blk-mq: blk_mq_freeze_queue() should allow nesting
[deliverable/linux.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23
24 #include <trace/events/block.h>
25
26 #include <linux/blk-mq.h>
27 #include "blk.h"
28 #include "blk-mq.h"
29 #include "blk-mq-tag.h"
30
31 static DEFINE_MUTEX(all_q_mutex);
32 static LIST_HEAD(all_q_list);
33
34 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
35
36 /*
37 * Check if any of the ctx's have pending work in this hardware queue
38 */
39 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
40 {
41 unsigned int i;
42
43 for (i = 0; i < hctx->ctx_map.map_size; i++)
44 if (hctx->ctx_map.map[i].word)
45 return true;
46
47 return false;
48 }
49
50 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
51 struct blk_mq_ctx *ctx)
52 {
53 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
54 }
55
56 #define CTX_TO_BIT(hctx, ctx) \
57 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
58
59 /*
60 * Mark this ctx as having pending work in this hardware queue
61 */
62 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
63 struct blk_mq_ctx *ctx)
64 {
65 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
66
67 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
68 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
69 }
70
71 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
72 struct blk_mq_ctx *ctx)
73 {
74 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
75
76 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
77 }
78
79 static int blk_mq_queue_enter(struct request_queue *q)
80 {
81 while (true) {
82 int ret;
83
84 if (percpu_ref_tryget_live(&q->mq_usage_counter))
85 return 0;
86
87 ret = wait_event_interruptible(q->mq_freeze_wq,
88 !q->mq_freeze_depth || blk_queue_dying(q));
89 if (blk_queue_dying(q))
90 return -ENODEV;
91 if (ret)
92 return ret;
93 }
94 }
95
96 static void blk_mq_queue_exit(struct request_queue *q)
97 {
98 percpu_ref_put(&q->mq_usage_counter);
99 }
100
101 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
102 {
103 struct request_queue *q =
104 container_of(ref, struct request_queue, mq_usage_counter);
105
106 wake_up_all(&q->mq_freeze_wq);
107 }
108
109 /*
110 * Guarantee no request is in use, so we can change any data structure of
111 * the queue afterward.
112 */
113 void blk_mq_freeze_queue(struct request_queue *q)
114 {
115 bool freeze;
116
117 spin_lock_irq(q->queue_lock);
118 freeze = !q->mq_freeze_depth++;
119 spin_unlock_irq(q->queue_lock);
120
121 if (freeze) {
122 percpu_ref_kill(&q->mq_usage_counter);
123 blk_mq_run_queues(q, false);
124 }
125 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
126 }
127
128 static void blk_mq_unfreeze_queue(struct request_queue *q)
129 {
130 bool wake;
131
132 spin_lock_irq(q->queue_lock);
133 wake = !--q->mq_freeze_depth;
134 WARN_ON_ONCE(q->mq_freeze_depth < 0);
135 spin_unlock_irq(q->queue_lock);
136 if (wake) {
137 percpu_ref_reinit(&q->mq_usage_counter);
138 wake_up_all(&q->mq_freeze_wq);
139 }
140 }
141
142 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
143 {
144 return blk_mq_has_free_tags(hctx->tags);
145 }
146 EXPORT_SYMBOL(blk_mq_can_queue);
147
148 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
149 struct request *rq, unsigned int rw_flags)
150 {
151 if (blk_queue_io_stat(q))
152 rw_flags |= REQ_IO_STAT;
153
154 INIT_LIST_HEAD(&rq->queuelist);
155 /* csd/requeue_work/fifo_time is initialized before use */
156 rq->q = q;
157 rq->mq_ctx = ctx;
158 rq->cmd_flags |= rw_flags;
159 /* do not touch atomic flags, it needs atomic ops against the timer */
160 rq->cpu = -1;
161 INIT_HLIST_NODE(&rq->hash);
162 RB_CLEAR_NODE(&rq->rb_node);
163 rq->rq_disk = NULL;
164 rq->part = NULL;
165 rq->start_time = jiffies;
166 #ifdef CONFIG_BLK_CGROUP
167 rq->rl = NULL;
168 set_start_time_ns(rq);
169 rq->io_start_time_ns = 0;
170 #endif
171 rq->nr_phys_segments = 0;
172 #if defined(CONFIG_BLK_DEV_INTEGRITY)
173 rq->nr_integrity_segments = 0;
174 #endif
175 rq->special = NULL;
176 /* tag was already set */
177 rq->errors = 0;
178
179 rq->extra_len = 0;
180 rq->sense_len = 0;
181 rq->resid_len = 0;
182 rq->sense = NULL;
183
184 INIT_LIST_HEAD(&rq->timeout_list);
185 rq->timeout = 0;
186
187 rq->end_io = NULL;
188 rq->end_io_data = NULL;
189 rq->next_rq = NULL;
190
191 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
192 }
193
194 static struct request *
195 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
196 {
197 struct request *rq;
198 unsigned int tag;
199
200 tag = blk_mq_get_tag(data);
201 if (tag != BLK_MQ_TAG_FAIL) {
202 rq = data->hctx->tags->rqs[tag];
203
204 rq->cmd_flags = 0;
205 if (blk_mq_tag_busy(data->hctx)) {
206 rq->cmd_flags = REQ_MQ_INFLIGHT;
207 atomic_inc(&data->hctx->nr_active);
208 }
209
210 rq->tag = tag;
211 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
212 return rq;
213 }
214
215 return NULL;
216 }
217
218 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
219 bool reserved)
220 {
221 struct blk_mq_ctx *ctx;
222 struct blk_mq_hw_ctx *hctx;
223 struct request *rq;
224 struct blk_mq_alloc_data alloc_data;
225
226 if (blk_mq_queue_enter(q))
227 return NULL;
228
229 ctx = blk_mq_get_ctx(q);
230 hctx = q->mq_ops->map_queue(q, ctx->cpu);
231 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
232 reserved, ctx, hctx);
233
234 rq = __blk_mq_alloc_request(&alloc_data, rw);
235 if (!rq && (gfp & __GFP_WAIT)) {
236 __blk_mq_run_hw_queue(hctx);
237 blk_mq_put_ctx(ctx);
238
239 ctx = blk_mq_get_ctx(q);
240 hctx = q->mq_ops->map_queue(q, ctx->cpu);
241 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
242 hctx);
243 rq = __blk_mq_alloc_request(&alloc_data, rw);
244 ctx = alloc_data.ctx;
245 }
246 blk_mq_put_ctx(ctx);
247 return rq;
248 }
249 EXPORT_SYMBOL(blk_mq_alloc_request);
250
251 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
252 struct blk_mq_ctx *ctx, struct request *rq)
253 {
254 const int tag = rq->tag;
255 struct request_queue *q = rq->q;
256
257 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
258 atomic_dec(&hctx->nr_active);
259
260 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
261 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
262 blk_mq_queue_exit(q);
263 }
264
265 void blk_mq_free_request(struct request *rq)
266 {
267 struct blk_mq_ctx *ctx = rq->mq_ctx;
268 struct blk_mq_hw_ctx *hctx;
269 struct request_queue *q = rq->q;
270
271 ctx->rq_completed[rq_is_sync(rq)]++;
272
273 hctx = q->mq_ops->map_queue(q, ctx->cpu);
274 __blk_mq_free_request(hctx, ctx, rq);
275 }
276
277 /*
278 * Clone all relevant state from a request that has been put on hold in
279 * the flush state machine into the preallocated flush request that hangs
280 * off the request queue.
281 *
282 * For a driver the flush request should be invisible, that's why we are
283 * impersonating the original request here.
284 */
285 void blk_mq_clone_flush_request(struct request *flush_rq,
286 struct request *orig_rq)
287 {
288 struct blk_mq_hw_ctx *hctx =
289 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
290
291 flush_rq->mq_ctx = orig_rq->mq_ctx;
292 flush_rq->tag = orig_rq->tag;
293 memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
294 hctx->cmd_size);
295 }
296
297 inline void __blk_mq_end_io(struct request *rq, int error)
298 {
299 blk_account_io_done(rq);
300
301 if (rq->end_io) {
302 rq->end_io(rq, error);
303 } else {
304 if (unlikely(blk_bidi_rq(rq)))
305 blk_mq_free_request(rq->next_rq);
306 blk_mq_free_request(rq);
307 }
308 }
309 EXPORT_SYMBOL(__blk_mq_end_io);
310
311 void blk_mq_end_io(struct request *rq, int error)
312 {
313 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
314 BUG();
315 __blk_mq_end_io(rq, error);
316 }
317 EXPORT_SYMBOL(blk_mq_end_io);
318
319 static void __blk_mq_complete_request_remote(void *data)
320 {
321 struct request *rq = data;
322
323 rq->q->softirq_done_fn(rq);
324 }
325
326 static void blk_mq_ipi_complete_request(struct request *rq)
327 {
328 struct blk_mq_ctx *ctx = rq->mq_ctx;
329 bool shared = false;
330 int cpu;
331
332 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
333 rq->q->softirq_done_fn(rq);
334 return;
335 }
336
337 cpu = get_cpu();
338 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
339 shared = cpus_share_cache(cpu, ctx->cpu);
340
341 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
342 rq->csd.func = __blk_mq_complete_request_remote;
343 rq->csd.info = rq;
344 rq->csd.flags = 0;
345 smp_call_function_single_async(ctx->cpu, &rq->csd);
346 } else {
347 rq->q->softirq_done_fn(rq);
348 }
349 put_cpu();
350 }
351
352 void __blk_mq_complete_request(struct request *rq)
353 {
354 struct request_queue *q = rq->q;
355
356 if (!q->softirq_done_fn)
357 blk_mq_end_io(rq, rq->errors);
358 else
359 blk_mq_ipi_complete_request(rq);
360 }
361
362 /**
363 * blk_mq_complete_request - end I/O on a request
364 * @rq: the request being processed
365 *
366 * Description:
367 * Ends all I/O on a request. It does not handle partial completions.
368 * The actual completion happens out-of-order, through a IPI handler.
369 **/
370 void blk_mq_complete_request(struct request *rq)
371 {
372 struct request_queue *q = rq->q;
373
374 if (unlikely(blk_should_fake_timeout(q)))
375 return;
376 if (!blk_mark_rq_complete(rq))
377 __blk_mq_complete_request(rq);
378 }
379 EXPORT_SYMBOL(blk_mq_complete_request);
380
381 static void blk_mq_start_request(struct request *rq, bool last)
382 {
383 struct request_queue *q = rq->q;
384
385 trace_block_rq_issue(q, rq);
386
387 rq->resid_len = blk_rq_bytes(rq);
388 if (unlikely(blk_bidi_rq(rq)))
389 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
390
391 blk_add_timer(rq);
392
393 /*
394 * Mark us as started and clear complete. Complete might have been
395 * set if requeue raced with timeout, which then marked it as
396 * complete. So be sure to clear complete again when we start
397 * the request, otherwise we'll ignore the completion event.
398 */
399 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
400 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
401 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
402 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
403
404 if (q->dma_drain_size && blk_rq_bytes(rq)) {
405 /*
406 * Make sure space for the drain appears. We know we can do
407 * this because max_hw_segments has been adjusted to be one
408 * fewer than the device can handle.
409 */
410 rq->nr_phys_segments++;
411 }
412
413 /*
414 * Flag the last request in the series so that drivers know when IO
415 * should be kicked off, if they don't do it on a per-request basis.
416 *
417 * Note: the flag isn't the only condition drivers should do kick off.
418 * If drive is busy, the last request might not have the bit set.
419 */
420 if (last)
421 rq->cmd_flags |= REQ_END;
422 }
423
424 static void __blk_mq_requeue_request(struct request *rq)
425 {
426 struct request_queue *q = rq->q;
427
428 trace_block_rq_requeue(q, rq);
429 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
430
431 rq->cmd_flags &= ~REQ_END;
432
433 if (q->dma_drain_size && blk_rq_bytes(rq))
434 rq->nr_phys_segments--;
435 }
436
437 void blk_mq_requeue_request(struct request *rq)
438 {
439 __blk_mq_requeue_request(rq);
440 blk_clear_rq_complete(rq);
441
442 BUG_ON(blk_queued_rq(rq));
443 blk_mq_add_to_requeue_list(rq, true);
444 }
445 EXPORT_SYMBOL(blk_mq_requeue_request);
446
447 static void blk_mq_requeue_work(struct work_struct *work)
448 {
449 struct request_queue *q =
450 container_of(work, struct request_queue, requeue_work);
451 LIST_HEAD(rq_list);
452 struct request *rq, *next;
453 unsigned long flags;
454
455 spin_lock_irqsave(&q->requeue_lock, flags);
456 list_splice_init(&q->requeue_list, &rq_list);
457 spin_unlock_irqrestore(&q->requeue_lock, flags);
458
459 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
460 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
461 continue;
462
463 rq->cmd_flags &= ~REQ_SOFTBARRIER;
464 list_del_init(&rq->queuelist);
465 blk_mq_insert_request(rq, true, false, false);
466 }
467
468 while (!list_empty(&rq_list)) {
469 rq = list_entry(rq_list.next, struct request, queuelist);
470 list_del_init(&rq->queuelist);
471 blk_mq_insert_request(rq, false, false, false);
472 }
473
474 blk_mq_run_queues(q, false);
475 }
476
477 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
478 {
479 struct request_queue *q = rq->q;
480 unsigned long flags;
481
482 /*
483 * We abuse this flag that is otherwise used by the I/O scheduler to
484 * request head insertation from the workqueue.
485 */
486 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
487
488 spin_lock_irqsave(&q->requeue_lock, flags);
489 if (at_head) {
490 rq->cmd_flags |= REQ_SOFTBARRIER;
491 list_add(&rq->queuelist, &q->requeue_list);
492 } else {
493 list_add_tail(&rq->queuelist, &q->requeue_list);
494 }
495 spin_unlock_irqrestore(&q->requeue_lock, flags);
496 }
497 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
498
499 void blk_mq_kick_requeue_list(struct request_queue *q)
500 {
501 kblockd_schedule_work(&q->requeue_work);
502 }
503 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
504
505 static inline bool is_flush_request(struct request *rq, unsigned int tag)
506 {
507 return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
508 rq->q->flush_rq->tag == tag);
509 }
510
511 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
512 {
513 struct request *rq = tags->rqs[tag];
514
515 if (!is_flush_request(rq, tag))
516 return rq;
517
518 return rq->q->flush_rq;
519 }
520 EXPORT_SYMBOL(blk_mq_tag_to_rq);
521
522 struct blk_mq_timeout_data {
523 struct blk_mq_hw_ctx *hctx;
524 unsigned long *next;
525 unsigned int *next_set;
526 };
527
528 static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
529 {
530 struct blk_mq_timeout_data *data = __data;
531 struct blk_mq_hw_ctx *hctx = data->hctx;
532 unsigned int tag;
533
534 /* It may not be in flight yet (this is where
535 * the REQ_ATOMIC_STARTED flag comes in). The requests are
536 * statically allocated, so we know it's always safe to access the
537 * memory associated with a bit offset into ->rqs[].
538 */
539 tag = 0;
540 do {
541 struct request *rq;
542
543 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
544 if (tag >= hctx->tags->nr_tags)
545 break;
546
547 rq = blk_mq_tag_to_rq(hctx->tags, tag++);
548 if (rq->q != hctx->queue)
549 continue;
550 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
551 continue;
552
553 blk_rq_check_expired(rq, data->next, data->next_set);
554 } while (1);
555 }
556
557 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
558 unsigned long *next,
559 unsigned int *next_set)
560 {
561 struct blk_mq_timeout_data data = {
562 .hctx = hctx,
563 .next = next,
564 .next_set = next_set,
565 };
566
567 /*
568 * Ask the tagging code to iterate busy requests, so we can
569 * check them for timeout.
570 */
571 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
572 }
573
574 static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
575 {
576 struct request_queue *q = rq->q;
577
578 /*
579 * We know that complete is set at this point. If STARTED isn't set
580 * anymore, then the request isn't active and the "timeout" should
581 * just be ignored. This can happen due to the bitflag ordering.
582 * Timeout first checks if STARTED is set, and if it is, assumes
583 * the request is active. But if we race with completion, then
584 * we both flags will get cleared. So check here again, and ignore
585 * a timeout event with a request that isn't active.
586 */
587 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
588 return BLK_EH_NOT_HANDLED;
589
590 if (!q->mq_ops->timeout)
591 return BLK_EH_RESET_TIMER;
592
593 return q->mq_ops->timeout(rq);
594 }
595
596 static void blk_mq_rq_timer(unsigned long data)
597 {
598 struct request_queue *q = (struct request_queue *) data;
599 struct blk_mq_hw_ctx *hctx;
600 unsigned long next = 0;
601 int i, next_set = 0;
602
603 queue_for_each_hw_ctx(q, hctx, i) {
604 /*
605 * If not software queues are currently mapped to this
606 * hardware queue, there's nothing to check
607 */
608 if (!hctx->nr_ctx || !hctx->tags)
609 continue;
610
611 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
612 }
613
614 if (next_set) {
615 next = blk_rq_timeout(round_jiffies_up(next));
616 mod_timer(&q->timeout, next);
617 } else {
618 queue_for_each_hw_ctx(q, hctx, i)
619 blk_mq_tag_idle(hctx);
620 }
621 }
622
623 /*
624 * Reverse check our software queue for entries that we could potentially
625 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
626 * too much time checking for merges.
627 */
628 static bool blk_mq_attempt_merge(struct request_queue *q,
629 struct blk_mq_ctx *ctx, struct bio *bio)
630 {
631 struct request *rq;
632 int checked = 8;
633
634 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
635 int el_ret;
636
637 if (!checked--)
638 break;
639
640 if (!blk_rq_merge_ok(rq, bio))
641 continue;
642
643 el_ret = blk_try_merge(rq, bio);
644 if (el_ret == ELEVATOR_BACK_MERGE) {
645 if (bio_attempt_back_merge(q, rq, bio)) {
646 ctx->rq_merged++;
647 return true;
648 }
649 break;
650 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
651 if (bio_attempt_front_merge(q, rq, bio)) {
652 ctx->rq_merged++;
653 return true;
654 }
655 break;
656 }
657 }
658
659 return false;
660 }
661
662 /*
663 * Process software queues that have been marked busy, splicing them
664 * to the for-dispatch
665 */
666 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
667 {
668 struct blk_mq_ctx *ctx;
669 int i;
670
671 for (i = 0; i < hctx->ctx_map.map_size; i++) {
672 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
673 unsigned int off, bit;
674
675 if (!bm->word)
676 continue;
677
678 bit = 0;
679 off = i * hctx->ctx_map.bits_per_word;
680 do {
681 bit = find_next_bit(&bm->word, bm->depth, bit);
682 if (bit >= bm->depth)
683 break;
684
685 ctx = hctx->ctxs[bit + off];
686 clear_bit(bit, &bm->word);
687 spin_lock(&ctx->lock);
688 list_splice_tail_init(&ctx->rq_list, list);
689 spin_unlock(&ctx->lock);
690
691 bit++;
692 } while (1);
693 }
694 }
695
696 /*
697 * Run this hardware queue, pulling any software queues mapped to it in.
698 * Note that this function currently has various problems around ordering
699 * of IO. In particular, we'd like FIFO behaviour on handling existing
700 * items on the hctx->dispatch list. Ignore that for now.
701 */
702 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
703 {
704 struct request_queue *q = hctx->queue;
705 struct request *rq;
706 LIST_HEAD(rq_list);
707 int queued;
708
709 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
710
711 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
712 return;
713
714 hctx->run++;
715
716 /*
717 * Touch any software queue that has pending entries.
718 */
719 flush_busy_ctxs(hctx, &rq_list);
720
721 /*
722 * If we have previous entries on our dispatch list, grab them
723 * and stuff them at the front for more fair dispatch.
724 */
725 if (!list_empty_careful(&hctx->dispatch)) {
726 spin_lock(&hctx->lock);
727 if (!list_empty(&hctx->dispatch))
728 list_splice_init(&hctx->dispatch, &rq_list);
729 spin_unlock(&hctx->lock);
730 }
731
732 /*
733 * Now process all the entries, sending them to the driver.
734 */
735 queued = 0;
736 while (!list_empty(&rq_list)) {
737 int ret;
738
739 rq = list_first_entry(&rq_list, struct request, queuelist);
740 list_del_init(&rq->queuelist);
741
742 blk_mq_start_request(rq, list_empty(&rq_list));
743
744 ret = q->mq_ops->queue_rq(hctx, rq);
745 switch (ret) {
746 case BLK_MQ_RQ_QUEUE_OK:
747 queued++;
748 continue;
749 case BLK_MQ_RQ_QUEUE_BUSY:
750 list_add(&rq->queuelist, &rq_list);
751 __blk_mq_requeue_request(rq);
752 break;
753 default:
754 pr_err("blk-mq: bad return on queue: %d\n", ret);
755 case BLK_MQ_RQ_QUEUE_ERROR:
756 rq->errors = -EIO;
757 blk_mq_end_io(rq, rq->errors);
758 break;
759 }
760
761 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
762 break;
763 }
764
765 if (!queued)
766 hctx->dispatched[0]++;
767 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
768 hctx->dispatched[ilog2(queued) + 1]++;
769
770 /*
771 * Any items that need requeuing? Stuff them into hctx->dispatch,
772 * that is where we will continue on next queue run.
773 */
774 if (!list_empty(&rq_list)) {
775 spin_lock(&hctx->lock);
776 list_splice(&rq_list, &hctx->dispatch);
777 spin_unlock(&hctx->lock);
778 }
779 }
780
781 /*
782 * It'd be great if the workqueue API had a way to pass
783 * in a mask and had some smarts for more clever placement.
784 * For now we just round-robin here, switching for every
785 * BLK_MQ_CPU_WORK_BATCH queued items.
786 */
787 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
788 {
789 int cpu = hctx->next_cpu;
790
791 if (--hctx->next_cpu_batch <= 0) {
792 int next_cpu;
793
794 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
795 if (next_cpu >= nr_cpu_ids)
796 next_cpu = cpumask_first(hctx->cpumask);
797
798 hctx->next_cpu = next_cpu;
799 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
800 }
801
802 return cpu;
803 }
804
805 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
806 {
807 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
808 return;
809
810 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
811 __blk_mq_run_hw_queue(hctx);
812 else if (hctx->queue->nr_hw_queues == 1)
813 kblockd_schedule_delayed_work(&hctx->run_work, 0);
814 else {
815 unsigned int cpu;
816
817 cpu = blk_mq_hctx_next_cpu(hctx);
818 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
819 }
820 }
821
822 void blk_mq_run_queues(struct request_queue *q, bool async)
823 {
824 struct blk_mq_hw_ctx *hctx;
825 int i;
826
827 queue_for_each_hw_ctx(q, hctx, i) {
828 if ((!blk_mq_hctx_has_pending(hctx) &&
829 list_empty_careful(&hctx->dispatch)) ||
830 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
831 continue;
832
833 preempt_disable();
834 blk_mq_run_hw_queue(hctx, async);
835 preempt_enable();
836 }
837 }
838 EXPORT_SYMBOL(blk_mq_run_queues);
839
840 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
841 {
842 cancel_delayed_work(&hctx->run_work);
843 cancel_delayed_work(&hctx->delay_work);
844 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
845 }
846 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
847
848 void blk_mq_stop_hw_queues(struct request_queue *q)
849 {
850 struct blk_mq_hw_ctx *hctx;
851 int i;
852
853 queue_for_each_hw_ctx(q, hctx, i)
854 blk_mq_stop_hw_queue(hctx);
855 }
856 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
857
858 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
859 {
860 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
861
862 preempt_disable();
863 blk_mq_run_hw_queue(hctx, false);
864 preempt_enable();
865 }
866 EXPORT_SYMBOL(blk_mq_start_hw_queue);
867
868 void blk_mq_start_hw_queues(struct request_queue *q)
869 {
870 struct blk_mq_hw_ctx *hctx;
871 int i;
872
873 queue_for_each_hw_ctx(q, hctx, i)
874 blk_mq_start_hw_queue(hctx);
875 }
876 EXPORT_SYMBOL(blk_mq_start_hw_queues);
877
878
879 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
880 {
881 struct blk_mq_hw_ctx *hctx;
882 int i;
883
884 queue_for_each_hw_ctx(q, hctx, i) {
885 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
886 continue;
887
888 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
889 preempt_disable();
890 blk_mq_run_hw_queue(hctx, async);
891 preempt_enable();
892 }
893 }
894 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
895
896 static void blk_mq_run_work_fn(struct work_struct *work)
897 {
898 struct blk_mq_hw_ctx *hctx;
899
900 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
901
902 __blk_mq_run_hw_queue(hctx);
903 }
904
905 static void blk_mq_delay_work_fn(struct work_struct *work)
906 {
907 struct blk_mq_hw_ctx *hctx;
908
909 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
910
911 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
912 __blk_mq_run_hw_queue(hctx);
913 }
914
915 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
916 {
917 unsigned long tmo = msecs_to_jiffies(msecs);
918
919 if (hctx->queue->nr_hw_queues == 1)
920 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
921 else {
922 unsigned int cpu;
923
924 cpu = blk_mq_hctx_next_cpu(hctx);
925 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
926 }
927 }
928 EXPORT_SYMBOL(blk_mq_delay_queue);
929
930 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
931 struct request *rq, bool at_head)
932 {
933 struct blk_mq_ctx *ctx = rq->mq_ctx;
934
935 trace_block_rq_insert(hctx->queue, rq);
936
937 if (at_head)
938 list_add(&rq->queuelist, &ctx->rq_list);
939 else
940 list_add_tail(&rq->queuelist, &ctx->rq_list);
941
942 blk_mq_hctx_mark_pending(hctx, ctx);
943 }
944
945 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
946 bool async)
947 {
948 struct request_queue *q = rq->q;
949 struct blk_mq_hw_ctx *hctx;
950 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
951
952 current_ctx = blk_mq_get_ctx(q);
953 if (!cpu_online(ctx->cpu))
954 rq->mq_ctx = ctx = current_ctx;
955
956 hctx = q->mq_ops->map_queue(q, ctx->cpu);
957
958 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
959 !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
960 blk_insert_flush(rq);
961 } else {
962 spin_lock(&ctx->lock);
963 __blk_mq_insert_request(hctx, rq, at_head);
964 spin_unlock(&ctx->lock);
965 }
966
967 if (run_queue)
968 blk_mq_run_hw_queue(hctx, async);
969
970 blk_mq_put_ctx(current_ctx);
971 }
972
973 static void blk_mq_insert_requests(struct request_queue *q,
974 struct blk_mq_ctx *ctx,
975 struct list_head *list,
976 int depth,
977 bool from_schedule)
978
979 {
980 struct blk_mq_hw_ctx *hctx;
981 struct blk_mq_ctx *current_ctx;
982
983 trace_block_unplug(q, depth, !from_schedule);
984
985 current_ctx = blk_mq_get_ctx(q);
986
987 if (!cpu_online(ctx->cpu))
988 ctx = current_ctx;
989 hctx = q->mq_ops->map_queue(q, ctx->cpu);
990
991 /*
992 * preemption doesn't flush plug list, so it's possible ctx->cpu is
993 * offline now
994 */
995 spin_lock(&ctx->lock);
996 while (!list_empty(list)) {
997 struct request *rq;
998
999 rq = list_first_entry(list, struct request, queuelist);
1000 list_del_init(&rq->queuelist);
1001 rq->mq_ctx = ctx;
1002 __blk_mq_insert_request(hctx, rq, false);
1003 }
1004 spin_unlock(&ctx->lock);
1005
1006 blk_mq_run_hw_queue(hctx, from_schedule);
1007 blk_mq_put_ctx(current_ctx);
1008 }
1009
1010 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1011 {
1012 struct request *rqa = container_of(a, struct request, queuelist);
1013 struct request *rqb = container_of(b, struct request, queuelist);
1014
1015 return !(rqa->mq_ctx < rqb->mq_ctx ||
1016 (rqa->mq_ctx == rqb->mq_ctx &&
1017 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1018 }
1019
1020 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1021 {
1022 struct blk_mq_ctx *this_ctx;
1023 struct request_queue *this_q;
1024 struct request *rq;
1025 LIST_HEAD(list);
1026 LIST_HEAD(ctx_list);
1027 unsigned int depth;
1028
1029 list_splice_init(&plug->mq_list, &list);
1030
1031 list_sort(NULL, &list, plug_ctx_cmp);
1032
1033 this_q = NULL;
1034 this_ctx = NULL;
1035 depth = 0;
1036
1037 while (!list_empty(&list)) {
1038 rq = list_entry_rq(list.next);
1039 list_del_init(&rq->queuelist);
1040 BUG_ON(!rq->q);
1041 if (rq->mq_ctx != this_ctx) {
1042 if (this_ctx) {
1043 blk_mq_insert_requests(this_q, this_ctx,
1044 &ctx_list, depth,
1045 from_schedule);
1046 }
1047
1048 this_ctx = rq->mq_ctx;
1049 this_q = rq->q;
1050 depth = 0;
1051 }
1052
1053 depth++;
1054 list_add_tail(&rq->queuelist, &ctx_list);
1055 }
1056
1057 /*
1058 * If 'this_ctx' is set, we know we have entries to complete
1059 * on 'ctx_list'. Do those.
1060 */
1061 if (this_ctx) {
1062 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1063 from_schedule);
1064 }
1065 }
1066
1067 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1068 {
1069 init_request_from_bio(rq, bio);
1070
1071 if (blk_do_io_stat(rq))
1072 blk_account_io_start(rq, 1);
1073 }
1074
1075 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1076 {
1077 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1078 !blk_queue_nomerges(hctx->queue);
1079 }
1080
1081 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1082 struct blk_mq_ctx *ctx,
1083 struct request *rq, struct bio *bio)
1084 {
1085 if (!hctx_allow_merges(hctx)) {
1086 blk_mq_bio_to_request(rq, bio);
1087 spin_lock(&ctx->lock);
1088 insert_rq:
1089 __blk_mq_insert_request(hctx, rq, false);
1090 spin_unlock(&ctx->lock);
1091 return false;
1092 } else {
1093 struct request_queue *q = hctx->queue;
1094
1095 spin_lock(&ctx->lock);
1096 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1097 blk_mq_bio_to_request(rq, bio);
1098 goto insert_rq;
1099 }
1100
1101 spin_unlock(&ctx->lock);
1102 __blk_mq_free_request(hctx, ctx, rq);
1103 return true;
1104 }
1105 }
1106
1107 struct blk_map_ctx {
1108 struct blk_mq_hw_ctx *hctx;
1109 struct blk_mq_ctx *ctx;
1110 };
1111
1112 static struct request *blk_mq_map_request(struct request_queue *q,
1113 struct bio *bio,
1114 struct blk_map_ctx *data)
1115 {
1116 struct blk_mq_hw_ctx *hctx;
1117 struct blk_mq_ctx *ctx;
1118 struct request *rq;
1119 int rw = bio_data_dir(bio);
1120 struct blk_mq_alloc_data alloc_data;
1121
1122 if (unlikely(blk_mq_queue_enter(q))) {
1123 bio_endio(bio, -EIO);
1124 return NULL;
1125 }
1126
1127 ctx = blk_mq_get_ctx(q);
1128 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1129
1130 if (rw_is_sync(bio->bi_rw))
1131 rw |= REQ_SYNC;
1132
1133 trace_block_getrq(q, bio, rw);
1134 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1135 hctx);
1136 rq = __blk_mq_alloc_request(&alloc_data, rw);
1137 if (unlikely(!rq)) {
1138 __blk_mq_run_hw_queue(hctx);
1139 blk_mq_put_ctx(ctx);
1140 trace_block_sleeprq(q, bio, rw);
1141
1142 ctx = blk_mq_get_ctx(q);
1143 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1144 blk_mq_set_alloc_data(&alloc_data, q,
1145 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1146 rq = __blk_mq_alloc_request(&alloc_data, rw);
1147 ctx = alloc_data.ctx;
1148 hctx = alloc_data.hctx;
1149 }
1150
1151 hctx->queued++;
1152 data->hctx = hctx;
1153 data->ctx = ctx;
1154 return rq;
1155 }
1156
1157 /*
1158 * Multiple hardware queue variant. This will not use per-process plugs,
1159 * but will attempt to bypass the hctx queueing if we can go straight to
1160 * hardware for SYNC IO.
1161 */
1162 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1163 {
1164 const int is_sync = rw_is_sync(bio->bi_rw);
1165 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1166 struct blk_map_ctx data;
1167 struct request *rq;
1168
1169 blk_queue_bounce(q, &bio);
1170
1171 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1172 bio_endio(bio, -EIO);
1173 return;
1174 }
1175
1176 rq = blk_mq_map_request(q, bio, &data);
1177 if (unlikely(!rq))
1178 return;
1179
1180 if (unlikely(is_flush_fua)) {
1181 blk_mq_bio_to_request(rq, bio);
1182 blk_insert_flush(rq);
1183 goto run_queue;
1184 }
1185
1186 if (is_sync) {
1187 int ret;
1188
1189 blk_mq_bio_to_request(rq, bio);
1190 blk_mq_start_request(rq, true);
1191
1192 /*
1193 * For OK queue, we are done. For error, kill it. Any other
1194 * error (busy), just add it to our list as we previously
1195 * would have done
1196 */
1197 ret = q->mq_ops->queue_rq(data.hctx, rq);
1198 if (ret == BLK_MQ_RQ_QUEUE_OK)
1199 goto done;
1200 else {
1201 __blk_mq_requeue_request(rq);
1202
1203 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1204 rq->errors = -EIO;
1205 blk_mq_end_io(rq, rq->errors);
1206 goto done;
1207 }
1208 }
1209 }
1210
1211 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1212 /*
1213 * For a SYNC request, send it to the hardware immediately. For
1214 * an ASYNC request, just ensure that we run it later on. The
1215 * latter allows for merging opportunities and more efficient
1216 * dispatching.
1217 */
1218 run_queue:
1219 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1220 }
1221 done:
1222 blk_mq_put_ctx(data.ctx);
1223 }
1224
1225 /*
1226 * Single hardware queue variant. This will attempt to use any per-process
1227 * plug for merging and IO deferral.
1228 */
1229 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1230 {
1231 const int is_sync = rw_is_sync(bio->bi_rw);
1232 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1233 unsigned int use_plug, request_count = 0;
1234 struct blk_map_ctx data;
1235 struct request *rq;
1236
1237 /*
1238 * If we have multiple hardware queues, just go directly to
1239 * one of those for sync IO.
1240 */
1241 use_plug = !is_flush_fua && !is_sync;
1242
1243 blk_queue_bounce(q, &bio);
1244
1245 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1246 bio_endio(bio, -EIO);
1247 return;
1248 }
1249
1250 if (use_plug && !blk_queue_nomerges(q) &&
1251 blk_attempt_plug_merge(q, bio, &request_count))
1252 return;
1253
1254 rq = blk_mq_map_request(q, bio, &data);
1255 if (unlikely(!rq))
1256 return;
1257
1258 if (unlikely(is_flush_fua)) {
1259 blk_mq_bio_to_request(rq, bio);
1260 blk_insert_flush(rq);
1261 goto run_queue;
1262 }
1263
1264 /*
1265 * A task plug currently exists. Since this is completely lockless,
1266 * utilize that to temporarily store requests until the task is
1267 * either done or scheduled away.
1268 */
1269 if (use_plug) {
1270 struct blk_plug *plug = current->plug;
1271
1272 if (plug) {
1273 blk_mq_bio_to_request(rq, bio);
1274 if (list_empty(&plug->mq_list))
1275 trace_block_plug(q);
1276 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1277 blk_flush_plug_list(plug, false);
1278 trace_block_plug(q);
1279 }
1280 list_add_tail(&rq->queuelist, &plug->mq_list);
1281 blk_mq_put_ctx(data.ctx);
1282 return;
1283 }
1284 }
1285
1286 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1287 /*
1288 * For a SYNC request, send it to the hardware immediately. For
1289 * an ASYNC request, just ensure that we run it later on. The
1290 * latter allows for merging opportunities and more efficient
1291 * dispatching.
1292 */
1293 run_queue:
1294 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1295 }
1296
1297 blk_mq_put_ctx(data.ctx);
1298 }
1299
1300 /*
1301 * Default mapping to a software queue, since we use one per CPU.
1302 */
1303 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1304 {
1305 return q->queue_hw_ctx[q->mq_map[cpu]];
1306 }
1307 EXPORT_SYMBOL(blk_mq_map_queue);
1308
1309 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1310 struct blk_mq_tags *tags, unsigned int hctx_idx)
1311 {
1312 struct page *page;
1313
1314 if (tags->rqs && set->ops->exit_request) {
1315 int i;
1316
1317 for (i = 0; i < tags->nr_tags; i++) {
1318 if (!tags->rqs[i])
1319 continue;
1320 set->ops->exit_request(set->driver_data, tags->rqs[i],
1321 hctx_idx, i);
1322 }
1323 }
1324
1325 while (!list_empty(&tags->page_list)) {
1326 page = list_first_entry(&tags->page_list, struct page, lru);
1327 list_del_init(&page->lru);
1328 __free_pages(page, page->private);
1329 }
1330
1331 kfree(tags->rqs);
1332
1333 blk_mq_free_tags(tags);
1334 }
1335
1336 static size_t order_to_size(unsigned int order)
1337 {
1338 return (size_t)PAGE_SIZE << order;
1339 }
1340
1341 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1342 unsigned int hctx_idx)
1343 {
1344 struct blk_mq_tags *tags;
1345 unsigned int i, j, entries_per_page, max_order = 4;
1346 size_t rq_size, left;
1347
1348 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1349 set->numa_node);
1350 if (!tags)
1351 return NULL;
1352
1353 INIT_LIST_HEAD(&tags->page_list);
1354
1355 tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *),
1356 GFP_KERNEL, set->numa_node);
1357 if (!tags->rqs) {
1358 blk_mq_free_tags(tags);
1359 return NULL;
1360 }
1361
1362 /*
1363 * rq_size is the size of the request plus driver payload, rounded
1364 * to the cacheline size
1365 */
1366 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1367 cache_line_size());
1368 left = rq_size * set->queue_depth;
1369
1370 for (i = 0; i < set->queue_depth; ) {
1371 int this_order = max_order;
1372 struct page *page;
1373 int to_do;
1374 void *p;
1375
1376 while (left < order_to_size(this_order - 1) && this_order)
1377 this_order--;
1378
1379 do {
1380 page = alloc_pages_node(set->numa_node, GFP_KERNEL,
1381 this_order);
1382 if (page)
1383 break;
1384 if (!this_order--)
1385 break;
1386 if (order_to_size(this_order) < rq_size)
1387 break;
1388 } while (1);
1389
1390 if (!page)
1391 goto fail;
1392
1393 page->private = this_order;
1394 list_add_tail(&page->lru, &tags->page_list);
1395
1396 p = page_address(page);
1397 entries_per_page = order_to_size(this_order) / rq_size;
1398 to_do = min(entries_per_page, set->queue_depth - i);
1399 left -= to_do * rq_size;
1400 for (j = 0; j < to_do; j++) {
1401 tags->rqs[i] = p;
1402 if (set->ops->init_request) {
1403 if (set->ops->init_request(set->driver_data,
1404 tags->rqs[i], hctx_idx, i,
1405 set->numa_node))
1406 goto fail;
1407 }
1408
1409 p += rq_size;
1410 i++;
1411 }
1412 }
1413
1414 return tags;
1415
1416 fail:
1417 pr_warn("%s: failed to allocate requests\n", __func__);
1418 blk_mq_free_rq_map(set, tags, hctx_idx);
1419 return NULL;
1420 }
1421
1422 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1423 {
1424 kfree(bitmap->map);
1425 }
1426
1427 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1428 {
1429 unsigned int bpw = 8, total, num_maps, i;
1430
1431 bitmap->bits_per_word = bpw;
1432
1433 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1434 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1435 GFP_KERNEL, node);
1436 if (!bitmap->map)
1437 return -ENOMEM;
1438
1439 bitmap->map_size = num_maps;
1440
1441 total = nr_cpu_ids;
1442 for (i = 0; i < num_maps; i++) {
1443 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1444 total -= bitmap->map[i].depth;
1445 }
1446
1447 return 0;
1448 }
1449
1450 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1451 {
1452 struct request_queue *q = hctx->queue;
1453 struct blk_mq_ctx *ctx;
1454 LIST_HEAD(tmp);
1455
1456 /*
1457 * Move ctx entries to new CPU, if this one is going away.
1458 */
1459 ctx = __blk_mq_get_ctx(q, cpu);
1460
1461 spin_lock(&ctx->lock);
1462 if (!list_empty(&ctx->rq_list)) {
1463 list_splice_init(&ctx->rq_list, &tmp);
1464 blk_mq_hctx_clear_pending(hctx, ctx);
1465 }
1466 spin_unlock(&ctx->lock);
1467
1468 if (list_empty(&tmp))
1469 return NOTIFY_OK;
1470
1471 ctx = blk_mq_get_ctx(q);
1472 spin_lock(&ctx->lock);
1473
1474 while (!list_empty(&tmp)) {
1475 struct request *rq;
1476
1477 rq = list_first_entry(&tmp, struct request, queuelist);
1478 rq->mq_ctx = ctx;
1479 list_move_tail(&rq->queuelist, &ctx->rq_list);
1480 }
1481
1482 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1483 blk_mq_hctx_mark_pending(hctx, ctx);
1484
1485 spin_unlock(&ctx->lock);
1486
1487 blk_mq_run_hw_queue(hctx, true);
1488 blk_mq_put_ctx(ctx);
1489 return NOTIFY_OK;
1490 }
1491
1492 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1493 {
1494 struct request_queue *q = hctx->queue;
1495 struct blk_mq_tag_set *set = q->tag_set;
1496
1497 if (set->tags[hctx->queue_num])
1498 return NOTIFY_OK;
1499
1500 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1501 if (!set->tags[hctx->queue_num])
1502 return NOTIFY_STOP;
1503
1504 hctx->tags = set->tags[hctx->queue_num];
1505 return NOTIFY_OK;
1506 }
1507
1508 static int blk_mq_hctx_notify(void *data, unsigned long action,
1509 unsigned int cpu)
1510 {
1511 struct blk_mq_hw_ctx *hctx = data;
1512
1513 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1514 return blk_mq_hctx_cpu_offline(hctx, cpu);
1515 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1516 return blk_mq_hctx_cpu_online(hctx, cpu);
1517
1518 return NOTIFY_OK;
1519 }
1520
1521 static void blk_mq_exit_hw_queues(struct request_queue *q,
1522 struct blk_mq_tag_set *set, int nr_queue)
1523 {
1524 struct blk_mq_hw_ctx *hctx;
1525 unsigned int i;
1526
1527 queue_for_each_hw_ctx(q, hctx, i) {
1528 if (i == nr_queue)
1529 break;
1530
1531 blk_mq_tag_idle(hctx);
1532
1533 if (set->ops->exit_hctx)
1534 set->ops->exit_hctx(hctx, i);
1535
1536 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1537 kfree(hctx->ctxs);
1538 blk_mq_free_bitmap(&hctx->ctx_map);
1539 }
1540
1541 }
1542
1543 static void blk_mq_free_hw_queues(struct request_queue *q,
1544 struct blk_mq_tag_set *set)
1545 {
1546 struct blk_mq_hw_ctx *hctx;
1547 unsigned int i;
1548
1549 queue_for_each_hw_ctx(q, hctx, i) {
1550 free_cpumask_var(hctx->cpumask);
1551 kfree(hctx);
1552 }
1553 }
1554
1555 static int blk_mq_init_hw_queues(struct request_queue *q,
1556 struct blk_mq_tag_set *set)
1557 {
1558 struct blk_mq_hw_ctx *hctx;
1559 unsigned int i;
1560
1561 /*
1562 * Initialize hardware queues
1563 */
1564 queue_for_each_hw_ctx(q, hctx, i) {
1565 int node;
1566
1567 node = hctx->numa_node;
1568 if (node == NUMA_NO_NODE)
1569 node = hctx->numa_node = set->numa_node;
1570
1571 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1572 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1573 spin_lock_init(&hctx->lock);
1574 INIT_LIST_HEAD(&hctx->dispatch);
1575 hctx->queue = q;
1576 hctx->queue_num = i;
1577 hctx->flags = set->flags;
1578 hctx->cmd_size = set->cmd_size;
1579
1580 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1581 blk_mq_hctx_notify, hctx);
1582 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1583
1584 hctx->tags = set->tags[i];
1585
1586 /*
1587 * Allocate space for all possible cpus to avoid allocation at
1588 * runtime
1589 */
1590 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1591 GFP_KERNEL, node);
1592 if (!hctx->ctxs)
1593 break;
1594
1595 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1596 break;
1597
1598 hctx->nr_ctx = 0;
1599
1600 if (set->ops->init_hctx &&
1601 set->ops->init_hctx(hctx, set->driver_data, i))
1602 break;
1603 }
1604
1605 if (i == q->nr_hw_queues)
1606 return 0;
1607
1608 /*
1609 * Init failed
1610 */
1611 blk_mq_exit_hw_queues(q, set, i);
1612
1613 return 1;
1614 }
1615
1616 static void blk_mq_init_cpu_queues(struct request_queue *q,
1617 unsigned int nr_hw_queues)
1618 {
1619 unsigned int i;
1620
1621 for_each_possible_cpu(i) {
1622 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1623 struct blk_mq_hw_ctx *hctx;
1624
1625 memset(__ctx, 0, sizeof(*__ctx));
1626 __ctx->cpu = i;
1627 spin_lock_init(&__ctx->lock);
1628 INIT_LIST_HEAD(&__ctx->rq_list);
1629 __ctx->queue = q;
1630
1631 /* If the cpu isn't online, the cpu is mapped to first hctx */
1632 if (!cpu_online(i))
1633 continue;
1634
1635 hctx = q->mq_ops->map_queue(q, i);
1636 cpumask_set_cpu(i, hctx->cpumask);
1637 hctx->nr_ctx++;
1638
1639 /*
1640 * Set local node, IFF we have more than one hw queue. If
1641 * not, we remain on the home node of the device
1642 */
1643 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1644 hctx->numa_node = cpu_to_node(i);
1645 }
1646 }
1647
1648 static void blk_mq_map_swqueue(struct request_queue *q)
1649 {
1650 unsigned int i;
1651 struct blk_mq_hw_ctx *hctx;
1652 struct blk_mq_ctx *ctx;
1653
1654 queue_for_each_hw_ctx(q, hctx, i) {
1655 cpumask_clear(hctx->cpumask);
1656 hctx->nr_ctx = 0;
1657 }
1658
1659 /*
1660 * Map software to hardware queues
1661 */
1662 queue_for_each_ctx(q, ctx, i) {
1663 /* If the cpu isn't online, the cpu is mapped to first hctx */
1664 if (!cpu_online(i))
1665 continue;
1666
1667 hctx = q->mq_ops->map_queue(q, i);
1668 cpumask_set_cpu(i, hctx->cpumask);
1669 ctx->index_hw = hctx->nr_ctx;
1670 hctx->ctxs[hctx->nr_ctx++] = ctx;
1671 }
1672
1673 queue_for_each_hw_ctx(q, hctx, i) {
1674 /*
1675 * If no software queues are mapped to this hardware queue,
1676 * disable it and free the request entries.
1677 */
1678 if (!hctx->nr_ctx) {
1679 struct blk_mq_tag_set *set = q->tag_set;
1680
1681 if (set->tags[i]) {
1682 blk_mq_free_rq_map(set, set->tags[i], i);
1683 set->tags[i] = NULL;
1684 hctx->tags = NULL;
1685 }
1686 continue;
1687 }
1688
1689 /*
1690 * Initialize batch roundrobin counts
1691 */
1692 hctx->next_cpu = cpumask_first(hctx->cpumask);
1693 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1694 }
1695 }
1696
1697 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1698 {
1699 struct blk_mq_hw_ctx *hctx;
1700 struct request_queue *q;
1701 bool shared;
1702 int i;
1703
1704 if (set->tag_list.next == set->tag_list.prev)
1705 shared = false;
1706 else
1707 shared = true;
1708
1709 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1710 blk_mq_freeze_queue(q);
1711
1712 queue_for_each_hw_ctx(q, hctx, i) {
1713 if (shared)
1714 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1715 else
1716 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1717 }
1718 blk_mq_unfreeze_queue(q);
1719 }
1720 }
1721
1722 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1723 {
1724 struct blk_mq_tag_set *set = q->tag_set;
1725
1726 mutex_lock(&set->tag_list_lock);
1727 list_del_init(&q->tag_set_list);
1728 blk_mq_update_tag_set_depth(set);
1729 mutex_unlock(&set->tag_list_lock);
1730 }
1731
1732 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1733 struct request_queue *q)
1734 {
1735 q->tag_set = set;
1736
1737 mutex_lock(&set->tag_list_lock);
1738 list_add_tail(&q->tag_set_list, &set->tag_list);
1739 blk_mq_update_tag_set_depth(set);
1740 mutex_unlock(&set->tag_list_lock);
1741 }
1742
1743 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1744 {
1745 struct blk_mq_hw_ctx **hctxs;
1746 struct blk_mq_ctx __percpu *ctx;
1747 struct request_queue *q;
1748 unsigned int *map;
1749 int i;
1750
1751 ctx = alloc_percpu(struct blk_mq_ctx);
1752 if (!ctx)
1753 return ERR_PTR(-ENOMEM);
1754
1755 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1756 set->numa_node);
1757
1758 if (!hctxs)
1759 goto err_percpu;
1760
1761 map = blk_mq_make_queue_map(set);
1762 if (!map)
1763 goto err_map;
1764
1765 for (i = 0; i < set->nr_hw_queues; i++) {
1766 int node = blk_mq_hw_queue_to_node(map, i);
1767
1768 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1769 GFP_KERNEL, node);
1770 if (!hctxs[i])
1771 goto err_hctxs;
1772
1773 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1774 goto err_hctxs;
1775
1776 atomic_set(&hctxs[i]->nr_active, 0);
1777 hctxs[i]->numa_node = node;
1778 hctxs[i]->queue_num = i;
1779 }
1780
1781 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1782 if (!q)
1783 goto err_hctxs;
1784
1785 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release))
1786 goto err_map;
1787
1788 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1789 blk_queue_rq_timeout(q, 30000);
1790
1791 q->nr_queues = nr_cpu_ids;
1792 q->nr_hw_queues = set->nr_hw_queues;
1793 q->mq_map = map;
1794
1795 q->queue_ctx = ctx;
1796 q->queue_hw_ctx = hctxs;
1797
1798 q->mq_ops = set->ops;
1799 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1800
1801 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1802 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1803
1804 q->sg_reserved_size = INT_MAX;
1805
1806 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1807 INIT_LIST_HEAD(&q->requeue_list);
1808 spin_lock_init(&q->requeue_lock);
1809
1810 if (q->nr_hw_queues > 1)
1811 blk_queue_make_request(q, blk_mq_make_request);
1812 else
1813 blk_queue_make_request(q, blk_sq_make_request);
1814
1815 blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
1816 if (set->timeout)
1817 blk_queue_rq_timeout(q, set->timeout);
1818
1819 /*
1820 * Do this after blk_queue_make_request() overrides it...
1821 */
1822 q->nr_requests = set->queue_depth;
1823
1824 if (set->ops->complete)
1825 blk_queue_softirq_done(q, set->ops->complete);
1826
1827 blk_mq_init_flush(q);
1828 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1829
1830 q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1831 set->cmd_size, cache_line_size()),
1832 GFP_KERNEL);
1833 if (!q->flush_rq)
1834 goto err_hw;
1835
1836 if (blk_mq_init_hw_queues(q, set))
1837 goto err_flush_rq;
1838
1839 mutex_lock(&all_q_mutex);
1840 list_add_tail(&q->all_q_node, &all_q_list);
1841 mutex_unlock(&all_q_mutex);
1842
1843 blk_mq_add_queue_tag_set(set, q);
1844
1845 blk_mq_map_swqueue(q);
1846
1847 return q;
1848
1849 err_flush_rq:
1850 kfree(q->flush_rq);
1851 err_hw:
1852 blk_cleanup_queue(q);
1853 err_hctxs:
1854 kfree(map);
1855 for (i = 0; i < set->nr_hw_queues; i++) {
1856 if (!hctxs[i])
1857 break;
1858 free_cpumask_var(hctxs[i]->cpumask);
1859 kfree(hctxs[i]);
1860 }
1861 err_map:
1862 kfree(hctxs);
1863 err_percpu:
1864 free_percpu(ctx);
1865 return ERR_PTR(-ENOMEM);
1866 }
1867 EXPORT_SYMBOL(blk_mq_init_queue);
1868
1869 void blk_mq_free_queue(struct request_queue *q)
1870 {
1871 struct blk_mq_tag_set *set = q->tag_set;
1872
1873 blk_mq_del_queue_tag_set(q);
1874
1875 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1876 blk_mq_free_hw_queues(q, set);
1877
1878 percpu_ref_exit(&q->mq_usage_counter);
1879
1880 free_percpu(q->queue_ctx);
1881 kfree(q->queue_hw_ctx);
1882 kfree(q->mq_map);
1883
1884 q->queue_ctx = NULL;
1885 q->queue_hw_ctx = NULL;
1886 q->mq_map = NULL;
1887
1888 mutex_lock(&all_q_mutex);
1889 list_del_init(&q->all_q_node);
1890 mutex_unlock(&all_q_mutex);
1891 }
1892
1893 /* Basically redo blk_mq_init_queue with queue frozen */
1894 static void blk_mq_queue_reinit(struct request_queue *q)
1895 {
1896 blk_mq_freeze_queue(q);
1897
1898 blk_mq_sysfs_unregister(q);
1899
1900 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1901
1902 /*
1903 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1904 * we should change hctx numa_node according to new topology (this
1905 * involves free and re-allocate memory, worthy doing?)
1906 */
1907
1908 blk_mq_map_swqueue(q);
1909
1910 blk_mq_sysfs_register(q);
1911
1912 blk_mq_unfreeze_queue(q);
1913 }
1914
1915 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1916 unsigned long action, void *hcpu)
1917 {
1918 struct request_queue *q;
1919
1920 /*
1921 * Before new mappings are established, hotadded cpu might already
1922 * start handling requests. This doesn't break anything as we map
1923 * offline CPUs to first hardware queue. We will re-init the queue
1924 * below to get optimal settings.
1925 */
1926 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1927 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1928 return NOTIFY_OK;
1929
1930 mutex_lock(&all_q_mutex);
1931 list_for_each_entry(q, &all_q_list, all_q_node)
1932 blk_mq_queue_reinit(q);
1933 mutex_unlock(&all_q_mutex);
1934 return NOTIFY_OK;
1935 }
1936
1937 /*
1938 * Alloc a tag set to be associated with one or more request queues.
1939 * May fail with EINVAL for various error conditions. May adjust the
1940 * requested depth down, if if it too large. In that case, the set
1941 * value will be stored in set->queue_depth.
1942 */
1943 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
1944 {
1945 int i;
1946
1947 if (!set->nr_hw_queues)
1948 return -EINVAL;
1949 if (!set->queue_depth)
1950 return -EINVAL;
1951 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
1952 return -EINVAL;
1953
1954 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
1955 return -EINVAL;
1956
1957 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
1958 pr_info("blk-mq: reduced tag depth to %u\n",
1959 BLK_MQ_MAX_DEPTH);
1960 set->queue_depth = BLK_MQ_MAX_DEPTH;
1961 }
1962
1963 set->tags = kmalloc_node(set->nr_hw_queues *
1964 sizeof(struct blk_mq_tags *),
1965 GFP_KERNEL, set->numa_node);
1966 if (!set->tags)
1967 goto out;
1968
1969 for (i = 0; i < set->nr_hw_queues; i++) {
1970 set->tags[i] = blk_mq_init_rq_map(set, i);
1971 if (!set->tags[i])
1972 goto out_unwind;
1973 }
1974
1975 mutex_init(&set->tag_list_lock);
1976 INIT_LIST_HEAD(&set->tag_list);
1977
1978 return 0;
1979
1980 out_unwind:
1981 while (--i >= 0)
1982 blk_mq_free_rq_map(set, set->tags[i], i);
1983 out:
1984 return -ENOMEM;
1985 }
1986 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
1987
1988 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
1989 {
1990 int i;
1991
1992 for (i = 0; i < set->nr_hw_queues; i++) {
1993 if (set->tags[i])
1994 blk_mq_free_rq_map(set, set->tags[i], i);
1995 }
1996
1997 kfree(set->tags);
1998 }
1999 EXPORT_SYMBOL(blk_mq_free_tag_set);
2000
2001 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2002 {
2003 struct blk_mq_tag_set *set = q->tag_set;
2004 struct blk_mq_hw_ctx *hctx;
2005 int i, ret;
2006
2007 if (!set || nr > set->queue_depth)
2008 return -EINVAL;
2009
2010 ret = 0;
2011 queue_for_each_hw_ctx(q, hctx, i) {
2012 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2013 if (ret)
2014 break;
2015 }
2016
2017 if (!ret)
2018 q->nr_requests = nr;
2019
2020 return ret;
2021 }
2022
2023 void blk_mq_disable_hotplug(void)
2024 {
2025 mutex_lock(&all_q_mutex);
2026 }
2027
2028 void blk_mq_enable_hotplug(void)
2029 {
2030 mutex_unlock(&all_q_mutex);
2031 }
2032
2033 static int __init blk_mq_init(void)
2034 {
2035 blk_mq_cpu_init();
2036
2037 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2038
2039 return 0;
2040 }
2041 subsys_initcall(blk_mq_init);
This page took 0.103165 seconds and 6 git commands to generate.