lib: fix scnprintf() if @size is == 0
[deliverable/linux.git] / block / blk-settings.c
1 /*
2 * Functions related to setting various queue properties from drivers
3 */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
14
15 #include "blk.h"
16
17 unsigned long blk_max_low_pfn;
18 EXPORT_SYMBOL(blk_max_low_pfn);
19
20 unsigned long blk_max_pfn;
21
22 /**
23 * blk_queue_prep_rq - set a prepare_request function for queue
24 * @q: queue
25 * @pfn: prepare_request function
26 *
27 * It's possible for a queue to register a prepare_request callback which
28 * is invoked before the request is handed to the request_fn. The goal of
29 * the function is to prepare a request for I/O, it can be used to build a
30 * cdb from the request data for instance.
31 *
32 */
33 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
34 {
35 q->prep_rq_fn = pfn;
36 }
37 EXPORT_SYMBOL(blk_queue_prep_rq);
38
39 /**
40 * blk_queue_unprep_rq - set an unprepare_request function for queue
41 * @q: queue
42 * @ufn: unprepare_request function
43 *
44 * It's possible for a queue to register an unprepare_request callback
45 * which is invoked before the request is finally completed. The goal
46 * of the function is to deallocate any data that was allocated in the
47 * prepare_request callback.
48 *
49 */
50 void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
51 {
52 q->unprep_rq_fn = ufn;
53 }
54 EXPORT_SYMBOL(blk_queue_unprep_rq);
55
56 /**
57 * blk_queue_merge_bvec - set a merge_bvec function for queue
58 * @q: queue
59 * @mbfn: merge_bvec_fn
60 *
61 * Usually queues have static limitations on the max sectors or segments that
62 * we can put in a request. Stacking drivers may have some settings that
63 * are dynamic, and thus we have to query the queue whether it is ok to
64 * add a new bio_vec to a bio at a given offset or not. If the block device
65 * has such limitations, it needs to register a merge_bvec_fn to control
66 * the size of bio's sent to it. Note that a block device *must* allow a
67 * single page to be added to an empty bio. The block device driver may want
68 * to use the bio_split() function to deal with these bio's. By default
69 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
70 * honored.
71 */
72 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
73 {
74 q->merge_bvec_fn = mbfn;
75 }
76 EXPORT_SYMBOL(blk_queue_merge_bvec);
77
78 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
79 {
80 q->softirq_done_fn = fn;
81 }
82 EXPORT_SYMBOL(blk_queue_softirq_done);
83
84 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
85 {
86 q->rq_timeout = timeout;
87 }
88 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
89
90 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
91 {
92 q->rq_timed_out_fn = fn;
93 }
94 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
95
96 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
97 {
98 q->lld_busy_fn = fn;
99 }
100 EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
101
102 /**
103 * blk_set_default_limits - reset limits to default values
104 * @lim: the queue_limits structure to reset
105 *
106 * Description:
107 * Returns a queue_limit struct to its default state. Can be used by
108 * stacking drivers like DM that stage table swaps and reuse an
109 * existing device queue.
110 */
111 void blk_set_default_limits(struct queue_limits *lim)
112 {
113 lim->max_segments = BLK_MAX_SEGMENTS;
114 lim->max_integrity_segments = 0;
115 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
116 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
117 lim->max_sectors = BLK_DEF_MAX_SECTORS;
118 lim->max_hw_sectors = INT_MAX;
119 lim->max_discard_sectors = 0;
120 lim->discard_granularity = 0;
121 lim->discard_alignment = 0;
122 lim->discard_misaligned = 0;
123 lim->discard_zeroes_data = -1;
124 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
125 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
126 lim->alignment_offset = 0;
127 lim->io_opt = 0;
128 lim->misaligned = 0;
129 lim->no_cluster = 0;
130 }
131 EXPORT_SYMBOL(blk_set_default_limits);
132
133 /**
134 * blk_queue_make_request - define an alternate make_request function for a device
135 * @q: the request queue for the device to be affected
136 * @mfn: the alternate make_request function
137 *
138 * Description:
139 * The normal way for &struct bios to be passed to a device
140 * driver is for them to be collected into requests on a request
141 * queue, and then to allow the device driver to select requests
142 * off that queue when it is ready. This works well for many block
143 * devices. However some block devices (typically virtual devices
144 * such as md or lvm) do not benefit from the processing on the
145 * request queue, and are served best by having the requests passed
146 * directly to them. This can be achieved by providing a function
147 * to blk_queue_make_request().
148 *
149 * Caveat:
150 * The driver that does this *must* be able to deal appropriately
151 * with buffers in "highmemory". This can be accomplished by either calling
152 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
153 * blk_queue_bounce() to create a buffer in normal memory.
154 **/
155 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
156 {
157 /*
158 * set defaults
159 */
160 q->nr_requests = BLKDEV_MAX_RQ;
161
162 q->make_request_fn = mfn;
163 blk_queue_dma_alignment(q, 511);
164 blk_queue_congestion_threshold(q);
165 q->nr_batching = BLK_BATCH_REQ;
166
167 q->unplug_thresh = 4; /* hmm */
168 q->unplug_delay = msecs_to_jiffies(3); /* 3 milliseconds */
169 if (q->unplug_delay == 0)
170 q->unplug_delay = 1;
171
172 q->unplug_timer.function = blk_unplug_timeout;
173 q->unplug_timer.data = (unsigned long)q;
174
175 blk_set_default_limits(&q->limits);
176 blk_queue_max_hw_sectors(q, BLK_SAFE_MAX_SECTORS);
177
178 /*
179 * If the caller didn't supply a lock, fall back to our embedded
180 * per-queue locks
181 */
182 if (!q->queue_lock)
183 q->queue_lock = &q->__queue_lock;
184
185 /*
186 * by default assume old behaviour and bounce for any highmem page
187 */
188 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
189 }
190 EXPORT_SYMBOL(blk_queue_make_request);
191
192 /**
193 * blk_queue_bounce_limit - set bounce buffer limit for queue
194 * @q: the request queue for the device
195 * @dma_mask: the maximum address the device can handle
196 *
197 * Description:
198 * Different hardware can have different requirements as to what pages
199 * it can do I/O directly to. A low level driver can call
200 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
201 * buffers for doing I/O to pages residing above @dma_mask.
202 **/
203 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask)
204 {
205 unsigned long b_pfn = dma_mask >> PAGE_SHIFT;
206 int dma = 0;
207
208 q->bounce_gfp = GFP_NOIO;
209 #if BITS_PER_LONG == 64
210 /*
211 * Assume anything <= 4GB can be handled by IOMMU. Actually
212 * some IOMMUs can handle everything, but I don't know of a
213 * way to test this here.
214 */
215 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
216 dma = 1;
217 q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
218 #else
219 if (b_pfn < blk_max_low_pfn)
220 dma = 1;
221 q->limits.bounce_pfn = b_pfn;
222 #endif
223 if (dma) {
224 init_emergency_isa_pool();
225 q->bounce_gfp = GFP_NOIO | GFP_DMA;
226 q->limits.bounce_pfn = b_pfn;
227 }
228 }
229 EXPORT_SYMBOL(blk_queue_bounce_limit);
230
231 /**
232 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
233 * @q: the request queue for the device
234 * @max_hw_sectors: max hardware sectors in the usual 512b unit
235 *
236 * Description:
237 * Enables a low level driver to set a hard upper limit,
238 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
239 * the device driver based upon the combined capabilities of I/O
240 * controller and storage device.
241 *
242 * max_sectors is a soft limit imposed by the block layer for
243 * filesystem type requests. This value can be overridden on a
244 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
245 * The soft limit can not exceed max_hw_sectors.
246 **/
247 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
248 {
249 if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
250 max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
251 printk(KERN_INFO "%s: set to minimum %d\n",
252 __func__, max_hw_sectors);
253 }
254
255 q->limits.max_hw_sectors = max_hw_sectors;
256 q->limits.max_sectors = min_t(unsigned int, max_hw_sectors,
257 BLK_DEF_MAX_SECTORS);
258 }
259 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
260
261 /**
262 * blk_queue_max_discard_sectors - set max sectors for a single discard
263 * @q: the request queue for the device
264 * @max_discard_sectors: maximum number of sectors to discard
265 **/
266 void blk_queue_max_discard_sectors(struct request_queue *q,
267 unsigned int max_discard_sectors)
268 {
269 q->limits.max_discard_sectors = max_discard_sectors;
270 }
271 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
272
273 /**
274 * blk_queue_max_segments - set max hw segments for a request for this queue
275 * @q: the request queue for the device
276 * @max_segments: max number of segments
277 *
278 * Description:
279 * Enables a low level driver to set an upper limit on the number of
280 * hw data segments in a request.
281 **/
282 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
283 {
284 if (!max_segments) {
285 max_segments = 1;
286 printk(KERN_INFO "%s: set to minimum %d\n",
287 __func__, max_segments);
288 }
289
290 q->limits.max_segments = max_segments;
291 }
292 EXPORT_SYMBOL(blk_queue_max_segments);
293
294 /**
295 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
296 * @q: the request queue for the device
297 * @max_size: max size of segment in bytes
298 *
299 * Description:
300 * Enables a low level driver to set an upper limit on the size of a
301 * coalesced segment
302 **/
303 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
304 {
305 if (max_size < PAGE_CACHE_SIZE) {
306 max_size = PAGE_CACHE_SIZE;
307 printk(KERN_INFO "%s: set to minimum %d\n",
308 __func__, max_size);
309 }
310
311 q->limits.max_segment_size = max_size;
312 }
313 EXPORT_SYMBOL(blk_queue_max_segment_size);
314
315 /**
316 * blk_queue_logical_block_size - set logical block size for the queue
317 * @q: the request queue for the device
318 * @size: the logical block size, in bytes
319 *
320 * Description:
321 * This should be set to the lowest possible block size that the
322 * storage device can address. The default of 512 covers most
323 * hardware.
324 **/
325 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
326 {
327 q->limits.logical_block_size = size;
328
329 if (q->limits.physical_block_size < size)
330 q->limits.physical_block_size = size;
331
332 if (q->limits.io_min < q->limits.physical_block_size)
333 q->limits.io_min = q->limits.physical_block_size;
334 }
335 EXPORT_SYMBOL(blk_queue_logical_block_size);
336
337 /**
338 * blk_queue_physical_block_size - set physical block size for the queue
339 * @q: the request queue for the device
340 * @size: the physical block size, in bytes
341 *
342 * Description:
343 * This should be set to the lowest possible sector size that the
344 * hardware can operate on without reverting to read-modify-write
345 * operations.
346 */
347 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
348 {
349 q->limits.physical_block_size = size;
350
351 if (q->limits.physical_block_size < q->limits.logical_block_size)
352 q->limits.physical_block_size = q->limits.logical_block_size;
353
354 if (q->limits.io_min < q->limits.physical_block_size)
355 q->limits.io_min = q->limits.physical_block_size;
356 }
357 EXPORT_SYMBOL(blk_queue_physical_block_size);
358
359 /**
360 * blk_queue_alignment_offset - set physical block alignment offset
361 * @q: the request queue for the device
362 * @offset: alignment offset in bytes
363 *
364 * Description:
365 * Some devices are naturally misaligned to compensate for things like
366 * the legacy DOS partition table 63-sector offset. Low-level drivers
367 * should call this function for devices whose first sector is not
368 * naturally aligned.
369 */
370 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
371 {
372 q->limits.alignment_offset =
373 offset & (q->limits.physical_block_size - 1);
374 q->limits.misaligned = 0;
375 }
376 EXPORT_SYMBOL(blk_queue_alignment_offset);
377
378 /**
379 * blk_limits_io_min - set minimum request size for a device
380 * @limits: the queue limits
381 * @min: smallest I/O size in bytes
382 *
383 * Description:
384 * Some devices have an internal block size bigger than the reported
385 * hardware sector size. This function can be used to signal the
386 * smallest I/O the device can perform without incurring a performance
387 * penalty.
388 */
389 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
390 {
391 limits->io_min = min;
392
393 if (limits->io_min < limits->logical_block_size)
394 limits->io_min = limits->logical_block_size;
395
396 if (limits->io_min < limits->physical_block_size)
397 limits->io_min = limits->physical_block_size;
398 }
399 EXPORT_SYMBOL(blk_limits_io_min);
400
401 /**
402 * blk_queue_io_min - set minimum request size for the queue
403 * @q: the request queue for the device
404 * @min: smallest I/O size in bytes
405 *
406 * Description:
407 * Storage devices may report a granularity or preferred minimum I/O
408 * size which is the smallest request the device can perform without
409 * incurring a performance penalty. For disk drives this is often the
410 * physical block size. For RAID arrays it is often the stripe chunk
411 * size. A properly aligned multiple of minimum_io_size is the
412 * preferred request size for workloads where a high number of I/O
413 * operations is desired.
414 */
415 void blk_queue_io_min(struct request_queue *q, unsigned int min)
416 {
417 blk_limits_io_min(&q->limits, min);
418 }
419 EXPORT_SYMBOL(blk_queue_io_min);
420
421 /**
422 * blk_limits_io_opt - set optimal request size for a device
423 * @limits: the queue limits
424 * @opt: smallest I/O size in bytes
425 *
426 * Description:
427 * Storage devices may report an optimal I/O size, which is the
428 * device's preferred unit for sustained I/O. This is rarely reported
429 * for disk drives. For RAID arrays it is usually the stripe width or
430 * the internal track size. A properly aligned multiple of
431 * optimal_io_size is the preferred request size for workloads where
432 * sustained throughput is desired.
433 */
434 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
435 {
436 limits->io_opt = opt;
437 }
438 EXPORT_SYMBOL(blk_limits_io_opt);
439
440 /**
441 * blk_queue_io_opt - set optimal request size for the queue
442 * @q: the request queue for the device
443 * @opt: optimal request size in bytes
444 *
445 * Description:
446 * Storage devices may report an optimal I/O size, which is the
447 * device's preferred unit for sustained I/O. This is rarely reported
448 * for disk drives. For RAID arrays it is usually the stripe width or
449 * the internal track size. A properly aligned multiple of
450 * optimal_io_size is the preferred request size for workloads where
451 * sustained throughput is desired.
452 */
453 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
454 {
455 blk_limits_io_opt(&q->limits, opt);
456 }
457 EXPORT_SYMBOL(blk_queue_io_opt);
458
459 /**
460 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
461 * @t: the stacking driver (top)
462 * @b: the underlying device (bottom)
463 **/
464 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
465 {
466 blk_stack_limits(&t->limits, &b->limits, 0);
467
468 if (!t->queue_lock)
469 WARN_ON_ONCE(1);
470 else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
471 unsigned long flags;
472 spin_lock_irqsave(t->queue_lock, flags);
473 queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
474 spin_unlock_irqrestore(t->queue_lock, flags);
475 }
476 }
477 EXPORT_SYMBOL(blk_queue_stack_limits);
478
479 /**
480 * blk_stack_limits - adjust queue_limits for stacked devices
481 * @t: the stacking driver limits (top device)
482 * @b: the underlying queue limits (bottom, component device)
483 * @start: first data sector within component device
484 *
485 * Description:
486 * This function is used by stacking drivers like MD and DM to ensure
487 * that all component devices have compatible block sizes and
488 * alignments. The stacking driver must provide a queue_limits
489 * struct (top) and then iteratively call the stacking function for
490 * all component (bottom) devices. The stacking function will
491 * attempt to combine the values and ensure proper alignment.
492 *
493 * Returns 0 if the top and bottom queue_limits are compatible. The
494 * top device's block sizes and alignment offsets may be adjusted to
495 * ensure alignment with the bottom device. If no compatible sizes
496 * and alignments exist, -1 is returned and the resulting top
497 * queue_limits will have the misaligned flag set to indicate that
498 * the alignment_offset is undefined.
499 */
500 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
501 sector_t start)
502 {
503 unsigned int top, bottom, alignment, ret = 0;
504
505 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
506 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
507 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
508
509 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
510 b->seg_boundary_mask);
511
512 t->max_segments = min_not_zero(t->max_segments, b->max_segments);
513 t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
514 b->max_integrity_segments);
515
516 t->max_segment_size = min_not_zero(t->max_segment_size,
517 b->max_segment_size);
518
519 t->misaligned |= b->misaligned;
520
521 alignment = queue_limit_alignment_offset(b, start);
522
523 /* Bottom device has different alignment. Check that it is
524 * compatible with the current top alignment.
525 */
526 if (t->alignment_offset != alignment) {
527
528 top = max(t->physical_block_size, t->io_min)
529 + t->alignment_offset;
530 bottom = max(b->physical_block_size, b->io_min) + alignment;
531
532 /* Verify that top and bottom intervals line up */
533 if (max(top, bottom) & (min(top, bottom) - 1)) {
534 t->misaligned = 1;
535 ret = -1;
536 }
537 }
538
539 t->logical_block_size = max(t->logical_block_size,
540 b->logical_block_size);
541
542 t->physical_block_size = max(t->physical_block_size,
543 b->physical_block_size);
544
545 t->io_min = max(t->io_min, b->io_min);
546 t->io_opt = lcm(t->io_opt, b->io_opt);
547
548 t->no_cluster |= b->no_cluster;
549 t->discard_zeroes_data &= b->discard_zeroes_data;
550
551 /* Physical block size a multiple of the logical block size? */
552 if (t->physical_block_size & (t->logical_block_size - 1)) {
553 t->physical_block_size = t->logical_block_size;
554 t->misaligned = 1;
555 ret = -1;
556 }
557
558 /* Minimum I/O a multiple of the physical block size? */
559 if (t->io_min & (t->physical_block_size - 1)) {
560 t->io_min = t->physical_block_size;
561 t->misaligned = 1;
562 ret = -1;
563 }
564
565 /* Optimal I/O a multiple of the physical block size? */
566 if (t->io_opt & (t->physical_block_size - 1)) {
567 t->io_opt = 0;
568 t->misaligned = 1;
569 ret = -1;
570 }
571
572 /* Find lowest common alignment_offset */
573 t->alignment_offset = lcm(t->alignment_offset, alignment)
574 & (max(t->physical_block_size, t->io_min) - 1);
575
576 /* Verify that new alignment_offset is on a logical block boundary */
577 if (t->alignment_offset & (t->logical_block_size - 1)) {
578 t->misaligned = 1;
579 ret = -1;
580 }
581
582 /* Discard alignment and granularity */
583 if (b->discard_granularity) {
584 alignment = queue_limit_discard_alignment(b, start);
585
586 if (t->discard_granularity != 0 &&
587 t->discard_alignment != alignment) {
588 top = t->discard_granularity + t->discard_alignment;
589 bottom = b->discard_granularity + alignment;
590
591 /* Verify that top and bottom intervals line up */
592 if (max(top, bottom) & (min(top, bottom) - 1))
593 t->discard_misaligned = 1;
594 }
595
596 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
597 b->max_discard_sectors);
598 t->discard_granularity = max(t->discard_granularity,
599 b->discard_granularity);
600 t->discard_alignment = lcm(t->discard_alignment, alignment) &
601 (t->discard_granularity - 1);
602 }
603
604 return ret;
605 }
606 EXPORT_SYMBOL(blk_stack_limits);
607
608 /**
609 * bdev_stack_limits - adjust queue limits for stacked drivers
610 * @t: the stacking driver limits (top device)
611 * @bdev: the component block_device (bottom)
612 * @start: first data sector within component device
613 *
614 * Description:
615 * Merges queue limits for a top device and a block_device. Returns
616 * 0 if alignment didn't change. Returns -1 if adding the bottom
617 * device caused misalignment.
618 */
619 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
620 sector_t start)
621 {
622 struct request_queue *bq = bdev_get_queue(bdev);
623
624 start += get_start_sect(bdev);
625
626 return blk_stack_limits(t, &bq->limits, start);
627 }
628 EXPORT_SYMBOL(bdev_stack_limits);
629
630 /**
631 * disk_stack_limits - adjust queue limits for stacked drivers
632 * @disk: MD/DM gendisk (top)
633 * @bdev: the underlying block device (bottom)
634 * @offset: offset to beginning of data within component device
635 *
636 * Description:
637 * Merges the limits for a top level gendisk and a bottom level
638 * block_device.
639 */
640 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
641 sector_t offset)
642 {
643 struct request_queue *t = disk->queue;
644 struct request_queue *b = bdev_get_queue(bdev);
645
646 if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
647 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
648
649 disk_name(disk, 0, top);
650 bdevname(bdev, bottom);
651
652 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
653 top, bottom);
654 }
655
656 if (!t->queue_lock)
657 WARN_ON_ONCE(1);
658 else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
659 unsigned long flags;
660
661 spin_lock_irqsave(t->queue_lock, flags);
662 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
663 queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
664 spin_unlock_irqrestore(t->queue_lock, flags);
665 }
666 }
667 EXPORT_SYMBOL(disk_stack_limits);
668
669 /**
670 * blk_queue_dma_pad - set pad mask
671 * @q: the request queue for the device
672 * @mask: pad mask
673 *
674 * Set dma pad mask.
675 *
676 * Appending pad buffer to a request modifies the last entry of a
677 * scatter list such that it includes the pad buffer.
678 **/
679 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
680 {
681 q->dma_pad_mask = mask;
682 }
683 EXPORT_SYMBOL(blk_queue_dma_pad);
684
685 /**
686 * blk_queue_update_dma_pad - update pad mask
687 * @q: the request queue for the device
688 * @mask: pad mask
689 *
690 * Update dma pad mask.
691 *
692 * Appending pad buffer to a request modifies the last entry of a
693 * scatter list such that it includes the pad buffer.
694 **/
695 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
696 {
697 if (mask > q->dma_pad_mask)
698 q->dma_pad_mask = mask;
699 }
700 EXPORT_SYMBOL(blk_queue_update_dma_pad);
701
702 /**
703 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
704 * @q: the request queue for the device
705 * @dma_drain_needed: fn which returns non-zero if drain is necessary
706 * @buf: physically contiguous buffer
707 * @size: size of the buffer in bytes
708 *
709 * Some devices have excess DMA problems and can't simply discard (or
710 * zero fill) the unwanted piece of the transfer. They have to have a
711 * real area of memory to transfer it into. The use case for this is
712 * ATAPI devices in DMA mode. If the packet command causes a transfer
713 * bigger than the transfer size some HBAs will lock up if there
714 * aren't DMA elements to contain the excess transfer. What this API
715 * does is adjust the queue so that the buf is always appended
716 * silently to the scatterlist.
717 *
718 * Note: This routine adjusts max_hw_segments to make room for appending
719 * the drain buffer. If you call blk_queue_max_segments() after calling
720 * this routine, you must set the limit to one fewer than your device
721 * can support otherwise there won't be room for the drain buffer.
722 */
723 int blk_queue_dma_drain(struct request_queue *q,
724 dma_drain_needed_fn *dma_drain_needed,
725 void *buf, unsigned int size)
726 {
727 if (queue_max_segments(q) < 2)
728 return -EINVAL;
729 /* make room for appending the drain */
730 blk_queue_max_segments(q, queue_max_segments(q) - 1);
731 q->dma_drain_needed = dma_drain_needed;
732 q->dma_drain_buffer = buf;
733 q->dma_drain_size = size;
734
735 return 0;
736 }
737 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
738
739 /**
740 * blk_queue_segment_boundary - set boundary rules for segment merging
741 * @q: the request queue for the device
742 * @mask: the memory boundary mask
743 **/
744 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
745 {
746 if (mask < PAGE_CACHE_SIZE - 1) {
747 mask = PAGE_CACHE_SIZE - 1;
748 printk(KERN_INFO "%s: set to minimum %lx\n",
749 __func__, mask);
750 }
751
752 q->limits.seg_boundary_mask = mask;
753 }
754 EXPORT_SYMBOL(blk_queue_segment_boundary);
755
756 /**
757 * blk_queue_dma_alignment - set dma length and memory alignment
758 * @q: the request queue for the device
759 * @mask: alignment mask
760 *
761 * description:
762 * set required memory and length alignment for direct dma transactions.
763 * this is used when building direct io requests for the queue.
764 *
765 **/
766 void blk_queue_dma_alignment(struct request_queue *q, int mask)
767 {
768 q->dma_alignment = mask;
769 }
770 EXPORT_SYMBOL(blk_queue_dma_alignment);
771
772 /**
773 * blk_queue_update_dma_alignment - update dma length and memory alignment
774 * @q: the request queue for the device
775 * @mask: alignment mask
776 *
777 * description:
778 * update required memory and length alignment for direct dma transactions.
779 * If the requested alignment is larger than the current alignment, then
780 * the current queue alignment is updated to the new value, otherwise it
781 * is left alone. The design of this is to allow multiple objects
782 * (driver, device, transport etc) to set their respective
783 * alignments without having them interfere.
784 *
785 **/
786 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
787 {
788 BUG_ON(mask > PAGE_SIZE);
789
790 if (mask > q->dma_alignment)
791 q->dma_alignment = mask;
792 }
793 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
794
795 /**
796 * blk_queue_flush - configure queue's cache flush capability
797 * @q: the request queue for the device
798 * @flush: 0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
799 *
800 * Tell block layer cache flush capability of @q. If it supports
801 * flushing, REQ_FLUSH should be set. If it supports bypassing
802 * write cache for individual writes, REQ_FUA should be set.
803 */
804 void blk_queue_flush(struct request_queue *q, unsigned int flush)
805 {
806 WARN_ON_ONCE(flush & ~(REQ_FLUSH | REQ_FUA));
807
808 if (WARN_ON_ONCE(!(flush & REQ_FLUSH) && (flush & REQ_FUA)))
809 flush &= ~REQ_FUA;
810
811 q->flush_flags = flush & (REQ_FLUSH | REQ_FUA);
812 }
813 EXPORT_SYMBOL_GPL(blk_queue_flush);
814
815 static int __init blk_settings_init(void)
816 {
817 blk_max_low_pfn = max_low_pfn - 1;
818 blk_max_pfn = max_pfn - 1;
819 return 0;
820 }
821 subsys_initcall(blk_settings_init);
This page took 0.048016 seconds and 5 git commands to generate.