block: make generic_make_request handle arbitrarily sized bios
[deliverable/linux.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
24
25 #include <trace/events/block.h>
26
27 #include <linux/blk-mq.h>
28 #include "blk.h"
29 #include "blk-mq.h"
30 #include "blk-mq-tag.h"
31
32 static DEFINE_MUTEX(all_q_mutex);
33 static LIST_HEAD(all_q_list);
34
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
36
37 /*
38 * Check if any of the ctx's have pending work in this hardware queue
39 */
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41 {
42 unsigned int i;
43
44 for (i = 0; i < hctx->ctx_map.size; i++)
45 if (hctx->ctx_map.map[i].word)
46 return true;
47
48 return false;
49 }
50
51 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
52 struct blk_mq_ctx *ctx)
53 {
54 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
55 }
56
57 #define CTX_TO_BIT(hctx, ctx) \
58 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
59
60 /*
61 * Mark this ctx as having pending work in this hardware queue
62 */
63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
64 struct blk_mq_ctx *ctx)
65 {
66 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
67
68 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
69 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
70 }
71
72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
73 struct blk_mq_ctx *ctx)
74 {
75 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
76
77 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
78 }
79
80 static int blk_mq_queue_enter(struct request_queue *q, gfp_t gfp)
81 {
82 while (true) {
83 int ret;
84
85 if (percpu_ref_tryget_live(&q->mq_usage_counter))
86 return 0;
87
88 if (!(gfp & __GFP_WAIT))
89 return -EBUSY;
90
91 ret = wait_event_interruptible(q->mq_freeze_wq,
92 !atomic_read(&q->mq_freeze_depth) ||
93 blk_queue_dying(q));
94 if (blk_queue_dying(q))
95 return -ENODEV;
96 if (ret)
97 return ret;
98 }
99 }
100
101 static void blk_mq_queue_exit(struct request_queue *q)
102 {
103 percpu_ref_put(&q->mq_usage_counter);
104 }
105
106 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
107 {
108 struct request_queue *q =
109 container_of(ref, struct request_queue, mq_usage_counter);
110
111 wake_up_all(&q->mq_freeze_wq);
112 }
113
114 void blk_mq_freeze_queue_start(struct request_queue *q)
115 {
116 int freeze_depth;
117
118 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
119 if (freeze_depth == 1) {
120 percpu_ref_kill(&q->mq_usage_counter);
121 blk_mq_run_hw_queues(q, false);
122 }
123 }
124 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
125
126 static void blk_mq_freeze_queue_wait(struct request_queue *q)
127 {
128 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
129 }
130
131 /*
132 * Guarantee no request is in use, so we can change any data structure of
133 * the queue afterward.
134 */
135 void blk_mq_freeze_queue(struct request_queue *q)
136 {
137 blk_mq_freeze_queue_start(q);
138 blk_mq_freeze_queue_wait(q);
139 }
140 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
141
142 void blk_mq_unfreeze_queue(struct request_queue *q)
143 {
144 int freeze_depth;
145
146 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
147 WARN_ON_ONCE(freeze_depth < 0);
148 if (!freeze_depth) {
149 percpu_ref_reinit(&q->mq_usage_counter);
150 wake_up_all(&q->mq_freeze_wq);
151 }
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
154
155 void blk_mq_wake_waiters(struct request_queue *q)
156 {
157 struct blk_mq_hw_ctx *hctx;
158 unsigned int i;
159
160 queue_for_each_hw_ctx(q, hctx, i)
161 if (blk_mq_hw_queue_mapped(hctx))
162 blk_mq_tag_wakeup_all(hctx->tags, true);
163
164 /*
165 * If we are called because the queue has now been marked as
166 * dying, we need to ensure that processes currently waiting on
167 * the queue are notified as well.
168 */
169 wake_up_all(&q->mq_freeze_wq);
170 }
171
172 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
173 {
174 return blk_mq_has_free_tags(hctx->tags);
175 }
176 EXPORT_SYMBOL(blk_mq_can_queue);
177
178 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
179 struct request *rq, unsigned int rw_flags)
180 {
181 if (blk_queue_io_stat(q))
182 rw_flags |= REQ_IO_STAT;
183
184 INIT_LIST_HEAD(&rq->queuelist);
185 /* csd/requeue_work/fifo_time is initialized before use */
186 rq->q = q;
187 rq->mq_ctx = ctx;
188 rq->cmd_flags |= rw_flags;
189 /* do not touch atomic flags, it needs atomic ops against the timer */
190 rq->cpu = -1;
191 INIT_HLIST_NODE(&rq->hash);
192 RB_CLEAR_NODE(&rq->rb_node);
193 rq->rq_disk = NULL;
194 rq->part = NULL;
195 rq->start_time = jiffies;
196 #ifdef CONFIG_BLK_CGROUP
197 rq->rl = NULL;
198 set_start_time_ns(rq);
199 rq->io_start_time_ns = 0;
200 #endif
201 rq->nr_phys_segments = 0;
202 #if defined(CONFIG_BLK_DEV_INTEGRITY)
203 rq->nr_integrity_segments = 0;
204 #endif
205 rq->special = NULL;
206 /* tag was already set */
207 rq->errors = 0;
208
209 rq->cmd = rq->__cmd;
210
211 rq->extra_len = 0;
212 rq->sense_len = 0;
213 rq->resid_len = 0;
214 rq->sense = NULL;
215
216 INIT_LIST_HEAD(&rq->timeout_list);
217 rq->timeout = 0;
218
219 rq->end_io = NULL;
220 rq->end_io_data = NULL;
221 rq->next_rq = NULL;
222
223 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
224 }
225
226 static struct request *
227 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
228 {
229 struct request *rq;
230 unsigned int tag;
231
232 tag = blk_mq_get_tag(data);
233 if (tag != BLK_MQ_TAG_FAIL) {
234 rq = data->hctx->tags->rqs[tag];
235
236 if (blk_mq_tag_busy(data->hctx)) {
237 rq->cmd_flags = REQ_MQ_INFLIGHT;
238 atomic_inc(&data->hctx->nr_active);
239 }
240
241 rq->tag = tag;
242 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
243 return rq;
244 }
245
246 return NULL;
247 }
248
249 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
250 bool reserved)
251 {
252 struct blk_mq_ctx *ctx;
253 struct blk_mq_hw_ctx *hctx;
254 struct request *rq;
255 struct blk_mq_alloc_data alloc_data;
256 int ret;
257
258 ret = blk_mq_queue_enter(q, gfp);
259 if (ret)
260 return ERR_PTR(ret);
261
262 ctx = blk_mq_get_ctx(q);
263 hctx = q->mq_ops->map_queue(q, ctx->cpu);
264 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
265 reserved, ctx, hctx);
266
267 rq = __blk_mq_alloc_request(&alloc_data, rw);
268 if (!rq && (gfp & __GFP_WAIT)) {
269 __blk_mq_run_hw_queue(hctx);
270 blk_mq_put_ctx(ctx);
271
272 ctx = blk_mq_get_ctx(q);
273 hctx = q->mq_ops->map_queue(q, ctx->cpu);
274 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
275 hctx);
276 rq = __blk_mq_alloc_request(&alloc_data, rw);
277 ctx = alloc_data.ctx;
278 }
279 blk_mq_put_ctx(ctx);
280 if (!rq) {
281 blk_mq_queue_exit(q);
282 return ERR_PTR(-EWOULDBLOCK);
283 }
284 return rq;
285 }
286 EXPORT_SYMBOL(blk_mq_alloc_request);
287
288 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
289 struct blk_mq_ctx *ctx, struct request *rq)
290 {
291 const int tag = rq->tag;
292 struct request_queue *q = rq->q;
293
294 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
295 atomic_dec(&hctx->nr_active);
296 rq->cmd_flags = 0;
297
298 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
299 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
300 blk_mq_queue_exit(q);
301 }
302
303 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
304 {
305 struct blk_mq_ctx *ctx = rq->mq_ctx;
306
307 ctx->rq_completed[rq_is_sync(rq)]++;
308 __blk_mq_free_request(hctx, ctx, rq);
309
310 }
311 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
312
313 void blk_mq_free_request(struct request *rq)
314 {
315 struct blk_mq_hw_ctx *hctx;
316 struct request_queue *q = rq->q;
317
318 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
319 blk_mq_free_hctx_request(hctx, rq);
320 }
321 EXPORT_SYMBOL_GPL(blk_mq_free_request);
322
323 inline void __blk_mq_end_request(struct request *rq, int error)
324 {
325 blk_account_io_done(rq);
326
327 if (rq->end_io) {
328 rq->end_io(rq, error);
329 } else {
330 if (unlikely(blk_bidi_rq(rq)))
331 blk_mq_free_request(rq->next_rq);
332 blk_mq_free_request(rq);
333 }
334 }
335 EXPORT_SYMBOL(__blk_mq_end_request);
336
337 void blk_mq_end_request(struct request *rq, int error)
338 {
339 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
340 BUG();
341 __blk_mq_end_request(rq, error);
342 }
343 EXPORT_SYMBOL(blk_mq_end_request);
344
345 static void __blk_mq_complete_request_remote(void *data)
346 {
347 struct request *rq = data;
348
349 rq->q->softirq_done_fn(rq);
350 }
351
352 static void blk_mq_ipi_complete_request(struct request *rq)
353 {
354 struct blk_mq_ctx *ctx = rq->mq_ctx;
355 bool shared = false;
356 int cpu;
357
358 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
359 rq->q->softirq_done_fn(rq);
360 return;
361 }
362
363 cpu = get_cpu();
364 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
365 shared = cpus_share_cache(cpu, ctx->cpu);
366
367 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
368 rq->csd.func = __blk_mq_complete_request_remote;
369 rq->csd.info = rq;
370 rq->csd.flags = 0;
371 smp_call_function_single_async(ctx->cpu, &rq->csd);
372 } else {
373 rq->q->softirq_done_fn(rq);
374 }
375 put_cpu();
376 }
377
378 void __blk_mq_complete_request(struct request *rq)
379 {
380 struct request_queue *q = rq->q;
381
382 if (!q->softirq_done_fn)
383 blk_mq_end_request(rq, rq->errors);
384 else
385 blk_mq_ipi_complete_request(rq);
386 }
387
388 /**
389 * blk_mq_complete_request - end I/O on a request
390 * @rq: the request being processed
391 *
392 * Description:
393 * Ends all I/O on a request. It does not handle partial completions.
394 * The actual completion happens out-of-order, through a IPI handler.
395 **/
396 void blk_mq_complete_request(struct request *rq)
397 {
398 struct request_queue *q = rq->q;
399
400 if (unlikely(blk_should_fake_timeout(q)))
401 return;
402 if (!blk_mark_rq_complete(rq))
403 __blk_mq_complete_request(rq);
404 }
405 EXPORT_SYMBOL(blk_mq_complete_request);
406
407 int blk_mq_request_started(struct request *rq)
408 {
409 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
410 }
411 EXPORT_SYMBOL_GPL(blk_mq_request_started);
412
413 void blk_mq_start_request(struct request *rq)
414 {
415 struct request_queue *q = rq->q;
416
417 trace_block_rq_issue(q, rq);
418
419 rq->resid_len = blk_rq_bytes(rq);
420 if (unlikely(blk_bidi_rq(rq)))
421 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
422
423 blk_add_timer(rq);
424
425 /*
426 * Ensure that ->deadline is visible before set the started
427 * flag and clear the completed flag.
428 */
429 smp_mb__before_atomic();
430
431 /*
432 * Mark us as started and clear complete. Complete might have been
433 * set if requeue raced with timeout, which then marked it as
434 * complete. So be sure to clear complete again when we start
435 * the request, otherwise we'll ignore the completion event.
436 */
437 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
438 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
439 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
440 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
441
442 if (q->dma_drain_size && blk_rq_bytes(rq)) {
443 /*
444 * Make sure space for the drain appears. We know we can do
445 * this because max_hw_segments has been adjusted to be one
446 * fewer than the device can handle.
447 */
448 rq->nr_phys_segments++;
449 }
450 }
451 EXPORT_SYMBOL(blk_mq_start_request);
452
453 static void __blk_mq_requeue_request(struct request *rq)
454 {
455 struct request_queue *q = rq->q;
456
457 trace_block_rq_requeue(q, rq);
458
459 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
460 if (q->dma_drain_size && blk_rq_bytes(rq))
461 rq->nr_phys_segments--;
462 }
463 }
464
465 void blk_mq_requeue_request(struct request *rq)
466 {
467 __blk_mq_requeue_request(rq);
468
469 BUG_ON(blk_queued_rq(rq));
470 blk_mq_add_to_requeue_list(rq, true);
471 }
472 EXPORT_SYMBOL(blk_mq_requeue_request);
473
474 static void blk_mq_requeue_work(struct work_struct *work)
475 {
476 struct request_queue *q =
477 container_of(work, struct request_queue, requeue_work);
478 LIST_HEAD(rq_list);
479 struct request *rq, *next;
480 unsigned long flags;
481
482 spin_lock_irqsave(&q->requeue_lock, flags);
483 list_splice_init(&q->requeue_list, &rq_list);
484 spin_unlock_irqrestore(&q->requeue_lock, flags);
485
486 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
487 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
488 continue;
489
490 rq->cmd_flags &= ~REQ_SOFTBARRIER;
491 list_del_init(&rq->queuelist);
492 blk_mq_insert_request(rq, true, false, false);
493 }
494
495 while (!list_empty(&rq_list)) {
496 rq = list_entry(rq_list.next, struct request, queuelist);
497 list_del_init(&rq->queuelist);
498 blk_mq_insert_request(rq, false, false, false);
499 }
500
501 /*
502 * Use the start variant of queue running here, so that running
503 * the requeue work will kick stopped queues.
504 */
505 blk_mq_start_hw_queues(q);
506 }
507
508 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
509 {
510 struct request_queue *q = rq->q;
511 unsigned long flags;
512
513 /*
514 * We abuse this flag that is otherwise used by the I/O scheduler to
515 * request head insertation from the workqueue.
516 */
517 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
518
519 spin_lock_irqsave(&q->requeue_lock, flags);
520 if (at_head) {
521 rq->cmd_flags |= REQ_SOFTBARRIER;
522 list_add(&rq->queuelist, &q->requeue_list);
523 } else {
524 list_add_tail(&rq->queuelist, &q->requeue_list);
525 }
526 spin_unlock_irqrestore(&q->requeue_lock, flags);
527 }
528 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
529
530 void blk_mq_cancel_requeue_work(struct request_queue *q)
531 {
532 cancel_work_sync(&q->requeue_work);
533 }
534 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
535
536 void blk_mq_kick_requeue_list(struct request_queue *q)
537 {
538 kblockd_schedule_work(&q->requeue_work);
539 }
540 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
541
542 void blk_mq_abort_requeue_list(struct request_queue *q)
543 {
544 unsigned long flags;
545 LIST_HEAD(rq_list);
546
547 spin_lock_irqsave(&q->requeue_lock, flags);
548 list_splice_init(&q->requeue_list, &rq_list);
549 spin_unlock_irqrestore(&q->requeue_lock, flags);
550
551 while (!list_empty(&rq_list)) {
552 struct request *rq;
553
554 rq = list_first_entry(&rq_list, struct request, queuelist);
555 list_del_init(&rq->queuelist);
556 rq->errors = -EIO;
557 blk_mq_end_request(rq, rq->errors);
558 }
559 }
560 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
561
562 static inline bool is_flush_request(struct request *rq,
563 struct blk_flush_queue *fq, unsigned int tag)
564 {
565 return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
566 fq->flush_rq->tag == tag);
567 }
568
569 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
570 {
571 struct request *rq = tags->rqs[tag];
572 /* mq_ctx of flush rq is always cloned from the corresponding req */
573 struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
574
575 if (!is_flush_request(rq, fq, tag))
576 return rq;
577
578 return fq->flush_rq;
579 }
580 EXPORT_SYMBOL(blk_mq_tag_to_rq);
581
582 struct blk_mq_timeout_data {
583 unsigned long next;
584 unsigned int next_set;
585 };
586
587 void blk_mq_rq_timed_out(struct request *req, bool reserved)
588 {
589 struct blk_mq_ops *ops = req->q->mq_ops;
590 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
591
592 /*
593 * We know that complete is set at this point. If STARTED isn't set
594 * anymore, then the request isn't active and the "timeout" should
595 * just be ignored. This can happen due to the bitflag ordering.
596 * Timeout first checks if STARTED is set, and if it is, assumes
597 * the request is active. But if we race with completion, then
598 * we both flags will get cleared. So check here again, and ignore
599 * a timeout event with a request that isn't active.
600 */
601 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
602 return;
603
604 if (ops->timeout)
605 ret = ops->timeout(req, reserved);
606
607 switch (ret) {
608 case BLK_EH_HANDLED:
609 __blk_mq_complete_request(req);
610 break;
611 case BLK_EH_RESET_TIMER:
612 blk_add_timer(req);
613 blk_clear_rq_complete(req);
614 break;
615 case BLK_EH_NOT_HANDLED:
616 break;
617 default:
618 printk(KERN_ERR "block: bad eh return: %d\n", ret);
619 break;
620 }
621 }
622
623 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
624 struct request *rq, void *priv, bool reserved)
625 {
626 struct blk_mq_timeout_data *data = priv;
627
628 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
629 /*
630 * If a request wasn't started before the queue was
631 * marked dying, kill it here or it'll go unnoticed.
632 */
633 if (unlikely(blk_queue_dying(rq->q))) {
634 rq->errors = -EIO;
635 blk_mq_complete_request(rq);
636 }
637 return;
638 }
639 if (rq->cmd_flags & REQ_NO_TIMEOUT)
640 return;
641
642 if (time_after_eq(jiffies, rq->deadline)) {
643 if (!blk_mark_rq_complete(rq))
644 blk_mq_rq_timed_out(rq, reserved);
645 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
646 data->next = rq->deadline;
647 data->next_set = 1;
648 }
649 }
650
651 static void blk_mq_rq_timer(unsigned long priv)
652 {
653 struct request_queue *q = (struct request_queue *)priv;
654 struct blk_mq_timeout_data data = {
655 .next = 0,
656 .next_set = 0,
657 };
658 struct blk_mq_hw_ctx *hctx;
659 int i;
660
661 queue_for_each_hw_ctx(q, hctx, i) {
662 /*
663 * If not software queues are currently mapped to this
664 * hardware queue, there's nothing to check
665 */
666 if (!blk_mq_hw_queue_mapped(hctx))
667 continue;
668
669 blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
670 }
671
672 if (data.next_set) {
673 data.next = blk_rq_timeout(round_jiffies_up(data.next));
674 mod_timer(&q->timeout, data.next);
675 } else {
676 queue_for_each_hw_ctx(q, hctx, i) {
677 /* the hctx may be unmapped, so check it here */
678 if (blk_mq_hw_queue_mapped(hctx))
679 blk_mq_tag_idle(hctx);
680 }
681 }
682 }
683
684 /*
685 * Reverse check our software queue for entries that we could potentially
686 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
687 * too much time checking for merges.
688 */
689 static bool blk_mq_attempt_merge(struct request_queue *q,
690 struct blk_mq_ctx *ctx, struct bio *bio)
691 {
692 struct request *rq;
693 int checked = 8;
694
695 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
696 int el_ret;
697
698 if (!checked--)
699 break;
700
701 if (!blk_rq_merge_ok(rq, bio))
702 continue;
703
704 el_ret = blk_try_merge(rq, bio);
705 if (el_ret == ELEVATOR_BACK_MERGE) {
706 if (bio_attempt_back_merge(q, rq, bio)) {
707 ctx->rq_merged++;
708 return true;
709 }
710 break;
711 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
712 if (bio_attempt_front_merge(q, rq, bio)) {
713 ctx->rq_merged++;
714 return true;
715 }
716 break;
717 }
718 }
719
720 return false;
721 }
722
723 /*
724 * Process software queues that have been marked busy, splicing them
725 * to the for-dispatch
726 */
727 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
728 {
729 struct blk_mq_ctx *ctx;
730 int i;
731
732 for (i = 0; i < hctx->ctx_map.size; i++) {
733 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
734 unsigned int off, bit;
735
736 if (!bm->word)
737 continue;
738
739 bit = 0;
740 off = i * hctx->ctx_map.bits_per_word;
741 do {
742 bit = find_next_bit(&bm->word, bm->depth, bit);
743 if (bit >= bm->depth)
744 break;
745
746 ctx = hctx->ctxs[bit + off];
747 clear_bit(bit, &bm->word);
748 spin_lock(&ctx->lock);
749 list_splice_tail_init(&ctx->rq_list, list);
750 spin_unlock(&ctx->lock);
751
752 bit++;
753 } while (1);
754 }
755 }
756
757 /*
758 * Run this hardware queue, pulling any software queues mapped to it in.
759 * Note that this function currently has various problems around ordering
760 * of IO. In particular, we'd like FIFO behaviour on handling existing
761 * items on the hctx->dispatch list. Ignore that for now.
762 */
763 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
764 {
765 struct request_queue *q = hctx->queue;
766 struct request *rq;
767 LIST_HEAD(rq_list);
768 LIST_HEAD(driver_list);
769 struct list_head *dptr;
770 int queued;
771
772 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
773
774 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
775 return;
776
777 hctx->run++;
778
779 /*
780 * Touch any software queue that has pending entries.
781 */
782 flush_busy_ctxs(hctx, &rq_list);
783
784 /*
785 * If we have previous entries on our dispatch list, grab them
786 * and stuff them at the front for more fair dispatch.
787 */
788 if (!list_empty_careful(&hctx->dispatch)) {
789 spin_lock(&hctx->lock);
790 if (!list_empty(&hctx->dispatch))
791 list_splice_init(&hctx->dispatch, &rq_list);
792 spin_unlock(&hctx->lock);
793 }
794
795 /*
796 * Start off with dptr being NULL, so we start the first request
797 * immediately, even if we have more pending.
798 */
799 dptr = NULL;
800
801 /*
802 * Now process all the entries, sending them to the driver.
803 */
804 queued = 0;
805 while (!list_empty(&rq_list)) {
806 struct blk_mq_queue_data bd;
807 int ret;
808
809 rq = list_first_entry(&rq_list, struct request, queuelist);
810 list_del_init(&rq->queuelist);
811
812 bd.rq = rq;
813 bd.list = dptr;
814 bd.last = list_empty(&rq_list);
815
816 ret = q->mq_ops->queue_rq(hctx, &bd);
817 switch (ret) {
818 case BLK_MQ_RQ_QUEUE_OK:
819 queued++;
820 continue;
821 case BLK_MQ_RQ_QUEUE_BUSY:
822 list_add(&rq->queuelist, &rq_list);
823 __blk_mq_requeue_request(rq);
824 break;
825 default:
826 pr_err("blk-mq: bad return on queue: %d\n", ret);
827 case BLK_MQ_RQ_QUEUE_ERROR:
828 rq->errors = -EIO;
829 blk_mq_end_request(rq, rq->errors);
830 break;
831 }
832
833 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
834 break;
835
836 /*
837 * We've done the first request. If we have more than 1
838 * left in the list, set dptr to defer issue.
839 */
840 if (!dptr && rq_list.next != rq_list.prev)
841 dptr = &driver_list;
842 }
843
844 if (!queued)
845 hctx->dispatched[0]++;
846 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
847 hctx->dispatched[ilog2(queued) + 1]++;
848
849 /*
850 * Any items that need requeuing? Stuff them into hctx->dispatch,
851 * that is where we will continue on next queue run.
852 */
853 if (!list_empty(&rq_list)) {
854 spin_lock(&hctx->lock);
855 list_splice(&rq_list, &hctx->dispatch);
856 spin_unlock(&hctx->lock);
857 /*
858 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
859 * it's possible the queue is stopped and restarted again
860 * before this. Queue restart will dispatch requests. And since
861 * requests in rq_list aren't added into hctx->dispatch yet,
862 * the requests in rq_list might get lost.
863 *
864 * blk_mq_run_hw_queue() already checks the STOPPED bit
865 **/
866 blk_mq_run_hw_queue(hctx, true);
867 }
868 }
869
870 /*
871 * It'd be great if the workqueue API had a way to pass
872 * in a mask and had some smarts for more clever placement.
873 * For now we just round-robin here, switching for every
874 * BLK_MQ_CPU_WORK_BATCH queued items.
875 */
876 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
877 {
878 if (hctx->queue->nr_hw_queues == 1)
879 return WORK_CPU_UNBOUND;
880
881 if (--hctx->next_cpu_batch <= 0) {
882 int cpu = hctx->next_cpu, next_cpu;
883
884 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
885 if (next_cpu >= nr_cpu_ids)
886 next_cpu = cpumask_first(hctx->cpumask);
887
888 hctx->next_cpu = next_cpu;
889 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
890
891 return cpu;
892 }
893
894 return hctx->next_cpu;
895 }
896
897 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
898 {
899 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
900 !blk_mq_hw_queue_mapped(hctx)))
901 return;
902
903 if (!async) {
904 int cpu = get_cpu();
905 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
906 __blk_mq_run_hw_queue(hctx);
907 put_cpu();
908 return;
909 }
910
911 put_cpu();
912 }
913
914 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
915 &hctx->run_work, 0);
916 }
917
918 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
919 {
920 struct blk_mq_hw_ctx *hctx;
921 int i;
922
923 queue_for_each_hw_ctx(q, hctx, i) {
924 if ((!blk_mq_hctx_has_pending(hctx) &&
925 list_empty_careful(&hctx->dispatch)) ||
926 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
927 continue;
928
929 blk_mq_run_hw_queue(hctx, async);
930 }
931 }
932 EXPORT_SYMBOL(blk_mq_run_hw_queues);
933
934 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
935 {
936 cancel_delayed_work(&hctx->run_work);
937 cancel_delayed_work(&hctx->delay_work);
938 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
939 }
940 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
941
942 void blk_mq_stop_hw_queues(struct request_queue *q)
943 {
944 struct blk_mq_hw_ctx *hctx;
945 int i;
946
947 queue_for_each_hw_ctx(q, hctx, i)
948 blk_mq_stop_hw_queue(hctx);
949 }
950 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
951
952 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
953 {
954 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
955
956 blk_mq_run_hw_queue(hctx, false);
957 }
958 EXPORT_SYMBOL(blk_mq_start_hw_queue);
959
960 void blk_mq_start_hw_queues(struct request_queue *q)
961 {
962 struct blk_mq_hw_ctx *hctx;
963 int i;
964
965 queue_for_each_hw_ctx(q, hctx, i)
966 blk_mq_start_hw_queue(hctx);
967 }
968 EXPORT_SYMBOL(blk_mq_start_hw_queues);
969
970 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
971 {
972 struct blk_mq_hw_ctx *hctx;
973 int i;
974
975 queue_for_each_hw_ctx(q, hctx, i) {
976 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
977 continue;
978
979 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
980 blk_mq_run_hw_queue(hctx, async);
981 }
982 }
983 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
984
985 static void blk_mq_run_work_fn(struct work_struct *work)
986 {
987 struct blk_mq_hw_ctx *hctx;
988
989 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
990
991 __blk_mq_run_hw_queue(hctx);
992 }
993
994 static void blk_mq_delay_work_fn(struct work_struct *work)
995 {
996 struct blk_mq_hw_ctx *hctx;
997
998 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
999
1000 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1001 __blk_mq_run_hw_queue(hctx);
1002 }
1003
1004 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1005 {
1006 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1007 return;
1008
1009 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1010 &hctx->delay_work, msecs_to_jiffies(msecs));
1011 }
1012 EXPORT_SYMBOL(blk_mq_delay_queue);
1013
1014 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1015 struct request *rq, bool at_head)
1016 {
1017 struct blk_mq_ctx *ctx = rq->mq_ctx;
1018
1019 trace_block_rq_insert(hctx->queue, rq);
1020
1021 if (at_head)
1022 list_add(&rq->queuelist, &ctx->rq_list);
1023 else
1024 list_add_tail(&rq->queuelist, &ctx->rq_list);
1025
1026 blk_mq_hctx_mark_pending(hctx, ctx);
1027 }
1028
1029 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1030 bool async)
1031 {
1032 struct request_queue *q = rq->q;
1033 struct blk_mq_hw_ctx *hctx;
1034 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1035
1036 current_ctx = blk_mq_get_ctx(q);
1037 if (!cpu_online(ctx->cpu))
1038 rq->mq_ctx = ctx = current_ctx;
1039
1040 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1041
1042 spin_lock(&ctx->lock);
1043 __blk_mq_insert_request(hctx, rq, at_head);
1044 spin_unlock(&ctx->lock);
1045
1046 if (run_queue)
1047 blk_mq_run_hw_queue(hctx, async);
1048
1049 blk_mq_put_ctx(current_ctx);
1050 }
1051
1052 static void blk_mq_insert_requests(struct request_queue *q,
1053 struct blk_mq_ctx *ctx,
1054 struct list_head *list,
1055 int depth,
1056 bool from_schedule)
1057
1058 {
1059 struct blk_mq_hw_ctx *hctx;
1060 struct blk_mq_ctx *current_ctx;
1061
1062 trace_block_unplug(q, depth, !from_schedule);
1063
1064 current_ctx = blk_mq_get_ctx(q);
1065
1066 if (!cpu_online(ctx->cpu))
1067 ctx = current_ctx;
1068 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1069
1070 /*
1071 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1072 * offline now
1073 */
1074 spin_lock(&ctx->lock);
1075 while (!list_empty(list)) {
1076 struct request *rq;
1077
1078 rq = list_first_entry(list, struct request, queuelist);
1079 list_del_init(&rq->queuelist);
1080 rq->mq_ctx = ctx;
1081 __blk_mq_insert_request(hctx, rq, false);
1082 }
1083 spin_unlock(&ctx->lock);
1084
1085 blk_mq_run_hw_queue(hctx, from_schedule);
1086 blk_mq_put_ctx(current_ctx);
1087 }
1088
1089 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1090 {
1091 struct request *rqa = container_of(a, struct request, queuelist);
1092 struct request *rqb = container_of(b, struct request, queuelist);
1093
1094 return !(rqa->mq_ctx < rqb->mq_ctx ||
1095 (rqa->mq_ctx == rqb->mq_ctx &&
1096 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1097 }
1098
1099 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1100 {
1101 struct blk_mq_ctx *this_ctx;
1102 struct request_queue *this_q;
1103 struct request *rq;
1104 LIST_HEAD(list);
1105 LIST_HEAD(ctx_list);
1106 unsigned int depth;
1107
1108 list_splice_init(&plug->mq_list, &list);
1109
1110 list_sort(NULL, &list, plug_ctx_cmp);
1111
1112 this_q = NULL;
1113 this_ctx = NULL;
1114 depth = 0;
1115
1116 while (!list_empty(&list)) {
1117 rq = list_entry_rq(list.next);
1118 list_del_init(&rq->queuelist);
1119 BUG_ON(!rq->q);
1120 if (rq->mq_ctx != this_ctx) {
1121 if (this_ctx) {
1122 blk_mq_insert_requests(this_q, this_ctx,
1123 &ctx_list, depth,
1124 from_schedule);
1125 }
1126
1127 this_ctx = rq->mq_ctx;
1128 this_q = rq->q;
1129 depth = 0;
1130 }
1131
1132 depth++;
1133 list_add_tail(&rq->queuelist, &ctx_list);
1134 }
1135
1136 /*
1137 * If 'this_ctx' is set, we know we have entries to complete
1138 * on 'ctx_list'. Do those.
1139 */
1140 if (this_ctx) {
1141 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1142 from_schedule);
1143 }
1144 }
1145
1146 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1147 {
1148 init_request_from_bio(rq, bio);
1149
1150 if (blk_do_io_stat(rq))
1151 blk_account_io_start(rq, 1);
1152 }
1153
1154 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1155 {
1156 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1157 !blk_queue_nomerges(hctx->queue);
1158 }
1159
1160 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1161 struct blk_mq_ctx *ctx,
1162 struct request *rq, struct bio *bio)
1163 {
1164 if (!hctx_allow_merges(hctx)) {
1165 blk_mq_bio_to_request(rq, bio);
1166 spin_lock(&ctx->lock);
1167 insert_rq:
1168 __blk_mq_insert_request(hctx, rq, false);
1169 spin_unlock(&ctx->lock);
1170 return false;
1171 } else {
1172 struct request_queue *q = hctx->queue;
1173
1174 spin_lock(&ctx->lock);
1175 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1176 blk_mq_bio_to_request(rq, bio);
1177 goto insert_rq;
1178 }
1179
1180 spin_unlock(&ctx->lock);
1181 __blk_mq_free_request(hctx, ctx, rq);
1182 return true;
1183 }
1184 }
1185
1186 struct blk_map_ctx {
1187 struct blk_mq_hw_ctx *hctx;
1188 struct blk_mq_ctx *ctx;
1189 };
1190
1191 static struct request *blk_mq_map_request(struct request_queue *q,
1192 struct bio *bio,
1193 struct blk_map_ctx *data)
1194 {
1195 struct blk_mq_hw_ctx *hctx;
1196 struct blk_mq_ctx *ctx;
1197 struct request *rq;
1198 int rw = bio_data_dir(bio);
1199 struct blk_mq_alloc_data alloc_data;
1200
1201 if (unlikely(blk_mq_queue_enter(q, GFP_KERNEL))) {
1202 bio_io_error(bio);
1203 return NULL;
1204 }
1205
1206 ctx = blk_mq_get_ctx(q);
1207 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1208
1209 if (rw_is_sync(bio->bi_rw))
1210 rw |= REQ_SYNC;
1211
1212 trace_block_getrq(q, bio, rw);
1213 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1214 hctx);
1215 rq = __blk_mq_alloc_request(&alloc_data, rw);
1216 if (unlikely(!rq)) {
1217 __blk_mq_run_hw_queue(hctx);
1218 blk_mq_put_ctx(ctx);
1219 trace_block_sleeprq(q, bio, rw);
1220
1221 ctx = blk_mq_get_ctx(q);
1222 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1223 blk_mq_set_alloc_data(&alloc_data, q,
1224 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1225 rq = __blk_mq_alloc_request(&alloc_data, rw);
1226 ctx = alloc_data.ctx;
1227 hctx = alloc_data.hctx;
1228 }
1229
1230 hctx->queued++;
1231 data->hctx = hctx;
1232 data->ctx = ctx;
1233 return rq;
1234 }
1235
1236 static int blk_mq_direct_issue_request(struct request *rq)
1237 {
1238 int ret;
1239 struct request_queue *q = rq->q;
1240 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1241 rq->mq_ctx->cpu);
1242 struct blk_mq_queue_data bd = {
1243 .rq = rq,
1244 .list = NULL,
1245 .last = 1
1246 };
1247
1248 /*
1249 * For OK queue, we are done. For error, kill it. Any other
1250 * error (busy), just add it to our list as we previously
1251 * would have done
1252 */
1253 ret = q->mq_ops->queue_rq(hctx, &bd);
1254 if (ret == BLK_MQ_RQ_QUEUE_OK)
1255 return 0;
1256 else {
1257 __blk_mq_requeue_request(rq);
1258
1259 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1260 rq->errors = -EIO;
1261 blk_mq_end_request(rq, rq->errors);
1262 return 0;
1263 }
1264 return -1;
1265 }
1266 }
1267
1268 /*
1269 * Multiple hardware queue variant. This will not use per-process plugs,
1270 * but will attempt to bypass the hctx queueing if we can go straight to
1271 * hardware for SYNC IO.
1272 */
1273 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1274 {
1275 const int is_sync = rw_is_sync(bio->bi_rw);
1276 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1277 struct blk_map_ctx data;
1278 struct request *rq;
1279 unsigned int request_count = 0;
1280 struct blk_plug *plug;
1281 struct request *same_queue_rq = NULL;
1282
1283 blk_queue_bounce(q, &bio);
1284
1285 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1286 bio_io_error(bio);
1287 return;
1288 }
1289
1290 blk_queue_split(q, &bio, q->bio_split);
1291
1292 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1293 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1294 return;
1295
1296 rq = blk_mq_map_request(q, bio, &data);
1297 if (unlikely(!rq))
1298 return;
1299
1300 if (unlikely(is_flush_fua)) {
1301 blk_mq_bio_to_request(rq, bio);
1302 blk_insert_flush(rq);
1303 goto run_queue;
1304 }
1305
1306 plug = current->plug;
1307 /*
1308 * If the driver supports defer issued based on 'last', then
1309 * queue it up like normal since we can potentially save some
1310 * CPU this way.
1311 */
1312 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1313 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1314 struct request *old_rq = NULL;
1315
1316 blk_mq_bio_to_request(rq, bio);
1317
1318 /*
1319 * we do limited pluging. If bio can be merged, do merge.
1320 * Otherwise the existing request in the plug list will be
1321 * issued. So the plug list will have one request at most
1322 */
1323 if (plug) {
1324 /*
1325 * The plug list might get flushed before this. If that
1326 * happens, same_queue_rq is invalid and plug list is empty
1327 **/
1328 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1329 old_rq = same_queue_rq;
1330 list_del_init(&old_rq->queuelist);
1331 }
1332 list_add_tail(&rq->queuelist, &plug->mq_list);
1333 } else /* is_sync */
1334 old_rq = rq;
1335 blk_mq_put_ctx(data.ctx);
1336 if (!old_rq)
1337 return;
1338 if (!blk_mq_direct_issue_request(old_rq))
1339 return;
1340 blk_mq_insert_request(old_rq, false, true, true);
1341 return;
1342 }
1343
1344 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1345 /*
1346 * For a SYNC request, send it to the hardware immediately. For
1347 * an ASYNC request, just ensure that we run it later on. The
1348 * latter allows for merging opportunities and more efficient
1349 * dispatching.
1350 */
1351 run_queue:
1352 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1353 }
1354 blk_mq_put_ctx(data.ctx);
1355 }
1356
1357 /*
1358 * Single hardware queue variant. This will attempt to use any per-process
1359 * plug for merging and IO deferral.
1360 */
1361 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1362 {
1363 const int is_sync = rw_is_sync(bio->bi_rw);
1364 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1365 struct blk_plug *plug;
1366 unsigned int request_count = 0;
1367 struct blk_map_ctx data;
1368 struct request *rq;
1369
1370 blk_queue_bounce(q, &bio);
1371
1372 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1373 bio_io_error(bio);
1374 return;
1375 }
1376
1377 blk_queue_split(q, &bio, q->bio_split);
1378
1379 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1380 blk_attempt_plug_merge(q, bio, &request_count, NULL))
1381 return;
1382
1383 rq = blk_mq_map_request(q, bio, &data);
1384 if (unlikely(!rq))
1385 return;
1386
1387 if (unlikely(is_flush_fua)) {
1388 blk_mq_bio_to_request(rq, bio);
1389 blk_insert_flush(rq);
1390 goto run_queue;
1391 }
1392
1393 /*
1394 * A task plug currently exists. Since this is completely lockless,
1395 * utilize that to temporarily store requests until the task is
1396 * either done or scheduled away.
1397 */
1398 plug = current->plug;
1399 if (plug) {
1400 blk_mq_bio_to_request(rq, bio);
1401 if (list_empty(&plug->mq_list))
1402 trace_block_plug(q);
1403 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1404 blk_flush_plug_list(plug, false);
1405 trace_block_plug(q);
1406 }
1407 list_add_tail(&rq->queuelist, &plug->mq_list);
1408 blk_mq_put_ctx(data.ctx);
1409 return;
1410 }
1411
1412 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1413 /*
1414 * For a SYNC request, send it to the hardware immediately. For
1415 * an ASYNC request, just ensure that we run it later on. The
1416 * latter allows for merging opportunities and more efficient
1417 * dispatching.
1418 */
1419 run_queue:
1420 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1421 }
1422
1423 blk_mq_put_ctx(data.ctx);
1424 }
1425
1426 /*
1427 * Default mapping to a software queue, since we use one per CPU.
1428 */
1429 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1430 {
1431 return q->queue_hw_ctx[q->mq_map[cpu]];
1432 }
1433 EXPORT_SYMBOL(blk_mq_map_queue);
1434
1435 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1436 struct blk_mq_tags *tags, unsigned int hctx_idx)
1437 {
1438 struct page *page;
1439
1440 if (tags->rqs && set->ops->exit_request) {
1441 int i;
1442
1443 for (i = 0; i < tags->nr_tags; i++) {
1444 if (!tags->rqs[i])
1445 continue;
1446 set->ops->exit_request(set->driver_data, tags->rqs[i],
1447 hctx_idx, i);
1448 tags->rqs[i] = NULL;
1449 }
1450 }
1451
1452 while (!list_empty(&tags->page_list)) {
1453 page = list_first_entry(&tags->page_list, struct page, lru);
1454 list_del_init(&page->lru);
1455 __free_pages(page, page->private);
1456 }
1457
1458 kfree(tags->rqs);
1459
1460 blk_mq_free_tags(tags);
1461 }
1462
1463 static size_t order_to_size(unsigned int order)
1464 {
1465 return (size_t)PAGE_SIZE << order;
1466 }
1467
1468 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1469 unsigned int hctx_idx)
1470 {
1471 struct blk_mq_tags *tags;
1472 unsigned int i, j, entries_per_page, max_order = 4;
1473 size_t rq_size, left;
1474
1475 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1476 set->numa_node,
1477 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1478 if (!tags)
1479 return NULL;
1480
1481 INIT_LIST_HEAD(&tags->page_list);
1482
1483 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1484 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1485 set->numa_node);
1486 if (!tags->rqs) {
1487 blk_mq_free_tags(tags);
1488 return NULL;
1489 }
1490
1491 /*
1492 * rq_size is the size of the request plus driver payload, rounded
1493 * to the cacheline size
1494 */
1495 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1496 cache_line_size());
1497 left = rq_size * set->queue_depth;
1498
1499 for (i = 0; i < set->queue_depth; ) {
1500 int this_order = max_order;
1501 struct page *page;
1502 int to_do;
1503 void *p;
1504
1505 while (left < order_to_size(this_order - 1) && this_order)
1506 this_order--;
1507
1508 do {
1509 page = alloc_pages_node(set->numa_node,
1510 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1511 this_order);
1512 if (page)
1513 break;
1514 if (!this_order--)
1515 break;
1516 if (order_to_size(this_order) < rq_size)
1517 break;
1518 } while (1);
1519
1520 if (!page)
1521 goto fail;
1522
1523 page->private = this_order;
1524 list_add_tail(&page->lru, &tags->page_list);
1525
1526 p = page_address(page);
1527 entries_per_page = order_to_size(this_order) / rq_size;
1528 to_do = min(entries_per_page, set->queue_depth - i);
1529 left -= to_do * rq_size;
1530 for (j = 0; j < to_do; j++) {
1531 tags->rqs[i] = p;
1532 if (set->ops->init_request) {
1533 if (set->ops->init_request(set->driver_data,
1534 tags->rqs[i], hctx_idx, i,
1535 set->numa_node)) {
1536 tags->rqs[i] = NULL;
1537 goto fail;
1538 }
1539 }
1540
1541 p += rq_size;
1542 i++;
1543 }
1544 }
1545 return tags;
1546
1547 fail:
1548 blk_mq_free_rq_map(set, tags, hctx_idx);
1549 return NULL;
1550 }
1551
1552 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1553 {
1554 kfree(bitmap->map);
1555 }
1556
1557 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1558 {
1559 unsigned int bpw = 8, total, num_maps, i;
1560
1561 bitmap->bits_per_word = bpw;
1562
1563 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1564 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1565 GFP_KERNEL, node);
1566 if (!bitmap->map)
1567 return -ENOMEM;
1568
1569 total = nr_cpu_ids;
1570 for (i = 0; i < num_maps; i++) {
1571 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1572 total -= bitmap->map[i].depth;
1573 }
1574
1575 return 0;
1576 }
1577
1578 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1579 {
1580 struct request_queue *q = hctx->queue;
1581 struct blk_mq_ctx *ctx;
1582 LIST_HEAD(tmp);
1583
1584 /*
1585 * Move ctx entries to new CPU, if this one is going away.
1586 */
1587 ctx = __blk_mq_get_ctx(q, cpu);
1588
1589 spin_lock(&ctx->lock);
1590 if (!list_empty(&ctx->rq_list)) {
1591 list_splice_init(&ctx->rq_list, &tmp);
1592 blk_mq_hctx_clear_pending(hctx, ctx);
1593 }
1594 spin_unlock(&ctx->lock);
1595
1596 if (list_empty(&tmp))
1597 return NOTIFY_OK;
1598
1599 ctx = blk_mq_get_ctx(q);
1600 spin_lock(&ctx->lock);
1601
1602 while (!list_empty(&tmp)) {
1603 struct request *rq;
1604
1605 rq = list_first_entry(&tmp, struct request, queuelist);
1606 rq->mq_ctx = ctx;
1607 list_move_tail(&rq->queuelist, &ctx->rq_list);
1608 }
1609
1610 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1611 blk_mq_hctx_mark_pending(hctx, ctx);
1612
1613 spin_unlock(&ctx->lock);
1614
1615 blk_mq_run_hw_queue(hctx, true);
1616 blk_mq_put_ctx(ctx);
1617 return NOTIFY_OK;
1618 }
1619
1620 static int blk_mq_hctx_notify(void *data, unsigned long action,
1621 unsigned int cpu)
1622 {
1623 struct blk_mq_hw_ctx *hctx = data;
1624
1625 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1626 return blk_mq_hctx_cpu_offline(hctx, cpu);
1627
1628 /*
1629 * In case of CPU online, tags may be reallocated
1630 * in blk_mq_map_swqueue() after mapping is updated.
1631 */
1632
1633 return NOTIFY_OK;
1634 }
1635
1636 /* hctx->ctxs will be freed in queue's release handler */
1637 static void blk_mq_exit_hctx(struct request_queue *q,
1638 struct blk_mq_tag_set *set,
1639 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1640 {
1641 unsigned flush_start_tag = set->queue_depth;
1642
1643 blk_mq_tag_idle(hctx);
1644
1645 if (set->ops->exit_request)
1646 set->ops->exit_request(set->driver_data,
1647 hctx->fq->flush_rq, hctx_idx,
1648 flush_start_tag + hctx_idx);
1649
1650 if (set->ops->exit_hctx)
1651 set->ops->exit_hctx(hctx, hctx_idx);
1652
1653 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1654 blk_free_flush_queue(hctx->fq);
1655 blk_mq_free_bitmap(&hctx->ctx_map);
1656 }
1657
1658 static void blk_mq_exit_hw_queues(struct request_queue *q,
1659 struct blk_mq_tag_set *set, int nr_queue)
1660 {
1661 struct blk_mq_hw_ctx *hctx;
1662 unsigned int i;
1663
1664 queue_for_each_hw_ctx(q, hctx, i) {
1665 if (i == nr_queue)
1666 break;
1667 blk_mq_exit_hctx(q, set, hctx, i);
1668 }
1669 }
1670
1671 static void blk_mq_free_hw_queues(struct request_queue *q,
1672 struct blk_mq_tag_set *set)
1673 {
1674 struct blk_mq_hw_ctx *hctx;
1675 unsigned int i;
1676
1677 queue_for_each_hw_ctx(q, hctx, i)
1678 free_cpumask_var(hctx->cpumask);
1679 }
1680
1681 static int blk_mq_init_hctx(struct request_queue *q,
1682 struct blk_mq_tag_set *set,
1683 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1684 {
1685 int node;
1686 unsigned flush_start_tag = set->queue_depth;
1687
1688 node = hctx->numa_node;
1689 if (node == NUMA_NO_NODE)
1690 node = hctx->numa_node = set->numa_node;
1691
1692 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1693 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1694 spin_lock_init(&hctx->lock);
1695 INIT_LIST_HEAD(&hctx->dispatch);
1696 hctx->queue = q;
1697 hctx->queue_num = hctx_idx;
1698 hctx->flags = set->flags;
1699
1700 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1701 blk_mq_hctx_notify, hctx);
1702 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1703
1704 hctx->tags = set->tags[hctx_idx];
1705
1706 /*
1707 * Allocate space for all possible cpus to avoid allocation at
1708 * runtime
1709 */
1710 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1711 GFP_KERNEL, node);
1712 if (!hctx->ctxs)
1713 goto unregister_cpu_notifier;
1714
1715 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1716 goto free_ctxs;
1717
1718 hctx->nr_ctx = 0;
1719
1720 if (set->ops->init_hctx &&
1721 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1722 goto free_bitmap;
1723
1724 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1725 if (!hctx->fq)
1726 goto exit_hctx;
1727
1728 if (set->ops->init_request &&
1729 set->ops->init_request(set->driver_data,
1730 hctx->fq->flush_rq, hctx_idx,
1731 flush_start_tag + hctx_idx, node))
1732 goto free_fq;
1733
1734 return 0;
1735
1736 free_fq:
1737 kfree(hctx->fq);
1738 exit_hctx:
1739 if (set->ops->exit_hctx)
1740 set->ops->exit_hctx(hctx, hctx_idx);
1741 free_bitmap:
1742 blk_mq_free_bitmap(&hctx->ctx_map);
1743 free_ctxs:
1744 kfree(hctx->ctxs);
1745 unregister_cpu_notifier:
1746 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1747
1748 return -1;
1749 }
1750
1751 static int blk_mq_init_hw_queues(struct request_queue *q,
1752 struct blk_mq_tag_set *set)
1753 {
1754 struct blk_mq_hw_ctx *hctx;
1755 unsigned int i;
1756
1757 /*
1758 * Initialize hardware queues
1759 */
1760 queue_for_each_hw_ctx(q, hctx, i) {
1761 if (blk_mq_init_hctx(q, set, hctx, i))
1762 break;
1763 }
1764
1765 if (i == q->nr_hw_queues)
1766 return 0;
1767
1768 /*
1769 * Init failed
1770 */
1771 blk_mq_exit_hw_queues(q, set, i);
1772
1773 return 1;
1774 }
1775
1776 static void blk_mq_init_cpu_queues(struct request_queue *q,
1777 unsigned int nr_hw_queues)
1778 {
1779 unsigned int i;
1780
1781 for_each_possible_cpu(i) {
1782 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1783 struct blk_mq_hw_ctx *hctx;
1784
1785 memset(__ctx, 0, sizeof(*__ctx));
1786 __ctx->cpu = i;
1787 spin_lock_init(&__ctx->lock);
1788 INIT_LIST_HEAD(&__ctx->rq_list);
1789 __ctx->queue = q;
1790
1791 /* If the cpu isn't online, the cpu is mapped to first hctx */
1792 if (!cpu_online(i))
1793 continue;
1794
1795 hctx = q->mq_ops->map_queue(q, i);
1796
1797 /*
1798 * Set local node, IFF we have more than one hw queue. If
1799 * not, we remain on the home node of the device
1800 */
1801 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1802 hctx->numa_node = cpu_to_node(i);
1803 }
1804 }
1805
1806 static void blk_mq_map_swqueue(struct request_queue *q)
1807 {
1808 unsigned int i;
1809 struct blk_mq_hw_ctx *hctx;
1810 struct blk_mq_ctx *ctx;
1811 struct blk_mq_tag_set *set = q->tag_set;
1812
1813 queue_for_each_hw_ctx(q, hctx, i) {
1814 cpumask_clear(hctx->cpumask);
1815 hctx->nr_ctx = 0;
1816 }
1817
1818 /*
1819 * Map software to hardware queues
1820 */
1821 queue_for_each_ctx(q, ctx, i) {
1822 /* If the cpu isn't online, the cpu is mapped to first hctx */
1823 if (!cpu_online(i))
1824 continue;
1825
1826 hctx = q->mq_ops->map_queue(q, i);
1827 cpumask_set_cpu(i, hctx->cpumask);
1828 cpumask_set_cpu(i, hctx->tags->cpumask);
1829 ctx->index_hw = hctx->nr_ctx;
1830 hctx->ctxs[hctx->nr_ctx++] = ctx;
1831 }
1832
1833 queue_for_each_hw_ctx(q, hctx, i) {
1834 struct blk_mq_ctxmap *map = &hctx->ctx_map;
1835
1836 /*
1837 * If no software queues are mapped to this hardware queue,
1838 * disable it and free the request entries.
1839 */
1840 if (!hctx->nr_ctx) {
1841 if (set->tags[i]) {
1842 blk_mq_free_rq_map(set, set->tags[i], i);
1843 set->tags[i] = NULL;
1844 }
1845 hctx->tags = NULL;
1846 continue;
1847 }
1848
1849 /* unmapped hw queue can be remapped after CPU topo changed */
1850 if (!set->tags[i])
1851 set->tags[i] = blk_mq_init_rq_map(set, i);
1852 hctx->tags = set->tags[i];
1853 WARN_ON(!hctx->tags);
1854
1855 /*
1856 * Set the map size to the number of mapped software queues.
1857 * This is more accurate and more efficient than looping
1858 * over all possibly mapped software queues.
1859 */
1860 map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1861
1862 /*
1863 * Initialize batch roundrobin counts
1864 */
1865 hctx->next_cpu = cpumask_first(hctx->cpumask);
1866 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1867 }
1868 }
1869
1870 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1871 {
1872 struct blk_mq_hw_ctx *hctx;
1873 struct request_queue *q;
1874 bool shared;
1875 int i;
1876
1877 if (set->tag_list.next == set->tag_list.prev)
1878 shared = false;
1879 else
1880 shared = true;
1881
1882 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1883 blk_mq_freeze_queue(q);
1884
1885 queue_for_each_hw_ctx(q, hctx, i) {
1886 if (shared)
1887 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1888 else
1889 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1890 }
1891 blk_mq_unfreeze_queue(q);
1892 }
1893 }
1894
1895 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1896 {
1897 struct blk_mq_tag_set *set = q->tag_set;
1898
1899 mutex_lock(&set->tag_list_lock);
1900 list_del_init(&q->tag_set_list);
1901 blk_mq_update_tag_set_depth(set);
1902 mutex_unlock(&set->tag_list_lock);
1903 }
1904
1905 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1906 struct request_queue *q)
1907 {
1908 q->tag_set = set;
1909
1910 mutex_lock(&set->tag_list_lock);
1911 list_add_tail(&q->tag_set_list, &set->tag_list);
1912 blk_mq_update_tag_set_depth(set);
1913 mutex_unlock(&set->tag_list_lock);
1914 }
1915
1916 /*
1917 * It is the actual release handler for mq, but we do it from
1918 * request queue's release handler for avoiding use-after-free
1919 * and headache because q->mq_kobj shouldn't have been introduced,
1920 * but we can't group ctx/kctx kobj without it.
1921 */
1922 void blk_mq_release(struct request_queue *q)
1923 {
1924 struct blk_mq_hw_ctx *hctx;
1925 unsigned int i;
1926
1927 /* hctx kobj stays in hctx */
1928 queue_for_each_hw_ctx(q, hctx, i) {
1929 if (!hctx)
1930 continue;
1931 kfree(hctx->ctxs);
1932 kfree(hctx);
1933 }
1934
1935 kfree(q->queue_hw_ctx);
1936
1937 /* ctx kobj stays in queue_ctx */
1938 free_percpu(q->queue_ctx);
1939 }
1940
1941 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1942 {
1943 struct request_queue *uninit_q, *q;
1944
1945 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1946 if (!uninit_q)
1947 return ERR_PTR(-ENOMEM);
1948
1949 q = blk_mq_init_allocated_queue(set, uninit_q);
1950 if (IS_ERR(q))
1951 blk_cleanup_queue(uninit_q);
1952
1953 return q;
1954 }
1955 EXPORT_SYMBOL(blk_mq_init_queue);
1956
1957 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
1958 struct request_queue *q)
1959 {
1960 struct blk_mq_hw_ctx **hctxs;
1961 struct blk_mq_ctx __percpu *ctx;
1962 unsigned int *map;
1963 int i;
1964
1965 ctx = alloc_percpu(struct blk_mq_ctx);
1966 if (!ctx)
1967 return ERR_PTR(-ENOMEM);
1968
1969 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1970 set->numa_node);
1971
1972 if (!hctxs)
1973 goto err_percpu;
1974
1975 map = blk_mq_make_queue_map(set);
1976 if (!map)
1977 goto err_map;
1978
1979 for (i = 0; i < set->nr_hw_queues; i++) {
1980 int node = blk_mq_hw_queue_to_node(map, i);
1981
1982 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1983 GFP_KERNEL, node);
1984 if (!hctxs[i])
1985 goto err_hctxs;
1986
1987 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1988 node))
1989 goto err_hctxs;
1990
1991 atomic_set(&hctxs[i]->nr_active, 0);
1992 hctxs[i]->numa_node = node;
1993 hctxs[i]->queue_num = i;
1994 }
1995
1996 /*
1997 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1998 * See blk_register_queue() for details.
1999 */
2000 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
2001 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
2002 goto err_hctxs;
2003
2004 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
2005 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2006
2007 q->nr_queues = nr_cpu_ids;
2008 q->nr_hw_queues = set->nr_hw_queues;
2009 q->mq_map = map;
2010
2011 q->queue_ctx = ctx;
2012 q->queue_hw_ctx = hctxs;
2013
2014 q->mq_ops = set->ops;
2015 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2016
2017 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2018 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2019
2020 q->sg_reserved_size = INT_MAX;
2021
2022 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
2023 INIT_LIST_HEAD(&q->requeue_list);
2024 spin_lock_init(&q->requeue_lock);
2025
2026 if (q->nr_hw_queues > 1)
2027 blk_queue_make_request(q, blk_mq_make_request);
2028 else
2029 blk_queue_make_request(q, blk_sq_make_request);
2030
2031 /*
2032 * Do this after blk_queue_make_request() overrides it...
2033 */
2034 q->nr_requests = set->queue_depth;
2035
2036 if (set->ops->complete)
2037 blk_queue_softirq_done(q, set->ops->complete);
2038
2039 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2040
2041 if (blk_mq_init_hw_queues(q, set))
2042 goto err_hctxs;
2043
2044 mutex_lock(&all_q_mutex);
2045 list_add_tail(&q->all_q_node, &all_q_list);
2046 mutex_unlock(&all_q_mutex);
2047
2048 blk_mq_add_queue_tag_set(set, q);
2049
2050 blk_mq_map_swqueue(q);
2051
2052 return q;
2053
2054 err_hctxs:
2055 kfree(map);
2056 for (i = 0; i < set->nr_hw_queues; i++) {
2057 if (!hctxs[i])
2058 break;
2059 free_cpumask_var(hctxs[i]->cpumask);
2060 kfree(hctxs[i]);
2061 }
2062 err_map:
2063 kfree(hctxs);
2064 err_percpu:
2065 free_percpu(ctx);
2066 return ERR_PTR(-ENOMEM);
2067 }
2068 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2069
2070 void blk_mq_free_queue(struct request_queue *q)
2071 {
2072 struct blk_mq_tag_set *set = q->tag_set;
2073
2074 blk_mq_del_queue_tag_set(q);
2075
2076 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2077 blk_mq_free_hw_queues(q, set);
2078
2079 percpu_ref_exit(&q->mq_usage_counter);
2080
2081 kfree(q->mq_map);
2082
2083 q->mq_map = NULL;
2084
2085 mutex_lock(&all_q_mutex);
2086 list_del_init(&q->all_q_node);
2087 mutex_unlock(&all_q_mutex);
2088 }
2089
2090 /* Basically redo blk_mq_init_queue with queue frozen */
2091 static void blk_mq_queue_reinit(struct request_queue *q)
2092 {
2093 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2094
2095 blk_mq_sysfs_unregister(q);
2096
2097 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
2098
2099 /*
2100 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2101 * we should change hctx numa_node according to new topology (this
2102 * involves free and re-allocate memory, worthy doing?)
2103 */
2104
2105 blk_mq_map_swqueue(q);
2106
2107 blk_mq_sysfs_register(q);
2108 }
2109
2110 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2111 unsigned long action, void *hcpu)
2112 {
2113 struct request_queue *q;
2114
2115 /*
2116 * Before new mappings are established, hotadded cpu might already
2117 * start handling requests. This doesn't break anything as we map
2118 * offline CPUs to first hardware queue. We will re-init the queue
2119 * below to get optimal settings.
2120 */
2121 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
2122 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
2123 return NOTIFY_OK;
2124
2125 mutex_lock(&all_q_mutex);
2126
2127 /*
2128 * We need to freeze and reinit all existing queues. Freezing
2129 * involves synchronous wait for an RCU grace period and doing it
2130 * one by one may take a long time. Start freezing all queues in
2131 * one swoop and then wait for the completions so that freezing can
2132 * take place in parallel.
2133 */
2134 list_for_each_entry(q, &all_q_list, all_q_node)
2135 blk_mq_freeze_queue_start(q);
2136 list_for_each_entry(q, &all_q_list, all_q_node) {
2137 blk_mq_freeze_queue_wait(q);
2138
2139 /*
2140 * timeout handler can't touch hw queue during the
2141 * reinitialization
2142 */
2143 del_timer_sync(&q->timeout);
2144 }
2145
2146 list_for_each_entry(q, &all_q_list, all_q_node)
2147 blk_mq_queue_reinit(q);
2148
2149 list_for_each_entry(q, &all_q_list, all_q_node)
2150 blk_mq_unfreeze_queue(q);
2151
2152 mutex_unlock(&all_q_mutex);
2153 return NOTIFY_OK;
2154 }
2155
2156 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2157 {
2158 int i;
2159
2160 for (i = 0; i < set->nr_hw_queues; i++) {
2161 set->tags[i] = blk_mq_init_rq_map(set, i);
2162 if (!set->tags[i])
2163 goto out_unwind;
2164 }
2165
2166 return 0;
2167
2168 out_unwind:
2169 while (--i >= 0)
2170 blk_mq_free_rq_map(set, set->tags[i], i);
2171
2172 return -ENOMEM;
2173 }
2174
2175 /*
2176 * Allocate the request maps associated with this tag_set. Note that this
2177 * may reduce the depth asked for, if memory is tight. set->queue_depth
2178 * will be updated to reflect the allocated depth.
2179 */
2180 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2181 {
2182 unsigned int depth;
2183 int err;
2184
2185 depth = set->queue_depth;
2186 do {
2187 err = __blk_mq_alloc_rq_maps(set);
2188 if (!err)
2189 break;
2190
2191 set->queue_depth >>= 1;
2192 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2193 err = -ENOMEM;
2194 break;
2195 }
2196 } while (set->queue_depth);
2197
2198 if (!set->queue_depth || err) {
2199 pr_err("blk-mq: failed to allocate request map\n");
2200 return -ENOMEM;
2201 }
2202
2203 if (depth != set->queue_depth)
2204 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2205 depth, set->queue_depth);
2206
2207 return 0;
2208 }
2209
2210 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
2211 {
2212 return tags->cpumask;
2213 }
2214 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);
2215
2216 /*
2217 * Alloc a tag set to be associated with one or more request queues.
2218 * May fail with EINVAL for various error conditions. May adjust the
2219 * requested depth down, if if it too large. In that case, the set
2220 * value will be stored in set->queue_depth.
2221 */
2222 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2223 {
2224 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2225
2226 if (!set->nr_hw_queues)
2227 return -EINVAL;
2228 if (!set->queue_depth)
2229 return -EINVAL;
2230 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2231 return -EINVAL;
2232
2233 if (!set->ops->queue_rq || !set->ops->map_queue)
2234 return -EINVAL;
2235
2236 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2237 pr_info("blk-mq: reduced tag depth to %u\n",
2238 BLK_MQ_MAX_DEPTH);
2239 set->queue_depth = BLK_MQ_MAX_DEPTH;
2240 }
2241
2242 /*
2243 * If a crashdump is active, then we are potentially in a very
2244 * memory constrained environment. Limit us to 1 queue and
2245 * 64 tags to prevent using too much memory.
2246 */
2247 if (is_kdump_kernel()) {
2248 set->nr_hw_queues = 1;
2249 set->queue_depth = min(64U, set->queue_depth);
2250 }
2251
2252 set->tags = kmalloc_node(set->nr_hw_queues *
2253 sizeof(struct blk_mq_tags *),
2254 GFP_KERNEL, set->numa_node);
2255 if (!set->tags)
2256 return -ENOMEM;
2257
2258 if (blk_mq_alloc_rq_maps(set))
2259 goto enomem;
2260
2261 mutex_init(&set->tag_list_lock);
2262 INIT_LIST_HEAD(&set->tag_list);
2263
2264 return 0;
2265 enomem:
2266 kfree(set->tags);
2267 set->tags = NULL;
2268 return -ENOMEM;
2269 }
2270 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2271
2272 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2273 {
2274 int i;
2275
2276 for (i = 0; i < set->nr_hw_queues; i++) {
2277 if (set->tags[i]) {
2278 blk_mq_free_rq_map(set, set->tags[i], i);
2279 free_cpumask_var(set->tags[i]->cpumask);
2280 }
2281 }
2282
2283 kfree(set->tags);
2284 set->tags = NULL;
2285 }
2286 EXPORT_SYMBOL(blk_mq_free_tag_set);
2287
2288 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2289 {
2290 struct blk_mq_tag_set *set = q->tag_set;
2291 struct blk_mq_hw_ctx *hctx;
2292 int i, ret;
2293
2294 if (!set || nr > set->queue_depth)
2295 return -EINVAL;
2296
2297 ret = 0;
2298 queue_for_each_hw_ctx(q, hctx, i) {
2299 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2300 if (ret)
2301 break;
2302 }
2303
2304 if (!ret)
2305 q->nr_requests = nr;
2306
2307 return ret;
2308 }
2309
2310 void blk_mq_disable_hotplug(void)
2311 {
2312 mutex_lock(&all_q_mutex);
2313 }
2314
2315 void blk_mq_enable_hotplug(void)
2316 {
2317 mutex_unlock(&all_q_mutex);
2318 }
2319
2320 static int __init blk_mq_init(void)
2321 {
2322 blk_mq_cpu_init();
2323
2324 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2325
2326 return 0;
2327 }
2328 subsys_initcall(blk_mq_init);
This page took 0.175709 seconds and 6 git commands to generate.