cee96234bf589393c464b491ea27a2495b1d889e
[deliverable/linux.git] / block / blk-mq.c
1 #include <linux/kernel.h>
2 #include <linux/module.h>
3 #include <linux/backing-dev.h>
4 #include <linux/bio.h>
5 #include <linux/blkdev.h>
6 #include <linux/mm.h>
7 #include <linux/init.h>
8 #include <linux/slab.h>
9 #include <linux/workqueue.h>
10 #include <linux/smp.h>
11 #include <linux/llist.h>
12 #include <linux/list_sort.h>
13 #include <linux/cpu.h>
14 #include <linux/cache.h>
15 #include <linux/sched/sysctl.h>
16 #include <linux/delay.h>
17
18 #include <trace/events/block.h>
19
20 #include <linux/blk-mq.h>
21 #include "blk.h"
22 #include "blk-mq.h"
23 #include "blk-mq-tag.h"
24
25 static DEFINE_MUTEX(all_q_mutex);
26 static LIST_HEAD(all_q_list);
27
28 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
29
30 static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
31 unsigned int cpu)
32 {
33 return per_cpu_ptr(q->queue_ctx, cpu);
34 }
35
36 /*
37 * This assumes per-cpu software queueing queues. They could be per-node
38 * as well, for instance. For now this is hardcoded as-is. Note that we don't
39 * care about preemption, since we know the ctx's are persistent. This does
40 * mean that we can't rely on ctx always matching the currently running CPU.
41 */
42 static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
43 {
44 return __blk_mq_get_ctx(q, get_cpu());
45 }
46
47 static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
48 {
49 put_cpu();
50 }
51
52 /*
53 * Check if any of the ctx's have pending work in this hardware queue
54 */
55 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
56 {
57 unsigned int i;
58
59 for (i = 0; i < hctx->nr_ctx_map; i++)
60 if (hctx->ctx_map[i])
61 return true;
62
63 return false;
64 }
65
66 /*
67 * Mark this ctx as having pending work in this hardware queue
68 */
69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
70 struct blk_mq_ctx *ctx)
71 {
72 if (!test_bit(ctx->index_hw, hctx->ctx_map))
73 set_bit(ctx->index_hw, hctx->ctx_map);
74 }
75
76 static struct request *blk_mq_alloc_rq(struct blk_mq_hw_ctx *hctx, gfp_t gfp,
77 bool reserved)
78 {
79 struct request *rq;
80 unsigned int tag;
81
82 tag = blk_mq_get_tag(hctx->tags, gfp, reserved);
83 if (tag != BLK_MQ_TAG_FAIL) {
84 rq = hctx->rqs[tag];
85 rq->tag = tag;
86
87 return rq;
88 }
89
90 return NULL;
91 }
92
93 static int blk_mq_queue_enter(struct request_queue *q)
94 {
95 int ret;
96
97 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
98 smp_wmb();
99 /* we have problems to freeze the queue if it's initializing */
100 if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
101 return 0;
102
103 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
104
105 spin_lock_irq(q->queue_lock);
106 ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
107 !blk_queue_bypass(q) || blk_queue_dying(q),
108 *q->queue_lock);
109 /* inc usage with lock hold to avoid freeze_queue runs here */
110 if (!ret && !blk_queue_dying(q))
111 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
112 else if (blk_queue_dying(q))
113 ret = -ENODEV;
114 spin_unlock_irq(q->queue_lock);
115
116 return ret;
117 }
118
119 static void blk_mq_queue_exit(struct request_queue *q)
120 {
121 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
122 }
123
124 static void __blk_mq_drain_queue(struct request_queue *q)
125 {
126 while (true) {
127 s64 count;
128
129 spin_lock_irq(q->queue_lock);
130 count = percpu_counter_sum(&q->mq_usage_counter);
131 spin_unlock_irq(q->queue_lock);
132
133 if (count == 0)
134 break;
135 blk_mq_run_queues(q, false);
136 msleep(10);
137 }
138 }
139
140 /*
141 * Guarantee no request is in use, so we can change any data structure of
142 * the queue afterward.
143 */
144 static void blk_mq_freeze_queue(struct request_queue *q)
145 {
146 bool drain;
147
148 spin_lock_irq(q->queue_lock);
149 drain = !q->bypass_depth++;
150 queue_flag_set(QUEUE_FLAG_BYPASS, q);
151 spin_unlock_irq(q->queue_lock);
152
153 if (drain)
154 __blk_mq_drain_queue(q);
155 }
156
157 void blk_mq_drain_queue(struct request_queue *q)
158 {
159 __blk_mq_drain_queue(q);
160 }
161
162 static void blk_mq_unfreeze_queue(struct request_queue *q)
163 {
164 bool wake = false;
165
166 spin_lock_irq(q->queue_lock);
167 if (!--q->bypass_depth) {
168 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
169 wake = true;
170 }
171 WARN_ON_ONCE(q->bypass_depth < 0);
172 spin_unlock_irq(q->queue_lock);
173 if (wake)
174 wake_up_all(&q->mq_freeze_wq);
175 }
176
177 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
178 {
179 return blk_mq_has_free_tags(hctx->tags);
180 }
181 EXPORT_SYMBOL(blk_mq_can_queue);
182
183 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
184 struct request *rq, unsigned int rw_flags)
185 {
186 if (blk_queue_io_stat(q))
187 rw_flags |= REQ_IO_STAT;
188
189 rq->mq_ctx = ctx;
190 rq->cmd_flags = rw_flags;
191 rq->start_time = jiffies;
192 set_start_time_ns(rq);
193 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
194 }
195
196 static struct request *__blk_mq_alloc_request(struct blk_mq_hw_ctx *hctx,
197 gfp_t gfp, bool reserved,
198 int rw)
199 {
200 struct request *req;
201 bool is_flush = false;
202 /*
203 * flush need allocate a request, leave at least one request for
204 * non-flush IO to avoid deadlock
205 */
206 if ((rw & REQ_FLUSH) && !(rw & REQ_FLUSH_SEQ)) {
207 if (atomic_inc_return(&hctx->pending_flush) >=
208 hctx->queue_depth - hctx->reserved_tags - 1) {
209 atomic_dec(&hctx->pending_flush);
210 return NULL;
211 }
212 is_flush = true;
213 }
214 req = blk_mq_alloc_rq(hctx, gfp, reserved);
215 if (!req && is_flush)
216 atomic_dec(&hctx->pending_flush);
217 return req;
218 }
219
220 static struct request *blk_mq_alloc_request_pinned(struct request_queue *q,
221 int rw, gfp_t gfp,
222 bool reserved)
223 {
224 struct request *rq;
225
226 do {
227 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
228 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);
229
230 rq = __blk_mq_alloc_request(hctx, gfp & ~__GFP_WAIT, reserved, rw);
231 if (rq) {
232 blk_mq_rq_ctx_init(q, ctx, rq, rw);
233 break;
234 }
235
236 blk_mq_put_ctx(ctx);
237 if (!(gfp & __GFP_WAIT))
238 break;
239
240 __blk_mq_run_hw_queue(hctx);
241 blk_mq_wait_for_tags(hctx->tags);
242 } while (1);
243
244 return rq;
245 }
246
247 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
248 gfp_t gfp, bool reserved)
249 {
250 struct request *rq;
251
252 if (blk_mq_queue_enter(q))
253 return NULL;
254
255 rq = blk_mq_alloc_request_pinned(q, rw, gfp, reserved);
256 if (rq)
257 blk_mq_put_ctx(rq->mq_ctx);
258 return rq;
259 }
260
261 struct request *blk_mq_alloc_reserved_request(struct request_queue *q, int rw,
262 gfp_t gfp)
263 {
264 struct request *rq;
265
266 if (blk_mq_queue_enter(q))
267 return NULL;
268
269 rq = blk_mq_alloc_request_pinned(q, rw, gfp, true);
270 if (rq)
271 blk_mq_put_ctx(rq->mq_ctx);
272 return rq;
273 }
274 EXPORT_SYMBOL(blk_mq_alloc_reserved_request);
275
276 /*
277 * Re-init and set pdu, if we have it
278 */
279 static void blk_mq_rq_init(struct blk_mq_hw_ctx *hctx, struct request *rq)
280 {
281 blk_rq_init(hctx->queue, rq);
282
283 if (hctx->cmd_size)
284 rq->special = blk_mq_rq_to_pdu(rq);
285 }
286
287 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
288 struct blk_mq_ctx *ctx, struct request *rq)
289 {
290 const int tag = rq->tag;
291 struct request_queue *q = rq->q;
292
293 if ((rq->cmd_flags & REQ_FLUSH) && !(rq->cmd_flags & REQ_FLUSH_SEQ))
294 atomic_dec(&hctx->pending_flush);
295
296 blk_mq_rq_init(hctx, rq);
297 blk_mq_put_tag(hctx->tags, tag);
298
299 blk_mq_queue_exit(q);
300 }
301
302 void blk_mq_free_request(struct request *rq)
303 {
304 struct blk_mq_ctx *ctx = rq->mq_ctx;
305 struct blk_mq_hw_ctx *hctx;
306 struct request_queue *q = rq->q;
307
308 ctx->rq_completed[rq_is_sync(rq)]++;
309
310 hctx = q->mq_ops->map_queue(q, ctx->cpu);
311 __blk_mq_free_request(hctx, ctx, rq);
312 }
313
314 static void blk_mq_bio_endio(struct request *rq, struct bio *bio, int error)
315 {
316 if (error)
317 clear_bit(BIO_UPTODATE, &bio->bi_flags);
318 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
319 error = -EIO;
320
321 if (unlikely(rq->cmd_flags & REQ_QUIET))
322 set_bit(BIO_QUIET, &bio->bi_flags);
323
324 /* don't actually finish bio if it's part of flush sequence */
325 if (!(rq->cmd_flags & REQ_FLUSH_SEQ))
326 bio_endio(bio, error);
327 }
328
329 void blk_mq_complete_request(struct request *rq, int error)
330 {
331 struct bio *bio = rq->bio;
332 unsigned int bytes = 0;
333
334 trace_block_rq_complete(rq->q, rq);
335
336 while (bio) {
337 struct bio *next = bio->bi_next;
338
339 bio->bi_next = NULL;
340 bytes += bio->bi_iter.bi_size;
341 blk_mq_bio_endio(rq, bio, error);
342 bio = next;
343 }
344
345 blk_account_io_completion(rq, bytes);
346
347 blk_account_io_done(rq);
348
349 if (rq->end_io)
350 rq->end_io(rq, error);
351 else
352 blk_mq_free_request(rq);
353 }
354
355 void __blk_mq_end_io(struct request *rq, int error)
356 {
357 if (!blk_mark_rq_complete(rq))
358 blk_mq_complete_request(rq, error);
359 }
360
361 static void blk_mq_end_io_remote(void *data)
362 {
363 struct request *rq = data;
364
365 __blk_mq_end_io(rq, rq->errors);
366 }
367
368 /*
369 * End IO on this request on a multiqueue enabled driver. We'll either do
370 * it directly inline, or punt to a local IPI handler on the matching
371 * remote CPU.
372 */
373 void blk_mq_end_io(struct request *rq, int error)
374 {
375 struct blk_mq_ctx *ctx = rq->mq_ctx;
376 int cpu;
377
378 if (!ctx->ipi_redirect)
379 return __blk_mq_end_io(rq, error);
380
381 cpu = get_cpu();
382 if (cpu != ctx->cpu && cpu_online(ctx->cpu)) {
383 rq->errors = error;
384 rq->csd.func = blk_mq_end_io_remote;
385 rq->csd.info = rq;
386 rq->csd.flags = 0;
387 __smp_call_function_single(ctx->cpu, &rq->csd, 0);
388 } else {
389 __blk_mq_end_io(rq, error);
390 }
391 put_cpu();
392 }
393 EXPORT_SYMBOL(blk_mq_end_io);
394
395 static void blk_mq_start_request(struct request *rq)
396 {
397 struct request_queue *q = rq->q;
398
399 trace_block_rq_issue(q, rq);
400
401 /*
402 * Just mark start time and set the started bit. Due to memory
403 * ordering, we know we'll see the correct deadline as long as
404 * REQ_ATOMIC_STARTED is seen.
405 */
406 rq->deadline = jiffies + q->rq_timeout;
407 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
408 }
409
410 static void blk_mq_requeue_request(struct request *rq)
411 {
412 struct request_queue *q = rq->q;
413
414 trace_block_rq_requeue(q, rq);
415 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
416 }
417
418 struct blk_mq_timeout_data {
419 struct blk_mq_hw_ctx *hctx;
420 unsigned long *next;
421 unsigned int *next_set;
422 };
423
424 static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
425 {
426 struct blk_mq_timeout_data *data = __data;
427 struct blk_mq_hw_ctx *hctx = data->hctx;
428 unsigned int tag;
429
430 /* It may not be in flight yet (this is where
431 * the REQ_ATOMIC_STARTED flag comes in). The requests are
432 * statically allocated, so we know it's always safe to access the
433 * memory associated with a bit offset into ->rqs[].
434 */
435 tag = 0;
436 do {
437 struct request *rq;
438
439 tag = find_next_zero_bit(free_tags, hctx->queue_depth, tag);
440 if (tag >= hctx->queue_depth)
441 break;
442
443 rq = hctx->rqs[tag++];
444
445 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
446 continue;
447
448 blk_rq_check_expired(rq, data->next, data->next_set);
449 } while (1);
450 }
451
452 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
453 unsigned long *next,
454 unsigned int *next_set)
455 {
456 struct blk_mq_timeout_data data = {
457 .hctx = hctx,
458 .next = next,
459 .next_set = next_set,
460 };
461
462 /*
463 * Ask the tagging code to iterate busy requests, so we can
464 * check them for timeout.
465 */
466 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
467 }
468
469 static void blk_mq_rq_timer(unsigned long data)
470 {
471 struct request_queue *q = (struct request_queue *) data;
472 struct blk_mq_hw_ctx *hctx;
473 unsigned long next = 0;
474 int i, next_set = 0;
475
476 queue_for_each_hw_ctx(q, hctx, i)
477 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
478
479 if (next_set)
480 mod_timer(&q->timeout, round_jiffies_up(next));
481 }
482
483 /*
484 * Reverse check our software queue for entries that we could potentially
485 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
486 * too much time checking for merges.
487 */
488 static bool blk_mq_attempt_merge(struct request_queue *q,
489 struct blk_mq_ctx *ctx, struct bio *bio)
490 {
491 struct request *rq;
492 int checked = 8;
493
494 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
495 int el_ret;
496
497 if (!checked--)
498 break;
499
500 if (!blk_rq_merge_ok(rq, bio))
501 continue;
502
503 el_ret = blk_try_merge(rq, bio);
504 if (el_ret == ELEVATOR_BACK_MERGE) {
505 if (bio_attempt_back_merge(q, rq, bio)) {
506 ctx->rq_merged++;
507 return true;
508 }
509 break;
510 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
511 if (bio_attempt_front_merge(q, rq, bio)) {
512 ctx->rq_merged++;
513 return true;
514 }
515 break;
516 }
517 }
518
519 return false;
520 }
521
522 void blk_mq_add_timer(struct request *rq)
523 {
524 __blk_add_timer(rq, NULL);
525 }
526
527 /*
528 * Run this hardware queue, pulling any software queues mapped to it in.
529 * Note that this function currently has various problems around ordering
530 * of IO. In particular, we'd like FIFO behaviour on handling existing
531 * items on the hctx->dispatch list. Ignore that for now.
532 */
533 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
534 {
535 struct request_queue *q = hctx->queue;
536 struct blk_mq_ctx *ctx;
537 struct request *rq;
538 LIST_HEAD(rq_list);
539 int bit, queued;
540
541 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->flags)))
542 return;
543
544 hctx->run++;
545
546 /*
547 * Touch any software queue that has pending entries.
548 */
549 for_each_set_bit(bit, hctx->ctx_map, hctx->nr_ctx) {
550 clear_bit(bit, hctx->ctx_map);
551 ctx = hctx->ctxs[bit];
552 BUG_ON(bit != ctx->index_hw);
553
554 spin_lock(&ctx->lock);
555 list_splice_tail_init(&ctx->rq_list, &rq_list);
556 spin_unlock(&ctx->lock);
557 }
558
559 /*
560 * If we have previous entries on our dispatch list, grab them
561 * and stuff them at the front for more fair dispatch.
562 */
563 if (!list_empty_careful(&hctx->dispatch)) {
564 spin_lock(&hctx->lock);
565 if (!list_empty(&hctx->dispatch))
566 list_splice_init(&hctx->dispatch, &rq_list);
567 spin_unlock(&hctx->lock);
568 }
569
570 /*
571 * Delete and return all entries from our dispatch list
572 */
573 queued = 0;
574
575 /*
576 * Now process all the entries, sending them to the driver.
577 */
578 while (!list_empty(&rq_list)) {
579 int ret;
580
581 rq = list_first_entry(&rq_list, struct request, queuelist);
582 list_del_init(&rq->queuelist);
583 blk_mq_start_request(rq);
584
585 if (q->dma_drain_size && blk_rq_bytes(rq)) {
586 /*
587 * make sure space for the drain appears we
588 * know we can do this because max_hw_segments
589 * has been adjusted to be one fewer than the
590 * device can handle
591 */
592 rq->nr_phys_segments++;
593 }
594
595 /*
596 * Last request in the series. Flag it as such, this
597 * enables drivers to know when IO should be kicked off,
598 * if they don't do it on a per-request basis.
599 *
600 * Note: the flag isn't the only condition drivers
601 * should do kick off. If drive is busy, the last
602 * request might not have the bit set.
603 */
604 if (list_empty(&rq_list))
605 rq->cmd_flags |= REQ_END;
606
607 ret = q->mq_ops->queue_rq(hctx, rq);
608 switch (ret) {
609 case BLK_MQ_RQ_QUEUE_OK:
610 queued++;
611 continue;
612 case BLK_MQ_RQ_QUEUE_BUSY:
613 /*
614 * FIXME: we should have a mechanism to stop the queue
615 * like blk_stop_queue, otherwise we will waste cpu
616 * time
617 */
618 list_add(&rq->queuelist, &rq_list);
619 blk_mq_requeue_request(rq);
620 break;
621 default:
622 pr_err("blk-mq: bad return on queue: %d\n", ret);
623 rq->errors = -EIO;
624 case BLK_MQ_RQ_QUEUE_ERROR:
625 blk_mq_end_io(rq, rq->errors);
626 break;
627 }
628
629 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
630 break;
631 }
632
633 if (!queued)
634 hctx->dispatched[0]++;
635 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
636 hctx->dispatched[ilog2(queued) + 1]++;
637
638 /*
639 * Any items that need requeuing? Stuff them into hctx->dispatch,
640 * that is where we will continue on next queue run.
641 */
642 if (!list_empty(&rq_list)) {
643 spin_lock(&hctx->lock);
644 list_splice(&rq_list, &hctx->dispatch);
645 spin_unlock(&hctx->lock);
646 }
647 }
648
649 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
650 {
651 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->flags)))
652 return;
653
654 if (!async)
655 __blk_mq_run_hw_queue(hctx);
656 else {
657 struct request_queue *q = hctx->queue;
658
659 kblockd_schedule_delayed_work(q, &hctx->delayed_work, 0);
660 }
661 }
662
663 void blk_mq_run_queues(struct request_queue *q, bool async)
664 {
665 struct blk_mq_hw_ctx *hctx;
666 int i;
667
668 queue_for_each_hw_ctx(q, hctx, i) {
669 if ((!blk_mq_hctx_has_pending(hctx) &&
670 list_empty_careful(&hctx->dispatch)) ||
671 test_bit(BLK_MQ_S_STOPPED, &hctx->flags))
672 continue;
673
674 blk_mq_run_hw_queue(hctx, async);
675 }
676 }
677 EXPORT_SYMBOL(blk_mq_run_queues);
678
679 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
680 {
681 cancel_delayed_work(&hctx->delayed_work);
682 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
683 }
684 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
685
686 void blk_mq_stop_hw_queues(struct request_queue *q)
687 {
688 struct blk_mq_hw_ctx *hctx;
689 int i;
690
691 queue_for_each_hw_ctx(q, hctx, i)
692 blk_mq_stop_hw_queue(hctx);
693 }
694 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
695
696 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
697 {
698 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
699 __blk_mq_run_hw_queue(hctx);
700 }
701 EXPORT_SYMBOL(blk_mq_start_hw_queue);
702
703 void blk_mq_start_stopped_hw_queues(struct request_queue *q)
704 {
705 struct blk_mq_hw_ctx *hctx;
706 int i;
707
708 queue_for_each_hw_ctx(q, hctx, i) {
709 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
710 continue;
711
712 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
713 blk_mq_run_hw_queue(hctx, true);
714 }
715 }
716 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
717
718 static void blk_mq_work_fn(struct work_struct *work)
719 {
720 struct blk_mq_hw_ctx *hctx;
721
722 hctx = container_of(work, struct blk_mq_hw_ctx, delayed_work.work);
723 __blk_mq_run_hw_queue(hctx);
724 }
725
726 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
727 struct request *rq, bool at_head)
728 {
729 struct blk_mq_ctx *ctx = rq->mq_ctx;
730
731 trace_block_rq_insert(hctx->queue, rq);
732
733 if (at_head)
734 list_add(&rq->queuelist, &ctx->rq_list);
735 else
736 list_add_tail(&rq->queuelist, &ctx->rq_list);
737 blk_mq_hctx_mark_pending(hctx, ctx);
738
739 /*
740 * We do this early, to ensure we are on the right CPU.
741 */
742 blk_mq_add_timer(rq);
743 }
744
745 void blk_mq_insert_request(struct request_queue *q, struct request *rq,
746 bool at_head, bool run_queue)
747 {
748 struct blk_mq_hw_ctx *hctx;
749 struct blk_mq_ctx *ctx, *current_ctx;
750
751 ctx = rq->mq_ctx;
752 hctx = q->mq_ops->map_queue(q, ctx->cpu);
753
754 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) {
755 blk_insert_flush(rq);
756 } else {
757 current_ctx = blk_mq_get_ctx(q);
758
759 if (!cpu_online(ctx->cpu)) {
760 ctx = current_ctx;
761 hctx = q->mq_ops->map_queue(q, ctx->cpu);
762 rq->mq_ctx = ctx;
763 }
764 spin_lock(&ctx->lock);
765 __blk_mq_insert_request(hctx, rq, at_head);
766 spin_unlock(&ctx->lock);
767
768 blk_mq_put_ctx(current_ctx);
769 }
770
771 if (run_queue)
772 __blk_mq_run_hw_queue(hctx);
773 }
774 EXPORT_SYMBOL(blk_mq_insert_request);
775
776 /*
777 * This is a special version of blk_mq_insert_request to bypass FLUSH request
778 * check. Should only be used internally.
779 */
780 void blk_mq_run_request(struct request *rq, bool run_queue, bool async)
781 {
782 struct request_queue *q = rq->q;
783 struct blk_mq_hw_ctx *hctx;
784 struct blk_mq_ctx *ctx, *current_ctx;
785
786 current_ctx = blk_mq_get_ctx(q);
787
788 ctx = rq->mq_ctx;
789 if (!cpu_online(ctx->cpu)) {
790 ctx = current_ctx;
791 rq->mq_ctx = ctx;
792 }
793 hctx = q->mq_ops->map_queue(q, ctx->cpu);
794
795 /* ctx->cpu might be offline */
796 spin_lock(&ctx->lock);
797 __blk_mq_insert_request(hctx, rq, false);
798 spin_unlock(&ctx->lock);
799
800 blk_mq_put_ctx(current_ctx);
801
802 if (run_queue)
803 blk_mq_run_hw_queue(hctx, async);
804 }
805
806 static void blk_mq_insert_requests(struct request_queue *q,
807 struct blk_mq_ctx *ctx,
808 struct list_head *list,
809 int depth,
810 bool from_schedule)
811
812 {
813 struct blk_mq_hw_ctx *hctx;
814 struct blk_mq_ctx *current_ctx;
815
816 trace_block_unplug(q, depth, !from_schedule);
817
818 current_ctx = blk_mq_get_ctx(q);
819
820 if (!cpu_online(ctx->cpu))
821 ctx = current_ctx;
822 hctx = q->mq_ops->map_queue(q, ctx->cpu);
823
824 /*
825 * preemption doesn't flush plug list, so it's possible ctx->cpu is
826 * offline now
827 */
828 spin_lock(&ctx->lock);
829 while (!list_empty(list)) {
830 struct request *rq;
831
832 rq = list_first_entry(list, struct request, queuelist);
833 list_del_init(&rq->queuelist);
834 rq->mq_ctx = ctx;
835 __blk_mq_insert_request(hctx, rq, false);
836 }
837 spin_unlock(&ctx->lock);
838
839 blk_mq_put_ctx(current_ctx);
840
841 blk_mq_run_hw_queue(hctx, from_schedule);
842 }
843
844 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
845 {
846 struct request *rqa = container_of(a, struct request, queuelist);
847 struct request *rqb = container_of(b, struct request, queuelist);
848
849 return !(rqa->mq_ctx < rqb->mq_ctx ||
850 (rqa->mq_ctx == rqb->mq_ctx &&
851 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
852 }
853
854 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
855 {
856 struct blk_mq_ctx *this_ctx;
857 struct request_queue *this_q;
858 struct request *rq;
859 LIST_HEAD(list);
860 LIST_HEAD(ctx_list);
861 unsigned int depth;
862
863 list_splice_init(&plug->mq_list, &list);
864
865 list_sort(NULL, &list, plug_ctx_cmp);
866
867 this_q = NULL;
868 this_ctx = NULL;
869 depth = 0;
870
871 while (!list_empty(&list)) {
872 rq = list_entry_rq(list.next);
873 list_del_init(&rq->queuelist);
874 BUG_ON(!rq->q);
875 if (rq->mq_ctx != this_ctx) {
876 if (this_ctx) {
877 blk_mq_insert_requests(this_q, this_ctx,
878 &ctx_list, depth,
879 from_schedule);
880 }
881
882 this_ctx = rq->mq_ctx;
883 this_q = rq->q;
884 depth = 0;
885 }
886
887 depth++;
888 list_add_tail(&rq->queuelist, &ctx_list);
889 }
890
891 /*
892 * If 'this_ctx' is set, we know we have entries to complete
893 * on 'ctx_list'. Do those.
894 */
895 if (this_ctx) {
896 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
897 from_schedule);
898 }
899 }
900
901 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
902 {
903 init_request_from_bio(rq, bio);
904 blk_account_io_start(rq, 1);
905 }
906
907 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
908 {
909 struct blk_mq_hw_ctx *hctx;
910 struct blk_mq_ctx *ctx;
911 const int is_sync = rw_is_sync(bio->bi_rw);
912 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
913 int rw = bio_data_dir(bio);
914 struct request *rq;
915 unsigned int use_plug, request_count = 0;
916
917 /*
918 * If we have multiple hardware queues, just go directly to
919 * one of those for sync IO.
920 */
921 use_plug = !is_flush_fua && ((q->nr_hw_queues == 1) || !is_sync);
922
923 blk_queue_bounce(q, &bio);
924
925 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
926 bio_endio(bio, -EIO);
927 return;
928 }
929
930 if (use_plug && blk_attempt_plug_merge(q, bio, &request_count))
931 return;
932
933 if (blk_mq_queue_enter(q)) {
934 bio_endio(bio, -EIO);
935 return;
936 }
937
938 ctx = blk_mq_get_ctx(q);
939 hctx = q->mq_ops->map_queue(q, ctx->cpu);
940
941 trace_block_getrq(q, bio, rw);
942 rq = __blk_mq_alloc_request(hctx, GFP_ATOMIC, false, bio->bi_rw);
943 if (likely(rq))
944 blk_mq_rq_ctx_init(q, ctx, rq, bio->bi_rw);
945 else {
946 blk_mq_put_ctx(ctx);
947 trace_block_sleeprq(q, bio, rw);
948 rq = blk_mq_alloc_request_pinned(q, bio->bi_rw,
949 __GFP_WAIT|GFP_ATOMIC, false);
950 ctx = rq->mq_ctx;
951 hctx = q->mq_ops->map_queue(q, ctx->cpu);
952 }
953
954 hctx->queued++;
955
956 if (unlikely(is_flush_fua)) {
957 blk_mq_bio_to_request(rq, bio);
958 blk_mq_put_ctx(ctx);
959 blk_insert_flush(rq);
960 goto run_queue;
961 }
962
963 /*
964 * A task plug currently exists. Since this is completely lockless,
965 * utilize that to temporarily store requests until the task is
966 * either done or scheduled away.
967 */
968 if (use_plug) {
969 struct blk_plug *plug = current->plug;
970
971 if (plug) {
972 blk_mq_bio_to_request(rq, bio);
973 if (list_empty(&plug->mq_list))
974 trace_block_plug(q);
975 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
976 blk_flush_plug_list(plug, false);
977 trace_block_plug(q);
978 }
979 list_add_tail(&rq->queuelist, &plug->mq_list);
980 blk_mq_put_ctx(ctx);
981 return;
982 }
983 }
984
985 spin_lock(&ctx->lock);
986
987 if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
988 blk_mq_attempt_merge(q, ctx, bio))
989 __blk_mq_free_request(hctx, ctx, rq);
990 else {
991 blk_mq_bio_to_request(rq, bio);
992 __blk_mq_insert_request(hctx, rq, false);
993 }
994
995 spin_unlock(&ctx->lock);
996 blk_mq_put_ctx(ctx);
997
998 /*
999 * For a SYNC request, send it to the hardware immediately. For an
1000 * ASYNC request, just ensure that we run it later on. The latter
1001 * allows for merging opportunities and more efficient dispatching.
1002 */
1003 run_queue:
1004 blk_mq_run_hw_queue(hctx, !is_sync || is_flush_fua);
1005 }
1006
1007 /*
1008 * Default mapping to a software queue, since we use one per CPU.
1009 */
1010 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1011 {
1012 return q->queue_hw_ctx[q->mq_map[cpu]];
1013 }
1014 EXPORT_SYMBOL(blk_mq_map_queue);
1015
1016 struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_reg *reg,
1017 unsigned int hctx_index)
1018 {
1019 return kmalloc_node(sizeof(struct blk_mq_hw_ctx),
1020 GFP_KERNEL | __GFP_ZERO, reg->numa_node);
1021 }
1022 EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue);
1023
1024 void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx,
1025 unsigned int hctx_index)
1026 {
1027 kfree(hctx);
1028 }
1029 EXPORT_SYMBOL(blk_mq_free_single_hw_queue);
1030
1031 static void blk_mq_hctx_notify(void *data, unsigned long action,
1032 unsigned int cpu)
1033 {
1034 struct blk_mq_hw_ctx *hctx = data;
1035 struct blk_mq_ctx *ctx;
1036 LIST_HEAD(tmp);
1037
1038 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1039 return;
1040
1041 /*
1042 * Move ctx entries to new CPU, if this one is going away.
1043 */
1044 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1045
1046 spin_lock(&ctx->lock);
1047 if (!list_empty(&ctx->rq_list)) {
1048 list_splice_init(&ctx->rq_list, &tmp);
1049 clear_bit(ctx->index_hw, hctx->ctx_map);
1050 }
1051 spin_unlock(&ctx->lock);
1052
1053 if (list_empty(&tmp))
1054 return;
1055
1056 ctx = blk_mq_get_ctx(hctx->queue);
1057 spin_lock(&ctx->lock);
1058
1059 while (!list_empty(&tmp)) {
1060 struct request *rq;
1061
1062 rq = list_first_entry(&tmp, struct request, queuelist);
1063 rq->mq_ctx = ctx;
1064 list_move_tail(&rq->queuelist, &ctx->rq_list);
1065 }
1066
1067 blk_mq_hctx_mark_pending(hctx, ctx);
1068
1069 spin_unlock(&ctx->lock);
1070 blk_mq_put_ctx(ctx);
1071 }
1072
1073 static void blk_mq_init_hw_commands(struct blk_mq_hw_ctx *hctx,
1074 void (*init)(void *, struct blk_mq_hw_ctx *,
1075 struct request *, unsigned int),
1076 void *data)
1077 {
1078 unsigned int i;
1079
1080 for (i = 0; i < hctx->queue_depth; i++) {
1081 struct request *rq = hctx->rqs[i];
1082
1083 init(data, hctx, rq, i);
1084 }
1085 }
1086
1087 void blk_mq_init_commands(struct request_queue *q,
1088 void (*init)(void *, struct blk_mq_hw_ctx *,
1089 struct request *, unsigned int),
1090 void *data)
1091 {
1092 struct blk_mq_hw_ctx *hctx;
1093 unsigned int i;
1094
1095 queue_for_each_hw_ctx(q, hctx, i)
1096 blk_mq_init_hw_commands(hctx, init, data);
1097 }
1098 EXPORT_SYMBOL(blk_mq_init_commands);
1099
1100 static void blk_mq_free_rq_map(struct blk_mq_hw_ctx *hctx)
1101 {
1102 struct page *page;
1103
1104 while (!list_empty(&hctx->page_list)) {
1105 page = list_first_entry(&hctx->page_list, struct page, lru);
1106 list_del_init(&page->lru);
1107 __free_pages(page, page->private);
1108 }
1109
1110 kfree(hctx->rqs);
1111
1112 if (hctx->tags)
1113 blk_mq_free_tags(hctx->tags);
1114 }
1115
1116 static size_t order_to_size(unsigned int order)
1117 {
1118 size_t ret = PAGE_SIZE;
1119
1120 while (order--)
1121 ret *= 2;
1122
1123 return ret;
1124 }
1125
1126 static int blk_mq_init_rq_map(struct blk_mq_hw_ctx *hctx,
1127 unsigned int reserved_tags, int node)
1128 {
1129 unsigned int i, j, entries_per_page, max_order = 4;
1130 size_t rq_size, left;
1131
1132 INIT_LIST_HEAD(&hctx->page_list);
1133
1134 hctx->rqs = kmalloc_node(hctx->queue_depth * sizeof(struct request *),
1135 GFP_KERNEL, node);
1136 if (!hctx->rqs)
1137 return -ENOMEM;
1138
1139 /*
1140 * rq_size is the size of the request plus driver payload, rounded
1141 * to the cacheline size
1142 */
1143 rq_size = round_up(sizeof(struct request) + hctx->cmd_size,
1144 cache_line_size());
1145 left = rq_size * hctx->queue_depth;
1146
1147 for (i = 0; i < hctx->queue_depth;) {
1148 int this_order = max_order;
1149 struct page *page;
1150 int to_do;
1151 void *p;
1152
1153 while (left < order_to_size(this_order - 1) && this_order)
1154 this_order--;
1155
1156 do {
1157 page = alloc_pages_node(node, GFP_KERNEL, this_order);
1158 if (page)
1159 break;
1160 if (!this_order--)
1161 break;
1162 if (order_to_size(this_order) < rq_size)
1163 break;
1164 } while (1);
1165
1166 if (!page)
1167 break;
1168
1169 page->private = this_order;
1170 list_add_tail(&page->lru, &hctx->page_list);
1171
1172 p = page_address(page);
1173 entries_per_page = order_to_size(this_order) / rq_size;
1174 to_do = min(entries_per_page, hctx->queue_depth - i);
1175 left -= to_do * rq_size;
1176 for (j = 0; j < to_do; j++) {
1177 hctx->rqs[i] = p;
1178 blk_mq_rq_init(hctx, hctx->rqs[i]);
1179 p += rq_size;
1180 i++;
1181 }
1182 }
1183
1184 if (i < (reserved_tags + BLK_MQ_TAG_MIN))
1185 goto err_rq_map;
1186 else if (i != hctx->queue_depth) {
1187 hctx->queue_depth = i;
1188 pr_warn("%s: queue depth set to %u because of low memory\n",
1189 __func__, i);
1190 }
1191
1192 hctx->tags = blk_mq_init_tags(hctx->queue_depth, reserved_tags, node);
1193 if (!hctx->tags) {
1194 err_rq_map:
1195 blk_mq_free_rq_map(hctx);
1196 return -ENOMEM;
1197 }
1198
1199 return 0;
1200 }
1201
1202 static int blk_mq_init_hw_queues(struct request_queue *q,
1203 struct blk_mq_reg *reg, void *driver_data)
1204 {
1205 struct blk_mq_hw_ctx *hctx;
1206 unsigned int i, j;
1207
1208 /*
1209 * Initialize hardware queues
1210 */
1211 queue_for_each_hw_ctx(q, hctx, i) {
1212 unsigned int num_maps;
1213 int node;
1214
1215 node = hctx->numa_node;
1216 if (node == NUMA_NO_NODE)
1217 node = hctx->numa_node = reg->numa_node;
1218
1219 INIT_DELAYED_WORK(&hctx->delayed_work, blk_mq_work_fn);
1220 spin_lock_init(&hctx->lock);
1221 INIT_LIST_HEAD(&hctx->dispatch);
1222 hctx->queue = q;
1223 hctx->queue_num = i;
1224 hctx->flags = reg->flags;
1225 hctx->queue_depth = reg->queue_depth;
1226 hctx->reserved_tags = reg->reserved_tags;
1227 hctx->cmd_size = reg->cmd_size;
1228 atomic_set(&hctx->pending_flush, 0);
1229
1230 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1231 blk_mq_hctx_notify, hctx);
1232 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1233
1234 if (blk_mq_init_rq_map(hctx, reg->reserved_tags, node))
1235 break;
1236
1237 /*
1238 * Allocate space for all possible cpus to avoid allocation in
1239 * runtime
1240 */
1241 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1242 GFP_KERNEL, node);
1243 if (!hctx->ctxs)
1244 break;
1245
1246 num_maps = ALIGN(nr_cpu_ids, BITS_PER_LONG) / BITS_PER_LONG;
1247 hctx->ctx_map = kzalloc_node(num_maps * sizeof(unsigned long),
1248 GFP_KERNEL, node);
1249 if (!hctx->ctx_map)
1250 break;
1251
1252 hctx->nr_ctx_map = num_maps;
1253 hctx->nr_ctx = 0;
1254
1255 if (reg->ops->init_hctx &&
1256 reg->ops->init_hctx(hctx, driver_data, i))
1257 break;
1258 }
1259
1260 if (i == q->nr_hw_queues)
1261 return 0;
1262
1263 /*
1264 * Init failed
1265 */
1266 queue_for_each_hw_ctx(q, hctx, j) {
1267 if (i == j)
1268 break;
1269
1270 if (reg->ops->exit_hctx)
1271 reg->ops->exit_hctx(hctx, j);
1272
1273 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1274 blk_mq_free_rq_map(hctx);
1275 kfree(hctx->ctxs);
1276 }
1277
1278 return 1;
1279 }
1280
1281 static void blk_mq_init_cpu_queues(struct request_queue *q,
1282 unsigned int nr_hw_queues)
1283 {
1284 unsigned int i;
1285
1286 for_each_possible_cpu(i) {
1287 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1288 struct blk_mq_hw_ctx *hctx;
1289
1290 memset(__ctx, 0, sizeof(*__ctx));
1291 __ctx->cpu = i;
1292 spin_lock_init(&__ctx->lock);
1293 INIT_LIST_HEAD(&__ctx->rq_list);
1294 __ctx->queue = q;
1295
1296 /* If the cpu isn't online, the cpu is mapped to first hctx */
1297 hctx = q->mq_ops->map_queue(q, i);
1298 hctx->nr_ctx++;
1299
1300 if (!cpu_online(i))
1301 continue;
1302
1303 /*
1304 * Set local node, IFF we have more than one hw queue. If
1305 * not, we remain on the home node of the device
1306 */
1307 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1308 hctx->numa_node = cpu_to_node(i);
1309 }
1310 }
1311
1312 static void blk_mq_map_swqueue(struct request_queue *q)
1313 {
1314 unsigned int i;
1315 struct blk_mq_hw_ctx *hctx;
1316 struct blk_mq_ctx *ctx;
1317
1318 queue_for_each_hw_ctx(q, hctx, i) {
1319 hctx->nr_ctx = 0;
1320 }
1321
1322 /*
1323 * Map software to hardware queues
1324 */
1325 queue_for_each_ctx(q, ctx, i) {
1326 /* If the cpu isn't online, the cpu is mapped to first hctx */
1327 hctx = q->mq_ops->map_queue(q, i);
1328 ctx->index_hw = hctx->nr_ctx;
1329 hctx->ctxs[hctx->nr_ctx++] = ctx;
1330 }
1331 }
1332
1333 struct request_queue *blk_mq_init_queue(struct blk_mq_reg *reg,
1334 void *driver_data)
1335 {
1336 struct blk_mq_hw_ctx **hctxs;
1337 struct blk_mq_ctx *ctx;
1338 struct request_queue *q;
1339 int i;
1340
1341 if (!reg->nr_hw_queues ||
1342 !reg->ops->queue_rq || !reg->ops->map_queue ||
1343 !reg->ops->alloc_hctx || !reg->ops->free_hctx)
1344 return ERR_PTR(-EINVAL);
1345
1346 if (!reg->queue_depth)
1347 reg->queue_depth = BLK_MQ_MAX_DEPTH;
1348 else if (reg->queue_depth > BLK_MQ_MAX_DEPTH) {
1349 pr_err("blk-mq: queuedepth too large (%u)\n", reg->queue_depth);
1350 reg->queue_depth = BLK_MQ_MAX_DEPTH;
1351 }
1352
1353 if (reg->queue_depth < (reg->reserved_tags + BLK_MQ_TAG_MIN))
1354 return ERR_PTR(-EINVAL);
1355
1356 ctx = alloc_percpu(struct blk_mq_ctx);
1357 if (!ctx)
1358 return ERR_PTR(-ENOMEM);
1359
1360 hctxs = kmalloc_node(reg->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1361 reg->numa_node);
1362
1363 if (!hctxs)
1364 goto err_percpu;
1365
1366 for (i = 0; i < reg->nr_hw_queues; i++) {
1367 hctxs[i] = reg->ops->alloc_hctx(reg, i);
1368 if (!hctxs[i])
1369 goto err_hctxs;
1370
1371 hctxs[i]->numa_node = NUMA_NO_NODE;
1372 hctxs[i]->queue_num = i;
1373 }
1374
1375 q = blk_alloc_queue_node(GFP_KERNEL, reg->numa_node);
1376 if (!q)
1377 goto err_hctxs;
1378
1379 q->mq_map = blk_mq_make_queue_map(reg);
1380 if (!q->mq_map)
1381 goto err_map;
1382
1383 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1384 blk_queue_rq_timeout(q, 30000);
1385
1386 q->nr_queues = nr_cpu_ids;
1387 q->nr_hw_queues = reg->nr_hw_queues;
1388
1389 q->queue_ctx = ctx;
1390 q->queue_hw_ctx = hctxs;
1391
1392 q->mq_ops = reg->ops;
1393 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1394
1395 q->sg_reserved_size = INT_MAX;
1396
1397 blk_queue_make_request(q, blk_mq_make_request);
1398 blk_queue_rq_timed_out(q, reg->ops->timeout);
1399 if (reg->timeout)
1400 blk_queue_rq_timeout(q, reg->timeout);
1401
1402 blk_mq_init_flush(q);
1403 blk_mq_init_cpu_queues(q, reg->nr_hw_queues);
1404
1405 if (blk_mq_init_hw_queues(q, reg, driver_data))
1406 goto err_hw;
1407
1408 blk_mq_map_swqueue(q);
1409
1410 mutex_lock(&all_q_mutex);
1411 list_add_tail(&q->all_q_node, &all_q_list);
1412 mutex_unlock(&all_q_mutex);
1413
1414 return q;
1415 err_hw:
1416 kfree(q->mq_map);
1417 err_map:
1418 blk_cleanup_queue(q);
1419 err_hctxs:
1420 for (i = 0; i < reg->nr_hw_queues; i++) {
1421 if (!hctxs[i])
1422 break;
1423 reg->ops->free_hctx(hctxs[i], i);
1424 }
1425 kfree(hctxs);
1426 err_percpu:
1427 free_percpu(ctx);
1428 return ERR_PTR(-ENOMEM);
1429 }
1430 EXPORT_SYMBOL(blk_mq_init_queue);
1431
1432 void blk_mq_free_queue(struct request_queue *q)
1433 {
1434 struct blk_mq_hw_ctx *hctx;
1435 int i;
1436
1437 queue_for_each_hw_ctx(q, hctx, i) {
1438 kfree(hctx->ctx_map);
1439 kfree(hctx->ctxs);
1440 blk_mq_free_rq_map(hctx);
1441 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1442 if (q->mq_ops->exit_hctx)
1443 q->mq_ops->exit_hctx(hctx, i);
1444 q->mq_ops->free_hctx(hctx, i);
1445 }
1446
1447 free_percpu(q->queue_ctx);
1448 kfree(q->queue_hw_ctx);
1449 kfree(q->mq_map);
1450
1451 q->queue_ctx = NULL;
1452 q->queue_hw_ctx = NULL;
1453 q->mq_map = NULL;
1454
1455 mutex_lock(&all_q_mutex);
1456 list_del_init(&q->all_q_node);
1457 mutex_unlock(&all_q_mutex);
1458 }
1459
1460 /* Basically redo blk_mq_init_queue with queue frozen */
1461 static void blk_mq_queue_reinit(struct request_queue *q)
1462 {
1463 blk_mq_freeze_queue(q);
1464
1465 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1466
1467 /*
1468 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1469 * we should change hctx numa_node according to new topology (this
1470 * involves free and re-allocate memory, worthy doing?)
1471 */
1472
1473 blk_mq_map_swqueue(q);
1474
1475 blk_mq_unfreeze_queue(q);
1476 }
1477
1478 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1479 unsigned long action, void *hcpu)
1480 {
1481 struct request_queue *q;
1482
1483 /*
1484 * Before new mapping is established, hotadded cpu might already start
1485 * handling requests. This doesn't break anything as we map offline
1486 * CPUs to first hardware queue. We will re-init queue below to get
1487 * optimal settings.
1488 */
1489 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1490 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1491 return NOTIFY_OK;
1492
1493 mutex_lock(&all_q_mutex);
1494 list_for_each_entry(q, &all_q_list, all_q_node)
1495 blk_mq_queue_reinit(q);
1496 mutex_unlock(&all_q_mutex);
1497 return NOTIFY_OK;
1498 }
1499
1500 static int __init blk_mq_init(void)
1501 {
1502 blk_mq_cpu_init();
1503
1504 /* Must be called after percpu_counter_hotcpu_callback() */
1505 hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
1506
1507 return 0;
1508 }
1509 subsys_initcall(blk_mq_init);
This page took 0.07663 seconds and 4 git commands to generate.