blk-mq: implement new and more efficient tagging scheme
[deliverable/linux.git] / block / blk-mq.c
1 #include <linux/kernel.h>
2 #include <linux/module.h>
3 #include <linux/backing-dev.h>
4 #include <linux/bio.h>
5 #include <linux/blkdev.h>
6 #include <linux/mm.h>
7 #include <linux/init.h>
8 #include <linux/slab.h>
9 #include <linux/workqueue.h>
10 #include <linux/smp.h>
11 #include <linux/llist.h>
12 #include <linux/list_sort.h>
13 #include <linux/cpu.h>
14 #include <linux/cache.h>
15 #include <linux/sched/sysctl.h>
16 #include <linux/delay.h>
17
18 #include <trace/events/block.h>
19
20 #include <linux/blk-mq.h>
21 #include "blk.h"
22 #include "blk-mq.h"
23 #include "blk-mq-tag.h"
24
25 static DEFINE_MUTEX(all_q_mutex);
26 static LIST_HEAD(all_q_list);
27
28 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
29
30 static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
31 unsigned int cpu)
32 {
33 return per_cpu_ptr(q->queue_ctx, cpu);
34 }
35
36 /*
37 * This assumes per-cpu software queueing queues. They could be per-node
38 * as well, for instance. For now this is hardcoded as-is. Note that we don't
39 * care about preemption, since we know the ctx's are persistent. This does
40 * mean that we can't rely on ctx always matching the currently running CPU.
41 */
42 static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
43 {
44 return __blk_mq_get_ctx(q, get_cpu());
45 }
46
47 static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
48 {
49 put_cpu();
50 }
51
52 /*
53 * Check if any of the ctx's have pending work in this hardware queue
54 */
55 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
56 {
57 unsigned int i;
58
59 for (i = 0; i < hctx->nr_ctx_map; i++)
60 if (hctx->ctx_map[i])
61 return true;
62
63 return false;
64 }
65
66 /*
67 * Mark this ctx as having pending work in this hardware queue
68 */
69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
70 struct blk_mq_ctx *ctx)
71 {
72 if (!test_bit(ctx->index_hw, hctx->ctx_map))
73 set_bit(ctx->index_hw, hctx->ctx_map);
74 }
75
76 static struct request *__blk_mq_alloc_request(struct blk_mq_hw_ctx *hctx,
77 struct blk_mq_ctx *ctx,
78 gfp_t gfp, bool reserved)
79 {
80 struct request *rq;
81 unsigned int tag;
82
83 tag = blk_mq_get_tag(hctx->tags, hctx, &ctx->last_tag, gfp, reserved);
84 if (tag != BLK_MQ_TAG_FAIL) {
85 rq = hctx->tags->rqs[tag];
86 rq->tag = tag;
87 return rq;
88 }
89
90 return NULL;
91 }
92
93 static int blk_mq_queue_enter(struct request_queue *q)
94 {
95 int ret;
96
97 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
98 smp_wmb();
99 /* we have problems to freeze the queue if it's initializing */
100 if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
101 return 0;
102
103 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
104
105 spin_lock_irq(q->queue_lock);
106 ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
107 !blk_queue_bypass(q) || blk_queue_dying(q),
108 *q->queue_lock);
109 /* inc usage with lock hold to avoid freeze_queue runs here */
110 if (!ret && !blk_queue_dying(q))
111 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
112 else if (blk_queue_dying(q))
113 ret = -ENODEV;
114 spin_unlock_irq(q->queue_lock);
115
116 return ret;
117 }
118
119 static void blk_mq_queue_exit(struct request_queue *q)
120 {
121 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
122 }
123
124 static void __blk_mq_drain_queue(struct request_queue *q)
125 {
126 while (true) {
127 s64 count;
128
129 spin_lock_irq(q->queue_lock);
130 count = percpu_counter_sum(&q->mq_usage_counter);
131 spin_unlock_irq(q->queue_lock);
132
133 if (count == 0)
134 break;
135 blk_mq_run_queues(q, false);
136 msleep(10);
137 }
138 }
139
140 /*
141 * Guarantee no request is in use, so we can change any data structure of
142 * the queue afterward.
143 */
144 static void blk_mq_freeze_queue(struct request_queue *q)
145 {
146 bool drain;
147
148 spin_lock_irq(q->queue_lock);
149 drain = !q->bypass_depth++;
150 queue_flag_set(QUEUE_FLAG_BYPASS, q);
151 spin_unlock_irq(q->queue_lock);
152
153 if (drain)
154 __blk_mq_drain_queue(q);
155 }
156
157 void blk_mq_drain_queue(struct request_queue *q)
158 {
159 __blk_mq_drain_queue(q);
160 }
161
162 static void blk_mq_unfreeze_queue(struct request_queue *q)
163 {
164 bool wake = false;
165
166 spin_lock_irq(q->queue_lock);
167 if (!--q->bypass_depth) {
168 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
169 wake = true;
170 }
171 WARN_ON_ONCE(q->bypass_depth < 0);
172 spin_unlock_irq(q->queue_lock);
173 if (wake)
174 wake_up_all(&q->mq_freeze_wq);
175 }
176
177 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
178 {
179 return blk_mq_has_free_tags(hctx->tags);
180 }
181 EXPORT_SYMBOL(blk_mq_can_queue);
182
183 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
184 struct request *rq, unsigned int rw_flags)
185 {
186 if (blk_queue_io_stat(q))
187 rw_flags |= REQ_IO_STAT;
188
189 INIT_LIST_HEAD(&rq->queuelist);
190 /* csd/requeue_work/fifo_time is initialized before use */
191 rq->q = q;
192 rq->mq_ctx = ctx;
193 rq->cmd_flags = rw_flags;
194 rq->cmd_type = 0;
195 /* do not touch atomic flags, it needs atomic ops against the timer */
196 rq->cpu = -1;
197 rq->__data_len = 0;
198 rq->__sector = (sector_t) -1;
199 rq->bio = NULL;
200 rq->biotail = NULL;
201 INIT_HLIST_NODE(&rq->hash);
202 RB_CLEAR_NODE(&rq->rb_node);
203 memset(&rq->flush, 0, max(sizeof(rq->flush), sizeof(rq->elv)));
204 rq->rq_disk = NULL;
205 rq->part = NULL;
206 rq->start_time = jiffies;
207 #ifdef CONFIG_BLK_CGROUP
208 rq->rl = NULL;
209 set_start_time_ns(rq);
210 rq->io_start_time_ns = 0;
211 #endif
212 rq->nr_phys_segments = 0;
213 #if defined(CONFIG_BLK_DEV_INTEGRITY)
214 rq->nr_integrity_segments = 0;
215 #endif
216 rq->ioprio = 0;
217 rq->special = NULL;
218 /* tag was already set */
219 rq->errors = 0;
220 memset(rq->__cmd, 0, sizeof(rq->__cmd));
221 rq->cmd = rq->__cmd;
222 rq->cmd_len = BLK_MAX_CDB;
223
224 rq->extra_len = 0;
225 rq->sense_len = 0;
226 rq->resid_len = 0;
227 rq->sense = NULL;
228
229 rq->deadline = 0;
230 INIT_LIST_HEAD(&rq->timeout_list);
231 rq->timeout = 0;
232 rq->retries = 0;
233 rq->end_io = NULL;
234 rq->end_io_data = NULL;
235 rq->next_rq = NULL;
236
237 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
238 }
239
240 static struct request *blk_mq_alloc_request_pinned(struct request_queue *q,
241 int rw, gfp_t gfp,
242 bool reserved)
243 {
244 struct request *rq;
245
246 do {
247 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
248 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);
249
250 rq = __blk_mq_alloc_request(hctx, ctx, gfp & ~__GFP_WAIT,
251 reserved);
252 if (rq) {
253 blk_mq_rq_ctx_init(q, ctx, rq, rw);
254 break;
255 }
256
257 if (gfp & __GFP_WAIT) {
258 __blk_mq_run_hw_queue(hctx);
259 blk_mq_put_ctx(ctx);
260 } else {
261 blk_mq_put_ctx(ctx);
262 break;
263 }
264
265 blk_mq_wait_for_tags(hctx->tags, hctx, reserved);
266 } while (1);
267
268 return rq;
269 }
270
271 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp)
272 {
273 struct request *rq;
274
275 if (blk_mq_queue_enter(q))
276 return NULL;
277
278 rq = blk_mq_alloc_request_pinned(q, rw, gfp, false);
279 if (rq)
280 blk_mq_put_ctx(rq->mq_ctx);
281 return rq;
282 }
283 EXPORT_SYMBOL(blk_mq_alloc_request);
284
285 struct request *blk_mq_alloc_reserved_request(struct request_queue *q, int rw,
286 gfp_t gfp)
287 {
288 struct request *rq;
289
290 if (blk_mq_queue_enter(q))
291 return NULL;
292
293 rq = blk_mq_alloc_request_pinned(q, rw, gfp, true);
294 if (rq)
295 blk_mq_put_ctx(rq->mq_ctx);
296 return rq;
297 }
298 EXPORT_SYMBOL(blk_mq_alloc_reserved_request);
299
300 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
301 struct blk_mq_ctx *ctx, struct request *rq)
302 {
303 const int tag = rq->tag;
304 struct request_queue *q = rq->q;
305
306 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
307 blk_mq_put_tag(hctx->tags, tag, &ctx->last_tag);
308 blk_mq_queue_exit(q);
309 }
310
311 void blk_mq_free_request(struct request *rq)
312 {
313 struct blk_mq_ctx *ctx = rq->mq_ctx;
314 struct blk_mq_hw_ctx *hctx;
315 struct request_queue *q = rq->q;
316
317 ctx->rq_completed[rq_is_sync(rq)]++;
318
319 hctx = q->mq_ops->map_queue(q, ctx->cpu);
320 __blk_mq_free_request(hctx, ctx, rq);
321 }
322
323 /*
324 * Clone all relevant state from a request that has been put on hold in
325 * the flush state machine into the preallocated flush request that hangs
326 * off the request queue.
327 *
328 * For a driver the flush request should be invisible, that's why we are
329 * impersonating the original request here.
330 */
331 void blk_mq_clone_flush_request(struct request *flush_rq,
332 struct request *orig_rq)
333 {
334 struct blk_mq_hw_ctx *hctx =
335 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
336
337 flush_rq->mq_ctx = orig_rq->mq_ctx;
338 flush_rq->tag = orig_rq->tag;
339 memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
340 hctx->cmd_size);
341 }
342
343 inline void __blk_mq_end_io(struct request *rq, int error)
344 {
345 blk_account_io_done(rq);
346
347 if (rq->end_io) {
348 rq->end_io(rq, error);
349 } else {
350 if (unlikely(blk_bidi_rq(rq)))
351 blk_mq_free_request(rq->next_rq);
352 blk_mq_free_request(rq);
353 }
354 }
355 EXPORT_SYMBOL(__blk_mq_end_io);
356
357 void blk_mq_end_io(struct request *rq, int error)
358 {
359 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
360 BUG();
361 __blk_mq_end_io(rq, error);
362 }
363 EXPORT_SYMBOL(blk_mq_end_io);
364
365 static void __blk_mq_complete_request_remote(void *data)
366 {
367 struct request *rq = data;
368
369 rq->q->softirq_done_fn(rq);
370 }
371
372 void __blk_mq_complete_request(struct request *rq)
373 {
374 struct blk_mq_ctx *ctx = rq->mq_ctx;
375 bool shared = false;
376 int cpu;
377
378 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
379 rq->q->softirq_done_fn(rq);
380 return;
381 }
382
383 cpu = get_cpu();
384 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
385 shared = cpus_share_cache(cpu, ctx->cpu);
386
387 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
388 rq->csd.func = __blk_mq_complete_request_remote;
389 rq->csd.info = rq;
390 rq->csd.flags = 0;
391 smp_call_function_single_async(ctx->cpu, &rq->csd);
392 } else {
393 rq->q->softirq_done_fn(rq);
394 }
395 put_cpu();
396 }
397
398 /**
399 * blk_mq_complete_request - end I/O on a request
400 * @rq: the request being processed
401 *
402 * Description:
403 * Ends all I/O on a request. It does not handle partial completions.
404 * The actual completion happens out-of-order, through a IPI handler.
405 **/
406 void blk_mq_complete_request(struct request *rq)
407 {
408 if (unlikely(blk_should_fake_timeout(rq->q)))
409 return;
410 if (!blk_mark_rq_complete(rq))
411 __blk_mq_complete_request(rq);
412 }
413 EXPORT_SYMBOL(blk_mq_complete_request);
414
415 static void blk_mq_start_request(struct request *rq, bool last)
416 {
417 struct request_queue *q = rq->q;
418
419 trace_block_rq_issue(q, rq);
420
421 rq->resid_len = blk_rq_bytes(rq);
422 if (unlikely(blk_bidi_rq(rq)))
423 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
424
425 /*
426 * Just mark start time and set the started bit. Due to memory
427 * ordering, we know we'll see the correct deadline as long as
428 * REQ_ATOMIC_STARTED is seen.
429 */
430 rq->deadline = jiffies + q->rq_timeout;
431
432 /*
433 * Mark us as started and clear complete. Complete might have been
434 * set if requeue raced with timeout, which then marked it as
435 * complete. So be sure to clear complete again when we start
436 * the request, otherwise we'll ignore the completion event.
437 */
438 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
439 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
440
441 if (q->dma_drain_size && blk_rq_bytes(rq)) {
442 /*
443 * Make sure space for the drain appears. We know we can do
444 * this because max_hw_segments has been adjusted to be one
445 * fewer than the device can handle.
446 */
447 rq->nr_phys_segments++;
448 }
449
450 /*
451 * Flag the last request in the series so that drivers know when IO
452 * should be kicked off, if they don't do it on a per-request basis.
453 *
454 * Note: the flag isn't the only condition drivers should do kick off.
455 * If drive is busy, the last request might not have the bit set.
456 */
457 if (last)
458 rq->cmd_flags |= REQ_END;
459 }
460
461 static void __blk_mq_requeue_request(struct request *rq)
462 {
463 struct request_queue *q = rq->q;
464
465 trace_block_rq_requeue(q, rq);
466 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
467
468 rq->cmd_flags &= ~REQ_END;
469
470 if (q->dma_drain_size && blk_rq_bytes(rq))
471 rq->nr_phys_segments--;
472 }
473
474 void blk_mq_requeue_request(struct request *rq)
475 {
476 __blk_mq_requeue_request(rq);
477 blk_clear_rq_complete(rq);
478
479 BUG_ON(blk_queued_rq(rq));
480 blk_mq_insert_request(rq, true, true, false);
481 }
482 EXPORT_SYMBOL(blk_mq_requeue_request);
483
484 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
485 {
486 return tags->rqs[tag];
487 }
488 EXPORT_SYMBOL(blk_mq_tag_to_rq);
489
490 struct blk_mq_timeout_data {
491 struct blk_mq_hw_ctx *hctx;
492 unsigned long *next;
493 unsigned int *next_set;
494 };
495
496 static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
497 {
498 struct blk_mq_timeout_data *data = __data;
499 struct blk_mq_hw_ctx *hctx = data->hctx;
500 unsigned int tag;
501
502 /* It may not be in flight yet (this is where
503 * the REQ_ATOMIC_STARTED flag comes in). The requests are
504 * statically allocated, so we know it's always safe to access the
505 * memory associated with a bit offset into ->rqs[].
506 */
507 tag = 0;
508 do {
509 struct request *rq;
510
511 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
512 if (tag >= hctx->tags->nr_tags)
513 break;
514
515 rq = blk_mq_tag_to_rq(hctx->tags, tag++);
516 if (rq->q != hctx->queue)
517 continue;
518 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
519 continue;
520
521 blk_rq_check_expired(rq, data->next, data->next_set);
522 } while (1);
523 }
524
525 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
526 unsigned long *next,
527 unsigned int *next_set)
528 {
529 struct blk_mq_timeout_data data = {
530 .hctx = hctx,
531 .next = next,
532 .next_set = next_set,
533 };
534
535 /*
536 * Ask the tagging code to iterate busy requests, so we can
537 * check them for timeout.
538 */
539 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
540 }
541
542 static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
543 {
544 struct request_queue *q = rq->q;
545
546 /*
547 * We know that complete is set at this point. If STARTED isn't set
548 * anymore, then the request isn't active and the "timeout" should
549 * just be ignored. This can happen due to the bitflag ordering.
550 * Timeout first checks if STARTED is set, and if it is, assumes
551 * the request is active. But if we race with completion, then
552 * we both flags will get cleared. So check here again, and ignore
553 * a timeout event with a request that isn't active.
554 */
555 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
556 return BLK_EH_NOT_HANDLED;
557
558 if (!q->mq_ops->timeout)
559 return BLK_EH_RESET_TIMER;
560
561 return q->mq_ops->timeout(rq);
562 }
563
564 static void blk_mq_rq_timer(unsigned long data)
565 {
566 struct request_queue *q = (struct request_queue *) data;
567 struct blk_mq_hw_ctx *hctx;
568 unsigned long next = 0;
569 int i, next_set = 0;
570
571 queue_for_each_hw_ctx(q, hctx, i)
572 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
573
574 if (next_set)
575 mod_timer(&q->timeout, round_jiffies_up(next));
576 }
577
578 /*
579 * Reverse check our software queue for entries that we could potentially
580 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
581 * too much time checking for merges.
582 */
583 static bool blk_mq_attempt_merge(struct request_queue *q,
584 struct blk_mq_ctx *ctx, struct bio *bio)
585 {
586 struct request *rq;
587 int checked = 8;
588
589 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
590 int el_ret;
591
592 if (!checked--)
593 break;
594
595 if (!blk_rq_merge_ok(rq, bio))
596 continue;
597
598 el_ret = blk_try_merge(rq, bio);
599 if (el_ret == ELEVATOR_BACK_MERGE) {
600 if (bio_attempt_back_merge(q, rq, bio)) {
601 ctx->rq_merged++;
602 return true;
603 }
604 break;
605 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
606 if (bio_attempt_front_merge(q, rq, bio)) {
607 ctx->rq_merged++;
608 return true;
609 }
610 break;
611 }
612 }
613
614 return false;
615 }
616
617 /*
618 * Run this hardware queue, pulling any software queues mapped to it in.
619 * Note that this function currently has various problems around ordering
620 * of IO. In particular, we'd like FIFO behaviour on handling existing
621 * items on the hctx->dispatch list. Ignore that for now.
622 */
623 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
624 {
625 struct request_queue *q = hctx->queue;
626 struct blk_mq_ctx *ctx;
627 struct request *rq;
628 LIST_HEAD(rq_list);
629 int bit, queued;
630
631 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
632
633 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
634 return;
635
636 hctx->run++;
637
638 /*
639 * Touch any software queue that has pending entries.
640 */
641 for_each_set_bit(bit, hctx->ctx_map, hctx->nr_ctx) {
642 clear_bit(bit, hctx->ctx_map);
643 ctx = hctx->ctxs[bit];
644
645 spin_lock(&ctx->lock);
646 list_splice_tail_init(&ctx->rq_list, &rq_list);
647 spin_unlock(&ctx->lock);
648 }
649
650 /*
651 * If we have previous entries on our dispatch list, grab them
652 * and stuff them at the front for more fair dispatch.
653 */
654 if (!list_empty_careful(&hctx->dispatch)) {
655 spin_lock(&hctx->lock);
656 if (!list_empty(&hctx->dispatch))
657 list_splice_init(&hctx->dispatch, &rq_list);
658 spin_unlock(&hctx->lock);
659 }
660
661 /*
662 * Delete and return all entries from our dispatch list
663 */
664 queued = 0;
665
666 /*
667 * Now process all the entries, sending them to the driver.
668 */
669 while (!list_empty(&rq_list)) {
670 int ret;
671
672 rq = list_first_entry(&rq_list, struct request, queuelist);
673 list_del_init(&rq->queuelist);
674
675 blk_mq_start_request(rq, list_empty(&rq_list));
676
677 ret = q->mq_ops->queue_rq(hctx, rq);
678 switch (ret) {
679 case BLK_MQ_RQ_QUEUE_OK:
680 queued++;
681 continue;
682 case BLK_MQ_RQ_QUEUE_BUSY:
683 list_add(&rq->queuelist, &rq_list);
684 __blk_mq_requeue_request(rq);
685 break;
686 default:
687 pr_err("blk-mq: bad return on queue: %d\n", ret);
688 case BLK_MQ_RQ_QUEUE_ERROR:
689 rq->errors = -EIO;
690 blk_mq_end_io(rq, rq->errors);
691 break;
692 }
693
694 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
695 break;
696 }
697
698 if (!queued)
699 hctx->dispatched[0]++;
700 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
701 hctx->dispatched[ilog2(queued) + 1]++;
702
703 /*
704 * Any items that need requeuing? Stuff them into hctx->dispatch,
705 * that is where we will continue on next queue run.
706 */
707 if (!list_empty(&rq_list)) {
708 spin_lock(&hctx->lock);
709 list_splice(&rq_list, &hctx->dispatch);
710 spin_unlock(&hctx->lock);
711 }
712 }
713
714 /*
715 * It'd be great if the workqueue API had a way to pass
716 * in a mask and had some smarts for more clever placement.
717 * For now we just round-robin here, switching for every
718 * BLK_MQ_CPU_WORK_BATCH queued items.
719 */
720 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
721 {
722 int cpu = hctx->next_cpu;
723
724 if (--hctx->next_cpu_batch <= 0) {
725 int next_cpu;
726
727 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
728 if (next_cpu >= nr_cpu_ids)
729 next_cpu = cpumask_first(hctx->cpumask);
730
731 hctx->next_cpu = next_cpu;
732 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
733 }
734
735 return cpu;
736 }
737
738 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
739 {
740 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
741 return;
742
743 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
744 __blk_mq_run_hw_queue(hctx);
745 else if (hctx->queue->nr_hw_queues == 1)
746 kblockd_schedule_delayed_work(&hctx->run_work, 0);
747 else {
748 unsigned int cpu;
749
750 cpu = blk_mq_hctx_next_cpu(hctx);
751 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
752 }
753 }
754
755 void blk_mq_run_queues(struct request_queue *q, bool async)
756 {
757 struct blk_mq_hw_ctx *hctx;
758 int i;
759
760 queue_for_each_hw_ctx(q, hctx, i) {
761 if ((!blk_mq_hctx_has_pending(hctx) &&
762 list_empty_careful(&hctx->dispatch)) ||
763 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
764 continue;
765
766 preempt_disable();
767 blk_mq_run_hw_queue(hctx, async);
768 preempt_enable();
769 }
770 }
771 EXPORT_SYMBOL(blk_mq_run_queues);
772
773 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
774 {
775 cancel_delayed_work(&hctx->run_work);
776 cancel_delayed_work(&hctx->delay_work);
777 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
778 }
779 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
780
781 void blk_mq_stop_hw_queues(struct request_queue *q)
782 {
783 struct blk_mq_hw_ctx *hctx;
784 int i;
785
786 queue_for_each_hw_ctx(q, hctx, i)
787 blk_mq_stop_hw_queue(hctx);
788 }
789 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
790
791 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
792 {
793 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
794
795 preempt_disable();
796 __blk_mq_run_hw_queue(hctx);
797 preempt_enable();
798 }
799 EXPORT_SYMBOL(blk_mq_start_hw_queue);
800
801 void blk_mq_start_hw_queues(struct request_queue *q)
802 {
803 struct blk_mq_hw_ctx *hctx;
804 int i;
805
806 queue_for_each_hw_ctx(q, hctx, i)
807 blk_mq_start_hw_queue(hctx);
808 }
809 EXPORT_SYMBOL(blk_mq_start_hw_queues);
810
811
812 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
813 {
814 struct blk_mq_hw_ctx *hctx;
815 int i;
816
817 queue_for_each_hw_ctx(q, hctx, i) {
818 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
819 continue;
820
821 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
822 preempt_disable();
823 blk_mq_run_hw_queue(hctx, async);
824 preempt_enable();
825 }
826 }
827 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
828
829 static void blk_mq_run_work_fn(struct work_struct *work)
830 {
831 struct blk_mq_hw_ctx *hctx;
832
833 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
834
835 __blk_mq_run_hw_queue(hctx);
836 }
837
838 static void blk_mq_delay_work_fn(struct work_struct *work)
839 {
840 struct blk_mq_hw_ctx *hctx;
841
842 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
843
844 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
845 __blk_mq_run_hw_queue(hctx);
846 }
847
848 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
849 {
850 unsigned long tmo = msecs_to_jiffies(msecs);
851
852 if (hctx->queue->nr_hw_queues == 1)
853 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
854 else {
855 unsigned int cpu;
856
857 cpu = blk_mq_hctx_next_cpu(hctx);
858 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
859 }
860 }
861 EXPORT_SYMBOL(blk_mq_delay_queue);
862
863 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
864 struct request *rq, bool at_head)
865 {
866 struct blk_mq_ctx *ctx = rq->mq_ctx;
867
868 trace_block_rq_insert(hctx->queue, rq);
869
870 if (at_head)
871 list_add(&rq->queuelist, &ctx->rq_list);
872 else
873 list_add_tail(&rq->queuelist, &ctx->rq_list);
874
875 blk_mq_hctx_mark_pending(hctx, ctx);
876
877 /*
878 * We do this early, to ensure we are on the right CPU.
879 */
880 blk_add_timer(rq);
881 }
882
883 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
884 bool async)
885 {
886 struct request_queue *q = rq->q;
887 struct blk_mq_hw_ctx *hctx;
888 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
889
890 current_ctx = blk_mq_get_ctx(q);
891 if (!cpu_online(ctx->cpu))
892 rq->mq_ctx = ctx = current_ctx;
893
894 hctx = q->mq_ops->map_queue(q, ctx->cpu);
895
896 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
897 !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
898 blk_insert_flush(rq);
899 } else {
900 spin_lock(&ctx->lock);
901 __blk_mq_insert_request(hctx, rq, at_head);
902 spin_unlock(&ctx->lock);
903 }
904
905 if (run_queue)
906 blk_mq_run_hw_queue(hctx, async);
907
908 blk_mq_put_ctx(current_ctx);
909 }
910
911 static void blk_mq_insert_requests(struct request_queue *q,
912 struct blk_mq_ctx *ctx,
913 struct list_head *list,
914 int depth,
915 bool from_schedule)
916
917 {
918 struct blk_mq_hw_ctx *hctx;
919 struct blk_mq_ctx *current_ctx;
920
921 trace_block_unplug(q, depth, !from_schedule);
922
923 current_ctx = blk_mq_get_ctx(q);
924
925 if (!cpu_online(ctx->cpu))
926 ctx = current_ctx;
927 hctx = q->mq_ops->map_queue(q, ctx->cpu);
928
929 /*
930 * preemption doesn't flush plug list, so it's possible ctx->cpu is
931 * offline now
932 */
933 spin_lock(&ctx->lock);
934 while (!list_empty(list)) {
935 struct request *rq;
936
937 rq = list_first_entry(list, struct request, queuelist);
938 list_del_init(&rq->queuelist);
939 rq->mq_ctx = ctx;
940 __blk_mq_insert_request(hctx, rq, false);
941 }
942 spin_unlock(&ctx->lock);
943
944 blk_mq_run_hw_queue(hctx, from_schedule);
945 blk_mq_put_ctx(current_ctx);
946 }
947
948 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
949 {
950 struct request *rqa = container_of(a, struct request, queuelist);
951 struct request *rqb = container_of(b, struct request, queuelist);
952
953 return !(rqa->mq_ctx < rqb->mq_ctx ||
954 (rqa->mq_ctx == rqb->mq_ctx &&
955 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
956 }
957
958 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
959 {
960 struct blk_mq_ctx *this_ctx;
961 struct request_queue *this_q;
962 struct request *rq;
963 LIST_HEAD(list);
964 LIST_HEAD(ctx_list);
965 unsigned int depth;
966
967 list_splice_init(&plug->mq_list, &list);
968
969 list_sort(NULL, &list, plug_ctx_cmp);
970
971 this_q = NULL;
972 this_ctx = NULL;
973 depth = 0;
974
975 while (!list_empty(&list)) {
976 rq = list_entry_rq(list.next);
977 list_del_init(&rq->queuelist);
978 BUG_ON(!rq->q);
979 if (rq->mq_ctx != this_ctx) {
980 if (this_ctx) {
981 blk_mq_insert_requests(this_q, this_ctx,
982 &ctx_list, depth,
983 from_schedule);
984 }
985
986 this_ctx = rq->mq_ctx;
987 this_q = rq->q;
988 depth = 0;
989 }
990
991 depth++;
992 list_add_tail(&rq->queuelist, &ctx_list);
993 }
994
995 /*
996 * If 'this_ctx' is set, we know we have entries to complete
997 * on 'ctx_list'. Do those.
998 */
999 if (this_ctx) {
1000 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1001 from_schedule);
1002 }
1003 }
1004
1005 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1006 {
1007 init_request_from_bio(rq, bio);
1008 blk_account_io_start(rq, 1);
1009 }
1010
1011 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1012 {
1013 struct blk_mq_hw_ctx *hctx;
1014 struct blk_mq_ctx *ctx;
1015 const int is_sync = rw_is_sync(bio->bi_rw);
1016 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1017 int rw = bio_data_dir(bio);
1018 struct request *rq;
1019 unsigned int use_plug, request_count = 0;
1020
1021 /*
1022 * If we have multiple hardware queues, just go directly to
1023 * one of those for sync IO.
1024 */
1025 use_plug = !is_flush_fua && ((q->nr_hw_queues == 1) || !is_sync);
1026
1027 blk_queue_bounce(q, &bio);
1028
1029 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1030 bio_endio(bio, -EIO);
1031 return;
1032 }
1033
1034 if (use_plug && blk_attempt_plug_merge(q, bio, &request_count))
1035 return;
1036
1037 if (blk_mq_queue_enter(q)) {
1038 bio_endio(bio, -EIO);
1039 return;
1040 }
1041
1042 ctx = blk_mq_get_ctx(q);
1043 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1044
1045 if (is_sync)
1046 rw |= REQ_SYNC;
1047 trace_block_getrq(q, bio, rw);
1048 rq = __blk_mq_alloc_request(hctx, ctx, GFP_ATOMIC, false);
1049 if (likely(rq))
1050 blk_mq_rq_ctx_init(q, ctx, rq, rw);
1051 else {
1052 blk_mq_put_ctx(ctx);
1053 trace_block_sleeprq(q, bio, rw);
1054 rq = blk_mq_alloc_request_pinned(q, rw, __GFP_WAIT|GFP_ATOMIC,
1055 false);
1056 ctx = rq->mq_ctx;
1057 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1058 }
1059
1060 hctx->queued++;
1061
1062 if (unlikely(is_flush_fua)) {
1063 blk_mq_bio_to_request(rq, bio);
1064 blk_insert_flush(rq);
1065 goto run_queue;
1066 }
1067
1068 /*
1069 * A task plug currently exists. Since this is completely lockless,
1070 * utilize that to temporarily store requests until the task is
1071 * either done or scheduled away.
1072 */
1073 if (use_plug) {
1074 struct blk_plug *plug = current->plug;
1075
1076 if (plug) {
1077 blk_mq_bio_to_request(rq, bio);
1078 if (list_empty(&plug->mq_list))
1079 trace_block_plug(q);
1080 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1081 blk_flush_plug_list(plug, false);
1082 trace_block_plug(q);
1083 }
1084 list_add_tail(&rq->queuelist, &plug->mq_list);
1085 blk_mq_put_ctx(ctx);
1086 return;
1087 }
1088 }
1089
1090 if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE)) {
1091 init_request_from_bio(rq, bio);
1092
1093 spin_lock(&ctx->lock);
1094 insert_rq:
1095 __blk_mq_insert_request(hctx, rq, false);
1096 spin_unlock(&ctx->lock);
1097 blk_account_io_start(rq, 1);
1098 } else {
1099 spin_lock(&ctx->lock);
1100 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1101 init_request_from_bio(rq, bio);
1102 goto insert_rq;
1103 }
1104
1105 spin_unlock(&ctx->lock);
1106 __blk_mq_free_request(hctx, ctx, rq);
1107 }
1108
1109
1110 /*
1111 * For a SYNC request, send it to the hardware immediately. For an
1112 * ASYNC request, just ensure that we run it later on. The latter
1113 * allows for merging opportunities and more efficient dispatching.
1114 */
1115 run_queue:
1116 blk_mq_run_hw_queue(hctx, !is_sync || is_flush_fua);
1117 blk_mq_put_ctx(ctx);
1118 }
1119
1120 /*
1121 * Default mapping to a software queue, since we use one per CPU.
1122 */
1123 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1124 {
1125 return q->queue_hw_ctx[q->mq_map[cpu]];
1126 }
1127 EXPORT_SYMBOL(blk_mq_map_queue);
1128
1129 struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_tag_set *set,
1130 unsigned int hctx_index)
1131 {
1132 return kzalloc_node(sizeof(struct blk_mq_hw_ctx), GFP_KERNEL,
1133 set->numa_node);
1134 }
1135 EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue);
1136
1137 void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx,
1138 unsigned int hctx_index)
1139 {
1140 kfree(hctx);
1141 }
1142 EXPORT_SYMBOL(blk_mq_free_single_hw_queue);
1143
1144 static void blk_mq_hctx_notify(void *data, unsigned long action,
1145 unsigned int cpu)
1146 {
1147 struct blk_mq_hw_ctx *hctx = data;
1148 struct request_queue *q = hctx->queue;
1149 struct blk_mq_ctx *ctx;
1150 LIST_HEAD(tmp);
1151
1152 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1153 return;
1154
1155 /*
1156 * Move ctx entries to new CPU, if this one is going away.
1157 */
1158 ctx = __blk_mq_get_ctx(q, cpu);
1159
1160 spin_lock(&ctx->lock);
1161 if (!list_empty(&ctx->rq_list)) {
1162 list_splice_init(&ctx->rq_list, &tmp);
1163 clear_bit(ctx->index_hw, hctx->ctx_map);
1164 }
1165 spin_unlock(&ctx->lock);
1166
1167 if (list_empty(&tmp))
1168 return;
1169
1170 ctx = blk_mq_get_ctx(q);
1171 spin_lock(&ctx->lock);
1172
1173 while (!list_empty(&tmp)) {
1174 struct request *rq;
1175
1176 rq = list_first_entry(&tmp, struct request, queuelist);
1177 rq->mq_ctx = ctx;
1178 list_move_tail(&rq->queuelist, &ctx->rq_list);
1179 }
1180
1181 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1182 blk_mq_hctx_mark_pending(hctx, ctx);
1183
1184 spin_unlock(&ctx->lock);
1185
1186 blk_mq_run_hw_queue(hctx, true);
1187 blk_mq_put_ctx(ctx);
1188 }
1189
1190 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1191 struct blk_mq_tags *tags, unsigned int hctx_idx)
1192 {
1193 struct page *page;
1194
1195 if (tags->rqs && set->ops->exit_request) {
1196 int i;
1197
1198 for (i = 0; i < tags->nr_tags; i++) {
1199 if (!tags->rqs[i])
1200 continue;
1201 set->ops->exit_request(set->driver_data, tags->rqs[i],
1202 hctx_idx, i);
1203 }
1204 }
1205
1206 while (!list_empty(&tags->page_list)) {
1207 page = list_first_entry(&tags->page_list, struct page, lru);
1208 list_del_init(&page->lru);
1209 __free_pages(page, page->private);
1210 }
1211
1212 kfree(tags->rqs);
1213
1214 blk_mq_free_tags(tags);
1215 }
1216
1217 static size_t order_to_size(unsigned int order)
1218 {
1219 return (size_t)PAGE_SIZE << order;
1220 }
1221
1222 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1223 unsigned int hctx_idx)
1224 {
1225 struct blk_mq_tags *tags;
1226 unsigned int i, j, entries_per_page, max_order = 4;
1227 size_t rq_size, left;
1228
1229 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1230 set->numa_node);
1231 if (!tags)
1232 return NULL;
1233
1234 INIT_LIST_HEAD(&tags->page_list);
1235
1236 tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *),
1237 GFP_KERNEL, set->numa_node);
1238 if (!tags->rqs) {
1239 blk_mq_free_tags(tags);
1240 return NULL;
1241 }
1242
1243 /*
1244 * rq_size is the size of the request plus driver payload, rounded
1245 * to the cacheline size
1246 */
1247 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1248 cache_line_size());
1249 left = rq_size * set->queue_depth;
1250
1251 for (i = 0; i < set->queue_depth; ) {
1252 int this_order = max_order;
1253 struct page *page;
1254 int to_do;
1255 void *p;
1256
1257 while (left < order_to_size(this_order - 1) && this_order)
1258 this_order--;
1259
1260 do {
1261 page = alloc_pages_node(set->numa_node, GFP_KERNEL,
1262 this_order);
1263 if (page)
1264 break;
1265 if (!this_order--)
1266 break;
1267 if (order_to_size(this_order) < rq_size)
1268 break;
1269 } while (1);
1270
1271 if (!page)
1272 goto fail;
1273
1274 page->private = this_order;
1275 list_add_tail(&page->lru, &tags->page_list);
1276
1277 p = page_address(page);
1278 entries_per_page = order_to_size(this_order) / rq_size;
1279 to_do = min(entries_per_page, set->queue_depth - i);
1280 left -= to_do * rq_size;
1281 for (j = 0; j < to_do; j++) {
1282 tags->rqs[i] = p;
1283 if (set->ops->init_request) {
1284 if (set->ops->init_request(set->driver_data,
1285 tags->rqs[i], hctx_idx, i,
1286 set->numa_node))
1287 goto fail;
1288 }
1289
1290 p += rq_size;
1291 i++;
1292 }
1293 }
1294
1295 return tags;
1296
1297 fail:
1298 pr_warn("%s: failed to allocate requests\n", __func__);
1299 blk_mq_free_rq_map(set, tags, hctx_idx);
1300 return NULL;
1301 }
1302
1303 static int blk_mq_init_hw_queues(struct request_queue *q,
1304 struct blk_mq_tag_set *set)
1305 {
1306 struct blk_mq_hw_ctx *hctx;
1307 unsigned int i, j;
1308
1309 /*
1310 * Initialize hardware queues
1311 */
1312 queue_for_each_hw_ctx(q, hctx, i) {
1313 unsigned int num_maps;
1314 int node;
1315
1316 node = hctx->numa_node;
1317 if (node == NUMA_NO_NODE)
1318 node = hctx->numa_node = set->numa_node;
1319
1320 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1321 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1322 spin_lock_init(&hctx->lock);
1323 INIT_LIST_HEAD(&hctx->dispatch);
1324 hctx->queue = q;
1325 hctx->queue_num = i;
1326 hctx->flags = set->flags;
1327 hctx->cmd_size = set->cmd_size;
1328
1329 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1330 blk_mq_hctx_notify, hctx);
1331 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1332
1333 hctx->tags = set->tags[i];
1334
1335 /*
1336 * Allocate space for all possible cpus to avoid allocation in
1337 * runtime
1338 */
1339 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1340 GFP_KERNEL, node);
1341 if (!hctx->ctxs)
1342 break;
1343
1344 num_maps = ALIGN(nr_cpu_ids, BITS_PER_LONG) / BITS_PER_LONG;
1345 hctx->ctx_map = kzalloc_node(num_maps * sizeof(unsigned long),
1346 GFP_KERNEL, node);
1347 if (!hctx->ctx_map)
1348 break;
1349
1350 hctx->nr_ctx_map = num_maps;
1351 hctx->nr_ctx = 0;
1352
1353 if (set->ops->init_hctx &&
1354 set->ops->init_hctx(hctx, set->driver_data, i))
1355 break;
1356 }
1357
1358 if (i == q->nr_hw_queues)
1359 return 0;
1360
1361 /*
1362 * Init failed
1363 */
1364 queue_for_each_hw_ctx(q, hctx, j) {
1365 if (i == j)
1366 break;
1367
1368 if (set->ops->exit_hctx)
1369 set->ops->exit_hctx(hctx, j);
1370
1371 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1372 kfree(hctx->ctxs);
1373 kfree(hctx->ctx_map);
1374 }
1375
1376 return 1;
1377 }
1378
1379 static void blk_mq_init_cpu_queues(struct request_queue *q,
1380 unsigned int nr_hw_queues)
1381 {
1382 unsigned int i;
1383
1384 for_each_possible_cpu(i) {
1385 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1386 struct blk_mq_hw_ctx *hctx;
1387
1388 memset(__ctx, 0, sizeof(*__ctx));
1389 __ctx->cpu = i;
1390 spin_lock_init(&__ctx->lock);
1391 INIT_LIST_HEAD(&__ctx->rq_list);
1392 __ctx->queue = q;
1393
1394 /* If the cpu isn't online, the cpu is mapped to first hctx */
1395 if (!cpu_online(i))
1396 continue;
1397
1398 hctx = q->mq_ops->map_queue(q, i);
1399 cpumask_set_cpu(i, hctx->cpumask);
1400 hctx->nr_ctx++;
1401
1402 /*
1403 * Set local node, IFF we have more than one hw queue. If
1404 * not, we remain on the home node of the device
1405 */
1406 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1407 hctx->numa_node = cpu_to_node(i);
1408 }
1409 }
1410
1411 static void blk_mq_map_swqueue(struct request_queue *q)
1412 {
1413 unsigned int i;
1414 struct blk_mq_hw_ctx *hctx;
1415 struct blk_mq_ctx *ctx;
1416
1417 queue_for_each_hw_ctx(q, hctx, i) {
1418 cpumask_clear(hctx->cpumask);
1419 hctx->nr_ctx = 0;
1420 }
1421
1422 /*
1423 * Map software to hardware queues
1424 */
1425 queue_for_each_ctx(q, ctx, i) {
1426 /* If the cpu isn't online, the cpu is mapped to first hctx */
1427 if (!cpu_online(i))
1428 continue;
1429
1430 hctx = q->mq_ops->map_queue(q, i);
1431 cpumask_set_cpu(i, hctx->cpumask);
1432 ctx->index_hw = hctx->nr_ctx;
1433 hctx->ctxs[hctx->nr_ctx++] = ctx;
1434 }
1435
1436 queue_for_each_hw_ctx(q, hctx, i) {
1437 hctx->next_cpu = cpumask_first(hctx->cpumask);
1438 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1439 }
1440 }
1441
1442 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1443 {
1444 struct blk_mq_hw_ctx **hctxs;
1445 struct blk_mq_ctx *ctx;
1446 struct request_queue *q;
1447 int i;
1448
1449 ctx = alloc_percpu(struct blk_mq_ctx);
1450 if (!ctx)
1451 return ERR_PTR(-ENOMEM);
1452
1453 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1454 set->numa_node);
1455
1456 if (!hctxs)
1457 goto err_percpu;
1458
1459 for (i = 0; i < set->nr_hw_queues; i++) {
1460 hctxs[i] = set->ops->alloc_hctx(set, i);
1461 if (!hctxs[i])
1462 goto err_hctxs;
1463
1464 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1465 goto err_hctxs;
1466
1467 hctxs[i]->numa_node = NUMA_NO_NODE;
1468 hctxs[i]->queue_num = i;
1469 }
1470
1471 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1472 if (!q)
1473 goto err_hctxs;
1474
1475 q->mq_map = blk_mq_make_queue_map(set);
1476 if (!q->mq_map)
1477 goto err_map;
1478
1479 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1480 blk_queue_rq_timeout(q, 30000);
1481
1482 q->nr_queues = nr_cpu_ids;
1483 q->nr_hw_queues = set->nr_hw_queues;
1484
1485 q->queue_ctx = ctx;
1486 q->queue_hw_ctx = hctxs;
1487
1488 q->mq_ops = set->ops;
1489 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1490
1491 q->sg_reserved_size = INT_MAX;
1492
1493 blk_queue_make_request(q, blk_mq_make_request);
1494 blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
1495 if (set->timeout)
1496 blk_queue_rq_timeout(q, set->timeout);
1497
1498 if (set->ops->complete)
1499 blk_queue_softirq_done(q, set->ops->complete);
1500
1501 blk_mq_init_flush(q);
1502 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1503
1504 q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1505 set->cmd_size, cache_line_size()),
1506 GFP_KERNEL);
1507 if (!q->flush_rq)
1508 goto err_hw;
1509
1510 if (blk_mq_init_hw_queues(q, set))
1511 goto err_flush_rq;
1512
1513 blk_mq_map_swqueue(q);
1514
1515 mutex_lock(&all_q_mutex);
1516 list_add_tail(&q->all_q_node, &all_q_list);
1517 mutex_unlock(&all_q_mutex);
1518
1519 return q;
1520
1521 err_flush_rq:
1522 kfree(q->flush_rq);
1523 err_hw:
1524 kfree(q->mq_map);
1525 err_map:
1526 blk_cleanup_queue(q);
1527 err_hctxs:
1528 for (i = 0; i < set->nr_hw_queues; i++) {
1529 if (!hctxs[i])
1530 break;
1531 free_cpumask_var(hctxs[i]->cpumask);
1532 set->ops->free_hctx(hctxs[i], i);
1533 }
1534 kfree(hctxs);
1535 err_percpu:
1536 free_percpu(ctx);
1537 return ERR_PTR(-ENOMEM);
1538 }
1539 EXPORT_SYMBOL(blk_mq_init_queue);
1540
1541 void blk_mq_free_queue(struct request_queue *q)
1542 {
1543 struct blk_mq_hw_ctx *hctx;
1544 int i;
1545
1546 queue_for_each_hw_ctx(q, hctx, i) {
1547 kfree(hctx->ctx_map);
1548 kfree(hctx->ctxs);
1549 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1550 if (q->mq_ops->exit_hctx)
1551 q->mq_ops->exit_hctx(hctx, i);
1552 free_cpumask_var(hctx->cpumask);
1553 q->mq_ops->free_hctx(hctx, i);
1554 }
1555
1556 free_percpu(q->queue_ctx);
1557 kfree(q->queue_hw_ctx);
1558 kfree(q->mq_map);
1559
1560 q->queue_ctx = NULL;
1561 q->queue_hw_ctx = NULL;
1562 q->mq_map = NULL;
1563
1564 mutex_lock(&all_q_mutex);
1565 list_del_init(&q->all_q_node);
1566 mutex_unlock(&all_q_mutex);
1567 }
1568
1569 /* Basically redo blk_mq_init_queue with queue frozen */
1570 static void blk_mq_queue_reinit(struct request_queue *q)
1571 {
1572 blk_mq_freeze_queue(q);
1573
1574 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1575
1576 /*
1577 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1578 * we should change hctx numa_node according to new topology (this
1579 * involves free and re-allocate memory, worthy doing?)
1580 */
1581
1582 blk_mq_map_swqueue(q);
1583
1584 blk_mq_unfreeze_queue(q);
1585 }
1586
1587 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1588 unsigned long action, void *hcpu)
1589 {
1590 struct request_queue *q;
1591
1592 /*
1593 * Before new mappings are established, hotadded cpu might already
1594 * start handling requests. This doesn't break anything as we map
1595 * offline CPUs to first hardware queue. We will re-init the queue
1596 * below to get optimal settings.
1597 */
1598 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1599 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1600 return NOTIFY_OK;
1601
1602 mutex_lock(&all_q_mutex);
1603 list_for_each_entry(q, &all_q_list, all_q_node)
1604 blk_mq_queue_reinit(q);
1605 mutex_unlock(&all_q_mutex);
1606 return NOTIFY_OK;
1607 }
1608
1609 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
1610 {
1611 int i;
1612
1613 if (!set->nr_hw_queues)
1614 return -EINVAL;
1615 if (!set->queue_depth || set->queue_depth > BLK_MQ_MAX_DEPTH)
1616 return -EINVAL;
1617 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
1618 return -EINVAL;
1619
1620 if (!set->nr_hw_queues ||
1621 !set->ops->queue_rq || !set->ops->map_queue ||
1622 !set->ops->alloc_hctx || !set->ops->free_hctx)
1623 return -EINVAL;
1624
1625
1626 set->tags = kmalloc_node(set->nr_hw_queues *
1627 sizeof(struct blk_mq_tags *),
1628 GFP_KERNEL, set->numa_node);
1629 if (!set->tags)
1630 goto out;
1631
1632 for (i = 0; i < set->nr_hw_queues; i++) {
1633 set->tags[i] = blk_mq_init_rq_map(set, i);
1634 if (!set->tags[i])
1635 goto out_unwind;
1636 }
1637
1638 return 0;
1639
1640 out_unwind:
1641 while (--i >= 0)
1642 blk_mq_free_rq_map(set, set->tags[i], i);
1643 out:
1644 return -ENOMEM;
1645 }
1646 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
1647
1648 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
1649 {
1650 int i;
1651
1652 for (i = 0; i < set->nr_hw_queues; i++)
1653 blk_mq_free_rq_map(set, set->tags[i], i);
1654 kfree(set->tags);
1655 }
1656 EXPORT_SYMBOL(blk_mq_free_tag_set);
1657
1658 void blk_mq_disable_hotplug(void)
1659 {
1660 mutex_lock(&all_q_mutex);
1661 }
1662
1663 void blk_mq_enable_hotplug(void)
1664 {
1665 mutex_unlock(&all_q_mutex);
1666 }
1667
1668 static int __init blk_mq_init(void)
1669 {
1670 blk_mq_cpu_init();
1671
1672 /* Must be called after percpu_counter_hotcpu_callback() */
1673 hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
1674
1675 return 0;
1676 }
1677 subsys_initcall(blk_mq_init);
This page took 0.064666 seconds and 5 git commands to generate.