blk-mq: Allow requests to never expire
[deliverable/linux.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
24
25 #include <trace/events/block.h>
26
27 #include <linux/blk-mq.h>
28 #include "blk.h"
29 #include "blk-mq.h"
30 #include "blk-mq-tag.h"
31
32 static DEFINE_MUTEX(all_q_mutex);
33 static LIST_HEAD(all_q_list);
34
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
36
37 /*
38 * Check if any of the ctx's have pending work in this hardware queue
39 */
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41 {
42 unsigned int i;
43
44 for (i = 0; i < hctx->ctx_map.map_size; i++)
45 if (hctx->ctx_map.map[i].word)
46 return true;
47
48 return false;
49 }
50
51 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
52 struct blk_mq_ctx *ctx)
53 {
54 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
55 }
56
57 #define CTX_TO_BIT(hctx, ctx) \
58 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
59
60 /*
61 * Mark this ctx as having pending work in this hardware queue
62 */
63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
64 struct blk_mq_ctx *ctx)
65 {
66 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
67
68 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
69 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
70 }
71
72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
73 struct blk_mq_ctx *ctx)
74 {
75 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
76
77 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
78 }
79
80 static int blk_mq_queue_enter(struct request_queue *q)
81 {
82 while (true) {
83 int ret;
84
85 if (percpu_ref_tryget_live(&q->mq_usage_counter))
86 return 0;
87
88 ret = wait_event_interruptible(q->mq_freeze_wq,
89 !q->mq_freeze_depth || blk_queue_dying(q));
90 if (blk_queue_dying(q))
91 return -ENODEV;
92 if (ret)
93 return ret;
94 }
95 }
96
97 static void blk_mq_queue_exit(struct request_queue *q)
98 {
99 percpu_ref_put(&q->mq_usage_counter);
100 }
101
102 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
103 {
104 struct request_queue *q =
105 container_of(ref, struct request_queue, mq_usage_counter);
106
107 wake_up_all(&q->mq_freeze_wq);
108 }
109
110 void blk_mq_freeze_queue_start(struct request_queue *q)
111 {
112 bool freeze;
113
114 spin_lock_irq(q->queue_lock);
115 freeze = !q->mq_freeze_depth++;
116 spin_unlock_irq(q->queue_lock);
117
118 if (freeze) {
119 percpu_ref_kill(&q->mq_usage_counter);
120 blk_mq_run_queues(q, false);
121 }
122 }
123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
124
125 static void blk_mq_freeze_queue_wait(struct request_queue *q)
126 {
127 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
128 }
129
130 /*
131 * Guarantee no request is in use, so we can change any data structure of
132 * the queue afterward.
133 */
134 void blk_mq_freeze_queue(struct request_queue *q)
135 {
136 blk_mq_freeze_queue_start(q);
137 blk_mq_freeze_queue_wait(q);
138 }
139
140 void blk_mq_unfreeze_queue(struct request_queue *q)
141 {
142 bool wake;
143
144 spin_lock_irq(q->queue_lock);
145 wake = !--q->mq_freeze_depth;
146 WARN_ON_ONCE(q->mq_freeze_depth < 0);
147 spin_unlock_irq(q->queue_lock);
148 if (wake) {
149 percpu_ref_reinit(&q->mq_usage_counter);
150 wake_up_all(&q->mq_freeze_wq);
151 }
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
154
155 void blk_mq_wake_waiters(struct request_queue *q)
156 {
157 struct blk_mq_hw_ctx *hctx;
158 unsigned int i;
159
160 queue_for_each_hw_ctx(q, hctx, i)
161 if (blk_mq_hw_queue_mapped(hctx))
162 blk_mq_tag_wakeup_all(hctx->tags, true);
163
164 /*
165 * If we are called because the queue has now been marked as
166 * dying, we need to ensure that processes currently waiting on
167 * the queue are notified as well.
168 */
169 wake_up_all(&q->mq_freeze_wq);
170 }
171
172 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
173 {
174 return blk_mq_has_free_tags(hctx->tags);
175 }
176 EXPORT_SYMBOL(blk_mq_can_queue);
177
178 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
179 struct request *rq, unsigned int rw_flags)
180 {
181 if (blk_queue_io_stat(q))
182 rw_flags |= REQ_IO_STAT;
183
184 INIT_LIST_HEAD(&rq->queuelist);
185 /* csd/requeue_work/fifo_time is initialized before use */
186 rq->q = q;
187 rq->mq_ctx = ctx;
188 rq->cmd_flags |= rw_flags;
189 /* do not touch atomic flags, it needs atomic ops against the timer */
190 rq->cpu = -1;
191 INIT_HLIST_NODE(&rq->hash);
192 RB_CLEAR_NODE(&rq->rb_node);
193 rq->rq_disk = NULL;
194 rq->part = NULL;
195 rq->start_time = jiffies;
196 #ifdef CONFIG_BLK_CGROUP
197 rq->rl = NULL;
198 set_start_time_ns(rq);
199 rq->io_start_time_ns = 0;
200 #endif
201 rq->nr_phys_segments = 0;
202 #if defined(CONFIG_BLK_DEV_INTEGRITY)
203 rq->nr_integrity_segments = 0;
204 #endif
205 rq->special = NULL;
206 /* tag was already set */
207 rq->errors = 0;
208
209 rq->cmd = rq->__cmd;
210
211 rq->extra_len = 0;
212 rq->sense_len = 0;
213 rq->resid_len = 0;
214 rq->sense = NULL;
215
216 INIT_LIST_HEAD(&rq->timeout_list);
217 rq->timeout = 0;
218
219 rq->end_io = NULL;
220 rq->end_io_data = NULL;
221 rq->next_rq = NULL;
222
223 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
224 }
225
226 static struct request *
227 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
228 {
229 struct request *rq;
230 unsigned int tag;
231
232 tag = blk_mq_get_tag(data);
233 if (tag != BLK_MQ_TAG_FAIL) {
234 rq = data->hctx->tags->rqs[tag];
235
236 if (blk_mq_tag_busy(data->hctx)) {
237 rq->cmd_flags = REQ_MQ_INFLIGHT;
238 atomic_inc(&data->hctx->nr_active);
239 }
240
241 rq->tag = tag;
242 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
243 return rq;
244 }
245
246 return NULL;
247 }
248
249 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
250 bool reserved)
251 {
252 struct blk_mq_ctx *ctx;
253 struct blk_mq_hw_ctx *hctx;
254 struct request *rq;
255 struct blk_mq_alloc_data alloc_data;
256 int ret;
257
258 ret = blk_mq_queue_enter(q);
259 if (ret)
260 return ERR_PTR(ret);
261
262 ctx = blk_mq_get_ctx(q);
263 hctx = q->mq_ops->map_queue(q, ctx->cpu);
264 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
265 reserved, ctx, hctx);
266
267 rq = __blk_mq_alloc_request(&alloc_data, rw);
268 if (!rq && (gfp & __GFP_WAIT)) {
269 __blk_mq_run_hw_queue(hctx);
270 blk_mq_put_ctx(ctx);
271
272 ctx = blk_mq_get_ctx(q);
273 hctx = q->mq_ops->map_queue(q, ctx->cpu);
274 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
275 hctx);
276 rq = __blk_mq_alloc_request(&alloc_data, rw);
277 ctx = alloc_data.ctx;
278 }
279 blk_mq_put_ctx(ctx);
280 if (!rq) {
281 blk_mq_queue_exit(q);
282 return ERR_PTR(-EWOULDBLOCK);
283 }
284 return rq;
285 }
286 EXPORT_SYMBOL(blk_mq_alloc_request);
287
288 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
289 struct blk_mq_ctx *ctx, struct request *rq)
290 {
291 const int tag = rq->tag;
292 struct request_queue *q = rq->q;
293
294 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
295 atomic_dec(&hctx->nr_active);
296 rq->cmd_flags = 0;
297
298 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
299 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
300 blk_mq_queue_exit(q);
301 }
302
303 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
304 {
305 struct blk_mq_ctx *ctx = rq->mq_ctx;
306
307 ctx->rq_completed[rq_is_sync(rq)]++;
308 __blk_mq_free_request(hctx, ctx, rq);
309
310 }
311 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
312
313 void blk_mq_free_request(struct request *rq)
314 {
315 struct blk_mq_hw_ctx *hctx;
316 struct request_queue *q = rq->q;
317
318 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
319 blk_mq_free_hctx_request(hctx, rq);
320 }
321 EXPORT_SYMBOL_GPL(blk_mq_free_request);
322
323 inline void __blk_mq_end_request(struct request *rq, int error)
324 {
325 blk_account_io_done(rq);
326
327 if (rq->end_io) {
328 rq->end_io(rq, error);
329 } else {
330 if (unlikely(blk_bidi_rq(rq)))
331 blk_mq_free_request(rq->next_rq);
332 blk_mq_free_request(rq);
333 }
334 }
335 EXPORT_SYMBOL(__blk_mq_end_request);
336
337 void blk_mq_end_request(struct request *rq, int error)
338 {
339 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
340 BUG();
341 __blk_mq_end_request(rq, error);
342 }
343 EXPORT_SYMBOL(blk_mq_end_request);
344
345 static void __blk_mq_complete_request_remote(void *data)
346 {
347 struct request *rq = data;
348
349 rq->q->softirq_done_fn(rq);
350 }
351
352 static void blk_mq_ipi_complete_request(struct request *rq)
353 {
354 struct blk_mq_ctx *ctx = rq->mq_ctx;
355 bool shared = false;
356 int cpu;
357
358 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
359 rq->q->softirq_done_fn(rq);
360 return;
361 }
362
363 cpu = get_cpu();
364 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
365 shared = cpus_share_cache(cpu, ctx->cpu);
366
367 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
368 rq->csd.func = __blk_mq_complete_request_remote;
369 rq->csd.info = rq;
370 rq->csd.flags = 0;
371 smp_call_function_single_async(ctx->cpu, &rq->csd);
372 } else {
373 rq->q->softirq_done_fn(rq);
374 }
375 put_cpu();
376 }
377
378 void __blk_mq_complete_request(struct request *rq)
379 {
380 struct request_queue *q = rq->q;
381
382 if (!q->softirq_done_fn)
383 blk_mq_end_request(rq, rq->errors);
384 else
385 blk_mq_ipi_complete_request(rq);
386 }
387
388 /**
389 * blk_mq_complete_request - end I/O on a request
390 * @rq: the request being processed
391 *
392 * Description:
393 * Ends all I/O on a request. It does not handle partial completions.
394 * The actual completion happens out-of-order, through a IPI handler.
395 **/
396 void blk_mq_complete_request(struct request *rq)
397 {
398 struct request_queue *q = rq->q;
399
400 if (unlikely(blk_should_fake_timeout(q)))
401 return;
402 if (!blk_mark_rq_complete(rq))
403 __blk_mq_complete_request(rq);
404 }
405 EXPORT_SYMBOL(blk_mq_complete_request);
406
407 int blk_mq_request_started(struct request *rq)
408 {
409 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
410 }
411 EXPORT_SYMBOL_GPL(blk_mq_request_started);
412
413 void blk_mq_start_request(struct request *rq)
414 {
415 struct request_queue *q = rq->q;
416
417 trace_block_rq_issue(q, rq);
418
419 rq->resid_len = blk_rq_bytes(rq);
420 if (unlikely(blk_bidi_rq(rq)))
421 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
422
423 blk_add_timer(rq);
424
425 /*
426 * Ensure that ->deadline is visible before set the started
427 * flag and clear the completed flag.
428 */
429 smp_mb__before_atomic();
430
431 /*
432 * Mark us as started and clear complete. Complete might have been
433 * set if requeue raced with timeout, which then marked it as
434 * complete. So be sure to clear complete again when we start
435 * the request, otherwise we'll ignore the completion event.
436 */
437 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
438 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
439 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
440 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
441
442 if (q->dma_drain_size && blk_rq_bytes(rq)) {
443 /*
444 * Make sure space for the drain appears. We know we can do
445 * this because max_hw_segments has been adjusted to be one
446 * fewer than the device can handle.
447 */
448 rq->nr_phys_segments++;
449 }
450 }
451 EXPORT_SYMBOL(blk_mq_start_request);
452
453 static void __blk_mq_requeue_request(struct request *rq)
454 {
455 struct request_queue *q = rq->q;
456
457 trace_block_rq_requeue(q, rq);
458
459 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
460 if (q->dma_drain_size && blk_rq_bytes(rq))
461 rq->nr_phys_segments--;
462 }
463 }
464
465 void blk_mq_requeue_request(struct request *rq)
466 {
467 __blk_mq_requeue_request(rq);
468
469 BUG_ON(blk_queued_rq(rq));
470 blk_mq_add_to_requeue_list(rq, true);
471 }
472 EXPORT_SYMBOL(blk_mq_requeue_request);
473
474 static void blk_mq_requeue_work(struct work_struct *work)
475 {
476 struct request_queue *q =
477 container_of(work, struct request_queue, requeue_work);
478 LIST_HEAD(rq_list);
479 struct request *rq, *next;
480 unsigned long flags;
481
482 spin_lock_irqsave(&q->requeue_lock, flags);
483 list_splice_init(&q->requeue_list, &rq_list);
484 spin_unlock_irqrestore(&q->requeue_lock, flags);
485
486 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
487 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
488 continue;
489
490 rq->cmd_flags &= ~REQ_SOFTBARRIER;
491 list_del_init(&rq->queuelist);
492 blk_mq_insert_request(rq, true, false, false);
493 }
494
495 while (!list_empty(&rq_list)) {
496 rq = list_entry(rq_list.next, struct request, queuelist);
497 list_del_init(&rq->queuelist);
498 blk_mq_insert_request(rq, false, false, false);
499 }
500
501 /*
502 * Use the start variant of queue running here, so that running
503 * the requeue work will kick stopped queues.
504 */
505 blk_mq_start_hw_queues(q);
506 }
507
508 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
509 {
510 struct request_queue *q = rq->q;
511 unsigned long flags;
512
513 /*
514 * We abuse this flag that is otherwise used by the I/O scheduler to
515 * request head insertation from the workqueue.
516 */
517 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
518
519 spin_lock_irqsave(&q->requeue_lock, flags);
520 if (at_head) {
521 rq->cmd_flags |= REQ_SOFTBARRIER;
522 list_add(&rq->queuelist, &q->requeue_list);
523 } else {
524 list_add_tail(&rq->queuelist, &q->requeue_list);
525 }
526 spin_unlock_irqrestore(&q->requeue_lock, flags);
527 }
528 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
529
530 void blk_mq_cancel_requeue_work(struct request_queue *q)
531 {
532 cancel_work_sync(&q->requeue_work);
533 }
534 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
535
536 void blk_mq_kick_requeue_list(struct request_queue *q)
537 {
538 kblockd_schedule_work(&q->requeue_work);
539 }
540 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
541
542 void blk_mq_abort_requeue_list(struct request_queue *q)
543 {
544 unsigned long flags;
545 LIST_HEAD(rq_list);
546
547 spin_lock_irqsave(&q->requeue_lock, flags);
548 list_splice_init(&q->requeue_list, &rq_list);
549 spin_unlock_irqrestore(&q->requeue_lock, flags);
550
551 while (!list_empty(&rq_list)) {
552 struct request *rq;
553
554 rq = list_first_entry(&rq_list, struct request, queuelist);
555 list_del_init(&rq->queuelist);
556 rq->errors = -EIO;
557 blk_mq_end_request(rq, rq->errors);
558 }
559 }
560 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
561
562 static inline bool is_flush_request(struct request *rq,
563 struct blk_flush_queue *fq, unsigned int tag)
564 {
565 return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
566 fq->flush_rq->tag == tag);
567 }
568
569 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
570 {
571 struct request *rq = tags->rqs[tag];
572 /* mq_ctx of flush rq is always cloned from the corresponding req */
573 struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
574
575 if (!is_flush_request(rq, fq, tag))
576 return rq;
577
578 return fq->flush_rq;
579 }
580 EXPORT_SYMBOL(blk_mq_tag_to_rq);
581
582 struct blk_mq_timeout_data {
583 unsigned long next;
584 unsigned int next_set;
585 };
586
587 void blk_mq_rq_timed_out(struct request *req, bool reserved)
588 {
589 struct blk_mq_ops *ops = req->q->mq_ops;
590 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
591
592 /*
593 * We know that complete is set at this point. If STARTED isn't set
594 * anymore, then the request isn't active and the "timeout" should
595 * just be ignored. This can happen due to the bitflag ordering.
596 * Timeout first checks if STARTED is set, and if it is, assumes
597 * the request is active. But if we race with completion, then
598 * we both flags will get cleared. So check here again, and ignore
599 * a timeout event with a request that isn't active.
600 */
601 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
602 return;
603
604 if (ops->timeout)
605 ret = ops->timeout(req, reserved);
606
607 switch (ret) {
608 case BLK_EH_HANDLED:
609 __blk_mq_complete_request(req);
610 break;
611 case BLK_EH_RESET_TIMER:
612 blk_add_timer(req);
613 blk_clear_rq_complete(req);
614 break;
615 case BLK_EH_NOT_HANDLED:
616 break;
617 default:
618 printk(KERN_ERR "block: bad eh return: %d\n", ret);
619 break;
620 }
621 }
622
623 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
624 struct request *rq, void *priv, bool reserved)
625 {
626 struct blk_mq_timeout_data *data = priv;
627
628 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
629 return;
630 if (rq->cmd_flags & REQ_NO_TIMEOUT)
631 return;
632
633 if (time_after_eq(jiffies, rq->deadline)) {
634 if (!blk_mark_rq_complete(rq))
635 blk_mq_rq_timed_out(rq, reserved);
636 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
637 data->next = rq->deadline;
638 data->next_set = 1;
639 }
640 }
641
642 static void blk_mq_rq_timer(unsigned long priv)
643 {
644 struct request_queue *q = (struct request_queue *)priv;
645 struct blk_mq_timeout_data data = {
646 .next = 0,
647 .next_set = 0,
648 };
649 struct blk_mq_hw_ctx *hctx;
650 int i;
651
652 queue_for_each_hw_ctx(q, hctx, i) {
653 /*
654 * If not software queues are currently mapped to this
655 * hardware queue, there's nothing to check
656 */
657 if (!blk_mq_hw_queue_mapped(hctx))
658 continue;
659
660 blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
661 }
662
663 if (data.next_set) {
664 data.next = blk_rq_timeout(round_jiffies_up(data.next));
665 mod_timer(&q->timeout, data.next);
666 } else {
667 queue_for_each_hw_ctx(q, hctx, i)
668 blk_mq_tag_idle(hctx);
669 }
670 }
671
672 /*
673 * Reverse check our software queue for entries that we could potentially
674 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
675 * too much time checking for merges.
676 */
677 static bool blk_mq_attempt_merge(struct request_queue *q,
678 struct blk_mq_ctx *ctx, struct bio *bio)
679 {
680 struct request *rq;
681 int checked = 8;
682
683 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
684 int el_ret;
685
686 if (!checked--)
687 break;
688
689 if (!blk_rq_merge_ok(rq, bio))
690 continue;
691
692 el_ret = blk_try_merge(rq, bio);
693 if (el_ret == ELEVATOR_BACK_MERGE) {
694 if (bio_attempt_back_merge(q, rq, bio)) {
695 ctx->rq_merged++;
696 return true;
697 }
698 break;
699 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
700 if (bio_attempt_front_merge(q, rq, bio)) {
701 ctx->rq_merged++;
702 return true;
703 }
704 break;
705 }
706 }
707
708 return false;
709 }
710
711 /*
712 * Process software queues that have been marked busy, splicing them
713 * to the for-dispatch
714 */
715 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
716 {
717 struct blk_mq_ctx *ctx;
718 int i;
719
720 for (i = 0; i < hctx->ctx_map.map_size; i++) {
721 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
722 unsigned int off, bit;
723
724 if (!bm->word)
725 continue;
726
727 bit = 0;
728 off = i * hctx->ctx_map.bits_per_word;
729 do {
730 bit = find_next_bit(&bm->word, bm->depth, bit);
731 if (bit >= bm->depth)
732 break;
733
734 ctx = hctx->ctxs[bit + off];
735 clear_bit(bit, &bm->word);
736 spin_lock(&ctx->lock);
737 list_splice_tail_init(&ctx->rq_list, list);
738 spin_unlock(&ctx->lock);
739
740 bit++;
741 } while (1);
742 }
743 }
744
745 /*
746 * Run this hardware queue, pulling any software queues mapped to it in.
747 * Note that this function currently has various problems around ordering
748 * of IO. In particular, we'd like FIFO behaviour on handling existing
749 * items on the hctx->dispatch list. Ignore that for now.
750 */
751 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
752 {
753 struct request_queue *q = hctx->queue;
754 struct request *rq;
755 LIST_HEAD(rq_list);
756 LIST_HEAD(driver_list);
757 struct list_head *dptr;
758 int queued;
759
760 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
761
762 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
763 return;
764
765 hctx->run++;
766
767 /*
768 * Touch any software queue that has pending entries.
769 */
770 flush_busy_ctxs(hctx, &rq_list);
771
772 /*
773 * If we have previous entries on our dispatch list, grab them
774 * and stuff them at the front for more fair dispatch.
775 */
776 if (!list_empty_careful(&hctx->dispatch)) {
777 spin_lock(&hctx->lock);
778 if (!list_empty(&hctx->dispatch))
779 list_splice_init(&hctx->dispatch, &rq_list);
780 spin_unlock(&hctx->lock);
781 }
782
783 /*
784 * Start off with dptr being NULL, so we start the first request
785 * immediately, even if we have more pending.
786 */
787 dptr = NULL;
788
789 /*
790 * Now process all the entries, sending them to the driver.
791 */
792 queued = 0;
793 while (!list_empty(&rq_list)) {
794 struct blk_mq_queue_data bd;
795 int ret;
796
797 rq = list_first_entry(&rq_list, struct request, queuelist);
798 list_del_init(&rq->queuelist);
799
800 bd.rq = rq;
801 bd.list = dptr;
802 bd.last = list_empty(&rq_list);
803
804 ret = q->mq_ops->queue_rq(hctx, &bd);
805 switch (ret) {
806 case BLK_MQ_RQ_QUEUE_OK:
807 queued++;
808 continue;
809 case BLK_MQ_RQ_QUEUE_BUSY:
810 list_add(&rq->queuelist, &rq_list);
811 __blk_mq_requeue_request(rq);
812 break;
813 default:
814 pr_err("blk-mq: bad return on queue: %d\n", ret);
815 case BLK_MQ_RQ_QUEUE_ERROR:
816 rq->errors = -EIO;
817 blk_mq_end_request(rq, rq->errors);
818 break;
819 }
820
821 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
822 break;
823
824 /*
825 * We've done the first request. If we have more than 1
826 * left in the list, set dptr to defer issue.
827 */
828 if (!dptr && rq_list.next != rq_list.prev)
829 dptr = &driver_list;
830 }
831
832 if (!queued)
833 hctx->dispatched[0]++;
834 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
835 hctx->dispatched[ilog2(queued) + 1]++;
836
837 /*
838 * Any items that need requeuing? Stuff them into hctx->dispatch,
839 * that is where we will continue on next queue run.
840 */
841 if (!list_empty(&rq_list)) {
842 spin_lock(&hctx->lock);
843 list_splice(&rq_list, &hctx->dispatch);
844 spin_unlock(&hctx->lock);
845 }
846 }
847
848 /*
849 * It'd be great if the workqueue API had a way to pass
850 * in a mask and had some smarts for more clever placement.
851 * For now we just round-robin here, switching for every
852 * BLK_MQ_CPU_WORK_BATCH queued items.
853 */
854 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
855 {
856 if (hctx->queue->nr_hw_queues == 1)
857 return WORK_CPU_UNBOUND;
858
859 if (--hctx->next_cpu_batch <= 0) {
860 int cpu = hctx->next_cpu, next_cpu;
861
862 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
863 if (next_cpu >= nr_cpu_ids)
864 next_cpu = cpumask_first(hctx->cpumask);
865
866 hctx->next_cpu = next_cpu;
867 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
868
869 return cpu;
870 }
871
872 return hctx->next_cpu;
873 }
874
875 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
876 {
877 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
878 !blk_mq_hw_queue_mapped(hctx)))
879 return;
880
881 if (!async) {
882 int cpu = get_cpu();
883 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
884 __blk_mq_run_hw_queue(hctx);
885 put_cpu();
886 return;
887 }
888
889 put_cpu();
890 }
891
892 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
893 &hctx->run_work, 0);
894 }
895
896 void blk_mq_run_queues(struct request_queue *q, bool async)
897 {
898 struct blk_mq_hw_ctx *hctx;
899 int i;
900
901 queue_for_each_hw_ctx(q, hctx, i) {
902 if ((!blk_mq_hctx_has_pending(hctx) &&
903 list_empty_careful(&hctx->dispatch)) ||
904 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
905 continue;
906
907 blk_mq_run_hw_queue(hctx, async);
908 }
909 }
910 EXPORT_SYMBOL(blk_mq_run_queues);
911
912 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
913 {
914 cancel_delayed_work(&hctx->run_work);
915 cancel_delayed_work(&hctx->delay_work);
916 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
917 }
918 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
919
920 void blk_mq_stop_hw_queues(struct request_queue *q)
921 {
922 struct blk_mq_hw_ctx *hctx;
923 int i;
924
925 queue_for_each_hw_ctx(q, hctx, i)
926 blk_mq_stop_hw_queue(hctx);
927 }
928 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
929
930 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
931 {
932 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
933
934 blk_mq_run_hw_queue(hctx, false);
935 }
936 EXPORT_SYMBOL(blk_mq_start_hw_queue);
937
938 void blk_mq_start_hw_queues(struct request_queue *q)
939 {
940 struct blk_mq_hw_ctx *hctx;
941 int i;
942
943 queue_for_each_hw_ctx(q, hctx, i)
944 blk_mq_start_hw_queue(hctx);
945 }
946 EXPORT_SYMBOL(blk_mq_start_hw_queues);
947
948
949 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
950 {
951 struct blk_mq_hw_ctx *hctx;
952 int i;
953
954 queue_for_each_hw_ctx(q, hctx, i) {
955 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
956 continue;
957
958 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
959 blk_mq_run_hw_queue(hctx, async);
960 }
961 }
962 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
963
964 static void blk_mq_run_work_fn(struct work_struct *work)
965 {
966 struct blk_mq_hw_ctx *hctx;
967
968 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
969
970 __blk_mq_run_hw_queue(hctx);
971 }
972
973 static void blk_mq_delay_work_fn(struct work_struct *work)
974 {
975 struct blk_mq_hw_ctx *hctx;
976
977 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
978
979 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
980 __blk_mq_run_hw_queue(hctx);
981 }
982
983 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
984 {
985 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
986 return;
987
988 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
989 &hctx->delay_work, msecs_to_jiffies(msecs));
990 }
991 EXPORT_SYMBOL(blk_mq_delay_queue);
992
993 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
994 struct request *rq, bool at_head)
995 {
996 struct blk_mq_ctx *ctx = rq->mq_ctx;
997
998 trace_block_rq_insert(hctx->queue, rq);
999
1000 if (at_head)
1001 list_add(&rq->queuelist, &ctx->rq_list);
1002 else
1003 list_add_tail(&rq->queuelist, &ctx->rq_list);
1004
1005 blk_mq_hctx_mark_pending(hctx, ctx);
1006 }
1007
1008 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1009 bool async)
1010 {
1011 struct request_queue *q = rq->q;
1012 struct blk_mq_hw_ctx *hctx;
1013 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1014
1015 current_ctx = blk_mq_get_ctx(q);
1016 if (!cpu_online(ctx->cpu))
1017 rq->mq_ctx = ctx = current_ctx;
1018
1019 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1020
1021 spin_lock(&ctx->lock);
1022 __blk_mq_insert_request(hctx, rq, at_head);
1023 spin_unlock(&ctx->lock);
1024
1025 if (run_queue)
1026 blk_mq_run_hw_queue(hctx, async);
1027
1028 blk_mq_put_ctx(current_ctx);
1029 }
1030
1031 static void blk_mq_insert_requests(struct request_queue *q,
1032 struct blk_mq_ctx *ctx,
1033 struct list_head *list,
1034 int depth,
1035 bool from_schedule)
1036
1037 {
1038 struct blk_mq_hw_ctx *hctx;
1039 struct blk_mq_ctx *current_ctx;
1040
1041 trace_block_unplug(q, depth, !from_schedule);
1042
1043 current_ctx = blk_mq_get_ctx(q);
1044
1045 if (!cpu_online(ctx->cpu))
1046 ctx = current_ctx;
1047 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1048
1049 /*
1050 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1051 * offline now
1052 */
1053 spin_lock(&ctx->lock);
1054 while (!list_empty(list)) {
1055 struct request *rq;
1056
1057 rq = list_first_entry(list, struct request, queuelist);
1058 list_del_init(&rq->queuelist);
1059 rq->mq_ctx = ctx;
1060 __blk_mq_insert_request(hctx, rq, false);
1061 }
1062 spin_unlock(&ctx->lock);
1063
1064 blk_mq_run_hw_queue(hctx, from_schedule);
1065 blk_mq_put_ctx(current_ctx);
1066 }
1067
1068 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1069 {
1070 struct request *rqa = container_of(a, struct request, queuelist);
1071 struct request *rqb = container_of(b, struct request, queuelist);
1072
1073 return !(rqa->mq_ctx < rqb->mq_ctx ||
1074 (rqa->mq_ctx == rqb->mq_ctx &&
1075 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1076 }
1077
1078 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1079 {
1080 struct blk_mq_ctx *this_ctx;
1081 struct request_queue *this_q;
1082 struct request *rq;
1083 LIST_HEAD(list);
1084 LIST_HEAD(ctx_list);
1085 unsigned int depth;
1086
1087 list_splice_init(&plug->mq_list, &list);
1088
1089 list_sort(NULL, &list, plug_ctx_cmp);
1090
1091 this_q = NULL;
1092 this_ctx = NULL;
1093 depth = 0;
1094
1095 while (!list_empty(&list)) {
1096 rq = list_entry_rq(list.next);
1097 list_del_init(&rq->queuelist);
1098 BUG_ON(!rq->q);
1099 if (rq->mq_ctx != this_ctx) {
1100 if (this_ctx) {
1101 blk_mq_insert_requests(this_q, this_ctx,
1102 &ctx_list, depth,
1103 from_schedule);
1104 }
1105
1106 this_ctx = rq->mq_ctx;
1107 this_q = rq->q;
1108 depth = 0;
1109 }
1110
1111 depth++;
1112 list_add_tail(&rq->queuelist, &ctx_list);
1113 }
1114
1115 /*
1116 * If 'this_ctx' is set, we know we have entries to complete
1117 * on 'ctx_list'. Do those.
1118 */
1119 if (this_ctx) {
1120 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1121 from_schedule);
1122 }
1123 }
1124
1125 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1126 {
1127 init_request_from_bio(rq, bio);
1128
1129 if (blk_do_io_stat(rq))
1130 blk_account_io_start(rq, 1);
1131 }
1132
1133 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1134 {
1135 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1136 !blk_queue_nomerges(hctx->queue);
1137 }
1138
1139 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1140 struct blk_mq_ctx *ctx,
1141 struct request *rq, struct bio *bio)
1142 {
1143 if (!hctx_allow_merges(hctx)) {
1144 blk_mq_bio_to_request(rq, bio);
1145 spin_lock(&ctx->lock);
1146 insert_rq:
1147 __blk_mq_insert_request(hctx, rq, false);
1148 spin_unlock(&ctx->lock);
1149 return false;
1150 } else {
1151 struct request_queue *q = hctx->queue;
1152
1153 spin_lock(&ctx->lock);
1154 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1155 blk_mq_bio_to_request(rq, bio);
1156 goto insert_rq;
1157 }
1158
1159 spin_unlock(&ctx->lock);
1160 __blk_mq_free_request(hctx, ctx, rq);
1161 return true;
1162 }
1163 }
1164
1165 struct blk_map_ctx {
1166 struct blk_mq_hw_ctx *hctx;
1167 struct blk_mq_ctx *ctx;
1168 };
1169
1170 static struct request *blk_mq_map_request(struct request_queue *q,
1171 struct bio *bio,
1172 struct blk_map_ctx *data)
1173 {
1174 struct blk_mq_hw_ctx *hctx;
1175 struct blk_mq_ctx *ctx;
1176 struct request *rq;
1177 int rw = bio_data_dir(bio);
1178 struct blk_mq_alloc_data alloc_data;
1179
1180 if (unlikely(blk_mq_queue_enter(q))) {
1181 bio_endio(bio, -EIO);
1182 return NULL;
1183 }
1184
1185 ctx = blk_mq_get_ctx(q);
1186 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1187
1188 if (rw_is_sync(bio->bi_rw))
1189 rw |= REQ_SYNC;
1190
1191 trace_block_getrq(q, bio, rw);
1192 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1193 hctx);
1194 rq = __blk_mq_alloc_request(&alloc_data, rw);
1195 if (unlikely(!rq)) {
1196 __blk_mq_run_hw_queue(hctx);
1197 blk_mq_put_ctx(ctx);
1198 trace_block_sleeprq(q, bio, rw);
1199
1200 ctx = blk_mq_get_ctx(q);
1201 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1202 blk_mq_set_alloc_data(&alloc_data, q,
1203 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1204 rq = __blk_mq_alloc_request(&alloc_data, rw);
1205 ctx = alloc_data.ctx;
1206 hctx = alloc_data.hctx;
1207 }
1208
1209 hctx->queued++;
1210 data->hctx = hctx;
1211 data->ctx = ctx;
1212 return rq;
1213 }
1214
1215 /*
1216 * Multiple hardware queue variant. This will not use per-process plugs,
1217 * but will attempt to bypass the hctx queueing if we can go straight to
1218 * hardware for SYNC IO.
1219 */
1220 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1221 {
1222 const int is_sync = rw_is_sync(bio->bi_rw);
1223 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1224 struct blk_map_ctx data;
1225 struct request *rq;
1226
1227 blk_queue_bounce(q, &bio);
1228
1229 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1230 bio_endio(bio, -EIO);
1231 return;
1232 }
1233
1234 rq = blk_mq_map_request(q, bio, &data);
1235 if (unlikely(!rq))
1236 return;
1237
1238 if (unlikely(is_flush_fua)) {
1239 blk_mq_bio_to_request(rq, bio);
1240 blk_insert_flush(rq);
1241 goto run_queue;
1242 }
1243
1244 /*
1245 * If the driver supports defer issued based on 'last', then
1246 * queue it up like normal since we can potentially save some
1247 * CPU this way.
1248 */
1249 if (is_sync && !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1250 struct blk_mq_queue_data bd = {
1251 .rq = rq,
1252 .list = NULL,
1253 .last = 1
1254 };
1255 int ret;
1256
1257 blk_mq_bio_to_request(rq, bio);
1258
1259 /*
1260 * For OK queue, we are done. For error, kill it. Any other
1261 * error (busy), just add it to our list as we previously
1262 * would have done
1263 */
1264 ret = q->mq_ops->queue_rq(data.hctx, &bd);
1265 if (ret == BLK_MQ_RQ_QUEUE_OK)
1266 goto done;
1267 else {
1268 __blk_mq_requeue_request(rq);
1269
1270 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1271 rq->errors = -EIO;
1272 blk_mq_end_request(rq, rq->errors);
1273 goto done;
1274 }
1275 }
1276 }
1277
1278 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1279 /*
1280 * For a SYNC request, send it to the hardware immediately. For
1281 * an ASYNC request, just ensure that we run it later on. The
1282 * latter allows for merging opportunities and more efficient
1283 * dispatching.
1284 */
1285 run_queue:
1286 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1287 }
1288 done:
1289 blk_mq_put_ctx(data.ctx);
1290 }
1291
1292 /*
1293 * Single hardware queue variant. This will attempt to use any per-process
1294 * plug for merging and IO deferral.
1295 */
1296 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1297 {
1298 const int is_sync = rw_is_sync(bio->bi_rw);
1299 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1300 unsigned int use_plug, request_count = 0;
1301 struct blk_map_ctx data;
1302 struct request *rq;
1303
1304 /*
1305 * If we have multiple hardware queues, just go directly to
1306 * one of those for sync IO.
1307 */
1308 use_plug = !is_flush_fua && !is_sync;
1309
1310 blk_queue_bounce(q, &bio);
1311
1312 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1313 bio_endio(bio, -EIO);
1314 return;
1315 }
1316
1317 if (use_plug && !blk_queue_nomerges(q) &&
1318 blk_attempt_plug_merge(q, bio, &request_count))
1319 return;
1320
1321 rq = blk_mq_map_request(q, bio, &data);
1322 if (unlikely(!rq))
1323 return;
1324
1325 if (unlikely(is_flush_fua)) {
1326 blk_mq_bio_to_request(rq, bio);
1327 blk_insert_flush(rq);
1328 goto run_queue;
1329 }
1330
1331 /*
1332 * A task plug currently exists. Since this is completely lockless,
1333 * utilize that to temporarily store requests until the task is
1334 * either done or scheduled away.
1335 */
1336 if (use_plug) {
1337 struct blk_plug *plug = current->plug;
1338
1339 if (plug) {
1340 blk_mq_bio_to_request(rq, bio);
1341 if (list_empty(&plug->mq_list))
1342 trace_block_plug(q);
1343 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1344 blk_flush_plug_list(plug, false);
1345 trace_block_plug(q);
1346 }
1347 list_add_tail(&rq->queuelist, &plug->mq_list);
1348 blk_mq_put_ctx(data.ctx);
1349 return;
1350 }
1351 }
1352
1353 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1354 /*
1355 * For a SYNC request, send it to the hardware immediately. For
1356 * an ASYNC request, just ensure that we run it later on. The
1357 * latter allows for merging opportunities and more efficient
1358 * dispatching.
1359 */
1360 run_queue:
1361 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1362 }
1363
1364 blk_mq_put_ctx(data.ctx);
1365 }
1366
1367 /*
1368 * Default mapping to a software queue, since we use one per CPU.
1369 */
1370 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1371 {
1372 return q->queue_hw_ctx[q->mq_map[cpu]];
1373 }
1374 EXPORT_SYMBOL(blk_mq_map_queue);
1375
1376 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1377 struct blk_mq_tags *tags, unsigned int hctx_idx)
1378 {
1379 struct page *page;
1380
1381 if (tags->rqs && set->ops->exit_request) {
1382 int i;
1383
1384 for (i = 0; i < tags->nr_tags; i++) {
1385 if (!tags->rqs[i])
1386 continue;
1387 set->ops->exit_request(set->driver_data, tags->rqs[i],
1388 hctx_idx, i);
1389 tags->rqs[i] = NULL;
1390 }
1391 }
1392
1393 while (!list_empty(&tags->page_list)) {
1394 page = list_first_entry(&tags->page_list, struct page, lru);
1395 list_del_init(&page->lru);
1396 __free_pages(page, page->private);
1397 }
1398
1399 kfree(tags->rqs);
1400
1401 blk_mq_free_tags(tags);
1402 }
1403
1404 static size_t order_to_size(unsigned int order)
1405 {
1406 return (size_t)PAGE_SIZE << order;
1407 }
1408
1409 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1410 unsigned int hctx_idx)
1411 {
1412 struct blk_mq_tags *tags;
1413 unsigned int i, j, entries_per_page, max_order = 4;
1414 size_t rq_size, left;
1415
1416 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1417 set->numa_node);
1418 if (!tags)
1419 return NULL;
1420
1421 INIT_LIST_HEAD(&tags->page_list);
1422
1423 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1424 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1425 set->numa_node);
1426 if (!tags->rqs) {
1427 blk_mq_free_tags(tags);
1428 return NULL;
1429 }
1430
1431 /*
1432 * rq_size is the size of the request plus driver payload, rounded
1433 * to the cacheline size
1434 */
1435 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1436 cache_line_size());
1437 left = rq_size * set->queue_depth;
1438
1439 for (i = 0; i < set->queue_depth; ) {
1440 int this_order = max_order;
1441 struct page *page;
1442 int to_do;
1443 void *p;
1444
1445 while (left < order_to_size(this_order - 1) && this_order)
1446 this_order--;
1447
1448 do {
1449 page = alloc_pages_node(set->numa_node,
1450 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1451 this_order);
1452 if (page)
1453 break;
1454 if (!this_order--)
1455 break;
1456 if (order_to_size(this_order) < rq_size)
1457 break;
1458 } while (1);
1459
1460 if (!page)
1461 goto fail;
1462
1463 page->private = this_order;
1464 list_add_tail(&page->lru, &tags->page_list);
1465
1466 p = page_address(page);
1467 entries_per_page = order_to_size(this_order) / rq_size;
1468 to_do = min(entries_per_page, set->queue_depth - i);
1469 left -= to_do * rq_size;
1470 for (j = 0; j < to_do; j++) {
1471 tags->rqs[i] = p;
1472 tags->rqs[i]->atomic_flags = 0;
1473 tags->rqs[i]->cmd_flags = 0;
1474 if (set->ops->init_request) {
1475 if (set->ops->init_request(set->driver_data,
1476 tags->rqs[i], hctx_idx, i,
1477 set->numa_node)) {
1478 tags->rqs[i] = NULL;
1479 goto fail;
1480 }
1481 }
1482
1483 p += rq_size;
1484 i++;
1485 }
1486 }
1487
1488 return tags;
1489
1490 fail:
1491 blk_mq_free_rq_map(set, tags, hctx_idx);
1492 return NULL;
1493 }
1494
1495 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1496 {
1497 kfree(bitmap->map);
1498 }
1499
1500 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1501 {
1502 unsigned int bpw = 8, total, num_maps, i;
1503
1504 bitmap->bits_per_word = bpw;
1505
1506 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1507 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1508 GFP_KERNEL, node);
1509 if (!bitmap->map)
1510 return -ENOMEM;
1511
1512 bitmap->map_size = num_maps;
1513
1514 total = nr_cpu_ids;
1515 for (i = 0; i < num_maps; i++) {
1516 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1517 total -= bitmap->map[i].depth;
1518 }
1519
1520 return 0;
1521 }
1522
1523 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1524 {
1525 struct request_queue *q = hctx->queue;
1526 struct blk_mq_ctx *ctx;
1527 LIST_HEAD(tmp);
1528
1529 /*
1530 * Move ctx entries to new CPU, if this one is going away.
1531 */
1532 ctx = __blk_mq_get_ctx(q, cpu);
1533
1534 spin_lock(&ctx->lock);
1535 if (!list_empty(&ctx->rq_list)) {
1536 list_splice_init(&ctx->rq_list, &tmp);
1537 blk_mq_hctx_clear_pending(hctx, ctx);
1538 }
1539 spin_unlock(&ctx->lock);
1540
1541 if (list_empty(&tmp))
1542 return NOTIFY_OK;
1543
1544 ctx = blk_mq_get_ctx(q);
1545 spin_lock(&ctx->lock);
1546
1547 while (!list_empty(&tmp)) {
1548 struct request *rq;
1549
1550 rq = list_first_entry(&tmp, struct request, queuelist);
1551 rq->mq_ctx = ctx;
1552 list_move_tail(&rq->queuelist, &ctx->rq_list);
1553 }
1554
1555 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1556 blk_mq_hctx_mark_pending(hctx, ctx);
1557
1558 spin_unlock(&ctx->lock);
1559
1560 blk_mq_run_hw_queue(hctx, true);
1561 blk_mq_put_ctx(ctx);
1562 return NOTIFY_OK;
1563 }
1564
1565 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1566 {
1567 struct request_queue *q = hctx->queue;
1568 struct blk_mq_tag_set *set = q->tag_set;
1569
1570 if (set->tags[hctx->queue_num])
1571 return NOTIFY_OK;
1572
1573 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1574 if (!set->tags[hctx->queue_num])
1575 return NOTIFY_STOP;
1576
1577 hctx->tags = set->tags[hctx->queue_num];
1578 return NOTIFY_OK;
1579 }
1580
1581 static int blk_mq_hctx_notify(void *data, unsigned long action,
1582 unsigned int cpu)
1583 {
1584 struct blk_mq_hw_ctx *hctx = data;
1585
1586 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1587 return blk_mq_hctx_cpu_offline(hctx, cpu);
1588 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1589 return blk_mq_hctx_cpu_online(hctx, cpu);
1590
1591 return NOTIFY_OK;
1592 }
1593
1594 static void blk_mq_exit_hctx(struct request_queue *q,
1595 struct blk_mq_tag_set *set,
1596 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1597 {
1598 unsigned flush_start_tag = set->queue_depth;
1599
1600 blk_mq_tag_idle(hctx);
1601
1602 if (set->ops->exit_request)
1603 set->ops->exit_request(set->driver_data,
1604 hctx->fq->flush_rq, hctx_idx,
1605 flush_start_tag + hctx_idx);
1606
1607 if (set->ops->exit_hctx)
1608 set->ops->exit_hctx(hctx, hctx_idx);
1609
1610 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1611 blk_free_flush_queue(hctx->fq);
1612 kfree(hctx->ctxs);
1613 blk_mq_free_bitmap(&hctx->ctx_map);
1614 }
1615
1616 static void blk_mq_exit_hw_queues(struct request_queue *q,
1617 struct blk_mq_tag_set *set, int nr_queue)
1618 {
1619 struct blk_mq_hw_ctx *hctx;
1620 unsigned int i;
1621
1622 queue_for_each_hw_ctx(q, hctx, i) {
1623 if (i == nr_queue)
1624 break;
1625 blk_mq_exit_hctx(q, set, hctx, i);
1626 }
1627 }
1628
1629 static void blk_mq_free_hw_queues(struct request_queue *q,
1630 struct blk_mq_tag_set *set)
1631 {
1632 struct blk_mq_hw_ctx *hctx;
1633 unsigned int i;
1634
1635 queue_for_each_hw_ctx(q, hctx, i) {
1636 free_cpumask_var(hctx->cpumask);
1637 kfree(hctx);
1638 }
1639 }
1640
1641 static int blk_mq_init_hctx(struct request_queue *q,
1642 struct blk_mq_tag_set *set,
1643 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1644 {
1645 int node;
1646 unsigned flush_start_tag = set->queue_depth;
1647
1648 node = hctx->numa_node;
1649 if (node == NUMA_NO_NODE)
1650 node = hctx->numa_node = set->numa_node;
1651
1652 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1653 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1654 spin_lock_init(&hctx->lock);
1655 INIT_LIST_HEAD(&hctx->dispatch);
1656 hctx->queue = q;
1657 hctx->queue_num = hctx_idx;
1658 hctx->flags = set->flags;
1659
1660 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1661 blk_mq_hctx_notify, hctx);
1662 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1663
1664 hctx->tags = set->tags[hctx_idx];
1665
1666 /*
1667 * Allocate space for all possible cpus to avoid allocation at
1668 * runtime
1669 */
1670 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1671 GFP_KERNEL, node);
1672 if (!hctx->ctxs)
1673 goto unregister_cpu_notifier;
1674
1675 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1676 goto free_ctxs;
1677
1678 hctx->nr_ctx = 0;
1679
1680 if (set->ops->init_hctx &&
1681 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1682 goto free_bitmap;
1683
1684 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1685 if (!hctx->fq)
1686 goto exit_hctx;
1687
1688 if (set->ops->init_request &&
1689 set->ops->init_request(set->driver_data,
1690 hctx->fq->flush_rq, hctx_idx,
1691 flush_start_tag + hctx_idx, node))
1692 goto free_fq;
1693
1694 return 0;
1695
1696 free_fq:
1697 kfree(hctx->fq);
1698 exit_hctx:
1699 if (set->ops->exit_hctx)
1700 set->ops->exit_hctx(hctx, hctx_idx);
1701 free_bitmap:
1702 blk_mq_free_bitmap(&hctx->ctx_map);
1703 free_ctxs:
1704 kfree(hctx->ctxs);
1705 unregister_cpu_notifier:
1706 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1707
1708 return -1;
1709 }
1710
1711 static int blk_mq_init_hw_queues(struct request_queue *q,
1712 struct blk_mq_tag_set *set)
1713 {
1714 struct blk_mq_hw_ctx *hctx;
1715 unsigned int i;
1716
1717 /*
1718 * Initialize hardware queues
1719 */
1720 queue_for_each_hw_ctx(q, hctx, i) {
1721 if (blk_mq_init_hctx(q, set, hctx, i))
1722 break;
1723 }
1724
1725 if (i == q->nr_hw_queues)
1726 return 0;
1727
1728 /*
1729 * Init failed
1730 */
1731 blk_mq_exit_hw_queues(q, set, i);
1732
1733 return 1;
1734 }
1735
1736 static void blk_mq_init_cpu_queues(struct request_queue *q,
1737 unsigned int nr_hw_queues)
1738 {
1739 unsigned int i;
1740
1741 for_each_possible_cpu(i) {
1742 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1743 struct blk_mq_hw_ctx *hctx;
1744
1745 memset(__ctx, 0, sizeof(*__ctx));
1746 __ctx->cpu = i;
1747 spin_lock_init(&__ctx->lock);
1748 INIT_LIST_HEAD(&__ctx->rq_list);
1749 __ctx->queue = q;
1750
1751 /* If the cpu isn't online, the cpu is mapped to first hctx */
1752 if (!cpu_online(i))
1753 continue;
1754
1755 hctx = q->mq_ops->map_queue(q, i);
1756 cpumask_set_cpu(i, hctx->cpumask);
1757 hctx->nr_ctx++;
1758
1759 /*
1760 * Set local node, IFF we have more than one hw queue. If
1761 * not, we remain on the home node of the device
1762 */
1763 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1764 hctx->numa_node = cpu_to_node(i);
1765 }
1766 }
1767
1768 static void blk_mq_map_swqueue(struct request_queue *q)
1769 {
1770 unsigned int i;
1771 struct blk_mq_hw_ctx *hctx;
1772 struct blk_mq_ctx *ctx;
1773
1774 queue_for_each_hw_ctx(q, hctx, i) {
1775 cpumask_clear(hctx->cpumask);
1776 hctx->nr_ctx = 0;
1777 }
1778
1779 /*
1780 * Map software to hardware queues
1781 */
1782 queue_for_each_ctx(q, ctx, i) {
1783 /* If the cpu isn't online, the cpu is mapped to first hctx */
1784 if (!cpu_online(i))
1785 continue;
1786
1787 hctx = q->mq_ops->map_queue(q, i);
1788 cpumask_set_cpu(i, hctx->cpumask);
1789 ctx->index_hw = hctx->nr_ctx;
1790 hctx->ctxs[hctx->nr_ctx++] = ctx;
1791 }
1792
1793 queue_for_each_hw_ctx(q, hctx, i) {
1794 /*
1795 * If no software queues are mapped to this hardware queue,
1796 * disable it and free the request entries.
1797 */
1798 if (!hctx->nr_ctx) {
1799 struct blk_mq_tag_set *set = q->tag_set;
1800
1801 if (set->tags[i]) {
1802 blk_mq_free_rq_map(set, set->tags[i], i);
1803 set->tags[i] = NULL;
1804 hctx->tags = NULL;
1805 }
1806 continue;
1807 }
1808
1809 /*
1810 * Initialize batch roundrobin counts
1811 */
1812 hctx->next_cpu = cpumask_first(hctx->cpumask);
1813 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1814 }
1815 }
1816
1817 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1818 {
1819 struct blk_mq_hw_ctx *hctx;
1820 struct request_queue *q;
1821 bool shared;
1822 int i;
1823
1824 if (set->tag_list.next == set->tag_list.prev)
1825 shared = false;
1826 else
1827 shared = true;
1828
1829 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1830 blk_mq_freeze_queue(q);
1831
1832 queue_for_each_hw_ctx(q, hctx, i) {
1833 if (shared)
1834 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1835 else
1836 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1837 }
1838 blk_mq_unfreeze_queue(q);
1839 }
1840 }
1841
1842 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1843 {
1844 struct blk_mq_tag_set *set = q->tag_set;
1845
1846 mutex_lock(&set->tag_list_lock);
1847 list_del_init(&q->tag_set_list);
1848 blk_mq_update_tag_set_depth(set);
1849 mutex_unlock(&set->tag_list_lock);
1850 }
1851
1852 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1853 struct request_queue *q)
1854 {
1855 q->tag_set = set;
1856
1857 mutex_lock(&set->tag_list_lock);
1858 list_add_tail(&q->tag_set_list, &set->tag_list);
1859 blk_mq_update_tag_set_depth(set);
1860 mutex_unlock(&set->tag_list_lock);
1861 }
1862
1863 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1864 {
1865 struct blk_mq_hw_ctx **hctxs;
1866 struct blk_mq_ctx __percpu *ctx;
1867 struct request_queue *q;
1868 unsigned int *map;
1869 int i;
1870
1871 ctx = alloc_percpu(struct blk_mq_ctx);
1872 if (!ctx)
1873 return ERR_PTR(-ENOMEM);
1874
1875 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1876 set->numa_node);
1877
1878 if (!hctxs)
1879 goto err_percpu;
1880
1881 map = blk_mq_make_queue_map(set);
1882 if (!map)
1883 goto err_map;
1884
1885 for (i = 0; i < set->nr_hw_queues; i++) {
1886 int node = blk_mq_hw_queue_to_node(map, i);
1887
1888 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1889 GFP_KERNEL, node);
1890 if (!hctxs[i])
1891 goto err_hctxs;
1892
1893 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1894 node))
1895 goto err_hctxs;
1896
1897 atomic_set(&hctxs[i]->nr_active, 0);
1898 hctxs[i]->numa_node = node;
1899 hctxs[i]->queue_num = i;
1900 }
1901
1902 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1903 if (!q)
1904 goto err_hctxs;
1905
1906 /*
1907 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1908 * See blk_register_queue() for details.
1909 */
1910 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
1911 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1912 goto err_map;
1913
1914 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1915 blk_queue_rq_timeout(q, 30000);
1916
1917 q->nr_queues = nr_cpu_ids;
1918 q->nr_hw_queues = set->nr_hw_queues;
1919 q->mq_map = map;
1920
1921 q->queue_ctx = ctx;
1922 q->queue_hw_ctx = hctxs;
1923
1924 q->mq_ops = set->ops;
1925 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1926
1927 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1928 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1929
1930 q->sg_reserved_size = INT_MAX;
1931
1932 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1933 INIT_LIST_HEAD(&q->requeue_list);
1934 spin_lock_init(&q->requeue_lock);
1935
1936 if (q->nr_hw_queues > 1)
1937 blk_queue_make_request(q, blk_mq_make_request);
1938 else
1939 blk_queue_make_request(q, blk_sq_make_request);
1940
1941 if (set->timeout)
1942 blk_queue_rq_timeout(q, set->timeout);
1943
1944 /*
1945 * Do this after blk_queue_make_request() overrides it...
1946 */
1947 q->nr_requests = set->queue_depth;
1948
1949 if (set->ops->complete)
1950 blk_queue_softirq_done(q, set->ops->complete);
1951
1952 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1953
1954 if (blk_mq_init_hw_queues(q, set))
1955 goto err_hw;
1956
1957 mutex_lock(&all_q_mutex);
1958 list_add_tail(&q->all_q_node, &all_q_list);
1959 mutex_unlock(&all_q_mutex);
1960
1961 blk_mq_add_queue_tag_set(set, q);
1962
1963 blk_mq_map_swqueue(q);
1964
1965 return q;
1966
1967 err_hw:
1968 blk_cleanup_queue(q);
1969 err_hctxs:
1970 kfree(map);
1971 for (i = 0; i < set->nr_hw_queues; i++) {
1972 if (!hctxs[i])
1973 break;
1974 free_cpumask_var(hctxs[i]->cpumask);
1975 kfree(hctxs[i]);
1976 }
1977 err_map:
1978 kfree(hctxs);
1979 err_percpu:
1980 free_percpu(ctx);
1981 return ERR_PTR(-ENOMEM);
1982 }
1983 EXPORT_SYMBOL(blk_mq_init_queue);
1984
1985 void blk_mq_free_queue(struct request_queue *q)
1986 {
1987 struct blk_mq_tag_set *set = q->tag_set;
1988
1989 blk_mq_del_queue_tag_set(q);
1990
1991 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1992 blk_mq_free_hw_queues(q, set);
1993
1994 percpu_ref_exit(&q->mq_usage_counter);
1995
1996 free_percpu(q->queue_ctx);
1997 kfree(q->queue_hw_ctx);
1998 kfree(q->mq_map);
1999
2000 q->queue_ctx = NULL;
2001 q->queue_hw_ctx = NULL;
2002 q->mq_map = NULL;
2003
2004 mutex_lock(&all_q_mutex);
2005 list_del_init(&q->all_q_node);
2006 mutex_unlock(&all_q_mutex);
2007 }
2008
2009 /* Basically redo blk_mq_init_queue with queue frozen */
2010 static void blk_mq_queue_reinit(struct request_queue *q)
2011 {
2012 WARN_ON_ONCE(!q->mq_freeze_depth);
2013
2014 blk_mq_sysfs_unregister(q);
2015
2016 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
2017
2018 /*
2019 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2020 * we should change hctx numa_node according to new topology (this
2021 * involves free and re-allocate memory, worthy doing?)
2022 */
2023
2024 blk_mq_map_swqueue(q);
2025
2026 blk_mq_sysfs_register(q);
2027 }
2028
2029 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2030 unsigned long action, void *hcpu)
2031 {
2032 struct request_queue *q;
2033
2034 /*
2035 * Before new mappings are established, hotadded cpu might already
2036 * start handling requests. This doesn't break anything as we map
2037 * offline CPUs to first hardware queue. We will re-init the queue
2038 * below to get optimal settings.
2039 */
2040 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
2041 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
2042 return NOTIFY_OK;
2043
2044 mutex_lock(&all_q_mutex);
2045
2046 /*
2047 * We need to freeze and reinit all existing queues. Freezing
2048 * involves synchronous wait for an RCU grace period and doing it
2049 * one by one may take a long time. Start freezing all queues in
2050 * one swoop and then wait for the completions so that freezing can
2051 * take place in parallel.
2052 */
2053 list_for_each_entry(q, &all_q_list, all_q_node)
2054 blk_mq_freeze_queue_start(q);
2055 list_for_each_entry(q, &all_q_list, all_q_node)
2056 blk_mq_freeze_queue_wait(q);
2057
2058 list_for_each_entry(q, &all_q_list, all_q_node)
2059 blk_mq_queue_reinit(q);
2060
2061 list_for_each_entry(q, &all_q_list, all_q_node)
2062 blk_mq_unfreeze_queue(q);
2063
2064 mutex_unlock(&all_q_mutex);
2065 return NOTIFY_OK;
2066 }
2067
2068 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2069 {
2070 int i;
2071
2072 for (i = 0; i < set->nr_hw_queues; i++) {
2073 set->tags[i] = blk_mq_init_rq_map(set, i);
2074 if (!set->tags[i])
2075 goto out_unwind;
2076 }
2077
2078 return 0;
2079
2080 out_unwind:
2081 while (--i >= 0)
2082 blk_mq_free_rq_map(set, set->tags[i], i);
2083
2084 return -ENOMEM;
2085 }
2086
2087 /*
2088 * Allocate the request maps associated with this tag_set. Note that this
2089 * may reduce the depth asked for, if memory is tight. set->queue_depth
2090 * will be updated to reflect the allocated depth.
2091 */
2092 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2093 {
2094 unsigned int depth;
2095 int err;
2096
2097 depth = set->queue_depth;
2098 do {
2099 err = __blk_mq_alloc_rq_maps(set);
2100 if (!err)
2101 break;
2102
2103 set->queue_depth >>= 1;
2104 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2105 err = -ENOMEM;
2106 break;
2107 }
2108 } while (set->queue_depth);
2109
2110 if (!set->queue_depth || err) {
2111 pr_err("blk-mq: failed to allocate request map\n");
2112 return -ENOMEM;
2113 }
2114
2115 if (depth != set->queue_depth)
2116 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2117 depth, set->queue_depth);
2118
2119 return 0;
2120 }
2121
2122 /*
2123 * Alloc a tag set to be associated with one or more request queues.
2124 * May fail with EINVAL for various error conditions. May adjust the
2125 * requested depth down, if if it too large. In that case, the set
2126 * value will be stored in set->queue_depth.
2127 */
2128 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2129 {
2130 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2131
2132 if (!set->nr_hw_queues)
2133 return -EINVAL;
2134 if (!set->queue_depth)
2135 return -EINVAL;
2136 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2137 return -EINVAL;
2138
2139 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
2140 return -EINVAL;
2141
2142 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2143 pr_info("blk-mq: reduced tag depth to %u\n",
2144 BLK_MQ_MAX_DEPTH);
2145 set->queue_depth = BLK_MQ_MAX_DEPTH;
2146 }
2147
2148 /*
2149 * If a crashdump is active, then we are potentially in a very
2150 * memory constrained environment. Limit us to 1 queue and
2151 * 64 tags to prevent using too much memory.
2152 */
2153 if (is_kdump_kernel()) {
2154 set->nr_hw_queues = 1;
2155 set->queue_depth = min(64U, set->queue_depth);
2156 }
2157
2158 set->tags = kmalloc_node(set->nr_hw_queues *
2159 sizeof(struct blk_mq_tags *),
2160 GFP_KERNEL, set->numa_node);
2161 if (!set->tags)
2162 return -ENOMEM;
2163
2164 if (blk_mq_alloc_rq_maps(set))
2165 goto enomem;
2166
2167 mutex_init(&set->tag_list_lock);
2168 INIT_LIST_HEAD(&set->tag_list);
2169
2170 return 0;
2171 enomem:
2172 kfree(set->tags);
2173 set->tags = NULL;
2174 return -ENOMEM;
2175 }
2176 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2177
2178 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2179 {
2180 int i;
2181
2182 for (i = 0; i < set->nr_hw_queues; i++) {
2183 if (set->tags[i])
2184 blk_mq_free_rq_map(set, set->tags[i], i);
2185 }
2186
2187 kfree(set->tags);
2188 set->tags = NULL;
2189 }
2190 EXPORT_SYMBOL(blk_mq_free_tag_set);
2191
2192 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2193 {
2194 struct blk_mq_tag_set *set = q->tag_set;
2195 struct blk_mq_hw_ctx *hctx;
2196 int i, ret;
2197
2198 if (!set || nr > set->queue_depth)
2199 return -EINVAL;
2200
2201 ret = 0;
2202 queue_for_each_hw_ctx(q, hctx, i) {
2203 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2204 if (ret)
2205 break;
2206 }
2207
2208 if (!ret)
2209 q->nr_requests = nr;
2210
2211 return ret;
2212 }
2213
2214 void blk_mq_disable_hotplug(void)
2215 {
2216 mutex_lock(&all_q_mutex);
2217 }
2218
2219 void blk_mq_enable_hotplug(void)
2220 {
2221 mutex_unlock(&all_q_mutex);
2222 }
2223
2224 static int __init blk_mq_init(void)
2225 {
2226 blk_mq_cpu_init();
2227
2228 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2229
2230 return 0;
2231 }
2232 subsys_initcall(blk_mq_init);
This page took 0.072163 seconds and 6 git commands to generate.