658428a28fafb47e3644c100f320addaf1d62e26
[deliverable/linux.git] / block / blk-mq.c
1 #include <linux/kernel.h>
2 #include <linux/module.h>
3 #include <linux/backing-dev.h>
4 #include <linux/bio.h>
5 #include <linux/blkdev.h>
6 #include <linux/mm.h>
7 #include <linux/init.h>
8 #include <linux/slab.h>
9 #include <linux/workqueue.h>
10 #include <linux/smp.h>
11 #include <linux/llist.h>
12 #include <linux/list_sort.h>
13 #include <linux/cpu.h>
14 #include <linux/cache.h>
15 #include <linux/sched/sysctl.h>
16 #include <linux/delay.h>
17
18 #include <trace/events/block.h>
19
20 #include <linux/blk-mq.h>
21 #include "blk.h"
22 #include "blk-mq.h"
23 #include "blk-mq-tag.h"
24
25 static DEFINE_MUTEX(all_q_mutex);
26 static LIST_HEAD(all_q_list);
27
28 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
29
30 static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
31 unsigned int cpu)
32 {
33 return per_cpu_ptr(q->queue_ctx, cpu);
34 }
35
36 /*
37 * This assumes per-cpu software queueing queues. They could be per-node
38 * as well, for instance. For now this is hardcoded as-is. Note that we don't
39 * care about preemption, since we know the ctx's are persistent. This does
40 * mean that we can't rely on ctx always matching the currently running CPU.
41 */
42 static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
43 {
44 return __blk_mq_get_ctx(q, get_cpu());
45 }
46
47 static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
48 {
49 put_cpu();
50 }
51
52 /*
53 * Check if any of the ctx's have pending work in this hardware queue
54 */
55 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
56 {
57 unsigned int i;
58
59 for (i = 0; i < hctx->nr_ctx_map; i++)
60 if (hctx->ctx_map[i])
61 return true;
62
63 return false;
64 }
65
66 /*
67 * Mark this ctx as having pending work in this hardware queue
68 */
69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
70 struct blk_mq_ctx *ctx)
71 {
72 if (!test_bit(ctx->index_hw, hctx->ctx_map))
73 set_bit(ctx->index_hw, hctx->ctx_map);
74 }
75
76 static struct request *__blk_mq_alloc_request(struct blk_mq_hw_ctx *hctx,
77 gfp_t gfp, bool reserved)
78 {
79 struct request *rq;
80 unsigned int tag;
81
82 tag = blk_mq_get_tag(hctx->tags, gfp, reserved);
83 if (tag != BLK_MQ_TAG_FAIL) {
84 rq = hctx->rqs[tag];
85 rq->tag = tag;
86
87 return rq;
88 }
89
90 return NULL;
91 }
92
93 static int blk_mq_queue_enter(struct request_queue *q)
94 {
95 int ret;
96
97 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
98 smp_wmb();
99 /* we have problems to freeze the queue if it's initializing */
100 if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
101 return 0;
102
103 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
104
105 spin_lock_irq(q->queue_lock);
106 ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
107 !blk_queue_bypass(q) || blk_queue_dying(q),
108 *q->queue_lock);
109 /* inc usage with lock hold to avoid freeze_queue runs here */
110 if (!ret && !blk_queue_dying(q))
111 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
112 else if (blk_queue_dying(q))
113 ret = -ENODEV;
114 spin_unlock_irq(q->queue_lock);
115
116 return ret;
117 }
118
119 static void blk_mq_queue_exit(struct request_queue *q)
120 {
121 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
122 }
123
124 static void __blk_mq_drain_queue(struct request_queue *q)
125 {
126 while (true) {
127 s64 count;
128
129 spin_lock_irq(q->queue_lock);
130 count = percpu_counter_sum(&q->mq_usage_counter);
131 spin_unlock_irq(q->queue_lock);
132
133 if (count == 0)
134 break;
135 blk_mq_run_queues(q, false);
136 msleep(10);
137 }
138 }
139
140 /*
141 * Guarantee no request is in use, so we can change any data structure of
142 * the queue afterward.
143 */
144 static void blk_mq_freeze_queue(struct request_queue *q)
145 {
146 bool drain;
147
148 spin_lock_irq(q->queue_lock);
149 drain = !q->bypass_depth++;
150 queue_flag_set(QUEUE_FLAG_BYPASS, q);
151 spin_unlock_irq(q->queue_lock);
152
153 if (drain)
154 __blk_mq_drain_queue(q);
155 }
156
157 void blk_mq_drain_queue(struct request_queue *q)
158 {
159 __blk_mq_drain_queue(q);
160 }
161
162 static void blk_mq_unfreeze_queue(struct request_queue *q)
163 {
164 bool wake = false;
165
166 spin_lock_irq(q->queue_lock);
167 if (!--q->bypass_depth) {
168 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
169 wake = true;
170 }
171 WARN_ON_ONCE(q->bypass_depth < 0);
172 spin_unlock_irq(q->queue_lock);
173 if (wake)
174 wake_up_all(&q->mq_freeze_wq);
175 }
176
177 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
178 {
179 return blk_mq_has_free_tags(hctx->tags);
180 }
181 EXPORT_SYMBOL(blk_mq_can_queue);
182
183 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
184 struct request *rq, unsigned int rw_flags)
185 {
186 if (blk_queue_io_stat(q))
187 rw_flags |= REQ_IO_STAT;
188
189 rq->mq_ctx = ctx;
190 rq->cmd_flags = rw_flags;
191 rq->start_time = jiffies;
192 set_start_time_ns(rq);
193 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
194 }
195
196 static struct request *blk_mq_alloc_request_pinned(struct request_queue *q,
197 int rw, gfp_t gfp,
198 bool reserved)
199 {
200 struct request *rq;
201
202 do {
203 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
204 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);
205
206 rq = __blk_mq_alloc_request(hctx, gfp & ~__GFP_WAIT, reserved);
207 if (rq) {
208 blk_mq_rq_ctx_init(q, ctx, rq, rw);
209 break;
210 }
211
212 if (gfp & __GFP_WAIT) {
213 __blk_mq_run_hw_queue(hctx);
214 blk_mq_put_ctx(ctx);
215 } else {
216 blk_mq_put_ctx(ctx);
217 break;
218 }
219
220 blk_mq_wait_for_tags(hctx->tags);
221 } while (1);
222
223 return rq;
224 }
225
226 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp)
227 {
228 struct request *rq;
229
230 if (blk_mq_queue_enter(q))
231 return NULL;
232
233 rq = blk_mq_alloc_request_pinned(q, rw, gfp, false);
234 if (rq)
235 blk_mq_put_ctx(rq->mq_ctx);
236 return rq;
237 }
238
239 struct request *blk_mq_alloc_reserved_request(struct request_queue *q, int rw,
240 gfp_t gfp)
241 {
242 struct request *rq;
243
244 if (blk_mq_queue_enter(q))
245 return NULL;
246
247 rq = blk_mq_alloc_request_pinned(q, rw, gfp, true);
248 if (rq)
249 blk_mq_put_ctx(rq->mq_ctx);
250 return rq;
251 }
252 EXPORT_SYMBOL(blk_mq_alloc_reserved_request);
253
254 /*
255 * Re-init and set pdu, if we have it
256 */
257 void blk_mq_rq_init(struct blk_mq_hw_ctx *hctx, struct request *rq)
258 {
259 blk_rq_init(hctx->queue, rq);
260
261 if (hctx->cmd_size)
262 rq->special = blk_mq_rq_to_pdu(rq);
263 }
264
265 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
266 struct blk_mq_ctx *ctx, struct request *rq)
267 {
268 const int tag = rq->tag;
269 struct request_queue *q = rq->q;
270
271 blk_mq_rq_init(hctx, rq);
272 blk_mq_put_tag(hctx->tags, tag);
273
274 blk_mq_queue_exit(q);
275 }
276
277 void blk_mq_free_request(struct request *rq)
278 {
279 struct blk_mq_ctx *ctx = rq->mq_ctx;
280 struct blk_mq_hw_ctx *hctx;
281 struct request_queue *q = rq->q;
282
283 ctx->rq_completed[rq_is_sync(rq)]++;
284
285 hctx = q->mq_ops->map_queue(q, ctx->cpu);
286 __blk_mq_free_request(hctx, ctx, rq);
287 }
288
289 bool blk_mq_end_io_partial(struct request *rq, int error, unsigned int nr_bytes)
290 {
291 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
292 return true;
293
294 blk_account_io_done(rq);
295
296 if (rq->end_io)
297 rq->end_io(rq, error);
298 else
299 blk_mq_free_request(rq);
300 return false;
301 }
302 EXPORT_SYMBOL(blk_mq_end_io_partial);
303
304 static void __blk_mq_complete_request_remote(void *data)
305 {
306 struct request *rq = data;
307
308 rq->q->softirq_done_fn(rq);
309 }
310
311 void __blk_mq_complete_request(struct request *rq)
312 {
313 struct blk_mq_ctx *ctx = rq->mq_ctx;
314 int cpu;
315
316 if (!ctx->ipi_redirect) {
317 rq->q->softirq_done_fn(rq);
318 return;
319 }
320
321 cpu = get_cpu();
322 if (cpu != ctx->cpu && cpu_online(ctx->cpu)) {
323 rq->csd.func = __blk_mq_complete_request_remote;
324 rq->csd.info = rq;
325 rq->csd.flags = 0;
326 smp_call_function_single_async(ctx->cpu, &rq->csd);
327 } else {
328 rq->q->softirq_done_fn(rq);
329 }
330 put_cpu();
331 }
332
333 /**
334 * blk_mq_complete_request - end I/O on a request
335 * @rq: the request being processed
336 *
337 * Description:
338 * Ends all I/O on a request. It does not handle partial completions.
339 * The actual completion happens out-of-order, through a IPI handler.
340 **/
341 void blk_mq_complete_request(struct request *rq)
342 {
343 if (unlikely(blk_should_fake_timeout(rq->q)))
344 return;
345 if (!blk_mark_rq_complete(rq))
346 __blk_mq_complete_request(rq);
347 }
348 EXPORT_SYMBOL(blk_mq_complete_request);
349
350 static void blk_mq_start_request(struct request *rq, bool last)
351 {
352 struct request_queue *q = rq->q;
353
354 trace_block_rq_issue(q, rq);
355
356 rq->resid_len = blk_rq_bytes(rq);
357
358 /*
359 * Just mark start time and set the started bit. Due to memory
360 * ordering, we know we'll see the correct deadline as long as
361 * REQ_ATOMIC_STARTED is seen.
362 */
363 rq->deadline = jiffies + q->rq_timeout;
364 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
365
366 if (q->dma_drain_size && blk_rq_bytes(rq)) {
367 /*
368 * Make sure space for the drain appears. We know we can do
369 * this because max_hw_segments has been adjusted to be one
370 * fewer than the device can handle.
371 */
372 rq->nr_phys_segments++;
373 }
374
375 /*
376 * Flag the last request in the series so that drivers know when IO
377 * should be kicked off, if they don't do it on a per-request basis.
378 *
379 * Note: the flag isn't the only condition drivers should do kick off.
380 * If drive is busy, the last request might not have the bit set.
381 */
382 if (last)
383 rq->cmd_flags |= REQ_END;
384 }
385
386 static void blk_mq_requeue_request(struct request *rq)
387 {
388 struct request_queue *q = rq->q;
389
390 trace_block_rq_requeue(q, rq);
391 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
392
393 rq->cmd_flags &= ~REQ_END;
394
395 if (q->dma_drain_size && blk_rq_bytes(rq))
396 rq->nr_phys_segments--;
397 }
398
399 struct blk_mq_timeout_data {
400 struct blk_mq_hw_ctx *hctx;
401 unsigned long *next;
402 unsigned int *next_set;
403 };
404
405 static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
406 {
407 struct blk_mq_timeout_data *data = __data;
408 struct blk_mq_hw_ctx *hctx = data->hctx;
409 unsigned int tag;
410
411 /* It may not be in flight yet (this is where
412 * the REQ_ATOMIC_STARTED flag comes in). The requests are
413 * statically allocated, so we know it's always safe to access the
414 * memory associated with a bit offset into ->rqs[].
415 */
416 tag = 0;
417 do {
418 struct request *rq;
419
420 tag = find_next_zero_bit(free_tags, hctx->queue_depth, tag);
421 if (tag >= hctx->queue_depth)
422 break;
423
424 rq = hctx->rqs[tag++];
425
426 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
427 continue;
428
429 blk_rq_check_expired(rq, data->next, data->next_set);
430 } while (1);
431 }
432
433 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
434 unsigned long *next,
435 unsigned int *next_set)
436 {
437 struct blk_mq_timeout_data data = {
438 .hctx = hctx,
439 .next = next,
440 .next_set = next_set,
441 };
442
443 /*
444 * Ask the tagging code to iterate busy requests, so we can
445 * check them for timeout.
446 */
447 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
448 }
449
450 static void blk_mq_rq_timer(unsigned long data)
451 {
452 struct request_queue *q = (struct request_queue *) data;
453 struct blk_mq_hw_ctx *hctx;
454 unsigned long next = 0;
455 int i, next_set = 0;
456
457 queue_for_each_hw_ctx(q, hctx, i)
458 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
459
460 if (next_set)
461 mod_timer(&q->timeout, round_jiffies_up(next));
462 }
463
464 /*
465 * Reverse check our software queue for entries that we could potentially
466 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
467 * too much time checking for merges.
468 */
469 static bool blk_mq_attempt_merge(struct request_queue *q,
470 struct blk_mq_ctx *ctx, struct bio *bio)
471 {
472 struct request *rq;
473 int checked = 8;
474
475 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
476 int el_ret;
477
478 if (!checked--)
479 break;
480
481 if (!blk_rq_merge_ok(rq, bio))
482 continue;
483
484 el_ret = blk_try_merge(rq, bio);
485 if (el_ret == ELEVATOR_BACK_MERGE) {
486 if (bio_attempt_back_merge(q, rq, bio)) {
487 ctx->rq_merged++;
488 return true;
489 }
490 break;
491 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
492 if (bio_attempt_front_merge(q, rq, bio)) {
493 ctx->rq_merged++;
494 return true;
495 }
496 break;
497 }
498 }
499
500 return false;
501 }
502
503 void blk_mq_add_timer(struct request *rq)
504 {
505 __blk_add_timer(rq, NULL);
506 }
507
508 /*
509 * Run this hardware queue, pulling any software queues mapped to it in.
510 * Note that this function currently has various problems around ordering
511 * of IO. In particular, we'd like FIFO behaviour on handling existing
512 * items on the hctx->dispatch list. Ignore that for now.
513 */
514 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
515 {
516 struct request_queue *q = hctx->queue;
517 struct blk_mq_ctx *ctx;
518 struct request *rq;
519 LIST_HEAD(rq_list);
520 int bit, queued;
521
522 WARN_ON(!preempt_count());
523
524 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
525 return;
526
527 hctx->run++;
528
529 /*
530 * Touch any software queue that has pending entries.
531 */
532 for_each_set_bit(bit, hctx->ctx_map, hctx->nr_ctx) {
533 clear_bit(bit, hctx->ctx_map);
534 ctx = hctx->ctxs[bit];
535 BUG_ON(bit != ctx->index_hw);
536
537 spin_lock(&ctx->lock);
538 list_splice_tail_init(&ctx->rq_list, &rq_list);
539 spin_unlock(&ctx->lock);
540 }
541
542 /*
543 * If we have previous entries on our dispatch list, grab them
544 * and stuff them at the front for more fair dispatch.
545 */
546 if (!list_empty_careful(&hctx->dispatch)) {
547 spin_lock(&hctx->lock);
548 if (!list_empty(&hctx->dispatch))
549 list_splice_init(&hctx->dispatch, &rq_list);
550 spin_unlock(&hctx->lock);
551 }
552
553 /*
554 * Delete and return all entries from our dispatch list
555 */
556 queued = 0;
557
558 /*
559 * Now process all the entries, sending them to the driver.
560 */
561 while (!list_empty(&rq_list)) {
562 int ret;
563
564 rq = list_first_entry(&rq_list, struct request, queuelist);
565 list_del_init(&rq->queuelist);
566
567 blk_mq_start_request(rq, list_empty(&rq_list));
568
569 ret = q->mq_ops->queue_rq(hctx, rq);
570 switch (ret) {
571 case BLK_MQ_RQ_QUEUE_OK:
572 queued++;
573 continue;
574 case BLK_MQ_RQ_QUEUE_BUSY:
575 /*
576 * FIXME: we should have a mechanism to stop the queue
577 * like blk_stop_queue, otherwise we will waste cpu
578 * time
579 */
580 list_add(&rq->queuelist, &rq_list);
581 blk_mq_requeue_request(rq);
582 break;
583 default:
584 pr_err("blk-mq: bad return on queue: %d\n", ret);
585 case BLK_MQ_RQ_QUEUE_ERROR:
586 rq->errors = -EIO;
587 blk_mq_end_io(rq, rq->errors);
588 break;
589 }
590
591 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
592 break;
593 }
594
595 if (!queued)
596 hctx->dispatched[0]++;
597 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
598 hctx->dispatched[ilog2(queued) + 1]++;
599
600 /*
601 * Any items that need requeuing? Stuff them into hctx->dispatch,
602 * that is where we will continue on next queue run.
603 */
604 if (!list_empty(&rq_list)) {
605 spin_lock(&hctx->lock);
606 list_splice(&rq_list, &hctx->dispatch);
607 spin_unlock(&hctx->lock);
608 }
609 }
610
611 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
612 {
613 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
614 return;
615
616 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
617 __blk_mq_run_hw_queue(hctx);
618 else if (hctx->queue->nr_hw_queues == 1)
619 kblockd_schedule_delayed_work(&hctx->delayed_work, 0);
620 else {
621 unsigned int cpu;
622
623 /*
624 * It'd be great if the workqueue API had a way to pass
625 * in a mask and had some smarts for more clever placement
626 * than the first CPU. Or we could round-robin here. For now,
627 * just queue on the first CPU.
628 */
629 cpu = cpumask_first(hctx->cpumask);
630 kblockd_schedule_delayed_work_on(cpu, &hctx->delayed_work, 0);
631 }
632 }
633
634 void blk_mq_run_queues(struct request_queue *q, bool async)
635 {
636 struct blk_mq_hw_ctx *hctx;
637 int i;
638
639 queue_for_each_hw_ctx(q, hctx, i) {
640 if ((!blk_mq_hctx_has_pending(hctx) &&
641 list_empty_careful(&hctx->dispatch)) ||
642 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
643 continue;
644
645 preempt_disable();
646 blk_mq_run_hw_queue(hctx, async);
647 preempt_enable();
648 }
649 }
650 EXPORT_SYMBOL(blk_mq_run_queues);
651
652 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
653 {
654 cancel_delayed_work(&hctx->delayed_work);
655 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
656 }
657 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
658
659 void blk_mq_stop_hw_queues(struct request_queue *q)
660 {
661 struct blk_mq_hw_ctx *hctx;
662 int i;
663
664 queue_for_each_hw_ctx(q, hctx, i)
665 blk_mq_stop_hw_queue(hctx);
666 }
667 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
668
669 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
670 {
671 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
672
673 preempt_disable();
674 __blk_mq_run_hw_queue(hctx);
675 preempt_enable();
676 }
677 EXPORT_SYMBOL(blk_mq_start_hw_queue);
678
679 void blk_mq_start_stopped_hw_queues(struct request_queue *q)
680 {
681 struct blk_mq_hw_ctx *hctx;
682 int i;
683
684 queue_for_each_hw_ctx(q, hctx, i) {
685 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
686 continue;
687
688 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
689 preempt_disable();
690 blk_mq_run_hw_queue(hctx, true);
691 preempt_enable();
692 }
693 }
694 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
695
696 static void blk_mq_work_fn(struct work_struct *work)
697 {
698 struct blk_mq_hw_ctx *hctx;
699
700 hctx = container_of(work, struct blk_mq_hw_ctx, delayed_work.work);
701
702 preempt_disable();
703 __blk_mq_run_hw_queue(hctx);
704 preempt_enable();
705 }
706
707 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
708 struct request *rq, bool at_head)
709 {
710 struct blk_mq_ctx *ctx = rq->mq_ctx;
711
712 trace_block_rq_insert(hctx->queue, rq);
713
714 if (at_head)
715 list_add(&rq->queuelist, &ctx->rq_list);
716 else
717 list_add_tail(&rq->queuelist, &ctx->rq_list);
718 blk_mq_hctx_mark_pending(hctx, ctx);
719
720 /*
721 * We do this early, to ensure we are on the right CPU.
722 */
723 blk_mq_add_timer(rq);
724 }
725
726 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
727 bool async)
728 {
729 struct request_queue *q = rq->q;
730 struct blk_mq_hw_ctx *hctx;
731 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
732
733 current_ctx = blk_mq_get_ctx(q);
734 if (!cpu_online(ctx->cpu))
735 rq->mq_ctx = ctx = current_ctx;
736
737 hctx = q->mq_ops->map_queue(q, ctx->cpu);
738
739 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
740 !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
741 blk_insert_flush(rq);
742 } else {
743 spin_lock(&ctx->lock);
744 __blk_mq_insert_request(hctx, rq, at_head);
745 spin_unlock(&ctx->lock);
746 }
747
748 if (run_queue)
749 blk_mq_run_hw_queue(hctx, async);
750
751 blk_mq_put_ctx(current_ctx);
752 }
753
754 static void blk_mq_insert_requests(struct request_queue *q,
755 struct blk_mq_ctx *ctx,
756 struct list_head *list,
757 int depth,
758 bool from_schedule)
759
760 {
761 struct blk_mq_hw_ctx *hctx;
762 struct blk_mq_ctx *current_ctx;
763
764 trace_block_unplug(q, depth, !from_schedule);
765
766 current_ctx = blk_mq_get_ctx(q);
767
768 if (!cpu_online(ctx->cpu))
769 ctx = current_ctx;
770 hctx = q->mq_ops->map_queue(q, ctx->cpu);
771
772 /*
773 * preemption doesn't flush plug list, so it's possible ctx->cpu is
774 * offline now
775 */
776 spin_lock(&ctx->lock);
777 while (!list_empty(list)) {
778 struct request *rq;
779
780 rq = list_first_entry(list, struct request, queuelist);
781 list_del_init(&rq->queuelist);
782 rq->mq_ctx = ctx;
783 __blk_mq_insert_request(hctx, rq, false);
784 }
785 spin_unlock(&ctx->lock);
786
787 blk_mq_run_hw_queue(hctx, from_schedule);
788 blk_mq_put_ctx(current_ctx);
789 }
790
791 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
792 {
793 struct request *rqa = container_of(a, struct request, queuelist);
794 struct request *rqb = container_of(b, struct request, queuelist);
795
796 return !(rqa->mq_ctx < rqb->mq_ctx ||
797 (rqa->mq_ctx == rqb->mq_ctx &&
798 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
799 }
800
801 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
802 {
803 struct blk_mq_ctx *this_ctx;
804 struct request_queue *this_q;
805 struct request *rq;
806 LIST_HEAD(list);
807 LIST_HEAD(ctx_list);
808 unsigned int depth;
809
810 list_splice_init(&plug->mq_list, &list);
811
812 list_sort(NULL, &list, plug_ctx_cmp);
813
814 this_q = NULL;
815 this_ctx = NULL;
816 depth = 0;
817
818 while (!list_empty(&list)) {
819 rq = list_entry_rq(list.next);
820 list_del_init(&rq->queuelist);
821 BUG_ON(!rq->q);
822 if (rq->mq_ctx != this_ctx) {
823 if (this_ctx) {
824 blk_mq_insert_requests(this_q, this_ctx,
825 &ctx_list, depth,
826 from_schedule);
827 }
828
829 this_ctx = rq->mq_ctx;
830 this_q = rq->q;
831 depth = 0;
832 }
833
834 depth++;
835 list_add_tail(&rq->queuelist, &ctx_list);
836 }
837
838 /*
839 * If 'this_ctx' is set, we know we have entries to complete
840 * on 'ctx_list'. Do those.
841 */
842 if (this_ctx) {
843 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
844 from_schedule);
845 }
846 }
847
848 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
849 {
850 init_request_from_bio(rq, bio);
851 blk_account_io_start(rq, 1);
852 }
853
854 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
855 {
856 struct blk_mq_hw_ctx *hctx;
857 struct blk_mq_ctx *ctx;
858 const int is_sync = rw_is_sync(bio->bi_rw);
859 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
860 int rw = bio_data_dir(bio);
861 struct request *rq;
862 unsigned int use_plug, request_count = 0;
863
864 /*
865 * If we have multiple hardware queues, just go directly to
866 * one of those for sync IO.
867 */
868 use_plug = !is_flush_fua && ((q->nr_hw_queues == 1) || !is_sync);
869
870 blk_queue_bounce(q, &bio);
871
872 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
873 bio_endio(bio, -EIO);
874 return;
875 }
876
877 if (use_plug && blk_attempt_plug_merge(q, bio, &request_count))
878 return;
879
880 if (blk_mq_queue_enter(q)) {
881 bio_endio(bio, -EIO);
882 return;
883 }
884
885 ctx = blk_mq_get_ctx(q);
886 hctx = q->mq_ops->map_queue(q, ctx->cpu);
887
888 if (is_sync)
889 rw |= REQ_SYNC;
890 trace_block_getrq(q, bio, rw);
891 rq = __blk_mq_alloc_request(hctx, GFP_ATOMIC, false);
892 if (likely(rq))
893 blk_mq_rq_ctx_init(q, ctx, rq, rw);
894 else {
895 blk_mq_put_ctx(ctx);
896 trace_block_sleeprq(q, bio, rw);
897 rq = blk_mq_alloc_request_pinned(q, rw, __GFP_WAIT|GFP_ATOMIC,
898 false);
899 ctx = rq->mq_ctx;
900 hctx = q->mq_ops->map_queue(q, ctx->cpu);
901 }
902
903 hctx->queued++;
904
905 if (unlikely(is_flush_fua)) {
906 blk_mq_bio_to_request(rq, bio);
907 blk_insert_flush(rq);
908 goto run_queue;
909 }
910
911 /*
912 * A task plug currently exists. Since this is completely lockless,
913 * utilize that to temporarily store requests until the task is
914 * either done or scheduled away.
915 */
916 if (use_plug) {
917 struct blk_plug *plug = current->plug;
918
919 if (plug) {
920 blk_mq_bio_to_request(rq, bio);
921 if (list_empty(&plug->mq_list))
922 trace_block_plug(q);
923 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
924 blk_flush_plug_list(plug, false);
925 trace_block_plug(q);
926 }
927 list_add_tail(&rq->queuelist, &plug->mq_list);
928 blk_mq_put_ctx(ctx);
929 return;
930 }
931 }
932
933 spin_lock(&ctx->lock);
934
935 if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
936 blk_mq_attempt_merge(q, ctx, bio))
937 __blk_mq_free_request(hctx, ctx, rq);
938 else {
939 blk_mq_bio_to_request(rq, bio);
940 __blk_mq_insert_request(hctx, rq, false);
941 }
942
943 spin_unlock(&ctx->lock);
944
945 /*
946 * For a SYNC request, send it to the hardware immediately. For an
947 * ASYNC request, just ensure that we run it later on. The latter
948 * allows for merging opportunities and more efficient dispatching.
949 */
950 run_queue:
951 blk_mq_run_hw_queue(hctx, !is_sync || is_flush_fua);
952 blk_mq_put_ctx(ctx);
953 }
954
955 /*
956 * Default mapping to a software queue, since we use one per CPU.
957 */
958 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
959 {
960 return q->queue_hw_ctx[q->mq_map[cpu]];
961 }
962 EXPORT_SYMBOL(blk_mq_map_queue);
963
964 struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_reg *reg,
965 unsigned int hctx_index)
966 {
967 return kmalloc_node(sizeof(struct blk_mq_hw_ctx),
968 GFP_KERNEL | __GFP_ZERO, reg->numa_node);
969 }
970 EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue);
971
972 void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx,
973 unsigned int hctx_index)
974 {
975 kfree(hctx);
976 }
977 EXPORT_SYMBOL(blk_mq_free_single_hw_queue);
978
979 static void blk_mq_hctx_notify(void *data, unsigned long action,
980 unsigned int cpu)
981 {
982 struct blk_mq_hw_ctx *hctx = data;
983 struct request_queue *q = hctx->queue;
984 struct blk_mq_ctx *ctx;
985 LIST_HEAD(tmp);
986
987 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
988 return;
989
990 /*
991 * Move ctx entries to new CPU, if this one is going away.
992 */
993 ctx = __blk_mq_get_ctx(q, cpu);
994
995 spin_lock(&ctx->lock);
996 if (!list_empty(&ctx->rq_list)) {
997 list_splice_init(&ctx->rq_list, &tmp);
998 clear_bit(ctx->index_hw, hctx->ctx_map);
999 }
1000 spin_unlock(&ctx->lock);
1001
1002 if (list_empty(&tmp))
1003 return;
1004
1005 ctx = blk_mq_get_ctx(q);
1006 spin_lock(&ctx->lock);
1007
1008 while (!list_empty(&tmp)) {
1009 struct request *rq;
1010
1011 rq = list_first_entry(&tmp, struct request, queuelist);
1012 rq->mq_ctx = ctx;
1013 list_move_tail(&rq->queuelist, &ctx->rq_list);
1014 }
1015
1016 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1017 blk_mq_hctx_mark_pending(hctx, ctx);
1018
1019 spin_unlock(&ctx->lock);
1020
1021 blk_mq_run_hw_queue(hctx, true);
1022 blk_mq_put_ctx(ctx);
1023 }
1024
1025 static int blk_mq_init_hw_commands(struct blk_mq_hw_ctx *hctx,
1026 int (*init)(void *, struct blk_mq_hw_ctx *,
1027 struct request *, unsigned int),
1028 void *data)
1029 {
1030 unsigned int i;
1031 int ret = 0;
1032
1033 for (i = 0; i < hctx->queue_depth; i++) {
1034 struct request *rq = hctx->rqs[i];
1035
1036 ret = init(data, hctx, rq, i);
1037 if (ret)
1038 break;
1039 }
1040
1041 return ret;
1042 }
1043
1044 int blk_mq_init_commands(struct request_queue *q,
1045 int (*init)(void *, struct blk_mq_hw_ctx *,
1046 struct request *, unsigned int),
1047 void *data)
1048 {
1049 struct blk_mq_hw_ctx *hctx;
1050 unsigned int i;
1051 int ret = 0;
1052
1053 queue_for_each_hw_ctx(q, hctx, i) {
1054 ret = blk_mq_init_hw_commands(hctx, init, data);
1055 if (ret)
1056 break;
1057 }
1058
1059 return ret;
1060 }
1061 EXPORT_SYMBOL(blk_mq_init_commands);
1062
1063 static void blk_mq_free_hw_commands(struct blk_mq_hw_ctx *hctx,
1064 void (*free)(void *, struct blk_mq_hw_ctx *,
1065 struct request *, unsigned int),
1066 void *data)
1067 {
1068 unsigned int i;
1069
1070 for (i = 0; i < hctx->queue_depth; i++) {
1071 struct request *rq = hctx->rqs[i];
1072
1073 free(data, hctx, rq, i);
1074 }
1075 }
1076
1077 void blk_mq_free_commands(struct request_queue *q,
1078 void (*free)(void *, struct blk_mq_hw_ctx *,
1079 struct request *, unsigned int),
1080 void *data)
1081 {
1082 struct blk_mq_hw_ctx *hctx;
1083 unsigned int i;
1084
1085 queue_for_each_hw_ctx(q, hctx, i)
1086 blk_mq_free_hw_commands(hctx, free, data);
1087 }
1088 EXPORT_SYMBOL(blk_mq_free_commands);
1089
1090 static void blk_mq_free_rq_map(struct blk_mq_hw_ctx *hctx)
1091 {
1092 struct page *page;
1093
1094 while (!list_empty(&hctx->page_list)) {
1095 page = list_first_entry(&hctx->page_list, struct page, lru);
1096 list_del_init(&page->lru);
1097 __free_pages(page, page->private);
1098 }
1099
1100 kfree(hctx->rqs);
1101
1102 if (hctx->tags)
1103 blk_mq_free_tags(hctx->tags);
1104 }
1105
1106 static size_t order_to_size(unsigned int order)
1107 {
1108 size_t ret = PAGE_SIZE;
1109
1110 while (order--)
1111 ret *= 2;
1112
1113 return ret;
1114 }
1115
1116 static int blk_mq_init_rq_map(struct blk_mq_hw_ctx *hctx,
1117 unsigned int reserved_tags, int node)
1118 {
1119 unsigned int i, j, entries_per_page, max_order = 4;
1120 size_t rq_size, left;
1121
1122 INIT_LIST_HEAD(&hctx->page_list);
1123
1124 hctx->rqs = kmalloc_node(hctx->queue_depth * sizeof(struct request *),
1125 GFP_KERNEL, node);
1126 if (!hctx->rqs)
1127 return -ENOMEM;
1128
1129 /*
1130 * rq_size is the size of the request plus driver payload, rounded
1131 * to the cacheline size
1132 */
1133 rq_size = round_up(sizeof(struct request) + hctx->cmd_size,
1134 cache_line_size());
1135 left = rq_size * hctx->queue_depth;
1136
1137 for (i = 0; i < hctx->queue_depth;) {
1138 int this_order = max_order;
1139 struct page *page;
1140 int to_do;
1141 void *p;
1142
1143 while (left < order_to_size(this_order - 1) && this_order)
1144 this_order--;
1145
1146 do {
1147 page = alloc_pages_node(node, GFP_KERNEL, this_order);
1148 if (page)
1149 break;
1150 if (!this_order--)
1151 break;
1152 if (order_to_size(this_order) < rq_size)
1153 break;
1154 } while (1);
1155
1156 if (!page)
1157 break;
1158
1159 page->private = this_order;
1160 list_add_tail(&page->lru, &hctx->page_list);
1161
1162 p = page_address(page);
1163 entries_per_page = order_to_size(this_order) / rq_size;
1164 to_do = min(entries_per_page, hctx->queue_depth - i);
1165 left -= to_do * rq_size;
1166 for (j = 0; j < to_do; j++) {
1167 hctx->rqs[i] = p;
1168 blk_mq_rq_init(hctx, hctx->rqs[i]);
1169 p += rq_size;
1170 i++;
1171 }
1172 }
1173
1174 if (i < (reserved_tags + BLK_MQ_TAG_MIN))
1175 goto err_rq_map;
1176 else if (i != hctx->queue_depth) {
1177 hctx->queue_depth = i;
1178 pr_warn("%s: queue depth set to %u because of low memory\n",
1179 __func__, i);
1180 }
1181
1182 hctx->tags = blk_mq_init_tags(hctx->queue_depth, reserved_tags, node);
1183 if (!hctx->tags) {
1184 err_rq_map:
1185 blk_mq_free_rq_map(hctx);
1186 return -ENOMEM;
1187 }
1188
1189 return 0;
1190 }
1191
1192 static int blk_mq_init_hw_queues(struct request_queue *q,
1193 struct blk_mq_reg *reg, void *driver_data)
1194 {
1195 struct blk_mq_hw_ctx *hctx;
1196 unsigned int i, j;
1197
1198 /*
1199 * Initialize hardware queues
1200 */
1201 queue_for_each_hw_ctx(q, hctx, i) {
1202 unsigned int num_maps;
1203 int node;
1204
1205 node = hctx->numa_node;
1206 if (node == NUMA_NO_NODE)
1207 node = hctx->numa_node = reg->numa_node;
1208
1209 INIT_DELAYED_WORK(&hctx->delayed_work, blk_mq_work_fn);
1210 spin_lock_init(&hctx->lock);
1211 INIT_LIST_HEAD(&hctx->dispatch);
1212 hctx->queue = q;
1213 hctx->queue_num = i;
1214 hctx->flags = reg->flags;
1215 hctx->queue_depth = reg->queue_depth;
1216 hctx->cmd_size = reg->cmd_size;
1217
1218 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1219 blk_mq_hctx_notify, hctx);
1220 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1221
1222 if (blk_mq_init_rq_map(hctx, reg->reserved_tags, node))
1223 break;
1224
1225 /*
1226 * Allocate space for all possible cpus to avoid allocation in
1227 * runtime
1228 */
1229 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1230 GFP_KERNEL, node);
1231 if (!hctx->ctxs)
1232 break;
1233
1234 num_maps = ALIGN(nr_cpu_ids, BITS_PER_LONG) / BITS_PER_LONG;
1235 hctx->ctx_map = kzalloc_node(num_maps * sizeof(unsigned long),
1236 GFP_KERNEL, node);
1237 if (!hctx->ctx_map)
1238 break;
1239
1240 hctx->nr_ctx_map = num_maps;
1241 hctx->nr_ctx = 0;
1242
1243 if (reg->ops->init_hctx &&
1244 reg->ops->init_hctx(hctx, driver_data, i))
1245 break;
1246 }
1247
1248 if (i == q->nr_hw_queues)
1249 return 0;
1250
1251 /*
1252 * Init failed
1253 */
1254 queue_for_each_hw_ctx(q, hctx, j) {
1255 if (i == j)
1256 break;
1257
1258 if (reg->ops->exit_hctx)
1259 reg->ops->exit_hctx(hctx, j);
1260
1261 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1262 blk_mq_free_rq_map(hctx);
1263 kfree(hctx->ctxs);
1264 }
1265
1266 return 1;
1267 }
1268
1269 static void blk_mq_init_cpu_queues(struct request_queue *q,
1270 unsigned int nr_hw_queues)
1271 {
1272 unsigned int i;
1273
1274 for_each_possible_cpu(i) {
1275 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1276 struct blk_mq_hw_ctx *hctx;
1277
1278 memset(__ctx, 0, sizeof(*__ctx));
1279 __ctx->cpu = i;
1280 spin_lock_init(&__ctx->lock);
1281 INIT_LIST_HEAD(&__ctx->rq_list);
1282 __ctx->queue = q;
1283
1284 /* If the cpu isn't online, the cpu is mapped to first hctx */
1285 if (!cpu_online(i))
1286 continue;
1287
1288 hctx = q->mq_ops->map_queue(q, i);
1289 cpumask_set_cpu(i, hctx->cpumask);
1290 hctx->nr_ctx++;
1291
1292 /*
1293 * Set local node, IFF we have more than one hw queue. If
1294 * not, we remain on the home node of the device
1295 */
1296 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1297 hctx->numa_node = cpu_to_node(i);
1298 }
1299 }
1300
1301 static void blk_mq_map_swqueue(struct request_queue *q)
1302 {
1303 unsigned int i;
1304 struct blk_mq_hw_ctx *hctx;
1305 struct blk_mq_ctx *ctx;
1306
1307 queue_for_each_hw_ctx(q, hctx, i) {
1308 cpumask_clear(hctx->cpumask);
1309 hctx->nr_ctx = 0;
1310 }
1311
1312 /*
1313 * Map software to hardware queues
1314 */
1315 queue_for_each_ctx(q, ctx, i) {
1316 /* If the cpu isn't online, the cpu is mapped to first hctx */
1317 if (!cpu_online(i))
1318 continue;
1319
1320 hctx = q->mq_ops->map_queue(q, i);
1321 cpumask_set_cpu(i, hctx->cpumask);
1322 ctx->index_hw = hctx->nr_ctx;
1323 hctx->ctxs[hctx->nr_ctx++] = ctx;
1324 }
1325 }
1326
1327 struct request_queue *blk_mq_init_queue(struct blk_mq_reg *reg,
1328 void *driver_data)
1329 {
1330 struct blk_mq_hw_ctx **hctxs;
1331 struct blk_mq_ctx *ctx;
1332 struct request_queue *q;
1333 int i;
1334
1335 if (!reg->nr_hw_queues ||
1336 !reg->ops->queue_rq || !reg->ops->map_queue ||
1337 !reg->ops->alloc_hctx || !reg->ops->free_hctx)
1338 return ERR_PTR(-EINVAL);
1339
1340 if (!reg->queue_depth)
1341 reg->queue_depth = BLK_MQ_MAX_DEPTH;
1342 else if (reg->queue_depth > BLK_MQ_MAX_DEPTH) {
1343 pr_err("blk-mq: queuedepth too large (%u)\n", reg->queue_depth);
1344 reg->queue_depth = BLK_MQ_MAX_DEPTH;
1345 }
1346
1347 if (reg->queue_depth < (reg->reserved_tags + BLK_MQ_TAG_MIN))
1348 return ERR_PTR(-EINVAL);
1349
1350 ctx = alloc_percpu(struct blk_mq_ctx);
1351 if (!ctx)
1352 return ERR_PTR(-ENOMEM);
1353
1354 hctxs = kmalloc_node(reg->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1355 reg->numa_node);
1356
1357 if (!hctxs)
1358 goto err_percpu;
1359
1360 for (i = 0; i < reg->nr_hw_queues; i++) {
1361 hctxs[i] = reg->ops->alloc_hctx(reg, i);
1362 if (!hctxs[i])
1363 goto err_hctxs;
1364
1365 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1366 goto err_hctxs;
1367
1368 hctxs[i]->numa_node = NUMA_NO_NODE;
1369 hctxs[i]->queue_num = i;
1370 }
1371
1372 q = blk_alloc_queue_node(GFP_KERNEL, reg->numa_node);
1373 if (!q)
1374 goto err_hctxs;
1375
1376 q->mq_map = blk_mq_make_queue_map(reg);
1377 if (!q->mq_map)
1378 goto err_map;
1379
1380 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1381 blk_queue_rq_timeout(q, 30000);
1382
1383 q->nr_queues = nr_cpu_ids;
1384 q->nr_hw_queues = reg->nr_hw_queues;
1385
1386 q->queue_ctx = ctx;
1387 q->queue_hw_ctx = hctxs;
1388
1389 q->mq_ops = reg->ops;
1390 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1391
1392 q->sg_reserved_size = INT_MAX;
1393
1394 blk_queue_make_request(q, blk_mq_make_request);
1395 blk_queue_rq_timed_out(q, reg->ops->timeout);
1396 if (reg->timeout)
1397 blk_queue_rq_timeout(q, reg->timeout);
1398
1399 if (reg->ops->complete)
1400 blk_queue_softirq_done(q, reg->ops->complete);
1401
1402 blk_mq_init_flush(q);
1403 blk_mq_init_cpu_queues(q, reg->nr_hw_queues);
1404
1405 q->flush_rq = kzalloc(round_up(sizeof(struct request) + reg->cmd_size,
1406 cache_line_size()), GFP_KERNEL);
1407 if (!q->flush_rq)
1408 goto err_hw;
1409
1410 if (blk_mq_init_hw_queues(q, reg, driver_data))
1411 goto err_flush_rq;
1412
1413 blk_mq_map_swqueue(q);
1414
1415 mutex_lock(&all_q_mutex);
1416 list_add_tail(&q->all_q_node, &all_q_list);
1417 mutex_unlock(&all_q_mutex);
1418
1419 return q;
1420
1421 err_flush_rq:
1422 kfree(q->flush_rq);
1423 err_hw:
1424 kfree(q->mq_map);
1425 err_map:
1426 blk_cleanup_queue(q);
1427 err_hctxs:
1428 for (i = 0; i < reg->nr_hw_queues; i++) {
1429 if (!hctxs[i])
1430 break;
1431 free_cpumask_var(hctxs[i]->cpumask);
1432 reg->ops->free_hctx(hctxs[i], i);
1433 }
1434 kfree(hctxs);
1435 err_percpu:
1436 free_percpu(ctx);
1437 return ERR_PTR(-ENOMEM);
1438 }
1439 EXPORT_SYMBOL(blk_mq_init_queue);
1440
1441 void blk_mq_free_queue(struct request_queue *q)
1442 {
1443 struct blk_mq_hw_ctx *hctx;
1444 int i;
1445
1446 queue_for_each_hw_ctx(q, hctx, i) {
1447 kfree(hctx->ctx_map);
1448 kfree(hctx->ctxs);
1449 blk_mq_free_rq_map(hctx);
1450 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1451 if (q->mq_ops->exit_hctx)
1452 q->mq_ops->exit_hctx(hctx, i);
1453 free_cpumask_var(hctx->cpumask);
1454 q->mq_ops->free_hctx(hctx, i);
1455 }
1456
1457 free_percpu(q->queue_ctx);
1458 kfree(q->queue_hw_ctx);
1459 kfree(q->mq_map);
1460
1461 q->queue_ctx = NULL;
1462 q->queue_hw_ctx = NULL;
1463 q->mq_map = NULL;
1464
1465 mutex_lock(&all_q_mutex);
1466 list_del_init(&q->all_q_node);
1467 mutex_unlock(&all_q_mutex);
1468 }
1469
1470 /* Basically redo blk_mq_init_queue with queue frozen */
1471 static void blk_mq_queue_reinit(struct request_queue *q)
1472 {
1473 blk_mq_freeze_queue(q);
1474
1475 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1476
1477 /*
1478 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1479 * we should change hctx numa_node according to new topology (this
1480 * involves free and re-allocate memory, worthy doing?)
1481 */
1482
1483 blk_mq_map_swqueue(q);
1484
1485 blk_mq_unfreeze_queue(q);
1486 }
1487
1488 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1489 unsigned long action, void *hcpu)
1490 {
1491 struct request_queue *q;
1492
1493 /*
1494 * Before new mapping is established, hotadded cpu might already start
1495 * handling requests. This doesn't break anything as we map offline
1496 * CPUs to first hardware queue. We will re-init queue below to get
1497 * optimal settings.
1498 */
1499 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1500 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1501 return NOTIFY_OK;
1502
1503 mutex_lock(&all_q_mutex);
1504 list_for_each_entry(q, &all_q_list, all_q_node)
1505 blk_mq_queue_reinit(q);
1506 mutex_unlock(&all_q_mutex);
1507 return NOTIFY_OK;
1508 }
1509
1510 void blk_mq_disable_hotplug(void)
1511 {
1512 mutex_lock(&all_q_mutex);
1513 }
1514
1515 void blk_mq_enable_hotplug(void)
1516 {
1517 mutex_unlock(&all_q_mutex);
1518 }
1519
1520 static int __init blk_mq_init(void)
1521 {
1522 blk_mq_cpu_init();
1523
1524 /* Must be called after percpu_counter_hotcpu_callback() */
1525 hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
1526
1527 return 0;
1528 }
1529 subsys_initcall(blk_mq_init);
This page took 0.068416 seconds and 4 git commands to generate.