2410e0cb7aef76d0ba5a4f18bb5334061cde43ce
[deliverable/linux.git] / block / blk-mq.c
1 #include <linux/kernel.h>
2 #include <linux/module.h>
3 #include <linux/backing-dev.h>
4 #include <linux/bio.h>
5 #include <linux/blkdev.h>
6 #include <linux/mm.h>
7 #include <linux/init.h>
8 #include <linux/slab.h>
9 #include <linux/workqueue.h>
10 #include <linux/smp.h>
11 #include <linux/llist.h>
12 #include <linux/list_sort.h>
13 #include <linux/cpu.h>
14 #include <linux/cache.h>
15 #include <linux/sched/sysctl.h>
16 #include <linux/delay.h>
17
18 #include <trace/events/block.h>
19
20 #include <linux/blk-mq.h>
21 #include "blk.h"
22 #include "blk-mq.h"
23 #include "blk-mq-tag.h"
24
25 static DEFINE_MUTEX(all_q_mutex);
26 static LIST_HEAD(all_q_list);
27
28 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
29
30 static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
31 unsigned int cpu)
32 {
33 return per_cpu_ptr(q->queue_ctx, cpu);
34 }
35
36 /*
37 * This assumes per-cpu software queueing queues. They could be per-node
38 * as well, for instance. For now this is hardcoded as-is. Note that we don't
39 * care about preemption, since we know the ctx's are persistent. This does
40 * mean that we can't rely on ctx always matching the currently running CPU.
41 */
42 static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
43 {
44 return __blk_mq_get_ctx(q, get_cpu());
45 }
46
47 static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
48 {
49 put_cpu();
50 }
51
52 /*
53 * Check if any of the ctx's have pending work in this hardware queue
54 */
55 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
56 {
57 unsigned int i;
58
59 for (i = 0; i < hctx->nr_ctx_map; i++)
60 if (hctx->ctx_map[i])
61 return true;
62
63 return false;
64 }
65
66 /*
67 * Mark this ctx as having pending work in this hardware queue
68 */
69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
70 struct blk_mq_ctx *ctx)
71 {
72 if (!test_bit(ctx->index_hw, hctx->ctx_map))
73 set_bit(ctx->index_hw, hctx->ctx_map);
74 }
75
76 static struct request *__blk_mq_alloc_request(struct blk_mq_hw_ctx *hctx,
77 gfp_t gfp, bool reserved)
78 {
79 struct request *rq;
80 unsigned int tag;
81
82 tag = blk_mq_get_tag(hctx->tags, gfp, reserved);
83 if (tag != BLK_MQ_TAG_FAIL) {
84 rq = hctx->tags->rqs[tag];
85 blk_rq_init(hctx->queue, rq);
86 rq->tag = tag;
87
88 return rq;
89 }
90
91 return NULL;
92 }
93
94 static int blk_mq_queue_enter(struct request_queue *q)
95 {
96 int ret;
97
98 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
99 smp_wmb();
100 /* we have problems to freeze the queue if it's initializing */
101 if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
102 return 0;
103
104 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
105
106 spin_lock_irq(q->queue_lock);
107 ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
108 !blk_queue_bypass(q) || blk_queue_dying(q),
109 *q->queue_lock);
110 /* inc usage with lock hold to avoid freeze_queue runs here */
111 if (!ret && !blk_queue_dying(q))
112 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
113 else if (blk_queue_dying(q))
114 ret = -ENODEV;
115 spin_unlock_irq(q->queue_lock);
116
117 return ret;
118 }
119
120 static void blk_mq_queue_exit(struct request_queue *q)
121 {
122 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
123 }
124
125 static void __blk_mq_drain_queue(struct request_queue *q)
126 {
127 while (true) {
128 s64 count;
129
130 spin_lock_irq(q->queue_lock);
131 count = percpu_counter_sum(&q->mq_usage_counter);
132 spin_unlock_irq(q->queue_lock);
133
134 if (count == 0)
135 break;
136 blk_mq_run_queues(q, false);
137 msleep(10);
138 }
139 }
140
141 /*
142 * Guarantee no request is in use, so we can change any data structure of
143 * the queue afterward.
144 */
145 static void blk_mq_freeze_queue(struct request_queue *q)
146 {
147 bool drain;
148
149 spin_lock_irq(q->queue_lock);
150 drain = !q->bypass_depth++;
151 queue_flag_set(QUEUE_FLAG_BYPASS, q);
152 spin_unlock_irq(q->queue_lock);
153
154 if (drain)
155 __blk_mq_drain_queue(q);
156 }
157
158 void blk_mq_drain_queue(struct request_queue *q)
159 {
160 __blk_mq_drain_queue(q);
161 }
162
163 static void blk_mq_unfreeze_queue(struct request_queue *q)
164 {
165 bool wake = false;
166
167 spin_lock_irq(q->queue_lock);
168 if (!--q->bypass_depth) {
169 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
170 wake = true;
171 }
172 WARN_ON_ONCE(q->bypass_depth < 0);
173 spin_unlock_irq(q->queue_lock);
174 if (wake)
175 wake_up_all(&q->mq_freeze_wq);
176 }
177
178 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
179 {
180 return blk_mq_has_free_tags(hctx->tags);
181 }
182 EXPORT_SYMBOL(blk_mq_can_queue);
183
184 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
185 struct request *rq, unsigned int rw_flags)
186 {
187 if (blk_queue_io_stat(q))
188 rw_flags |= REQ_IO_STAT;
189
190 rq->mq_ctx = ctx;
191 rq->cmd_flags = rw_flags;
192 rq->start_time = jiffies;
193 set_start_time_ns(rq);
194 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
195 }
196
197 static struct request *blk_mq_alloc_request_pinned(struct request_queue *q,
198 int rw, gfp_t gfp,
199 bool reserved)
200 {
201 struct request *rq;
202
203 do {
204 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
205 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);
206
207 rq = __blk_mq_alloc_request(hctx, gfp & ~__GFP_WAIT, reserved);
208 if (rq) {
209 blk_mq_rq_ctx_init(q, ctx, rq, rw);
210 break;
211 }
212
213 if (gfp & __GFP_WAIT) {
214 __blk_mq_run_hw_queue(hctx);
215 blk_mq_put_ctx(ctx);
216 } else {
217 blk_mq_put_ctx(ctx);
218 break;
219 }
220
221 blk_mq_wait_for_tags(hctx->tags, reserved);
222 } while (1);
223
224 return rq;
225 }
226
227 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp)
228 {
229 struct request *rq;
230
231 if (blk_mq_queue_enter(q))
232 return NULL;
233
234 rq = blk_mq_alloc_request_pinned(q, rw, gfp, false);
235 if (rq)
236 blk_mq_put_ctx(rq->mq_ctx);
237 return rq;
238 }
239
240 struct request *blk_mq_alloc_reserved_request(struct request_queue *q, int rw,
241 gfp_t gfp)
242 {
243 struct request *rq;
244
245 if (blk_mq_queue_enter(q))
246 return NULL;
247
248 rq = blk_mq_alloc_request_pinned(q, rw, gfp, true);
249 if (rq)
250 blk_mq_put_ctx(rq->mq_ctx);
251 return rq;
252 }
253 EXPORT_SYMBOL(blk_mq_alloc_reserved_request);
254
255 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
256 struct blk_mq_ctx *ctx, struct request *rq)
257 {
258 const int tag = rq->tag;
259 struct request_queue *q = rq->q;
260
261 blk_mq_put_tag(hctx->tags, tag);
262 blk_mq_queue_exit(q);
263 }
264
265 void blk_mq_free_request(struct request *rq)
266 {
267 struct blk_mq_ctx *ctx = rq->mq_ctx;
268 struct blk_mq_hw_ctx *hctx;
269 struct request_queue *q = rq->q;
270
271 ctx->rq_completed[rq_is_sync(rq)]++;
272
273 hctx = q->mq_ops->map_queue(q, ctx->cpu);
274 __blk_mq_free_request(hctx, ctx, rq);
275 }
276
277 /*
278 * Clone all relevant state from a request that has been put on hold in
279 * the flush state machine into the preallocated flush request that hangs
280 * off the request queue.
281 *
282 * For a driver the flush request should be invisible, that's why we are
283 * impersonating the original request here.
284 */
285 void blk_mq_clone_flush_request(struct request *flush_rq,
286 struct request *orig_rq)
287 {
288 struct blk_mq_hw_ctx *hctx =
289 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
290
291 flush_rq->mq_ctx = orig_rq->mq_ctx;
292 flush_rq->tag = orig_rq->tag;
293 memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
294 hctx->cmd_size);
295 }
296
297 inline void __blk_mq_end_io(struct request *rq, int error)
298 {
299 blk_account_io_done(rq);
300
301 if (rq->end_io) {
302 rq->end_io(rq, error);
303 } else {
304 if (unlikely(blk_bidi_rq(rq)))
305 blk_mq_free_request(rq->next_rq);
306 blk_mq_free_request(rq);
307 }
308 }
309 EXPORT_SYMBOL(__blk_mq_end_io);
310
311 void blk_mq_end_io(struct request *rq, int error)
312 {
313 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
314 BUG();
315 __blk_mq_end_io(rq, error);
316 }
317 EXPORT_SYMBOL(blk_mq_end_io);
318
319 static void __blk_mq_complete_request_remote(void *data)
320 {
321 struct request *rq = data;
322
323 rq->q->softirq_done_fn(rq);
324 }
325
326 void __blk_mq_complete_request(struct request *rq)
327 {
328 struct blk_mq_ctx *ctx = rq->mq_ctx;
329 bool shared = false;
330 int cpu;
331
332 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
333 rq->q->softirq_done_fn(rq);
334 return;
335 }
336
337 cpu = get_cpu();
338 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
339 shared = cpus_share_cache(cpu, ctx->cpu);
340
341 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
342 rq->csd.func = __blk_mq_complete_request_remote;
343 rq->csd.info = rq;
344 rq->csd.flags = 0;
345 smp_call_function_single_async(ctx->cpu, &rq->csd);
346 } else {
347 rq->q->softirq_done_fn(rq);
348 }
349 put_cpu();
350 }
351
352 /**
353 * blk_mq_complete_request - end I/O on a request
354 * @rq: the request being processed
355 *
356 * Description:
357 * Ends all I/O on a request. It does not handle partial completions.
358 * The actual completion happens out-of-order, through a IPI handler.
359 **/
360 void blk_mq_complete_request(struct request *rq)
361 {
362 if (unlikely(blk_should_fake_timeout(rq->q)))
363 return;
364 if (!blk_mark_rq_complete(rq))
365 __blk_mq_complete_request(rq);
366 }
367 EXPORT_SYMBOL(blk_mq_complete_request);
368
369 static void blk_mq_start_request(struct request *rq, bool last)
370 {
371 struct request_queue *q = rq->q;
372
373 trace_block_rq_issue(q, rq);
374
375 rq->resid_len = blk_rq_bytes(rq);
376 if (unlikely(blk_bidi_rq(rq)))
377 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
378
379 /*
380 * Just mark start time and set the started bit. Due to memory
381 * ordering, we know we'll see the correct deadline as long as
382 * REQ_ATOMIC_STARTED is seen.
383 */
384 rq->deadline = jiffies + q->rq_timeout;
385
386 /*
387 * Mark us as started and clear complete. Complete might have been
388 * set if requeue raced with timeout, which then marked it as
389 * complete. So be sure to clear complete again when we start
390 * the request, otherwise we'll ignore the completion event.
391 */
392 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
393 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
394
395 if (q->dma_drain_size && blk_rq_bytes(rq)) {
396 /*
397 * Make sure space for the drain appears. We know we can do
398 * this because max_hw_segments has been adjusted to be one
399 * fewer than the device can handle.
400 */
401 rq->nr_phys_segments++;
402 }
403
404 /*
405 * Flag the last request in the series so that drivers know when IO
406 * should be kicked off, if they don't do it on a per-request basis.
407 *
408 * Note: the flag isn't the only condition drivers should do kick off.
409 * If drive is busy, the last request might not have the bit set.
410 */
411 if (last)
412 rq->cmd_flags |= REQ_END;
413 }
414
415 static void __blk_mq_requeue_request(struct request *rq)
416 {
417 struct request_queue *q = rq->q;
418
419 trace_block_rq_requeue(q, rq);
420 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
421
422 rq->cmd_flags &= ~REQ_END;
423
424 if (q->dma_drain_size && blk_rq_bytes(rq))
425 rq->nr_phys_segments--;
426 }
427
428 void blk_mq_requeue_request(struct request *rq)
429 {
430 __blk_mq_requeue_request(rq);
431 blk_clear_rq_complete(rq);
432
433 BUG_ON(blk_queued_rq(rq));
434 blk_mq_insert_request(rq, true, true, false);
435 }
436 EXPORT_SYMBOL(blk_mq_requeue_request);
437
438 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
439 {
440 return tags->rqs[tag];
441 }
442 EXPORT_SYMBOL(blk_mq_tag_to_rq);
443
444 struct blk_mq_timeout_data {
445 struct blk_mq_hw_ctx *hctx;
446 unsigned long *next;
447 unsigned int *next_set;
448 };
449
450 static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
451 {
452 struct blk_mq_timeout_data *data = __data;
453 struct blk_mq_hw_ctx *hctx = data->hctx;
454 unsigned int tag;
455
456 /* It may not be in flight yet (this is where
457 * the REQ_ATOMIC_STARTED flag comes in). The requests are
458 * statically allocated, so we know it's always safe to access the
459 * memory associated with a bit offset into ->rqs[].
460 */
461 tag = 0;
462 do {
463 struct request *rq;
464
465 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
466 if (tag >= hctx->tags->nr_tags)
467 break;
468
469 rq = blk_mq_tag_to_rq(hctx->tags, tag++);
470 if (rq->q != hctx->queue)
471 continue;
472 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
473 continue;
474
475 blk_rq_check_expired(rq, data->next, data->next_set);
476 } while (1);
477 }
478
479 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
480 unsigned long *next,
481 unsigned int *next_set)
482 {
483 struct blk_mq_timeout_data data = {
484 .hctx = hctx,
485 .next = next,
486 .next_set = next_set,
487 };
488
489 /*
490 * Ask the tagging code to iterate busy requests, so we can
491 * check them for timeout.
492 */
493 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
494 }
495
496 static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
497 {
498 struct request_queue *q = rq->q;
499
500 /*
501 * We know that complete is set at this point. If STARTED isn't set
502 * anymore, then the request isn't active and the "timeout" should
503 * just be ignored. This can happen due to the bitflag ordering.
504 * Timeout first checks if STARTED is set, and if it is, assumes
505 * the request is active. But if we race with completion, then
506 * we both flags will get cleared. So check here again, and ignore
507 * a timeout event with a request that isn't active.
508 */
509 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
510 return BLK_EH_NOT_HANDLED;
511
512 if (!q->mq_ops->timeout)
513 return BLK_EH_RESET_TIMER;
514
515 return q->mq_ops->timeout(rq);
516 }
517
518 static void blk_mq_rq_timer(unsigned long data)
519 {
520 struct request_queue *q = (struct request_queue *) data;
521 struct blk_mq_hw_ctx *hctx;
522 unsigned long next = 0;
523 int i, next_set = 0;
524
525 queue_for_each_hw_ctx(q, hctx, i)
526 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
527
528 if (next_set)
529 mod_timer(&q->timeout, round_jiffies_up(next));
530 }
531
532 /*
533 * Reverse check our software queue for entries that we could potentially
534 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
535 * too much time checking for merges.
536 */
537 static bool blk_mq_attempt_merge(struct request_queue *q,
538 struct blk_mq_ctx *ctx, struct bio *bio)
539 {
540 struct request *rq;
541 int checked = 8;
542
543 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
544 int el_ret;
545
546 if (!checked--)
547 break;
548
549 if (!blk_rq_merge_ok(rq, bio))
550 continue;
551
552 el_ret = blk_try_merge(rq, bio);
553 if (el_ret == ELEVATOR_BACK_MERGE) {
554 if (bio_attempt_back_merge(q, rq, bio)) {
555 ctx->rq_merged++;
556 return true;
557 }
558 break;
559 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
560 if (bio_attempt_front_merge(q, rq, bio)) {
561 ctx->rq_merged++;
562 return true;
563 }
564 break;
565 }
566 }
567
568 return false;
569 }
570
571 /*
572 * Run this hardware queue, pulling any software queues mapped to it in.
573 * Note that this function currently has various problems around ordering
574 * of IO. In particular, we'd like FIFO behaviour on handling existing
575 * items on the hctx->dispatch list. Ignore that for now.
576 */
577 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
578 {
579 struct request_queue *q = hctx->queue;
580 struct blk_mq_ctx *ctx;
581 struct request *rq;
582 LIST_HEAD(rq_list);
583 int bit, queued;
584
585 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
586
587 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
588 return;
589
590 hctx->run++;
591
592 /*
593 * Touch any software queue that has pending entries.
594 */
595 for_each_set_bit(bit, hctx->ctx_map, hctx->nr_ctx) {
596 clear_bit(bit, hctx->ctx_map);
597 ctx = hctx->ctxs[bit];
598
599 spin_lock(&ctx->lock);
600 list_splice_tail_init(&ctx->rq_list, &rq_list);
601 spin_unlock(&ctx->lock);
602 }
603
604 /*
605 * If we have previous entries on our dispatch list, grab them
606 * and stuff them at the front for more fair dispatch.
607 */
608 if (!list_empty_careful(&hctx->dispatch)) {
609 spin_lock(&hctx->lock);
610 if (!list_empty(&hctx->dispatch))
611 list_splice_init(&hctx->dispatch, &rq_list);
612 spin_unlock(&hctx->lock);
613 }
614
615 /*
616 * Delete and return all entries from our dispatch list
617 */
618 queued = 0;
619
620 /*
621 * Now process all the entries, sending them to the driver.
622 */
623 while (!list_empty(&rq_list)) {
624 int ret;
625
626 rq = list_first_entry(&rq_list, struct request, queuelist);
627 list_del_init(&rq->queuelist);
628
629 blk_mq_start_request(rq, list_empty(&rq_list));
630
631 ret = q->mq_ops->queue_rq(hctx, rq);
632 switch (ret) {
633 case BLK_MQ_RQ_QUEUE_OK:
634 queued++;
635 continue;
636 case BLK_MQ_RQ_QUEUE_BUSY:
637 /*
638 * FIXME: we should have a mechanism to stop the queue
639 * like blk_stop_queue, otherwise we will waste cpu
640 * time
641 */
642 list_add(&rq->queuelist, &rq_list);
643 __blk_mq_requeue_request(rq);
644 break;
645 default:
646 pr_err("blk-mq: bad return on queue: %d\n", ret);
647 case BLK_MQ_RQ_QUEUE_ERROR:
648 rq->errors = -EIO;
649 blk_mq_end_io(rq, rq->errors);
650 break;
651 }
652
653 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
654 break;
655 }
656
657 if (!queued)
658 hctx->dispatched[0]++;
659 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
660 hctx->dispatched[ilog2(queued) + 1]++;
661
662 /*
663 * Any items that need requeuing? Stuff them into hctx->dispatch,
664 * that is where we will continue on next queue run.
665 */
666 if (!list_empty(&rq_list)) {
667 spin_lock(&hctx->lock);
668 list_splice(&rq_list, &hctx->dispatch);
669 spin_unlock(&hctx->lock);
670 }
671 }
672
673 /*
674 * It'd be great if the workqueue API had a way to pass
675 * in a mask and had some smarts for more clever placement.
676 * For now we just round-robin here, switching for every
677 * BLK_MQ_CPU_WORK_BATCH queued items.
678 */
679 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
680 {
681 int cpu = hctx->next_cpu;
682
683 if (--hctx->next_cpu_batch <= 0) {
684 int next_cpu;
685
686 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
687 if (next_cpu >= nr_cpu_ids)
688 next_cpu = cpumask_first(hctx->cpumask);
689
690 hctx->next_cpu = next_cpu;
691 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
692 }
693
694 return cpu;
695 }
696
697 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
698 {
699 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
700 return;
701
702 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
703 __blk_mq_run_hw_queue(hctx);
704 else if (hctx->queue->nr_hw_queues == 1)
705 kblockd_schedule_delayed_work(&hctx->run_work, 0);
706 else {
707 unsigned int cpu;
708
709 cpu = blk_mq_hctx_next_cpu(hctx);
710 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
711 }
712 }
713
714 void blk_mq_run_queues(struct request_queue *q, bool async)
715 {
716 struct blk_mq_hw_ctx *hctx;
717 int i;
718
719 queue_for_each_hw_ctx(q, hctx, i) {
720 if ((!blk_mq_hctx_has_pending(hctx) &&
721 list_empty_careful(&hctx->dispatch)) ||
722 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
723 continue;
724
725 preempt_disable();
726 blk_mq_run_hw_queue(hctx, async);
727 preempt_enable();
728 }
729 }
730 EXPORT_SYMBOL(blk_mq_run_queues);
731
732 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
733 {
734 cancel_delayed_work(&hctx->run_work);
735 cancel_delayed_work(&hctx->delay_work);
736 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
737 }
738 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
739
740 void blk_mq_stop_hw_queues(struct request_queue *q)
741 {
742 struct blk_mq_hw_ctx *hctx;
743 int i;
744
745 queue_for_each_hw_ctx(q, hctx, i)
746 blk_mq_stop_hw_queue(hctx);
747 }
748 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
749
750 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
751 {
752 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
753
754 preempt_disable();
755 __blk_mq_run_hw_queue(hctx);
756 preempt_enable();
757 }
758 EXPORT_SYMBOL(blk_mq_start_hw_queue);
759
760 void blk_mq_start_hw_queues(struct request_queue *q)
761 {
762 struct blk_mq_hw_ctx *hctx;
763 int i;
764
765 queue_for_each_hw_ctx(q, hctx, i)
766 blk_mq_start_hw_queue(hctx);
767 }
768 EXPORT_SYMBOL(blk_mq_start_hw_queues);
769
770
771 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
772 {
773 struct blk_mq_hw_ctx *hctx;
774 int i;
775
776 queue_for_each_hw_ctx(q, hctx, i) {
777 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
778 continue;
779
780 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
781 preempt_disable();
782 blk_mq_run_hw_queue(hctx, async);
783 preempt_enable();
784 }
785 }
786 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
787
788 static void blk_mq_run_work_fn(struct work_struct *work)
789 {
790 struct blk_mq_hw_ctx *hctx;
791
792 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
793
794 __blk_mq_run_hw_queue(hctx);
795 }
796
797 static void blk_mq_delay_work_fn(struct work_struct *work)
798 {
799 struct blk_mq_hw_ctx *hctx;
800
801 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
802
803 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
804 __blk_mq_run_hw_queue(hctx);
805 }
806
807 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
808 {
809 unsigned long tmo = msecs_to_jiffies(msecs);
810
811 if (hctx->queue->nr_hw_queues == 1)
812 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
813 else {
814 unsigned int cpu;
815
816 cpu = blk_mq_hctx_next_cpu(hctx);
817 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
818 }
819 }
820 EXPORT_SYMBOL(blk_mq_delay_queue);
821
822 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
823 struct request *rq, bool at_head)
824 {
825 struct blk_mq_ctx *ctx = rq->mq_ctx;
826
827 trace_block_rq_insert(hctx->queue, rq);
828
829 if (at_head)
830 list_add(&rq->queuelist, &ctx->rq_list);
831 else
832 list_add_tail(&rq->queuelist, &ctx->rq_list);
833 blk_mq_hctx_mark_pending(hctx, ctx);
834
835 /*
836 * We do this early, to ensure we are on the right CPU.
837 */
838 blk_add_timer(rq);
839 }
840
841 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
842 bool async)
843 {
844 struct request_queue *q = rq->q;
845 struct blk_mq_hw_ctx *hctx;
846 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
847
848 current_ctx = blk_mq_get_ctx(q);
849 if (!cpu_online(ctx->cpu))
850 rq->mq_ctx = ctx = current_ctx;
851
852 hctx = q->mq_ops->map_queue(q, ctx->cpu);
853
854 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
855 !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
856 blk_insert_flush(rq);
857 } else {
858 spin_lock(&ctx->lock);
859 __blk_mq_insert_request(hctx, rq, at_head);
860 spin_unlock(&ctx->lock);
861 }
862
863 if (run_queue)
864 blk_mq_run_hw_queue(hctx, async);
865
866 blk_mq_put_ctx(current_ctx);
867 }
868
869 static void blk_mq_insert_requests(struct request_queue *q,
870 struct blk_mq_ctx *ctx,
871 struct list_head *list,
872 int depth,
873 bool from_schedule)
874
875 {
876 struct blk_mq_hw_ctx *hctx;
877 struct blk_mq_ctx *current_ctx;
878
879 trace_block_unplug(q, depth, !from_schedule);
880
881 current_ctx = blk_mq_get_ctx(q);
882
883 if (!cpu_online(ctx->cpu))
884 ctx = current_ctx;
885 hctx = q->mq_ops->map_queue(q, ctx->cpu);
886
887 /*
888 * preemption doesn't flush plug list, so it's possible ctx->cpu is
889 * offline now
890 */
891 spin_lock(&ctx->lock);
892 while (!list_empty(list)) {
893 struct request *rq;
894
895 rq = list_first_entry(list, struct request, queuelist);
896 list_del_init(&rq->queuelist);
897 rq->mq_ctx = ctx;
898 __blk_mq_insert_request(hctx, rq, false);
899 }
900 spin_unlock(&ctx->lock);
901
902 blk_mq_run_hw_queue(hctx, from_schedule);
903 blk_mq_put_ctx(current_ctx);
904 }
905
906 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
907 {
908 struct request *rqa = container_of(a, struct request, queuelist);
909 struct request *rqb = container_of(b, struct request, queuelist);
910
911 return !(rqa->mq_ctx < rqb->mq_ctx ||
912 (rqa->mq_ctx == rqb->mq_ctx &&
913 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
914 }
915
916 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
917 {
918 struct blk_mq_ctx *this_ctx;
919 struct request_queue *this_q;
920 struct request *rq;
921 LIST_HEAD(list);
922 LIST_HEAD(ctx_list);
923 unsigned int depth;
924
925 list_splice_init(&plug->mq_list, &list);
926
927 list_sort(NULL, &list, plug_ctx_cmp);
928
929 this_q = NULL;
930 this_ctx = NULL;
931 depth = 0;
932
933 while (!list_empty(&list)) {
934 rq = list_entry_rq(list.next);
935 list_del_init(&rq->queuelist);
936 BUG_ON(!rq->q);
937 if (rq->mq_ctx != this_ctx) {
938 if (this_ctx) {
939 blk_mq_insert_requests(this_q, this_ctx,
940 &ctx_list, depth,
941 from_schedule);
942 }
943
944 this_ctx = rq->mq_ctx;
945 this_q = rq->q;
946 depth = 0;
947 }
948
949 depth++;
950 list_add_tail(&rq->queuelist, &ctx_list);
951 }
952
953 /*
954 * If 'this_ctx' is set, we know we have entries to complete
955 * on 'ctx_list'. Do those.
956 */
957 if (this_ctx) {
958 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
959 from_schedule);
960 }
961 }
962
963 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
964 {
965 init_request_from_bio(rq, bio);
966 blk_account_io_start(rq, 1);
967 }
968
969 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
970 {
971 struct blk_mq_hw_ctx *hctx;
972 struct blk_mq_ctx *ctx;
973 const int is_sync = rw_is_sync(bio->bi_rw);
974 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
975 int rw = bio_data_dir(bio);
976 struct request *rq;
977 unsigned int use_plug, request_count = 0;
978
979 /*
980 * If we have multiple hardware queues, just go directly to
981 * one of those for sync IO.
982 */
983 use_plug = !is_flush_fua && ((q->nr_hw_queues == 1) || !is_sync);
984
985 blk_queue_bounce(q, &bio);
986
987 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
988 bio_endio(bio, -EIO);
989 return;
990 }
991
992 if (use_plug && blk_attempt_plug_merge(q, bio, &request_count))
993 return;
994
995 if (blk_mq_queue_enter(q)) {
996 bio_endio(bio, -EIO);
997 return;
998 }
999
1000 ctx = blk_mq_get_ctx(q);
1001 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1002
1003 if (is_sync)
1004 rw |= REQ_SYNC;
1005 trace_block_getrq(q, bio, rw);
1006 rq = __blk_mq_alloc_request(hctx, GFP_ATOMIC, false);
1007 if (likely(rq))
1008 blk_mq_rq_ctx_init(q, ctx, rq, rw);
1009 else {
1010 blk_mq_put_ctx(ctx);
1011 trace_block_sleeprq(q, bio, rw);
1012 rq = blk_mq_alloc_request_pinned(q, rw, __GFP_WAIT|GFP_ATOMIC,
1013 false);
1014 ctx = rq->mq_ctx;
1015 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1016 }
1017
1018 hctx->queued++;
1019
1020 if (unlikely(is_flush_fua)) {
1021 blk_mq_bio_to_request(rq, bio);
1022 blk_insert_flush(rq);
1023 goto run_queue;
1024 }
1025
1026 /*
1027 * A task plug currently exists. Since this is completely lockless,
1028 * utilize that to temporarily store requests until the task is
1029 * either done or scheduled away.
1030 */
1031 if (use_plug) {
1032 struct blk_plug *plug = current->plug;
1033
1034 if (plug) {
1035 blk_mq_bio_to_request(rq, bio);
1036 if (list_empty(&plug->mq_list))
1037 trace_block_plug(q);
1038 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1039 blk_flush_plug_list(plug, false);
1040 trace_block_plug(q);
1041 }
1042 list_add_tail(&rq->queuelist, &plug->mq_list);
1043 blk_mq_put_ctx(ctx);
1044 return;
1045 }
1046 }
1047
1048 if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE)) {
1049 init_request_from_bio(rq, bio);
1050
1051 spin_lock(&ctx->lock);
1052 insert_rq:
1053 __blk_mq_insert_request(hctx, rq, false);
1054 spin_unlock(&ctx->lock);
1055 blk_account_io_start(rq, 1);
1056 } else {
1057 spin_lock(&ctx->lock);
1058 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1059 init_request_from_bio(rq, bio);
1060 goto insert_rq;
1061 }
1062
1063 spin_unlock(&ctx->lock);
1064 __blk_mq_free_request(hctx, ctx, rq);
1065 }
1066
1067
1068 /*
1069 * For a SYNC request, send it to the hardware immediately. For an
1070 * ASYNC request, just ensure that we run it later on. The latter
1071 * allows for merging opportunities and more efficient dispatching.
1072 */
1073 run_queue:
1074 blk_mq_run_hw_queue(hctx, !is_sync || is_flush_fua);
1075 blk_mq_put_ctx(ctx);
1076 }
1077
1078 /*
1079 * Default mapping to a software queue, since we use one per CPU.
1080 */
1081 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1082 {
1083 return q->queue_hw_ctx[q->mq_map[cpu]];
1084 }
1085 EXPORT_SYMBOL(blk_mq_map_queue);
1086
1087 struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_tag_set *set,
1088 unsigned int hctx_index)
1089 {
1090 return kmalloc_node(sizeof(struct blk_mq_hw_ctx),
1091 GFP_KERNEL | __GFP_ZERO, set->numa_node);
1092 }
1093 EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue);
1094
1095 void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx,
1096 unsigned int hctx_index)
1097 {
1098 kfree(hctx);
1099 }
1100 EXPORT_SYMBOL(blk_mq_free_single_hw_queue);
1101
1102 static void blk_mq_hctx_notify(void *data, unsigned long action,
1103 unsigned int cpu)
1104 {
1105 struct blk_mq_hw_ctx *hctx = data;
1106 struct request_queue *q = hctx->queue;
1107 struct blk_mq_ctx *ctx;
1108 LIST_HEAD(tmp);
1109
1110 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1111 return;
1112
1113 /*
1114 * Move ctx entries to new CPU, if this one is going away.
1115 */
1116 ctx = __blk_mq_get_ctx(q, cpu);
1117
1118 spin_lock(&ctx->lock);
1119 if (!list_empty(&ctx->rq_list)) {
1120 list_splice_init(&ctx->rq_list, &tmp);
1121 clear_bit(ctx->index_hw, hctx->ctx_map);
1122 }
1123 spin_unlock(&ctx->lock);
1124
1125 if (list_empty(&tmp))
1126 return;
1127
1128 ctx = blk_mq_get_ctx(q);
1129 spin_lock(&ctx->lock);
1130
1131 while (!list_empty(&tmp)) {
1132 struct request *rq;
1133
1134 rq = list_first_entry(&tmp, struct request, queuelist);
1135 rq->mq_ctx = ctx;
1136 list_move_tail(&rq->queuelist, &ctx->rq_list);
1137 }
1138
1139 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1140 blk_mq_hctx_mark_pending(hctx, ctx);
1141
1142 spin_unlock(&ctx->lock);
1143
1144 blk_mq_run_hw_queue(hctx, true);
1145 blk_mq_put_ctx(ctx);
1146 }
1147
1148 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1149 struct blk_mq_tags *tags, unsigned int hctx_idx)
1150 {
1151 struct page *page;
1152
1153 if (tags->rqs && set->ops->exit_request) {
1154 int i;
1155
1156 for (i = 0; i < tags->nr_tags; i++) {
1157 if (!tags->rqs[i])
1158 continue;
1159 set->ops->exit_request(set->driver_data, tags->rqs[i],
1160 hctx_idx, i);
1161 }
1162 }
1163
1164 while (!list_empty(&tags->page_list)) {
1165 page = list_first_entry(&tags->page_list, struct page, lru);
1166 list_del_init(&page->lru);
1167 __free_pages(page, page->private);
1168 }
1169
1170 kfree(tags->rqs);
1171
1172 blk_mq_free_tags(tags);
1173 }
1174
1175 static size_t order_to_size(unsigned int order)
1176 {
1177 return (size_t)PAGE_SIZE << order;
1178 }
1179
1180 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1181 unsigned int hctx_idx)
1182 {
1183 struct blk_mq_tags *tags;
1184 unsigned int i, j, entries_per_page, max_order = 4;
1185 size_t rq_size, left;
1186
1187 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1188 set->numa_node);
1189 if (!tags)
1190 return NULL;
1191
1192 INIT_LIST_HEAD(&tags->page_list);
1193
1194 tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *),
1195 GFP_KERNEL, set->numa_node);
1196 if (!tags->rqs) {
1197 blk_mq_free_tags(tags);
1198 return NULL;
1199 }
1200
1201 /*
1202 * rq_size is the size of the request plus driver payload, rounded
1203 * to the cacheline size
1204 */
1205 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1206 cache_line_size());
1207 left = rq_size * set->queue_depth;
1208
1209 for (i = 0; i < set->queue_depth; ) {
1210 int this_order = max_order;
1211 struct page *page;
1212 int to_do;
1213 void *p;
1214
1215 while (left < order_to_size(this_order - 1) && this_order)
1216 this_order--;
1217
1218 do {
1219 page = alloc_pages_node(set->numa_node, GFP_KERNEL,
1220 this_order);
1221 if (page)
1222 break;
1223 if (!this_order--)
1224 break;
1225 if (order_to_size(this_order) < rq_size)
1226 break;
1227 } while (1);
1228
1229 if (!page)
1230 goto fail;
1231
1232 page->private = this_order;
1233 list_add_tail(&page->lru, &tags->page_list);
1234
1235 p = page_address(page);
1236 entries_per_page = order_to_size(this_order) / rq_size;
1237 to_do = min(entries_per_page, set->queue_depth - i);
1238 left -= to_do * rq_size;
1239 for (j = 0; j < to_do; j++) {
1240 tags->rqs[i] = p;
1241 if (set->ops->init_request) {
1242 if (set->ops->init_request(set->driver_data,
1243 tags->rqs[i], hctx_idx, i,
1244 set->numa_node))
1245 goto fail;
1246 }
1247
1248 p += rq_size;
1249 i++;
1250 }
1251 }
1252
1253 return tags;
1254
1255 fail:
1256 pr_warn("%s: failed to allocate requests\n", __func__);
1257 blk_mq_free_rq_map(set, tags, hctx_idx);
1258 return NULL;
1259 }
1260
1261 static int blk_mq_init_hw_queues(struct request_queue *q,
1262 struct blk_mq_tag_set *set)
1263 {
1264 struct blk_mq_hw_ctx *hctx;
1265 unsigned int i, j;
1266
1267 /*
1268 * Initialize hardware queues
1269 */
1270 queue_for_each_hw_ctx(q, hctx, i) {
1271 unsigned int num_maps;
1272 int node;
1273
1274 node = hctx->numa_node;
1275 if (node == NUMA_NO_NODE)
1276 node = hctx->numa_node = set->numa_node;
1277
1278 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1279 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1280 spin_lock_init(&hctx->lock);
1281 INIT_LIST_HEAD(&hctx->dispatch);
1282 hctx->queue = q;
1283 hctx->queue_num = i;
1284 hctx->flags = set->flags;
1285 hctx->cmd_size = set->cmd_size;
1286
1287 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1288 blk_mq_hctx_notify, hctx);
1289 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1290
1291 hctx->tags = set->tags[i];
1292
1293 /*
1294 * Allocate space for all possible cpus to avoid allocation in
1295 * runtime
1296 */
1297 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1298 GFP_KERNEL, node);
1299 if (!hctx->ctxs)
1300 break;
1301
1302 num_maps = ALIGN(nr_cpu_ids, BITS_PER_LONG) / BITS_PER_LONG;
1303 hctx->ctx_map = kzalloc_node(num_maps * sizeof(unsigned long),
1304 GFP_KERNEL, node);
1305 if (!hctx->ctx_map)
1306 break;
1307
1308 hctx->nr_ctx_map = num_maps;
1309 hctx->nr_ctx = 0;
1310
1311 if (set->ops->init_hctx &&
1312 set->ops->init_hctx(hctx, set->driver_data, i))
1313 break;
1314 }
1315
1316 if (i == q->nr_hw_queues)
1317 return 0;
1318
1319 /*
1320 * Init failed
1321 */
1322 queue_for_each_hw_ctx(q, hctx, j) {
1323 if (i == j)
1324 break;
1325
1326 if (set->ops->exit_hctx)
1327 set->ops->exit_hctx(hctx, j);
1328
1329 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1330 kfree(hctx->ctxs);
1331 kfree(hctx->ctx_map);
1332 }
1333
1334 return 1;
1335 }
1336
1337 static void blk_mq_init_cpu_queues(struct request_queue *q,
1338 unsigned int nr_hw_queues)
1339 {
1340 unsigned int i;
1341
1342 for_each_possible_cpu(i) {
1343 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1344 struct blk_mq_hw_ctx *hctx;
1345
1346 memset(__ctx, 0, sizeof(*__ctx));
1347 __ctx->cpu = i;
1348 spin_lock_init(&__ctx->lock);
1349 INIT_LIST_HEAD(&__ctx->rq_list);
1350 __ctx->queue = q;
1351
1352 /* If the cpu isn't online, the cpu is mapped to first hctx */
1353 if (!cpu_online(i))
1354 continue;
1355
1356 hctx = q->mq_ops->map_queue(q, i);
1357 cpumask_set_cpu(i, hctx->cpumask);
1358 hctx->nr_ctx++;
1359
1360 /*
1361 * Set local node, IFF we have more than one hw queue. If
1362 * not, we remain on the home node of the device
1363 */
1364 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1365 hctx->numa_node = cpu_to_node(i);
1366 }
1367 }
1368
1369 static void blk_mq_map_swqueue(struct request_queue *q)
1370 {
1371 unsigned int i;
1372 struct blk_mq_hw_ctx *hctx;
1373 struct blk_mq_ctx *ctx;
1374
1375 queue_for_each_hw_ctx(q, hctx, i) {
1376 cpumask_clear(hctx->cpumask);
1377 hctx->nr_ctx = 0;
1378 }
1379
1380 /*
1381 * Map software to hardware queues
1382 */
1383 queue_for_each_ctx(q, ctx, i) {
1384 /* If the cpu isn't online, the cpu is mapped to first hctx */
1385 if (!cpu_online(i))
1386 continue;
1387
1388 hctx = q->mq_ops->map_queue(q, i);
1389 cpumask_set_cpu(i, hctx->cpumask);
1390 ctx->index_hw = hctx->nr_ctx;
1391 hctx->ctxs[hctx->nr_ctx++] = ctx;
1392 }
1393
1394 queue_for_each_hw_ctx(q, hctx, i) {
1395 hctx->next_cpu = cpumask_first(hctx->cpumask);
1396 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1397 }
1398 }
1399
1400 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1401 {
1402 struct blk_mq_hw_ctx **hctxs;
1403 struct blk_mq_ctx *ctx;
1404 struct request_queue *q;
1405 int i;
1406
1407 ctx = alloc_percpu(struct blk_mq_ctx);
1408 if (!ctx)
1409 return ERR_PTR(-ENOMEM);
1410
1411 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1412 set->numa_node);
1413
1414 if (!hctxs)
1415 goto err_percpu;
1416
1417 for (i = 0; i < set->nr_hw_queues; i++) {
1418 hctxs[i] = set->ops->alloc_hctx(set, i);
1419 if (!hctxs[i])
1420 goto err_hctxs;
1421
1422 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1423 goto err_hctxs;
1424
1425 hctxs[i]->numa_node = NUMA_NO_NODE;
1426 hctxs[i]->queue_num = i;
1427 }
1428
1429 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1430 if (!q)
1431 goto err_hctxs;
1432
1433 q->mq_map = blk_mq_make_queue_map(set);
1434 if (!q->mq_map)
1435 goto err_map;
1436
1437 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1438 blk_queue_rq_timeout(q, 30000);
1439
1440 q->nr_queues = nr_cpu_ids;
1441 q->nr_hw_queues = set->nr_hw_queues;
1442
1443 q->queue_ctx = ctx;
1444 q->queue_hw_ctx = hctxs;
1445
1446 q->mq_ops = set->ops;
1447 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1448
1449 q->sg_reserved_size = INT_MAX;
1450
1451 blk_queue_make_request(q, blk_mq_make_request);
1452 blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
1453 if (set->timeout)
1454 blk_queue_rq_timeout(q, set->timeout);
1455
1456 if (set->ops->complete)
1457 blk_queue_softirq_done(q, set->ops->complete);
1458
1459 blk_mq_init_flush(q);
1460 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1461
1462 q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1463 set->cmd_size, cache_line_size()),
1464 GFP_KERNEL);
1465 if (!q->flush_rq)
1466 goto err_hw;
1467
1468 if (blk_mq_init_hw_queues(q, set))
1469 goto err_flush_rq;
1470
1471 blk_mq_map_swqueue(q);
1472
1473 mutex_lock(&all_q_mutex);
1474 list_add_tail(&q->all_q_node, &all_q_list);
1475 mutex_unlock(&all_q_mutex);
1476
1477 return q;
1478
1479 err_flush_rq:
1480 kfree(q->flush_rq);
1481 err_hw:
1482 kfree(q->mq_map);
1483 err_map:
1484 blk_cleanup_queue(q);
1485 err_hctxs:
1486 for (i = 0; i < set->nr_hw_queues; i++) {
1487 if (!hctxs[i])
1488 break;
1489 free_cpumask_var(hctxs[i]->cpumask);
1490 set->ops->free_hctx(hctxs[i], i);
1491 }
1492 kfree(hctxs);
1493 err_percpu:
1494 free_percpu(ctx);
1495 return ERR_PTR(-ENOMEM);
1496 }
1497 EXPORT_SYMBOL(blk_mq_init_queue);
1498
1499 void blk_mq_free_queue(struct request_queue *q)
1500 {
1501 struct blk_mq_hw_ctx *hctx;
1502 int i;
1503
1504 queue_for_each_hw_ctx(q, hctx, i) {
1505 kfree(hctx->ctx_map);
1506 kfree(hctx->ctxs);
1507 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1508 if (q->mq_ops->exit_hctx)
1509 q->mq_ops->exit_hctx(hctx, i);
1510 free_cpumask_var(hctx->cpumask);
1511 q->mq_ops->free_hctx(hctx, i);
1512 }
1513
1514 free_percpu(q->queue_ctx);
1515 kfree(q->queue_hw_ctx);
1516 kfree(q->mq_map);
1517
1518 q->queue_ctx = NULL;
1519 q->queue_hw_ctx = NULL;
1520 q->mq_map = NULL;
1521
1522 mutex_lock(&all_q_mutex);
1523 list_del_init(&q->all_q_node);
1524 mutex_unlock(&all_q_mutex);
1525 }
1526
1527 /* Basically redo blk_mq_init_queue with queue frozen */
1528 static void blk_mq_queue_reinit(struct request_queue *q)
1529 {
1530 blk_mq_freeze_queue(q);
1531
1532 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1533
1534 /*
1535 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1536 * we should change hctx numa_node according to new topology (this
1537 * involves free and re-allocate memory, worthy doing?)
1538 */
1539
1540 blk_mq_map_swqueue(q);
1541
1542 blk_mq_unfreeze_queue(q);
1543 }
1544
1545 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1546 unsigned long action, void *hcpu)
1547 {
1548 struct request_queue *q;
1549
1550 /*
1551 * Before new mapping is established, hotadded cpu might already start
1552 * handling requests. This doesn't break anything as we map offline
1553 * CPUs to first hardware queue. We will re-init queue below to get
1554 * optimal settings.
1555 */
1556 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1557 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1558 return NOTIFY_OK;
1559
1560 mutex_lock(&all_q_mutex);
1561 list_for_each_entry(q, &all_q_list, all_q_node)
1562 blk_mq_queue_reinit(q);
1563 mutex_unlock(&all_q_mutex);
1564 return NOTIFY_OK;
1565 }
1566
1567 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
1568 {
1569 int i;
1570
1571 if (!set->nr_hw_queues)
1572 return -EINVAL;
1573 if (!set->queue_depth || set->queue_depth > BLK_MQ_MAX_DEPTH)
1574 return -EINVAL;
1575 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
1576 return -EINVAL;
1577
1578 if (!set->nr_hw_queues ||
1579 !set->ops->queue_rq || !set->ops->map_queue ||
1580 !set->ops->alloc_hctx || !set->ops->free_hctx)
1581 return -EINVAL;
1582
1583
1584 set->tags = kmalloc_node(set->nr_hw_queues *
1585 sizeof(struct blk_mq_tags *),
1586 GFP_KERNEL, set->numa_node);
1587 if (!set->tags)
1588 goto out;
1589
1590 for (i = 0; i < set->nr_hw_queues; i++) {
1591 set->tags[i] = blk_mq_init_rq_map(set, i);
1592 if (!set->tags[i])
1593 goto out_unwind;
1594 }
1595
1596 return 0;
1597
1598 out_unwind:
1599 while (--i >= 0)
1600 blk_mq_free_rq_map(set, set->tags[i], i);
1601 out:
1602 return -ENOMEM;
1603 }
1604 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
1605
1606 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
1607 {
1608 int i;
1609
1610 for (i = 0; i < set->nr_hw_queues; i++)
1611 blk_mq_free_rq_map(set, set->tags[i], i);
1612 kfree(set->tags);
1613 }
1614 EXPORT_SYMBOL(blk_mq_free_tag_set);
1615
1616 void blk_mq_disable_hotplug(void)
1617 {
1618 mutex_lock(&all_q_mutex);
1619 }
1620
1621 void blk_mq_enable_hotplug(void)
1622 {
1623 mutex_unlock(&all_q_mutex);
1624 }
1625
1626 static int __init blk_mq_init(void)
1627 {
1628 blk_mq_cpu_init();
1629
1630 /* Must be called after percpu_counter_hotcpu_callback() */
1631 hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
1632
1633 return 0;
1634 }
1635 subsys_initcall(blk_mq_init);
This page took 0.070469 seconds and 5 git commands to generate.