q->nr_requests)
82 nr = q->nr_requests;
83 q->nr_congestion_on = nr;
84
85 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
86 if (nr < 1)
87 nr = 1;
88 q->nr_congestion_off = nr;
89 }
90
91 /**
92 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
93 * @bdev: device
94 *
95 * Locates the passed device's request queue and returns the address of its
96 * backing_dev_info
97 *
98 * Will return NULL if the request queue cannot be located.
99 */
100 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
101 {
102 struct backing_dev_info *ret = NULL;
103 struct request_queue *q = bdev_get_queue(bdev);
104
105 if (q)
106 ret = &q->backing_dev_info;
107 return ret;
108 }
109 EXPORT_SYMBOL(blk_get_backing_dev_info);
110
111 void blk_rq_init(struct request_queue *q, struct request *rq)
112 {
113 memset(rq, 0, sizeof(*rq));
114
115 INIT_LIST_HEAD(&rq->queuelist);
116 INIT_LIST_HEAD(&rq->donelist);
117 rq->q = q;
118 rq->sector = rq->hard_sector = (sector_t) -1;
119 INIT_HLIST_NODE(&rq->hash);
120 RB_CLEAR_NODE(&rq->rb_node);
121 rq->cmd = rq->__cmd;
122 rq->tag = -1;
123 rq->ref_count = 1;
124 }
125 EXPORT_SYMBOL(blk_rq_init);
126
127 static void req_bio_endio(struct request *rq, struct bio *bio,
128 unsigned int nbytes, int error)
129 {
130 struct request_queue *q = rq->q;
131
132 if (&q->bar_rq != rq) {
133 if (error)
134 clear_bit(BIO_UPTODATE, &bio->bi_flags);
135 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
136 error = -EIO;
137
138 if (unlikely(nbytes > bio->bi_size)) {
139 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
140 __func__, nbytes, bio->bi_size);
141 nbytes = bio->bi_size;
142 }
143
144 bio->bi_size -= nbytes;
145 bio->bi_sector += (nbytes >> 9);
146
147 if (bio_integrity(bio))
148 bio_integrity_advance(bio, nbytes);
149
150 if (bio->bi_size == 0)
151 bio_endio(bio, error);
152 } else {
153
154 /*
155 * Okay, this is the barrier request in progress, just
156 * record the error;
157 */
158 if (error && !q->orderr)
159 q->orderr = error;
160 }
161 }
162
163 void blk_dump_rq_flags(struct request *rq, char *msg)
164 {
165 int bit;
166
167 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
168 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
169 rq->cmd_flags);
170
171 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n",
172 (unsigned long long)rq->sector,
173 rq->nr_sectors,
174 rq->current_nr_sectors);
175 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n",
176 rq->bio, rq->biotail,
177 rq->buffer, rq->data,
178 rq->data_len);
179
180 if (blk_pc_request(rq)) {
181 printk(KERN_INFO " cdb: ");
182 for (bit = 0; bit < BLK_MAX_CDB; bit++)
183 printk("%02x ", rq->cmd[bit]);
184 printk("\n");
185 }
186 }
187 EXPORT_SYMBOL(blk_dump_rq_flags);
188
189 /*
190 * "plug" the device if there are no outstanding requests: this will
191 * force the transfer to start only after we have put all the requests
192 * on the list.
193 *
194 * This is called with interrupts off and no requests on the queue and
195 * with the queue lock held.
196 */
197 void blk_plug_device(struct request_queue *q)
198 {
199 WARN_ON(!irqs_disabled());
200
201 /*
202 * don't plug a stopped queue, it must be paired with blk_start_queue()
203 * which will restart the queueing
204 */
205 if (blk_queue_stopped(q))
206 return;
207
208 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
209 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
210 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
211 }
212 }
213 EXPORT_SYMBOL(blk_plug_device);
214
215 /**
216 * blk_plug_device_unlocked - plug a device without queue lock held
217 * @q: The &struct request_queue to plug
218 *
219 * Description:
220 * Like @blk_plug_device(), but grabs the queue lock and disables
221 * interrupts.
222 **/
223 void blk_plug_device_unlocked(struct request_queue *q)
224 {
225 unsigned long flags;
226
227 spin_lock_irqsave(q->queue_lock, flags);
228 blk_plug_device(q);
229 spin_unlock_irqrestore(q->queue_lock, flags);
230 }
231 EXPORT_SYMBOL(blk_plug_device_unlocked);
232
233 /*
234 * remove the queue from the plugged list, if present. called with
235 * queue lock held and interrupts disabled.
236 */
237 int blk_remove_plug(struct request_queue *q)
238 {
239 WARN_ON(!irqs_disabled());
240
241 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
242 return 0;
243
244 del_timer(&q->unplug_timer);
245 return 1;
246 }
247 EXPORT_SYMBOL(blk_remove_plug);
248
249 /*
250 * remove the plug and let it rip..
251 */
252 void __generic_unplug_device(struct request_queue *q)
253 {
254 if (unlikely(blk_queue_stopped(q)))
255 return;
256
257 if (!blk_remove_plug(q))
258 return;
259
260 q->request_fn(q);
261 }
262 EXPORT_SYMBOL(__generic_unplug_device);
263
264 /**
265 * generic_unplug_device - fire a request queue
266 * @q: The &struct request_queue in question
267 *
268 * Description:
269 * Linux uses plugging to build bigger requests queues before letting
270 * the device have at them. If a queue is plugged, the I/O scheduler
271 * is still adding and merging requests on the queue. Once the queue
272 * gets unplugged, the request_fn defined for the queue is invoked and
273 * transfers started.
274 **/
275 void generic_unplug_device(struct request_queue *q)
276 {
277 if (blk_queue_plugged(q)) {
278 spin_lock_irq(q->queue_lock);
279 __generic_unplug_device(q);
280 spin_unlock_irq(q->queue_lock);
281 }
282 }
283 EXPORT_SYMBOL(generic_unplug_device);
284
285 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
286 struct page *page)
287 {
288 struct request_queue *q = bdi->unplug_io_data;
289
290 blk_unplug(q);
291 }
292
293 void blk_unplug_work(struct work_struct *work)
294 {
295 struct request_queue *q =
296 container_of(work, struct request_queue, unplug_work);
297
298 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
299 q->rq.count[READ] + q->rq.count[WRITE]);
300
301 q->unplug_fn(q);
302 }
303
304 void blk_unplug_timeout(unsigned long data)
305 {
306 struct request_queue *q = (struct request_queue *)data;
307
308 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
309 q->rq.count[READ] + q->rq.count[WRITE]);
310
311 kblockd_schedule_work(&q->unplug_work);
312 }
313
314 void blk_unplug(struct request_queue *q)
315 {
316 /*
317 * devices don't necessarily have an ->unplug_fn defined
318 */
319 if (q->unplug_fn) {
320 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
321 q->rq.count[READ] + q->rq.count[WRITE]);
322
323 q->unplug_fn(q);
324 }
325 }
326 EXPORT_SYMBOL(blk_unplug);
327
328 /**
329 * blk_start_queue - restart a previously stopped queue
330 * @q: The &struct request_queue in question
331 *
332 * Description:
333 * blk_start_queue() will clear the stop flag on the queue, and call
334 * the request_fn for the queue if it was in a stopped state when
335 * entered. Also see blk_stop_queue(). Queue lock must be held.
336 **/
337 void blk_start_queue(struct request_queue *q)
338 {
339 WARN_ON(!irqs_disabled());
340
341 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
342
343 /*
344 * one level of recursion is ok and is much faster than kicking
345 * the unplug handling
346 */
347 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
348 q->request_fn(q);
349 queue_flag_clear(QUEUE_FLAG_REENTER, q);
350 } else {
351 blk_plug_device(q);
352 kblockd_schedule_work(&q->unplug_work);
353 }
354 }
355 EXPORT_SYMBOL(blk_start_queue);
356
357 /**
358 * blk_stop_queue - stop a queue
359 * @q: The &struct request_queue in question
360 *
361 * Description:
362 * The Linux block layer assumes that a block driver will consume all
363 * entries on the request queue when the request_fn strategy is called.
364 * Often this will not happen, because of hardware limitations (queue
365 * depth settings). If a device driver gets a 'queue full' response,
366 * or if it simply chooses not to queue more I/O at one point, it can
367 * call this function to prevent the request_fn from being called until
368 * the driver has signalled it's ready to go again. This happens by calling
369 * blk_start_queue() to restart queue operations. Queue lock must be held.
370 **/
371 void blk_stop_queue(struct request_queue *q)
372 {
373 blk_remove_plug(q);
374 queue_flag_set(QUEUE_FLAG_STOPPED, q);
375 }
376 EXPORT_SYMBOL(blk_stop_queue);
377
378 /**
379 * blk_sync_queue - cancel any pending callbacks on a queue
380 * @q: the queue
381 *
382 * Description:
383 * The block layer may perform asynchronous callback activity
384 * on a queue, such as calling the unplug function after a timeout.
385 * A block device may call blk_sync_queue to ensure that any
386 * such activity is cancelled, thus allowing it to release resources
387 * that the callbacks might use. The caller must already have made sure
388 * that its ->make_request_fn will not re-add plugging prior to calling
389 * this function.
390 *
391 */
392 void blk_sync_queue(struct request_queue *q)
393 {
394 del_timer_sync(&q->unplug_timer);
395 kblockd_flush_work(&q->unplug_work);
396 }
397 EXPORT_SYMBOL(blk_sync_queue);
398
399 /**
400 * blk_run_queue - run a single device queue
401 * @q: The queue to run
402 */
403 void __blk_run_queue(struct request_queue *q)
404 {
405 blk_remove_plug(q);
406
407 /*
408 * Only recurse once to avoid overrunning the stack, let the unplug
409 * handling reinvoke the handler shortly if we already got there.
410 */
411 if (!elv_queue_empty(q)) {
412 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
413 q->request_fn(q);
414 queue_flag_clear(QUEUE_FLAG_REENTER, q);
415 } else {
416 blk_plug_device(q);
417 kblockd_schedule_work(&q->unplug_work);
418 }
419 }
420 }
421 EXPORT_SYMBOL(__blk_run_queue);
422
423 /**
424 * blk_run_queue - run a single device queue
425 * @q: The queue to run
426 */
427 void blk_run_queue(struct request_queue *q)
428 {
429 unsigned long flags;
430
431 spin_lock_irqsave(q->queue_lock, flags);
432 __blk_run_queue(q);
433 spin_unlock_irqrestore(q->queue_lock, flags);
434 }
435 EXPORT_SYMBOL(blk_run_queue);
436
437 void blk_put_queue(struct request_queue *q)
438 {
439 kobject_put(&q->kobj);
440 }
441
442 void blk_cleanup_queue(struct request_queue *q)
443 {
444 mutex_lock(&q->sysfs_lock);
445 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
446 mutex_unlock(&q->sysfs_lock);
447
448 if (q->elevator)
449 elevator_exit(q->elevator);
450
451 blk_put_queue(q);
452 }
453 EXPORT_SYMBOL(blk_cleanup_queue);
454
455 static int blk_init_free_list(struct request_queue *q)
456 {
457 struct request_list *rl = &q->rq;
458
459 rl->count[READ] = rl->count[WRITE] = 0;
460 rl->starved[READ] = rl->starved[WRITE] = 0;
461 rl->elvpriv = 0;
462 init_waitqueue_head(&rl->wait[READ]);
463 init_waitqueue_head(&rl->wait[WRITE]);
464
465 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
466 mempool_free_slab, request_cachep, q->node);
467
468 if (!rl->rq_pool)
469 return -ENOMEM;
470
471 return 0;
472 }
473
474 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
475 {
476 return blk_alloc_queue_node(gfp_mask, -1);
477 }
478 EXPORT_SYMBOL(blk_alloc_queue);
479
480 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
481 {
482 struct request_queue *q;
483 int err;
484
485 q = kmem_cache_alloc_node(blk_requestq_cachep,
486 gfp_mask | __GFP_ZERO, node_id);
487 if (!q)
488 return NULL;
489
490 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
491 q->backing_dev_info.unplug_io_data = q;
492 err = bdi_init(&q->backing_dev_info);
493 if (err) {
494 kmem_cache_free(blk_requestq_cachep, q);
495 return NULL;
496 }
497
498 init_timer(&q->unplug_timer);
499
500 kobject_init(&q->kobj, &blk_queue_ktype);
501
502 mutex_init(&q->sysfs_lock);
503 spin_lock_init(&q->__queue_lock);
504
505 return q;
506 }
507 EXPORT_SYMBOL(blk_alloc_queue_node);
508
509 /**
510 * blk_init_queue - prepare a request queue for use with a block device
511 * @rfn: The function to be called to process requests that have been
512 * placed on the queue.
513 * @lock: Request queue spin lock
514 *
515 * Description:
516 * If a block device wishes to use the standard request handling procedures,
517 * which sorts requests and coalesces adjacent requests, then it must
518 * call blk_init_queue(). The function @rfn will be called when there
519 * are requests on the queue that need to be processed. If the device
520 * supports plugging, then @rfn may not be called immediately when requests
521 * are available on the queue, but may be called at some time later instead.
522 * Plugged queues are generally unplugged when a buffer belonging to one
523 * of the requests on the queue is needed, or due to memory pressure.
524 *
525 * @rfn is not required, or even expected, to remove all requests off the
526 * queue, but only as many as it can handle at a time. If it does leave
527 * requests on the queue, it is responsible for arranging that the requests
528 * get dealt with eventually.
529 *
530 * The queue spin lock must be held while manipulating the requests on the
531 * request queue; this lock will be taken also from interrupt context, so irq
532 * disabling is needed for it.
533 *
534 * Function returns a pointer to the initialized request queue, or NULL if
535 * it didn't succeed.
536 *
537 * Note:
538 * blk_init_queue() must be paired with a blk_cleanup_queue() call
539 * when the block device is deactivated (such as at module unload).
540 **/
541
542 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
543 {
544 return blk_init_queue_node(rfn, lock, -1);
545 }
546 EXPORT_SYMBOL(blk_init_queue);
547
548 struct request_queue *
549 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
550 {
551 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
552
553 if (!q)
554 return NULL;
555
556 q->node = node_id;
557 if (blk_init_free_list(q)) {
558 kmem_cache_free(blk_requestq_cachep, q);
559 return NULL;
560 }
561
562 /*
563 * if caller didn't supply a lock, they get per-queue locking with
564 * our embedded lock
565 */
566 if (!lock)
567 lock = &q->__queue_lock;
568
569 q->request_fn = rfn;
570 q->prep_rq_fn = NULL;
571 q->unplug_fn = generic_unplug_device;
572 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
573 q->queue_lock = lock;
574
575 blk_queue_segment_boundary(q, 0xffffffff);
576
577 blk_queue_make_request(q, __make_request);
578 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
579
580 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
581 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
582
583 q->sg_reserved_size = INT_MAX;
584
585 blk_set_cmd_filter_defaults(&q->cmd_filter);
586
587 /*
588 * all done
589 */
590 if (!elevator_init(q, NULL)) {
591 blk_queue_congestion_threshold(q);
592 return q;
593 }
594
595 blk_put_queue(q);
596 return NULL;
597 }
598 EXPORT_SYMBOL(blk_init_queue_node);
599
600 int blk_get_queue(struct request_queue *q)
601 {
602 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
603 kobject_get(&q->kobj);
604 return 0;
605 }
606
607 return 1;
608 }
609
610 static inline void blk_free_request(struct request_queue *q, struct request *rq)
611 {
612 if (rq->cmd_flags & REQ_ELVPRIV)
613 elv_put_request(q, rq);
614 mempool_free(rq, q->rq.rq_pool);
615 }
616
617 static struct request *
618 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
619 {
620 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
621
622 if (!rq)
623 return NULL;
624
625 blk_rq_init(q, rq);
626
627 rq->cmd_flags = rw | REQ_ALLOCED;
628
629 if (priv) {
630 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
631 mempool_free(rq, q->rq.rq_pool);
632 return NULL;
633 }
634 rq->cmd_flags |= REQ_ELVPRIV;
635 }
636
637 return rq;
638 }
639
640 /*
641 * ioc_batching returns true if the ioc is a valid batching request and
642 * should be given priority access to a request.
643 */
644 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
645 {
646 if (!ioc)
647 return 0;
648
649 /*
650 * Make sure the process is able to allocate at least 1 request
651 * even if the batch times out, otherwise we could theoretically
652 * lose wakeups.
653 */
654 return ioc->nr_batch_requests == q->nr_batching ||
655 (ioc->nr_batch_requests > 0
656 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
657 }
658
659 /*
660 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
661 * will cause the process to be a "batcher" on all queues in the system. This
662 * is the behaviour we want though - once it gets a wakeup it should be given
663 * a nice run.
664 */
665 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
666 {
667 if (!ioc || ioc_batching(q, ioc))
668 return;
669
670 ioc->nr_batch_requests = q->nr_batching;
671 ioc->last_waited = jiffies;
672 }
673
674 static void __freed_request(struct request_queue *q, int rw)
675 {
676 struct request_list *rl = &q->rq;
677
678 if (rl->count[rw] < queue_congestion_off_threshold(q))
679 blk_clear_queue_congested(q, rw);
680
681 if (rl->count[rw] + 1 <= q->nr_requests) {
682 if (waitqueue_active(&rl->wait[rw]))
683 wake_up(&rl->wait[rw]);
684
685 blk_clear_queue_full(q, rw);
686 }
687 }
688
689 /*
690 * A request has just been released. Account for it, update the full and
691 * congestion status, wake up any waiters. Called under q->queue_lock.
692 */
693 static void freed_request(struct request_queue *q, int rw, int priv)
694 {
695 struct request_list *rl = &q->rq;
696
697 rl->count[rw]--;
698 if (priv)
699 rl->elvpriv--;
700
701 __freed_request(q, rw);
702
703 if (unlikely(rl->starved[rw ^ 1]))
704 __freed_request(q, rw ^ 1);
705 }
706
707 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
708 /*
709 * Get a free request, queue_lock must be held.
710 * Returns NULL on failure, with queue_lock held.
711 * Returns !NULL on success, with queue_lock *not held*.
712 */
713 static struct request *get_request(struct request_queue *q, int rw_flags,
714 struct bio *bio, gfp_t gfp_mask)
715 {
716 struct request *rq = NULL;
717 struct request_list *rl = &q->rq;
718 struct io_context *ioc = NULL;
719 const int rw = rw_flags & 0x01;
720 int may_queue, priv;
721
722 may_queue = elv_may_queue(q, rw_flags);
723 if (may_queue == ELV_MQUEUE_NO)
724 goto rq_starved;
725
726 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
727 if (rl->count[rw]+1 >= q->nr_requests) {
728 ioc = current_io_context(GFP_ATOMIC, q->node);
729 /*
730 * The queue will fill after this allocation, so set
731 * it as full, and mark this process as "batching".
732 * This process will be allowed to complete a batch of
733 * requests, others will be blocked.
734 */
735 if (!blk_queue_full(q, rw)) {
736 ioc_set_batching(q, ioc);
737 blk_set_queue_full(q, rw);
738 } else {
739 if (may_queue != ELV_MQUEUE_MUST
740 && !ioc_batching(q, ioc)) {
741 /*
742 * The queue is full and the allocating
743 * process is not a "batcher", and not
744 * exempted by the IO scheduler
745 */
746 goto out;
747 }
748 }
749 }
750 blk_set_queue_congested(q, rw);
751 }
752
753 /*
754 * Only allow batching queuers to allocate up to 50% over the defined
755 * limit of requests, otherwise we could have thousands of requests
756 * allocated with any setting of ->nr_requests
757 */
758 if (rl->count[rw] >= (3 * q->nr_requests / 2))
759 goto out;
760
761 rl->count[rw]++;
762 rl->starved[rw] = 0;
763
764 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
765 if (priv)
766 rl->elvpriv++;
767
768 spin_unlock_irq(q->queue_lock);
769
770 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
771 if (unlikely(!rq)) {
772 /*
773 * Allocation failed presumably due to memory. Undo anything
774 * we might have messed up.
775 *
776 * Allocating task should really be put onto the front of the
777 * wait queue, but this is pretty rare.
778 */
779 spin_lock_irq(q->queue_lock);
780 freed_request(q, rw, priv);
781
782 /*
783 * in the very unlikely event that allocation failed and no
784 * requests for this direction was pending, mark us starved
785 * so that freeing of a request in the other direction will
786 * notice us. another possible fix would be to split the
787 * rq mempool into READ and WRITE
788 */
789 rq_starved:
790 if (unlikely(rl->count[rw] == 0))
791 rl->starved[rw] = 1;
792
793 goto out;
794 }
795
796 /*
797 * ioc may be NULL here, and ioc_batching will be false. That's
798 * OK, if the queue is under the request limit then requests need
799 * not count toward the nr_batch_requests limit. There will always
800 * be some limit enforced by BLK_BATCH_TIME.
801 */
802 if (ioc_batching(q, ioc))
803 ioc->nr_batch_requests--;
804
805 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
806 out:
807 return rq;
808 }
809
810 /*
811 * No available requests for this queue, unplug the device and wait for some
812 * requests to become available.
813 *
814 * Called with q->queue_lock held, and returns with it unlocked.
815 */
816 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
817 struct bio *bio)
818 {
819 const int rw = rw_flags & 0x01;
820 struct request *rq;
821
822 rq = get_request(q, rw_flags, bio, GFP_NOIO);
823 while (!rq) {
824 DEFINE_WAIT(wait);
825 struct io_context *ioc;
826 struct request_list *rl = &q->rq;
827
828 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
829 TASK_UNINTERRUPTIBLE);
830
831 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
832
833 __generic_unplug_device(q);
834 spin_unlock_irq(q->queue_lock);
835 io_schedule();
836
837 /*
838 * After sleeping, we become a "batching" process and
839 * will be able to allocate at least one request, and
840 * up to a big batch of them for a small period time.
841 * See ioc_batching, ioc_set_batching
842 */
843 ioc = current_io_context(GFP_NOIO, q->node);
844 ioc_set_batching(q, ioc);
845
846 spin_lock_irq(q->queue_lock);
847 finish_wait(&rl->wait[rw], &wait);
848
849 rq = get_request(q, rw_flags, bio, GFP_NOIO);
850 };
851
852 return rq;
853 }
854
855 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
856 {
857 struct request *rq;
858
859 BUG_ON(rw != READ && rw != WRITE);
860
861 spin_lock_irq(q->queue_lock);
862 if (gfp_mask & __GFP_WAIT) {
863 rq = get_request_wait(q, rw, NULL);
864 } else {
865 rq = get_request(q, rw, NULL, gfp_mask);
866 if (!rq)
867 spin_unlock_irq(q->queue_lock);
868 }
869 /* q->queue_lock is unlocked at this point */
870
871 return rq;
872 }
873 EXPORT_SYMBOL(blk_get_request);
874
875 /**
876 * blk_start_queueing - initiate dispatch of requests to device
877 * @q: request queue to kick into gear
878 *
879 * This is basically a helper to remove the need to know whether a queue
880 * is plugged or not if someone just wants to initiate dispatch of requests
881 * for this queue.
882 *
883 * The queue lock must be held with interrupts disabled.
884 */
885 void blk_start_queueing(struct request_queue *q)
886 {
887 if (!blk_queue_plugged(q))
888 q->request_fn(q);
889 else
890 __generic_unplug_device(q);
891 }
892 EXPORT_SYMBOL(blk_start_queueing);
893
894 /**
895 * blk_requeue_request - put a request back on queue
896 * @q: request queue where request should be inserted
897 * @rq: request to be inserted
898 *
899 * Description:
900 * Drivers often keep queueing requests until the hardware cannot accept
901 * more, when that condition happens we need to put the request back
902 * on the queue. Must be called with queue lock held.
903 */
904 void blk_requeue_request(struct request_queue *q, struct request *rq)
905 {
906 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
907
908 if (blk_rq_tagged(rq))
909 blk_queue_end_tag(q, rq);
910
911 elv_requeue_request(q, rq);
912 }
913 EXPORT_SYMBOL(blk_requeue_request);
914
915 /**
916 * blk_insert_request - insert a special request in to a request queue
917 * @q: request queue where request should be inserted
918 * @rq: request to be inserted
919 * @at_head: insert request at head or tail of queue
920 * @data: private data
921 *
922 * Description:
923 * Many block devices need to execute commands asynchronously, so they don't
924 * block the whole kernel from preemption during request execution. This is
925 * accomplished normally by inserting aritficial requests tagged as
926 * REQ_SPECIAL in to the corresponding request queue, and letting them be
927 * scheduled for actual execution by the request queue.
928 *
929 * We have the option of inserting the head or the tail of the queue.
930 * Typically we use the tail for new ioctls and so forth. We use the head
931 * of the queue for things like a QUEUE_FULL message from a device, or a
932 * host that is unable to accept a particular command.
933 */
934 void blk_insert_request(struct request_queue *q, struct request *rq,
935 int at_head, void *data)
936 {
937 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
938 unsigned long flags;
939
940 /*
941 * tell I/O scheduler that this isn't a regular read/write (ie it
942 * must not attempt merges on this) and that it acts as a soft
943 * barrier
944 */
945 rq->cmd_type = REQ_TYPE_SPECIAL;
946 rq->cmd_flags |= REQ_SOFTBARRIER;
947
948 rq->special = data;
949
950 spin_lock_irqsave(q->queue_lock, flags);
951
952 /*
953 * If command is tagged, release the tag
954 */
955 if (blk_rq_tagged(rq))
956 blk_queue_end_tag(q, rq);
957
958 drive_stat_acct(rq, 1);
959 __elv_add_request(q, rq, where, 0);
960 blk_start_queueing(q);
961 spin_unlock_irqrestore(q->queue_lock, flags);
962 }
963 EXPORT_SYMBOL(blk_insert_request);
964
965 /*
966 * add-request adds a request to the linked list.
967 * queue lock is held and interrupts disabled, as we muck with the
968 * request queue list.
969 */
970 static inline void add_request(struct request_queue *q, struct request *req)
971 {
972 drive_stat_acct(req, 1);
973
974 /*
975 * elevator indicated where it wants this request to be
976 * inserted at elevator_merge time
977 */
978 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
979 }
980
981 /*
982 * disk_round_stats() - Round off the performance stats on a struct
983 * disk_stats.
984 *
985 * The average IO queue length and utilisation statistics are maintained
986 * by observing the current state of the queue length and the amount of
987 * time it has been in this state for.
988 *
989 * Normally, that accounting is done on IO completion, but that can result
990 * in more than a second's worth of IO being accounted for within any one
991 * second, leading to >100% utilisation. To deal with that, we call this
992 * function to do a round-off before returning the results when reading
993 * /proc/diskstats. This accounts immediately for all queue usage up to
994 * the current jiffies and restarts the counters again.
995 */
996 void disk_round_stats(struct gendisk *disk)
997 {
998 unsigned long now = jiffies;
999
1000 if (now == disk->stamp)
1001 return;
1002
1003 if (disk->in_flight) {
1004 __disk_stat_add(disk, time_in_queue,
1005 disk->in_flight * (now - disk->stamp));
1006 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
1007 }
1008 disk->stamp = now;
1009 }
1010 EXPORT_SYMBOL_GPL(disk_round_stats);
1011
1012 void part_round_stats(struct hd_struct *part)
1013 {
1014 unsigned long now = jiffies;
1015
1016 if (now == part->stamp)
1017 return;
1018
1019 if (part->in_flight) {
1020 __part_stat_add(part, time_in_queue,
1021 part->in_flight * (now - part->stamp));
1022 __part_stat_add(part, io_ticks, (now - part->stamp));
1023 }
1024 part->stamp = now;
1025 }
1026
1027 /*
1028 * queue lock must be held
1029 */
1030 void __blk_put_request(struct request_queue *q, struct request *req)
1031 {
1032 if (unlikely(!q))
1033 return;
1034 if (unlikely(--req->ref_count))
1035 return;
1036
1037 elv_completed_request(q, req);
1038
1039 /*
1040 * Request may not have originated from ll_rw_blk. if not,
1041 * it didn't come out of our reserved rq pools
1042 */
1043 if (req->cmd_flags & REQ_ALLOCED) {
1044 int rw = rq_data_dir(req);
1045 int priv = req->cmd_flags & REQ_ELVPRIV;
1046
1047 BUG_ON(!list_empty(&req->queuelist));
1048 BUG_ON(!hlist_unhashed(&req->hash));
1049
1050 blk_free_request(q, req);
1051 freed_request(q, rw, priv);
1052 }
1053 }
1054 EXPORT_SYMBOL_GPL(__blk_put_request);
1055
1056 void blk_put_request(struct request *req)
1057 {
1058 unsigned long flags;
1059 struct request_queue *q = req->q;
1060
1061 spin_lock_irqsave(q->queue_lock, flags);
1062 __blk_put_request(q, req);
1063 spin_unlock_irqrestore(q->queue_lock, flags);
1064 }
1065 EXPORT_SYMBOL(blk_put_request);
1066
1067 void init_request_from_bio(struct request *req, struct bio *bio)
1068 {
1069 req->cmd_type = REQ_TYPE_FS;
1070
1071 /*
1072 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1073 */
1074 if (bio_rw_ahead(bio) || bio_failfast(bio))
1075 req->cmd_flags |= REQ_FAILFAST;
1076
1077 /*
1078 * REQ_BARRIER implies no merging, but lets make it explicit
1079 */
1080 if (unlikely(bio_barrier(bio)))
1081 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
1082 if (unlikely(bio_discard(bio))) {
1083 req->cmd_flags |= (REQ_SOFTBARRIER | REQ_DISCARD);
1084 req->q->prepare_discard_fn(req->q, req);
1085 }
1086
1087 if (bio_sync(bio))
1088 req->cmd_flags |= REQ_RW_SYNC;
1089 if (bio_rw_meta(bio))
1090 req->cmd_flags |= REQ_RW_META;
1091
1092 req->errors = 0;
1093 req->hard_sector = req->sector = bio->bi_sector;
1094 req->ioprio = bio_prio(bio);
1095 req->start_time = jiffies;
1096 blk_rq_bio_prep(req->q, req, bio);
1097 }
1098
1099 static int __make_request(struct request_queue *q, struct bio *bio)
1100 {
1101 struct request *req;
1102 int el_ret, nr_sectors, barrier, discard, err;
1103 const unsigned short prio = bio_prio(bio);
1104 const int sync = bio_sync(bio);
1105 int rw_flags;
1106
1107 nr_sectors = bio_sectors(bio);
1108
1109 /*
1110 * low level driver can indicate that it wants pages above a
1111 * certain limit bounced to low memory (ie for highmem, or even
1112 * ISA dma in theory)
1113 */
1114 blk_queue_bounce(q, &bio);
1115
1116 barrier = bio_barrier(bio);
1117 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
1118 err = -EOPNOTSUPP;
1119 goto end_io;
1120 }
1121
1122 discard = bio_discard(bio);
1123 if (unlikely(discard) && !q->prepare_discard_fn) {
1124 err = -EOPNOTSUPP;
1125 goto end_io;
1126 }
1127
1128 spin_lock_irq(q->queue_lock);
1129
1130 if (unlikely(barrier) || elv_queue_empty(q))
1131 goto get_rq;
1132
1133 el_ret = elv_merge(q, &req, bio);
1134 switch (el_ret) {
1135 case ELEVATOR_BACK_MERGE:
1136 BUG_ON(!rq_mergeable(req));
1137
1138 if (!ll_back_merge_fn(q, req, bio))
1139 break;
1140
1141 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
1142
1143 req->biotail->bi_next = bio;
1144 req->biotail = bio;
1145 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1146 req->ioprio = ioprio_best(req->ioprio, prio);
1147 drive_stat_acct(req, 0);
1148 if (!attempt_back_merge(q, req))
1149 elv_merged_request(q, req, el_ret);
1150 goto out;
1151
1152 case ELEVATOR_FRONT_MERGE:
1153 BUG_ON(!rq_mergeable(req));
1154
1155 if (!ll_front_merge_fn(q, req, bio))
1156 break;
1157
1158 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
1159
1160 bio->bi_next = req->bio;
1161 req->bio = bio;
1162
1163 /*
1164 * may not be valid. if the low level driver said
1165 * it didn't need a bounce buffer then it better
1166 * not touch req->buffer either...
1167 */
1168 req->buffer = bio_data(bio);
1169 req->current_nr_sectors = bio_cur_sectors(bio);
1170 req->hard_cur_sectors = req->current_nr_sectors;
1171 req->sector = req->hard_sector = bio->bi_sector;
1172 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1173 req->ioprio = ioprio_best(req->ioprio, prio);
1174 drive_stat_acct(req, 0);
1175 if (!attempt_front_merge(q, req))
1176 elv_merged_request(q, req, el_ret);
1177 goto out;
1178
1179 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1180 default:
1181 ;
1182 }
1183
1184 get_rq:
1185 /*
1186 * This sync check and mask will be re-done in init_request_from_bio(),
1187 * but we need to set it earlier to expose the sync flag to the
1188 * rq allocator and io schedulers.
1189 */
1190 rw_flags = bio_data_dir(bio);
1191 if (sync)
1192 rw_flags |= REQ_RW_SYNC;
1193
1194 /*
1195 * Grab a free request. This is might sleep but can not fail.
1196 * Returns with the queue unlocked.
1197 */
1198 req = get_request_wait(q, rw_flags, bio);
1199
1200 /*
1201 * After dropping the lock and possibly sleeping here, our request
1202 * may now be mergeable after it had proven unmergeable (above).
1203 * We don't worry about that case for efficiency. It won't happen
1204 * often, and the elevators are able to handle it.
1205 */
1206 init_request_from_bio(req, bio);
1207
1208 spin_lock_irq(q->queue_lock);
1209 if (elv_queue_empty(q))
1210 blk_plug_device(q);
1211 add_request(q, req);
1212 out:
1213 if (sync)
1214 __generic_unplug_device(q);
1215
1216 spin_unlock_irq(q->queue_lock);
1217 return 0;
1218
1219 end_io:
1220 bio_endio(bio, err);
1221 return 0;
1222 }
1223
1224 /*
1225 * If bio->bi_dev is a partition, remap the location
1226 */
1227 static inline void blk_partition_remap(struct bio *bio)
1228 {
1229 struct block_device *bdev = bio->bi_bdev;
1230
1231 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1232 struct hd_struct *p = bdev->bd_part;
1233
1234 bio->bi_sector += p->start_sect;
1235 bio->bi_bdev = bdev->bd_contains;
1236
1237 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
1238 bdev->bd_dev, bio->bi_sector,
1239 bio->bi_sector - p->start_sect);
1240 }
1241 }
1242
1243 static void handle_bad_sector(struct bio *bio)
1244 {
1245 char b[BDEVNAME_SIZE];
1246
1247 printk(KERN_INFO "attempt to access beyond end of device\n");
1248 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1249 bdevname(bio->bi_bdev, b),
1250 bio->bi_rw,
1251 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1252 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1253
1254 set_bit(BIO_EOF, &bio->bi_flags);
1255 }
1256
1257 #ifdef CONFIG_FAIL_MAKE_REQUEST
1258
1259 static DECLARE_FAULT_ATTR(fail_make_request);
1260
1261 static int __init setup_fail_make_request(char *str)
1262 {
1263 return setup_fault_attr(&fail_make_request, str);
1264 }
1265 __setup("fail_make_request=", setup_fail_make_request);
1266
1267 static int should_fail_request(struct bio *bio)
1268 {
1269 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
1270 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
1271 return should_fail(&fail_make_request, bio->bi_size);
1272
1273 return 0;
1274 }
1275
1276 static int __init fail_make_request_debugfs(void)
1277 {
1278 return init_fault_attr_dentries(&fail_make_request,
1279 "fail_make_request");
1280 }
1281
1282 late_initcall(fail_make_request_debugfs);
1283
1284 #else /* CONFIG_FAIL_MAKE_REQUEST */
1285
1286 static inline int should_fail_request(struct bio *bio)
1287 {
1288 return 0;
1289 }
1290
1291 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1292
1293 /*
1294 * Check whether this bio extends beyond the end of the device.
1295 */
1296 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1297 {
1298 sector_t maxsector;
1299
1300 if (!nr_sectors)
1301 return 0;
1302
1303 /* Test device or partition size, when known. */
1304 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1305 if (maxsector) {
1306 sector_t sector = bio->bi_sector;
1307
1308 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1309 /*
1310 * This may well happen - the kernel calls bread()
1311 * without checking the size of the device, e.g., when
1312 * mounting a device.
1313 */
1314 handle_bad_sector(bio);
1315 return 1;
1316 }
1317 }
1318
1319 return 0;
1320 }
1321
1322 /**
1323 * generic_make_request: hand a buffer to its device driver for I/O
1324 * @bio: The bio describing the location in memory and on the device.
1325 *
1326 * generic_make_request() is used to make I/O requests of block
1327 * devices. It is passed a &struct bio, which describes the I/O that needs
1328 * to be done.
1329 *
1330 * generic_make_request() does not return any status. The
1331 * success/failure status of the request, along with notification of
1332 * completion, is delivered asynchronously through the bio->bi_end_io
1333 * function described (one day) else where.
1334 *
1335 * The caller of generic_make_request must make sure that bi_io_vec
1336 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1337 * set to describe the device address, and the
1338 * bi_end_io and optionally bi_private are set to describe how
1339 * completion notification should be signaled.
1340 *
1341 * generic_make_request and the drivers it calls may use bi_next if this
1342 * bio happens to be merged with someone else, and may change bi_dev and
1343 * bi_sector for remaps as it sees fit. So the values of these fields
1344 * should NOT be depended on after the call to generic_make_request.
1345 */
1346 static inline void __generic_make_request(struct bio *bio)
1347 {
1348 struct request_queue *q;
1349 sector_t old_sector;
1350 int ret, nr_sectors = bio_sectors(bio);
1351 dev_t old_dev;
1352 int err = -EIO;
1353
1354 might_sleep();
1355
1356 if (bio_check_eod(bio, nr_sectors))
1357 goto end_io;
1358
1359 /*
1360 * Resolve the mapping until finished. (drivers are
1361 * still free to implement/resolve their own stacking
1362 * by explicitly returning 0)
1363 *
1364 * NOTE: we don't repeat the blk_size check for each new device.
1365 * Stacking drivers are expected to know what they are doing.
1366 */
1367 old_sector = -1;
1368 old_dev = 0;
1369 do {
1370 char b[BDEVNAME_SIZE];
1371
1372 q = bdev_get_queue(bio->bi_bdev);
1373 if (!q) {
1374 printk(KERN_ERR
1375 "generic_make_request: Trying to access "
1376 "nonexistent block-device %s (%Lu)\n",
1377 bdevname(bio->bi_bdev, b),
1378 (long long) bio->bi_sector);
1379 end_io:
1380 bio_endio(bio, err);
1381 break;
1382 }
1383
1384 if (unlikely(nr_sectors > q->max_hw_sectors)) {
1385 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1386 bdevname(bio->bi_bdev, b),
1387 bio_sectors(bio),
1388 q->max_hw_sectors);
1389 goto end_io;
1390 }
1391
1392 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1393 goto end_io;
1394
1395 if (should_fail_request(bio))
1396 goto end_io;
1397
1398 /*
1399 * If this device has partitions, remap block n
1400 * of partition p to block n+start(p) of the disk.
1401 */
1402 blk_partition_remap(bio);
1403
1404 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1405 goto end_io;
1406
1407 if (old_sector != -1)
1408 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
1409 old_sector);
1410
1411 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
1412
1413 old_sector = bio->bi_sector;
1414 old_dev = bio->bi_bdev->bd_dev;
1415
1416 if (bio_check_eod(bio, nr_sectors))
1417 goto end_io;
1418 if ((bio_empty_barrier(bio) && !q->prepare_flush_fn) ||
1419 (bio_discard(bio) && !q->prepare_discard_fn)) {
1420 err = -EOPNOTSUPP;
1421 goto end_io;
1422 }
1423
1424 ret = q->make_request_fn(q, bio);
1425 } while (ret);
1426 }
1427
1428 /*
1429 * We only want one ->make_request_fn to be active at a time,
1430 * else stack usage with stacked devices could be a problem.
1431 * So use current->bio_{list,tail} to keep a list of requests
1432 * submited by a make_request_fn function.
1433 * current->bio_tail is also used as a flag to say if
1434 * generic_make_request is currently active in this task or not.
1435 * If it is NULL, then no make_request is active. If it is non-NULL,
1436 * then a make_request is active, and new requests should be added
1437 * at the tail
1438 */
1439 void generic_make_request(struct bio *bio)
1440 {
1441 if (current->bio_tail) {
1442 /* make_request is active */
1443 *(current->bio_tail) = bio;
1444 bio->bi_next = NULL;
1445 current->bio_tail = &bio->bi_next;
1446 return;
1447 }
1448 /* following loop may be a bit non-obvious, and so deserves some
1449 * explanation.
1450 * Before entering the loop, bio->bi_next is NULL (as all callers
1451 * ensure that) so we have a list with a single bio.
1452 * We pretend that we have just taken it off a longer list, so
1453 * we assign bio_list to the next (which is NULL) and bio_tail
1454 * to &bio_list, thus initialising the bio_list of new bios to be
1455 * added. __generic_make_request may indeed add some more bios
1456 * through a recursive call to generic_make_request. If it
1457 * did, we find a non-NULL value in bio_list and re-enter the loop
1458 * from the top. In this case we really did just take the bio
1459 * of the top of the list (no pretending) and so fixup bio_list and
1460 * bio_tail or bi_next, and call into __generic_make_request again.
1461 *
1462 * The loop was structured like this to make only one call to
1463 * __generic_make_request (which is important as it is large and
1464 * inlined) and to keep the structure simple.
1465 */
1466 BUG_ON(bio->bi_next);
1467 do {
1468 current->bio_list = bio->bi_next;
1469 if (bio->bi_next == NULL)
1470 current->bio_tail = &current->bio_list;
1471 else
1472 bio->bi_next = NULL;
1473 __generic_make_request(bio);
1474 bio = current->bio_list;
1475 } while (bio);
1476 current->bio_tail = NULL; /* deactivate */
1477 }
1478 EXPORT_SYMBOL(generic_make_request);
1479
1480 /**
1481 * submit_bio: submit a bio to the block device layer for I/O
1482 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1483 * @bio: The &struct bio which describes the I/O
1484 *
1485 * submit_bio() is very similar in purpose to generic_make_request(), and
1486 * uses that function to do most of the work. Both are fairly rough
1487 * interfaces, @bio must be presetup and ready for I/O.
1488 *
1489 */
1490 void submit_bio(int rw, struct bio *bio)
1491 {
1492 int count = bio_sectors(bio);
1493
1494 bio->bi_rw |= rw;
1495
1496 /*
1497 * If it's a regular read/write or a barrier with data attached,
1498 * go through the normal accounting stuff before submission.
1499 */
1500 if (bio_has_data(bio)) {
1501 if (rw & WRITE) {
1502 count_vm_events(PGPGOUT, count);
1503 } else {
1504 task_io_account_read(bio->bi_size);
1505 count_vm_events(PGPGIN, count);
1506 }
1507
1508 if (unlikely(block_dump)) {
1509 char b[BDEVNAME_SIZE];
1510 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1511 current->comm, task_pid_nr(current),
1512 (rw & WRITE) ? "WRITE" : "READ",
1513 (unsigned long long)bio->bi_sector,
1514 bdevname(bio->bi_bdev, b));
1515 }
1516 }
1517
1518 generic_make_request(bio);
1519 }
1520 EXPORT_SYMBOL(submit_bio);
1521
1522 /**
1523 * __end_that_request_first - end I/O on a request
1524 * @req: the request being processed
1525 * @error: 0 for success, < 0 for error
1526 * @nr_bytes: number of bytes to complete
1527 *
1528 * Description:
1529 * Ends I/O on a number of bytes attached to @req, and sets it up
1530 * for the next range of segments (if any) in the cluster.
1531 *
1532 * Return:
1533 * 0 - we are done with this request, call end_that_request_last()
1534 * 1 - still buffers pending for this request
1535 **/
1536 static int __end_that_request_first(struct request *req, int error,
1537 int nr_bytes)
1538 {
1539 int total_bytes, bio_nbytes, next_idx = 0;
1540 struct bio *bio;
1541
1542 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
1543
1544 /*
1545 * for a REQ_BLOCK_PC request, we want to carry any eventual
1546 * sense key with us all the way through
1547 */
1548 if (!blk_pc_request(req))
1549 req->errors = 0;
1550
1551 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1552 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1553 req->rq_disk ? req->rq_disk->disk_name : "?",
1554 (unsigned long long)req->sector);
1555 }
1556
1557 if (blk_fs_request(req) && req->rq_disk) {
1558 struct hd_struct *part = get_part(req->rq_disk, req->sector);
1559 const int rw = rq_data_dir(req);
1560
1561 all_stat_add(req->rq_disk, part, sectors[rw],
1562 nr_bytes >> 9, req->sector);
1563 }
1564
1565 total_bytes = bio_nbytes = 0;
1566 while ((bio = req->bio) != NULL) {
1567 int nbytes;
1568
1569 /*
1570 * For an empty barrier request, the low level driver must
1571 * store a potential error location in ->sector. We pass
1572 * that back up in ->bi_sector.
1573 */
1574 if (blk_empty_barrier(req))
1575 bio->bi_sector = req->sector;
1576
1577 if (nr_bytes >= bio->bi_size) {
1578 req->bio = bio->bi_next;
1579 nbytes = bio->bi_size;
1580 req_bio_endio(req, bio, nbytes, error);
1581 next_idx = 0;
1582 bio_nbytes = 0;
1583 } else {
1584 int idx = bio->bi_idx + next_idx;
1585
1586 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1587 blk_dump_rq_flags(req, "__end_that");
1588 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1589 __func__, bio->bi_idx, bio->bi_vcnt);
1590 break;
1591 }
1592
1593 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1594 BIO_BUG_ON(nbytes > bio->bi_size);
1595
1596 /*
1597 * not a complete bvec done
1598 */
1599 if (unlikely(nbytes > nr_bytes)) {
1600 bio_nbytes += nr_bytes;
1601 total_bytes += nr_bytes;
1602 break;
1603 }
1604
1605 /*
1606 * advance to the next vector
1607 */
1608 next_idx++;
1609 bio_nbytes += nbytes;
1610 }
1611
1612 total_bytes += nbytes;
1613 nr_bytes -= nbytes;
1614
1615 bio = req->bio;
1616 if (bio) {
1617 /*
1618 * end more in this run, or just return 'not-done'
1619 */
1620 if (unlikely(nr_bytes <= 0))
1621 break;
1622 }
1623 }
1624
1625 /*
1626 * completely done
1627 */
1628 if (!req->bio)
1629 return 0;
1630
1631 /*
1632 * if the request wasn't completed, update state
1633 */
1634 if (bio_nbytes) {
1635 req_bio_endio(req, bio, bio_nbytes, error);
1636 bio->bi_idx += next_idx;
1637 bio_iovec(bio)->bv_offset += nr_bytes;
1638 bio_iovec(bio)->bv_len -= nr_bytes;
1639 }
1640
1641 blk_recalc_rq_sectors(req, total_bytes >> 9);
1642 blk_recalc_rq_segments(req);
1643 return 1;
1644 }
1645
1646 /*
1647 * splice the completion data to a local structure and hand off to
1648 * process_completion_queue() to complete the requests
1649 */
1650 static void blk_done_softirq(struct softirq_action *h)
1651 {
1652 struct list_head *cpu_list, local_list;
1653
1654 local_irq_disable();
1655 cpu_list = &__get_cpu_var(blk_cpu_done);
1656 list_replace_init(cpu_list, &local_list);
1657 local_irq_enable();
1658
1659 while (!list_empty(&local_list)) {
1660 struct request *rq;
1661
1662 rq = list_entry(local_list.next, struct request, donelist);
1663 list_del_init(&rq->donelist);
1664 rq->q->softirq_done_fn(rq);
1665 }
1666 }
1667
1668 static int __cpuinit blk_cpu_notify(struct notifier_block *self,
1669 unsigned long action, void *hcpu)
1670 {
1671 /*
1672 * If a CPU goes away, splice its entries to the current CPU
1673 * and trigger a run of the softirq
1674 */
1675 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1676 int cpu = (unsigned long) hcpu;
1677
1678 local_irq_disable();
1679 list_splice_init(&per_cpu(blk_cpu_done, cpu),
1680 &__get_cpu_var(blk_cpu_done));
1681 raise_softirq_irqoff(BLOCK_SOFTIRQ);
1682 local_irq_enable();
1683 }
1684
1685 return NOTIFY_OK;
1686 }
1687
1688
1689 static struct notifier_block blk_cpu_notifier __cpuinitdata = {
1690 .notifier_call = blk_cpu_notify,
1691 };
1692
1693 /**
1694 * blk_complete_request - end I/O on a request
1695 * @req: the request being processed
1696 *
1697 * Description:
1698 * Ends all I/O on a request. It does not handle partial completions,
1699 * unless the driver actually implements this in its completion callback
1700 * through requeueing. The actual completion happens out-of-order,
1701 * through a softirq handler. The user must have registered a completion
1702 * callback through blk_queue_softirq_done().
1703 **/
1704
1705 void blk_complete_request(struct request *req)
1706 {
1707 struct list_head *cpu_list;
1708 unsigned long flags;
1709
1710 BUG_ON(!req->q->softirq_done_fn);
1711
1712 local_irq_save(flags);
1713
1714 cpu_list = &__get_cpu_var(blk_cpu_done);
1715 list_add_tail(&req->donelist, cpu_list);
1716 raise_softirq_irqoff(BLOCK_SOFTIRQ);
1717
1718 local_irq_restore(flags);
1719 }
1720 EXPORT_SYMBOL(blk_complete_request);
1721
1722 /*
1723 * queue lock must be held
1724 */
1725 static void end_that_request_last(struct request *req, int error)
1726 {
1727 struct gendisk *disk = req->rq_disk;
1728
1729 if (blk_rq_tagged(req))
1730 blk_queue_end_tag(req->q, req);
1731
1732 if (blk_queued_rq(req))
1733 blkdev_dequeue_request(req);
1734
1735 if (unlikely(laptop_mode) && blk_fs_request(req))
1736 laptop_io_completion();
1737
1738 /*
1739 * Account IO completion. bar_rq isn't accounted as a normal
1740 * IO on queueing nor completion. Accounting the containing
1741 * request is enough.
1742 */
1743 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1744 unsigned long duration = jiffies - req->start_time;
1745 const int rw = rq_data_dir(req);
1746 struct hd_struct *part = get_part(disk, req->sector);
1747
1748 __all_stat_inc(disk, part, ios[rw], req->sector);
1749 __all_stat_add(disk, part, ticks[rw], duration, req->sector);
1750 disk_round_stats(disk);
1751 disk->in_flight--;
1752 if (part) {
1753 part_round_stats(part);
1754 part->in_flight--;
1755 }
1756 }
1757
1758 if (req->end_io)
1759 req->end_io(req, error);
1760 else {
1761 if (blk_bidi_rq(req))
1762 __blk_put_request(req->next_rq->q, req->next_rq);
1763
1764 __blk_put_request(req->q, req);
1765 }
1766 }
1767
1768 static inline void __end_request(struct request *rq, int uptodate,
1769 unsigned int nr_bytes)
1770 {
1771 int error = 0;
1772
1773 if (uptodate <= 0)
1774 error = uptodate ? uptodate : -EIO;
1775
1776 __blk_end_request(rq, error, nr_bytes);
1777 }
1778
1779 /**
1780 * blk_rq_bytes - Returns bytes left to complete in the entire request
1781 * @rq: the request being processed
1782 **/
1783 unsigned int blk_rq_bytes(struct request *rq)
1784 {
1785 if (blk_fs_request(rq))
1786 return rq->hard_nr_sectors << 9;
1787
1788 return rq->data_len;
1789 }
1790 EXPORT_SYMBOL_GPL(blk_rq_bytes);
1791
1792 /**
1793 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
1794 * @rq: the request being processed
1795 **/
1796 unsigned int blk_rq_cur_bytes(struct request *rq)
1797 {
1798 if (blk_fs_request(rq))
1799 return rq->current_nr_sectors << 9;
1800
1801 if (rq->bio)
1802 return rq->bio->bi_size;
1803
1804 return rq->data_len;
1805 }
1806 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
1807
1808 /**
1809 * end_queued_request - end all I/O on a queued request
1810 * @rq: the request being processed
1811 * @uptodate: error value or 0/1 uptodate flag
1812 *
1813 * Description:
1814 * Ends all I/O on a request, and removes it from the block layer queues.
1815 * Not suitable for normal IO completion, unless the driver still has
1816 * the request attached to the block layer.
1817 *
1818 **/
1819 void end_queued_request(struct request *rq, int uptodate)
1820 {
1821 __end_request(rq, uptodate, blk_rq_bytes(rq));
1822 }
1823 EXPORT_SYMBOL(end_queued_request);
1824
1825 /**
1826 * end_dequeued_request - end all I/O on a dequeued request
1827 * @rq: the request being processed
1828 * @uptodate: error value or 0/1 uptodate flag
1829 *
1830 * Description:
1831 * Ends all I/O on a request. The request must already have been
1832 * dequeued using blkdev_dequeue_request(), as is normally the case
1833 * for most drivers.
1834 *
1835 **/
1836 void end_dequeued_request(struct request *rq, int uptodate)
1837 {
1838 __end_request(rq, uptodate, blk_rq_bytes(rq));
1839 }
1840 EXPORT_SYMBOL(end_dequeued_request);
1841
1842
1843 /**
1844 * end_request - end I/O on the current segment of the request
1845 * @req: the request being processed
1846 * @uptodate: error value or 0/1 uptodate flag
1847 *
1848 * Description:
1849 * Ends I/O on the current segment of a request. If that is the only
1850 * remaining segment, the request is also completed and freed.
1851 *
1852 * This is a remnant of how older block drivers handled IO completions.
1853 * Modern drivers typically end IO on the full request in one go, unless
1854 * they have a residual value to account for. For that case this function
1855 * isn't really useful, unless the residual just happens to be the
1856 * full current segment. In other words, don't use this function in new
1857 * code. Either use end_request_completely(), or the
1858 * end_that_request_chunk() (along with end_that_request_last()) for
1859 * partial completions.
1860 *
1861 **/
1862 void end_request(struct request *req, int uptodate)
1863 {
1864 __end_request(req, uptodate, req->hard_cur_sectors << 9);
1865 }
1866 EXPORT_SYMBOL(end_request);
1867
1868 /**
1869 * blk_end_io - Generic end_io function to complete a request.
1870 * @rq: the request being processed
1871 * @error: 0 for success, < 0 for error
1872 * @nr_bytes: number of bytes to complete @rq
1873 * @bidi_bytes: number of bytes to complete @rq->next_rq
1874 * @drv_callback: function called between completion of bios in the request
1875 * and completion of the request.
1876 * If the callback returns non 0, this helper returns without
1877 * completion of the request.
1878 *
1879 * Description:
1880 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1881 * If @rq has leftover, sets it up for the next range of segments.
1882 *
1883 * Return:
1884 * 0 - we are done with this request
1885 * 1 - this request is not freed yet, it still has pending buffers.
1886 **/
1887 static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1888 unsigned int bidi_bytes,
1889 int (drv_callback)(struct request *))
1890 {
1891 struct request_queue *q = rq->q;
1892 unsigned long flags = 0UL;
1893
1894 if (bio_has_data(rq->bio) || blk_discard_rq(rq)) {
1895 if (__end_that_request_first(rq, error, nr_bytes))
1896 return 1;
1897
1898 /* Bidi request must be completed as a whole */
1899 if (blk_bidi_rq(rq) &&
1900 __end_that_request_first(rq->next_rq, error, bidi_bytes))
1901 return 1;
1902 }
1903
1904 /* Special feature for tricky drivers */
1905 if (drv_callback && drv_callback(rq))
1906 return 1;
1907
1908 add_disk_randomness(rq->rq_disk);
1909
1910 spin_lock_irqsave(q->queue_lock, flags);
1911 end_that_request_last(rq, error);
1912 spin_unlock_irqrestore(q->queue_lock, flags);
1913
1914 return 0;
1915 }
1916
1917 /**
1918 * blk_end_request - Helper function for drivers to complete the request.
1919 * @rq: the request being processed
1920 * @error: 0 for success, < 0 for error
1921 * @nr_bytes: number of bytes to complete
1922 *
1923 * Description:
1924 * Ends I/O on a number of bytes attached to @rq.
1925 * If @rq has leftover, sets it up for the next range of segments.
1926 *
1927 * Return:
1928 * 0 - we are done with this request
1929 * 1 - still buffers pending for this request
1930 **/
1931 int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1932 {
1933 return blk_end_io(rq, error, nr_bytes, 0, NULL);
1934 }
1935 EXPORT_SYMBOL_GPL(blk_end_request);
1936
1937 /**
1938 * __blk_end_request - Helper function for drivers to complete the request.
1939 * @rq: the request being processed
1940 * @error: 0 for success, < 0 for error
1941 * @nr_bytes: number of bytes to complete
1942 *
1943 * Description:
1944 * Must be called with queue lock held unlike blk_end_request().
1945 *
1946 * Return:
1947 * 0 - we are done with this request
1948 * 1 - still buffers pending for this request
1949 **/
1950 int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1951 {
1952 if ((bio_has_data(rq->bio) || blk_discard_rq(rq)) &&
1953 __end_that_request_first(rq, error, nr_bytes))
1954 return 1;
1955
1956 add_disk_randomness(rq->rq_disk);
1957
1958 end_that_request_last(rq, error);
1959
1960 return 0;
1961 }
1962 EXPORT_SYMBOL_GPL(__blk_end_request);
1963
1964 /**
1965 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
1966 * @rq: the bidi request being processed
1967 * @error: 0 for success, < 0 for error
1968 * @nr_bytes: number of bytes to complete @rq
1969 * @bidi_bytes: number of bytes to complete @rq->next_rq
1970 *
1971 * Description:
1972 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1973 *
1974 * Return:
1975 * 0 - we are done with this request
1976 * 1 - still buffers pending for this request
1977 **/
1978 int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
1979 unsigned int bidi_bytes)
1980 {
1981 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
1982 }
1983 EXPORT_SYMBOL_GPL(blk_end_bidi_request);
1984
1985 /**
1986 * blk_end_request_callback - Special helper function for tricky drivers
1987 * @rq: the request being processed
1988 * @error: 0 for success, < 0 for error
1989 * @nr_bytes: number of bytes to complete
1990 * @drv_callback: function called between completion of bios in the request
1991 * and completion of the request.
1992 * If the callback returns non 0, this helper returns without
1993 * completion of the request.
1994 *
1995 * Description:
1996 * Ends I/O on a number of bytes attached to @rq.
1997 * If @rq has leftover, sets it up for the next range of segments.
1998 *
1999 * This special helper function is used only for existing tricky drivers.
2000 * (e.g. cdrom_newpc_intr() of ide-cd)
2001 * This interface will be removed when such drivers are rewritten.
2002 * Don't use this interface in other places anymore.
2003 *
2004 * Return:
2005 * 0 - we are done with this request
2006 * 1 - this request is not freed yet.
2007 * this request still has pending buffers or
2008 * the driver doesn't want to finish this request yet.
2009 **/
2010 int blk_end_request_callback(struct request *rq, int error,
2011 unsigned int nr_bytes,
2012 int (drv_callback)(struct request *))
2013 {
2014 return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
2015 }
2016 EXPORT_SYMBOL_GPL(blk_end_request_callback);
2017
2018 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2019 struct bio *bio)
2020 {
2021 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and
2022 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */
2023 rq->cmd_flags |= (bio->bi_rw & 3);
2024
2025 if (bio_has_data(bio)) {
2026 rq->nr_phys_segments = bio_phys_segments(q, bio);
2027 rq->nr_hw_segments = bio_hw_segments(q, bio);
2028 rq->buffer = bio_data(bio);
2029 }
2030 rq->current_nr_sectors = bio_cur_sectors(bio);
2031 rq->hard_cur_sectors = rq->current_nr_sectors;
2032 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
2033 rq->data_len = bio->bi_size;
2034
2035 rq->bio = rq->biotail = bio;
2036
2037 if (bio->bi_bdev)
2038 rq->rq_disk = bio->bi_bdev->bd_disk;
2039 }
2040
2041 int kblockd_schedule_work(struct work_struct *work)
2042 {
2043 return queue_work(kblockd_workqueue, work);
2044 }
2045 EXPORT_SYMBOL(kblockd_schedule_work);
2046
2047 void kblockd_flush_work(struct work_struct *work)
2048 {
2049 cancel_work_sync(work);
2050 }
2051 EXPORT_SYMBOL(kblockd_flush_work);
2052
2053 int __init blk_dev_init(void)
2054 {
2055 int i;
2056
2057 kblockd_workqueue = create_workqueue("kblockd");
2058 if (!kblockd_workqueue)
2059 panic("Failed to create kblockd\n");
2060
2061 request_cachep = kmem_cache_create("blkdev_requests",
2062 sizeof(struct request), 0, SLAB_PANIC, NULL);
2063
2064 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2065 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2066
2067 for_each_possible_cpu(i)
2068 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
2069
2070 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
2071 register_hotcpu_notifier(&blk_cpu_notifier);
2072
2073 return 0;
2074 }
2075
This page took 0.072485 seconds and 6 git commands to generate.