blkcg: make blkcg_policy methods take a pointer to blkcg_policy_data
[deliverable/linux.git] / block / blk-throttle.c
1 /*
2 * Interface for controlling IO bandwidth on a request queue
3 *
4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5 */
6
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include <linux/blk-cgroup.h>
13 #include "blk.h"
14
15 /* Max dispatch from a group in 1 round */
16 static int throtl_grp_quantum = 8;
17
18 /* Total max dispatch from all groups in one round */
19 static int throtl_quantum = 32;
20
21 /* Throttling is performed over 100ms slice and after that slice is renewed */
22 static unsigned long throtl_slice = HZ/10; /* 100 ms */
23
24 static struct blkcg_policy blkcg_policy_throtl;
25
26 /* A workqueue to queue throttle related work */
27 static struct workqueue_struct *kthrotld_workqueue;
28
29 /*
30 * To implement hierarchical throttling, throtl_grps form a tree and bios
31 * are dispatched upwards level by level until they reach the top and get
32 * issued. When dispatching bios from the children and local group at each
33 * level, if the bios are dispatched into a single bio_list, there's a risk
34 * of a local or child group which can queue many bios at once filling up
35 * the list starving others.
36 *
37 * To avoid such starvation, dispatched bios are queued separately
38 * according to where they came from. When they are again dispatched to
39 * the parent, they're popped in round-robin order so that no single source
40 * hogs the dispatch window.
41 *
42 * throtl_qnode is used to keep the queued bios separated by their sources.
43 * Bios are queued to throtl_qnode which in turn is queued to
44 * throtl_service_queue and then dispatched in round-robin order.
45 *
46 * It's also used to track the reference counts on blkg's. A qnode always
47 * belongs to a throtl_grp and gets queued on itself or the parent, so
48 * incrementing the reference of the associated throtl_grp when a qnode is
49 * queued and decrementing when dequeued is enough to keep the whole blkg
50 * tree pinned while bios are in flight.
51 */
52 struct throtl_qnode {
53 struct list_head node; /* service_queue->queued[] */
54 struct bio_list bios; /* queued bios */
55 struct throtl_grp *tg; /* tg this qnode belongs to */
56 };
57
58 struct throtl_service_queue {
59 struct throtl_service_queue *parent_sq; /* the parent service_queue */
60
61 /*
62 * Bios queued directly to this service_queue or dispatched from
63 * children throtl_grp's.
64 */
65 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */
66 unsigned int nr_queued[2]; /* number of queued bios */
67
68 /*
69 * RB tree of active children throtl_grp's, which are sorted by
70 * their ->disptime.
71 */
72 struct rb_root pending_tree; /* RB tree of active tgs */
73 struct rb_node *first_pending; /* first node in the tree */
74 unsigned int nr_pending; /* # queued in the tree */
75 unsigned long first_pending_disptime; /* disptime of the first tg */
76 struct timer_list pending_timer; /* fires on first_pending_disptime */
77 };
78
79 enum tg_state_flags {
80 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */
81 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */
82 };
83
84 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
85
86 /* Per-cpu group stats */
87 struct tg_stats_cpu {
88 /* total bytes transferred */
89 struct blkg_rwstat service_bytes;
90 /* total IOs serviced, post merge */
91 struct blkg_rwstat serviced;
92 };
93
94 struct throtl_grp {
95 /* must be the first member */
96 struct blkg_policy_data pd;
97
98 /* active throtl group service_queue member */
99 struct rb_node rb_node;
100
101 /* throtl_data this group belongs to */
102 struct throtl_data *td;
103
104 /* this group's service queue */
105 struct throtl_service_queue service_queue;
106
107 /*
108 * qnode_on_self is used when bios are directly queued to this
109 * throtl_grp so that local bios compete fairly with bios
110 * dispatched from children. qnode_on_parent is used when bios are
111 * dispatched from this throtl_grp into its parent and will compete
112 * with the sibling qnode_on_parents and the parent's
113 * qnode_on_self.
114 */
115 struct throtl_qnode qnode_on_self[2];
116 struct throtl_qnode qnode_on_parent[2];
117
118 /*
119 * Dispatch time in jiffies. This is the estimated time when group
120 * will unthrottle and is ready to dispatch more bio. It is used as
121 * key to sort active groups in service tree.
122 */
123 unsigned long disptime;
124
125 unsigned int flags;
126
127 /* are there any throtl rules between this group and td? */
128 bool has_rules[2];
129
130 /* bytes per second rate limits */
131 uint64_t bps[2];
132
133 /* IOPS limits */
134 unsigned int iops[2];
135
136 /* Number of bytes disptached in current slice */
137 uint64_t bytes_disp[2];
138 /* Number of bio's dispatched in current slice */
139 unsigned int io_disp[2];
140
141 /* When did we start a new slice */
142 unsigned long slice_start[2];
143 unsigned long slice_end[2];
144
145 /* Per cpu stats pointer */
146 struct tg_stats_cpu __percpu *stats_cpu;
147 };
148
149 struct throtl_data
150 {
151 /* service tree for active throtl groups */
152 struct throtl_service_queue service_queue;
153
154 struct request_queue *queue;
155
156 /* Total Number of queued bios on READ and WRITE lists */
157 unsigned int nr_queued[2];
158
159 /*
160 * number of total undestroyed groups
161 */
162 unsigned int nr_undestroyed_grps;
163
164 /* Work for dispatching throttled bios */
165 struct work_struct dispatch_work;
166 };
167
168 static void throtl_pending_timer_fn(unsigned long arg);
169
170 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
171 {
172 return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
173 }
174
175 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
176 {
177 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
178 }
179
180 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
181 {
182 return pd_to_blkg(&tg->pd);
183 }
184
185 static inline struct throtl_grp *td_root_tg(struct throtl_data *td)
186 {
187 return blkg_to_tg(td->queue->root_blkg);
188 }
189
190 /**
191 * sq_to_tg - return the throl_grp the specified service queue belongs to
192 * @sq: the throtl_service_queue of interest
193 *
194 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
195 * embedded in throtl_data, %NULL is returned.
196 */
197 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
198 {
199 if (sq && sq->parent_sq)
200 return container_of(sq, struct throtl_grp, service_queue);
201 else
202 return NULL;
203 }
204
205 /**
206 * sq_to_td - return throtl_data the specified service queue belongs to
207 * @sq: the throtl_service_queue of interest
208 *
209 * A service_queue can be embeded in either a throtl_grp or throtl_data.
210 * Determine the associated throtl_data accordingly and return it.
211 */
212 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
213 {
214 struct throtl_grp *tg = sq_to_tg(sq);
215
216 if (tg)
217 return tg->td;
218 else
219 return container_of(sq, struct throtl_data, service_queue);
220 }
221
222 /**
223 * throtl_log - log debug message via blktrace
224 * @sq: the service_queue being reported
225 * @fmt: printf format string
226 * @args: printf args
227 *
228 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
229 * throtl_grp; otherwise, just "throtl".
230 *
231 * TODO: this should be made a function and name formatting should happen
232 * after testing whether blktrace is enabled.
233 */
234 #define throtl_log(sq, fmt, args...) do { \
235 struct throtl_grp *__tg = sq_to_tg((sq)); \
236 struct throtl_data *__td = sq_to_td((sq)); \
237 \
238 (void)__td; \
239 if ((__tg)) { \
240 char __pbuf[128]; \
241 \
242 blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf)); \
243 blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
244 } else { \
245 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
246 } \
247 } while (0)
248
249 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
250 {
251 INIT_LIST_HEAD(&qn->node);
252 bio_list_init(&qn->bios);
253 qn->tg = tg;
254 }
255
256 /**
257 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
258 * @bio: bio being added
259 * @qn: qnode to add bio to
260 * @queued: the service_queue->queued[] list @qn belongs to
261 *
262 * Add @bio to @qn and put @qn on @queued if it's not already on.
263 * @qn->tg's reference count is bumped when @qn is activated. See the
264 * comment on top of throtl_qnode definition for details.
265 */
266 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
267 struct list_head *queued)
268 {
269 bio_list_add(&qn->bios, bio);
270 if (list_empty(&qn->node)) {
271 list_add_tail(&qn->node, queued);
272 blkg_get(tg_to_blkg(qn->tg));
273 }
274 }
275
276 /**
277 * throtl_peek_queued - peek the first bio on a qnode list
278 * @queued: the qnode list to peek
279 */
280 static struct bio *throtl_peek_queued(struct list_head *queued)
281 {
282 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
283 struct bio *bio;
284
285 if (list_empty(queued))
286 return NULL;
287
288 bio = bio_list_peek(&qn->bios);
289 WARN_ON_ONCE(!bio);
290 return bio;
291 }
292
293 /**
294 * throtl_pop_queued - pop the first bio form a qnode list
295 * @queued: the qnode list to pop a bio from
296 * @tg_to_put: optional out argument for throtl_grp to put
297 *
298 * Pop the first bio from the qnode list @queued. After popping, the first
299 * qnode is removed from @queued if empty or moved to the end of @queued so
300 * that the popping order is round-robin.
301 *
302 * When the first qnode is removed, its associated throtl_grp should be put
303 * too. If @tg_to_put is NULL, this function automatically puts it;
304 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
305 * responsible for putting it.
306 */
307 static struct bio *throtl_pop_queued(struct list_head *queued,
308 struct throtl_grp **tg_to_put)
309 {
310 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
311 struct bio *bio;
312
313 if (list_empty(queued))
314 return NULL;
315
316 bio = bio_list_pop(&qn->bios);
317 WARN_ON_ONCE(!bio);
318
319 if (bio_list_empty(&qn->bios)) {
320 list_del_init(&qn->node);
321 if (tg_to_put)
322 *tg_to_put = qn->tg;
323 else
324 blkg_put(tg_to_blkg(qn->tg));
325 } else {
326 list_move_tail(&qn->node, queued);
327 }
328
329 return bio;
330 }
331
332 /* init a service_queue, assumes the caller zeroed it */
333 static void throtl_service_queue_init(struct throtl_service_queue *sq)
334 {
335 INIT_LIST_HEAD(&sq->queued[0]);
336 INIT_LIST_HEAD(&sq->queued[1]);
337 sq->pending_tree = RB_ROOT;
338 setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
339 (unsigned long)sq);
340 }
341
342 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
343 {
344 struct throtl_grp *tg;
345 int rw, cpu;
346
347 tg = kzalloc_node(sizeof(*tg), gfp, node);
348 if (!tg)
349 return NULL;
350
351 tg->stats_cpu = alloc_percpu_gfp(struct tg_stats_cpu, gfp);
352 if (!tg->stats_cpu) {
353 kfree(tg);
354 return NULL;
355 }
356
357 throtl_service_queue_init(&tg->service_queue);
358
359 for (rw = READ; rw <= WRITE; rw++) {
360 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
361 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
362 }
363
364 RB_CLEAR_NODE(&tg->rb_node);
365 tg->bps[READ] = -1;
366 tg->bps[WRITE] = -1;
367 tg->iops[READ] = -1;
368 tg->iops[WRITE] = -1;
369
370 for_each_possible_cpu(cpu) {
371 struct tg_stats_cpu *stats_cpu = per_cpu_ptr(tg->stats_cpu, cpu);
372
373 blkg_rwstat_init(&stats_cpu->service_bytes);
374 blkg_rwstat_init(&stats_cpu->serviced);
375 }
376
377 return &tg->pd;
378 }
379
380 static void throtl_pd_init(struct blkg_policy_data *pd)
381 {
382 struct throtl_grp *tg = pd_to_tg(pd);
383 struct blkcg_gq *blkg = tg_to_blkg(tg);
384 struct throtl_data *td = blkg->q->td;
385 struct throtl_service_queue *sq = &tg->service_queue;
386
387 /*
388 * If on the default hierarchy, we switch to properly hierarchical
389 * behavior where limits on a given throtl_grp are applied to the
390 * whole subtree rather than just the group itself. e.g. If 16M
391 * read_bps limit is set on the root group, the whole system can't
392 * exceed 16M for the device.
393 *
394 * If not on the default hierarchy, the broken flat hierarchy
395 * behavior is retained where all throtl_grps are treated as if
396 * they're all separate root groups right below throtl_data.
397 * Limits of a group don't interact with limits of other groups
398 * regardless of the position of the group in the hierarchy.
399 */
400 sq->parent_sq = &td->service_queue;
401 if (cgroup_on_dfl(blkg->blkcg->css.cgroup) && blkg->parent)
402 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
403 tg->td = td;
404 }
405
406 /*
407 * Set has_rules[] if @tg or any of its parents have limits configured.
408 * This doesn't require walking up to the top of the hierarchy as the
409 * parent's has_rules[] is guaranteed to be correct.
410 */
411 static void tg_update_has_rules(struct throtl_grp *tg)
412 {
413 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
414 int rw;
415
416 for (rw = READ; rw <= WRITE; rw++)
417 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
418 (tg->bps[rw] != -1 || tg->iops[rw] != -1);
419 }
420
421 static void throtl_pd_online(struct blkg_policy_data *pd)
422 {
423 /*
424 * We don't want new groups to escape the limits of its ancestors.
425 * Update has_rules[] after a new group is brought online.
426 */
427 tg_update_has_rules(pd_to_tg(pd));
428 }
429
430 static void throtl_pd_free(struct blkg_policy_data *pd)
431 {
432 struct throtl_grp *tg = pd_to_tg(pd);
433
434 del_timer_sync(&tg->service_queue.pending_timer);
435 free_percpu(tg->stats_cpu);
436 kfree(tg);
437 }
438
439 static void throtl_pd_reset_stats(struct blkg_policy_data *pd)
440 {
441 struct throtl_grp *tg = pd_to_tg(pd);
442 int cpu;
443
444 for_each_possible_cpu(cpu) {
445 struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
446
447 blkg_rwstat_reset(&sc->service_bytes);
448 blkg_rwstat_reset(&sc->serviced);
449 }
450 }
451
452 static struct throtl_grp *throtl_lookup_tg(struct throtl_data *td,
453 struct blkcg *blkcg)
454 {
455 /*
456 * This is the common case when there are no blkcgs. Avoid lookup
457 * in this case
458 */
459 if (blkcg == &blkcg_root)
460 return td_root_tg(td);
461
462 return blkg_to_tg(blkg_lookup(blkcg, td->queue));
463 }
464
465 static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td,
466 struct blkcg *blkcg)
467 {
468 struct request_queue *q = td->queue;
469 struct throtl_grp *tg = NULL;
470
471 /*
472 * This is the common case when there are no blkcgs. Avoid lookup
473 * in this case
474 */
475 if (blkcg == &blkcg_root) {
476 tg = td_root_tg(td);
477 } else {
478 struct blkcg_gq *blkg;
479
480 blkg = blkg_lookup_create(blkcg, q);
481
482 /* if %NULL and @q is alive, fall back to root_tg */
483 if (!IS_ERR(blkg))
484 tg = blkg_to_tg(blkg);
485 else if (!blk_queue_dying(q))
486 tg = td_root_tg(td);
487 }
488
489 return tg;
490 }
491
492 static struct throtl_grp *
493 throtl_rb_first(struct throtl_service_queue *parent_sq)
494 {
495 /* Service tree is empty */
496 if (!parent_sq->nr_pending)
497 return NULL;
498
499 if (!parent_sq->first_pending)
500 parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
501
502 if (parent_sq->first_pending)
503 return rb_entry_tg(parent_sq->first_pending);
504
505 return NULL;
506 }
507
508 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
509 {
510 rb_erase(n, root);
511 RB_CLEAR_NODE(n);
512 }
513
514 static void throtl_rb_erase(struct rb_node *n,
515 struct throtl_service_queue *parent_sq)
516 {
517 if (parent_sq->first_pending == n)
518 parent_sq->first_pending = NULL;
519 rb_erase_init(n, &parent_sq->pending_tree);
520 --parent_sq->nr_pending;
521 }
522
523 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
524 {
525 struct throtl_grp *tg;
526
527 tg = throtl_rb_first(parent_sq);
528 if (!tg)
529 return;
530
531 parent_sq->first_pending_disptime = tg->disptime;
532 }
533
534 static void tg_service_queue_add(struct throtl_grp *tg)
535 {
536 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
537 struct rb_node **node = &parent_sq->pending_tree.rb_node;
538 struct rb_node *parent = NULL;
539 struct throtl_grp *__tg;
540 unsigned long key = tg->disptime;
541 int left = 1;
542
543 while (*node != NULL) {
544 parent = *node;
545 __tg = rb_entry_tg(parent);
546
547 if (time_before(key, __tg->disptime))
548 node = &parent->rb_left;
549 else {
550 node = &parent->rb_right;
551 left = 0;
552 }
553 }
554
555 if (left)
556 parent_sq->first_pending = &tg->rb_node;
557
558 rb_link_node(&tg->rb_node, parent, node);
559 rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
560 }
561
562 static void __throtl_enqueue_tg(struct throtl_grp *tg)
563 {
564 tg_service_queue_add(tg);
565 tg->flags |= THROTL_TG_PENDING;
566 tg->service_queue.parent_sq->nr_pending++;
567 }
568
569 static void throtl_enqueue_tg(struct throtl_grp *tg)
570 {
571 if (!(tg->flags & THROTL_TG_PENDING))
572 __throtl_enqueue_tg(tg);
573 }
574
575 static void __throtl_dequeue_tg(struct throtl_grp *tg)
576 {
577 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
578 tg->flags &= ~THROTL_TG_PENDING;
579 }
580
581 static void throtl_dequeue_tg(struct throtl_grp *tg)
582 {
583 if (tg->flags & THROTL_TG_PENDING)
584 __throtl_dequeue_tg(tg);
585 }
586
587 /* Call with queue lock held */
588 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
589 unsigned long expires)
590 {
591 mod_timer(&sq->pending_timer, expires);
592 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
593 expires - jiffies, jiffies);
594 }
595
596 /**
597 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
598 * @sq: the service_queue to schedule dispatch for
599 * @force: force scheduling
600 *
601 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
602 * dispatch time of the first pending child. Returns %true if either timer
603 * is armed or there's no pending child left. %false if the current
604 * dispatch window is still open and the caller should continue
605 * dispatching.
606 *
607 * If @force is %true, the dispatch timer is always scheduled and this
608 * function is guaranteed to return %true. This is to be used when the
609 * caller can't dispatch itself and needs to invoke pending_timer
610 * unconditionally. Note that forced scheduling is likely to induce short
611 * delay before dispatch starts even if @sq->first_pending_disptime is not
612 * in the future and thus shouldn't be used in hot paths.
613 */
614 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
615 bool force)
616 {
617 /* any pending children left? */
618 if (!sq->nr_pending)
619 return true;
620
621 update_min_dispatch_time(sq);
622
623 /* is the next dispatch time in the future? */
624 if (force || time_after(sq->first_pending_disptime, jiffies)) {
625 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
626 return true;
627 }
628
629 /* tell the caller to continue dispatching */
630 return false;
631 }
632
633 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
634 bool rw, unsigned long start)
635 {
636 tg->bytes_disp[rw] = 0;
637 tg->io_disp[rw] = 0;
638
639 /*
640 * Previous slice has expired. We must have trimmed it after last
641 * bio dispatch. That means since start of last slice, we never used
642 * that bandwidth. Do try to make use of that bandwidth while giving
643 * credit.
644 */
645 if (time_after_eq(start, tg->slice_start[rw]))
646 tg->slice_start[rw] = start;
647
648 tg->slice_end[rw] = jiffies + throtl_slice;
649 throtl_log(&tg->service_queue,
650 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
651 rw == READ ? 'R' : 'W', tg->slice_start[rw],
652 tg->slice_end[rw], jiffies);
653 }
654
655 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
656 {
657 tg->bytes_disp[rw] = 0;
658 tg->io_disp[rw] = 0;
659 tg->slice_start[rw] = jiffies;
660 tg->slice_end[rw] = jiffies + throtl_slice;
661 throtl_log(&tg->service_queue,
662 "[%c] new slice start=%lu end=%lu jiffies=%lu",
663 rw == READ ? 'R' : 'W', tg->slice_start[rw],
664 tg->slice_end[rw], jiffies);
665 }
666
667 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
668 unsigned long jiffy_end)
669 {
670 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
671 }
672
673 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
674 unsigned long jiffy_end)
675 {
676 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
677 throtl_log(&tg->service_queue,
678 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
679 rw == READ ? 'R' : 'W', tg->slice_start[rw],
680 tg->slice_end[rw], jiffies);
681 }
682
683 /* Determine if previously allocated or extended slice is complete or not */
684 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
685 {
686 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
687 return false;
688
689 return 1;
690 }
691
692 /* Trim the used slices and adjust slice start accordingly */
693 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
694 {
695 unsigned long nr_slices, time_elapsed, io_trim;
696 u64 bytes_trim, tmp;
697
698 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
699
700 /*
701 * If bps are unlimited (-1), then time slice don't get
702 * renewed. Don't try to trim the slice if slice is used. A new
703 * slice will start when appropriate.
704 */
705 if (throtl_slice_used(tg, rw))
706 return;
707
708 /*
709 * A bio has been dispatched. Also adjust slice_end. It might happen
710 * that initially cgroup limit was very low resulting in high
711 * slice_end, but later limit was bumped up and bio was dispached
712 * sooner, then we need to reduce slice_end. A high bogus slice_end
713 * is bad because it does not allow new slice to start.
714 */
715
716 throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
717
718 time_elapsed = jiffies - tg->slice_start[rw];
719
720 nr_slices = time_elapsed / throtl_slice;
721
722 if (!nr_slices)
723 return;
724 tmp = tg->bps[rw] * throtl_slice * nr_slices;
725 do_div(tmp, HZ);
726 bytes_trim = tmp;
727
728 io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
729
730 if (!bytes_trim && !io_trim)
731 return;
732
733 if (tg->bytes_disp[rw] >= bytes_trim)
734 tg->bytes_disp[rw] -= bytes_trim;
735 else
736 tg->bytes_disp[rw] = 0;
737
738 if (tg->io_disp[rw] >= io_trim)
739 tg->io_disp[rw] -= io_trim;
740 else
741 tg->io_disp[rw] = 0;
742
743 tg->slice_start[rw] += nr_slices * throtl_slice;
744
745 throtl_log(&tg->service_queue,
746 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
747 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
748 tg->slice_start[rw], tg->slice_end[rw], jiffies);
749 }
750
751 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
752 unsigned long *wait)
753 {
754 bool rw = bio_data_dir(bio);
755 unsigned int io_allowed;
756 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
757 u64 tmp;
758
759 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
760
761 /* Slice has just started. Consider one slice interval */
762 if (!jiffy_elapsed)
763 jiffy_elapsed_rnd = throtl_slice;
764
765 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
766
767 /*
768 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
769 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
770 * will allow dispatch after 1 second and after that slice should
771 * have been trimmed.
772 */
773
774 tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
775 do_div(tmp, HZ);
776
777 if (tmp > UINT_MAX)
778 io_allowed = UINT_MAX;
779 else
780 io_allowed = tmp;
781
782 if (tg->io_disp[rw] + 1 <= io_allowed) {
783 if (wait)
784 *wait = 0;
785 return true;
786 }
787
788 /* Calc approx time to dispatch */
789 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
790
791 if (jiffy_wait > jiffy_elapsed)
792 jiffy_wait = jiffy_wait - jiffy_elapsed;
793 else
794 jiffy_wait = 1;
795
796 if (wait)
797 *wait = jiffy_wait;
798 return 0;
799 }
800
801 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
802 unsigned long *wait)
803 {
804 bool rw = bio_data_dir(bio);
805 u64 bytes_allowed, extra_bytes, tmp;
806 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
807
808 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
809
810 /* Slice has just started. Consider one slice interval */
811 if (!jiffy_elapsed)
812 jiffy_elapsed_rnd = throtl_slice;
813
814 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
815
816 tmp = tg->bps[rw] * jiffy_elapsed_rnd;
817 do_div(tmp, HZ);
818 bytes_allowed = tmp;
819
820 if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
821 if (wait)
822 *wait = 0;
823 return true;
824 }
825
826 /* Calc approx time to dispatch */
827 extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
828 jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
829
830 if (!jiffy_wait)
831 jiffy_wait = 1;
832
833 /*
834 * This wait time is without taking into consideration the rounding
835 * up we did. Add that time also.
836 */
837 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
838 if (wait)
839 *wait = jiffy_wait;
840 return 0;
841 }
842
843 /*
844 * Returns whether one can dispatch a bio or not. Also returns approx number
845 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
846 */
847 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
848 unsigned long *wait)
849 {
850 bool rw = bio_data_dir(bio);
851 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
852
853 /*
854 * Currently whole state machine of group depends on first bio
855 * queued in the group bio list. So one should not be calling
856 * this function with a different bio if there are other bios
857 * queued.
858 */
859 BUG_ON(tg->service_queue.nr_queued[rw] &&
860 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
861
862 /* If tg->bps = -1, then BW is unlimited */
863 if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
864 if (wait)
865 *wait = 0;
866 return true;
867 }
868
869 /*
870 * If previous slice expired, start a new one otherwise renew/extend
871 * existing slice to make sure it is at least throtl_slice interval
872 * long since now.
873 */
874 if (throtl_slice_used(tg, rw))
875 throtl_start_new_slice(tg, rw);
876 else {
877 if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
878 throtl_extend_slice(tg, rw, jiffies + throtl_slice);
879 }
880
881 if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
882 tg_with_in_iops_limit(tg, bio, &iops_wait)) {
883 if (wait)
884 *wait = 0;
885 return 1;
886 }
887
888 max_wait = max(bps_wait, iops_wait);
889
890 if (wait)
891 *wait = max_wait;
892
893 if (time_before(tg->slice_end[rw], jiffies + max_wait))
894 throtl_extend_slice(tg, rw, jiffies + max_wait);
895
896 return 0;
897 }
898
899 static void throtl_update_dispatch_stats(struct blkcg_gq *blkg, u64 bytes,
900 int rw)
901 {
902 struct throtl_grp *tg = blkg_to_tg(blkg);
903 struct tg_stats_cpu *stats_cpu;
904 unsigned long flags;
905
906 /*
907 * Disabling interrupts to provide mutual exclusion between two
908 * writes on same cpu. It probably is not needed for 64bit. Not
909 * optimizing that case yet.
910 */
911 local_irq_save(flags);
912
913 stats_cpu = this_cpu_ptr(tg->stats_cpu);
914
915 blkg_rwstat_add(&stats_cpu->serviced, rw, 1);
916 blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes);
917
918 local_irq_restore(flags);
919 }
920
921 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
922 {
923 bool rw = bio_data_dir(bio);
924
925 /* Charge the bio to the group */
926 tg->bytes_disp[rw] += bio->bi_iter.bi_size;
927 tg->io_disp[rw]++;
928
929 /*
930 * REQ_THROTTLED is used to prevent the same bio to be throttled
931 * more than once as a throttled bio will go through blk-throtl the
932 * second time when it eventually gets issued. Set it when a bio
933 * is being charged to a tg.
934 *
935 * Dispatch stats aren't recursive and each @bio should only be
936 * accounted by the @tg it was originally associated with. Let's
937 * update the stats when setting REQ_THROTTLED for the first time
938 * which is guaranteed to be for the @bio's original tg.
939 */
940 if (!(bio->bi_rw & REQ_THROTTLED)) {
941 bio->bi_rw |= REQ_THROTTLED;
942 throtl_update_dispatch_stats(tg_to_blkg(tg),
943 bio->bi_iter.bi_size, bio->bi_rw);
944 }
945 }
946
947 /**
948 * throtl_add_bio_tg - add a bio to the specified throtl_grp
949 * @bio: bio to add
950 * @qn: qnode to use
951 * @tg: the target throtl_grp
952 *
953 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
954 * tg->qnode_on_self[] is used.
955 */
956 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
957 struct throtl_grp *tg)
958 {
959 struct throtl_service_queue *sq = &tg->service_queue;
960 bool rw = bio_data_dir(bio);
961
962 if (!qn)
963 qn = &tg->qnode_on_self[rw];
964
965 /*
966 * If @tg doesn't currently have any bios queued in the same
967 * direction, queueing @bio can change when @tg should be
968 * dispatched. Mark that @tg was empty. This is automatically
969 * cleaered on the next tg_update_disptime().
970 */
971 if (!sq->nr_queued[rw])
972 tg->flags |= THROTL_TG_WAS_EMPTY;
973
974 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
975
976 sq->nr_queued[rw]++;
977 throtl_enqueue_tg(tg);
978 }
979
980 static void tg_update_disptime(struct throtl_grp *tg)
981 {
982 struct throtl_service_queue *sq = &tg->service_queue;
983 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
984 struct bio *bio;
985
986 if ((bio = throtl_peek_queued(&sq->queued[READ])))
987 tg_may_dispatch(tg, bio, &read_wait);
988
989 if ((bio = throtl_peek_queued(&sq->queued[WRITE])))
990 tg_may_dispatch(tg, bio, &write_wait);
991
992 min_wait = min(read_wait, write_wait);
993 disptime = jiffies + min_wait;
994
995 /* Update dispatch time */
996 throtl_dequeue_tg(tg);
997 tg->disptime = disptime;
998 throtl_enqueue_tg(tg);
999
1000 /* see throtl_add_bio_tg() */
1001 tg->flags &= ~THROTL_TG_WAS_EMPTY;
1002 }
1003
1004 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1005 struct throtl_grp *parent_tg, bool rw)
1006 {
1007 if (throtl_slice_used(parent_tg, rw)) {
1008 throtl_start_new_slice_with_credit(parent_tg, rw,
1009 child_tg->slice_start[rw]);
1010 }
1011
1012 }
1013
1014 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1015 {
1016 struct throtl_service_queue *sq = &tg->service_queue;
1017 struct throtl_service_queue *parent_sq = sq->parent_sq;
1018 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1019 struct throtl_grp *tg_to_put = NULL;
1020 struct bio *bio;
1021
1022 /*
1023 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1024 * from @tg may put its reference and @parent_sq might end up
1025 * getting released prematurely. Remember the tg to put and put it
1026 * after @bio is transferred to @parent_sq.
1027 */
1028 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1029 sq->nr_queued[rw]--;
1030
1031 throtl_charge_bio(tg, bio);
1032
1033 /*
1034 * If our parent is another tg, we just need to transfer @bio to
1035 * the parent using throtl_add_bio_tg(). If our parent is
1036 * @td->service_queue, @bio is ready to be issued. Put it on its
1037 * bio_lists[] and decrease total number queued. The caller is
1038 * responsible for issuing these bios.
1039 */
1040 if (parent_tg) {
1041 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1042 start_parent_slice_with_credit(tg, parent_tg, rw);
1043 } else {
1044 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1045 &parent_sq->queued[rw]);
1046 BUG_ON(tg->td->nr_queued[rw] <= 0);
1047 tg->td->nr_queued[rw]--;
1048 }
1049
1050 throtl_trim_slice(tg, rw);
1051
1052 if (tg_to_put)
1053 blkg_put(tg_to_blkg(tg_to_put));
1054 }
1055
1056 static int throtl_dispatch_tg(struct throtl_grp *tg)
1057 {
1058 struct throtl_service_queue *sq = &tg->service_queue;
1059 unsigned int nr_reads = 0, nr_writes = 0;
1060 unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1061 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1062 struct bio *bio;
1063
1064 /* Try to dispatch 75% READS and 25% WRITES */
1065
1066 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1067 tg_may_dispatch(tg, bio, NULL)) {
1068
1069 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1070 nr_reads++;
1071
1072 if (nr_reads >= max_nr_reads)
1073 break;
1074 }
1075
1076 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1077 tg_may_dispatch(tg, bio, NULL)) {
1078
1079 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1080 nr_writes++;
1081
1082 if (nr_writes >= max_nr_writes)
1083 break;
1084 }
1085
1086 return nr_reads + nr_writes;
1087 }
1088
1089 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1090 {
1091 unsigned int nr_disp = 0;
1092
1093 while (1) {
1094 struct throtl_grp *tg = throtl_rb_first(parent_sq);
1095 struct throtl_service_queue *sq = &tg->service_queue;
1096
1097 if (!tg)
1098 break;
1099
1100 if (time_before(jiffies, tg->disptime))
1101 break;
1102
1103 throtl_dequeue_tg(tg);
1104
1105 nr_disp += throtl_dispatch_tg(tg);
1106
1107 if (sq->nr_queued[0] || sq->nr_queued[1])
1108 tg_update_disptime(tg);
1109
1110 if (nr_disp >= throtl_quantum)
1111 break;
1112 }
1113
1114 return nr_disp;
1115 }
1116
1117 /**
1118 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1119 * @arg: the throtl_service_queue being serviced
1120 *
1121 * This timer is armed when a child throtl_grp with active bio's become
1122 * pending and queued on the service_queue's pending_tree and expires when
1123 * the first child throtl_grp should be dispatched. This function
1124 * dispatches bio's from the children throtl_grps to the parent
1125 * service_queue.
1126 *
1127 * If the parent's parent is another throtl_grp, dispatching is propagated
1128 * by either arming its pending_timer or repeating dispatch directly. If
1129 * the top-level service_tree is reached, throtl_data->dispatch_work is
1130 * kicked so that the ready bio's are issued.
1131 */
1132 static void throtl_pending_timer_fn(unsigned long arg)
1133 {
1134 struct throtl_service_queue *sq = (void *)arg;
1135 struct throtl_grp *tg = sq_to_tg(sq);
1136 struct throtl_data *td = sq_to_td(sq);
1137 struct request_queue *q = td->queue;
1138 struct throtl_service_queue *parent_sq;
1139 bool dispatched;
1140 int ret;
1141
1142 spin_lock_irq(q->queue_lock);
1143 again:
1144 parent_sq = sq->parent_sq;
1145 dispatched = false;
1146
1147 while (true) {
1148 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1149 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1150 sq->nr_queued[READ], sq->nr_queued[WRITE]);
1151
1152 ret = throtl_select_dispatch(sq);
1153 if (ret) {
1154 throtl_log(sq, "bios disp=%u", ret);
1155 dispatched = true;
1156 }
1157
1158 if (throtl_schedule_next_dispatch(sq, false))
1159 break;
1160
1161 /* this dispatch windows is still open, relax and repeat */
1162 spin_unlock_irq(q->queue_lock);
1163 cpu_relax();
1164 spin_lock_irq(q->queue_lock);
1165 }
1166
1167 if (!dispatched)
1168 goto out_unlock;
1169
1170 if (parent_sq) {
1171 /* @parent_sq is another throl_grp, propagate dispatch */
1172 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1173 tg_update_disptime(tg);
1174 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1175 /* window is already open, repeat dispatching */
1176 sq = parent_sq;
1177 tg = sq_to_tg(sq);
1178 goto again;
1179 }
1180 }
1181 } else {
1182 /* reached the top-level, queue issueing */
1183 queue_work(kthrotld_workqueue, &td->dispatch_work);
1184 }
1185 out_unlock:
1186 spin_unlock_irq(q->queue_lock);
1187 }
1188
1189 /**
1190 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1191 * @work: work item being executed
1192 *
1193 * This function is queued for execution when bio's reach the bio_lists[]
1194 * of throtl_data->service_queue. Those bio's are ready and issued by this
1195 * function.
1196 */
1197 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1198 {
1199 struct throtl_data *td = container_of(work, struct throtl_data,
1200 dispatch_work);
1201 struct throtl_service_queue *td_sq = &td->service_queue;
1202 struct request_queue *q = td->queue;
1203 struct bio_list bio_list_on_stack;
1204 struct bio *bio;
1205 struct blk_plug plug;
1206 int rw;
1207
1208 bio_list_init(&bio_list_on_stack);
1209
1210 spin_lock_irq(q->queue_lock);
1211 for (rw = READ; rw <= WRITE; rw++)
1212 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1213 bio_list_add(&bio_list_on_stack, bio);
1214 spin_unlock_irq(q->queue_lock);
1215
1216 if (!bio_list_empty(&bio_list_on_stack)) {
1217 blk_start_plug(&plug);
1218 while((bio = bio_list_pop(&bio_list_on_stack)))
1219 generic_make_request(bio);
1220 blk_finish_plug(&plug);
1221 }
1222 }
1223
1224 static u64 tg_prfill_cpu_rwstat(struct seq_file *sf,
1225 struct blkg_policy_data *pd, int off)
1226 {
1227 struct throtl_grp *tg = pd_to_tg(pd);
1228 struct blkg_rwstat rwstat = { }, tmp;
1229 int i, cpu;
1230
1231 for_each_possible_cpu(cpu) {
1232 struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
1233
1234 tmp = blkg_rwstat_read((void *)sc + off);
1235 for (i = 0; i < BLKG_RWSTAT_NR; i++)
1236 rwstat.cnt[i] += tmp.cnt[i];
1237 }
1238
1239 return __blkg_prfill_rwstat(sf, pd, &rwstat);
1240 }
1241
1242 static int tg_print_cpu_rwstat(struct seq_file *sf, void *v)
1243 {
1244 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_cpu_rwstat,
1245 &blkcg_policy_throtl, seq_cft(sf)->private, true);
1246 return 0;
1247 }
1248
1249 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1250 int off)
1251 {
1252 struct throtl_grp *tg = pd_to_tg(pd);
1253 u64 v = *(u64 *)((void *)tg + off);
1254
1255 if (v == -1)
1256 return 0;
1257 return __blkg_prfill_u64(sf, pd, v);
1258 }
1259
1260 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1261 int off)
1262 {
1263 struct throtl_grp *tg = pd_to_tg(pd);
1264 unsigned int v = *(unsigned int *)((void *)tg + off);
1265
1266 if (v == -1)
1267 return 0;
1268 return __blkg_prfill_u64(sf, pd, v);
1269 }
1270
1271 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1272 {
1273 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1274 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1275 return 0;
1276 }
1277
1278 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1279 {
1280 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1281 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1282 return 0;
1283 }
1284
1285 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1286 char *buf, size_t nbytes, loff_t off, bool is_u64)
1287 {
1288 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1289 struct blkg_conf_ctx ctx;
1290 struct throtl_grp *tg;
1291 struct throtl_service_queue *sq;
1292 struct blkcg_gq *blkg;
1293 struct cgroup_subsys_state *pos_css;
1294 int ret;
1295
1296 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1297 if (ret)
1298 return ret;
1299
1300 tg = blkg_to_tg(ctx.blkg);
1301 sq = &tg->service_queue;
1302
1303 if (!ctx.v)
1304 ctx.v = -1;
1305
1306 if (is_u64)
1307 *(u64 *)((void *)tg + of_cft(of)->private) = ctx.v;
1308 else
1309 *(unsigned int *)((void *)tg + of_cft(of)->private) = ctx.v;
1310
1311 throtl_log(&tg->service_queue,
1312 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1313 tg->bps[READ], tg->bps[WRITE],
1314 tg->iops[READ], tg->iops[WRITE]);
1315
1316 /*
1317 * Update has_rules[] flags for the updated tg's subtree. A tg is
1318 * considered to have rules if either the tg itself or any of its
1319 * ancestors has rules. This identifies groups without any
1320 * restrictions in the whole hierarchy and allows them to bypass
1321 * blk-throttle.
1322 */
1323 blkg_for_each_descendant_pre(blkg, pos_css, ctx.blkg)
1324 tg_update_has_rules(blkg_to_tg(blkg));
1325
1326 /*
1327 * We're already holding queue_lock and know @tg is valid. Let's
1328 * apply the new config directly.
1329 *
1330 * Restart the slices for both READ and WRITES. It might happen
1331 * that a group's limit are dropped suddenly and we don't want to
1332 * account recently dispatched IO with new low rate.
1333 */
1334 throtl_start_new_slice(tg, 0);
1335 throtl_start_new_slice(tg, 1);
1336
1337 if (tg->flags & THROTL_TG_PENDING) {
1338 tg_update_disptime(tg);
1339 throtl_schedule_next_dispatch(sq->parent_sq, true);
1340 }
1341
1342 blkg_conf_finish(&ctx);
1343 return nbytes;
1344 }
1345
1346 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1347 char *buf, size_t nbytes, loff_t off)
1348 {
1349 return tg_set_conf(of, buf, nbytes, off, true);
1350 }
1351
1352 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1353 char *buf, size_t nbytes, loff_t off)
1354 {
1355 return tg_set_conf(of, buf, nbytes, off, false);
1356 }
1357
1358 static struct cftype throtl_files[] = {
1359 {
1360 .name = "throttle.read_bps_device",
1361 .private = offsetof(struct throtl_grp, bps[READ]),
1362 .seq_show = tg_print_conf_u64,
1363 .write = tg_set_conf_u64,
1364 },
1365 {
1366 .name = "throttle.write_bps_device",
1367 .private = offsetof(struct throtl_grp, bps[WRITE]),
1368 .seq_show = tg_print_conf_u64,
1369 .write = tg_set_conf_u64,
1370 },
1371 {
1372 .name = "throttle.read_iops_device",
1373 .private = offsetof(struct throtl_grp, iops[READ]),
1374 .seq_show = tg_print_conf_uint,
1375 .write = tg_set_conf_uint,
1376 },
1377 {
1378 .name = "throttle.write_iops_device",
1379 .private = offsetof(struct throtl_grp, iops[WRITE]),
1380 .seq_show = tg_print_conf_uint,
1381 .write = tg_set_conf_uint,
1382 },
1383 {
1384 .name = "throttle.io_service_bytes",
1385 .private = offsetof(struct tg_stats_cpu, service_bytes),
1386 .seq_show = tg_print_cpu_rwstat,
1387 },
1388 {
1389 .name = "throttle.io_serviced",
1390 .private = offsetof(struct tg_stats_cpu, serviced),
1391 .seq_show = tg_print_cpu_rwstat,
1392 },
1393 { } /* terminate */
1394 };
1395
1396 static void throtl_shutdown_wq(struct request_queue *q)
1397 {
1398 struct throtl_data *td = q->td;
1399
1400 cancel_work_sync(&td->dispatch_work);
1401 }
1402
1403 static struct blkcg_policy blkcg_policy_throtl = {
1404 .cftypes = throtl_files,
1405
1406 .pd_alloc_fn = throtl_pd_alloc,
1407 .pd_init_fn = throtl_pd_init,
1408 .pd_online_fn = throtl_pd_online,
1409 .pd_free_fn = throtl_pd_free,
1410 .pd_reset_stats_fn = throtl_pd_reset_stats,
1411 };
1412
1413 bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
1414 {
1415 struct throtl_data *td = q->td;
1416 struct throtl_qnode *qn = NULL;
1417 struct throtl_grp *tg;
1418 struct throtl_service_queue *sq;
1419 bool rw = bio_data_dir(bio);
1420 struct blkcg *blkcg;
1421 bool throttled = false;
1422
1423 /* see throtl_charge_bio() */
1424 if (bio->bi_rw & REQ_THROTTLED)
1425 goto out;
1426
1427 /*
1428 * A throtl_grp pointer retrieved under rcu can be used to access
1429 * basic fields like stats and io rates. If a group has no rules,
1430 * just update the dispatch stats in lockless manner and return.
1431 */
1432 rcu_read_lock();
1433 blkcg = bio_blkcg(bio);
1434 tg = throtl_lookup_tg(td, blkcg);
1435 if (tg) {
1436 if (!tg->has_rules[rw]) {
1437 throtl_update_dispatch_stats(tg_to_blkg(tg),
1438 bio->bi_iter.bi_size, bio->bi_rw);
1439 goto out_unlock_rcu;
1440 }
1441 }
1442
1443 /*
1444 * Either group has not been allocated yet or it is not an unlimited
1445 * IO group
1446 */
1447 spin_lock_irq(q->queue_lock);
1448 tg = throtl_lookup_create_tg(td, blkcg);
1449 if (unlikely(!tg))
1450 goto out_unlock;
1451
1452 sq = &tg->service_queue;
1453
1454 while (true) {
1455 /* throtl is FIFO - if bios are already queued, should queue */
1456 if (sq->nr_queued[rw])
1457 break;
1458
1459 /* if above limits, break to queue */
1460 if (!tg_may_dispatch(tg, bio, NULL))
1461 break;
1462
1463 /* within limits, let's charge and dispatch directly */
1464 throtl_charge_bio(tg, bio);
1465
1466 /*
1467 * We need to trim slice even when bios are not being queued
1468 * otherwise it might happen that a bio is not queued for
1469 * a long time and slice keeps on extending and trim is not
1470 * called for a long time. Now if limits are reduced suddenly
1471 * we take into account all the IO dispatched so far at new
1472 * low rate and * newly queued IO gets a really long dispatch
1473 * time.
1474 *
1475 * So keep on trimming slice even if bio is not queued.
1476 */
1477 throtl_trim_slice(tg, rw);
1478
1479 /*
1480 * @bio passed through this layer without being throttled.
1481 * Climb up the ladder. If we''re already at the top, it
1482 * can be executed directly.
1483 */
1484 qn = &tg->qnode_on_parent[rw];
1485 sq = sq->parent_sq;
1486 tg = sq_to_tg(sq);
1487 if (!tg)
1488 goto out_unlock;
1489 }
1490
1491 /* out-of-limit, queue to @tg */
1492 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
1493 rw == READ ? 'R' : 'W',
1494 tg->bytes_disp[rw], bio->bi_iter.bi_size, tg->bps[rw],
1495 tg->io_disp[rw], tg->iops[rw],
1496 sq->nr_queued[READ], sq->nr_queued[WRITE]);
1497
1498 bio_associate_current(bio);
1499 tg->td->nr_queued[rw]++;
1500 throtl_add_bio_tg(bio, qn, tg);
1501 throttled = true;
1502
1503 /*
1504 * Update @tg's dispatch time and force schedule dispatch if @tg
1505 * was empty before @bio. The forced scheduling isn't likely to
1506 * cause undue delay as @bio is likely to be dispatched directly if
1507 * its @tg's disptime is not in the future.
1508 */
1509 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1510 tg_update_disptime(tg);
1511 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
1512 }
1513
1514 out_unlock:
1515 spin_unlock_irq(q->queue_lock);
1516 out_unlock_rcu:
1517 rcu_read_unlock();
1518 out:
1519 /*
1520 * As multiple blk-throtls may stack in the same issue path, we
1521 * don't want bios to leave with the flag set. Clear the flag if
1522 * being issued.
1523 */
1524 if (!throttled)
1525 bio->bi_rw &= ~REQ_THROTTLED;
1526 return throttled;
1527 }
1528
1529 /*
1530 * Dispatch all bios from all children tg's queued on @parent_sq. On
1531 * return, @parent_sq is guaranteed to not have any active children tg's
1532 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
1533 */
1534 static void tg_drain_bios(struct throtl_service_queue *parent_sq)
1535 {
1536 struct throtl_grp *tg;
1537
1538 while ((tg = throtl_rb_first(parent_sq))) {
1539 struct throtl_service_queue *sq = &tg->service_queue;
1540 struct bio *bio;
1541
1542 throtl_dequeue_tg(tg);
1543
1544 while ((bio = throtl_peek_queued(&sq->queued[READ])))
1545 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1546 while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1547 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1548 }
1549 }
1550
1551 /**
1552 * blk_throtl_drain - drain throttled bios
1553 * @q: request_queue to drain throttled bios for
1554 *
1555 * Dispatch all currently throttled bios on @q through ->make_request_fn().
1556 */
1557 void blk_throtl_drain(struct request_queue *q)
1558 __releases(q->queue_lock) __acquires(q->queue_lock)
1559 {
1560 struct throtl_data *td = q->td;
1561 struct blkcg_gq *blkg;
1562 struct cgroup_subsys_state *pos_css;
1563 struct bio *bio;
1564 int rw;
1565
1566 queue_lockdep_assert_held(q);
1567 rcu_read_lock();
1568
1569 /*
1570 * Drain each tg while doing post-order walk on the blkg tree, so
1571 * that all bios are propagated to td->service_queue. It'd be
1572 * better to walk service_queue tree directly but blkg walk is
1573 * easier.
1574 */
1575 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
1576 tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
1577
1578 /* finally, transfer bios from top-level tg's into the td */
1579 tg_drain_bios(&td->service_queue);
1580
1581 rcu_read_unlock();
1582 spin_unlock_irq(q->queue_lock);
1583
1584 /* all bios now should be in td->service_queue, issue them */
1585 for (rw = READ; rw <= WRITE; rw++)
1586 while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
1587 NULL)))
1588 generic_make_request(bio);
1589
1590 spin_lock_irq(q->queue_lock);
1591 }
1592
1593 int blk_throtl_init(struct request_queue *q)
1594 {
1595 struct throtl_data *td;
1596 int ret;
1597
1598 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1599 if (!td)
1600 return -ENOMEM;
1601
1602 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1603 throtl_service_queue_init(&td->service_queue);
1604
1605 q->td = td;
1606 td->queue = q;
1607
1608 /* activate policy */
1609 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1610 if (ret)
1611 kfree(td);
1612 return ret;
1613 }
1614
1615 void blk_throtl_exit(struct request_queue *q)
1616 {
1617 BUG_ON(!q->td);
1618 throtl_shutdown_wq(q);
1619 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
1620 kfree(q->td);
1621 }
1622
1623 static int __init throtl_init(void)
1624 {
1625 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1626 if (!kthrotld_workqueue)
1627 panic("Failed to create kthrotld\n");
1628
1629 return blkcg_policy_register(&blkcg_policy_throtl);
1630 }
1631
1632 module_init(throtl_init);
This page took 0.063581 seconds and 5 git commands to generate.