Merge tag 'platform-drivers-x86-v3.17-1' of git://git.infradead.org/users/dvhart...
[deliverable/linux.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23
24 #include <trace/events/block.h>
25
26 #include <linux/blk-mq.h>
27 #include "blk.h"
28 #include "blk-mq.h"
29 #include "blk-mq-tag.h"
30
31 static DEFINE_MUTEX(all_q_mutex);
32 static LIST_HEAD(all_q_list);
33
34 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
35
36 /*
37 * Check if any of the ctx's have pending work in this hardware queue
38 */
39 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
40 {
41 unsigned int i;
42
43 for (i = 0; i < hctx->ctx_map.map_size; i++)
44 if (hctx->ctx_map.map[i].word)
45 return true;
46
47 return false;
48 }
49
50 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
51 struct blk_mq_ctx *ctx)
52 {
53 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
54 }
55
56 #define CTX_TO_BIT(hctx, ctx) \
57 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
58
59 /*
60 * Mark this ctx as having pending work in this hardware queue
61 */
62 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
63 struct blk_mq_ctx *ctx)
64 {
65 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
66
67 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
68 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
69 }
70
71 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
72 struct blk_mq_ctx *ctx)
73 {
74 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
75
76 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
77 }
78
79 static int blk_mq_queue_enter(struct request_queue *q)
80 {
81 while (true) {
82 int ret;
83
84 if (percpu_ref_tryget_live(&q->mq_usage_counter))
85 return 0;
86
87 ret = wait_event_interruptible(q->mq_freeze_wq,
88 !q->mq_freeze_depth || blk_queue_dying(q));
89 if (blk_queue_dying(q))
90 return -ENODEV;
91 if (ret)
92 return ret;
93 }
94 }
95
96 static void blk_mq_queue_exit(struct request_queue *q)
97 {
98 percpu_ref_put(&q->mq_usage_counter);
99 }
100
101 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
102 {
103 struct request_queue *q =
104 container_of(ref, struct request_queue, mq_usage_counter);
105
106 wake_up_all(&q->mq_freeze_wq);
107 }
108
109 /*
110 * Guarantee no request is in use, so we can change any data structure of
111 * the queue afterward.
112 */
113 void blk_mq_freeze_queue(struct request_queue *q)
114 {
115 bool freeze;
116
117 spin_lock_irq(q->queue_lock);
118 freeze = !q->mq_freeze_depth++;
119 spin_unlock_irq(q->queue_lock);
120
121 if (freeze) {
122 percpu_ref_kill(&q->mq_usage_counter);
123 blk_mq_run_queues(q, false);
124 }
125 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
126 }
127
128 static void blk_mq_unfreeze_queue(struct request_queue *q)
129 {
130 bool wake;
131
132 spin_lock_irq(q->queue_lock);
133 wake = !--q->mq_freeze_depth;
134 WARN_ON_ONCE(q->mq_freeze_depth < 0);
135 spin_unlock_irq(q->queue_lock);
136 if (wake) {
137 percpu_ref_reinit(&q->mq_usage_counter);
138 wake_up_all(&q->mq_freeze_wq);
139 }
140 }
141
142 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
143 {
144 return blk_mq_has_free_tags(hctx->tags);
145 }
146 EXPORT_SYMBOL(blk_mq_can_queue);
147
148 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
149 struct request *rq, unsigned int rw_flags)
150 {
151 if (blk_queue_io_stat(q))
152 rw_flags |= REQ_IO_STAT;
153
154 INIT_LIST_HEAD(&rq->queuelist);
155 /* csd/requeue_work/fifo_time is initialized before use */
156 rq->q = q;
157 rq->mq_ctx = ctx;
158 rq->cmd_flags |= rw_flags;
159 /* do not touch atomic flags, it needs atomic ops against the timer */
160 rq->cpu = -1;
161 INIT_HLIST_NODE(&rq->hash);
162 RB_CLEAR_NODE(&rq->rb_node);
163 rq->rq_disk = NULL;
164 rq->part = NULL;
165 rq->start_time = jiffies;
166 #ifdef CONFIG_BLK_CGROUP
167 rq->rl = NULL;
168 set_start_time_ns(rq);
169 rq->io_start_time_ns = 0;
170 #endif
171 rq->nr_phys_segments = 0;
172 #if defined(CONFIG_BLK_DEV_INTEGRITY)
173 rq->nr_integrity_segments = 0;
174 #endif
175 rq->special = NULL;
176 /* tag was already set */
177 rq->errors = 0;
178
179 rq->cmd = rq->__cmd;
180
181 rq->extra_len = 0;
182 rq->sense_len = 0;
183 rq->resid_len = 0;
184 rq->sense = NULL;
185
186 INIT_LIST_HEAD(&rq->timeout_list);
187 rq->timeout = 0;
188
189 rq->end_io = NULL;
190 rq->end_io_data = NULL;
191 rq->next_rq = NULL;
192
193 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
194 }
195
196 static struct request *
197 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
198 {
199 struct request *rq;
200 unsigned int tag;
201
202 tag = blk_mq_get_tag(data);
203 if (tag != BLK_MQ_TAG_FAIL) {
204 rq = data->hctx->tags->rqs[tag];
205
206 rq->cmd_flags = 0;
207 if (blk_mq_tag_busy(data->hctx)) {
208 rq->cmd_flags = REQ_MQ_INFLIGHT;
209 atomic_inc(&data->hctx->nr_active);
210 }
211
212 rq->tag = tag;
213 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
214 return rq;
215 }
216
217 return NULL;
218 }
219
220 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
221 bool reserved)
222 {
223 struct blk_mq_ctx *ctx;
224 struct blk_mq_hw_ctx *hctx;
225 struct request *rq;
226 struct blk_mq_alloc_data alloc_data;
227
228 if (blk_mq_queue_enter(q))
229 return NULL;
230
231 ctx = blk_mq_get_ctx(q);
232 hctx = q->mq_ops->map_queue(q, ctx->cpu);
233 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
234 reserved, ctx, hctx);
235
236 rq = __blk_mq_alloc_request(&alloc_data, rw);
237 if (!rq && (gfp & __GFP_WAIT)) {
238 __blk_mq_run_hw_queue(hctx);
239 blk_mq_put_ctx(ctx);
240
241 ctx = blk_mq_get_ctx(q);
242 hctx = q->mq_ops->map_queue(q, ctx->cpu);
243 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
244 hctx);
245 rq = __blk_mq_alloc_request(&alloc_data, rw);
246 ctx = alloc_data.ctx;
247 }
248 blk_mq_put_ctx(ctx);
249 return rq;
250 }
251 EXPORT_SYMBOL(blk_mq_alloc_request);
252
253 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
254 struct blk_mq_ctx *ctx, struct request *rq)
255 {
256 const int tag = rq->tag;
257 struct request_queue *q = rq->q;
258
259 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
260 atomic_dec(&hctx->nr_active);
261
262 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
263 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
264 blk_mq_queue_exit(q);
265 }
266
267 void blk_mq_free_request(struct request *rq)
268 {
269 struct blk_mq_ctx *ctx = rq->mq_ctx;
270 struct blk_mq_hw_ctx *hctx;
271 struct request_queue *q = rq->q;
272
273 ctx->rq_completed[rq_is_sync(rq)]++;
274
275 hctx = q->mq_ops->map_queue(q, ctx->cpu);
276 __blk_mq_free_request(hctx, ctx, rq);
277 }
278
279 /*
280 * Clone all relevant state from a request that has been put on hold in
281 * the flush state machine into the preallocated flush request that hangs
282 * off the request queue.
283 *
284 * For a driver the flush request should be invisible, that's why we are
285 * impersonating the original request here.
286 */
287 void blk_mq_clone_flush_request(struct request *flush_rq,
288 struct request *orig_rq)
289 {
290 struct blk_mq_hw_ctx *hctx =
291 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
292
293 flush_rq->mq_ctx = orig_rq->mq_ctx;
294 flush_rq->tag = orig_rq->tag;
295 memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
296 hctx->cmd_size);
297 }
298
299 inline void __blk_mq_end_io(struct request *rq, int error)
300 {
301 blk_account_io_done(rq);
302
303 if (rq->end_io) {
304 rq->end_io(rq, error);
305 } else {
306 if (unlikely(blk_bidi_rq(rq)))
307 blk_mq_free_request(rq->next_rq);
308 blk_mq_free_request(rq);
309 }
310 }
311 EXPORT_SYMBOL(__blk_mq_end_io);
312
313 void blk_mq_end_io(struct request *rq, int error)
314 {
315 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
316 BUG();
317 __blk_mq_end_io(rq, error);
318 }
319 EXPORT_SYMBOL(blk_mq_end_io);
320
321 static void __blk_mq_complete_request_remote(void *data)
322 {
323 struct request *rq = data;
324
325 rq->q->softirq_done_fn(rq);
326 }
327
328 static void blk_mq_ipi_complete_request(struct request *rq)
329 {
330 struct blk_mq_ctx *ctx = rq->mq_ctx;
331 bool shared = false;
332 int cpu;
333
334 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
335 rq->q->softirq_done_fn(rq);
336 return;
337 }
338
339 cpu = get_cpu();
340 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
341 shared = cpus_share_cache(cpu, ctx->cpu);
342
343 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
344 rq->csd.func = __blk_mq_complete_request_remote;
345 rq->csd.info = rq;
346 rq->csd.flags = 0;
347 smp_call_function_single_async(ctx->cpu, &rq->csd);
348 } else {
349 rq->q->softirq_done_fn(rq);
350 }
351 put_cpu();
352 }
353
354 void __blk_mq_complete_request(struct request *rq)
355 {
356 struct request_queue *q = rq->q;
357
358 if (!q->softirq_done_fn)
359 blk_mq_end_io(rq, rq->errors);
360 else
361 blk_mq_ipi_complete_request(rq);
362 }
363
364 /**
365 * blk_mq_complete_request - end I/O on a request
366 * @rq: the request being processed
367 *
368 * Description:
369 * Ends all I/O on a request. It does not handle partial completions.
370 * The actual completion happens out-of-order, through a IPI handler.
371 **/
372 void blk_mq_complete_request(struct request *rq)
373 {
374 struct request_queue *q = rq->q;
375
376 if (unlikely(blk_should_fake_timeout(q)))
377 return;
378 if (!blk_mark_rq_complete(rq))
379 __blk_mq_complete_request(rq);
380 }
381 EXPORT_SYMBOL(blk_mq_complete_request);
382
383 static void blk_mq_start_request(struct request *rq, bool last)
384 {
385 struct request_queue *q = rq->q;
386
387 trace_block_rq_issue(q, rq);
388
389 rq->resid_len = blk_rq_bytes(rq);
390 if (unlikely(blk_bidi_rq(rq)))
391 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
392
393 blk_add_timer(rq);
394
395 /*
396 * Mark us as started and clear complete. Complete might have been
397 * set if requeue raced with timeout, which then marked it as
398 * complete. So be sure to clear complete again when we start
399 * the request, otherwise we'll ignore the completion event.
400 */
401 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
402 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
403 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
404 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
405
406 if (q->dma_drain_size && blk_rq_bytes(rq)) {
407 /*
408 * Make sure space for the drain appears. We know we can do
409 * this because max_hw_segments has been adjusted to be one
410 * fewer than the device can handle.
411 */
412 rq->nr_phys_segments++;
413 }
414
415 /*
416 * Flag the last request in the series so that drivers know when IO
417 * should be kicked off, if they don't do it on a per-request basis.
418 *
419 * Note: the flag isn't the only condition drivers should do kick off.
420 * If drive is busy, the last request might not have the bit set.
421 */
422 if (last)
423 rq->cmd_flags |= REQ_END;
424 }
425
426 static void __blk_mq_requeue_request(struct request *rq)
427 {
428 struct request_queue *q = rq->q;
429
430 trace_block_rq_requeue(q, rq);
431 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
432
433 rq->cmd_flags &= ~REQ_END;
434
435 if (q->dma_drain_size && blk_rq_bytes(rq))
436 rq->nr_phys_segments--;
437 }
438
439 void blk_mq_requeue_request(struct request *rq)
440 {
441 __blk_mq_requeue_request(rq);
442 blk_clear_rq_complete(rq);
443
444 BUG_ON(blk_queued_rq(rq));
445 blk_mq_add_to_requeue_list(rq, true);
446 }
447 EXPORT_SYMBOL(blk_mq_requeue_request);
448
449 static void blk_mq_requeue_work(struct work_struct *work)
450 {
451 struct request_queue *q =
452 container_of(work, struct request_queue, requeue_work);
453 LIST_HEAD(rq_list);
454 struct request *rq, *next;
455 unsigned long flags;
456
457 spin_lock_irqsave(&q->requeue_lock, flags);
458 list_splice_init(&q->requeue_list, &rq_list);
459 spin_unlock_irqrestore(&q->requeue_lock, flags);
460
461 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
462 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
463 continue;
464
465 rq->cmd_flags &= ~REQ_SOFTBARRIER;
466 list_del_init(&rq->queuelist);
467 blk_mq_insert_request(rq, true, false, false);
468 }
469
470 while (!list_empty(&rq_list)) {
471 rq = list_entry(rq_list.next, struct request, queuelist);
472 list_del_init(&rq->queuelist);
473 blk_mq_insert_request(rq, false, false, false);
474 }
475
476 blk_mq_run_queues(q, false);
477 }
478
479 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
480 {
481 struct request_queue *q = rq->q;
482 unsigned long flags;
483
484 /*
485 * We abuse this flag that is otherwise used by the I/O scheduler to
486 * request head insertation from the workqueue.
487 */
488 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
489
490 spin_lock_irqsave(&q->requeue_lock, flags);
491 if (at_head) {
492 rq->cmd_flags |= REQ_SOFTBARRIER;
493 list_add(&rq->queuelist, &q->requeue_list);
494 } else {
495 list_add_tail(&rq->queuelist, &q->requeue_list);
496 }
497 spin_unlock_irqrestore(&q->requeue_lock, flags);
498 }
499 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
500
501 void blk_mq_kick_requeue_list(struct request_queue *q)
502 {
503 kblockd_schedule_work(&q->requeue_work);
504 }
505 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
506
507 static inline bool is_flush_request(struct request *rq, unsigned int tag)
508 {
509 return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
510 rq->q->flush_rq->tag == tag);
511 }
512
513 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
514 {
515 struct request *rq = tags->rqs[tag];
516
517 if (!is_flush_request(rq, tag))
518 return rq;
519
520 return rq->q->flush_rq;
521 }
522 EXPORT_SYMBOL(blk_mq_tag_to_rq);
523
524 struct blk_mq_timeout_data {
525 struct blk_mq_hw_ctx *hctx;
526 unsigned long *next;
527 unsigned int *next_set;
528 };
529
530 static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
531 {
532 struct blk_mq_timeout_data *data = __data;
533 struct blk_mq_hw_ctx *hctx = data->hctx;
534 unsigned int tag;
535
536 /* It may not be in flight yet (this is where
537 * the REQ_ATOMIC_STARTED flag comes in). The requests are
538 * statically allocated, so we know it's always safe to access the
539 * memory associated with a bit offset into ->rqs[].
540 */
541 tag = 0;
542 do {
543 struct request *rq;
544
545 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
546 if (tag >= hctx->tags->nr_tags)
547 break;
548
549 rq = blk_mq_tag_to_rq(hctx->tags, tag++);
550 if (rq->q != hctx->queue)
551 continue;
552 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
553 continue;
554
555 blk_rq_check_expired(rq, data->next, data->next_set);
556 } while (1);
557 }
558
559 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
560 unsigned long *next,
561 unsigned int *next_set)
562 {
563 struct blk_mq_timeout_data data = {
564 .hctx = hctx,
565 .next = next,
566 .next_set = next_set,
567 };
568
569 /*
570 * Ask the tagging code to iterate busy requests, so we can
571 * check them for timeout.
572 */
573 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
574 }
575
576 static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
577 {
578 struct request_queue *q = rq->q;
579
580 /*
581 * We know that complete is set at this point. If STARTED isn't set
582 * anymore, then the request isn't active and the "timeout" should
583 * just be ignored. This can happen due to the bitflag ordering.
584 * Timeout first checks if STARTED is set, and if it is, assumes
585 * the request is active. But if we race with completion, then
586 * we both flags will get cleared. So check here again, and ignore
587 * a timeout event with a request that isn't active.
588 */
589 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
590 return BLK_EH_NOT_HANDLED;
591
592 if (!q->mq_ops->timeout)
593 return BLK_EH_RESET_TIMER;
594
595 return q->mq_ops->timeout(rq);
596 }
597
598 static void blk_mq_rq_timer(unsigned long data)
599 {
600 struct request_queue *q = (struct request_queue *) data;
601 struct blk_mq_hw_ctx *hctx;
602 unsigned long next = 0;
603 int i, next_set = 0;
604
605 queue_for_each_hw_ctx(q, hctx, i) {
606 /*
607 * If not software queues are currently mapped to this
608 * hardware queue, there's nothing to check
609 */
610 if (!hctx->nr_ctx || !hctx->tags)
611 continue;
612
613 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
614 }
615
616 if (next_set) {
617 next = blk_rq_timeout(round_jiffies_up(next));
618 mod_timer(&q->timeout, next);
619 } else {
620 queue_for_each_hw_ctx(q, hctx, i)
621 blk_mq_tag_idle(hctx);
622 }
623 }
624
625 /*
626 * Reverse check our software queue for entries that we could potentially
627 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
628 * too much time checking for merges.
629 */
630 static bool blk_mq_attempt_merge(struct request_queue *q,
631 struct blk_mq_ctx *ctx, struct bio *bio)
632 {
633 struct request *rq;
634 int checked = 8;
635
636 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
637 int el_ret;
638
639 if (!checked--)
640 break;
641
642 if (!blk_rq_merge_ok(rq, bio))
643 continue;
644
645 el_ret = blk_try_merge(rq, bio);
646 if (el_ret == ELEVATOR_BACK_MERGE) {
647 if (bio_attempt_back_merge(q, rq, bio)) {
648 ctx->rq_merged++;
649 return true;
650 }
651 break;
652 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
653 if (bio_attempt_front_merge(q, rq, bio)) {
654 ctx->rq_merged++;
655 return true;
656 }
657 break;
658 }
659 }
660
661 return false;
662 }
663
664 /*
665 * Process software queues that have been marked busy, splicing them
666 * to the for-dispatch
667 */
668 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
669 {
670 struct blk_mq_ctx *ctx;
671 int i;
672
673 for (i = 0; i < hctx->ctx_map.map_size; i++) {
674 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
675 unsigned int off, bit;
676
677 if (!bm->word)
678 continue;
679
680 bit = 0;
681 off = i * hctx->ctx_map.bits_per_word;
682 do {
683 bit = find_next_bit(&bm->word, bm->depth, bit);
684 if (bit >= bm->depth)
685 break;
686
687 ctx = hctx->ctxs[bit + off];
688 clear_bit(bit, &bm->word);
689 spin_lock(&ctx->lock);
690 list_splice_tail_init(&ctx->rq_list, list);
691 spin_unlock(&ctx->lock);
692
693 bit++;
694 } while (1);
695 }
696 }
697
698 /*
699 * Run this hardware queue, pulling any software queues mapped to it in.
700 * Note that this function currently has various problems around ordering
701 * of IO. In particular, we'd like FIFO behaviour on handling existing
702 * items on the hctx->dispatch list. Ignore that for now.
703 */
704 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
705 {
706 struct request_queue *q = hctx->queue;
707 struct request *rq;
708 LIST_HEAD(rq_list);
709 int queued;
710
711 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
712
713 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
714 return;
715
716 hctx->run++;
717
718 /*
719 * Touch any software queue that has pending entries.
720 */
721 flush_busy_ctxs(hctx, &rq_list);
722
723 /*
724 * If we have previous entries on our dispatch list, grab them
725 * and stuff them at the front for more fair dispatch.
726 */
727 if (!list_empty_careful(&hctx->dispatch)) {
728 spin_lock(&hctx->lock);
729 if (!list_empty(&hctx->dispatch))
730 list_splice_init(&hctx->dispatch, &rq_list);
731 spin_unlock(&hctx->lock);
732 }
733
734 /*
735 * Now process all the entries, sending them to the driver.
736 */
737 queued = 0;
738 while (!list_empty(&rq_list)) {
739 int ret;
740
741 rq = list_first_entry(&rq_list, struct request, queuelist);
742 list_del_init(&rq->queuelist);
743
744 blk_mq_start_request(rq, list_empty(&rq_list));
745
746 ret = q->mq_ops->queue_rq(hctx, rq);
747 switch (ret) {
748 case BLK_MQ_RQ_QUEUE_OK:
749 queued++;
750 continue;
751 case BLK_MQ_RQ_QUEUE_BUSY:
752 list_add(&rq->queuelist, &rq_list);
753 __blk_mq_requeue_request(rq);
754 break;
755 default:
756 pr_err("blk-mq: bad return on queue: %d\n", ret);
757 case BLK_MQ_RQ_QUEUE_ERROR:
758 rq->errors = -EIO;
759 blk_mq_end_io(rq, rq->errors);
760 break;
761 }
762
763 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
764 break;
765 }
766
767 if (!queued)
768 hctx->dispatched[0]++;
769 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
770 hctx->dispatched[ilog2(queued) + 1]++;
771
772 /*
773 * Any items that need requeuing? Stuff them into hctx->dispatch,
774 * that is where we will continue on next queue run.
775 */
776 if (!list_empty(&rq_list)) {
777 spin_lock(&hctx->lock);
778 list_splice(&rq_list, &hctx->dispatch);
779 spin_unlock(&hctx->lock);
780 }
781 }
782
783 /*
784 * It'd be great if the workqueue API had a way to pass
785 * in a mask and had some smarts for more clever placement.
786 * For now we just round-robin here, switching for every
787 * BLK_MQ_CPU_WORK_BATCH queued items.
788 */
789 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
790 {
791 int cpu = hctx->next_cpu;
792
793 if (--hctx->next_cpu_batch <= 0) {
794 int next_cpu;
795
796 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
797 if (next_cpu >= nr_cpu_ids)
798 next_cpu = cpumask_first(hctx->cpumask);
799
800 hctx->next_cpu = next_cpu;
801 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
802 }
803
804 return cpu;
805 }
806
807 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
808 {
809 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
810 return;
811
812 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
813 __blk_mq_run_hw_queue(hctx);
814 else if (hctx->queue->nr_hw_queues == 1)
815 kblockd_schedule_delayed_work(&hctx->run_work, 0);
816 else {
817 unsigned int cpu;
818
819 cpu = blk_mq_hctx_next_cpu(hctx);
820 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
821 }
822 }
823
824 void blk_mq_run_queues(struct request_queue *q, bool async)
825 {
826 struct blk_mq_hw_ctx *hctx;
827 int i;
828
829 queue_for_each_hw_ctx(q, hctx, i) {
830 if ((!blk_mq_hctx_has_pending(hctx) &&
831 list_empty_careful(&hctx->dispatch)) ||
832 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
833 continue;
834
835 preempt_disable();
836 blk_mq_run_hw_queue(hctx, async);
837 preempt_enable();
838 }
839 }
840 EXPORT_SYMBOL(blk_mq_run_queues);
841
842 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
843 {
844 cancel_delayed_work(&hctx->run_work);
845 cancel_delayed_work(&hctx->delay_work);
846 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
847 }
848 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
849
850 void blk_mq_stop_hw_queues(struct request_queue *q)
851 {
852 struct blk_mq_hw_ctx *hctx;
853 int i;
854
855 queue_for_each_hw_ctx(q, hctx, i)
856 blk_mq_stop_hw_queue(hctx);
857 }
858 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
859
860 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
861 {
862 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
863
864 preempt_disable();
865 blk_mq_run_hw_queue(hctx, false);
866 preempt_enable();
867 }
868 EXPORT_SYMBOL(blk_mq_start_hw_queue);
869
870 void blk_mq_start_hw_queues(struct request_queue *q)
871 {
872 struct blk_mq_hw_ctx *hctx;
873 int i;
874
875 queue_for_each_hw_ctx(q, hctx, i)
876 blk_mq_start_hw_queue(hctx);
877 }
878 EXPORT_SYMBOL(blk_mq_start_hw_queues);
879
880
881 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
882 {
883 struct blk_mq_hw_ctx *hctx;
884 int i;
885
886 queue_for_each_hw_ctx(q, hctx, i) {
887 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
888 continue;
889
890 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
891 preempt_disable();
892 blk_mq_run_hw_queue(hctx, async);
893 preempt_enable();
894 }
895 }
896 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
897
898 static void blk_mq_run_work_fn(struct work_struct *work)
899 {
900 struct blk_mq_hw_ctx *hctx;
901
902 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
903
904 __blk_mq_run_hw_queue(hctx);
905 }
906
907 static void blk_mq_delay_work_fn(struct work_struct *work)
908 {
909 struct blk_mq_hw_ctx *hctx;
910
911 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
912
913 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
914 __blk_mq_run_hw_queue(hctx);
915 }
916
917 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
918 {
919 unsigned long tmo = msecs_to_jiffies(msecs);
920
921 if (hctx->queue->nr_hw_queues == 1)
922 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
923 else {
924 unsigned int cpu;
925
926 cpu = blk_mq_hctx_next_cpu(hctx);
927 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
928 }
929 }
930 EXPORT_SYMBOL(blk_mq_delay_queue);
931
932 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
933 struct request *rq, bool at_head)
934 {
935 struct blk_mq_ctx *ctx = rq->mq_ctx;
936
937 trace_block_rq_insert(hctx->queue, rq);
938
939 if (at_head)
940 list_add(&rq->queuelist, &ctx->rq_list);
941 else
942 list_add_tail(&rq->queuelist, &ctx->rq_list);
943
944 blk_mq_hctx_mark_pending(hctx, ctx);
945 }
946
947 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
948 bool async)
949 {
950 struct request_queue *q = rq->q;
951 struct blk_mq_hw_ctx *hctx;
952 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
953
954 current_ctx = blk_mq_get_ctx(q);
955 if (!cpu_online(ctx->cpu))
956 rq->mq_ctx = ctx = current_ctx;
957
958 hctx = q->mq_ops->map_queue(q, ctx->cpu);
959
960 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
961 !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
962 blk_insert_flush(rq);
963 } else {
964 spin_lock(&ctx->lock);
965 __blk_mq_insert_request(hctx, rq, at_head);
966 spin_unlock(&ctx->lock);
967 }
968
969 if (run_queue)
970 blk_mq_run_hw_queue(hctx, async);
971
972 blk_mq_put_ctx(current_ctx);
973 }
974
975 static void blk_mq_insert_requests(struct request_queue *q,
976 struct blk_mq_ctx *ctx,
977 struct list_head *list,
978 int depth,
979 bool from_schedule)
980
981 {
982 struct blk_mq_hw_ctx *hctx;
983 struct blk_mq_ctx *current_ctx;
984
985 trace_block_unplug(q, depth, !from_schedule);
986
987 current_ctx = blk_mq_get_ctx(q);
988
989 if (!cpu_online(ctx->cpu))
990 ctx = current_ctx;
991 hctx = q->mq_ops->map_queue(q, ctx->cpu);
992
993 /*
994 * preemption doesn't flush plug list, so it's possible ctx->cpu is
995 * offline now
996 */
997 spin_lock(&ctx->lock);
998 while (!list_empty(list)) {
999 struct request *rq;
1000
1001 rq = list_first_entry(list, struct request, queuelist);
1002 list_del_init(&rq->queuelist);
1003 rq->mq_ctx = ctx;
1004 __blk_mq_insert_request(hctx, rq, false);
1005 }
1006 spin_unlock(&ctx->lock);
1007
1008 blk_mq_run_hw_queue(hctx, from_schedule);
1009 blk_mq_put_ctx(current_ctx);
1010 }
1011
1012 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1013 {
1014 struct request *rqa = container_of(a, struct request, queuelist);
1015 struct request *rqb = container_of(b, struct request, queuelist);
1016
1017 return !(rqa->mq_ctx < rqb->mq_ctx ||
1018 (rqa->mq_ctx == rqb->mq_ctx &&
1019 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1020 }
1021
1022 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1023 {
1024 struct blk_mq_ctx *this_ctx;
1025 struct request_queue *this_q;
1026 struct request *rq;
1027 LIST_HEAD(list);
1028 LIST_HEAD(ctx_list);
1029 unsigned int depth;
1030
1031 list_splice_init(&plug->mq_list, &list);
1032
1033 list_sort(NULL, &list, plug_ctx_cmp);
1034
1035 this_q = NULL;
1036 this_ctx = NULL;
1037 depth = 0;
1038
1039 while (!list_empty(&list)) {
1040 rq = list_entry_rq(list.next);
1041 list_del_init(&rq->queuelist);
1042 BUG_ON(!rq->q);
1043 if (rq->mq_ctx != this_ctx) {
1044 if (this_ctx) {
1045 blk_mq_insert_requests(this_q, this_ctx,
1046 &ctx_list, depth,
1047 from_schedule);
1048 }
1049
1050 this_ctx = rq->mq_ctx;
1051 this_q = rq->q;
1052 depth = 0;
1053 }
1054
1055 depth++;
1056 list_add_tail(&rq->queuelist, &ctx_list);
1057 }
1058
1059 /*
1060 * If 'this_ctx' is set, we know we have entries to complete
1061 * on 'ctx_list'. Do those.
1062 */
1063 if (this_ctx) {
1064 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1065 from_schedule);
1066 }
1067 }
1068
1069 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1070 {
1071 init_request_from_bio(rq, bio);
1072
1073 if (blk_do_io_stat(rq))
1074 blk_account_io_start(rq, 1);
1075 }
1076
1077 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1078 {
1079 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1080 !blk_queue_nomerges(hctx->queue);
1081 }
1082
1083 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1084 struct blk_mq_ctx *ctx,
1085 struct request *rq, struct bio *bio)
1086 {
1087 if (!hctx_allow_merges(hctx)) {
1088 blk_mq_bio_to_request(rq, bio);
1089 spin_lock(&ctx->lock);
1090 insert_rq:
1091 __blk_mq_insert_request(hctx, rq, false);
1092 spin_unlock(&ctx->lock);
1093 return false;
1094 } else {
1095 struct request_queue *q = hctx->queue;
1096
1097 spin_lock(&ctx->lock);
1098 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1099 blk_mq_bio_to_request(rq, bio);
1100 goto insert_rq;
1101 }
1102
1103 spin_unlock(&ctx->lock);
1104 __blk_mq_free_request(hctx, ctx, rq);
1105 return true;
1106 }
1107 }
1108
1109 struct blk_map_ctx {
1110 struct blk_mq_hw_ctx *hctx;
1111 struct blk_mq_ctx *ctx;
1112 };
1113
1114 static struct request *blk_mq_map_request(struct request_queue *q,
1115 struct bio *bio,
1116 struct blk_map_ctx *data)
1117 {
1118 struct blk_mq_hw_ctx *hctx;
1119 struct blk_mq_ctx *ctx;
1120 struct request *rq;
1121 int rw = bio_data_dir(bio);
1122 struct blk_mq_alloc_data alloc_data;
1123
1124 if (unlikely(blk_mq_queue_enter(q))) {
1125 bio_endio(bio, -EIO);
1126 return NULL;
1127 }
1128
1129 ctx = blk_mq_get_ctx(q);
1130 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1131
1132 if (rw_is_sync(bio->bi_rw))
1133 rw |= REQ_SYNC;
1134
1135 trace_block_getrq(q, bio, rw);
1136 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1137 hctx);
1138 rq = __blk_mq_alloc_request(&alloc_data, rw);
1139 if (unlikely(!rq)) {
1140 __blk_mq_run_hw_queue(hctx);
1141 blk_mq_put_ctx(ctx);
1142 trace_block_sleeprq(q, bio, rw);
1143
1144 ctx = blk_mq_get_ctx(q);
1145 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1146 blk_mq_set_alloc_data(&alloc_data, q,
1147 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1148 rq = __blk_mq_alloc_request(&alloc_data, rw);
1149 ctx = alloc_data.ctx;
1150 hctx = alloc_data.hctx;
1151 }
1152
1153 hctx->queued++;
1154 data->hctx = hctx;
1155 data->ctx = ctx;
1156 return rq;
1157 }
1158
1159 /*
1160 * Multiple hardware queue variant. This will not use per-process plugs,
1161 * but will attempt to bypass the hctx queueing if we can go straight to
1162 * hardware for SYNC IO.
1163 */
1164 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1165 {
1166 const int is_sync = rw_is_sync(bio->bi_rw);
1167 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1168 struct blk_map_ctx data;
1169 struct request *rq;
1170
1171 blk_queue_bounce(q, &bio);
1172
1173 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1174 bio_endio(bio, -EIO);
1175 return;
1176 }
1177
1178 rq = blk_mq_map_request(q, bio, &data);
1179 if (unlikely(!rq))
1180 return;
1181
1182 if (unlikely(is_flush_fua)) {
1183 blk_mq_bio_to_request(rq, bio);
1184 blk_insert_flush(rq);
1185 goto run_queue;
1186 }
1187
1188 if (is_sync) {
1189 int ret;
1190
1191 blk_mq_bio_to_request(rq, bio);
1192 blk_mq_start_request(rq, true);
1193
1194 /*
1195 * For OK queue, we are done. For error, kill it. Any other
1196 * error (busy), just add it to our list as we previously
1197 * would have done
1198 */
1199 ret = q->mq_ops->queue_rq(data.hctx, rq);
1200 if (ret == BLK_MQ_RQ_QUEUE_OK)
1201 goto done;
1202 else {
1203 __blk_mq_requeue_request(rq);
1204
1205 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1206 rq->errors = -EIO;
1207 blk_mq_end_io(rq, rq->errors);
1208 goto done;
1209 }
1210 }
1211 }
1212
1213 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1214 /*
1215 * For a SYNC request, send it to the hardware immediately. For
1216 * an ASYNC request, just ensure that we run it later on. The
1217 * latter allows for merging opportunities and more efficient
1218 * dispatching.
1219 */
1220 run_queue:
1221 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1222 }
1223 done:
1224 blk_mq_put_ctx(data.ctx);
1225 }
1226
1227 /*
1228 * Single hardware queue variant. This will attempt to use any per-process
1229 * plug for merging and IO deferral.
1230 */
1231 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1232 {
1233 const int is_sync = rw_is_sync(bio->bi_rw);
1234 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1235 unsigned int use_plug, request_count = 0;
1236 struct blk_map_ctx data;
1237 struct request *rq;
1238
1239 /*
1240 * If we have multiple hardware queues, just go directly to
1241 * one of those for sync IO.
1242 */
1243 use_plug = !is_flush_fua && !is_sync;
1244
1245 blk_queue_bounce(q, &bio);
1246
1247 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1248 bio_endio(bio, -EIO);
1249 return;
1250 }
1251
1252 if (use_plug && !blk_queue_nomerges(q) &&
1253 blk_attempt_plug_merge(q, bio, &request_count))
1254 return;
1255
1256 rq = blk_mq_map_request(q, bio, &data);
1257 if (unlikely(!rq))
1258 return;
1259
1260 if (unlikely(is_flush_fua)) {
1261 blk_mq_bio_to_request(rq, bio);
1262 blk_insert_flush(rq);
1263 goto run_queue;
1264 }
1265
1266 /*
1267 * A task plug currently exists. Since this is completely lockless,
1268 * utilize that to temporarily store requests until the task is
1269 * either done or scheduled away.
1270 */
1271 if (use_plug) {
1272 struct blk_plug *plug = current->plug;
1273
1274 if (plug) {
1275 blk_mq_bio_to_request(rq, bio);
1276 if (list_empty(&plug->mq_list))
1277 trace_block_plug(q);
1278 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1279 blk_flush_plug_list(plug, false);
1280 trace_block_plug(q);
1281 }
1282 list_add_tail(&rq->queuelist, &plug->mq_list);
1283 blk_mq_put_ctx(data.ctx);
1284 return;
1285 }
1286 }
1287
1288 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1289 /*
1290 * For a SYNC request, send it to the hardware immediately. For
1291 * an ASYNC request, just ensure that we run it later on. The
1292 * latter allows for merging opportunities and more efficient
1293 * dispatching.
1294 */
1295 run_queue:
1296 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1297 }
1298
1299 blk_mq_put_ctx(data.ctx);
1300 }
1301
1302 /*
1303 * Default mapping to a software queue, since we use one per CPU.
1304 */
1305 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1306 {
1307 return q->queue_hw_ctx[q->mq_map[cpu]];
1308 }
1309 EXPORT_SYMBOL(blk_mq_map_queue);
1310
1311 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1312 struct blk_mq_tags *tags, unsigned int hctx_idx)
1313 {
1314 struct page *page;
1315
1316 if (tags->rqs && set->ops->exit_request) {
1317 int i;
1318
1319 for (i = 0; i < tags->nr_tags; i++) {
1320 if (!tags->rqs[i])
1321 continue;
1322 set->ops->exit_request(set->driver_data, tags->rqs[i],
1323 hctx_idx, i);
1324 }
1325 }
1326
1327 while (!list_empty(&tags->page_list)) {
1328 page = list_first_entry(&tags->page_list, struct page, lru);
1329 list_del_init(&page->lru);
1330 __free_pages(page, page->private);
1331 }
1332
1333 kfree(tags->rqs);
1334
1335 blk_mq_free_tags(tags);
1336 }
1337
1338 static size_t order_to_size(unsigned int order)
1339 {
1340 return (size_t)PAGE_SIZE << order;
1341 }
1342
1343 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1344 unsigned int hctx_idx)
1345 {
1346 struct blk_mq_tags *tags;
1347 unsigned int i, j, entries_per_page, max_order = 4;
1348 size_t rq_size, left;
1349
1350 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1351 set->numa_node);
1352 if (!tags)
1353 return NULL;
1354
1355 INIT_LIST_HEAD(&tags->page_list);
1356
1357 tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *),
1358 GFP_KERNEL, set->numa_node);
1359 if (!tags->rqs) {
1360 blk_mq_free_tags(tags);
1361 return NULL;
1362 }
1363
1364 /*
1365 * rq_size is the size of the request plus driver payload, rounded
1366 * to the cacheline size
1367 */
1368 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1369 cache_line_size());
1370 left = rq_size * set->queue_depth;
1371
1372 for (i = 0; i < set->queue_depth; ) {
1373 int this_order = max_order;
1374 struct page *page;
1375 int to_do;
1376 void *p;
1377
1378 while (left < order_to_size(this_order - 1) && this_order)
1379 this_order--;
1380
1381 do {
1382 page = alloc_pages_node(set->numa_node, GFP_KERNEL,
1383 this_order);
1384 if (page)
1385 break;
1386 if (!this_order--)
1387 break;
1388 if (order_to_size(this_order) < rq_size)
1389 break;
1390 } while (1);
1391
1392 if (!page)
1393 goto fail;
1394
1395 page->private = this_order;
1396 list_add_tail(&page->lru, &tags->page_list);
1397
1398 p = page_address(page);
1399 entries_per_page = order_to_size(this_order) / rq_size;
1400 to_do = min(entries_per_page, set->queue_depth - i);
1401 left -= to_do * rq_size;
1402 for (j = 0; j < to_do; j++) {
1403 tags->rqs[i] = p;
1404 if (set->ops->init_request) {
1405 if (set->ops->init_request(set->driver_data,
1406 tags->rqs[i], hctx_idx, i,
1407 set->numa_node))
1408 goto fail;
1409 }
1410
1411 p += rq_size;
1412 i++;
1413 }
1414 }
1415
1416 return tags;
1417
1418 fail:
1419 pr_warn("%s: failed to allocate requests\n", __func__);
1420 blk_mq_free_rq_map(set, tags, hctx_idx);
1421 return NULL;
1422 }
1423
1424 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1425 {
1426 kfree(bitmap->map);
1427 }
1428
1429 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1430 {
1431 unsigned int bpw = 8, total, num_maps, i;
1432
1433 bitmap->bits_per_word = bpw;
1434
1435 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1436 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1437 GFP_KERNEL, node);
1438 if (!bitmap->map)
1439 return -ENOMEM;
1440
1441 bitmap->map_size = num_maps;
1442
1443 total = nr_cpu_ids;
1444 for (i = 0; i < num_maps; i++) {
1445 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1446 total -= bitmap->map[i].depth;
1447 }
1448
1449 return 0;
1450 }
1451
1452 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1453 {
1454 struct request_queue *q = hctx->queue;
1455 struct blk_mq_ctx *ctx;
1456 LIST_HEAD(tmp);
1457
1458 /*
1459 * Move ctx entries to new CPU, if this one is going away.
1460 */
1461 ctx = __blk_mq_get_ctx(q, cpu);
1462
1463 spin_lock(&ctx->lock);
1464 if (!list_empty(&ctx->rq_list)) {
1465 list_splice_init(&ctx->rq_list, &tmp);
1466 blk_mq_hctx_clear_pending(hctx, ctx);
1467 }
1468 spin_unlock(&ctx->lock);
1469
1470 if (list_empty(&tmp))
1471 return NOTIFY_OK;
1472
1473 ctx = blk_mq_get_ctx(q);
1474 spin_lock(&ctx->lock);
1475
1476 while (!list_empty(&tmp)) {
1477 struct request *rq;
1478
1479 rq = list_first_entry(&tmp, struct request, queuelist);
1480 rq->mq_ctx = ctx;
1481 list_move_tail(&rq->queuelist, &ctx->rq_list);
1482 }
1483
1484 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1485 blk_mq_hctx_mark_pending(hctx, ctx);
1486
1487 spin_unlock(&ctx->lock);
1488
1489 blk_mq_run_hw_queue(hctx, true);
1490 blk_mq_put_ctx(ctx);
1491 return NOTIFY_OK;
1492 }
1493
1494 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1495 {
1496 struct request_queue *q = hctx->queue;
1497 struct blk_mq_tag_set *set = q->tag_set;
1498
1499 if (set->tags[hctx->queue_num])
1500 return NOTIFY_OK;
1501
1502 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1503 if (!set->tags[hctx->queue_num])
1504 return NOTIFY_STOP;
1505
1506 hctx->tags = set->tags[hctx->queue_num];
1507 return NOTIFY_OK;
1508 }
1509
1510 static int blk_mq_hctx_notify(void *data, unsigned long action,
1511 unsigned int cpu)
1512 {
1513 struct blk_mq_hw_ctx *hctx = data;
1514
1515 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1516 return blk_mq_hctx_cpu_offline(hctx, cpu);
1517 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1518 return blk_mq_hctx_cpu_online(hctx, cpu);
1519
1520 return NOTIFY_OK;
1521 }
1522
1523 static void blk_mq_exit_hw_queues(struct request_queue *q,
1524 struct blk_mq_tag_set *set, int nr_queue)
1525 {
1526 struct blk_mq_hw_ctx *hctx;
1527 unsigned int i;
1528
1529 queue_for_each_hw_ctx(q, hctx, i) {
1530 if (i == nr_queue)
1531 break;
1532
1533 blk_mq_tag_idle(hctx);
1534
1535 if (set->ops->exit_hctx)
1536 set->ops->exit_hctx(hctx, i);
1537
1538 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1539 kfree(hctx->ctxs);
1540 blk_mq_free_bitmap(&hctx->ctx_map);
1541 }
1542
1543 }
1544
1545 static void blk_mq_free_hw_queues(struct request_queue *q,
1546 struct blk_mq_tag_set *set)
1547 {
1548 struct blk_mq_hw_ctx *hctx;
1549 unsigned int i;
1550
1551 queue_for_each_hw_ctx(q, hctx, i) {
1552 free_cpumask_var(hctx->cpumask);
1553 kfree(hctx);
1554 }
1555 }
1556
1557 static int blk_mq_init_hw_queues(struct request_queue *q,
1558 struct blk_mq_tag_set *set)
1559 {
1560 struct blk_mq_hw_ctx *hctx;
1561 unsigned int i;
1562
1563 /*
1564 * Initialize hardware queues
1565 */
1566 queue_for_each_hw_ctx(q, hctx, i) {
1567 int node;
1568
1569 node = hctx->numa_node;
1570 if (node == NUMA_NO_NODE)
1571 node = hctx->numa_node = set->numa_node;
1572
1573 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1574 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1575 spin_lock_init(&hctx->lock);
1576 INIT_LIST_HEAD(&hctx->dispatch);
1577 hctx->queue = q;
1578 hctx->queue_num = i;
1579 hctx->flags = set->flags;
1580 hctx->cmd_size = set->cmd_size;
1581
1582 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1583 blk_mq_hctx_notify, hctx);
1584 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1585
1586 hctx->tags = set->tags[i];
1587
1588 /*
1589 * Allocate space for all possible cpus to avoid allocation at
1590 * runtime
1591 */
1592 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1593 GFP_KERNEL, node);
1594 if (!hctx->ctxs)
1595 break;
1596
1597 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1598 break;
1599
1600 hctx->nr_ctx = 0;
1601
1602 if (set->ops->init_hctx &&
1603 set->ops->init_hctx(hctx, set->driver_data, i))
1604 break;
1605 }
1606
1607 if (i == q->nr_hw_queues)
1608 return 0;
1609
1610 /*
1611 * Init failed
1612 */
1613 blk_mq_exit_hw_queues(q, set, i);
1614
1615 return 1;
1616 }
1617
1618 static void blk_mq_init_cpu_queues(struct request_queue *q,
1619 unsigned int nr_hw_queues)
1620 {
1621 unsigned int i;
1622
1623 for_each_possible_cpu(i) {
1624 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1625 struct blk_mq_hw_ctx *hctx;
1626
1627 memset(__ctx, 0, sizeof(*__ctx));
1628 __ctx->cpu = i;
1629 spin_lock_init(&__ctx->lock);
1630 INIT_LIST_HEAD(&__ctx->rq_list);
1631 __ctx->queue = q;
1632
1633 /* If the cpu isn't online, the cpu is mapped to first hctx */
1634 if (!cpu_online(i))
1635 continue;
1636
1637 hctx = q->mq_ops->map_queue(q, i);
1638 cpumask_set_cpu(i, hctx->cpumask);
1639 hctx->nr_ctx++;
1640
1641 /*
1642 * Set local node, IFF we have more than one hw queue. If
1643 * not, we remain on the home node of the device
1644 */
1645 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1646 hctx->numa_node = cpu_to_node(i);
1647 }
1648 }
1649
1650 static void blk_mq_map_swqueue(struct request_queue *q)
1651 {
1652 unsigned int i;
1653 struct blk_mq_hw_ctx *hctx;
1654 struct blk_mq_ctx *ctx;
1655
1656 queue_for_each_hw_ctx(q, hctx, i) {
1657 cpumask_clear(hctx->cpumask);
1658 hctx->nr_ctx = 0;
1659 }
1660
1661 /*
1662 * Map software to hardware queues
1663 */
1664 queue_for_each_ctx(q, ctx, i) {
1665 /* If the cpu isn't online, the cpu is mapped to first hctx */
1666 if (!cpu_online(i))
1667 continue;
1668
1669 hctx = q->mq_ops->map_queue(q, i);
1670 cpumask_set_cpu(i, hctx->cpumask);
1671 ctx->index_hw = hctx->nr_ctx;
1672 hctx->ctxs[hctx->nr_ctx++] = ctx;
1673 }
1674
1675 queue_for_each_hw_ctx(q, hctx, i) {
1676 /*
1677 * If no software queues are mapped to this hardware queue,
1678 * disable it and free the request entries.
1679 */
1680 if (!hctx->nr_ctx) {
1681 struct blk_mq_tag_set *set = q->tag_set;
1682
1683 if (set->tags[i]) {
1684 blk_mq_free_rq_map(set, set->tags[i], i);
1685 set->tags[i] = NULL;
1686 hctx->tags = NULL;
1687 }
1688 continue;
1689 }
1690
1691 /*
1692 * Initialize batch roundrobin counts
1693 */
1694 hctx->next_cpu = cpumask_first(hctx->cpumask);
1695 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1696 }
1697 }
1698
1699 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1700 {
1701 struct blk_mq_hw_ctx *hctx;
1702 struct request_queue *q;
1703 bool shared;
1704 int i;
1705
1706 if (set->tag_list.next == set->tag_list.prev)
1707 shared = false;
1708 else
1709 shared = true;
1710
1711 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1712 blk_mq_freeze_queue(q);
1713
1714 queue_for_each_hw_ctx(q, hctx, i) {
1715 if (shared)
1716 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1717 else
1718 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1719 }
1720 blk_mq_unfreeze_queue(q);
1721 }
1722 }
1723
1724 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1725 {
1726 struct blk_mq_tag_set *set = q->tag_set;
1727
1728 mutex_lock(&set->tag_list_lock);
1729 list_del_init(&q->tag_set_list);
1730 blk_mq_update_tag_set_depth(set);
1731 mutex_unlock(&set->tag_list_lock);
1732 }
1733
1734 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1735 struct request_queue *q)
1736 {
1737 q->tag_set = set;
1738
1739 mutex_lock(&set->tag_list_lock);
1740 list_add_tail(&q->tag_set_list, &set->tag_list);
1741 blk_mq_update_tag_set_depth(set);
1742 mutex_unlock(&set->tag_list_lock);
1743 }
1744
1745 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1746 {
1747 struct blk_mq_hw_ctx **hctxs;
1748 struct blk_mq_ctx __percpu *ctx;
1749 struct request_queue *q;
1750 unsigned int *map;
1751 int i;
1752
1753 ctx = alloc_percpu(struct blk_mq_ctx);
1754 if (!ctx)
1755 return ERR_PTR(-ENOMEM);
1756
1757 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1758 set->numa_node);
1759
1760 if (!hctxs)
1761 goto err_percpu;
1762
1763 map = blk_mq_make_queue_map(set);
1764 if (!map)
1765 goto err_map;
1766
1767 for (i = 0; i < set->nr_hw_queues; i++) {
1768 int node = blk_mq_hw_queue_to_node(map, i);
1769
1770 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1771 GFP_KERNEL, node);
1772 if (!hctxs[i])
1773 goto err_hctxs;
1774
1775 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1776 goto err_hctxs;
1777
1778 atomic_set(&hctxs[i]->nr_active, 0);
1779 hctxs[i]->numa_node = node;
1780 hctxs[i]->queue_num = i;
1781 }
1782
1783 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1784 if (!q)
1785 goto err_hctxs;
1786
1787 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release))
1788 goto err_map;
1789
1790 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1791 blk_queue_rq_timeout(q, 30000);
1792
1793 q->nr_queues = nr_cpu_ids;
1794 q->nr_hw_queues = set->nr_hw_queues;
1795 q->mq_map = map;
1796
1797 q->queue_ctx = ctx;
1798 q->queue_hw_ctx = hctxs;
1799
1800 q->mq_ops = set->ops;
1801 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1802
1803 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1804 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1805
1806 q->sg_reserved_size = INT_MAX;
1807
1808 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1809 INIT_LIST_HEAD(&q->requeue_list);
1810 spin_lock_init(&q->requeue_lock);
1811
1812 if (q->nr_hw_queues > 1)
1813 blk_queue_make_request(q, blk_mq_make_request);
1814 else
1815 blk_queue_make_request(q, blk_sq_make_request);
1816
1817 blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
1818 if (set->timeout)
1819 blk_queue_rq_timeout(q, set->timeout);
1820
1821 /*
1822 * Do this after blk_queue_make_request() overrides it...
1823 */
1824 q->nr_requests = set->queue_depth;
1825
1826 if (set->ops->complete)
1827 blk_queue_softirq_done(q, set->ops->complete);
1828
1829 blk_mq_init_flush(q);
1830 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1831
1832 q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1833 set->cmd_size, cache_line_size()),
1834 GFP_KERNEL);
1835 if (!q->flush_rq)
1836 goto err_hw;
1837
1838 if (blk_mq_init_hw_queues(q, set))
1839 goto err_flush_rq;
1840
1841 mutex_lock(&all_q_mutex);
1842 list_add_tail(&q->all_q_node, &all_q_list);
1843 mutex_unlock(&all_q_mutex);
1844
1845 blk_mq_add_queue_tag_set(set, q);
1846
1847 blk_mq_map_swqueue(q);
1848
1849 return q;
1850
1851 err_flush_rq:
1852 kfree(q->flush_rq);
1853 err_hw:
1854 blk_cleanup_queue(q);
1855 err_hctxs:
1856 kfree(map);
1857 for (i = 0; i < set->nr_hw_queues; i++) {
1858 if (!hctxs[i])
1859 break;
1860 free_cpumask_var(hctxs[i]->cpumask);
1861 kfree(hctxs[i]);
1862 }
1863 err_map:
1864 kfree(hctxs);
1865 err_percpu:
1866 free_percpu(ctx);
1867 return ERR_PTR(-ENOMEM);
1868 }
1869 EXPORT_SYMBOL(blk_mq_init_queue);
1870
1871 void blk_mq_free_queue(struct request_queue *q)
1872 {
1873 struct blk_mq_tag_set *set = q->tag_set;
1874
1875 blk_mq_del_queue_tag_set(q);
1876
1877 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1878 blk_mq_free_hw_queues(q, set);
1879
1880 percpu_ref_exit(&q->mq_usage_counter);
1881
1882 free_percpu(q->queue_ctx);
1883 kfree(q->queue_hw_ctx);
1884 kfree(q->mq_map);
1885
1886 q->queue_ctx = NULL;
1887 q->queue_hw_ctx = NULL;
1888 q->mq_map = NULL;
1889
1890 mutex_lock(&all_q_mutex);
1891 list_del_init(&q->all_q_node);
1892 mutex_unlock(&all_q_mutex);
1893 }
1894
1895 /* Basically redo blk_mq_init_queue with queue frozen */
1896 static void blk_mq_queue_reinit(struct request_queue *q)
1897 {
1898 blk_mq_freeze_queue(q);
1899
1900 blk_mq_sysfs_unregister(q);
1901
1902 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1903
1904 /*
1905 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1906 * we should change hctx numa_node according to new topology (this
1907 * involves free and re-allocate memory, worthy doing?)
1908 */
1909
1910 blk_mq_map_swqueue(q);
1911
1912 blk_mq_sysfs_register(q);
1913
1914 blk_mq_unfreeze_queue(q);
1915 }
1916
1917 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1918 unsigned long action, void *hcpu)
1919 {
1920 struct request_queue *q;
1921
1922 /*
1923 * Before new mappings are established, hotadded cpu might already
1924 * start handling requests. This doesn't break anything as we map
1925 * offline CPUs to first hardware queue. We will re-init the queue
1926 * below to get optimal settings.
1927 */
1928 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1929 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1930 return NOTIFY_OK;
1931
1932 mutex_lock(&all_q_mutex);
1933 list_for_each_entry(q, &all_q_list, all_q_node)
1934 blk_mq_queue_reinit(q);
1935 mutex_unlock(&all_q_mutex);
1936 return NOTIFY_OK;
1937 }
1938
1939 /*
1940 * Alloc a tag set to be associated with one or more request queues.
1941 * May fail with EINVAL for various error conditions. May adjust the
1942 * requested depth down, if if it too large. In that case, the set
1943 * value will be stored in set->queue_depth.
1944 */
1945 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
1946 {
1947 int i;
1948
1949 if (!set->nr_hw_queues)
1950 return -EINVAL;
1951 if (!set->queue_depth)
1952 return -EINVAL;
1953 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
1954 return -EINVAL;
1955
1956 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
1957 return -EINVAL;
1958
1959 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
1960 pr_info("blk-mq: reduced tag depth to %u\n",
1961 BLK_MQ_MAX_DEPTH);
1962 set->queue_depth = BLK_MQ_MAX_DEPTH;
1963 }
1964
1965 set->tags = kmalloc_node(set->nr_hw_queues *
1966 sizeof(struct blk_mq_tags *),
1967 GFP_KERNEL, set->numa_node);
1968 if (!set->tags)
1969 goto out;
1970
1971 for (i = 0; i < set->nr_hw_queues; i++) {
1972 set->tags[i] = blk_mq_init_rq_map(set, i);
1973 if (!set->tags[i])
1974 goto out_unwind;
1975 }
1976
1977 mutex_init(&set->tag_list_lock);
1978 INIT_LIST_HEAD(&set->tag_list);
1979
1980 return 0;
1981
1982 out_unwind:
1983 while (--i >= 0)
1984 blk_mq_free_rq_map(set, set->tags[i], i);
1985 out:
1986 return -ENOMEM;
1987 }
1988 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
1989
1990 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
1991 {
1992 int i;
1993
1994 for (i = 0; i < set->nr_hw_queues; i++) {
1995 if (set->tags[i])
1996 blk_mq_free_rq_map(set, set->tags[i], i);
1997 }
1998
1999 kfree(set->tags);
2000 }
2001 EXPORT_SYMBOL(blk_mq_free_tag_set);
2002
2003 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2004 {
2005 struct blk_mq_tag_set *set = q->tag_set;
2006 struct blk_mq_hw_ctx *hctx;
2007 int i, ret;
2008
2009 if (!set || nr > set->queue_depth)
2010 return -EINVAL;
2011
2012 ret = 0;
2013 queue_for_each_hw_ctx(q, hctx, i) {
2014 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2015 if (ret)
2016 break;
2017 }
2018
2019 if (!ret)
2020 q->nr_requests = nr;
2021
2022 return ret;
2023 }
2024
2025 void blk_mq_disable_hotplug(void)
2026 {
2027 mutex_lock(&all_q_mutex);
2028 }
2029
2030 void blk_mq_enable_hotplug(void)
2031 {
2032 mutex_unlock(&all_q_mutex);
2033 }
2034
2035 static int __init blk_mq_init(void)
2036 {
2037 blk_mq_cpu_init();
2038
2039 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2040
2041 return 0;
2042 }
2043 subsys_initcall(blk_mq_init);
This page took 0.121648 seconds and 5 git commands to generate.