Merge branch 'for-linus' of git://git.kernel.dk/linux-block
[deliverable/linux.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23
24 #include <trace/events/block.h>
25
26 #include <linux/blk-mq.h>
27 #include "blk.h"
28 #include "blk-mq.h"
29 #include "blk-mq-tag.h"
30
31 static DEFINE_MUTEX(all_q_mutex);
32 static LIST_HEAD(all_q_list);
33
34 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
35
36 /*
37 * Check if any of the ctx's have pending work in this hardware queue
38 */
39 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
40 {
41 unsigned int i;
42
43 for (i = 0; i < hctx->ctx_map.map_size; i++)
44 if (hctx->ctx_map.map[i].word)
45 return true;
46
47 return false;
48 }
49
50 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
51 struct blk_mq_ctx *ctx)
52 {
53 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
54 }
55
56 #define CTX_TO_BIT(hctx, ctx) \
57 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
58
59 /*
60 * Mark this ctx as having pending work in this hardware queue
61 */
62 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
63 struct blk_mq_ctx *ctx)
64 {
65 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
66
67 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
68 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
69 }
70
71 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
72 struct blk_mq_ctx *ctx)
73 {
74 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
75
76 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
77 }
78
79 static int blk_mq_queue_enter(struct request_queue *q)
80 {
81 while (true) {
82 int ret;
83
84 if (percpu_ref_tryget_live(&q->mq_usage_counter))
85 return 0;
86
87 ret = wait_event_interruptible(q->mq_freeze_wq,
88 !q->mq_freeze_depth || blk_queue_dying(q));
89 if (blk_queue_dying(q))
90 return -ENODEV;
91 if (ret)
92 return ret;
93 }
94 }
95
96 static void blk_mq_queue_exit(struct request_queue *q)
97 {
98 percpu_ref_put(&q->mq_usage_counter);
99 }
100
101 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
102 {
103 struct request_queue *q =
104 container_of(ref, struct request_queue, mq_usage_counter);
105
106 wake_up_all(&q->mq_freeze_wq);
107 }
108
109 /*
110 * Guarantee no request is in use, so we can change any data structure of
111 * the queue afterward.
112 */
113 void blk_mq_freeze_queue(struct request_queue *q)
114 {
115 bool freeze;
116
117 spin_lock_irq(q->queue_lock);
118 freeze = !q->mq_freeze_depth++;
119 spin_unlock_irq(q->queue_lock);
120
121 if (freeze) {
122 percpu_ref_kill(&q->mq_usage_counter);
123 blk_mq_run_queues(q, false);
124 }
125 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
126 }
127
128 static void blk_mq_unfreeze_queue(struct request_queue *q)
129 {
130 bool wake;
131
132 spin_lock_irq(q->queue_lock);
133 wake = !--q->mq_freeze_depth;
134 WARN_ON_ONCE(q->mq_freeze_depth < 0);
135 spin_unlock_irq(q->queue_lock);
136 if (wake) {
137 percpu_ref_reinit(&q->mq_usage_counter);
138 wake_up_all(&q->mq_freeze_wq);
139 }
140 }
141
142 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
143 {
144 return blk_mq_has_free_tags(hctx->tags);
145 }
146 EXPORT_SYMBOL(blk_mq_can_queue);
147
148 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
149 struct request *rq, unsigned int rw_flags)
150 {
151 if (blk_queue_io_stat(q))
152 rw_flags |= REQ_IO_STAT;
153
154 INIT_LIST_HEAD(&rq->queuelist);
155 /* csd/requeue_work/fifo_time is initialized before use */
156 rq->q = q;
157 rq->mq_ctx = ctx;
158 rq->cmd_flags |= rw_flags;
159 /* do not touch atomic flags, it needs atomic ops against the timer */
160 rq->cpu = -1;
161 INIT_HLIST_NODE(&rq->hash);
162 RB_CLEAR_NODE(&rq->rb_node);
163 rq->rq_disk = NULL;
164 rq->part = NULL;
165 rq->start_time = jiffies;
166 #ifdef CONFIG_BLK_CGROUP
167 rq->rl = NULL;
168 set_start_time_ns(rq);
169 rq->io_start_time_ns = 0;
170 #endif
171 rq->nr_phys_segments = 0;
172 #if defined(CONFIG_BLK_DEV_INTEGRITY)
173 rq->nr_integrity_segments = 0;
174 #endif
175 rq->special = NULL;
176 /* tag was already set */
177 rq->errors = 0;
178
179 rq->cmd = rq->__cmd;
180
181 rq->extra_len = 0;
182 rq->sense_len = 0;
183 rq->resid_len = 0;
184 rq->sense = NULL;
185
186 INIT_LIST_HEAD(&rq->timeout_list);
187 rq->timeout = 0;
188
189 rq->end_io = NULL;
190 rq->end_io_data = NULL;
191 rq->next_rq = NULL;
192
193 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
194 }
195
196 static struct request *
197 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
198 {
199 struct request *rq;
200 unsigned int tag;
201
202 tag = blk_mq_get_tag(data);
203 if (tag != BLK_MQ_TAG_FAIL) {
204 rq = data->hctx->tags->rqs[tag];
205
206 if (blk_mq_tag_busy(data->hctx)) {
207 rq->cmd_flags = REQ_MQ_INFLIGHT;
208 atomic_inc(&data->hctx->nr_active);
209 }
210
211 rq->tag = tag;
212 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
213 return rq;
214 }
215
216 return NULL;
217 }
218
219 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
220 bool reserved)
221 {
222 struct blk_mq_ctx *ctx;
223 struct blk_mq_hw_ctx *hctx;
224 struct request *rq;
225 struct blk_mq_alloc_data alloc_data;
226
227 if (blk_mq_queue_enter(q))
228 return NULL;
229
230 ctx = blk_mq_get_ctx(q);
231 hctx = q->mq_ops->map_queue(q, ctx->cpu);
232 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
233 reserved, ctx, hctx);
234
235 rq = __blk_mq_alloc_request(&alloc_data, rw);
236 if (!rq && (gfp & __GFP_WAIT)) {
237 __blk_mq_run_hw_queue(hctx);
238 blk_mq_put_ctx(ctx);
239
240 ctx = blk_mq_get_ctx(q);
241 hctx = q->mq_ops->map_queue(q, ctx->cpu);
242 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
243 hctx);
244 rq = __blk_mq_alloc_request(&alloc_data, rw);
245 ctx = alloc_data.ctx;
246 }
247 blk_mq_put_ctx(ctx);
248 return rq;
249 }
250 EXPORT_SYMBOL(blk_mq_alloc_request);
251
252 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
253 struct blk_mq_ctx *ctx, struct request *rq)
254 {
255 const int tag = rq->tag;
256 struct request_queue *q = rq->q;
257
258 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
259 atomic_dec(&hctx->nr_active);
260 rq->cmd_flags = 0;
261
262 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
263 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
264 blk_mq_queue_exit(q);
265 }
266
267 void blk_mq_free_request(struct request *rq)
268 {
269 struct blk_mq_ctx *ctx = rq->mq_ctx;
270 struct blk_mq_hw_ctx *hctx;
271 struct request_queue *q = rq->q;
272
273 ctx->rq_completed[rq_is_sync(rq)]++;
274
275 hctx = q->mq_ops->map_queue(q, ctx->cpu);
276 __blk_mq_free_request(hctx, ctx, rq);
277 }
278
279 /*
280 * Clone all relevant state from a request that has been put on hold in
281 * the flush state machine into the preallocated flush request that hangs
282 * off the request queue.
283 *
284 * For a driver the flush request should be invisible, that's why we are
285 * impersonating the original request here.
286 */
287 void blk_mq_clone_flush_request(struct request *flush_rq,
288 struct request *orig_rq)
289 {
290 struct blk_mq_hw_ctx *hctx =
291 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
292
293 flush_rq->mq_ctx = orig_rq->mq_ctx;
294 flush_rq->tag = orig_rq->tag;
295 memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
296 hctx->cmd_size);
297 }
298
299 inline void __blk_mq_end_io(struct request *rq, int error)
300 {
301 blk_account_io_done(rq);
302
303 if (rq->end_io) {
304 rq->end_io(rq, error);
305 } else {
306 if (unlikely(blk_bidi_rq(rq)))
307 blk_mq_free_request(rq->next_rq);
308 blk_mq_free_request(rq);
309 }
310 }
311 EXPORT_SYMBOL(__blk_mq_end_io);
312
313 void blk_mq_end_io(struct request *rq, int error)
314 {
315 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
316 BUG();
317 __blk_mq_end_io(rq, error);
318 }
319 EXPORT_SYMBOL(blk_mq_end_io);
320
321 static void __blk_mq_complete_request_remote(void *data)
322 {
323 struct request *rq = data;
324
325 rq->q->softirq_done_fn(rq);
326 }
327
328 static void blk_mq_ipi_complete_request(struct request *rq)
329 {
330 struct blk_mq_ctx *ctx = rq->mq_ctx;
331 bool shared = false;
332 int cpu;
333
334 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
335 rq->q->softirq_done_fn(rq);
336 return;
337 }
338
339 cpu = get_cpu();
340 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
341 shared = cpus_share_cache(cpu, ctx->cpu);
342
343 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
344 rq->csd.func = __blk_mq_complete_request_remote;
345 rq->csd.info = rq;
346 rq->csd.flags = 0;
347 smp_call_function_single_async(ctx->cpu, &rq->csd);
348 } else {
349 rq->q->softirq_done_fn(rq);
350 }
351 put_cpu();
352 }
353
354 void __blk_mq_complete_request(struct request *rq)
355 {
356 struct request_queue *q = rq->q;
357
358 if (!q->softirq_done_fn)
359 blk_mq_end_io(rq, rq->errors);
360 else
361 blk_mq_ipi_complete_request(rq);
362 }
363
364 /**
365 * blk_mq_complete_request - end I/O on a request
366 * @rq: the request being processed
367 *
368 * Description:
369 * Ends all I/O on a request. It does not handle partial completions.
370 * The actual completion happens out-of-order, through a IPI handler.
371 **/
372 void blk_mq_complete_request(struct request *rq)
373 {
374 struct request_queue *q = rq->q;
375
376 if (unlikely(blk_should_fake_timeout(q)))
377 return;
378 if (!blk_mark_rq_complete(rq))
379 __blk_mq_complete_request(rq);
380 }
381 EXPORT_SYMBOL(blk_mq_complete_request);
382
383 static void blk_mq_start_request(struct request *rq, bool last)
384 {
385 struct request_queue *q = rq->q;
386
387 trace_block_rq_issue(q, rq);
388
389 rq->resid_len = blk_rq_bytes(rq);
390 if (unlikely(blk_bidi_rq(rq)))
391 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
392
393 blk_add_timer(rq);
394
395 /*
396 * Ensure that ->deadline is visible before set the started
397 * flag and clear the completed flag.
398 */
399 smp_mb__before_atomic();
400
401 /*
402 * Mark us as started and clear complete. Complete might have been
403 * set if requeue raced with timeout, which then marked it as
404 * complete. So be sure to clear complete again when we start
405 * the request, otherwise we'll ignore the completion event.
406 */
407 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
408 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
409 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
410 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
411
412 if (q->dma_drain_size && blk_rq_bytes(rq)) {
413 /*
414 * Make sure space for the drain appears. We know we can do
415 * this because max_hw_segments has been adjusted to be one
416 * fewer than the device can handle.
417 */
418 rq->nr_phys_segments++;
419 }
420
421 /*
422 * Flag the last request in the series so that drivers know when IO
423 * should be kicked off, if they don't do it on a per-request basis.
424 *
425 * Note: the flag isn't the only condition drivers should do kick off.
426 * If drive is busy, the last request might not have the bit set.
427 */
428 if (last)
429 rq->cmd_flags |= REQ_END;
430 }
431
432 static void __blk_mq_requeue_request(struct request *rq)
433 {
434 struct request_queue *q = rq->q;
435
436 trace_block_rq_requeue(q, rq);
437 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
438
439 rq->cmd_flags &= ~REQ_END;
440
441 if (q->dma_drain_size && blk_rq_bytes(rq))
442 rq->nr_phys_segments--;
443 }
444
445 void blk_mq_requeue_request(struct request *rq)
446 {
447 __blk_mq_requeue_request(rq);
448 blk_clear_rq_complete(rq);
449
450 BUG_ON(blk_queued_rq(rq));
451 blk_mq_add_to_requeue_list(rq, true);
452 }
453 EXPORT_SYMBOL(blk_mq_requeue_request);
454
455 static void blk_mq_requeue_work(struct work_struct *work)
456 {
457 struct request_queue *q =
458 container_of(work, struct request_queue, requeue_work);
459 LIST_HEAD(rq_list);
460 struct request *rq, *next;
461 unsigned long flags;
462
463 spin_lock_irqsave(&q->requeue_lock, flags);
464 list_splice_init(&q->requeue_list, &rq_list);
465 spin_unlock_irqrestore(&q->requeue_lock, flags);
466
467 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
468 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
469 continue;
470
471 rq->cmd_flags &= ~REQ_SOFTBARRIER;
472 list_del_init(&rq->queuelist);
473 blk_mq_insert_request(rq, true, false, false);
474 }
475
476 while (!list_empty(&rq_list)) {
477 rq = list_entry(rq_list.next, struct request, queuelist);
478 list_del_init(&rq->queuelist);
479 blk_mq_insert_request(rq, false, false, false);
480 }
481
482 /*
483 * Use the start variant of queue running here, so that running
484 * the requeue work will kick stopped queues.
485 */
486 blk_mq_start_hw_queues(q);
487 }
488
489 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
490 {
491 struct request_queue *q = rq->q;
492 unsigned long flags;
493
494 /*
495 * We abuse this flag that is otherwise used by the I/O scheduler to
496 * request head insertation from the workqueue.
497 */
498 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
499
500 spin_lock_irqsave(&q->requeue_lock, flags);
501 if (at_head) {
502 rq->cmd_flags |= REQ_SOFTBARRIER;
503 list_add(&rq->queuelist, &q->requeue_list);
504 } else {
505 list_add_tail(&rq->queuelist, &q->requeue_list);
506 }
507 spin_unlock_irqrestore(&q->requeue_lock, flags);
508 }
509 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
510
511 void blk_mq_kick_requeue_list(struct request_queue *q)
512 {
513 kblockd_schedule_work(&q->requeue_work);
514 }
515 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
516
517 static inline bool is_flush_request(struct request *rq, unsigned int tag)
518 {
519 return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
520 rq->q->flush_rq->tag == tag);
521 }
522
523 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
524 {
525 struct request *rq = tags->rqs[tag];
526
527 if (!is_flush_request(rq, tag))
528 return rq;
529
530 return rq->q->flush_rq;
531 }
532 EXPORT_SYMBOL(blk_mq_tag_to_rq);
533
534 struct blk_mq_timeout_data {
535 struct blk_mq_hw_ctx *hctx;
536 unsigned long *next;
537 unsigned int *next_set;
538 };
539
540 static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
541 {
542 struct blk_mq_timeout_data *data = __data;
543 struct blk_mq_hw_ctx *hctx = data->hctx;
544 unsigned int tag;
545
546 /* It may not be in flight yet (this is where
547 * the REQ_ATOMIC_STARTED flag comes in). The requests are
548 * statically allocated, so we know it's always safe to access the
549 * memory associated with a bit offset into ->rqs[].
550 */
551 tag = 0;
552 do {
553 struct request *rq;
554
555 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
556 if (tag >= hctx->tags->nr_tags)
557 break;
558
559 rq = blk_mq_tag_to_rq(hctx->tags, tag++);
560 if (rq->q != hctx->queue)
561 continue;
562 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
563 continue;
564
565 blk_rq_check_expired(rq, data->next, data->next_set);
566 } while (1);
567 }
568
569 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
570 unsigned long *next,
571 unsigned int *next_set)
572 {
573 struct blk_mq_timeout_data data = {
574 .hctx = hctx,
575 .next = next,
576 .next_set = next_set,
577 };
578
579 /*
580 * Ask the tagging code to iterate busy requests, so we can
581 * check them for timeout.
582 */
583 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
584 }
585
586 static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
587 {
588 struct request_queue *q = rq->q;
589
590 /*
591 * We know that complete is set at this point. If STARTED isn't set
592 * anymore, then the request isn't active and the "timeout" should
593 * just be ignored. This can happen due to the bitflag ordering.
594 * Timeout first checks if STARTED is set, and if it is, assumes
595 * the request is active. But if we race with completion, then
596 * we both flags will get cleared. So check here again, and ignore
597 * a timeout event with a request that isn't active.
598 */
599 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
600 return BLK_EH_NOT_HANDLED;
601
602 if (!q->mq_ops->timeout)
603 return BLK_EH_RESET_TIMER;
604
605 return q->mq_ops->timeout(rq);
606 }
607
608 static void blk_mq_rq_timer(unsigned long data)
609 {
610 struct request_queue *q = (struct request_queue *) data;
611 struct blk_mq_hw_ctx *hctx;
612 unsigned long next = 0;
613 int i, next_set = 0;
614
615 queue_for_each_hw_ctx(q, hctx, i) {
616 /*
617 * If not software queues are currently mapped to this
618 * hardware queue, there's nothing to check
619 */
620 if (!hctx->nr_ctx || !hctx->tags)
621 continue;
622
623 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
624 }
625
626 if (next_set) {
627 next = blk_rq_timeout(round_jiffies_up(next));
628 mod_timer(&q->timeout, next);
629 } else {
630 queue_for_each_hw_ctx(q, hctx, i)
631 blk_mq_tag_idle(hctx);
632 }
633 }
634
635 /*
636 * Reverse check our software queue for entries that we could potentially
637 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
638 * too much time checking for merges.
639 */
640 static bool blk_mq_attempt_merge(struct request_queue *q,
641 struct blk_mq_ctx *ctx, struct bio *bio)
642 {
643 struct request *rq;
644 int checked = 8;
645
646 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
647 int el_ret;
648
649 if (!checked--)
650 break;
651
652 if (!blk_rq_merge_ok(rq, bio))
653 continue;
654
655 el_ret = blk_try_merge(rq, bio);
656 if (el_ret == ELEVATOR_BACK_MERGE) {
657 if (bio_attempt_back_merge(q, rq, bio)) {
658 ctx->rq_merged++;
659 return true;
660 }
661 break;
662 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
663 if (bio_attempt_front_merge(q, rq, bio)) {
664 ctx->rq_merged++;
665 return true;
666 }
667 break;
668 }
669 }
670
671 return false;
672 }
673
674 /*
675 * Process software queues that have been marked busy, splicing them
676 * to the for-dispatch
677 */
678 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
679 {
680 struct blk_mq_ctx *ctx;
681 int i;
682
683 for (i = 0; i < hctx->ctx_map.map_size; i++) {
684 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
685 unsigned int off, bit;
686
687 if (!bm->word)
688 continue;
689
690 bit = 0;
691 off = i * hctx->ctx_map.bits_per_word;
692 do {
693 bit = find_next_bit(&bm->word, bm->depth, bit);
694 if (bit >= bm->depth)
695 break;
696
697 ctx = hctx->ctxs[bit + off];
698 clear_bit(bit, &bm->word);
699 spin_lock(&ctx->lock);
700 list_splice_tail_init(&ctx->rq_list, list);
701 spin_unlock(&ctx->lock);
702
703 bit++;
704 } while (1);
705 }
706 }
707
708 /*
709 * Run this hardware queue, pulling any software queues mapped to it in.
710 * Note that this function currently has various problems around ordering
711 * of IO. In particular, we'd like FIFO behaviour on handling existing
712 * items on the hctx->dispatch list. Ignore that for now.
713 */
714 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
715 {
716 struct request_queue *q = hctx->queue;
717 struct request *rq;
718 LIST_HEAD(rq_list);
719 int queued;
720
721 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
722
723 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
724 return;
725
726 hctx->run++;
727
728 /*
729 * Touch any software queue that has pending entries.
730 */
731 flush_busy_ctxs(hctx, &rq_list);
732
733 /*
734 * If we have previous entries on our dispatch list, grab them
735 * and stuff them at the front for more fair dispatch.
736 */
737 if (!list_empty_careful(&hctx->dispatch)) {
738 spin_lock(&hctx->lock);
739 if (!list_empty(&hctx->dispatch))
740 list_splice_init(&hctx->dispatch, &rq_list);
741 spin_unlock(&hctx->lock);
742 }
743
744 /*
745 * Now process all the entries, sending them to the driver.
746 */
747 queued = 0;
748 while (!list_empty(&rq_list)) {
749 int ret;
750
751 rq = list_first_entry(&rq_list, struct request, queuelist);
752 list_del_init(&rq->queuelist);
753
754 blk_mq_start_request(rq, list_empty(&rq_list));
755
756 ret = q->mq_ops->queue_rq(hctx, rq);
757 switch (ret) {
758 case BLK_MQ_RQ_QUEUE_OK:
759 queued++;
760 continue;
761 case BLK_MQ_RQ_QUEUE_BUSY:
762 list_add(&rq->queuelist, &rq_list);
763 __blk_mq_requeue_request(rq);
764 break;
765 default:
766 pr_err("blk-mq: bad return on queue: %d\n", ret);
767 case BLK_MQ_RQ_QUEUE_ERROR:
768 rq->errors = -EIO;
769 blk_mq_end_io(rq, rq->errors);
770 break;
771 }
772
773 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
774 break;
775 }
776
777 if (!queued)
778 hctx->dispatched[0]++;
779 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
780 hctx->dispatched[ilog2(queued) + 1]++;
781
782 /*
783 * Any items that need requeuing? Stuff them into hctx->dispatch,
784 * that is where we will continue on next queue run.
785 */
786 if (!list_empty(&rq_list)) {
787 spin_lock(&hctx->lock);
788 list_splice(&rq_list, &hctx->dispatch);
789 spin_unlock(&hctx->lock);
790 }
791 }
792
793 /*
794 * It'd be great if the workqueue API had a way to pass
795 * in a mask and had some smarts for more clever placement.
796 * For now we just round-robin here, switching for every
797 * BLK_MQ_CPU_WORK_BATCH queued items.
798 */
799 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
800 {
801 int cpu = hctx->next_cpu;
802
803 if (--hctx->next_cpu_batch <= 0) {
804 int next_cpu;
805
806 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
807 if (next_cpu >= nr_cpu_ids)
808 next_cpu = cpumask_first(hctx->cpumask);
809
810 hctx->next_cpu = next_cpu;
811 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
812 }
813
814 return cpu;
815 }
816
817 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
818 {
819 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
820 return;
821
822 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
823 __blk_mq_run_hw_queue(hctx);
824 else if (hctx->queue->nr_hw_queues == 1)
825 kblockd_schedule_delayed_work(&hctx->run_work, 0);
826 else {
827 unsigned int cpu;
828
829 cpu = blk_mq_hctx_next_cpu(hctx);
830 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
831 }
832 }
833
834 void blk_mq_run_queues(struct request_queue *q, bool async)
835 {
836 struct blk_mq_hw_ctx *hctx;
837 int i;
838
839 queue_for_each_hw_ctx(q, hctx, i) {
840 if ((!blk_mq_hctx_has_pending(hctx) &&
841 list_empty_careful(&hctx->dispatch)) ||
842 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
843 continue;
844
845 preempt_disable();
846 blk_mq_run_hw_queue(hctx, async);
847 preempt_enable();
848 }
849 }
850 EXPORT_SYMBOL(blk_mq_run_queues);
851
852 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
853 {
854 cancel_delayed_work(&hctx->run_work);
855 cancel_delayed_work(&hctx->delay_work);
856 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
857 }
858 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
859
860 void blk_mq_stop_hw_queues(struct request_queue *q)
861 {
862 struct blk_mq_hw_ctx *hctx;
863 int i;
864
865 queue_for_each_hw_ctx(q, hctx, i)
866 blk_mq_stop_hw_queue(hctx);
867 }
868 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
869
870 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
871 {
872 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
873
874 preempt_disable();
875 blk_mq_run_hw_queue(hctx, false);
876 preempt_enable();
877 }
878 EXPORT_SYMBOL(blk_mq_start_hw_queue);
879
880 void blk_mq_start_hw_queues(struct request_queue *q)
881 {
882 struct blk_mq_hw_ctx *hctx;
883 int i;
884
885 queue_for_each_hw_ctx(q, hctx, i)
886 blk_mq_start_hw_queue(hctx);
887 }
888 EXPORT_SYMBOL(blk_mq_start_hw_queues);
889
890
891 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
892 {
893 struct blk_mq_hw_ctx *hctx;
894 int i;
895
896 queue_for_each_hw_ctx(q, hctx, i) {
897 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
898 continue;
899
900 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
901 preempt_disable();
902 blk_mq_run_hw_queue(hctx, async);
903 preempt_enable();
904 }
905 }
906 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
907
908 static void blk_mq_run_work_fn(struct work_struct *work)
909 {
910 struct blk_mq_hw_ctx *hctx;
911
912 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
913
914 __blk_mq_run_hw_queue(hctx);
915 }
916
917 static void blk_mq_delay_work_fn(struct work_struct *work)
918 {
919 struct blk_mq_hw_ctx *hctx;
920
921 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
922
923 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
924 __blk_mq_run_hw_queue(hctx);
925 }
926
927 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
928 {
929 unsigned long tmo = msecs_to_jiffies(msecs);
930
931 if (hctx->queue->nr_hw_queues == 1)
932 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
933 else {
934 unsigned int cpu;
935
936 cpu = blk_mq_hctx_next_cpu(hctx);
937 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
938 }
939 }
940 EXPORT_SYMBOL(blk_mq_delay_queue);
941
942 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
943 struct request *rq, bool at_head)
944 {
945 struct blk_mq_ctx *ctx = rq->mq_ctx;
946
947 trace_block_rq_insert(hctx->queue, rq);
948
949 if (at_head)
950 list_add(&rq->queuelist, &ctx->rq_list);
951 else
952 list_add_tail(&rq->queuelist, &ctx->rq_list);
953
954 blk_mq_hctx_mark_pending(hctx, ctx);
955 }
956
957 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
958 bool async)
959 {
960 struct request_queue *q = rq->q;
961 struct blk_mq_hw_ctx *hctx;
962 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
963
964 current_ctx = blk_mq_get_ctx(q);
965 if (!cpu_online(ctx->cpu))
966 rq->mq_ctx = ctx = current_ctx;
967
968 hctx = q->mq_ops->map_queue(q, ctx->cpu);
969
970 spin_lock(&ctx->lock);
971 __blk_mq_insert_request(hctx, rq, at_head);
972 spin_unlock(&ctx->lock);
973
974 if (run_queue)
975 blk_mq_run_hw_queue(hctx, async);
976
977 blk_mq_put_ctx(current_ctx);
978 }
979
980 static void blk_mq_insert_requests(struct request_queue *q,
981 struct blk_mq_ctx *ctx,
982 struct list_head *list,
983 int depth,
984 bool from_schedule)
985
986 {
987 struct blk_mq_hw_ctx *hctx;
988 struct blk_mq_ctx *current_ctx;
989
990 trace_block_unplug(q, depth, !from_schedule);
991
992 current_ctx = blk_mq_get_ctx(q);
993
994 if (!cpu_online(ctx->cpu))
995 ctx = current_ctx;
996 hctx = q->mq_ops->map_queue(q, ctx->cpu);
997
998 /*
999 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1000 * offline now
1001 */
1002 spin_lock(&ctx->lock);
1003 while (!list_empty(list)) {
1004 struct request *rq;
1005
1006 rq = list_first_entry(list, struct request, queuelist);
1007 list_del_init(&rq->queuelist);
1008 rq->mq_ctx = ctx;
1009 __blk_mq_insert_request(hctx, rq, false);
1010 }
1011 spin_unlock(&ctx->lock);
1012
1013 blk_mq_run_hw_queue(hctx, from_schedule);
1014 blk_mq_put_ctx(current_ctx);
1015 }
1016
1017 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1018 {
1019 struct request *rqa = container_of(a, struct request, queuelist);
1020 struct request *rqb = container_of(b, struct request, queuelist);
1021
1022 return !(rqa->mq_ctx < rqb->mq_ctx ||
1023 (rqa->mq_ctx == rqb->mq_ctx &&
1024 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1025 }
1026
1027 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1028 {
1029 struct blk_mq_ctx *this_ctx;
1030 struct request_queue *this_q;
1031 struct request *rq;
1032 LIST_HEAD(list);
1033 LIST_HEAD(ctx_list);
1034 unsigned int depth;
1035
1036 list_splice_init(&plug->mq_list, &list);
1037
1038 list_sort(NULL, &list, plug_ctx_cmp);
1039
1040 this_q = NULL;
1041 this_ctx = NULL;
1042 depth = 0;
1043
1044 while (!list_empty(&list)) {
1045 rq = list_entry_rq(list.next);
1046 list_del_init(&rq->queuelist);
1047 BUG_ON(!rq->q);
1048 if (rq->mq_ctx != this_ctx) {
1049 if (this_ctx) {
1050 blk_mq_insert_requests(this_q, this_ctx,
1051 &ctx_list, depth,
1052 from_schedule);
1053 }
1054
1055 this_ctx = rq->mq_ctx;
1056 this_q = rq->q;
1057 depth = 0;
1058 }
1059
1060 depth++;
1061 list_add_tail(&rq->queuelist, &ctx_list);
1062 }
1063
1064 /*
1065 * If 'this_ctx' is set, we know we have entries to complete
1066 * on 'ctx_list'. Do those.
1067 */
1068 if (this_ctx) {
1069 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1070 from_schedule);
1071 }
1072 }
1073
1074 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1075 {
1076 init_request_from_bio(rq, bio);
1077
1078 if (blk_do_io_stat(rq))
1079 blk_account_io_start(rq, 1);
1080 }
1081
1082 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1083 {
1084 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1085 !blk_queue_nomerges(hctx->queue);
1086 }
1087
1088 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1089 struct blk_mq_ctx *ctx,
1090 struct request *rq, struct bio *bio)
1091 {
1092 if (!hctx_allow_merges(hctx)) {
1093 blk_mq_bio_to_request(rq, bio);
1094 spin_lock(&ctx->lock);
1095 insert_rq:
1096 __blk_mq_insert_request(hctx, rq, false);
1097 spin_unlock(&ctx->lock);
1098 return false;
1099 } else {
1100 struct request_queue *q = hctx->queue;
1101
1102 spin_lock(&ctx->lock);
1103 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1104 blk_mq_bio_to_request(rq, bio);
1105 goto insert_rq;
1106 }
1107
1108 spin_unlock(&ctx->lock);
1109 __blk_mq_free_request(hctx, ctx, rq);
1110 return true;
1111 }
1112 }
1113
1114 struct blk_map_ctx {
1115 struct blk_mq_hw_ctx *hctx;
1116 struct blk_mq_ctx *ctx;
1117 };
1118
1119 static struct request *blk_mq_map_request(struct request_queue *q,
1120 struct bio *bio,
1121 struct blk_map_ctx *data)
1122 {
1123 struct blk_mq_hw_ctx *hctx;
1124 struct blk_mq_ctx *ctx;
1125 struct request *rq;
1126 int rw = bio_data_dir(bio);
1127 struct blk_mq_alloc_data alloc_data;
1128
1129 if (unlikely(blk_mq_queue_enter(q))) {
1130 bio_endio(bio, -EIO);
1131 return NULL;
1132 }
1133
1134 ctx = blk_mq_get_ctx(q);
1135 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1136
1137 if (rw_is_sync(bio->bi_rw))
1138 rw |= REQ_SYNC;
1139
1140 trace_block_getrq(q, bio, rw);
1141 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1142 hctx);
1143 rq = __blk_mq_alloc_request(&alloc_data, rw);
1144 if (unlikely(!rq)) {
1145 __blk_mq_run_hw_queue(hctx);
1146 blk_mq_put_ctx(ctx);
1147 trace_block_sleeprq(q, bio, rw);
1148
1149 ctx = blk_mq_get_ctx(q);
1150 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1151 blk_mq_set_alloc_data(&alloc_data, q,
1152 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1153 rq = __blk_mq_alloc_request(&alloc_data, rw);
1154 ctx = alloc_data.ctx;
1155 hctx = alloc_data.hctx;
1156 }
1157
1158 hctx->queued++;
1159 data->hctx = hctx;
1160 data->ctx = ctx;
1161 return rq;
1162 }
1163
1164 /*
1165 * Multiple hardware queue variant. This will not use per-process plugs,
1166 * but will attempt to bypass the hctx queueing if we can go straight to
1167 * hardware for SYNC IO.
1168 */
1169 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1170 {
1171 const int is_sync = rw_is_sync(bio->bi_rw);
1172 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1173 struct blk_map_ctx data;
1174 struct request *rq;
1175
1176 blk_queue_bounce(q, &bio);
1177
1178 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1179 bio_endio(bio, -EIO);
1180 return;
1181 }
1182
1183 rq = blk_mq_map_request(q, bio, &data);
1184 if (unlikely(!rq))
1185 return;
1186
1187 if (unlikely(is_flush_fua)) {
1188 blk_mq_bio_to_request(rq, bio);
1189 blk_insert_flush(rq);
1190 goto run_queue;
1191 }
1192
1193 if (is_sync) {
1194 int ret;
1195
1196 blk_mq_bio_to_request(rq, bio);
1197 blk_mq_start_request(rq, true);
1198
1199 /*
1200 * For OK queue, we are done. For error, kill it. Any other
1201 * error (busy), just add it to our list as we previously
1202 * would have done
1203 */
1204 ret = q->mq_ops->queue_rq(data.hctx, rq);
1205 if (ret == BLK_MQ_RQ_QUEUE_OK)
1206 goto done;
1207 else {
1208 __blk_mq_requeue_request(rq);
1209
1210 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1211 rq->errors = -EIO;
1212 blk_mq_end_io(rq, rq->errors);
1213 goto done;
1214 }
1215 }
1216 }
1217
1218 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1219 /*
1220 * For a SYNC request, send it to the hardware immediately. For
1221 * an ASYNC request, just ensure that we run it later on. The
1222 * latter allows for merging opportunities and more efficient
1223 * dispatching.
1224 */
1225 run_queue:
1226 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1227 }
1228 done:
1229 blk_mq_put_ctx(data.ctx);
1230 }
1231
1232 /*
1233 * Single hardware queue variant. This will attempt to use any per-process
1234 * plug for merging and IO deferral.
1235 */
1236 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1237 {
1238 const int is_sync = rw_is_sync(bio->bi_rw);
1239 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1240 unsigned int use_plug, request_count = 0;
1241 struct blk_map_ctx data;
1242 struct request *rq;
1243
1244 /*
1245 * If we have multiple hardware queues, just go directly to
1246 * one of those for sync IO.
1247 */
1248 use_plug = !is_flush_fua && !is_sync;
1249
1250 blk_queue_bounce(q, &bio);
1251
1252 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1253 bio_endio(bio, -EIO);
1254 return;
1255 }
1256
1257 if (use_plug && !blk_queue_nomerges(q) &&
1258 blk_attempt_plug_merge(q, bio, &request_count))
1259 return;
1260
1261 rq = blk_mq_map_request(q, bio, &data);
1262 if (unlikely(!rq))
1263 return;
1264
1265 if (unlikely(is_flush_fua)) {
1266 blk_mq_bio_to_request(rq, bio);
1267 blk_insert_flush(rq);
1268 goto run_queue;
1269 }
1270
1271 /*
1272 * A task plug currently exists. Since this is completely lockless,
1273 * utilize that to temporarily store requests until the task is
1274 * either done or scheduled away.
1275 */
1276 if (use_plug) {
1277 struct blk_plug *plug = current->plug;
1278
1279 if (plug) {
1280 blk_mq_bio_to_request(rq, bio);
1281 if (list_empty(&plug->mq_list))
1282 trace_block_plug(q);
1283 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1284 blk_flush_plug_list(plug, false);
1285 trace_block_plug(q);
1286 }
1287 list_add_tail(&rq->queuelist, &plug->mq_list);
1288 blk_mq_put_ctx(data.ctx);
1289 return;
1290 }
1291 }
1292
1293 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1294 /*
1295 * For a SYNC request, send it to the hardware immediately. For
1296 * an ASYNC request, just ensure that we run it later on. The
1297 * latter allows for merging opportunities and more efficient
1298 * dispatching.
1299 */
1300 run_queue:
1301 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1302 }
1303
1304 blk_mq_put_ctx(data.ctx);
1305 }
1306
1307 /*
1308 * Default mapping to a software queue, since we use one per CPU.
1309 */
1310 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1311 {
1312 return q->queue_hw_ctx[q->mq_map[cpu]];
1313 }
1314 EXPORT_SYMBOL(blk_mq_map_queue);
1315
1316 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1317 struct blk_mq_tags *tags, unsigned int hctx_idx)
1318 {
1319 struct page *page;
1320
1321 if (tags->rqs && set->ops->exit_request) {
1322 int i;
1323
1324 for (i = 0; i < tags->nr_tags; i++) {
1325 if (!tags->rqs[i])
1326 continue;
1327 set->ops->exit_request(set->driver_data, tags->rqs[i],
1328 hctx_idx, i);
1329 tags->rqs[i] = NULL;
1330 }
1331 }
1332
1333 while (!list_empty(&tags->page_list)) {
1334 page = list_first_entry(&tags->page_list, struct page, lru);
1335 list_del_init(&page->lru);
1336 __free_pages(page, page->private);
1337 }
1338
1339 kfree(tags->rqs);
1340
1341 blk_mq_free_tags(tags);
1342 }
1343
1344 static size_t order_to_size(unsigned int order)
1345 {
1346 return (size_t)PAGE_SIZE << order;
1347 }
1348
1349 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1350 unsigned int hctx_idx)
1351 {
1352 struct blk_mq_tags *tags;
1353 unsigned int i, j, entries_per_page, max_order = 4;
1354 size_t rq_size, left;
1355
1356 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1357 set->numa_node);
1358 if (!tags)
1359 return NULL;
1360
1361 INIT_LIST_HEAD(&tags->page_list);
1362
1363 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1364 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1365 set->numa_node);
1366 if (!tags->rqs) {
1367 blk_mq_free_tags(tags);
1368 return NULL;
1369 }
1370
1371 /*
1372 * rq_size is the size of the request plus driver payload, rounded
1373 * to the cacheline size
1374 */
1375 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1376 cache_line_size());
1377 left = rq_size * set->queue_depth;
1378
1379 for (i = 0; i < set->queue_depth; ) {
1380 int this_order = max_order;
1381 struct page *page;
1382 int to_do;
1383 void *p;
1384
1385 while (left < order_to_size(this_order - 1) && this_order)
1386 this_order--;
1387
1388 do {
1389 page = alloc_pages_node(set->numa_node,
1390 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1391 this_order);
1392 if (page)
1393 break;
1394 if (!this_order--)
1395 break;
1396 if (order_to_size(this_order) < rq_size)
1397 break;
1398 } while (1);
1399
1400 if (!page)
1401 goto fail;
1402
1403 page->private = this_order;
1404 list_add_tail(&page->lru, &tags->page_list);
1405
1406 p = page_address(page);
1407 entries_per_page = order_to_size(this_order) / rq_size;
1408 to_do = min(entries_per_page, set->queue_depth - i);
1409 left -= to_do * rq_size;
1410 for (j = 0; j < to_do; j++) {
1411 tags->rqs[i] = p;
1412 tags->rqs[i]->atomic_flags = 0;
1413 tags->rqs[i]->cmd_flags = 0;
1414 if (set->ops->init_request) {
1415 if (set->ops->init_request(set->driver_data,
1416 tags->rqs[i], hctx_idx, i,
1417 set->numa_node)) {
1418 tags->rqs[i] = NULL;
1419 goto fail;
1420 }
1421 }
1422
1423 p += rq_size;
1424 i++;
1425 }
1426 }
1427
1428 return tags;
1429
1430 fail:
1431 blk_mq_free_rq_map(set, tags, hctx_idx);
1432 return NULL;
1433 }
1434
1435 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1436 {
1437 kfree(bitmap->map);
1438 }
1439
1440 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1441 {
1442 unsigned int bpw = 8, total, num_maps, i;
1443
1444 bitmap->bits_per_word = bpw;
1445
1446 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1447 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1448 GFP_KERNEL, node);
1449 if (!bitmap->map)
1450 return -ENOMEM;
1451
1452 bitmap->map_size = num_maps;
1453
1454 total = nr_cpu_ids;
1455 for (i = 0; i < num_maps; i++) {
1456 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1457 total -= bitmap->map[i].depth;
1458 }
1459
1460 return 0;
1461 }
1462
1463 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1464 {
1465 struct request_queue *q = hctx->queue;
1466 struct blk_mq_ctx *ctx;
1467 LIST_HEAD(tmp);
1468
1469 /*
1470 * Move ctx entries to new CPU, if this one is going away.
1471 */
1472 ctx = __blk_mq_get_ctx(q, cpu);
1473
1474 spin_lock(&ctx->lock);
1475 if (!list_empty(&ctx->rq_list)) {
1476 list_splice_init(&ctx->rq_list, &tmp);
1477 blk_mq_hctx_clear_pending(hctx, ctx);
1478 }
1479 spin_unlock(&ctx->lock);
1480
1481 if (list_empty(&tmp))
1482 return NOTIFY_OK;
1483
1484 ctx = blk_mq_get_ctx(q);
1485 spin_lock(&ctx->lock);
1486
1487 while (!list_empty(&tmp)) {
1488 struct request *rq;
1489
1490 rq = list_first_entry(&tmp, struct request, queuelist);
1491 rq->mq_ctx = ctx;
1492 list_move_tail(&rq->queuelist, &ctx->rq_list);
1493 }
1494
1495 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1496 blk_mq_hctx_mark_pending(hctx, ctx);
1497
1498 spin_unlock(&ctx->lock);
1499
1500 blk_mq_run_hw_queue(hctx, true);
1501 blk_mq_put_ctx(ctx);
1502 return NOTIFY_OK;
1503 }
1504
1505 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1506 {
1507 struct request_queue *q = hctx->queue;
1508 struct blk_mq_tag_set *set = q->tag_set;
1509
1510 if (set->tags[hctx->queue_num])
1511 return NOTIFY_OK;
1512
1513 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1514 if (!set->tags[hctx->queue_num])
1515 return NOTIFY_STOP;
1516
1517 hctx->tags = set->tags[hctx->queue_num];
1518 return NOTIFY_OK;
1519 }
1520
1521 static int blk_mq_hctx_notify(void *data, unsigned long action,
1522 unsigned int cpu)
1523 {
1524 struct blk_mq_hw_ctx *hctx = data;
1525
1526 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1527 return blk_mq_hctx_cpu_offline(hctx, cpu);
1528 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1529 return blk_mq_hctx_cpu_online(hctx, cpu);
1530
1531 return NOTIFY_OK;
1532 }
1533
1534 static void blk_mq_exit_hw_queues(struct request_queue *q,
1535 struct blk_mq_tag_set *set, int nr_queue)
1536 {
1537 struct blk_mq_hw_ctx *hctx;
1538 unsigned int i;
1539
1540 queue_for_each_hw_ctx(q, hctx, i) {
1541 if (i == nr_queue)
1542 break;
1543
1544 blk_mq_tag_idle(hctx);
1545
1546 if (set->ops->exit_hctx)
1547 set->ops->exit_hctx(hctx, i);
1548
1549 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1550 kfree(hctx->ctxs);
1551 blk_mq_free_bitmap(&hctx->ctx_map);
1552 }
1553
1554 }
1555
1556 static void blk_mq_free_hw_queues(struct request_queue *q,
1557 struct blk_mq_tag_set *set)
1558 {
1559 struct blk_mq_hw_ctx *hctx;
1560 unsigned int i;
1561
1562 queue_for_each_hw_ctx(q, hctx, i) {
1563 free_cpumask_var(hctx->cpumask);
1564 kfree(hctx);
1565 }
1566 }
1567
1568 static int blk_mq_init_hw_queues(struct request_queue *q,
1569 struct blk_mq_tag_set *set)
1570 {
1571 struct blk_mq_hw_ctx *hctx;
1572 unsigned int i;
1573
1574 /*
1575 * Initialize hardware queues
1576 */
1577 queue_for_each_hw_ctx(q, hctx, i) {
1578 int node;
1579
1580 node = hctx->numa_node;
1581 if (node == NUMA_NO_NODE)
1582 node = hctx->numa_node = set->numa_node;
1583
1584 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1585 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1586 spin_lock_init(&hctx->lock);
1587 INIT_LIST_HEAD(&hctx->dispatch);
1588 hctx->queue = q;
1589 hctx->queue_num = i;
1590 hctx->flags = set->flags;
1591 hctx->cmd_size = set->cmd_size;
1592
1593 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1594 blk_mq_hctx_notify, hctx);
1595 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1596
1597 hctx->tags = set->tags[i];
1598
1599 /*
1600 * Allocate space for all possible cpus to avoid allocation at
1601 * runtime
1602 */
1603 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1604 GFP_KERNEL, node);
1605 if (!hctx->ctxs)
1606 break;
1607
1608 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1609 break;
1610
1611 hctx->nr_ctx = 0;
1612
1613 if (set->ops->init_hctx &&
1614 set->ops->init_hctx(hctx, set->driver_data, i))
1615 break;
1616 }
1617
1618 if (i == q->nr_hw_queues)
1619 return 0;
1620
1621 /*
1622 * Init failed
1623 */
1624 blk_mq_exit_hw_queues(q, set, i);
1625
1626 return 1;
1627 }
1628
1629 static void blk_mq_init_cpu_queues(struct request_queue *q,
1630 unsigned int nr_hw_queues)
1631 {
1632 unsigned int i;
1633
1634 for_each_possible_cpu(i) {
1635 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1636 struct blk_mq_hw_ctx *hctx;
1637
1638 memset(__ctx, 0, sizeof(*__ctx));
1639 __ctx->cpu = i;
1640 spin_lock_init(&__ctx->lock);
1641 INIT_LIST_HEAD(&__ctx->rq_list);
1642 __ctx->queue = q;
1643
1644 /* If the cpu isn't online, the cpu is mapped to first hctx */
1645 if (!cpu_online(i))
1646 continue;
1647
1648 hctx = q->mq_ops->map_queue(q, i);
1649 cpumask_set_cpu(i, hctx->cpumask);
1650 hctx->nr_ctx++;
1651
1652 /*
1653 * Set local node, IFF we have more than one hw queue. If
1654 * not, we remain on the home node of the device
1655 */
1656 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1657 hctx->numa_node = cpu_to_node(i);
1658 }
1659 }
1660
1661 static void blk_mq_map_swqueue(struct request_queue *q)
1662 {
1663 unsigned int i;
1664 struct blk_mq_hw_ctx *hctx;
1665 struct blk_mq_ctx *ctx;
1666
1667 queue_for_each_hw_ctx(q, hctx, i) {
1668 cpumask_clear(hctx->cpumask);
1669 hctx->nr_ctx = 0;
1670 }
1671
1672 /*
1673 * Map software to hardware queues
1674 */
1675 queue_for_each_ctx(q, ctx, i) {
1676 /* If the cpu isn't online, the cpu is mapped to first hctx */
1677 if (!cpu_online(i))
1678 continue;
1679
1680 hctx = q->mq_ops->map_queue(q, i);
1681 cpumask_set_cpu(i, hctx->cpumask);
1682 ctx->index_hw = hctx->nr_ctx;
1683 hctx->ctxs[hctx->nr_ctx++] = ctx;
1684 }
1685
1686 queue_for_each_hw_ctx(q, hctx, i) {
1687 /*
1688 * If no software queues are mapped to this hardware queue,
1689 * disable it and free the request entries.
1690 */
1691 if (!hctx->nr_ctx) {
1692 struct blk_mq_tag_set *set = q->tag_set;
1693
1694 if (set->tags[i]) {
1695 blk_mq_free_rq_map(set, set->tags[i], i);
1696 set->tags[i] = NULL;
1697 hctx->tags = NULL;
1698 }
1699 continue;
1700 }
1701
1702 /*
1703 * Initialize batch roundrobin counts
1704 */
1705 hctx->next_cpu = cpumask_first(hctx->cpumask);
1706 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1707 }
1708 }
1709
1710 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1711 {
1712 struct blk_mq_hw_ctx *hctx;
1713 struct request_queue *q;
1714 bool shared;
1715 int i;
1716
1717 if (set->tag_list.next == set->tag_list.prev)
1718 shared = false;
1719 else
1720 shared = true;
1721
1722 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1723 blk_mq_freeze_queue(q);
1724
1725 queue_for_each_hw_ctx(q, hctx, i) {
1726 if (shared)
1727 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1728 else
1729 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1730 }
1731 blk_mq_unfreeze_queue(q);
1732 }
1733 }
1734
1735 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1736 {
1737 struct blk_mq_tag_set *set = q->tag_set;
1738
1739 mutex_lock(&set->tag_list_lock);
1740 list_del_init(&q->tag_set_list);
1741 blk_mq_update_tag_set_depth(set);
1742 mutex_unlock(&set->tag_list_lock);
1743 }
1744
1745 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1746 struct request_queue *q)
1747 {
1748 q->tag_set = set;
1749
1750 mutex_lock(&set->tag_list_lock);
1751 list_add_tail(&q->tag_set_list, &set->tag_list);
1752 blk_mq_update_tag_set_depth(set);
1753 mutex_unlock(&set->tag_list_lock);
1754 }
1755
1756 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1757 {
1758 struct blk_mq_hw_ctx **hctxs;
1759 struct blk_mq_ctx __percpu *ctx;
1760 struct request_queue *q;
1761 unsigned int *map;
1762 int i;
1763
1764 ctx = alloc_percpu(struct blk_mq_ctx);
1765 if (!ctx)
1766 return ERR_PTR(-ENOMEM);
1767
1768 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1769 set->numa_node);
1770
1771 if (!hctxs)
1772 goto err_percpu;
1773
1774 map = blk_mq_make_queue_map(set);
1775 if (!map)
1776 goto err_map;
1777
1778 for (i = 0; i < set->nr_hw_queues; i++) {
1779 int node = blk_mq_hw_queue_to_node(map, i);
1780
1781 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1782 GFP_KERNEL, node);
1783 if (!hctxs[i])
1784 goto err_hctxs;
1785
1786 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1787 goto err_hctxs;
1788
1789 atomic_set(&hctxs[i]->nr_active, 0);
1790 hctxs[i]->numa_node = node;
1791 hctxs[i]->queue_num = i;
1792 }
1793
1794 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1795 if (!q)
1796 goto err_hctxs;
1797
1798 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release))
1799 goto err_map;
1800
1801 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1802 blk_queue_rq_timeout(q, 30000);
1803
1804 q->nr_queues = nr_cpu_ids;
1805 q->nr_hw_queues = set->nr_hw_queues;
1806 q->mq_map = map;
1807
1808 q->queue_ctx = ctx;
1809 q->queue_hw_ctx = hctxs;
1810
1811 q->mq_ops = set->ops;
1812 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1813
1814 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1815 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1816
1817 q->sg_reserved_size = INT_MAX;
1818
1819 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1820 INIT_LIST_HEAD(&q->requeue_list);
1821 spin_lock_init(&q->requeue_lock);
1822
1823 if (q->nr_hw_queues > 1)
1824 blk_queue_make_request(q, blk_mq_make_request);
1825 else
1826 blk_queue_make_request(q, blk_sq_make_request);
1827
1828 blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
1829 if (set->timeout)
1830 blk_queue_rq_timeout(q, set->timeout);
1831
1832 /*
1833 * Do this after blk_queue_make_request() overrides it...
1834 */
1835 q->nr_requests = set->queue_depth;
1836
1837 if (set->ops->complete)
1838 blk_queue_softirq_done(q, set->ops->complete);
1839
1840 blk_mq_init_flush(q);
1841 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1842
1843 q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1844 set->cmd_size, cache_line_size()),
1845 GFP_KERNEL);
1846 if (!q->flush_rq)
1847 goto err_hw;
1848
1849 if (blk_mq_init_hw_queues(q, set))
1850 goto err_flush_rq;
1851
1852 mutex_lock(&all_q_mutex);
1853 list_add_tail(&q->all_q_node, &all_q_list);
1854 mutex_unlock(&all_q_mutex);
1855
1856 blk_mq_add_queue_tag_set(set, q);
1857
1858 blk_mq_map_swqueue(q);
1859
1860 return q;
1861
1862 err_flush_rq:
1863 kfree(q->flush_rq);
1864 err_hw:
1865 blk_cleanup_queue(q);
1866 err_hctxs:
1867 kfree(map);
1868 for (i = 0; i < set->nr_hw_queues; i++) {
1869 if (!hctxs[i])
1870 break;
1871 free_cpumask_var(hctxs[i]->cpumask);
1872 kfree(hctxs[i]);
1873 }
1874 err_map:
1875 kfree(hctxs);
1876 err_percpu:
1877 free_percpu(ctx);
1878 return ERR_PTR(-ENOMEM);
1879 }
1880 EXPORT_SYMBOL(blk_mq_init_queue);
1881
1882 void blk_mq_free_queue(struct request_queue *q)
1883 {
1884 struct blk_mq_tag_set *set = q->tag_set;
1885
1886 blk_mq_del_queue_tag_set(q);
1887
1888 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1889 blk_mq_free_hw_queues(q, set);
1890
1891 percpu_ref_exit(&q->mq_usage_counter);
1892
1893 free_percpu(q->queue_ctx);
1894 kfree(q->queue_hw_ctx);
1895 kfree(q->mq_map);
1896
1897 q->queue_ctx = NULL;
1898 q->queue_hw_ctx = NULL;
1899 q->mq_map = NULL;
1900
1901 mutex_lock(&all_q_mutex);
1902 list_del_init(&q->all_q_node);
1903 mutex_unlock(&all_q_mutex);
1904 }
1905
1906 /* Basically redo blk_mq_init_queue with queue frozen */
1907 static void blk_mq_queue_reinit(struct request_queue *q)
1908 {
1909 blk_mq_freeze_queue(q);
1910
1911 blk_mq_sysfs_unregister(q);
1912
1913 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1914
1915 /*
1916 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1917 * we should change hctx numa_node according to new topology (this
1918 * involves free and re-allocate memory, worthy doing?)
1919 */
1920
1921 blk_mq_map_swqueue(q);
1922
1923 blk_mq_sysfs_register(q);
1924
1925 blk_mq_unfreeze_queue(q);
1926 }
1927
1928 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1929 unsigned long action, void *hcpu)
1930 {
1931 struct request_queue *q;
1932
1933 /*
1934 * Before new mappings are established, hotadded cpu might already
1935 * start handling requests. This doesn't break anything as we map
1936 * offline CPUs to first hardware queue. We will re-init the queue
1937 * below to get optimal settings.
1938 */
1939 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1940 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1941 return NOTIFY_OK;
1942
1943 mutex_lock(&all_q_mutex);
1944 list_for_each_entry(q, &all_q_list, all_q_node)
1945 blk_mq_queue_reinit(q);
1946 mutex_unlock(&all_q_mutex);
1947 return NOTIFY_OK;
1948 }
1949
1950 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
1951 {
1952 int i;
1953
1954 for (i = 0; i < set->nr_hw_queues; i++) {
1955 set->tags[i] = blk_mq_init_rq_map(set, i);
1956 if (!set->tags[i])
1957 goto out_unwind;
1958 }
1959
1960 return 0;
1961
1962 out_unwind:
1963 while (--i >= 0)
1964 blk_mq_free_rq_map(set, set->tags[i], i);
1965
1966 return -ENOMEM;
1967 }
1968
1969 /*
1970 * Allocate the request maps associated with this tag_set. Note that this
1971 * may reduce the depth asked for, if memory is tight. set->queue_depth
1972 * will be updated to reflect the allocated depth.
1973 */
1974 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
1975 {
1976 unsigned int depth;
1977 int err;
1978
1979 depth = set->queue_depth;
1980 do {
1981 err = __blk_mq_alloc_rq_maps(set);
1982 if (!err)
1983 break;
1984
1985 set->queue_depth >>= 1;
1986 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
1987 err = -ENOMEM;
1988 break;
1989 }
1990 } while (set->queue_depth);
1991
1992 if (!set->queue_depth || err) {
1993 pr_err("blk-mq: failed to allocate request map\n");
1994 return -ENOMEM;
1995 }
1996
1997 if (depth != set->queue_depth)
1998 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
1999 depth, set->queue_depth);
2000
2001 return 0;
2002 }
2003
2004 /*
2005 * Alloc a tag set to be associated with one or more request queues.
2006 * May fail with EINVAL for various error conditions. May adjust the
2007 * requested depth down, if if it too large. In that case, the set
2008 * value will be stored in set->queue_depth.
2009 */
2010 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2011 {
2012 if (!set->nr_hw_queues)
2013 return -EINVAL;
2014 if (!set->queue_depth)
2015 return -EINVAL;
2016 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2017 return -EINVAL;
2018
2019 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
2020 return -EINVAL;
2021
2022 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2023 pr_info("blk-mq: reduced tag depth to %u\n",
2024 BLK_MQ_MAX_DEPTH);
2025 set->queue_depth = BLK_MQ_MAX_DEPTH;
2026 }
2027
2028 set->tags = kmalloc_node(set->nr_hw_queues *
2029 sizeof(struct blk_mq_tags *),
2030 GFP_KERNEL, set->numa_node);
2031 if (!set->tags)
2032 return -ENOMEM;
2033
2034 if (blk_mq_alloc_rq_maps(set))
2035 goto enomem;
2036
2037 mutex_init(&set->tag_list_lock);
2038 INIT_LIST_HEAD(&set->tag_list);
2039
2040 return 0;
2041 enomem:
2042 kfree(set->tags);
2043 set->tags = NULL;
2044 return -ENOMEM;
2045 }
2046 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2047
2048 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2049 {
2050 int i;
2051
2052 for (i = 0; i < set->nr_hw_queues; i++) {
2053 if (set->tags[i])
2054 blk_mq_free_rq_map(set, set->tags[i], i);
2055 }
2056
2057 kfree(set->tags);
2058 set->tags = NULL;
2059 }
2060 EXPORT_SYMBOL(blk_mq_free_tag_set);
2061
2062 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2063 {
2064 struct blk_mq_tag_set *set = q->tag_set;
2065 struct blk_mq_hw_ctx *hctx;
2066 int i, ret;
2067
2068 if (!set || nr > set->queue_depth)
2069 return -EINVAL;
2070
2071 ret = 0;
2072 queue_for_each_hw_ctx(q, hctx, i) {
2073 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2074 if (ret)
2075 break;
2076 }
2077
2078 if (!ret)
2079 q->nr_requests = nr;
2080
2081 return ret;
2082 }
2083
2084 void blk_mq_disable_hotplug(void)
2085 {
2086 mutex_lock(&all_q_mutex);
2087 }
2088
2089 void blk_mq_enable_hotplug(void)
2090 {
2091 mutex_unlock(&all_q_mutex);
2092 }
2093
2094 static int __init blk_mq_init(void)
2095 {
2096 blk_mq_cpu_init();
2097
2098 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2099
2100 return 0;
2101 }
2102 subsys_initcall(blk_mq_init);
This page took 0.104068 seconds and 6 git commands to generate.