261ccd89e15d5578eba5aaece8feb47be5f7a5e6
[deliverable/linux.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
24
25 #include <trace/events/block.h>
26
27 #include <linux/blk-mq.h>
28 #include "blk.h"
29 #include "blk-mq.h"
30 #include "blk-mq-tag.h"
31
32 static DEFINE_MUTEX(all_q_mutex);
33 static LIST_HEAD(all_q_list);
34
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
36
37 /*
38 * Check if any of the ctx's have pending work in this hardware queue
39 */
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41 {
42 unsigned int i;
43
44 for (i = 0; i < hctx->ctx_map.map_size; i++)
45 if (hctx->ctx_map.map[i].word)
46 return true;
47
48 return false;
49 }
50
51 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
52 struct blk_mq_ctx *ctx)
53 {
54 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
55 }
56
57 #define CTX_TO_BIT(hctx, ctx) \
58 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
59
60 /*
61 * Mark this ctx as having pending work in this hardware queue
62 */
63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
64 struct blk_mq_ctx *ctx)
65 {
66 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
67
68 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
69 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
70 }
71
72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
73 struct blk_mq_ctx *ctx)
74 {
75 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
76
77 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
78 }
79
80 static int blk_mq_queue_enter(struct request_queue *q)
81 {
82 while (true) {
83 int ret;
84
85 if (percpu_ref_tryget_live(&q->mq_usage_counter))
86 return 0;
87
88 ret = wait_event_interruptible(q->mq_freeze_wq,
89 !q->mq_freeze_depth || blk_queue_dying(q));
90 if (blk_queue_dying(q))
91 return -ENODEV;
92 if (ret)
93 return ret;
94 }
95 }
96
97 static void blk_mq_queue_exit(struct request_queue *q)
98 {
99 percpu_ref_put(&q->mq_usage_counter);
100 }
101
102 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
103 {
104 struct request_queue *q =
105 container_of(ref, struct request_queue, mq_usage_counter);
106
107 wake_up_all(&q->mq_freeze_wq);
108 }
109
110 void blk_mq_freeze_queue_start(struct request_queue *q)
111 {
112 bool freeze;
113
114 spin_lock_irq(q->queue_lock);
115 freeze = !q->mq_freeze_depth++;
116 spin_unlock_irq(q->queue_lock);
117
118 if (freeze) {
119 percpu_ref_kill(&q->mq_usage_counter);
120 blk_mq_run_queues(q, false);
121 }
122 }
123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
124
125 static void blk_mq_freeze_queue_wait(struct request_queue *q)
126 {
127 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
128 }
129
130 /*
131 * Guarantee no request is in use, so we can change any data structure of
132 * the queue afterward.
133 */
134 void blk_mq_freeze_queue(struct request_queue *q)
135 {
136 blk_mq_freeze_queue_start(q);
137 blk_mq_freeze_queue_wait(q);
138 }
139
140 void blk_mq_unfreeze_queue(struct request_queue *q)
141 {
142 bool wake;
143
144 spin_lock_irq(q->queue_lock);
145 wake = !--q->mq_freeze_depth;
146 WARN_ON_ONCE(q->mq_freeze_depth < 0);
147 spin_unlock_irq(q->queue_lock);
148 if (wake) {
149 percpu_ref_reinit(&q->mq_usage_counter);
150 wake_up_all(&q->mq_freeze_wq);
151 }
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
154
155 void blk_mq_wake_waiters(struct request_queue *q)
156 {
157 struct blk_mq_hw_ctx *hctx;
158 unsigned int i;
159
160 queue_for_each_hw_ctx(q, hctx, i)
161 if (blk_mq_hw_queue_mapped(hctx))
162 blk_mq_tag_wakeup_all(hctx->tags, true);
163
164 /*
165 * If we are called because the queue has now been marked as
166 * dying, we need to ensure that processes currently waiting on
167 * the queue are notified as well.
168 */
169 wake_up_all(&q->mq_freeze_wq);
170 }
171
172 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
173 {
174 return blk_mq_has_free_tags(hctx->tags);
175 }
176 EXPORT_SYMBOL(blk_mq_can_queue);
177
178 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
179 struct request *rq, unsigned int rw_flags)
180 {
181 if (blk_queue_io_stat(q))
182 rw_flags |= REQ_IO_STAT;
183
184 INIT_LIST_HEAD(&rq->queuelist);
185 /* csd/requeue_work/fifo_time is initialized before use */
186 rq->q = q;
187 rq->mq_ctx = ctx;
188 rq->cmd_flags |= rw_flags;
189 /* do not touch atomic flags, it needs atomic ops against the timer */
190 rq->cpu = -1;
191 INIT_HLIST_NODE(&rq->hash);
192 RB_CLEAR_NODE(&rq->rb_node);
193 rq->rq_disk = NULL;
194 rq->part = NULL;
195 rq->start_time = jiffies;
196 #ifdef CONFIG_BLK_CGROUP
197 rq->rl = NULL;
198 set_start_time_ns(rq);
199 rq->io_start_time_ns = 0;
200 #endif
201 rq->nr_phys_segments = 0;
202 #if defined(CONFIG_BLK_DEV_INTEGRITY)
203 rq->nr_integrity_segments = 0;
204 #endif
205 rq->special = NULL;
206 /* tag was already set */
207 rq->errors = 0;
208
209 rq->cmd = rq->__cmd;
210
211 rq->extra_len = 0;
212 rq->sense_len = 0;
213 rq->resid_len = 0;
214 rq->sense = NULL;
215
216 INIT_LIST_HEAD(&rq->timeout_list);
217 rq->timeout = 0;
218
219 rq->end_io = NULL;
220 rq->end_io_data = NULL;
221 rq->next_rq = NULL;
222
223 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
224 }
225
226 static struct request *
227 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
228 {
229 struct request *rq;
230 unsigned int tag;
231
232 tag = blk_mq_get_tag(data);
233 if (tag != BLK_MQ_TAG_FAIL) {
234 rq = data->hctx->tags->rqs[tag];
235
236 if (blk_mq_tag_busy(data->hctx)) {
237 rq->cmd_flags = REQ_MQ_INFLIGHT;
238 atomic_inc(&data->hctx->nr_active);
239 }
240
241 rq->tag = tag;
242 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
243 return rq;
244 }
245
246 return NULL;
247 }
248
249 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
250 bool reserved)
251 {
252 struct blk_mq_ctx *ctx;
253 struct blk_mq_hw_ctx *hctx;
254 struct request *rq;
255 struct blk_mq_alloc_data alloc_data;
256 int ret;
257
258 ret = blk_mq_queue_enter(q);
259 if (ret)
260 return ERR_PTR(ret);
261
262 ctx = blk_mq_get_ctx(q);
263 hctx = q->mq_ops->map_queue(q, ctx->cpu);
264 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
265 reserved, ctx, hctx);
266
267 rq = __blk_mq_alloc_request(&alloc_data, rw);
268 if (!rq && (gfp & __GFP_WAIT)) {
269 __blk_mq_run_hw_queue(hctx);
270 blk_mq_put_ctx(ctx);
271
272 ctx = blk_mq_get_ctx(q);
273 hctx = q->mq_ops->map_queue(q, ctx->cpu);
274 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
275 hctx);
276 rq = __blk_mq_alloc_request(&alloc_data, rw);
277 ctx = alloc_data.ctx;
278 }
279 blk_mq_put_ctx(ctx);
280 if (!rq) {
281 blk_mq_queue_exit(q);
282 return ERR_PTR(-EWOULDBLOCK);
283 }
284 return rq;
285 }
286 EXPORT_SYMBOL(blk_mq_alloc_request);
287
288 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
289 struct blk_mq_ctx *ctx, struct request *rq)
290 {
291 const int tag = rq->tag;
292 struct request_queue *q = rq->q;
293
294 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
295 atomic_dec(&hctx->nr_active);
296 rq->cmd_flags = 0;
297
298 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
299 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
300 blk_mq_queue_exit(q);
301 }
302
303 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
304 {
305 struct blk_mq_ctx *ctx = rq->mq_ctx;
306
307 ctx->rq_completed[rq_is_sync(rq)]++;
308 __blk_mq_free_request(hctx, ctx, rq);
309
310 }
311 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
312
313 void blk_mq_free_request(struct request *rq)
314 {
315 struct blk_mq_hw_ctx *hctx;
316 struct request_queue *q = rq->q;
317
318 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
319 blk_mq_free_hctx_request(hctx, rq);
320 }
321 EXPORT_SYMBOL_GPL(blk_mq_free_request);
322
323 inline void __blk_mq_end_request(struct request *rq, int error)
324 {
325 blk_account_io_done(rq);
326
327 if (rq->end_io) {
328 rq->end_io(rq, error);
329 } else {
330 if (unlikely(blk_bidi_rq(rq)))
331 blk_mq_free_request(rq->next_rq);
332 blk_mq_free_request(rq);
333 }
334 }
335 EXPORT_SYMBOL(__blk_mq_end_request);
336
337 void blk_mq_end_request(struct request *rq, int error)
338 {
339 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
340 BUG();
341 __blk_mq_end_request(rq, error);
342 }
343 EXPORT_SYMBOL(blk_mq_end_request);
344
345 static void __blk_mq_complete_request_remote(void *data)
346 {
347 struct request *rq = data;
348
349 rq->q->softirq_done_fn(rq);
350 }
351
352 static void blk_mq_ipi_complete_request(struct request *rq)
353 {
354 struct blk_mq_ctx *ctx = rq->mq_ctx;
355 bool shared = false;
356 int cpu;
357
358 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
359 rq->q->softirq_done_fn(rq);
360 return;
361 }
362
363 cpu = get_cpu();
364 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
365 shared = cpus_share_cache(cpu, ctx->cpu);
366
367 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
368 rq->csd.func = __blk_mq_complete_request_remote;
369 rq->csd.info = rq;
370 rq->csd.flags = 0;
371 smp_call_function_single_async(ctx->cpu, &rq->csd);
372 } else {
373 rq->q->softirq_done_fn(rq);
374 }
375 put_cpu();
376 }
377
378 void __blk_mq_complete_request(struct request *rq)
379 {
380 struct request_queue *q = rq->q;
381
382 if (!q->softirq_done_fn)
383 blk_mq_end_request(rq, rq->errors);
384 else
385 blk_mq_ipi_complete_request(rq);
386 }
387
388 /**
389 * blk_mq_complete_request - end I/O on a request
390 * @rq: the request being processed
391 *
392 * Description:
393 * Ends all I/O on a request. It does not handle partial completions.
394 * The actual completion happens out-of-order, through a IPI handler.
395 **/
396 void blk_mq_complete_request(struct request *rq)
397 {
398 struct request_queue *q = rq->q;
399
400 if (unlikely(blk_should_fake_timeout(q)))
401 return;
402 if (!blk_mark_rq_complete(rq))
403 __blk_mq_complete_request(rq);
404 }
405 EXPORT_SYMBOL(blk_mq_complete_request);
406
407 int blk_mq_request_started(struct request *rq)
408 {
409 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
410 }
411 EXPORT_SYMBOL_GPL(blk_mq_request_started);
412
413 void blk_mq_start_request(struct request *rq)
414 {
415 struct request_queue *q = rq->q;
416
417 trace_block_rq_issue(q, rq);
418
419 rq->resid_len = blk_rq_bytes(rq);
420 if (unlikely(blk_bidi_rq(rq)))
421 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
422
423 blk_add_timer(rq);
424
425 /*
426 * Ensure that ->deadline is visible before set the started
427 * flag and clear the completed flag.
428 */
429 smp_mb__before_atomic();
430
431 /*
432 * Mark us as started and clear complete. Complete might have been
433 * set if requeue raced with timeout, which then marked it as
434 * complete. So be sure to clear complete again when we start
435 * the request, otherwise we'll ignore the completion event.
436 */
437 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
438 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
439 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
440 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
441
442 if (q->dma_drain_size && blk_rq_bytes(rq)) {
443 /*
444 * Make sure space for the drain appears. We know we can do
445 * this because max_hw_segments has been adjusted to be one
446 * fewer than the device can handle.
447 */
448 rq->nr_phys_segments++;
449 }
450 }
451 EXPORT_SYMBOL(blk_mq_start_request);
452
453 static void __blk_mq_requeue_request(struct request *rq)
454 {
455 struct request_queue *q = rq->q;
456
457 trace_block_rq_requeue(q, rq);
458
459 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
460 if (q->dma_drain_size && blk_rq_bytes(rq))
461 rq->nr_phys_segments--;
462 }
463 }
464
465 void blk_mq_requeue_request(struct request *rq)
466 {
467 __blk_mq_requeue_request(rq);
468
469 BUG_ON(blk_queued_rq(rq));
470 blk_mq_add_to_requeue_list(rq, true);
471 }
472 EXPORT_SYMBOL(blk_mq_requeue_request);
473
474 static void blk_mq_requeue_work(struct work_struct *work)
475 {
476 struct request_queue *q =
477 container_of(work, struct request_queue, requeue_work);
478 LIST_HEAD(rq_list);
479 struct request *rq, *next;
480 unsigned long flags;
481
482 spin_lock_irqsave(&q->requeue_lock, flags);
483 list_splice_init(&q->requeue_list, &rq_list);
484 spin_unlock_irqrestore(&q->requeue_lock, flags);
485
486 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
487 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
488 continue;
489
490 rq->cmd_flags &= ~REQ_SOFTBARRIER;
491 list_del_init(&rq->queuelist);
492 blk_mq_insert_request(rq, true, false, false);
493 }
494
495 while (!list_empty(&rq_list)) {
496 rq = list_entry(rq_list.next, struct request, queuelist);
497 list_del_init(&rq->queuelist);
498 blk_mq_insert_request(rq, false, false, false);
499 }
500
501 /*
502 * Use the start variant of queue running here, so that running
503 * the requeue work will kick stopped queues.
504 */
505 blk_mq_start_hw_queues(q);
506 }
507
508 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
509 {
510 struct request_queue *q = rq->q;
511 unsigned long flags;
512
513 /*
514 * We abuse this flag that is otherwise used by the I/O scheduler to
515 * request head insertation from the workqueue.
516 */
517 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
518
519 spin_lock_irqsave(&q->requeue_lock, flags);
520 if (at_head) {
521 rq->cmd_flags |= REQ_SOFTBARRIER;
522 list_add(&rq->queuelist, &q->requeue_list);
523 } else {
524 list_add_tail(&rq->queuelist, &q->requeue_list);
525 }
526 spin_unlock_irqrestore(&q->requeue_lock, flags);
527 }
528 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
529
530 void blk_mq_cancel_requeue_work(struct request_queue *q)
531 {
532 cancel_work_sync(&q->requeue_work);
533 }
534 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
535
536 void blk_mq_kick_requeue_list(struct request_queue *q)
537 {
538 kblockd_schedule_work(&q->requeue_work);
539 }
540 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
541
542 void blk_mq_abort_requeue_list(struct request_queue *q)
543 {
544 unsigned long flags;
545 LIST_HEAD(rq_list);
546
547 spin_lock_irqsave(&q->requeue_lock, flags);
548 list_splice_init(&q->requeue_list, &rq_list);
549 spin_unlock_irqrestore(&q->requeue_lock, flags);
550
551 while (!list_empty(&rq_list)) {
552 struct request *rq;
553
554 rq = list_first_entry(&rq_list, struct request, queuelist);
555 list_del_init(&rq->queuelist);
556 rq->errors = -EIO;
557 blk_mq_end_request(rq, rq->errors);
558 }
559 }
560 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
561
562 static inline bool is_flush_request(struct request *rq,
563 struct blk_flush_queue *fq, unsigned int tag)
564 {
565 return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
566 fq->flush_rq->tag == tag);
567 }
568
569 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
570 {
571 struct request *rq = tags->rqs[tag];
572 /* mq_ctx of flush rq is always cloned from the corresponding req */
573 struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
574
575 if (!is_flush_request(rq, fq, tag))
576 return rq;
577
578 return fq->flush_rq;
579 }
580 EXPORT_SYMBOL(blk_mq_tag_to_rq);
581
582 struct blk_mq_timeout_data {
583 unsigned long next;
584 unsigned int next_set;
585 };
586
587 void blk_mq_rq_timed_out(struct request *req, bool reserved)
588 {
589 struct blk_mq_ops *ops = req->q->mq_ops;
590 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
591
592 /*
593 * We know that complete is set at this point. If STARTED isn't set
594 * anymore, then the request isn't active and the "timeout" should
595 * just be ignored. This can happen due to the bitflag ordering.
596 * Timeout first checks if STARTED is set, and if it is, assumes
597 * the request is active. But if we race with completion, then
598 * we both flags will get cleared. So check here again, and ignore
599 * a timeout event with a request that isn't active.
600 */
601 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
602 return;
603
604 if (ops->timeout)
605 ret = ops->timeout(req, reserved);
606
607 switch (ret) {
608 case BLK_EH_HANDLED:
609 __blk_mq_complete_request(req);
610 break;
611 case BLK_EH_RESET_TIMER:
612 blk_add_timer(req);
613 blk_clear_rq_complete(req);
614 break;
615 case BLK_EH_NOT_HANDLED:
616 break;
617 default:
618 printk(KERN_ERR "block: bad eh return: %d\n", ret);
619 break;
620 }
621 }
622
623 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
624 struct request *rq, void *priv, bool reserved)
625 {
626 struct blk_mq_timeout_data *data = priv;
627
628 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
629 return;
630
631 if (time_after_eq(jiffies, rq->deadline)) {
632 if (!blk_mark_rq_complete(rq))
633 blk_mq_rq_timed_out(rq, reserved);
634 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
635 data->next = rq->deadline;
636 data->next_set = 1;
637 }
638 }
639
640 static void blk_mq_rq_timer(unsigned long priv)
641 {
642 struct request_queue *q = (struct request_queue *)priv;
643 struct blk_mq_timeout_data data = {
644 .next = 0,
645 .next_set = 0,
646 };
647 struct blk_mq_hw_ctx *hctx;
648 int i;
649
650 queue_for_each_hw_ctx(q, hctx, i) {
651 /*
652 * If not software queues are currently mapped to this
653 * hardware queue, there's nothing to check
654 */
655 if (!blk_mq_hw_queue_mapped(hctx))
656 continue;
657
658 blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
659 }
660
661 if (data.next_set) {
662 data.next = blk_rq_timeout(round_jiffies_up(data.next));
663 mod_timer(&q->timeout, data.next);
664 } else {
665 queue_for_each_hw_ctx(q, hctx, i)
666 blk_mq_tag_idle(hctx);
667 }
668 }
669
670 /*
671 * Reverse check our software queue for entries that we could potentially
672 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
673 * too much time checking for merges.
674 */
675 static bool blk_mq_attempt_merge(struct request_queue *q,
676 struct blk_mq_ctx *ctx, struct bio *bio)
677 {
678 struct request *rq;
679 int checked = 8;
680
681 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
682 int el_ret;
683
684 if (!checked--)
685 break;
686
687 if (!blk_rq_merge_ok(rq, bio))
688 continue;
689
690 el_ret = blk_try_merge(rq, bio);
691 if (el_ret == ELEVATOR_BACK_MERGE) {
692 if (bio_attempt_back_merge(q, rq, bio)) {
693 ctx->rq_merged++;
694 return true;
695 }
696 break;
697 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
698 if (bio_attempt_front_merge(q, rq, bio)) {
699 ctx->rq_merged++;
700 return true;
701 }
702 break;
703 }
704 }
705
706 return false;
707 }
708
709 /*
710 * Process software queues that have been marked busy, splicing them
711 * to the for-dispatch
712 */
713 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
714 {
715 struct blk_mq_ctx *ctx;
716 int i;
717
718 for (i = 0; i < hctx->ctx_map.map_size; i++) {
719 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
720 unsigned int off, bit;
721
722 if (!bm->word)
723 continue;
724
725 bit = 0;
726 off = i * hctx->ctx_map.bits_per_word;
727 do {
728 bit = find_next_bit(&bm->word, bm->depth, bit);
729 if (bit >= bm->depth)
730 break;
731
732 ctx = hctx->ctxs[bit + off];
733 clear_bit(bit, &bm->word);
734 spin_lock(&ctx->lock);
735 list_splice_tail_init(&ctx->rq_list, list);
736 spin_unlock(&ctx->lock);
737
738 bit++;
739 } while (1);
740 }
741 }
742
743 /*
744 * Run this hardware queue, pulling any software queues mapped to it in.
745 * Note that this function currently has various problems around ordering
746 * of IO. In particular, we'd like FIFO behaviour on handling existing
747 * items on the hctx->dispatch list. Ignore that for now.
748 */
749 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
750 {
751 struct request_queue *q = hctx->queue;
752 struct request *rq;
753 LIST_HEAD(rq_list);
754 LIST_HEAD(driver_list);
755 struct list_head *dptr;
756 int queued;
757
758 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
759
760 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
761 return;
762
763 hctx->run++;
764
765 /*
766 * Touch any software queue that has pending entries.
767 */
768 flush_busy_ctxs(hctx, &rq_list);
769
770 /*
771 * If we have previous entries on our dispatch list, grab them
772 * and stuff them at the front for more fair dispatch.
773 */
774 if (!list_empty_careful(&hctx->dispatch)) {
775 spin_lock(&hctx->lock);
776 if (!list_empty(&hctx->dispatch))
777 list_splice_init(&hctx->dispatch, &rq_list);
778 spin_unlock(&hctx->lock);
779 }
780
781 /*
782 * Start off with dptr being NULL, so we start the first request
783 * immediately, even if we have more pending.
784 */
785 dptr = NULL;
786
787 /*
788 * Now process all the entries, sending them to the driver.
789 */
790 queued = 0;
791 while (!list_empty(&rq_list)) {
792 struct blk_mq_queue_data bd;
793 int ret;
794
795 rq = list_first_entry(&rq_list, struct request, queuelist);
796 list_del_init(&rq->queuelist);
797
798 bd.rq = rq;
799 bd.list = dptr;
800 bd.last = list_empty(&rq_list);
801
802 ret = q->mq_ops->queue_rq(hctx, &bd);
803 switch (ret) {
804 case BLK_MQ_RQ_QUEUE_OK:
805 queued++;
806 continue;
807 case BLK_MQ_RQ_QUEUE_BUSY:
808 list_add(&rq->queuelist, &rq_list);
809 __blk_mq_requeue_request(rq);
810 break;
811 default:
812 pr_err("blk-mq: bad return on queue: %d\n", ret);
813 case BLK_MQ_RQ_QUEUE_ERROR:
814 rq->errors = -EIO;
815 blk_mq_end_request(rq, rq->errors);
816 break;
817 }
818
819 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
820 break;
821
822 /*
823 * We've done the first request. If we have more than 1
824 * left in the list, set dptr to defer issue.
825 */
826 if (!dptr && rq_list.next != rq_list.prev)
827 dptr = &driver_list;
828 }
829
830 if (!queued)
831 hctx->dispatched[0]++;
832 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
833 hctx->dispatched[ilog2(queued) + 1]++;
834
835 /*
836 * Any items that need requeuing? Stuff them into hctx->dispatch,
837 * that is where we will continue on next queue run.
838 */
839 if (!list_empty(&rq_list)) {
840 spin_lock(&hctx->lock);
841 list_splice(&rq_list, &hctx->dispatch);
842 spin_unlock(&hctx->lock);
843 }
844 }
845
846 /*
847 * It'd be great if the workqueue API had a way to pass
848 * in a mask and had some smarts for more clever placement.
849 * For now we just round-robin here, switching for every
850 * BLK_MQ_CPU_WORK_BATCH queued items.
851 */
852 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
853 {
854 if (hctx->queue->nr_hw_queues == 1)
855 return WORK_CPU_UNBOUND;
856
857 if (--hctx->next_cpu_batch <= 0) {
858 int cpu = hctx->next_cpu, next_cpu;
859
860 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
861 if (next_cpu >= nr_cpu_ids)
862 next_cpu = cpumask_first(hctx->cpumask);
863
864 hctx->next_cpu = next_cpu;
865 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
866
867 return cpu;
868 }
869
870 return hctx->next_cpu;
871 }
872
873 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
874 {
875 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
876 !blk_mq_hw_queue_mapped(hctx)))
877 return;
878
879 if (!async) {
880 int cpu = get_cpu();
881 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
882 __blk_mq_run_hw_queue(hctx);
883 put_cpu();
884 return;
885 }
886
887 put_cpu();
888 }
889
890 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
891 &hctx->run_work, 0);
892 }
893
894 void blk_mq_run_queues(struct request_queue *q, bool async)
895 {
896 struct blk_mq_hw_ctx *hctx;
897 int i;
898
899 queue_for_each_hw_ctx(q, hctx, i) {
900 if ((!blk_mq_hctx_has_pending(hctx) &&
901 list_empty_careful(&hctx->dispatch)) ||
902 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
903 continue;
904
905 blk_mq_run_hw_queue(hctx, async);
906 }
907 }
908 EXPORT_SYMBOL(blk_mq_run_queues);
909
910 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
911 {
912 cancel_delayed_work(&hctx->run_work);
913 cancel_delayed_work(&hctx->delay_work);
914 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
915 }
916 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
917
918 void blk_mq_stop_hw_queues(struct request_queue *q)
919 {
920 struct blk_mq_hw_ctx *hctx;
921 int i;
922
923 queue_for_each_hw_ctx(q, hctx, i)
924 blk_mq_stop_hw_queue(hctx);
925 }
926 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
927
928 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
929 {
930 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
931
932 blk_mq_run_hw_queue(hctx, false);
933 }
934 EXPORT_SYMBOL(blk_mq_start_hw_queue);
935
936 void blk_mq_start_hw_queues(struct request_queue *q)
937 {
938 struct blk_mq_hw_ctx *hctx;
939 int i;
940
941 queue_for_each_hw_ctx(q, hctx, i)
942 blk_mq_start_hw_queue(hctx);
943 }
944 EXPORT_SYMBOL(blk_mq_start_hw_queues);
945
946
947 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
948 {
949 struct blk_mq_hw_ctx *hctx;
950 int i;
951
952 queue_for_each_hw_ctx(q, hctx, i) {
953 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
954 continue;
955
956 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
957 blk_mq_run_hw_queue(hctx, async);
958 }
959 }
960 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
961
962 static void blk_mq_run_work_fn(struct work_struct *work)
963 {
964 struct blk_mq_hw_ctx *hctx;
965
966 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
967
968 __blk_mq_run_hw_queue(hctx);
969 }
970
971 static void blk_mq_delay_work_fn(struct work_struct *work)
972 {
973 struct blk_mq_hw_ctx *hctx;
974
975 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
976
977 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
978 __blk_mq_run_hw_queue(hctx);
979 }
980
981 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
982 {
983 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
984 return;
985
986 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
987 &hctx->delay_work, msecs_to_jiffies(msecs));
988 }
989 EXPORT_SYMBOL(blk_mq_delay_queue);
990
991 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
992 struct request *rq, bool at_head)
993 {
994 struct blk_mq_ctx *ctx = rq->mq_ctx;
995
996 trace_block_rq_insert(hctx->queue, rq);
997
998 if (at_head)
999 list_add(&rq->queuelist, &ctx->rq_list);
1000 else
1001 list_add_tail(&rq->queuelist, &ctx->rq_list);
1002
1003 blk_mq_hctx_mark_pending(hctx, ctx);
1004 }
1005
1006 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1007 bool async)
1008 {
1009 struct request_queue *q = rq->q;
1010 struct blk_mq_hw_ctx *hctx;
1011 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1012
1013 current_ctx = blk_mq_get_ctx(q);
1014 if (!cpu_online(ctx->cpu))
1015 rq->mq_ctx = ctx = current_ctx;
1016
1017 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1018
1019 spin_lock(&ctx->lock);
1020 __blk_mq_insert_request(hctx, rq, at_head);
1021 spin_unlock(&ctx->lock);
1022
1023 if (run_queue)
1024 blk_mq_run_hw_queue(hctx, async);
1025
1026 blk_mq_put_ctx(current_ctx);
1027 }
1028
1029 static void blk_mq_insert_requests(struct request_queue *q,
1030 struct blk_mq_ctx *ctx,
1031 struct list_head *list,
1032 int depth,
1033 bool from_schedule)
1034
1035 {
1036 struct blk_mq_hw_ctx *hctx;
1037 struct blk_mq_ctx *current_ctx;
1038
1039 trace_block_unplug(q, depth, !from_schedule);
1040
1041 current_ctx = blk_mq_get_ctx(q);
1042
1043 if (!cpu_online(ctx->cpu))
1044 ctx = current_ctx;
1045 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1046
1047 /*
1048 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1049 * offline now
1050 */
1051 spin_lock(&ctx->lock);
1052 while (!list_empty(list)) {
1053 struct request *rq;
1054
1055 rq = list_first_entry(list, struct request, queuelist);
1056 list_del_init(&rq->queuelist);
1057 rq->mq_ctx = ctx;
1058 __blk_mq_insert_request(hctx, rq, false);
1059 }
1060 spin_unlock(&ctx->lock);
1061
1062 blk_mq_run_hw_queue(hctx, from_schedule);
1063 blk_mq_put_ctx(current_ctx);
1064 }
1065
1066 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1067 {
1068 struct request *rqa = container_of(a, struct request, queuelist);
1069 struct request *rqb = container_of(b, struct request, queuelist);
1070
1071 return !(rqa->mq_ctx < rqb->mq_ctx ||
1072 (rqa->mq_ctx == rqb->mq_ctx &&
1073 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1074 }
1075
1076 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1077 {
1078 struct blk_mq_ctx *this_ctx;
1079 struct request_queue *this_q;
1080 struct request *rq;
1081 LIST_HEAD(list);
1082 LIST_HEAD(ctx_list);
1083 unsigned int depth;
1084
1085 list_splice_init(&plug->mq_list, &list);
1086
1087 list_sort(NULL, &list, plug_ctx_cmp);
1088
1089 this_q = NULL;
1090 this_ctx = NULL;
1091 depth = 0;
1092
1093 while (!list_empty(&list)) {
1094 rq = list_entry_rq(list.next);
1095 list_del_init(&rq->queuelist);
1096 BUG_ON(!rq->q);
1097 if (rq->mq_ctx != this_ctx) {
1098 if (this_ctx) {
1099 blk_mq_insert_requests(this_q, this_ctx,
1100 &ctx_list, depth,
1101 from_schedule);
1102 }
1103
1104 this_ctx = rq->mq_ctx;
1105 this_q = rq->q;
1106 depth = 0;
1107 }
1108
1109 depth++;
1110 list_add_tail(&rq->queuelist, &ctx_list);
1111 }
1112
1113 /*
1114 * If 'this_ctx' is set, we know we have entries to complete
1115 * on 'ctx_list'. Do those.
1116 */
1117 if (this_ctx) {
1118 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1119 from_schedule);
1120 }
1121 }
1122
1123 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1124 {
1125 init_request_from_bio(rq, bio);
1126
1127 if (blk_do_io_stat(rq))
1128 blk_account_io_start(rq, 1);
1129 }
1130
1131 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1132 {
1133 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1134 !blk_queue_nomerges(hctx->queue);
1135 }
1136
1137 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1138 struct blk_mq_ctx *ctx,
1139 struct request *rq, struct bio *bio)
1140 {
1141 if (!hctx_allow_merges(hctx)) {
1142 blk_mq_bio_to_request(rq, bio);
1143 spin_lock(&ctx->lock);
1144 insert_rq:
1145 __blk_mq_insert_request(hctx, rq, false);
1146 spin_unlock(&ctx->lock);
1147 return false;
1148 } else {
1149 struct request_queue *q = hctx->queue;
1150
1151 spin_lock(&ctx->lock);
1152 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1153 blk_mq_bio_to_request(rq, bio);
1154 goto insert_rq;
1155 }
1156
1157 spin_unlock(&ctx->lock);
1158 __blk_mq_free_request(hctx, ctx, rq);
1159 return true;
1160 }
1161 }
1162
1163 struct blk_map_ctx {
1164 struct blk_mq_hw_ctx *hctx;
1165 struct blk_mq_ctx *ctx;
1166 };
1167
1168 static struct request *blk_mq_map_request(struct request_queue *q,
1169 struct bio *bio,
1170 struct blk_map_ctx *data)
1171 {
1172 struct blk_mq_hw_ctx *hctx;
1173 struct blk_mq_ctx *ctx;
1174 struct request *rq;
1175 int rw = bio_data_dir(bio);
1176 struct blk_mq_alloc_data alloc_data;
1177
1178 if (unlikely(blk_mq_queue_enter(q))) {
1179 bio_endio(bio, -EIO);
1180 return NULL;
1181 }
1182
1183 ctx = blk_mq_get_ctx(q);
1184 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1185
1186 if (rw_is_sync(bio->bi_rw))
1187 rw |= REQ_SYNC;
1188
1189 trace_block_getrq(q, bio, rw);
1190 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1191 hctx);
1192 rq = __blk_mq_alloc_request(&alloc_data, rw);
1193 if (unlikely(!rq)) {
1194 __blk_mq_run_hw_queue(hctx);
1195 blk_mq_put_ctx(ctx);
1196 trace_block_sleeprq(q, bio, rw);
1197
1198 ctx = blk_mq_get_ctx(q);
1199 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1200 blk_mq_set_alloc_data(&alloc_data, q,
1201 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1202 rq = __blk_mq_alloc_request(&alloc_data, rw);
1203 ctx = alloc_data.ctx;
1204 hctx = alloc_data.hctx;
1205 }
1206
1207 hctx->queued++;
1208 data->hctx = hctx;
1209 data->ctx = ctx;
1210 return rq;
1211 }
1212
1213 /*
1214 * Multiple hardware queue variant. This will not use per-process plugs,
1215 * but will attempt to bypass the hctx queueing if we can go straight to
1216 * hardware for SYNC IO.
1217 */
1218 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1219 {
1220 const int is_sync = rw_is_sync(bio->bi_rw);
1221 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1222 struct blk_map_ctx data;
1223 struct request *rq;
1224
1225 blk_queue_bounce(q, &bio);
1226
1227 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1228 bio_endio(bio, -EIO);
1229 return;
1230 }
1231
1232 rq = blk_mq_map_request(q, bio, &data);
1233 if (unlikely(!rq))
1234 return;
1235
1236 if (unlikely(is_flush_fua)) {
1237 blk_mq_bio_to_request(rq, bio);
1238 blk_insert_flush(rq);
1239 goto run_queue;
1240 }
1241
1242 /*
1243 * If the driver supports defer issued based on 'last', then
1244 * queue it up like normal since we can potentially save some
1245 * CPU this way.
1246 */
1247 if (is_sync && !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1248 struct blk_mq_queue_data bd = {
1249 .rq = rq,
1250 .list = NULL,
1251 .last = 1
1252 };
1253 int ret;
1254
1255 blk_mq_bio_to_request(rq, bio);
1256
1257 /*
1258 * For OK queue, we are done. For error, kill it. Any other
1259 * error (busy), just add it to our list as we previously
1260 * would have done
1261 */
1262 ret = q->mq_ops->queue_rq(data.hctx, &bd);
1263 if (ret == BLK_MQ_RQ_QUEUE_OK)
1264 goto done;
1265 else {
1266 __blk_mq_requeue_request(rq);
1267
1268 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1269 rq->errors = -EIO;
1270 blk_mq_end_request(rq, rq->errors);
1271 goto done;
1272 }
1273 }
1274 }
1275
1276 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1277 /*
1278 * For a SYNC request, send it to the hardware immediately. For
1279 * an ASYNC request, just ensure that we run it later on. The
1280 * latter allows for merging opportunities and more efficient
1281 * dispatching.
1282 */
1283 run_queue:
1284 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1285 }
1286 done:
1287 blk_mq_put_ctx(data.ctx);
1288 }
1289
1290 /*
1291 * Single hardware queue variant. This will attempt to use any per-process
1292 * plug for merging and IO deferral.
1293 */
1294 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1295 {
1296 const int is_sync = rw_is_sync(bio->bi_rw);
1297 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1298 unsigned int use_plug, request_count = 0;
1299 struct blk_map_ctx data;
1300 struct request *rq;
1301
1302 /*
1303 * If we have multiple hardware queues, just go directly to
1304 * one of those for sync IO.
1305 */
1306 use_plug = !is_flush_fua && !is_sync;
1307
1308 blk_queue_bounce(q, &bio);
1309
1310 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1311 bio_endio(bio, -EIO);
1312 return;
1313 }
1314
1315 if (use_plug && !blk_queue_nomerges(q) &&
1316 blk_attempt_plug_merge(q, bio, &request_count))
1317 return;
1318
1319 rq = blk_mq_map_request(q, bio, &data);
1320 if (unlikely(!rq))
1321 return;
1322
1323 if (unlikely(is_flush_fua)) {
1324 blk_mq_bio_to_request(rq, bio);
1325 blk_insert_flush(rq);
1326 goto run_queue;
1327 }
1328
1329 /*
1330 * A task plug currently exists. Since this is completely lockless,
1331 * utilize that to temporarily store requests until the task is
1332 * either done or scheduled away.
1333 */
1334 if (use_plug) {
1335 struct blk_plug *plug = current->plug;
1336
1337 if (plug) {
1338 blk_mq_bio_to_request(rq, bio);
1339 if (list_empty(&plug->mq_list))
1340 trace_block_plug(q);
1341 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1342 blk_flush_plug_list(plug, false);
1343 trace_block_plug(q);
1344 }
1345 list_add_tail(&rq->queuelist, &plug->mq_list);
1346 blk_mq_put_ctx(data.ctx);
1347 return;
1348 }
1349 }
1350
1351 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1352 /*
1353 * For a SYNC request, send it to the hardware immediately. For
1354 * an ASYNC request, just ensure that we run it later on. The
1355 * latter allows for merging opportunities and more efficient
1356 * dispatching.
1357 */
1358 run_queue:
1359 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1360 }
1361
1362 blk_mq_put_ctx(data.ctx);
1363 }
1364
1365 /*
1366 * Default mapping to a software queue, since we use one per CPU.
1367 */
1368 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1369 {
1370 return q->queue_hw_ctx[q->mq_map[cpu]];
1371 }
1372 EXPORT_SYMBOL(blk_mq_map_queue);
1373
1374 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1375 struct blk_mq_tags *tags, unsigned int hctx_idx)
1376 {
1377 struct page *page;
1378
1379 if (tags->rqs && set->ops->exit_request) {
1380 int i;
1381
1382 for (i = 0; i < tags->nr_tags; i++) {
1383 if (!tags->rqs[i])
1384 continue;
1385 set->ops->exit_request(set->driver_data, tags->rqs[i],
1386 hctx_idx, i);
1387 tags->rqs[i] = NULL;
1388 }
1389 }
1390
1391 while (!list_empty(&tags->page_list)) {
1392 page = list_first_entry(&tags->page_list, struct page, lru);
1393 list_del_init(&page->lru);
1394 __free_pages(page, page->private);
1395 }
1396
1397 kfree(tags->rqs);
1398
1399 blk_mq_free_tags(tags);
1400 }
1401
1402 static size_t order_to_size(unsigned int order)
1403 {
1404 return (size_t)PAGE_SIZE << order;
1405 }
1406
1407 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1408 unsigned int hctx_idx)
1409 {
1410 struct blk_mq_tags *tags;
1411 unsigned int i, j, entries_per_page, max_order = 4;
1412 size_t rq_size, left;
1413
1414 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1415 set->numa_node);
1416 if (!tags)
1417 return NULL;
1418
1419 INIT_LIST_HEAD(&tags->page_list);
1420
1421 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1422 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1423 set->numa_node);
1424 if (!tags->rqs) {
1425 blk_mq_free_tags(tags);
1426 return NULL;
1427 }
1428
1429 /*
1430 * rq_size is the size of the request plus driver payload, rounded
1431 * to the cacheline size
1432 */
1433 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1434 cache_line_size());
1435 left = rq_size * set->queue_depth;
1436
1437 for (i = 0; i < set->queue_depth; ) {
1438 int this_order = max_order;
1439 struct page *page;
1440 int to_do;
1441 void *p;
1442
1443 while (left < order_to_size(this_order - 1) && this_order)
1444 this_order--;
1445
1446 do {
1447 page = alloc_pages_node(set->numa_node,
1448 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1449 this_order);
1450 if (page)
1451 break;
1452 if (!this_order--)
1453 break;
1454 if (order_to_size(this_order) < rq_size)
1455 break;
1456 } while (1);
1457
1458 if (!page)
1459 goto fail;
1460
1461 page->private = this_order;
1462 list_add_tail(&page->lru, &tags->page_list);
1463
1464 p = page_address(page);
1465 entries_per_page = order_to_size(this_order) / rq_size;
1466 to_do = min(entries_per_page, set->queue_depth - i);
1467 left -= to_do * rq_size;
1468 for (j = 0; j < to_do; j++) {
1469 tags->rqs[i] = p;
1470 tags->rqs[i]->atomic_flags = 0;
1471 tags->rqs[i]->cmd_flags = 0;
1472 if (set->ops->init_request) {
1473 if (set->ops->init_request(set->driver_data,
1474 tags->rqs[i], hctx_idx, i,
1475 set->numa_node)) {
1476 tags->rqs[i] = NULL;
1477 goto fail;
1478 }
1479 }
1480
1481 p += rq_size;
1482 i++;
1483 }
1484 }
1485
1486 return tags;
1487
1488 fail:
1489 blk_mq_free_rq_map(set, tags, hctx_idx);
1490 return NULL;
1491 }
1492
1493 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1494 {
1495 kfree(bitmap->map);
1496 }
1497
1498 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1499 {
1500 unsigned int bpw = 8, total, num_maps, i;
1501
1502 bitmap->bits_per_word = bpw;
1503
1504 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1505 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1506 GFP_KERNEL, node);
1507 if (!bitmap->map)
1508 return -ENOMEM;
1509
1510 bitmap->map_size = num_maps;
1511
1512 total = nr_cpu_ids;
1513 for (i = 0; i < num_maps; i++) {
1514 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1515 total -= bitmap->map[i].depth;
1516 }
1517
1518 return 0;
1519 }
1520
1521 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1522 {
1523 struct request_queue *q = hctx->queue;
1524 struct blk_mq_ctx *ctx;
1525 LIST_HEAD(tmp);
1526
1527 /*
1528 * Move ctx entries to new CPU, if this one is going away.
1529 */
1530 ctx = __blk_mq_get_ctx(q, cpu);
1531
1532 spin_lock(&ctx->lock);
1533 if (!list_empty(&ctx->rq_list)) {
1534 list_splice_init(&ctx->rq_list, &tmp);
1535 blk_mq_hctx_clear_pending(hctx, ctx);
1536 }
1537 spin_unlock(&ctx->lock);
1538
1539 if (list_empty(&tmp))
1540 return NOTIFY_OK;
1541
1542 ctx = blk_mq_get_ctx(q);
1543 spin_lock(&ctx->lock);
1544
1545 while (!list_empty(&tmp)) {
1546 struct request *rq;
1547
1548 rq = list_first_entry(&tmp, struct request, queuelist);
1549 rq->mq_ctx = ctx;
1550 list_move_tail(&rq->queuelist, &ctx->rq_list);
1551 }
1552
1553 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1554 blk_mq_hctx_mark_pending(hctx, ctx);
1555
1556 spin_unlock(&ctx->lock);
1557
1558 blk_mq_run_hw_queue(hctx, true);
1559 blk_mq_put_ctx(ctx);
1560 return NOTIFY_OK;
1561 }
1562
1563 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1564 {
1565 struct request_queue *q = hctx->queue;
1566 struct blk_mq_tag_set *set = q->tag_set;
1567
1568 if (set->tags[hctx->queue_num])
1569 return NOTIFY_OK;
1570
1571 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1572 if (!set->tags[hctx->queue_num])
1573 return NOTIFY_STOP;
1574
1575 hctx->tags = set->tags[hctx->queue_num];
1576 return NOTIFY_OK;
1577 }
1578
1579 static int blk_mq_hctx_notify(void *data, unsigned long action,
1580 unsigned int cpu)
1581 {
1582 struct blk_mq_hw_ctx *hctx = data;
1583
1584 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1585 return blk_mq_hctx_cpu_offline(hctx, cpu);
1586 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1587 return blk_mq_hctx_cpu_online(hctx, cpu);
1588
1589 return NOTIFY_OK;
1590 }
1591
1592 static void blk_mq_exit_hctx(struct request_queue *q,
1593 struct blk_mq_tag_set *set,
1594 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1595 {
1596 unsigned flush_start_tag = set->queue_depth;
1597
1598 blk_mq_tag_idle(hctx);
1599
1600 if (set->ops->exit_request)
1601 set->ops->exit_request(set->driver_data,
1602 hctx->fq->flush_rq, hctx_idx,
1603 flush_start_tag + hctx_idx);
1604
1605 if (set->ops->exit_hctx)
1606 set->ops->exit_hctx(hctx, hctx_idx);
1607
1608 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1609 blk_free_flush_queue(hctx->fq);
1610 kfree(hctx->ctxs);
1611 blk_mq_free_bitmap(&hctx->ctx_map);
1612 }
1613
1614 static void blk_mq_exit_hw_queues(struct request_queue *q,
1615 struct blk_mq_tag_set *set, int nr_queue)
1616 {
1617 struct blk_mq_hw_ctx *hctx;
1618 unsigned int i;
1619
1620 queue_for_each_hw_ctx(q, hctx, i) {
1621 if (i == nr_queue)
1622 break;
1623 blk_mq_exit_hctx(q, set, hctx, i);
1624 }
1625 }
1626
1627 static void blk_mq_free_hw_queues(struct request_queue *q,
1628 struct blk_mq_tag_set *set)
1629 {
1630 struct blk_mq_hw_ctx *hctx;
1631 unsigned int i;
1632
1633 queue_for_each_hw_ctx(q, hctx, i) {
1634 free_cpumask_var(hctx->cpumask);
1635 kfree(hctx);
1636 }
1637 }
1638
1639 static int blk_mq_init_hctx(struct request_queue *q,
1640 struct blk_mq_tag_set *set,
1641 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1642 {
1643 int node;
1644 unsigned flush_start_tag = set->queue_depth;
1645
1646 node = hctx->numa_node;
1647 if (node == NUMA_NO_NODE)
1648 node = hctx->numa_node = set->numa_node;
1649
1650 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1651 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1652 spin_lock_init(&hctx->lock);
1653 INIT_LIST_HEAD(&hctx->dispatch);
1654 hctx->queue = q;
1655 hctx->queue_num = hctx_idx;
1656 hctx->flags = set->flags;
1657
1658 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1659 blk_mq_hctx_notify, hctx);
1660 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1661
1662 hctx->tags = set->tags[hctx_idx];
1663
1664 /*
1665 * Allocate space for all possible cpus to avoid allocation at
1666 * runtime
1667 */
1668 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1669 GFP_KERNEL, node);
1670 if (!hctx->ctxs)
1671 goto unregister_cpu_notifier;
1672
1673 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1674 goto free_ctxs;
1675
1676 hctx->nr_ctx = 0;
1677
1678 if (set->ops->init_hctx &&
1679 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1680 goto free_bitmap;
1681
1682 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1683 if (!hctx->fq)
1684 goto exit_hctx;
1685
1686 if (set->ops->init_request &&
1687 set->ops->init_request(set->driver_data,
1688 hctx->fq->flush_rq, hctx_idx,
1689 flush_start_tag + hctx_idx, node))
1690 goto free_fq;
1691
1692 return 0;
1693
1694 free_fq:
1695 kfree(hctx->fq);
1696 exit_hctx:
1697 if (set->ops->exit_hctx)
1698 set->ops->exit_hctx(hctx, hctx_idx);
1699 free_bitmap:
1700 blk_mq_free_bitmap(&hctx->ctx_map);
1701 free_ctxs:
1702 kfree(hctx->ctxs);
1703 unregister_cpu_notifier:
1704 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1705
1706 return -1;
1707 }
1708
1709 static int blk_mq_init_hw_queues(struct request_queue *q,
1710 struct blk_mq_tag_set *set)
1711 {
1712 struct blk_mq_hw_ctx *hctx;
1713 unsigned int i;
1714
1715 /*
1716 * Initialize hardware queues
1717 */
1718 queue_for_each_hw_ctx(q, hctx, i) {
1719 if (blk_mq_init_hctx(q, set, hctx, i))
1720 break;
1721 }
1722
1723 if (i == q->nr_hw_queues)
1724 return 0;
1725
1726 /*
1727 * Init failed
1728 */
1729 blk_mq_exit_hw_queues(q, set, i);
1730
1731 return 1;
1732 }
1733
1734 static void blk_mq_init_cpu_queues(struct request_queue *q,
1735 unsigned int nr_hw_queues)
1736 {
1737 unsigned int i;
1738
1739 for_each_possible_cpu(i) {
1740 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1741 struct blk_mq_hw_ctx *hctx;
1742
1743 memset(__ctx, 0, sizeof(*__ctx));
1744 __ctx->cpu = i;
1745 spin_lock_init(&__ctx->lock);
1746 INIT_LIST_HEAD(&__ctx->rq_list);
1747 __ctx->queue = q;
1748
1749 /* If the cpu isn't online, the cpu is mapped to first hctx */
1750 if (!cpu_online(i))
1751 continue;
1752
1753 hctx = q->mq_ops->map_queue(q, i);
1754 cpumask_set_cpu(i, hctx->cpumask);
1755 hctx->nr_ctx++;
1756
1757 /*
1758 * Set local node, IFF we have more than one hw queue. If
1759 * not, we remain on the home node of the device
1760 */
1761 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1762 hctx->numa_node = cpu_to_node(i);
1763 }
1764 }
1765
1766 static void blk_mq_map_swqueue(struct request_queue *q)
1767 {
1768 unsigned int i;
1769 struct blk_mq_hw_ctx *hctx;
1770 struct blk_mq_ctx *ctx;
1771
1772 queue_for_each_hw_ctx(q, hctx, i) {
1773 cpumask_clear(hctx->cpumask);
1774 hctx->nr_ctx = 0;
1775 }
1776
1777 /*
1778 * Map software to hardware queues
1779 */
1780 queue_for_each_ctx(q, ctx, i) {
1781 /* If the cpu isn't online, the cpu is mapped to first hctx */
1782 if (!cpu_online(i))
1783 continue;
1784
1785 hctx = q->mq_ops->map_queue(q, i);
1786 cpumask_set_cpu(i, hctx->cpumask);
1787 ctx->index_hw = hctx->nr_ctx;
1788 hctx->ctxs[hctx->nr_ctx++] = ctx;
1789 }
1790
1791 queue_for_each_hw_ctx(q, hctx, i) {
1792 /*
1793 * If no software queues are mapped to this hardware queue,
1794 * disable it and free the request entries.
1795 */
1796 if (!hctx->nr_ctx) {
1797 struct blk_mq_tag_set *set = q->tag_set;
1798
1799 if (set->tags[i]) {
1800 blk_mq_free_rq_map(set, set->tags[i], i);
1801 set->tags[i] = NULL;
1802 hctx->tags = NULL;
1803 }
1804 continue;
1805 }
1806
1807 /*
1808 * Initialize batch roundrobin counts
1809 */
1810 hctx->next_cpu = cpumask_first(hctx->cpumask);
1811 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1812 }
1813 }
1814
1815 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1816 {
1817 struct blk_mq_hw_ctx *hctx;
1818 struct request_queue *q;
1819 bool shared;
1820 int i;
1821
1822 if (set->tag_list.next == set->tag_list.prev)
1823 shared = false;
1824 else
1825 shared = true;
1826
1827 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1828 blk_mq_freeze_queue(q);
1829
1830 queue_for_each_hw_ctx(q, hctx, i) {
1831 if (shared)
1832 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1833 else
1834 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1835 }
1836 blk_mq_unfreeze_queue(q);
1837 }
1838 }
1839
1840 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1841 {
1842 struct blk_mq_tag_set *set = q->tag_set;
1843
1844 mutex_lock(&set->tag_list_lock);
1845 list_del_init(&q->tag_set_list);
1846 blk_mq_update_tag_set_depth(set);
1847 mutex_unlock(&set->tag_list_lock);
1848 }
1849
1850 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1851 struct request_queue *q)
1852 {
1853 q->tag_set = set;
1854
1855 mutex_lock(&set->tag_list_lock);
1856 list_add_tail(&q->tag_set_list, &set->tag_list);
1857 blk_mq_update_tag_set_depth(set);
1858 mutex_unlock(&set->tag_list_lock);
1859 }
1860
1861 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1862 {
1863 struct blk_mq_hw_ctx **hctxs;
1864 struct blk_mq_ctx __percpu *ctx;
1865 struct request_queue *q;
1866 unsigned int *map;
1867 int i;
1868
1869 ctx = alloc_percpu(struct blk_mq_ctx);
1870 if (!ctx)
1871 return ERR_PTR(-ENOMEM);
1872
1873 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1874 set->numa_node);
1875
1876 if (!hctxs)
1877 goto err_percpu;
1878
1879 map = blk_mq_make_queue_map(set);
1880 if (!map)
1881 goto err_map;
1882
1883 for (i = 0; i < set->nr_hw_queues; i++) {
1884 int node = blk_mq_hw_queue_to_node(map, i);
1885
1886 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1887 GFP_KERNEL, node);
1888 if (!hctxs[i])
1889 goto err_hctxs;
1890
1891 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1892 node))
1893 goto err_hctxs;
1894
1895 atomic_set(&hctxs[i]->nr_active, 0);
1896 hctxs[i]->numa_node = node;
1897 hctxs[i]->queue_num = i;
1898 }
1899
1900 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1901 if (!q)
1902 goto err_hctxs;
1903
1904 /*
1905 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1906 * See blk_register_queue() for details.
1907 */
1908 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
1909 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1910 goto err_map;
1911
1912 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1913 blk_queue_rq_timeout(q, 30000);
1914
1915 q->nr_queues = nr_cpu_ids;
1916 q->nr_hw_queues = set->nr_hw_queues;
1917 q->mq_map = map;
1918
1919 q->queue_ctx = ctx;
1920 q->queue_hw_ctx = hctxs;
1921
1922 q->mq_ops = set->ops;
1923 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1924
1925 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1926 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1927
1928 q->sg_reserved_size = INT_MAX;
1929
1930 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1931 INIT_LIST_HEAD(&q->requeue_list);
1932 spin_lock_init(&q->requeue_lock);
1933
1934 if (q->nr_hw_queues > 1)
1935 blk_queue_make_request(q, blk_mq_make_request);
1936 else
1937 blk_queue_make_request(q, blk_sq_make_request);
1938
1939 if (set->timeout)
1940 blk_queue_rq_timeout(q, set->timeout);
1941
1942 /*
1943 * Do this after blk_queue_make_request() overrides it...
1944 */
1945 q->nr_requests = set->queue_depth;
1946
1947 if (set->ops->complete)
1948 blk_queue_softirq_done(q, set->ops->complete);
1949
1950 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1951
1952 if (blk_mq_init_hw_queues(q, set))
1953 goto err_hw;
1954
1955 mutex_lock(&all_q_mutex);
1956 list_add_tail(&q->all_q_node, &all_q_list);
1957 mutex_unlock(&all_q_mutex);
1958
1959 blk_mq_add_queue_tag_set(set, q);
1960
1961 blk_mq_map_swqueue(q);
1962
1963 return q;
1964
1965 err_hw:
1966 blk_cleanup_queue(q);
1967 err_hctxs:
1968 kfree(map);
1969 for (i = 0; i < set->nr_hw_queues; i++) {
1970 if (!hctxs[i])
1971 break;
1972 free_cpumask_var(hctxs[i]->cpumask);
1973 kfree(hctxs[i]);
1974 }
1975 err_map:
1976 kfree(hctxs);
1977 err_percpu:
1978 free_percpu(ctx);
1979 return ERR_PTR(-ENOMEM);
1980 }
1981 EXPORT_SYMBOL(blk_mq_init_queue);
1982
1983 void blk_mq_free_queue(struct request_queue *q)
1984 {
1985 struct blk_mq_tag_set *set = q->tag_set;
1986
1987 blk_mq_del_queue_tag_set(q);
1988
1989 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1990 blk_mq_free_hw_queues(q, set);
1991
1992 percpu_ref_exit(&q->mq_usage_counter);
1993
1994 free_percpu(q->queue_ctx);
1995 kfree(q->queue_hw_ctx);
1996 kfree(q->mq_map);
1997
1998 q->queue_ctx = NULL;
1999 q->queue_hw_ctx = NULL;
2000 q->mq_map = NULL;
2001
2002 mutex_lock(&all_q_mutex);
2003 list_del_init(&q->all_q_node);
2004 mutex_unlock(&all_q_mutex);
2005 }
2006
2007 /* Basically redo blk_mq_init_queue with queue frozen */
2008 static void blk_mq_queue_reinit(struct request_queue *q)
2009 {
2010 WARN_ON_ONCE(!q->mq_freeze_depth);
2011
2012 blk_mq_sysfs_unregister(q);
2013
2014 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
2015
2016 /*
2017 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2018 * we should change hctx numa_node according to new topology (this
2019 * involves free and re-allocate memory, worthy doing?)
2020 */
2021
2022 blk_mq_map_swqueue(q);
2023
2024 blk_mq_sysfs_register(q);
2025 }
2026
2027 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2028 unsigned long action, void *hcpu)
2029 {
2030 struct request_queue *q;
2031
2032 /*
2033 * Before new mappings are established, hotadded cpu might already
2034 * start handling requests. This doesn't break anything as we map
2035 * offline CPUs to first hardware queue. We will re-init the queue
2036 * below to get optimal settings.
2037 */
2038 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
2039 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
2040 return NOTIFY_OK;
2041
2042 mutex_lock(&all_q_mutex);
2043
2044 /*
2045 * We need to freeze and reinit all existing queues. Freezing
2046 * involves synchronous wait for an RCU grace period and doing it
2047 * one by one may take a long time. Start freezing all queues in
2048 * one swoop and then wait for the completions so that freezing can
2049 * take place in parallel.
2050 */
2051 list_for_each_entry(q, &all_q_list, all_q_node)
2052 blk_mq_freeze_queue_start(q);
2053 list_for_each_entry(q, &all_q_list, all_q_node)
2054 blk_mq_freeze_queue_wait(q);
2055
2056 list_for_each_entry(q, &all_q_list, all_q_node)
2057 blk_mq_queue_reinit(q);
2058
2059 list_for_each_entry(q, &all_q_list, all_q_node)
2060 blk_mq_unfreeze_queue(q);
2061
2062 mutex_unlock(&all_q_mutex);
2063 return NOTIFY_OK;
2064 }
2065
2066 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2067 {
2068 int i;
2069
2070 for (i = 0; i < set->nr_hw_queues; i++) {
2071 set->tags[i] = blk_mq_init_rq_map(set, i);
2072 if (!set->tags[i])
2073 goto out_unwind;
2074 }
2075
2076 return 0;
2077
2078 out_unwind:
2079 while (--i >= 0)
2080 blk_mq_free_rq_map(set, set->tags[i], i);
2081
2082 return -ENOMEM;
2083 }
2084
2085 /*
2086 * Allocate the request maps associated with this tag_set. Note that this
2087 * may reduce the depth asked for, if memory is tight. set->queue_depth
2088 * will be updated to reflect the allocated depth.
2089 */
2090 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2091 {
2092 unsigned int depth;
2093 int err;
2094
2095 depth = set->queue_depth;
2096 do {
2097 err = __blk_mq_alloc_rq_maps(set);
2098 if (!err)
2099 break;
2100
2101 set->queue_depth >>= 1;
2102 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2103 err = -ENOMEM;
2104 break;
2105 }
2106 } while (set->queue_depth);
2107
2108 if (!set->queue_depth || err) {
2109 pr_err("blk-mq: failed to allocate request map\n");
2110 return -ENOMEM;
2111 }
2112
2113 if (depth != set->queue_depth)
2114 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2115 depth, set->queue_depth);
2116
2117 return 0;
2118 }
2119
2120 /*
2121 * Alloc a tag set to be associated with one or more request queues.
2122 * May fail with EINVAL for various error conditions. May adjust the
2123 * requested depth down, if if it too large. In that case, the set
2124 * value will be stored in set->queue_depth.
2125 */
2126 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2127 {
2128 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2129
2130 if (!set->nr_hw_queues)
2131 return -EINVAL;
2132 if (!set->queue_depth)
2133 return -EINVAL;
2134 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2135 return -EINVAL;
2136
2137 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
2138 return -EINVAL;
2139
2140 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2141 pr_info("blk-mq: reduced tag depth to %u\n",
2142 BLK_MQ_MAX_DEPTH);
2143 set->queue_depth = BLK_MQ_MAX_DEPTH;
2144 }
2145
2146 /*
2147 * If a crashdump is active, then we are potentially in a very
2148 * memory constrained environment. Limit us to 1 queue and
2149 * 64 tags to prevent using too much memory.
2150 */
2151 if (is_kdump_kernel()) {
2152 set->nr_hw_queues = 1;
2153 set->queue_depth = min(64U, set->queue_depth);
2154 }
2155
2156 set->tags = kmalloc_node(set->nr_hw_queues *
2157 sizeof(struct blk_mq_tags *),
2158 GFP_KERNEL, set->numa_node);
2159 if (!set->tags)
2160 return -ENOMEM;
2161
2162 if (blk_mq_alloc_rq_maps(set))
2163 goto enomem;
2164
2165 mutex_init(&set->tag_list_lock);
2166 INIT_LIST_HEAD(&set->tag_list);
2167
2168 return 0;
2169 enomem:
2170 kfree(set->tags);
2171 set->tags = NULL;
2172 return -ENOMEM;
2173 }
2174 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2175
2176 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2177 {
2178 int i;
2179
2180 for (i = 0; i < set->nr_hw_queues; i++) {
2181 if (set->tags[i])
2182 blk_mq_free_rq_map(set, set->tags[i], i);
2183 }
2184
2185 kfree(set->tags);
2186 set->tags = NULL;
2187 }
2188 EXPORT_SYMBOL(blk_mq_free_tag_set);
2189
2190 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2191 {
2192 struct blk_mq_tag_set *set = q->tag_set;
2193 struct blk_mq_hw_ctx *hctx;
2194 int i, ret;
2195
2196 if (!set || nr > set->queue_depth)
2197 return -EINVAL;
2198
2199 ret = 0;
2200 queue_for_each_hw_ctx(q, hctx, i) {
2201 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2202 if (ret)
2203 break;
2204 }
2205
2206 if (!ret)
2207 q->nr_requests = nr;
2208
2209 return ret;
2210 }
2211
2212 void blk_mq_disable_hotplug(void)
2213 {
2214 mutex_lock(&all_q_mutex);
2215 }
2216
2217 void blk_mq_enable_hotplug(void)
2218 {
2219 mutex_unlock(&all_q_mutex);
2220 }
2221
2222 static int __init blk_mq_init(void)
2223 {
2224 blk_mq_cpu_init();
2225
2226 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2227
2228 return 0;
2229 }
2230 subsys_initcall(blk_mq_init);
This page took 0.074251 seconds and 5 git commands to generate.