NVMe: nvme_submit_async_admin_req() must use atomic rq allocation
[deliverable/linux.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
24
25 #include <trace/events/block.h>
26
27 #include <linux/blk-mq.h>
28 #include "blk.h"
29 #include "blk-mq.h"
30 #include "blk-mq-tag.h"
31
32 static DEFINE_MUTEX(all_q_mutex);
33 static LIST_HEAD(all_q_list);
34
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
36
37 /*
38 * Check if any of the ctx's have pending work in this hardware queue
39 */
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41 {
42 unsigned int i;
43
44 for (i = 0; i < hctx->ctx_map.map_size; i++)
45 if (hctx->ctx_map.map[i].word)
46 return true;
47
48 return false;
49 }
50
51 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
52 struct blk_mq_ctx *ctx)
53 {
54 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
55 }
56
57 #define CTX_TO_BIT(hctx, ctx) \
58 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
59
60 /*
61 * Mark this ctx as having pending work in this hardware queue
62 */
63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
64 struct blk_mq_ctx *ctx)
65 {
66 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
67
68 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
69 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
70 }
71
72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
73 struct blk_mq_ctx *ctx)
74 {
75 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
76
77 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
78 }
79
80 static int blk_mq_queue_enter(struct request_queue *q)
81 {
82 while (true) {
83 int ret;
84
85 if (percpu_ref_tryget_live(&q->mq_usage_counter))
86 return 0;
87
88 ret = wait_event_interruptible(q->mq_freeze_wq,
89 !q->mq_freeze_depth || blk_queue_dying(q));
90 if (blk_queue_dying(q))
91 return -ENODEV;
92 if (ret)
93 return ret;
94 }
95 }
96
97 static void blk_mq_queue_exit(struct request_queue *q)
98 {
99 percpu_ref_put(&q->mq_usage_counter);
100 }
101
102 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
103 {
104 struct request_queue *q =
105 container_of(ref, struct request_queue, mq_usage_counter);
106
107 wake_up_all(&q->mq_freeze_wq);
108 }
109
110 /*
111 * Guarantee no request is in use, so we can change any data structure of
112 * the queue afterward.
113 */
114 void blk_mq_freeze_queue(struct request_queue *q)
115 {
116 bool freeze;
117
118 spin_lock_irq(q->queue_lock);
119 freeze = !q->mq_freeze_depth++;
120 spin_unlock_irq(q->queue_lock);
121
122 if (freeze) {
123 percpu_ref_kill(&q->mq_usage_counter);
124 blk_mq_run_queues(q, false);
125 }
126 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
127 }
128
129 static void blk_mq_unfreeze_queue(struct request_queue *q)
130 {
131 bool wake;
132
133 spin_lock_irq(q->queue_lock);
134 wake = !--q->mq_freeze_depth;
135 WARN_ON_ONCE(q->mq_freeze_depth < 0);
136 spin_unlock_irq(q->queue_lock);
137 if (wake) {
138 percpu_ref_reinit(&q->mq_usage_counter);
139 wake_up_all(&q->mq_freeze_wq);
140 }
141 }
142
143 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
144 {
145 return blk_mq_has_free_tags(hctx->tags);
146 }
147 EXPORT_SYMBOL(blk_mq_can_queue);
148
149 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
150 struct request *rq, unsigned int rw_flags)
151 {
152 if (blk_queue_io_stat(q))
153 rw_flags |= REQ_IO_STAT;
154
155 INIT_LIST_HEAD(&rq->queuelist);
156 /* csd/requeue_work/fifo_time is initialized before use */
157 rq->q = q;
158 rq->mq_ctx = ctx;
159 rq->cmd_flags |= rw_flags;
160 /* do not touch atomic flags, it needs atomic ops against the timer */
161 rq->cpu = -1;
162 INIT_HLIST_NODE(&rq->hash);
163 RB_CLEAR_NODE(&rq->rb_node);
164 rq->rq_disk = NULL;
165 rq->part = NULL;
166 rq->start_time = jiffies;
167 #ifdef CONFIG_BLK_CGROUP
168 rq->rl = NULL;
169 set_start_time_ns(rq);
170 rq->io_start_time_ns = 0;
171 #endif
172 rq->nr_phys_segments = 0;
173 #if defined(CONFIG_BLK_DEV_INTEGRITY)
174 rq->nr_integrity_segments = 0;
175 #endif
176 rq->special = NULL;
177 /* tag was already set */
178 rq->errors = 0;
179
180 rq->cmd = rq->__cmd;
181
182 rq->extra_len = 0;
183 rq->sense_len = 0;
184 rq->resid_len = 0;
185 rq->sense = NULL;
186
187 INIT_LIST_HEAD(&rq->timeout_list);
188 rq->timeout = 0;
189
190 rq->end_io = NULL;
191 rq->end_io_data = NULL;
192 rq->next_rq = NULL;
193
194 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
195 }
196
197 static struct request *
198 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
199 {
200 struct request *rq;
201 unsigned int tag;
202
203 tag = blk_mq_get_tag(data);
204 if (tag != BLK_MQ_TAG_FAIL) {
205 rq = data->hctx->tags->rqs[tag];
206
207 if (blk_mq_tag_busy(data->hctx)) {
208 rq->cmd_flags = REQ_MQ_INFLIGHT;
209 atomic_inc(&data->hctx->nr_active);
210 }
211
212 rq->tag = tag;
213 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
214 return rq;
215 }
216
217 return NULL;
218 }
219
220 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
221 bool reserved)
222 {
223 struct blk_mq_ctx *ctx;
224 struct blk_mq_hw_ctx *hctx;
225 struct request *rq;
226 struct blk_mq_alloc_data alloc_data;
227 int ret;
228
229 ret = blk_mq_queue_enter(q);
230 if (ret)
231 return ERR_PTR(ret);
232
233 ctx = blk_mq_get_ctx(q);
234 hctx = q->mq_ops->map_queue(q, ctx->cpu);
235 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
236 reserved, ctx, hctx);
237
238 rq = __blk_mq_alloc_request(&alloc_data, rw);
239 if (!rq && (gfp & __GFP_WAIT)) {
240 __blk_mq_run_hw_queue(hctx);
241 blk_mq_put_ctx(ctx);
242
243 ctx = blk_mq_get_ctx(q);
244 hctx = q->mq_ops->map_queue(q, ctx->cpu);
245 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
246 hctx);
247 rq = __blk_mq_alloc_request(&alloc_data, rw);
248 ctx = alloc_data.ctx;
249 }
250 blk_mq_put_ctx(ctx);
251 if (!rq)
252 return ERR_PTR(-EWOULDBLOCK);
253 return rq;
254 }
255 EXPORT_SYMBOL(blk_mq_alloc_request);
256
257 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
258 struct blk_mq_ctx *ctx, struct request *rq)
259 {
260 const int tag = rq->tag;
261 struct request_queue *q = rq->q;
262
263 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
264 atomic_dec(&hctx->nr_active);
265 rq->cmd_flags = 0;
266
267 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
268 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
269 blk_mq_queue_exit(q);
270 }
271
272 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
273 {
274 struct blk_mq_ctx *ctx = rq->mq_ctx;
275
276 ctx->rq_completed[rq_is_sync(rq)]++;
277 __blk_mq_free_request(hctx, ctx, rq);
278
279 }
280 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
281
282 void blk_mq_free_request(struct request *rq)
283 {
284 struct blk_mq_hw_ctx *hctx;
285 struct request_queue *q = rq->q;
286
287 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
288 blk_mq_free_hctx_request(hctx, rq);
289 }
290 EXPORT_SYMBOL_GPL(blk_mq_free_request);
291
292 inline void __blk_mq_end_request(struct request *rq, int error)
293 {
294 blk_account_io_done(rq);
295
296 if (rq->end_io) {
297 rq->end_io(rq, error);
298 } else {
299 if (unlikely(blk_bidi_rq(rq)))
300 blk_mq_free_request(rq->next_rq);
301 blk_mq_free_request(rq);
302 }
303 }
304 EXPORT_SYMBOL(__blk_mq_end_request);
305
306 void blk_mq_end_request(struct request *rq, int error)
307 {
308 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
309 BUG();
310 __blk_mq_end_request(rq, error);
311 }
312 EXPORT_SYMBOL(blk_mq_end_request);
313
314 static void __blk_mq_complete_request_remote(void *data)
315 {
316 struct request *rq = data;
317
318 rq->q->softirq_done_fn(rq);
319 }
320
321 static void blk_mq_ipi_complete_request(struct request *rq)
322 {
323 struct blk_mq_ctx *ctx = rq->mq_ctx;
324 bool shared = false;
325 int cpu;
326
327 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
328 rq->q->softirq_done_fn(rq);
329 return;
330 }
331
332 cpu = get_cpu();
333 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
334 shared = cpus_share_cache(cpu, ctx->cpu);
335
336 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
337 rq->csd.func = __blk_mq_complete_request_remote;
338 rq->csd.info = rq;
339 rq->csd.flags = 0;
340 smp_call_function_single_async(ctx->cpu, &rq->csd);
341 } else {
342 rq->q->softirq_done_fn(rq);
343 }
344 put_cpu();
345 }
346
347 void __blk_mq_complete_request(struct request *rq)
348 {
349 struct request_queue *q = rq->q;
350
351 if (!q->softirq_done_fn)
352 blk_mq_end_request(rq, rq->errors);
353 else
354 blk_mq_ipi_complete_request(rq);
355 }
356
357 /**
358 * blk_mq_complete_request - end I/O on a request
359 * @rq: the request being processed
360 *
361 * Description:
362 * Ends all I/O on a request. It does not handle partial completions.
363 * The actual completion happens out-of-order, through a IPI handler.
364 **/
365 void blk_mq_complete_request(struct request *rq)
366 {
367 struct request_queue *q = rq->q;
368
369 if (unlikely(blk_should_fake_timeout(q)))
370 return;
371 if (!blk_mark_rq_complete(rq))
372 __blk_mq_complete_request(rq);
373 }
374 EXPORT_SYMBOL(blk_mq_complete_request);
375
376 void blk_mq_start_request(struct request *rq)
377 {
378 struct request_queue *q = rq->q;
379
380 trace_block_rq_issue(q, rq);
381
382 rq->resid_len = blk_rq_bytes(rq);
383 if (unlikely(blk_bidi_rq(rq)))
384 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
385
386 blk_add_timer(rq);
387
388 /*
389 * Ensure that ->deadline is visible before set the started
390 * flag and clear the completed flag.
391 */
392 smp_mb__before_atomic();
393
394 /*
395 * Mark us as started and clear complete. Complete might have been
396 * set if requeue raced with timeout, which then marked it as
397 * complete. So be sure to clear complete again when we start
398 * the request, otherwise we'll ignore the completion event.
399 */
400 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
401 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
402 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
403 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
404
405 if (q->dma_drain_size && blk_rq_bytes(rq)) {
406 /*
407 * Make sure space for the drain appears. We know we can do
408 * this because max_hw_segments has been adjusted to be one
409 * fewer than the device can handle.
410 */
411 rq->nr_phys_segments++;
412 }
413 }
414 EXPORT_SYMBOL(blk_mq_start_request);
415
416 static void __blk_mq_requeue_request(struct request *rq)
417 {
418 struct request_queue *q = rq->q;
419
420 trace_block_rq_requeue(q, rq);
421
422 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
423 if (q->dma_drain_size && blk_rq_bytes(rq))
424 rq->nr_phys_segments--;
425 }
426 }
427
428 void blk_mq_requeue_request(struct request *rq)
429 {
430 __blk_mq_requeue_request(rq);
431
432 BUG_ON(blk_queued_rq(rq));
433 blk_mq_add_to_requeue_list(rq, true);
434 }
435 EXPORT_SYMBOL(blk_mq_requeue_request);
436
437 static void blk_mq_requeue_work(struct work_struct *work)
438 {
439 struct request_queue *q =
440 container_of(work, struct request_queue, requeue_work);
441 LIST_HEAD(rq_list);
442 struct request *rq, *next;
443 unsigned long flags;
444
445 spin_lock_irqsave(&q->requeue_lock, flags);
446 list_splice_init(&q->requeue_list, &rq_list);
447 spin_unlock_irqrestore(&q->requeue_lock, flags);
448
449 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
450 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
451 continue;
452
453 rq->cmd_flags &= ~REQ_SOFTBARRIER;
454 list_del_init(&rq->queuelist);
455 blk_mq_insert_request(rq, true, false, false);
456 }
457
458 while (!list_empty(&rq_list)) {
459 rq = list_entry(rq_list.next, struct request, queuelist);
460 list_del_init(&rq->queuelist);
461 blk_mq_insert_request(rq, false, false, false);
462 }
463
464 /*
465 * Use the start variant of queue running here, so that running
466 * the requeue work will kick stopped queues.
467 */
468 blk_mq_start_hw_queues(q);
469 }
470
471 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
472 {
473 struct request_queue *q = rq->q;
474 unsigned long flags;
475
476 /*
477 * We abuse this flag that is otherwise used by the I/O scheduler to
478 * request head insertation from the workqueue.
479 */
480 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
481
482 spin_lock_irqsave(&q->requeue_lock, flags);
483 if (at_head) {
484 rq->cmd_flags |= REQ_SOFTBARRIER;
485 list_add(&rq->queuelist, &q->requeue_list);
486 } else {
487 list_add_tail(&rq->queuelist, &q->requeue_list);
488 }
489 spin_unlock_irqrestore(&q->requeue_lock, flags);
490 }
491 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
492
493 void blk_mq_kick_requeue_list(struct request_queue *q)
494 {
495 kblockd_schedule_work(&q->requeue_work);
496 }
497 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
498
499 static inline bool is_flush_request(struct request *rq,
500 struct blk_flush_queue *fq, unsigned int tag)
501 {
502 return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
503 fq->flush_rq->tag == tag);
504 }
505
506 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
507 {
508 struct request *rq = tags->rqs[tag];
509 /* mq_ctx of flush rq is always cloned from the corresponding req */
510 struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
511
512 if (!is_flush_request(rq, fq, tag))
513 return rq;
514
515 return fq->flush_rq;
516 }
517 EXPORT_SYMBOL(blk_mq_tag_to_rq);
518
519 struct blk_mq_timeout_data {
520 unsigned long next;
521 unsigned int next_set;
522 };
523
524 void blk_mq_rq_timed_out(struct request *req, bool reserved)
525 {
526 struct blk_mq_ops *ops = req->q->mq_ops;
527 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
528
529 /*
530 * We know that complete is set at this point. If STARTED isn't set
531 * anymore, then the request isn't active and the "timeout" should
532 * just be ignored. This can happen due to the bitflag ordering.
533 * Timeout first checks if STARTED is set, and if it is, assumes
534 * the request is active. But if we race with completion, then
535 * we both flags will get cleared. So check here again, and ignore
536 * a timeout event with a request that isn't active.
537 */
538 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
539 return;
540
541 if (ops->timeout)
542 ret = ops->timeout(req, reserved);
543
544 switch (ret) {
545 case BLK_EH_HANDLED:
546 __blk_mq_complete_request(req);
547 break;
548 case BLK_EH_RESET_TIMER:
549 blk_add_timer(req);
550 blk_clear_rq_complete(req);
551 break;
552 case BLK_EH_NOT_HANDLED:
553 break;
554 default:
555 printk(KERN_ERR "block: bad eh return: %d\n", ret);
556 break;
557 }
558 }
559
560 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
561 struct request *rq, void *priv, bool reserved)
562 {
563 struct blk_mq_timeout_data *data = priv;
564
565 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
566 return;
567
568 if (time_after_eq(jiffies, rq->deadline)) {
569 if (!blk_mark_rq_complete(rq))
570 blk_mq_rq_timed_out(rq, reserved);
571 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
572 data->next = rq->deadline;
573 data->next_set = 1;
574 }
575 }
576
577 static void blk_mq_rq_timer(unsigned long priv)
578 {
579 struct request_queue *q = (struct request_queue *)priv;
580 struct blk_mq_timeout_data data = {
581 .next = 0,
582 .next_set = 0,
583 };
584 struct blk_mq_hw_ctx *hctx;
585 int i;
586
587 queue_for_each_hw_ctx(q, hctx, i) {
588 /*
589 * If not software queues are currently mapped to this
590 * hardware queue, there's nothing to check
591 */
592 if (!hctx->nr_ctx || !hctx->tags)
593 continue;
594
595 blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
596 }
597
598 if (data.next_set) {
599 data.next = blk_rq_timeout(round_jiffies_up(data.next));
600 mod_timer(&q->timeout, data.next);
601 } else {
602 queue_for_each_hw_ctx(q, hctx, i)
603 blk_mq_tag_idle(hctx);
604 }
605 }
606
607 /*
608 * Reverse check our software queue for entries that we could potentially
609 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
610 * too much time checking for merges.
611 */
612 static bool blk_mq_attempt_merge(struct request_queue *q,
613 struct blk_mq_ctx *ctx, struct bio *bio)
614 {
615 struct request *rq;
616 int checked = 8;
617
618 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
619 int el_ret;
620
621 if (!checked--)
622 break;
623
624 if (!blk_rq_merge_ok(rq, bio))
625 continue;
626
627 el_ret = blk_try_merge(rq, bio);
628 if (el_ret == ELEVATOR_BACK_MERGE) {
629 if (bio_attempt_back_merge(q, rq, bio)) {
630 ctx->rq_merged++;
631 return true;
632 }
633 break;
634 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
635 if (bio_attempt_front_merge(q, rq, bio)) {
636 ctx->rq_merged++;
637 return true;
638 }
639 break;
640 }
641 }
642
643 return false;
644 }
645
646 /*
647 * Process software queues that have been marked busy, splicing them
648 * to the for-dispatch
649 */
650 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
651 {
652 struct blk_mq_ctx *ctx;
653 int i;
654
655 for (i = 0; i < hctx->ctx_map.map_size; i++) {
656 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
657 unsigned int off, bit;
658
659 if (!bm->word)
660 continue;
661
662 bit = 0;
663 off = i * hctx->ctx_map.bits_per_word;
664 do {
665 bit = find_next_bit(&bm->word, bm->depth, bit);
666 if (bit >= bm->depth)
667 break;
668
669 ctx = hctx->ctxs[bit + off];
670 clear_bit(bit, &bm->word);
671 spin_lock(&ctx->lock);
672 list_splice_tail_init(&ctx->rq_list, list);
673 spin_unlock(&ctx->lock);
674
675 bit++;
676 } while (1);
677 }
678 }
679
680 /*
681 * Run this hardware queue, pulling any software queues mapped to it in.
682 * Note that this function currently has various problems around ordering
683 * of IO. In particular, we'd like FIFO behaviour on handling existing
684 * items on the hctx->dispatch list. Ignore that for now.
685 */
686 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
687 {
688 struct request_queue *q = hctx->queue;
689 struct request *rq;
690 LIST_HEAD(rq_list);
691 LIST_HEAD(driver_list);
692 struct list_head *dptr;
693 int queued;
694
695 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
696
697 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
698 return;
699
700 hctx->run++;
701
702 /*
703 * Touch any software queue that has pending entries.
704 */
705 flush_busy_ctxs(hctx, &rq_list);
706
707 /*
708 * If we have previous entries on our dispatch list, grab them
709 * and stuff them at the front for more fair dispatch.
710 */
711 if (!list_empty_careful(&hctx->dispatch)) {
712 spin_lock(&hctx->lock);
713 if (!list_empty(&hctx->dispatch))
714 list_splice_init(&hctx->dispatch, &rq_list);
715 spin_unlock(&hctx->lock);
716 }
717
718 /*
719 * Start off with dptr being NULL, so we start the first request
720 * immediately, even if we have more pending.
721 */
722 dptr = NULL;
723
724 /*
725 * Now process all the entries, sending them to the driver.
726 */
727 queued = 0;
728 while (!list_empty(&rq_list)) {
729 struct blk_mq_queue_data bd;
730 int ret;
731
732 rq = list_first_entry(&rq_list, struct request, queuelist);
733 list_del_init(&rq->queuelist);
734
735 bd.rq = rq;
736 bd.list = dptr;
737 bd.last = list_empty(&rq_list);
738
739 ret = q->mq_ops->queue_rq(hctx, &bd);
740 switch (ret) {
741 case BLK_MQ_RQ_QUEUE_OK:
742 queued++;
743 continue;
744 case BLK_MQ_RQ_QUEUE_BUSY:
745 list_add(&rq->queuelist, &rq_list);
746 __blk_mq_requeue_request(rq);
747 break;
748 default:
749 pr_err("blk-mq: bad return on queue: %d\n", ret);
750 case BLK_MQ_RQ_QUEUE_ERROR:
751 rq->errors = -EIO;
752 blk_mq_end_request(rq, rq->errors);
753 break;
754 }
755
756 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
757 break;
758
759 /*
760 * We've done the first request. If we have more than 1
761 * left in the list, set dptr to defer issue.
762 */
763 if (!dptr && rq_list.next != rq_list.prev)
764 dptr = &driver_list;
765 }
766
767 if (!queued)
768 hctx->dispatched[0]++;
769 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
770 hctx->dispatched[ilog2(queued) + 1]++;
771
772 /*
773 * Any items that need requeuing? Stuff them into hctx->dispatch,
774 * that is where we will continue on next queue run.
775 */
776 if (!list_empty(&rq_list)) {
777 spin_lock(&hctx->lock);
778 list_splice(&rq_list, &hctx->dispatch);
779 spin_unlock(&hctx->lock);
780 }
781 }
782
783 /*
784 * It'd be great if the workqueue API had a way to pass
785 * in a mask and had some smarts for more clever placement.
786 * For now we just round-robin here, switching for every
787 * BLK_MQ_CPU_WORK_BATCH queued items.
788 */
789 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
790 {
791 int cpu = hctx->next_cpu;
792
793 if (--hctx->next_cpu_batch <= 0) {
794 int next_cpu;
795
796 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
797 if (next_cpu >= nr_cpu_ids)
798 next_cpu = cpumask_first(hctx->cpumask);
799
800 hctx->next_cpu = next_cpu;
801 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
802 }
803
804 return cpu;
805 }
806
807 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
808 {
809 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
810 return;
811
812 if (!async) {
813 int cpu = get_cpu();
814 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
815 __blk_mq_run_hw_queue(hctx);
816 put_cpu();
817 return;
818 }
819
820 put_cpu();
821 }
822
823 if (hctx->queue->nr_hw_queues == 1)
824 kblockd_schedule_delayed_work(&hctx->run_work, 0);
825 else {
826 unsigned int cpu;
827
828 cpu = blk_mq_hctx_next_cpu(hctx);
829 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
830 }
831 }
832
833 void blk_mq_run_queues(struct request_queue *q, bool async)
834 {
835 struct blk_mq_hw_ctx *hctx;
836 int i;
837
838 queue_for_each_hw_ctx(q, hctx, i) {
839 if ((!blk_mq_hctx_has_pending(hctx) &&
840 list_empty_careful(&hctx->dispatch)) ||
841 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
842 continue;
843
844 blk_mq_run_hw_queue(hctx, async);
845 }
846 }
847 EXPORT_SYMBOL(blk_mq_run_queues);
848
849 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
850 {
851 cancel_delayed_work(&hctx->run_work);
852 cancel_delayed_work(&hctx->delay_work);
853 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
854 }
855 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
856
857 void blk_mq_stop_hw_queues(struct request_queue *q)
858 {
859 struct blk_mq_hw_ctx *hctx;
860 int i;
861
862 queue_for_each_hw_ctx(q, hctx, i)
863 blk_mq_stop_hw_queue(hctx);
864 }
865 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
866
867 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
868 {
869 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
870
871 blk_mq_run_hw_queue(hctx, false);
872 }
873 EXPORT_SYMBOL(blk_mq_start_hw_queue);
874
875 void blk_mq_start_hw_queues(struct request_queue *q)
876 {
877 struct blk_mq_hw_ctx *hctx;
878 int i;
879
880 queue_for_each_hw_ctx(q, hctx, i)
881 blk_mq_start_hw_queue(hctx);
882 }
883 EXPORT_SYMBOL(blk_mq_start_hw_queues);
884
885
886 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
887 {
888 struct blk_mq_hw_ctx *hctx;
889 int i;
890
891 queue_for_each_hw_ctx(q, hctx, i) {
892 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
893 continue;
894
895 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
896 blk_mq_run_hw_queue(hctx, async);
897 }
898 }
899 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
900
901 static void blk_mq_run_work_fn(struct work_struct *work)
902 {
903 struct blk_mq_hw_ctx *hctx;
904
905 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
906
907 __blk_mq_run_hw_queue(hctx);
908 }
909
910 static void blk_mq_delay_work_fn(struct work_struct *work)
911 {
912 struct blk_mq_hw_ctx *hctx;
913
914 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
915
916 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
917 __blk_mq_run_hw_queue(hctx);
918 }
919
920 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
921 {
922 unsigned long tmo = msecs_to_jiffies(msecs);
923
924 if (hctx->queue->nr_hw_queues == 1)
925 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
926 else {
927 unsigned int cpu;
928
929 cpu = blk_mq_hctx_next_cpu(hctx);
930 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
931 }
932 }
933 EXPORT_SYMBOL(blk_mq_delay_queue);
934
935 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
936 struct request *rq, bool at_head)
937 {
938 struct blk_mq_ctx *ctx = rq->mq_ctx;
939
940 trace_block_rq_insert(hctx->queue, rq);
941
942 if (at_head)
943 list_add(&rq->queuelist, &ctx->rq_list);
944 else
945 list_add_tail(&rq->queuelist, &ctx->rq_list);
946
947 blk_mq_hctx_mark_pending(hctx, ctx);
948 }
949
950 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
951 bool async)
952 {
953 struct request_queue *q = rq->q;
954 struct blk_mq_hw_ctx *hctx;
955 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
956
957 current_ctx = blk_mq_get_ctx(q);
958 if (!cpu_online(ctx->cpu))
959 rq->mq_ctx = ctx = current_ctx;
960
961 hctx = q->mq_ops->map_queue(q, ctx->cpu);
962
963 spin_lock(&ctx->lock);
964 __blk_mq_insert_request(hctx, rq, at_head);
965 spin_unlock(&ctx->lock);
966
967 if (run_queue)
968 blk_mq_run_hw_queue(hctx, async);
969
970 blk_mq_put_ctx(current_ctx);
971 }
972
973 static void blk_mq_insert_requests(struct request_queue *q,
974 struct blk_mq_ctx *ctx,
975 struct list_head *list,
976 int depth,
977 bool from_schedule)
978
979 {
980 struct blk_mq_hw_ctx *hctx;
981 struct blk_mq_ctx *current_ctx;
982
983 trace_block_unplug(q, depth, !from_schedule);
984
985 current_ctx = blk_mq_get_ctx(q);
986
987 if (!cpu_online(ctx->cpu))
988 ctx = current_ctx;
989 hctx = q->mq_ops->map_queue(q, ctx->cpu);
990
991 /*
992 * preemption doesn't flush plug list, so it's possible ctx->cpu is
993 * offline now
994 */
995 spin_lock(&ctx->lock);
996 while (!list_empty(list)) {
997 struct request *rq;
998
999 rq = list_first_entry(list, struct request, queuelist);
1000 list_del_init(&rq->queuelist);
1001 rq->mq_ctx = ctx;
1002 __blk_mq_insert_request(hctx, rq, false);
1003 }
1004 spin_unlock(&ctx->lock);
1005
1006 blk_mq_run_hw_queue(hctx, from_schedule);
1007 blk_mq_put_ctx(current_ctx);
1008 }
1009
1010 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1011 {
1012 struct request *rqa = container_of(a, struct request, queuelist);
1013 struct request *rqb = container_of(b, struct request, queuelist);
1014
1015 return !(rqa->mq_ctx < rqb->mq_ctx ||
1016 (rqa->mq_ctx == rqb->mq_ctx &&
1017 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1018 }
1019
1020 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1021 {
1022 struct blk_mq_ctx *this_ctx;
1023 struct request_queue *this_q;
1024 struct request *rq;
1025 LIST_HEAD(list);
1026 LIST_HEAD(ctx_list);
1027 unsigned int depth;
1028
1029 list_splice_init(&plug->mq_list, &list);
1030
1031 list_sort(NULL, &list, plug_ctx_cmp);
1032
1033 this_q = NULL;
1034 this_ctx = NULL;
1035 depth = 0;
1036
1037 while (!list_empty(&list)) {
1038 rq = list_entry_rq(list.next);
1039 list_del_init(&rq->queuelist);
1040 BUG_ON(!rq->q);
1041 if (rq->mq_ctx != this_ctx) {
1042 if (this_ctx) {
1043 blk_mq_insert_requests(this_q, this_ctx,
1044 &ctx_list, depth,
1045 from_schedule);
1046 }
1047
1048 this_ctx = rq->mq_ctx;
1049 this_q = rq->q;
1050 depth = 0;
1051 }
1052
1053 depth++;
1054 list_add_tail(&rq->queuelist, &ctx_list);
1055 }
1056
1057 /*
1058 * If 'this_ctx' is set, we know we have entries to complete
1059 * on 'ctx_list'. Do those.
1060 */
1061 if (this_ctx) {
1062 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1063 from_schedule);
1064 }
1065 }
1066
1067 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1068 {
1069 init_request_from_bio(rq, bio);
1070
1071 if (blk_do_io_stat(rq))
1072 blk_account_io_start(rq, 1);
1073 }
1074
1075 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1076 {
1077 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1078 !blk_queue_nomerges(hctx->queue);
1079 }
1080
1081 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1082 struct blk_mq_ctx *ctx,
1083 struct request *rq, struct bio *bio)
1084 {
1085 if (!hctx_allow_merges(hctx)) {
1086 blk_mq_bio_to_request(rq, bio);
1087 spin_lock(&ctx->lock);
1088 insert_rq:
1089 __blk_mq_insert_request(hctx, rq, false);
1090 spin_unlock(&ctx->lock);
1091 return false;
1092 } else {
1093 struct request_queue *q = hctx->queue;
1094
1095 spin_lock(&ctx->lock);
1096 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1097 blk_mq_bio_to_request(rq, bio);
1098 goto insert_rq;
1099 }
1100
1101 spin_unlock(&ctx->lock);
1102 __blk_mq_free_request(hctx, ctx, rq);
1103 return true;
1104 }
1105 }
1106
1107 struct blk_map_ctx {
1108 struct blk_mq_hw_ctx *hctx;
1109 struct blk_mq_ctx *ctx;
1110 };
1111
1112 static struct request *blk_mq_map_request(struct request_queue *q,
1113 struct bio *bio,
1114 struct blk_map_ctx *data)
1115 {
1116 struct blk_mq_hw_ctx *hctx;
1117 struct blk_mq_ctx *ctx;
1118 struct request *rq;
1119 int rw = bio_data_dir(bio);
1120 struct blk_mq_alloc_data alloc_data;
1121
1122 if (unlikely(blk_mq_queue_enter(q))) {
1123 bio_endio(bio, -EIO);
1124 return NULL;
1125 }
1126
1127 ctx = blk_mq_get_ctx(q);
1128 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1129
1130 if (rw_is_sync(bio->bi_rw))
1131 rw |= REQ_SYNC;
1132
1133 trace_block_getrq(q, bio, rw);
1134 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1135 hctx);
1136 rq = __blk_mq_alloc_request(&alloc_data, rw);
1137 if (unlikely(!rq)) {
1138 __blk_mq_run_hw_queue(hctx);
1139 blk_mq_put_ctx(ctx);
1140 trace_block_sleeprq(q, bio, rw);
1141
1142 ctx = blk_mq_get_ctx(q);
1143 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1144 blk_mq_set_alloc_data(&alloc_data, q,
1145 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1146 rq = __blk_mq_alloc_request(&alloc_data, rw);
1147 ctx = alloc_data.ctx;
1148 hctx = alloc_data.hctx;
1149 }
1150
1151 hctx->queued++;
1152 data->hctx = hctx;
1153 data->ctx = ctx;
1154 return rq;
1155 }
1156
1157 /*
1158 * Multiple hardware queue variant. This will not use per-process plugs,
1159 * but will attempt to bypass the hctx queueing if we can go straight to
1160 * hardware for SYNC IO.
1161 */
1162 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1163 {
1164 const int is_sync = rw_is_sync(bio->bi_rw);
1165 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1166 struct blk_map_ctx data;
1167 struct request *rq;
1168
1169 blk_queue_bounce(q, &bio);
1170
1171 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1172 bio_endio(bio, -EIO);
1173 return;
1174 }
1175
1176 rq = blk_mq_map_request(q, bio, &data);
1177 if (unlikely(!rq))
1178 return;
1179
1180 if (unlikely(is_flush_fua)) {
1181 blk_mq_bio_to_request(rq, bio);
1182 blk_insert_flush(rq);
1183 goto run_queue;
1184 }
1185
1186 /*
1187 * If the driver supports defer issued based on 'last', then
1188 * queue it up like normal since we can potentially save some
1189 * CPU this way.
1190 */
1191 if (is_sync && !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1192 struct blk_mq_queue_data bd = {
1193 .rq = rq,
1194 .list = NULL,
1195 .last = 1
1196 };
1197 int ret;
1198
1199 blk_mq_bio_to_request(rq, bio);
1200
1201 /*
1202 * For OK queue, we are done. For error, kill it. Any other
1203 * error (busy), just add it to our list as we previously
1204 * would have done
1205 */
1206 ret = q->mq_ops->queue_rq(data.hctx, &bd);
1207 if (ret == BLK_MQ_RQ_QUEUE_OK)
1208 goto done;
1209 else {
1210 __blk_mq_requeue_request(rq);
1211
1212 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1213 rq->errors = -EIO;
1214 blk_mq_end_request(rq, rq->errors);
1215 goto done;
1216 }
1217 }
1218 }
1219
1220 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1221 /*
1222 * For a SYNC request, send it to the hardware immediately. For
1223 * an ASYNC request, just ensure that we run it later on. The
1224 * latter allows for merging opportunities and more efficient
1225 * dispatching.
1226 */
1227 run_queue:
1228 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1229 }
1230 done:
1231 blk_mq_put_ctx(data.ctx);
1232 }
1233
1234 /*
1235 * Single hardware queue variant. This will attempt to use any per-process
1236 * plug for merging and IO deferral.
1237 */
1238 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1239 {
1240 const int is_sync = rw_is_sync(bio->bi_rw);
1241 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1242 unsigned int use_plug, request_count = 0;
1243 struct blk_map_ctx data;
1244 struct request *rq;
1245
1246 /*
1247 * If we have multiple hardware queues, just go directly to
1248 * one of those for sync IO.
1249 */
1250 use_plug = !is_flush_fua && !is_sync;
1251
1252 blk_queue_bounce(q, &bio);
1253
1254 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1255 bio_endio(bio, -EIO);
1256 return;
1257 }
1258
1259 if (use_plug && !blk_queue_nomerges(q) &&
1260 blk_attempt_plug_merge(q, bio, &request_count))
1261 return;
1262
1263 rq = blk_mq_map_request(q, bio, &data);
1264 if (unlikely(!rq))
1265 return;
1266
1267 if (unlikely(is_flush_fua)) {
1268 blk_mq_bio_to_request(rq, bio);
1269 blk_insert_flush(rq);
1270 goto run_queue;
1271 }
1272
1273 /*
1274 * A task plug currently exists. Since this is completely lockless,
1275 * utilize that to temporarily store requests until the task is
1276 * either done or scheduled away.
1277 */
1278 if (use_plug) {
1279 struct blk_plug *plug = current->plug;
1280
1281 if (plug) {
1282 blk_mq_bio_to_request(rq, bio);
1283 if (list_empty(&plug->mq_list))
1284 trace_block_plug(q);
1285 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1286 blk_flush_plug_list(plug, false);
1287 trace_block_plug(q);
1288 }
1289 list_add_tail(&rq->queuelist, &plug->mq_list);
1290 blk_mq_put_ctx(data.ctx);
1291 return;
1292 }
1293 }
1294
1295 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1296 /*
1297 * For a SYNC request, send it to the hardware immediately. For
1298 * an ASYNC request, just ensure that we run it later on. The
1299 * latter allows for merging opportunities and more efficient
1300 * dispatching.
1301 */
1302 run_queue:
1303 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1304 }
1305
1306 blk_mq_put_ctx(data.ctx);
1307 }
1308
1309 /*
1310 * Default mapping to a software queue, since we use one per CPU.
1311 */
1312 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1313 {
1314 return q->queue_hw_ctx[q->mq_map[cpu]];
1315 }
1316 EXPORT_SYMBOL(blk_mq_map_queue);
1317
1318 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1319 struct blk_mq_tags *tags, unsigned int hctx_idx)
1320 {
1321 struct page *page;
1322
1323 if (tags->rqs && set->ops->exit_request) {
1324 int i;
1325
1326 for (i = 0; i < tags->nr_tags; i++) {
1327 if (!tags->rqs[i])
1328 continue;
1329 set->ops->exit_request(set->driver_data, tags->rqs[i],
1330 hctx_idx, i);
1331 tags->rqs[i] = NULL;
1332 }
1333 }
1334
1335 while (!list_empty(&tags->page_list)) {
1336 page = list_first_entry(&tags->page_list, struct page, lru);
1337 list_del_init(&page->lru);
1338 __free_pages(page, page->private);
1339 }
1340
1341 kfree(tags->rqs);
1342
1343 blk_mq_free_tags(tags);
1344 }
1345
1346 static size_t order_to_size(unsigned int order)
1347 {
1348 return (size_t)PAGE_SIZE << order;
1349 }
1350
1351 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1352 unsigned int hctx_idx)
1353 {
1354 struct blk_mq_tags *tags;
1355 unsigned int i, j, entries_per_page, max_order = 4;
1356 size_t rq_size, left;
1357
1358 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1359 set->numa_node);
1360 if (!tags)
1361 return NULL;
1362
1363 INIT_LIST_HEAD(&tags->page_list);
1364
1365 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1366 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1367 set->numa_node);
1368 if (!tags->rqs) {
1369 blk_mq_free_tags(tags);
1370 return NULL;
1371 }
1372
1373 /*
1374 * rq_size is the size of the request plus driver payload, rounded
1375 * to the cacheline size
1376 */
1377 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1378 cache_line_size());
1379 left = rq_size * set->queue_depth;
1380
1381 for (i = 0; i < set->queue_depth; ) {
1382 int this_order = max_order;
1383 struct page *page;
1384 int to_do;
1385 void *p;
1386
1387 while (left < order_to_size(this_order - 1) && this_order)
1388 this_order--;
1389
1390 do {
1391 page = alloc_pages_node(set->numa_node,
1392 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1393 this_order);
1394 if (page)
1395 break;
1396 if (!this_order--)
1397 break;
1398 if (order_to_size(this_order) < rq_size)
1399 break;
1400 } while (1);
1401
1402 if (!page)
1403 goto fail;
1404
1405 page->private = this_order;
1406 list_add_tail(&page->lru, &tags->page_list);
1407
1408 p = page_address(page);
1409 entries_per_page = order_to_size(this_order) / rq_size;
1410 to_do = min(entries_per_page, set->queue_depth - i);
1411 left -= to_do * rq_size;
1412 for (j = 0; j < to_do; j++) {
1413 tags->rqs[i] = p;
1414 tags->rqs[i]->atomic_flags = 0;
1415 tags->rqs[i]->cmd_flags = 0;
1416 if (set->ops->init_request) {
1417 if (set->ops->init_request(set->driver_data,
1418 tags->rqs[i], hctx_idx, i,
1419 set->numa_node)) {
1420 tags->rqs[i] = NULL;
1421 goto fail;
1422 }
1423 }
1424
1425 p += rq_size;
1426 i++;
1427 }
1428 }
1429
1430 return tags;
1431
1432 fail:
1433 blk_mq_free_rq_map(set, tags, hctx_idx);
1434 return NULL;
1435 }
1436
1437 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1438 {
1439 kfree(bitmap->map);
1440 }
1441
1442 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1443 {
1444 unsigned int bpw = 8, total, num_maps, i;
1445
1446 bitmap->bits_per_word = bpw;
1447
1448 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1449 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1450 GFP_KERNEL, node);
1451 if (!bitmap->map)
1452 return -ENOMEM;
1453
1454 bitmap->map_size = num_maps;
1455
1456 total = nr_cpu_ids;
1457 for (i = 0; i < num_maps; i++) {
1458 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1459 total -= bitmap->map[i].depth;
1460 }
1461
1462 return 0;
1463 }
1464
1465 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1466 {
1467 struct request_queue *q = hctx->queue;
1468 struct blk_mq_ctx *ctx;
1469 LIST_HEAD(tmp);
1470
1471 /*
1472 * Move ctx entries to new CPU, if this one is going away.
1473 */
1474 ctx = __blk_mq_get_ctx(q, cpu);
1475
1476 spin_lock(&ctx->lock);
1477 if (!list_empty(&ctx->rq_list)) {
1478 list_splice_init(&ctx->rq_list, &tmp);
1479 blk_mq_hctx_clear_pending(hctx, ctx);
1480 }
1481 spin_unlock(&ctx->lock);
1482
1483 if (list_empty(&tmp))
1484 return NOTIFY_OK;
1485
1486 ctx = blk_mq_get_ctx(q);
1487 spin_lock(&ctx->lock);
1488
1489 while (!list_empty(&tmp)) {
1490 struct request *rq;
1491
1492 rq = list_first_entry(&tmp, struct request, queuelist);
1493 rq->mq_ctx = ctx;
1494 list_move_tail(&rq->queuelist, &ctx->rq_list);
1495 }
1496
1497 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1498 blk_mq_hctx_mark_pending(hctx, ctx);
1499
1500 spin_unlock(&ctx->lock);
1501
1502 blk_mq_run_hw_queue(hctx, true);
1503 blk_mq_put_ctx(ctx);
1504 return NOTIFY_OK;
1505 }
1506
1507 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1508 {
1509 struct request_queue *q = hctx->queue;
1510 struct blk_mq_tag_set *set = q->tag_set;
1511
1512 if (set->tags[hctx->queue_num])
1513 return NOTIFY_OK;
1514
1515 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1516 if (!set->tags[hctx->queue_num])
1517 return NOTIFY_STOP;
1518
1519 hctx->tags = set->tags[hctx->queue_num];
1520 return NOTIFY_OK;
1521 }
1522
1523 static int blk_mq_hctx_notify(void *data, unsigned long action,
1524 unsigned int cpu)
1525 {
1526 struct blk_mq_hw_ctx *hctx = data;
1527
1528 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1529 return blk_mq_hctx_cpu_offline(hctx, cpu);
1530 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1531 return blk_mq_hctx_cpu_online(hctx, cpu);
1532
1533 return NOTIFY_OK;
1534 }
1535
1536 static void blk_mq_exit_hctx(struct request_queue *q,
1537 struct blk_mq_tag_set *set,
1538 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1539 {
1540 unsigned flush_start_tag = set->queue_depth;
1541
1542 blk_mq_tag_idle(hctx);
1543
1544 if (set->ops->exit_request)
1545 set->ops->exit_request(set->driver_data,
1546 hctx->fq->flush_rq, hctx_idx,
1547 flush_start_tag + hctx_idx);
1548
1549 if (set->ops->exit_hctx)
1550 set->ops->exit_hctx(hctx, hctx_idx);
1551
1552 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1553 blk_free_flush_queue(hctx->fq);
1554 kfree(hctx->ctxs);
1555 blk_mq_free_bitmap(&hctx->ctx_map);
1556 }
1557
1558 static void blk_mq_exit_hw_queues(struct request_queue *q,
1559 struct blk_mq_tag_set *set, int nr_queue)
1560 {
1561 struct blk_mq_hw_ctx *hctx;
1562 unsigned int i;
1563
1564 queue_for_each_hw_ctx(q, hctx, i) {
1565 if (i == nr_queue)
1566 break;
1567 blk_mq_exit_hctx(q, set, hctx, i);
1568 }
1569 }
1570
1571 static void blk_mq_free_hw_queues(struct request_queue *q,
1572 struct blk_mq_tag_set *set)
1573 {
1574 struct blk_mq_hw_ctx *hctx;
1575 unsigned int i;
1576
1577 queue_for_each_hw_ctx(q, hctx, i) {
1578 free_cpumask_var(hctx->cpumask);
1579 kfree(hctx);
1580 }
1581 }
1582
1583 static int blk_mq_init_hctx(struct request_queue *q,
1584 struct blk_mq_tag_set *set,
1585 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1586 {
1587 int node;
1588 unsigned flush_start_tag = set->queue_depth;
1589
1590 node = hctx->numa_node;
1591 if (node == NUMA_NO_NODE)
1592 node = hctx->numa_node = set->numa_node;
1593
1594 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1595 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1596 spin_lock_init(&hctx->lock);
1597 INIT_LIST_HEAD(&hctx->dispatch);
1598 hctx->queue = q;
1599 hctx->queue_num = hctx_idx;
1600 hctx->flags = set->flags;
1601 hctx->cmd_size = set->cmd_size;
1602
1603 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1604 blk_mq_hctx_notify, hctx);
1605 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1606
1607 hctx->tags = set->tags[hctx_idx];
1608
1609 /*
1610 * Allocate space for all possible cpus to avoid allocation at
1611 * runtime
1612 */
1613 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1614 GFP_KERNEL, node);
1615 if (!hctx->ctxs)
1616 goto unregister_cpu_notifier;
1617
1618 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1619 goto free_ctxs;
1620
1621 hctx->nr_ctx = 0;
1622
1623 if (set->ops->init_hctx &&
1624 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1625 goto free_bitmap;
1626
1627 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1628 if (!hctx->fq)
1629 goto exit_hctx;
1630
1631 if (set->ops->init_request &&
1632 set->ops->init_request(set->driver_data,
1633 hctx->fq->flush_rq, hctx_idx,
1634 flush_start_tag + hctx_idx, node))
1635 goto free_fq;
1636
1637 return 0;
1638
1639 free_fq:
1640 kfree(hctx->fq);
1641 exit_hctx:
1642 if (set->ops->exit_hctx)
1643 set->ops->exit_hctx(hctx, hctx_idx);
1644 free_bitmap:
1645 blk_mq_free_bitmap(&hctx->ctx_map);
1646 free_ctxs:
1647 kfree(hctx->ctxs);
1648 unregister_cpu_notifier:
1649 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1650
1651 return -1;
1652 }
1653
1654 static int blk_mq_init_hw_queues(struct request_queue *q,
1655 struct blk_mq_tag_set *set)
1656 {
1657 struct blk_mq_hw_ctx *hctx;
1658 unsigned int i;
1659
1660 /*
1661 * Initialize hardware queues
1662 */
1663 queue_for_each_hw_ctx(q, hctx, i) {
1664 if (blk_mq_init_hctx(q, set, hctx, i))
1665 break;
1666 }
1667
1668 if (i == q->nr_hw_queues)
1669 return 0;
1670
1671 /*
1672 * Init failed
1673 */
1674 blk_mq_exit_hw_queues(q, set, i);
1675
1676 return 1;
1677 }
1678
1679 static void blk_mq_init_cpu_queues(struct request_queue *q,
1680 unsigned int nr_hw_queues)
1681 {
1682 unsigned int i;
1683
1684 for_each_possible_cpu(i) {
1685 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1686 struct blk_mq_hw_ctx *hctx;
1687
1688 memset(__ctx, 0, sizeof(*__ctx));
1689 __ctx->cpu = i;
1690 spin_lock_init(&__ctx->lock);
1691 INIT_LIST_HEAD(&__ctx->rq_list);
1692 __ctx->queue = q;
1693
1694 /* If the cpu isn't online, the cpu is mapped to first hctx */
1695 if (!cpu_online(i))
1696 continue;
1697
1698 hctx = q->mq_ops->map_queue(q, i);
1699 cpumask_set_cpu(i, hctx->cpumask);
1700 hctx->nr_ctx++;
1701
1702 /*
1703 * Set local node, IFF we have more than one hw queue. If
1704 * not, we remain on the home node of the device
1705 */
1706 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1707 hctx->numa_node = cpu_to_node(i);
1708 }
1709 }
1710
1711 static void blk_mq_map_swqueue(struct request_queue *q)
1712 {
1713 unsigned int i;
1714 struct blk_mq_hw_ctx *hctx;
1715 struct blk_mq_ctx *ctx;
1716
1717 queue_for_each_hw_ctx(q, hctx, i) {
1718 cpumask_clear(hctx->cpumask);
1719 hctx->nr_ctx = 0;
1720 }
1721
1722 /*
1723 * Map software to hardware queues
1724 */
1725 queue_for_each_ctx(q, ctx, i) {
1726 /* If the cpu isn't online, the cpu is mapped to first hctx */
1727 if (!cpu_online(i))
1728 continue;
1729
1730 hctx = q->mq_ops->map_queue(q, i);
1731 cpumask_set_cpu(i, hctx->cpumask);
1732 ctx->index_hw = hctx->nr_ctx;
1733 hctx->ctxs[hctx->nr_ctx++] = ctx;
1734 }
1735
1736 queue_for_each_hw_ctx(q, hctx, i) {
1737 /*
1738 * If no software queues are mapped to this hardware queue,
1739 * disable it and free the request entries.
1740 */
1741 if (!hctx->nr_ctx) {
1742 struct blk_mq_tag_set *set = q->tag_set;
1743
1744 if (set->tags[i]) {
1745 blk_mq_free_rq_map(set, set->tags[i], i);
1746 set->tags[i] = NULL;
1747 hctx->tags = NULL;
1748 }
1749 continue;
1750 }
1751
1752 /*
1753 * Initialize batch roundrobin counts
1754 */
1755 hctx->next_cpu = cpumask_first(hctx->cpumask);
1756 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1757 }
1758 }
1759
1760 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1761 {
1762 struct blk_mq_hw_ctx *hctx;
1763 struct request_queue *q;
1764 bool shared;
1765 int i;
1766
1767 if (set->tag_list.next == set->tag_list.prev)
1768 shared = false;
1769 else
1770 shared = true;
1771
1772 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1773 blk_mq_freeze_queue(q);
1774
1775 queue_for_each_hw_ctx(q, hctx, i) {
1776 if (shared)
1777 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1778 else
1779 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1780 }
1781 blk_mq_unfreeze_queue(q);
1782 }
1783 }
1784
1785 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1786 {
1787 struct blk_mq_tag_set *set = q->tag_set;
1788
1789 mutex_lock(&set->tag_list_lock);
1790 list_del_init(&q->tag_set_list);
1791 blk_mq_update_tag_set_depth(set);
1792 mutex_unlock(&set->tag_list_lock);
1793 }
1794
1795 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1796 struct request_queue *q)
1797 {
1798 q->tag_set = set;
1799
1800 mutex_lock(&set->tag_list_lock);
1801 list_add_tail(&q->tag_set_list, &set->tag_list);
1802 blk_mq_update_tag_set_depth(set);
1803 mutex_unlock(&set->tag_list_lock);
1804 }
1805
1806 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1807 {
1808 struct blk_mq_hw_ctx **hctxs;
1809 struct blk_mq_ctx __percpu *ctx;
1810 struct request_queue *q;
1811 unsigned int *map;
1812 int i;
1813
1814 ctx = alloc_percpu(struct blk_mq_ctx);
1815 if (!ctx)
1816 return ERR_PTR(-ENOMEM);
1817
1818 /*
1819 * If a crashdump is active, then we are potentially in a very
1820 * memory constrained environment. Limit us to 1 queue and
1821 * 64 tags to prevent using too much memory.
1822 */
1823 if (is_kdump_kernel()) {
1824 set->nr_hw_queues = 1;
1825 set->queue_depth = min(64U, set->queue_depth);
1826 }
1827
1828 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1829 set->numa_node);
1830
1831 if (!hctxs)
1832 goto err_percpu;
1833
1834 map = blk_mq_make_queue_map(set);
1835 if (!map)
1836 goto err_map;
1837
1838 for (i = 0; i < set->nr_hw_queues; i++) {
1839 int node = blk_mq_hw_queue_to_node(map, i);
1840
1841 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1842 GFP_KERNEL, node);
1843 if (!hctxs[i])
1844 goto err_hctxs;
1845
1846 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1847 node))
1848 goto err_hctxs;
1849
1850 atomic_set(&hctxs[i]->nr_active, 0);
1851 hctxs[i]->numa_node = node;
1852 hctxs[i]->queue_num = i;
1853 }
1854
1855 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1856 if (!q)
1857 goto err_hctxs;
1858
1859 /*
1860 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1861 * See blk_register_queue() for details.
1862 */
1863 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
1864 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1865 goto err_map;
1866
1867 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1868 blk_queue_rq_timeout(q, 30000);
1869
1870 q->nr_queues = nr_cpu_ids;
1871 q->nr_hw_queues = set->nr_hw_queues;
1872 q->mq_map = map;
1873
1874 q->queue_ctx = ctx;
1875 q->queue_hw_ctx = hctxs;
1876
1877 q->mq_ops = set->ops;
1878 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1879
1880 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1881 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1882
1883 q->sg_reserved_size = INT_MAX;
1884
1885 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1886 INIT_LIST_HEAD(&q->requeue_list);
1887 spin_lock_init(&q->requeue_lock);
1888
1889 if (q->nr_hw_queues > 1)
1890 blk_queue_make_request(q, blk_mq_make_request);
1891 else
1892 blk_queue_make_request(q, blk_sq_make_request);
1893
1894 if (set->timeout)
1895 blk_queue_rq_timeout(q, set->timeout);
1896
1897 /*
1898 * Do this after blk_queue_make_request() overrides it...
1899 */
1900 q->nr_requests = set->queue_depth;
1901
1902 if (set->ops->complete)
1903 blk_queue_softirq_done(q, set->ops->complete);
1904
1905 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1906
1907 if (blk_mq_init_hw_queues(q, set))
1908 goto err_hw;
1909
1910 mutex_lock(&all_q_mutex);
1911 list_add_tail(&q->all_q_node, &all_q_list);
1912 mutex_unlock(&all_q_mutex);
1913
1914 blk_mq_add_queue_tag_set(set, q);
1915
1916 blk_mq_map_swqueue(q);
1917
1918 return q;
1919
1920 err_hw:
1921 blk_cleanup_queue(q);
1922 err_hctxs:
1923 kfree(map);
1924 for (i = 0; i < set->nr_hw_queues; i++) {
1925 if (!hctxs[i])
1926 break;
1927 free_cpumask_var(hctxs[i]->cpumask);
1928 kfree(hctxs[i]);
1929 }
1930 err_map:
1931 kfree(hctxs);
1932 err_percpu:
1933 free_percpu(ctx);
1934 return ERR_PTR(-ENOMEM);
1935 }
1936 EXPORT_SYMBOL(blk_mq_init_queue);
1937
1938 void blk_mq_free_queue(struct request_queue *q)
1939 {
1940 struct blk_mq_tag_set *set = q->tag_set;
1941
1942 blk_mq_del_queue_tag_set(q);
1943
1944 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1945 blk_mq_free_hw_queues(q, set);
1946
1947 percpu_ref_exit(&q->mq_usage_counter);
1948
1949 free_percpu(q->queue_ctx);
1950 kfree(q->queue_hw_ctx);
1951 kfree(q->mq_map);
1952
1953 q->queue_ctx = NULL;
1954 q->queue_hw_ctx = NULL;
1955 q->mq_map = NULL;
1956
1957 mutex_lock(&all_q_mutex);
1958 list_del_init(&q->all_q_node);
1959 mutex_unlock(&all_q_mutex);
1960 }
1961
1962 /* Basically redo blk_mq_init_queue with queue frozen */
1963 static void blk_mq_queue_reinit(struct request_queue *q)
1964 {
1965 blk_mq_freeze_queue(q);
1966
1967 blk_mq_sysfs_unregister(q);
1968
1969 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1970
1971 /*
1972 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1973 * we should change hctx numa_node according to new topology (this
1974 * involves free and re-allocate memory, worthy doing?)
1975 */
1976
1977 blk_mq_map_swqueue(q);
1978
1979 blk_mq_sysfs_register(q);
1980
1981 blk_mq_unfreeze_queue(q);
1982 }
1983
1984 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1985 unsigned long action, void *hcpu)
1986 {
1987 struct request_queue *q;
1988
1989 /*
1990 * Before new mappings are established, hotadded cpu might already
1991 * start handling requests. This doesn't break anything as we map
1992 * offline CPUs to first hardware queue. We will re-init the queue
1993 * below to get optimal settings.
1994 */
1995 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1996 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1997 return NOTIFY_OK;
1998
1999 mutex_lock(&all_q_mutex);
2000 list_for_each_entry(q, &all_q_list, all_q_node)
2001 blk_mq_queue_reinit(q);
2002 mutex_unlock(&all_q_mutex);
2003 return NOTIFY_OK;
2004 }
2005
2006 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2007 {
2008 int i;
2009
2010 for (i = 0; i < set->nr_hw_queues; i++) {
2011 set->tags[i] = blk_mq_init_rq_map(set, i);
2012 if (!set->tags[i])
2013 goto out_unwind;
2014 }
2015
2016 return 0;
2017
2018 out_unwind:
2019 while (--i >= 0)
2020 blk_mq_free_rq_map(set, set->tags[i], i);
2021
2022 return -ENOMEM;
2023 }
2024
2025 /*
2026 * Allocate the request maps associated with this tag_set. Note that this
2027 * may reduce the depth asked for, if memory is tight. set->queue_depth
2028 * will be updated to reflect the allocated depth.
2029 */
2030 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2031 {
2032 unsigned int depth;
2033 int err;
2034
2035 depth = set->queue_depth;
2036 do {
2037 err = __blk_mq_alloc_rq_maps(set);
2038 if (!err)
2039 break;
2040
2041 set->queue_depth >>= 1;
2042 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2043 err = -ENOMEM;
2044 break;
2045 }
2046 } while (set->queue_depth);
2047
2048 if (!set->queue_depth || err) {
2049 pr_err("blk-mq: failed to allocate request map\n");
2050 return -ENOMEM;
2051 }
2052
2053 if (depth != set->queue_depth)
2054 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2055 depth, set->queue_depth);
2056
2057 return 0;
2058 }
2059
2060 /*
2061 * Alloc a tag set to be associated with one or more request queues.
2062 * May fail with EINVAL for various error conditions. May adjust the
2063 * requested depth down, if if it too large. In that case, the set
2064 * value will be stored in set->queue_depth.
2065 */
2066 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2067 {
2068 if (!set->nr_hw_queues)
2069 return -EINVAL;
2070 if (!set->queue_depth)
2071 return -EINVAL;
2072 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2073 return -EINVAL;
2074
2075 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
2076 return -EINVAL;
2077
2078 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2079 pr_info("blk-mq: reduced tag depth to %u\n",
2080 BLK_MQ_MAX_DEPTH);
2081 set->queue_depth = BLK_MQ_MAX_DEPTH;
2082 }
2083
2084 set->tags = kmalloc_node(set->nr_hw_queues *
2085 sizeof(struct blk_mq_tags *),
2086 GFP_KERNEL, set->numa_node);
2087 if (!set->tags)
2088 return -ENOMEM;
2089
2090 if (blk_mq_alloc_rq_maps(set))
2091 goto enomem;
2092
2093 mutex_init(&set->tag_list_lock);
2094 INIT_LIST_HEAD(&set->tag_list);
2095
2096 return 0;
2097 enomem:
2098 kfree(set->tags);
2099 set->tags = NULL;
2100 return -ENOMEM;
2101 }
2102 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2103
2104 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2105 {
2106 int i;
2107
2108 for (i = 0; i < set->nr_hw_queues; i++) {
2109 if (set->tags[i])
2110 blk_mq_free_rq_map(set, set->tags[i], i);
2111 }
2112
2113 kfree(set->tags);
2114 set->tags = NULL;
2115 }
2116 EXPORT_SYMBOL(blk_mq_free_tag_set);
2117
2118 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2119 {
2120 struct blk_mq_tag_set *set = q->tag_set;
2121 struct blk_mq_hw_ctx *hctx;
2122 int i, ret;
2123
2124 if (!set || nr > set->queue_depth)
2125 return -EINVAL;
2126
2127 ret = 0;
2128 queue_for_each_hw_ctx(q, hctx, i) {
2129 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2130 if (ret)
2131 break;
2132 }
2133
2134 if (!ret)
2135 q->nr_requests = nr;
2136
2137 return ret;
2138 }
2139
2140 void blk_mq_disable_hotplug(void)
2141 {
2142 mutex_lock(&all_q_mutex);
2143 }
2144
2145 void blk_mq_enable_hotplug(void)
2146 {
2147 mutex_unlock(&all_q_mutex);
2148 }
2149
2150 static int __init blk_mq_init(void)
2151 {
2152 blk_mq_cpu_init();
2153
2154 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2155
2156 return 0;
2157 }
2158 subsys_initcall(blk_mq_init);
This page took 0.080118 seconds and 5 git commands to generate.