blk-mq: correct a few wrong/bad comments
[deliverable/linux.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23
24 #include <trace/events/block.h>
25
26 #include <linux/blk-mq.h>
27 #include "blk.h"
28 #include "blk-mq.h"
29 #include "blk-mq-tag.h"
30
31 static DEFINE_MUTEX(all_q_mutex);
32 static LIST_HEAD(all_q_list);
33
34 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
35
36 /*
37 * Check if any of the ctx's have pending work in this hardware queue
38 */
39 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
40 {
41 unsigned int i;
42
43 for (i = 0; i < hctx->ctx_map.map_size; i++)
44 if (hctx->ctx_map.map[i].word)
45 return true;
46
47 return false;
48 }
49
50 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
51 struct blk_mq_ctx *ctx)
52 {
53 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
54 }
55
56 #define CTX_TO_BIT(hctx, ctx) \
57 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
58
59 /*
60 * Mark this ctx as having pending work in this hardware queue
61 */
62 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
63 struct blk_mq_ctx *ctx)
64 {
65 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
66
67 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
68 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
69 }
70
71 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
72 struct blk_mq_ctx *ctx)
73 {
74 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
75
76 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
77 }
78
79 static int blk_mq_queue_enter(struct request_queue *q)
80 {
81 while (true) {
82 int ret;
83
84 if (percpu_ref_tryget_live(&q->mq_usage_counter))
85 return 0;
86
87 ret = wait_event_interruptible(q->mq_freeze_wq,
88 !q->mq_freeze_depth || blk_queue_dying(q));
89 if (blk_queue_dying(q))
90 return -ENODEV;
91 if (ret)
92 return ret;
93 }
94 }
95
96 static void blk_mq_queue_exit(struct request_queue *q)
97 {
98 percpu_ref_put(&q->mq_usage_counter);
99 }
100
101 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
102 {
103 struct request_queue *q =
104 container_of(ref, struct request_queue, mq_usage_counter);
105
106 wake_up_all(&q->mq_freeze_wq);
107 }
108
109 /*
110 * Guarantee no request is in use, so we can change any data structure of
111 * the queue afterward.
112 */
113 void blk_mq_freeze_queue(struct request_queue *q)
114 {
115 spin_lock_irq(q->queue_lock);
116 q->mq_freeze_depth++;
117 spin_unlock_irq(q->queue_lock);
118
119 percpu_ref_kill(&q->mq_usage_counter);
120 blk_mq_run_queues(q, false);
121 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
122 }
123
124 static void blk_mq_unfreeze_queue(struct request_queue *q)
125 {
126 bool wake = false;
127
128 spin_lock_irq(q->queue_lock);
129 wake = !--q->mq_freeze_depth;
130 WARN_ON_ONCE(q->mq_freeze_depth < 0);
131 spin_unlock_irq(q->queue_lock);
132 if (wake) {
133 percpu_ref_reinit(&q->mq_usage_counter);
134 wake_up_all(&q->mq_freeze_wq);
135 }
136 }
137
138 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
139 {
140 return blk_mq_has_free_tags(hctx->tags);
141 }
142 EXPORT_SYMBOL(blk_mq_can_queue);
143
144 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
145 struct request *rq, unsigned int rw_flags)
146 {
147 if (blk_queue_io_stat(q))
148 rw_flags |= REQ_IO_STAT;
149
150 INIT_LIST_HEAD(&rq->queuelist);
151 /* csd/requeue_work/fifo_time is initialized before use */
152 rq->q = q;
153 rq->mq_ctx = ctx;
154 rq->cmd_flags |= rw_flags;
155 /* do not touch atomic flags, it needs atomic ops against the timer */
156 rq->cpu = -1;
157 INIT_HLIST_NODE(&rq->hash);
158 RB_CLEAR_NODE(&rq->rb_node);
159 rq->rq_disk = NULL;
160 rq->part = NULL;
161 rq->start_time = jiffies;
162 #ifdef CONFIG_BLK_CGROUP
163 rq->rl = NULL;
164 set_start_time_ns(rq);
165 rq->io_start_time_ns = 0;
166 #endif
167 rq->nr_phys_segments = 0;
168 #if defined(CONFIG_BLK_DEV_INTEGRITY)
169 rq->nr_integrity_segments = 0;
170 #endif
171 rq->special = NULL;
172 /* tag was already set */
173 rq->errors = 0;
174
175 rq->extra_len = 0;
176 rq->sense_len = 0;
177 rq->resid_len = 0;
178 rq->sense = NULL;
179
180 INIT_LIST_HEAD(&rq->timeout_list);
181 rq->timeout = 0;
182
183 rq->end_io = NULL;
184 rq->end_io_data = NULL;
185 rq->next_rq = NULL;
186
187 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
188 }
189
190 static struct request *
191 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
192 {
193 struct request *rq;
194 unsigned int tag;
195
196 tag = blk_mq_get_tag(data);
197 if (tag != BLK_MQ_TAG_FAIL) {
198 rq = data->hctx->tags->rqs[tag];
199
200 rq->cmd_flags = 0;
201 if (blk_mq_tag_busy(data->hctx)) {
202 rq->cmd_flags = REQ_MQ_INFLIGHT;
203 atomic_inc(&data->hctx->nr_active);
204 }
205
206 rq->tag = tag;
207 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
208 return rq;
209 }
210
211 return NULL;
212 }
213
214 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
215 bool reserved)
216 {
217 struct blk_mq_ctx *ctx;
218 struct blk_mq_hw_ctx *hctx;
219 struct request *rq;
220 struct blk_mq_alloc_data alloc_data;
221
222 if (blk_mq_queue_enter(q))
223 return NULL;
224
225 ctx = blk_mq_get_ctx(q);
226 hctx = q->mq_ops->map_queue(q, ctx->cpu);
227 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
228 reserved, ctx, hctx);
229
230 rq = __blk_mq_alloc_request(&alloc_data, rw);
231 if (!rq && (gfp & __GFP_WAIT)) {
232 __blk_mq_run_hw_queue(hctx);
233 blk_mq_put_ctx(ctx);
234
235 ctx = blk_mq_get_ctx(q);
236 hctx = q->mq_ops->map_queue(q, ctx->cpu);
237 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
238 hctx);
239 rq = __blk_mq_alloc_request(&alloc_data, rw);
240 ctx = alloc_data.ctx;
241 }
242 blk_mq_put_ctx(ctx);
243 return rq;
244 }
245 EXPORT_SYMBOL(blk_mq_alloc_request);
246
247 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
248 struct blk_mq_ctx *ctx, struct request *rq)
249 {
250 const int tag = rq->tag;
251 struct request_queue *q = rq->q;
252
253 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
254 atomic_dec(&hctx->nr_active);
255
256 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
257 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
258 blk_mq_queue_exit(q);
259 }
260
261 void blk_mq_free_request(struct request *rq)
262 {
263 struct blk_mq_ctx *ctx = rq->mq_ctx;
264 struct blk_mq_hw_ctx *hctx;
265 struct request_queue *q = rq->q;
266
267 ctx->rq_completed[rq_is_sync(rq)]++;
268
269 hctx = q->mq_ops->map_queue(q, ctx->cpu);
270 __blk_mq_free_request(hctx, ctx, rq);
271 }
272
273 /*
274 * Clone all relevant state from a request that has been put on hold in
275 * the flush state machine into the preallocated flush request that hangs
276 * off the request queue.
277 *
278 * For a driver the flush request should be invisible, that's why we are
279 * impersonating the original request here.
280 */
281 void blk_mq_clone_flush_request(struct request *flush_rq,
282 struct request *orig_rq)
283 {
284 struct blk_mq_hw_ctx *hctx =
285 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
286
287 flush_rq->mq_ctx = orig_rq->mq_ctx;
288 flush_rq->tag = orig_rq->tag;
289 memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
290 hctx->cmd_size);
291 }
292
293 inline void __blk_mq_end_io(struct request *rq, int error)
294 {
295 blk_account_io_done(rq);
296
297 if (rq->end_io) {
298 rq->end_io(rq, error);
299 } else {
300 if (unlikely(blk_bidi_rq(rq)))
301 blk_mq_free_request(rq->next_rq);
302 blk_mq_free_request(rq);
303 }
304 }
305 EXPORT_SYMBOL(__blk_mq_end_io);
306
307 void blk_mq_end_io(struct request *rq, int error)
308 {
309 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
310 BUG();
311 __blk_mq_end_io(rq, error);
312 }
313 EXPORT_SYMBOL(blk_mq_end_io);
314
315 static void __blk_mq_complete_request_remote(void *data)
316 {
317 struct request *rq = data;
318
319 rq->q->softirq_done_fn(rq);
320 }
321
322 static void blk_mq_ipi_complete_request(struct request *rq)
323 {
324 struct blk_mq_ctx *ctx = rq->mq_ctx;
325 bool shared = false;
326 int cpu;
327
328 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
329 rq->q->softirq_done_fn(rq);
330 return;
331 }
332
333 cpu = get_cpu();
334 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
335 shared = cpus_share_cache(cpu, ctx->cpu);
336
337 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
338 rq->csd.func = __blk_mq_complete_request_remote;
339 rq->csd.info = rq;
340 rq->csd.flags = 0;
341 smp_call_function_single_async(ctx->cpu, &rq->csd);
342 } else {
343 rq->q->softirq_done_fn(rq);
344 }
345 put_cpu();
346 }
347
348 void __blk_mq_complete_request(struct request *rq)
349 {
350 struct request_queue *q = rq->q;
351
352 if (!q->softirq_done_fn)
353 blk_mq_end_io(rq, rq->errors);
354 else
355 blk_mq_ipi_complete_request(rq);
356 }
357
358 /**
359 * blk_mq_complete_request - end I/O on a request
360 * @rq: the request being processed
361 *
362 * Description:
363 * Ends all I/O on a request. It does not handle partial completions.
364 * The actual completion happens out-of-order, through a IPI handler.
365 **/
366 void blk_mq_complete_request(struct request *rq)
367 {
368 struct request_queue *q = rq->q;
369
370 if (unlikely(blk_should_fake_timeout(q)))
371 return;
372 if (!blk_mark_rq_complete(rq))
373 __blk_mq_complete_request(rq);
374 }
375 EXPORT_SYMBOL(blk_mq_complete_request);
376
377 static void blk_mq_start_request(struct request *rq, bool last)
378 {
379 struct request_queue *q = rq->q;
380
381 trace_block_rq_issue(q, rq);
382
383 rq->resid_len = blk_rq_bytes(rq);
384 if (unlikely(blk_bidi_rq(rq)))
385 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
386
387 blk_add_timer(rq);
388
389 /*
390 * Mark us as started and clear complete. Complete might have been
391 * set if requeue raced with timeout, which then marked it as
392 * complete. So be sure to clear complete again when we start
393 * the request, otherwise we'll ignore the completion event.
394 */
395 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
396 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
397 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
398 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
399
400 if (q->dma_drain_size && blk_rq_bytes(rq)) {
401 /*
402 * Make sure space for the drain appears. We know we can do
403 * this because max_hw_segments has been adjusted to be one
404 * fewer than the device can handle.
405 */
406 rq->nr_phys_segments++;
407 }
408
409 /*
410 * Flag the last request in the series so that drivers know when IO
411 * should be kicked off, if they don't do it on a per-request basis.
412 *
413 * Note: the flag isn't the only condition drivers should do kick off.
414 * If drive is busy, the last request might not have the bit set.
415 */
416 if (last)
417 rq->cmd_flags |= REQ_END;
418 }
419
420 static void __blk_mq_requeue_request(struct request *rq)
421 {
422 struct request_queue *q = rq->q;
423
424 trace_block_rq_requeue(q, rq);
425 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
426
427 rq->cmd_flags &= ~REQ_END;
428
429 if (q->dma_drain_size && blk_rq_bytes(rq))
430 rq->nr_phys_segments--;
431 }
432
433 void blk_mq_requeue_request(struct request *rq)
434 {
435 __blk_mq_requeue_request(rq);
436 blk_clear_rq_complete(rq);
437
438 BUG_ON(blk_queued_rq(rq));
439 blk_mq_add_to_requeue_list(rq, true);
440 }
441 EXPORT_SYMBOL(blk_mq_requeue_request);
442
443 static void blk_mq_requeue_work(struct work_struct *work)
444 {
445 struct request_queue *q =
446 container_of(work, struct request_queue, requeue_work);
447 LIST_HEAD(rq_list);
448 struct request *rq, *next;
449 unsigned long flags;
450
451 spin_lock_irqsave(&q->requeue_lock, flags);
452 list_splice_init(&q->requeue_list, &rq_list);
453 spin_unlock_irqrestore(&q->requeue_lock, flags);
454
455 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
456 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
457 continue;
458
459 rq->cmd_flags &= ~REQ_SOFTBARRIER;
460 list_del_init(&rq->queuelist);
461 blk_mq_insert_request(rq, true, false, false);
462 }
463
464 while (!list_empty(&rq_list)) {
465 rq = list_entry(rq_list.next, struct request, queuelist);
466 list_del_init(&rq->queuelist);
467 blk_mq_insert_request(rq, false, false, false);
468 }
469
470 blk_mq_run_queues(q, false);
471 }
472
473 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
474 {
475 struct request_queue *q = rq->q;
476 unsigned long flags;
477
478 /*
479 * We abuse this flag that is otherwise used by the I/O scheduler to
480 * request head insertation from the workqueue.
481 */
482 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
483
484 spin_lock_irqsave(&q->requeue_lock, flags);
485 if (at_head) {
486 rq->cmd_flags |= REQ_SOFTBARRIER;
487 list_add(&rq->queuelist, &q->requeue_list);
488 } else {
489 list_add_tail(&rq->queuelist, &q->requeue_list);
490 }
491 spin_unlock_irqrestore(&q->requeue_lock, flags);
492 }
493 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
494
495 void blk_mq_kick_requeue_list(struct request_queue *q)
496 {
497 kblockd_schedule_work(&q->requeue_work);
498 }
499 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
500
501 static inline bool is_flush_request(struct request *rq, unsigned int tag)
502 {
503 return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
504 rq->q->flush_rq->tag == tag);
505 }
506
507 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
508 {
509 struct request *rq = tags->rqs[tag];
510
511 if (!is_flush_request(rq, tag))
512 return rq;
513
514 return rq->q->flush_rq;
515 }
516 EXPORT_SYMBOL(blk_mq_tag_to_rq);
517
518 struct blk_mq_timeout_data {
519 struct blk_mq_hw_ctx *hctx;
520 unsigned long *next;
521 unsigned int *next_set;
522 };
523
524 static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
525 {
526 struct blk_mq_timeout_data *data = __data;
527 struct blk_mq_hw_ctx *hctx = data->hctx;
528 unsigned int tag;
529
530 /* It may not be in flight yet (this is where
531 * the REQ_ATOMIC_STARTED flag comes in). The requests are
532 * statically allocated, so we know it's always safe to access the
533 * memory associated with a bit offset into ->rqs[].
534 */
535 tag = 0;
536 do {
537 struct request *rq;
538
539 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
540 if (tag >= hctx->tags->nr_tags)
541 break;
542
543 rq = blk_mq_tag_to_rq(hctx->tags, tag++);
544 if (rq->q != hctx->queue)
545 continue;
546 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
547 continue;
548
549 blk_rq_check_expired(rq, data->next, data->next_set);
550 } while (1);
551 }
552
553 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
554 unsigned long *next,
555 unsigned int *next_set)
556 {
557 struct blk_mq_timeout_data data = {
558 .hctx = hctx,
559 .next = next,
560 .next_set = next_set,
561 };
562
563 /*
564 * Ask the tagging code to iterate busy requests, so we can
565 * check them for timeout.
566 */
567 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
568 }
569
570 static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
571 {
572 struct request_queue *q = rq->q;
573
574 /*
575 * We know that complete is set at this point. If STARTED isn't set
576 * anymore, then the request isn't active and the "timeout" should
577 * just be ignored. This can happen due to the bitflag ordering.
578 * Timeout first checks if STARTED is set, and if it is, assumes
579 * the request is active. But if we race with completion, then
580 * we both flags will get cleared. So check here again, and ignore
581 * a timeout event with a request that isn't active.
582 */
583 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
584 return BLK_EH_NOT_HANDLED;
585
586 if (!q->mq_ops->timeout)
587 return BLK_EH_RESET_TIMER;
588
589 return q->mq_ops->timeout(rq);
590 }
591
592 static void blk_mq_rq_timer(unsigned long data)
593 {
594 struct request_queue *q = (struct request_queue *) data;
595 struct blk_mq_hw_ctx *hctx;
596 unsigned long next = 0;
597 int i, next_set = 0;
598
599 queue_for_each_hw_ctx(q, hctx, i) {
600 /*
601 * If not software queues are currently mapped to this
602 * hardware queue, there's nothing to check
603 */
604 if (!hctx->nr_ctx || !hctx->tags)
605 continue;
606
607 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
608 }
609
610 if (next_set) {
611 next = blk_rq_timeout(round_jiffies_up(next));
612 mod_timer(&q->timeout, next);
613 } else {
614 queue_for_each_hw_ctx(q, hctx, i)
615 blk_mq_tag_idle(hctx);
616 }
617 }
618
619 /*
620 * Reverse check our software queue for entries that we could potentially
621 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
622 * too much time checking for merges.
623 */
624 static bool blk_mq_attempt_merge(struct request_queue *q,
625 struct blk_mq_ctx *ctx, struct bio *bio)
626 {
627 struct request *rq;
628 int checked = 8;
629
630 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
631 int el_ret;
632
633 if (!checked--)
634 break;
635
636 if (!blk_rq_merge_ok(rq, bio))
637 continue;
638
639 el_ret = blk_try_merge(rq, bio);
640 if (el_ret == ELEVATOR_BACK_MERGE) {
641 if (bio_attempt_back_merge(q, rq, bio)) {
642 ctx->rq_merged++;
643 return true;
644 }
645 break;
646 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
647 if (bio_attempt_front_merge(q, rq, bio)) {
648 ctx->rq_merged++;
649 return true;
650 }
651 break;
652 }
653 }
654
655 return false;
656 }
657
658 /*
659 * Process software queues that have been marked busy, splicing them
660 * to the for-dispatch
661 */
662 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
663 {
664 struct blk_mq_ctx *ctx;
665 int i;
666
667 for (i = 0; i < hctx->ctx_map.map_size; i++) {
668 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
669 unsigned int off, bit;
670
671 if (!bm->word)
672 continue;
673
674 bit = 0;
675 off = i * hctx->ctx_map.bits_per_word;
676 do {
677 bit = find_next_bit(&bm->word, bm->depth, bit);
678 if (bit >= bm->depth)
679 break;
680
681 ctx = hctx->ctxs[bit + off];
682 clear_bit(bit, &bm->word);
683 spin_lock(&ctx->lock);
684 list_splice_tail_init(&ctx->rq_list, list);
685 spin_unlock(&ctx->lock);
686
687 bit++;
688 } while (1);
689 }
690 }
691
692 /*
693 * Run this hardware queue, pulling any software queues mapped to it in.
694 * Note that this function currently has various problems around ordering
695 * of IO. In particular, we'd like FIFO behaviour on handling existing
696 * items on the hctx->dispatch list. Ignore that for now.
697 */
698 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
699 {
700 struct request_queue *q = hctx->queue;
701 struct request *rq;
702 LIST_HEAD(rq_list);
703 int queued;
704
705 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
706
707 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
708 return;
709
710 hctx->run++;
711
712 /*
713 * Touch any software queue that has pending entries.
714 */
715 flush_busy_ctxs(hctx, &rq_list);
716
717 /*
718 * If we have previous entries on our dispatch list, grab them
719 * and stuff them at the front for more fair dispatch.
720 */
721 if (!list_empty_careful(&hctx->dispatch)) {
722 spin_lock(&hctx->lock);
723 if (!list_empty(&hctx->dispatch))
724 list_splice_init(&hctx->dispatch, &rq_list);
725 spin_unlock(&hctx->lock);
726 }
727
728 /*
729 * Now process all the entries, sending them to the driver.
730 */
731 queued = 0;
732 while (!list_empty(&rq_list)) {
733 int ret;
734
735 rq = list_first_entry(&rq_list, struct request, queuelist);
736 list_del_init(&rq->queuelist);
737
738 blk_mq_start_request(rq, list_empty(&rq_list));
739
740 ret = q->mq_ops->queue_rq(hctx, rq);
741 switch (ret) {
742 case BLK_MQ_RQ_QUEUE_OK:
743 queued++;
744 continue;
745 case BLK_MQ_RQ_QUEUE_BUSY:
746 list_add(&rq->queuelist, &rq_list);
747 __blk_mq_requeue_request(rq);
748 break;
749 default:
750 pr_err("blk-mq: bad return on queue: %d\n", ret);
751 case BLK_MQ_RQ_QUEUE_ERROR:
752 rq->errors = -EIO;
753 blk_mq_end_io(rq, rq->errors);
754 break;
755 }
756
757 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
758 break;
759 }
760
761 if (!queued)
762 hctx->dispatched[0]++;
763 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
764 hctx->dispatched[ilog2(queued) + 1]++;
765
766 /*
767 * Any items that need requeuing? Stuff them into hctx->dispatch,
768 * that is where we will continue on next queue run.
769 */
770 if (!list_empty(&rq_list)) {
771 spin_lock(&hctx->lock);
772 list_splice(&rq_list, &hctx->dispatch);
773 spin_unlock(&hctx->lock);
774 }
775 }
776
777 /*
778 * It'd be great if the workqueue API had a way to pass
779 * in a mask and had some smarts for more clever placement.
780 * For now we just round-robin here, switching for every
781 * BLK_MQ_CPU_WORK_BATCH queued items.
782 */
783 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
784 {
785 int cpu = hctx->next_cpu;
786
787 if (--hctx->next_cpu_batch <= 0) {
788 int next_cpu;
789
790 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
791 if (next_cpu >= nr_cpu_ids)
792 next_cpu = cpumask_first(hctx->cpumask);
793
794 hctx->next_cpu = next_cpu;
795 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
796 }
797
798 return cpu;
799 }
800
801 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
802 {
803 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
804 return;
805
806 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
807 __blk_mq_run_hw_queue(hctx);
808 else if (hctx->queue->nr_hw_queues == 1)
809 kblockd_schedule_delayed_work(&hctx->run_work, 0);
810 else {
811 unsigned int cpu;
812
813 cpu = blk_mq_hctx_next_cpu(hctx);
814 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
815 }
816 }
817
818 void blk_mq_run_queues(struct request_queue *q, bool async)
819 {
820 struct blk_mq_hw_ctx *hctx;
821 int i;
822
823 queue_for_each_hw_ctx(q, hctx, i) {
824 if ((!blk_mq_hctx_has_pending(hctx) &&
825 list_empty_careful(&hctx->dispatch)) ||
826 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
827 continue;
828
829 preempt_disable();
830 blk_mq_run_hw_queue(hctx, async);
831 preempt_enable();
832 }
833 }
834 EXPORT_SYMBOL(blk_mq_run_queues);
835
836 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
837 {
838 cancel_delayed_work(&hctx->run_work);
839 cancel_delayed_work(&hctx->delay_work);
840 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
841 }
842 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
843
844 void blk_mq_stop_hw_queues(struct request_queue *q)
845 {
846 struct blk_mq_hw_ctx *hctx;
847 int i;
848
849 queue_for_each_hw_ctx(q, hctx, i)
850 blk_mq_stop_hw_queue(hctx);
851 }
852 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
853
854 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
855 {
856 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
857
858 preempt_disable();
859 blk_mq_run_hw_queue(hctx, false);
860 preempt_enable();
861 }
862 EXPORT_SYMBOL(blk_mq_start_hw_queue);
863
864 void blk_mq_start_hw_queues(struct request_queue *q)
865 {
866 struct blk_mq_hw_ctx *hctx;
867 int i;
868
869 queue_for_each_hw_ctx(q, hctx, i)
870 blk_mq_start_hw_queue(hctx);
871 }
872 EXPORT_SYMBOL(blk_mq_start_hw_queues);
873
874
875 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
876 {
877 struct blk_mq_hw_ctx *hctx;
878 int i;
879
880 queue_for_each_hw_ctx(q, hctx, i) {
881 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
882 continue;
883
884 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
885 preempt_disable();
886 blk_mq_run_hw_queue(hctx, async);
887 preempt_enable();
888 }
889 }
890 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
891
892 static void blk_mq_run_work_fn(struct work_struct *work)
893 {
894 struct blk_mq_hw_ctx *hctx;
895
896 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
897
898 __blk_mq_run_hw_queue(hctx);
899 }
900
901 static void blk_mq_delay_work_fn(struct work_struct *work)
902 {
903 struct blk_mq_hw_ctx *hctx;
904
905 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
906
907 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
908 __blk_mq_run_hw_queue(hctx);
909 }
910
911 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
912 {
913 unsigned long tmo = msecs_to_jiffies(msecs);
914
915 if (hctx->queue->nr_hw_queues == 1)
916 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
917 else {
918 unsigned int cpu;
919
920 cpu = blk_mq_hctx_next_cpu(hctx);
921 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
922 }
923 }
924 EXPORT_SYMBOL(blk_mq_delay_queue);
925
926 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
927 struct request *rq, bool at_head)
928 {
929 struct blk_mq_ctx *ctx = rq->mq_ctx;
930
931 trace_block_rq_insert(hctx->queue, rq);
932
933 if (at_head)
934 list_add(&rq->queuelist, &ctx->rq_list);
935 else
936 list_add_tail(&rq->queuelist, &ctx->rq_list);
937
938 blk_mq_hctx_mark_pending(hctx, ctx);
939 }
940
941 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
942 bool async)
943 {
944 struct request_queue *q = rq->q;
945 struct blk_mq_hw_ctx *hctx;
946 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
947
948 current_ctx = blk_mq_get_ctx(q);
949 if (!cpu_online(ctx->cpu))
950 rq->mq_ctx = ctx = current_ctx;
951
952 hctx = q->mq_ops->map_queue(q, ctx->cpu);
953
954 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
955 !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
956 blk_insert_flush(rq);
957 } else {
958 spin_lock(&ctx->lock);
959 __blk_mq_insert_request(hctx, rq, at_head);
960 spin_unlock(&ctx->lock);
961 }
962
963 if (run_queue)
964 blk_mq_run_hw_queue(hctx, async);
965
966 blk_mq_put_ctx(current_ctx);
967 }
968
969 static void blk_mq_insert_requests(struct request_queue *q,
970 struct blk_mq_ctx *ctx,
971 struct list_head *list,
972 int depth,
973 bool from_schedule)
974
975 {
976 struct blk_mq_hw_ctx *hctx;
977 struct blk_mq_ctx *current_ctx;
978
979 trace_block_unplug(q, depth, !from_schedule);
980
981 current_ctx = blk_mq_get_ctx(q);
982
983 if (!cpu_online(ctx->cpu))
984 ctx = current_ctx;
985 hctx = q->mq_ops->map_queue(q, ctx->cpu);
986
987 /*
988 * preemption doesn't flush plug list, so it's possible ctx->cpu is
989 * offline now
990 */
991 spin_lock(&ctx->lock);
992 while (!list_empty(list)) {
993 struct request *rq;
994
995 rq = list_first_entry(list, struct request, queuelist);
996 list_del_init(&rq->queuelist);
997 rq->mq_ctx = ctx;
998 __blk_mq_insert_request(hctx, rq, false);
999 }
1000 spin_unlock(&ctx->lock);
1001
1002 blk_mq_run_hw_queue(hctx, from_schedule);
1003 blk_mq_put_ctx(current_ctx);
1004 }
1005
1006 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1007 {
1008 struct request *rqa = container_of(a, struct request, queuelist);
1009 struct request *rqb = container_of(b, struct request, queuelist);
1010
1011 return !(rqa->mq_ctx < rqb->mq_ctx ||
1012 (rqa->mq_ctx == rqb->mq_ctx &&
1013 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1014 }
1015
1016 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1017 {
1018 struct blk_mq_ctx *this_ctx;
1019 struct request_queue *this_q;
1020 struct request *rq;
1021 LIST_HEAD(list);
1022 LIST_HEAD(ctx_list);
1023 unsigned int depth;
1024
1025 list_splice_init(&plug->mq_list, &list);
1026
1027 list_sort(NULL, &list, plug_ctx_cmp);
1028
1029 this_q = NULL;
1030 this_ctx = NULL;
1031 depth = 0;
1032
1033 while (!list_empty(&list)) {
1034 rq = list_entry_rq(list.next);
1035 list_del_init(&rq->queuelist);
1036 BUG_ON(!rq->q);
1037 if (rq->mq_ctx != this_ctx) {
1038 if (this_ctx) {
1039 blk_mq_insert_requests(this_q, this_ctx,
1040 &ctx_list, depth,
1041 from_schedule);
1042 }
1043
1044 this_ctx = rq->mq_ctx;
1045 this_q = rq->q;
1046 depth = 0;
1047 }
1048
1049 depth++;
1050 list_add_tail(&rq->queuelist, &ctx_list);
1051 }
1052
1053 /*
1054 * If 'this_ctx' is set, we know we have entries to complete
1055 * on 'ctx_list'. Do those.
1056 */
1057 if (this_ctx) {
1058 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1059 from_schedule);
1060 }
1061 }
1062
1063 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1064 {
1065 init_request_from_bio(rq, bio);
1066
1067 if (blk_do_io_stat(rq))
1068 blk_account_io_start(rq, 1);
1069 }
1070
1071 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1072 {
1073 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1074 !blk_queue_nomerges(hctx->queue);
1075 }
1076
1077 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1078 struct blk_mq_ctx *ctx,
1079 struct request *rq, struct bio *bio)
1080 {
1081 if (!hctx_allow_merges(hctx)) {
1082 blk_mq_bio_to_request(rq, bio);
1083 spin_lock(&ctx->lock);
1084 insert_rq:
1085 __blk_mq_insert_request(hctx, rq, false);
1086 spin_unlock(&ctx->lock);
1087 return false;
1088 } else {
1089 struct request_queue *q = hctx->queue;
1090
1091 spin_lock(&ctx->lock);
1092 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1093 blk_mq_bio_to_request(rq, bio);
1094 goto insert_rq;
1095 }
1096
1097 spin_unlock(&ctx->lock);
1098 __blk_mq_free_request(hctx, ctx, rq);
1099 return true;
1100 }
1101 }
1102
1103 struct blk_map_ctx {
1104 struct blk_mq_hw_ctx *hctx;
1105 struct blk_mq_ctx *ctx;
1106 };
1107
1108 static struct request *blk_mq_map_request(struct request_queue *q,
1109 struct bio *bio,
1110 struct blk_map_ctx *data)
1111 {
1112 struct blk_mq_hw_ctx *hctx;
1113 struct blk_mq_ctx *ctx;
1114 struct request *rq;
1115 int rw = bio_data_dir(bio);
1116 struct blk_mq_alloc_data alloc_data;
1117
1118 if (unlikely(blk_mq_queue_enter(q))) {
1119 bio_endio(bio, -EIO);
1120 return NULL;
1121 }
1122
1123 ctx = blk_mq_get_ctx(q);
1124 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1125
1126 if (rw_is_sync(bio->bi_rw))
1127 rw |= REQ_SYNC;
1128
1129 trace_block_getrq(q, bio, rw);
1130 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1131 hctx);
1132 rq = __blk_mq_alloc_request(&alloc_data, rw);
1133 if (unlikely(!rq)) {
1134 __blk_mq_run_hw_queue(hctx);
1135 blk_mq_put_ctx(ctx);
1136 trace_block_sleeprq(q, bio, rw);
1137
1138 ctx = blk_mq_get_ctx(q);
1139 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1140 blk_mq_set_alloc_data(&alloc_data, q,
1141 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1142 rq = __blk_mq_alloc_request(&alloc_data, rw);
1143 ctx = alloc_data.ctx;
1144 hctx = alloc_data.hctx;
1145 }
1146
1147 hctx->queued++;
1148 data->hctx = hctx;
1149 data->ctx = ctx;
1150 return rq;
1151 }
1152
1153 /*
1154 * Multiple hardware queue variant. This will not use per-process plugs,
1155 * but will attempt to bypass the hctx queueing if we can go straight to
1156 * hardware for SYNC IO.
1157 */
1158 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1159 {
1160 const int is_sync = rw_is_sync(bio->bi_rw);
1161 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1162 struct blk_map_ctx data;
1163 struct request *rq;
1164
1165 blk_queue_bounce(q, &bio);
1166
1167 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1168 bio_endio(bio, -EIO);
1169 return;
1170 }
1171
1172 rq = blk_mq_map_request(q, bio, &data);
1173 if (unlikely(!rq))
1174 return;
1175
1176 if (unlikely(is_flush_fua)) {
1177 blk_mq_bio_to_request(rq, bio);
1178 blk_insert_flush(rq);
1179 goto run_queue;
1180 }
1181
1182 if (is_sync) {
1183 int ret;
1184
1185 blk_mq_bio_to_request(rq, bio);
1186 blk_mq_start_request(rq, true);
1187
1188 /*
1189 * For OK queue, we are done. For error, kill it. Any other
1190 * error (busy), just add it to our list as we previously
1191 * would have done
1192 */
1193 ret = q->mq_ops->queue_rq(data.hctx, rq);
1194 if (ret == BLK_MQ_RQ_QUEUE_OK)
1195 goto done;
1196 else {
1197 __blk_mq_requeue_request(rq);
1198
1199 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1200 rq->errors = -EIO;
1201 blk_mq_end_io(rq, rq->errors);
1202 goto done;
1203 }
1204 }
1205 }
1206
1207 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1208 /*
1209 * For a SYNC request, send it to the hardware immediately. For
1210 * an ASYNC request, just ensure that we run it later on. The
1211 * latter allows for merging opportunities and more efficient
1212 * dispatching.
1213 */
1214 run_queue:
1215 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1216 }
1217 done:
1218 blk_mq_put_ctx(data.ctx);
1219 }
1220
1221 /*
1222 * Single hardware queue variant. This will attempt to use any per-process
1223 * plug for merging and IO deferral.
1224 */
1225 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1226 {
1227 const int is_sync = rw_is_sync(bio->bi_rw);
1228 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1229 unsigned int use_plug, request_count = 0;
1230 struct blk_map_ctx data;
1231 struct request *rq;
1232
1233 /*
1234 * If we have multiple hardware queues, just go directly to
1235 * one of those for sync IO.
1236 */
1237 use_plug = !is_flush_fua && !is_sync;
1238
1239 blk_queue_bounce(q, &bio);
1240
1241 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1242 bio_endio(bio, -EIO);
1243 return;
1244 }
1245
1246 if (use_plug && !blk_queue_nomerges(q) &&
1247 blk_attempt_plug_merge(q, bio, &request_count))
1248 return;
1249
1250 rq = blk_mq_map_request(q, bio, &data);
1251 if (unlikely(!rq))
1252 return;
1253
1254 if (unlikely(is_flush_fua)) {
1255 blk_mq_bio_to_request(rq, bio);
1256 blk_insert_flush(rq);
1257 goto run_queue;
1258 }
1259
1260 /*
1261 * A task plug currently exists. Since this is completely lockless,
1262 * utilize that to temporarily store requests until the task is
1263 * either done or scheduled away.
1264 */
1265 if (use_plug) {
1266 struct blk_plug *plug = current->plug;
1267
1268 if (plug) {
1269 blk_mq_bio_to_request(rq, bio);
1270 if (list_empty(&plug->mq_list))
1271 trace_block_plug(q);
1272 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1273 blk_flush_plug_list(plug, false);
1274 trace_block_plug(q);
1275 }
1276 list_add_tail(&rq->queuelist, &plug->mq_list);
1277 blk_mq_put_ctx(data.ctx);
1278 return;
1279 }
1280 }
1281
1282 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1283 /*
1284 * For a SYNC request, send it to the hardware immediately. For
1285 * an ASYNC request, just ensure that we run it later on. The
1286 * latter allows for merging opportunities and more efficient
1287 * dispatching.
1288 */
1289 run_queue:
1290 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1291 }
1292
1293 blk_mq_put_ctx(data.ctx);
1294 }
1295
1296 /*
1297 * Default mapping to a software queue, since we use one per CPU.
1298 */
1299 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1300 {
1301 return q->queue_hw_ctx[q->mq_map[cpu]];
1302 }
1303 EXPORT_SYMBOL(blk_mq_map_queue);
1304
1305 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1306 struct blk_mq_tags *tags, unsigned int hctx_idx)
1307 {
1308 struct page *page;
1309
1310 if (tags->rqs && set->ops->exit_request) {
1311 int i;
1312
1313 for (i = 0; i < tags->nr_tags; i++) {
1314 if (!tags->rqs[i])
1315 continue;
1316 set->ops->exit_request(set->driver_data, tags->rqs[i],
1317 hctx_idx, i);
1318 }
1319 }
1320
1321 while (!list_empty(&tags->page_list)) {
1322 page = list_first_entry(&tags->page_list, struct page, lru);
1323 list_del_init(&page->lru);
1324 __free_pages(page, page->private);
1325 }
1326
1327 kfree(tags->rqs);
1328
1329 blk_mq_free_tags(tags);
1330 }
1331
1332 static size_t order_to_size(unsigned int order)
1333 {
1334 return (size_t)PAGE_SIZE << order;
1335 }
1336
1337 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1338 unsigned int hctx_idx)
1339 {
1340 struct blk_mq_tags *tags;
1341 unsigned int i, j, entries_per_page, max_order = 4;
1342 size_t rq_size, left;
1343
1344 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1345 set->numa_node);
1346 if (!tags)
1347 return NULL;
1348
1349 INIT_LIST_HEAD(&tags->page_list);
1350
1351 tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *),
1352 GFP_KERNEL, set->numa_node);
1353 if (!tags->rqs) {
1354 blk_mq_free_tags(tags);
1355 return NULL;
1356 }
1357
1358 /*
1359 * rq_size is the size of the request plus driver payload, rounded
1360 * to the cacheline size
1361 */
1362 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1363 cache_line_size());
1364 left = rq_size * set->queue_depth;
1365
1366 for (i = 0; i < set->queue_depth; ) {
1367 int this_order = max_order;
1368 struct page *page;
1369 int to_do;
1370 void *p;
1371
1372 while (left < order_to_size(this_order - 1) && this_order)
1373 this_order--;
1374
1375 do {
1376 page = alloc_pages_node(set->numa_node, GFP_KERNEL,
1377 this_order);
1378 if (page)
1379 break;
1380 if (!this_order--)
1381 break;
1382 if (order_to_size(this_order) < rq_size)
1383 break;
1384 } while (1);
1385
1386 if (!page)
1387 goto fail;
1388
1389 page->private = this_order;
1390 list_add_tail(&page->lru, &tags->page_list);
1391
1392 p = page_address(page);
1393 entries_per_page = order_to_size(this_order) / rq_size;
1394 to_do = min(entries_per_page, set->queue_depth - i);
1395 left -= to_do * rq_size;
1396 for (j = 0; j < to_do; j++) {
1397 tags->rqs[i] = p;
1398 if (set->ops->init_request) {
1399 if (set->ops->init_request(set->driver_data,
1400 tags->rqs[i], hctx_idx, i,
1401 set->numa_node))
1402 goto fail;
1403 }
1404
1405 p += rq_size;
1406 i++;
1407 }
1408 }
1409
1410 return tags;
1411
1412 fail:
1413 pr_warn("%s: failed to allocate requests\n", __func__);
1414 blk_mq_free_rq_map(set, tags, hctx_idx);
1415 return NULL;
1416 }
1417
1418 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1419 {
1420 kfree(bitmap->map);
1421 }
1422
1423 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1424 {
1425 unsigned int bpw = 8, total, num_maps, i;
1426
1427 bitmap->bits_per_word = bpw;
1428
1429 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1430 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1431 GFP_KERNEL, node);
1432 if (!bitmap->map)
1433 return -ENOMEM;
1434
1435 bitmap->map_size = num_maps;
1436
1437 total = nr_cpu_ids;
1438 for (i = 0; i < num_maps; i++) {
1439 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1440 total -= bitmap->map[i].depth;
1441 }
1442
1443 return 0;
1444 }
1445
1446 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1447 {
1448 struct request_queue *q = hctx->queue;
1449 struct blk_mq_ctx *ctx;
1450 LIST_HEAD(tmp);
1451
1452 /*
1453 * Move ctx entries to new CPU, if this one is going away.
1454 */
1455 ctx = __blk_mq_get_ctx(q, cpu);
1456
1457 spin_lock(&ctx->lock);
1458 if (!list_empty(&ctx->rq_list)) {
1459 list_splice_init(&ctx->rq_list, &tmp);
1460 blk_mq_hctx_clear_pending(hctx, ctx);
1461 }
1462 spin_unlock(&ctx->lock);
1463
1464 if (list_empty(&tmp))
1465 return NOTIFY_OK;
1466
1467 ctx = blk_mq_get_ctx(q);
1468 spin_lock(&ctx->lock);
1469
1470 while (!list_empty(&tmp)) {
1471 struct request *rq;
1472
1473 rq = list_first_entry(&tmp, struct request, queuelist);
1474 rq->mq_ctx = ctx;
1475 list_move_tail(&rq->queuelist, &ctx->rq_list);
1476 }
1477
1478 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1479 blk_mq_hctx_mark_pending(hctx, ctx);
1480
1481 spin_unlock(&ctx->lock);
1482
1483 blk_mq_run_hw_queue(hctx, true);
1484 blk_mq_put_ctx(ctx);
1485 return NOTIFY_OK;
1486 }
1487
1488 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1489 {
1490 struct request_queue *q = hctx->queue;
1491 struct blk_mq_tag_set *set = q->tag_set;
1492
1493 if (set->tags[hctx->queue_num])
1494 return NOTIFY_OK;
1495
1496 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1497 if (!set->tags[hctx->queue_num])
1498 return NOTIFY_STOP;
1499
1500 hctx->tags = set->tags[hctx->queue_num];
1501 return NOTIFY_OK;
1502 }
1503
1504 static int blk_mq_hctx_notify(void *data, unsigned long action,
1505 unsigned int cpu)
1506 {
1507 struct blk_mq_hw_ctx *hctx = data;
1508
1509 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1510 return blk_mq_hctx_cpu_offline(hctx, cpu);
1511 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1512 return blk_mq_hctx_cpu_online(hctx, cpu);
1513
1514 return NOTIFY_OK;
1515 }
1516
1517 static void blk_mq_exit_hw_queues(struct request_queue *q,
1518 struct blk_mq_tag_set *set, int nr_queue)
1519 {
1520 struct blk_mq_hw_ctx *hctx;
1521 unsigned int i;
1522
1523 queue_for_each_hw_ctx(q, hctx, i) {
1524 if (i == nr_queue)
1525 break;
1526
1527 blk_mq_tag_idle(hctx);
1528
1529 if (set->ops->exit_hctx)
1530 set->ops->exit_hctx(hctx, i);
1531
1532 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1533 kfree(hctx->ctxs);
1534 blk_mq_free_bitmap(&hctx->ctx_map);
1535 }
1536
1537 }
1538
1539 static void blk_mq_free_hw_queues(struct request_queue *q,
1540 struct blk_mq_tag_set *set)
1541 {
1542 struct blk_mq_hw_ctx *hctx;
1543 unsigned int i;
1544
1545 queue_for_each_hw_ctx(q, hctx, i) {
1546 free_cpumask_var(hctx->cpumask);
1547 kfree(hctx);
1548 }
1549 }
1550
1551 static int blk_mq_init_hw_queues(struct request_queue *q,
1552 struct blk_mq_tag_set *set)
1553 {
1554 struct blk_mq_hw_ctx *hctx;
1555 unsigned int i;
1556
1557 /*
1558 * Initialize hardware queues
1559 */
1560 queue_for_each_hw_ctx(q, hctx, i) {
1561 int node;
1562
1563 node = hctx->numa_node;
1564 if (node == NUMA_NO_NODE)
1565 node = hctx->numa_node = set->numa_node;
1566
1567 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1568 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1569 spin_lock_init(&hctx->lock);
1570 INIT_LIST_HEAD(&hctx->dispatch);
1571 hctx->queue = q;
1572 hctx->queue_num = i;
1573 hctx->flags = set->flags;
1574 hctx->cmd_size = set->cmd_size;
1575
1576 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1577 blk_mq_hctx_notify, hctx);
1578 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1579
1580 hctx->tags = set->tags[i];
1581
1582 /*
1583 * Allocate space for all possible cpus to avoid allocation at
1584 * runtime
1585 */
1586 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1587 GFP_KERNEL, node);
1588 if (!hctx->ctxs)
1589 break;
1590
1591 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1592 break;
1593
1594 hctx->nr_ctx = 0;
1595
1596 if (set->ops->init_hctx &&
1597 set->ops->init_hctx(hctx, set->driver_data, i))
1598 break;
1599 }
1600
1601 if (i == q->nr_hw_queues)
1602 return 0;
1603
1604 /*
1605 * Init failed
1606 */
1607 blk_mq_exit_hw_queues(q, set, i);
1608
1609 return 1;
1610 }
1611
1612 static void blk_mq_init_cpu_queues(struct request_queue *q,
1613 unsigned int nr_hw_queues)
1614 {
1615 unsigned int i;
1616
1617 for_each_possible_cpu(i) {
1618 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1619 struct blk_mq_hw_ctx *hctx;
1620
1621 memset(__ctx, 0, sizeof(*__ctx));
1622 __ctx->cpu = i;
1623 spin_lock_init(&__ctx->lock);
1624 INIT_LIST_HEAD(&__ctx->rq_list);
1625 __ctx->queue = q;
1626
1627 /* If the cpu isn't online, the cpu is mapped to first hctx */
1628 if (!cpu_online(i))
1629 continue;
1630
1631 hctx = q->mq_ops->map_queue(q, i);
1632 cpumask_set_cpu(i, hctx->cpumask);
1633 hctx->nr_ctx++;
1634
1635 /*
1636 * Set local node, IFF we have more than one hw queue. If
1637 * not, we remain on the home node of the device
1638 */
1639 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1640 hctx->numa_node = cpu_to_node(i);
1641 }
1642 }
1643
1644 static void blk_mq_map_swqueue(struct request_queue *q)
1645 {
1646 unsigned int i;
1647 struct blk_mq_hw_ctx *hctx;
1648 struct blk_mq_ctx *ctx;
1649
1650 queue_for_each_hw_ctx(q, hctx, i) {
1651 cpumask_clear(hctx->cpumask);
1652 hctx->nr_ctx = 0;
1653 }
1654
1655 /*
1656 * Map software to hardware queues
1657 */
1658 queue_for_each_ctx(q, ctx, i) {
1659 /* If the cpu isn't online, the cpu is mapped to first hctx */
1660 if (!cpu_online(i))
1661 continue;
1662
1663 hctx = q->mq_ops->map_queue(q, i);
1664 cpumask_set_cpu(i, hctx->cpumask);
1665 ctx->index_hw = hctx->nr_ctx;
1666 hctx->ctxs[hctx->nr_ctx++] = ctx;
1667 }
1668
1669 queue_for_each_hw_ctx(q, hctx, i) {
1670 /*
1671 * If no software queues are mapped to this hardware queue,
1672 * disable it and free the request entries.
1673 */
1674 if (!hctx->nr_ctx) {
1675 struct blk_mq_tag_set *set = q->tag_set;
1676
1677 if (set->tags[i]) {
1678 blk_mq_free_rq_map(set, set->tags[i], i);
1679 set->tags[i] = NULL;
1680 hctx->tags = NULL;
1681 }
1682 continue;
1683 }
1684
1685 /*
1686 * Initialize batch roundrobin counts
1687 */
1688 hctx->next_cpu = cpumask_first(hctx->cpumask);
1689 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1690 }
1691 }
1692
1693 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1694 {
1695 struct blk_mq_hw_ctx *hctx;
1696 struct request_queue *q;
1697 bool shared;
1698 int i;
1699
1700 if (set->tag_list.next == set->tag_list.prev)
1701 shared = false;
1702 else
1703 shared = true;
1704
1705 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1706 blk_mq_freeze_queue(q);
1707
1708 queue_for_each_hw_ctx(q, hctx, i) {
1709 if (shared)
1710 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1711 else
1712 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1713 }
1714 blk_mq_unfreeze_queue(q);
1715 }
1716 }
1717
1718 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1719 {
1720 struct blk_mq_tag_set *set = q->tag_set;
1721
1722 mutex_lock(&set->tag_list_lock);
1723 list_del_init(&q->tag_set_list);
1724 blk_mq_update_tag_set_depth(set);
1725 mutex_unlock(&set->tag_list_lock);
1726 }
1727
1728 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1729 struct request_queue *q)
1730 {
1731 q->tag_set = set;
1732
1733 mutex_lock(&set->tag_list_lock);
1734 list_add_tail(&q->tag_set_list, &set->tag_list);
1735 blk_mq_update_tag_set_depth(set);
1736 mutex_unlock(&set->tag_list_lock);
1737 }
1738
1739 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1740 {
1741 struct blk_mq_hw_ctx **hctxs;
1742 struct blk_mq_ctx __percpu *ctx;
1743 struct request_queue *q;
1744 unsigned int *map;
1745 int i;
1746
1747 ctx = alloc_percpu(struct blk_mq_ctx);
1748 if (!ctx)
1749 return ERR_PTR(-ENOMEM);
1750
1751 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1752 set->numa_node);
1753
1754 if (!hctxs)
1755 goto err_percpu;
1756
1757 map = blk_mq_make_queue_map(set);
1758 if (!map)
1759 goto err_map;
1760
1761 for (i = 0; i < set->nr_hw_queues; i++) {
1762 int node = blk_mq_hw_queue_to_node(map, i);
1763
1764 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1765 GFP_KERNEL, node);
1766 if (!hctxs[i])
1767 goto err_hctxs;
1768
1769 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1770 goto err_hctxs;
1771
1772 atomic_set(&hctxs[i]->nr_active, 0);
1773 hctxs[i]->numa_node = node;
1774 hctxs[i]->queue_num = i;
1775 }
1776
1777 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1778 if (!q)
1779 goto err_hctxs;
1780
1781 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release))
1782 goto err_map;
1783
1784 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1785 blk_queue_rq_timeout(q, 30000);
1786
1787 q->nr_queues = nr_cpu_ids;
1788 q->nr_hw_queues = set->nr_hw_queues;
1789 q->mq_map = map;
1790
1791 q->queue_ctx = ctx;
1792 q->queue_hw_ctx = hctxs;
1793
1794 q->mq_ops = set->ops;
1795 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1796
1797 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1798 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1799
1800 q->sg_reserved_size = INT_MAX;
1801
1802 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1803 INIT_LIST_HEAD(&q->requeue_list);
1804 spin_lock_init(&q->requeue_lock);
1805
1806 if (q->nr_hw_queues > 1)
1807 blk_queue_make_request(q, blk_mq_make_request);
1808 else
1809 blk_queue_make_request(q, blk_sq_make_request);
1810
1811 blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
1812 if (set->timeout)
1813 blk_queue_rq_timeout(q, set->timeout);
1814
1815 /*
1816 * Do this after blk_queue_make_request() overrides it...
1817 */
1818 q->nr_requests = set->queue_depth;
1819
1820 if (set->ops->complete)
1821 blk_queue_softirq_done(q, set->ops->complete);
1822
1823 blk_mq_init_flush(q);
1824 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1825
1826 q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1827 set->cmd_size, cache_line_size()),
1828 GFP_KERNEL);
1829 if (!q->flush_rq)
1830 goto err_hw;
1831
1832 if (blk_mq_init_hw_queues(q, set))
1833 goto err_flush_rq;
1834
1835 mutex_lock(&all_q_mutex);
1836 list_add_tail(&q->all_q_node, &all_q_list);
1837 mutex_unlock(&all_q_mutex);
1838
1839 blk_mq_add_queue_tag_set(set, q);
1840
1841 blk_mq_map_swqueue(q);
1842
1843 return q;
1844
1845 err_flush_rq:
1846 kfree(q->flush_rq);
1847 err_hw:
1848 blk_cleanup_queue(q);
1849 err_hctxs:
1850 kfree(map);
1851 for (i = 0; i < set->nr_hw_queues; i++) {
1852 if (!hctxs[i])
1853 break;
1854 free_cpumask_var(hctxs[i]->cpumask);
1855 kfree(hctxs[i]);
1856 }
1857 err_map:
1858 kfree(hctxs);
1859 err_percpu:
1860 free_percpu(ctx);
1861 return ERR_PTR(-ENOMEM);
1862 }
1863 EXPORT_SYMBOL(blk_mq_init_queue);
1864
1865 void blk_mq_free_queue(struct request_queue *q)
1866 {
1867 struct blk_mq_tag_set *set = q->tag_set;
1868
1869 blk_mq_del_queue_tag_set(q);
1870
1871 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1872 blk_mq_free_hw_queues(q, set);
1873
1874 percpu_ref_exit(&q->mq_usage_counter);
1875
1876 free_percpu(q->queue_ctx);
1877 kfree(q->queue_hw_ctx);
1878 kfree(q->mq_map);
1879
1880 q->queue_ctx = NULL;
1881 q->queue_hw_ctx = NULL;
1882 q->mq_map = NULL;
1883
1884 mutex_lock(&all_q_mutex);
1885 list_del_init(&q->all_q_node);
1886 mutex_unlock(&all_q_mutex);
1887 }
1888
1889 /* Basically redo blk_mq_init_queue with queue frozen */
1890 static void blk_mq_queue_reinit(struct request_queue *q)
1891 {
1892 blk_mq_freeze_queue(q);
1893
1894 blk_mq_sysfs_unregister(q);
1895
1896 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1897
1898 /*
1899 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1900 * we should change hctx numa_node according to new topology (this
1901 * involves free and re-allocate memory, worthy doing?)
1902 */
1903
1904 blk_mq_map_swqueue(q);
1905
1906 blk_mq_sysfs_register(q);
1907
1908 blk_mq_unfreeze_queue(q);
1909 }
1910
1911 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1912 unsigned long action, void *hcpu)
1913 {
1914 struct request_queue *q;
1915
1916 /*
1917 * Before new mappings are established, hotadded cpu might already
1918 * start handling requests. This doesn't break anything as we map
1919 * offline CPUs to first hardware queue. We will re-init the queue
1920 * below to get optimal settings.
1921 */
1922 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1923 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1924 return NOTIFY_OK;
1925
1926 mutex_lock(&all_q_mutex);
1927 list_for_each_entry(q, &all_q_list, all_q_node)
1928 blk_mq_queue_reinit(q);
1929 mutex_unlock(&all_q_mutex);
1930 return NOTIFY_OK;
1931 }
1932
1933 /*
1934 * Alloc a tag set to be associated with one or more request queues.
1935 * May fail with EINVAL for various error conditions. May adjust the
1936 * requested depth down, if if it too large. In that case, the set
1937 * value will be stored in set->queue_depth.
1938 */
1939 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
1940 {
1941 int i;
1942
1943 if (!set->nr_hw_queues)
1944 return -EINVAL;
1945 if (!set->queue_depth)
1946 return -EINVAL;
1947 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
1948 return -EINVAL;
1949
1950 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
1951 return -EINVAL;
1952
1953 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
1954 pr_info("blk-mq: reduced tag depth to %u\n",
1955 BLK_MQ_MAX_DEPTH);
1956 set->queue_depth = BLK_MQ_MAX_DEPTH;
1957 }
1958
1959 set->tags = kmalloc_node(set->nr_hw_queues *
1960 sizeof(struct blk_mq_tags *),
1961 GFP_KERNEL, set->numa_node);
1962 if (!set->tags)
1963 goto out;
1964
1965 for (i = 0; i < set->nr_hw_queues; i++) {
1966 set->tags[i] = blk_mq_init_rq_map(set, i);
1967 if (!set->tags[i])
1968 goto out_unwind;
1969 }
1970
1971 mutex_init(&set->tag_list_lock);
1972 INIT_LIST_HEAD(&set->tag_list);
1973
1974 return 0;
1975
1976 out_unwind:
1977 while (--i >= 0)
1978 blk_mq_free_rq_map(set, set->tags[i], i);
1979 out:
1980 return -ENOMEM;
1981 }
1982 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
1983
1984 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
1985 {
1986 int i;
1987
1988 for (i = 0; i < set->nr_hw_queues; i++) {
1989 if (set->tags[i])
1990 blk_mq_free_rq_map(set, set->tags[i], i);
1991 }
1992
1993 kfree(set->tags);
1994 }
1995 EXPORT_SYMBOL(blk_mq_free_tag_set);
1996
1997 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
1998 {
1999 struct blk_mq_tag_set *set = q->tag_set;
2000 struct blk_mq_hw_ctx *hctx;
2001 int i, ret;
2002
2003 if (!set || nr > set->queue_depth)
2004 return -EINVAL;
2005
2006 ret = 0;
2007 queue_for_each_hw_ctx(q, hctx, i) {
2008 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2009 if (ret)
2010 break;
2011 }
2012
2013 if (!ret)
2014 q->nr_requests = nr;
2015
2016 return ret;
2017 }
2018
2019 void blk_mq_disable_hotplug(void)
2020 {
2021 mutex_lock(&all_q_mutex);
2022 }
2023
2024 void blk_mq_enable_hotplug(void)
2025 {
2026 mutex_unlock(&all_q_mutex);
2027 }
2028
2029 static int __init blk_mq_init(void)
2030 {
2031 blk_mq_cpu_init();
2032
2033 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2034
2035 return 0;
2036 }
2037 subsys_initcall(blk_mq_init);
This page took 0.094479 seconds and 6 git commands to generate.