blk-throttle: add throtl_qnode for dispatch fairness
[deliverable/linux.git] / block / blk-throttle.c
1 /*
2 * Interface for controlling IO bandwidth on a request queue
3 *
4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5 */
6
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include "blk-cgroup.h"
13 #include "blk.h"
14
15 /* Max dispatch from a group in 1 round */
16 static int throtl_grp_quantum = 8;
17
18 /* Total max dispatch from all groups in one round */
19 static int throtl_quantum = 32;
20
21 /* Throttling is performed over 100ms slice and after that slice is renewed */
22 static unsigned long throtl_slice = HZ/10; /* 100 ms */
23
24 static struct blkcg_policy blkcg_policy_throtl;
25
26 /* A workqueue to queue throttle related work */
27 static struct workqueue_struct *kthrotld_workqueue;
28
29 /*
30 * To implement hierarchical throttling, throtl_grps form a tree and bios
31 * are dispatched upwards level by level until they reach the top and get
32 * issued. When dispatching bios from the children and local group at each
33 * level, if the bios are dispatched into a single bio_list, there's a risk
34 * of a local or child group which can queue many bios at once filling up
35 * the list starving others.
36 *
37 * To avoid such starvation, dispatched bios are queued separately
38 * according to where they came from. When they are again dispatched to
39 * the parent, they're popped in round-robin order so that no single source
40 * hogs the dispatch window.
41 *
42 * throtl_qnode is used to keep the queued bios separated by their sources.
43 * Bios are queued to throtl_qnode which in turn is queued to
44 * throtl_service_queue and then dispatched in round-robin order.
45 *
46 * It's also used to track the reference counts on blkg's. A qnode always
47 * belongs to a throtl_grp and gets queued on itself or the parent, so
48 * incrementing the reference of the associated throtl_grp when a qnode is
49 * queued and decrementing when dequeued is enough to keep the whole blkg
50 * tree pinned while bios are in flight.
51 */
52 struct throtl_qnode {
53 struct list_head node; /* service_queue->queued[] */
54 struct bio_list bios; /* queued bios */
55 struct throtl_grp *tg; /* tg this qnode belongs to */
56 };
57
58 struct throtl_service_queue {
59 struct throtl_service_queue *parent_sq; /* the parent service_queue */
60
61 /*
62 * Bios queued directly to this service_queue or dispatched from
63 * children throtl_grp's.
64 */
65 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */
66 unsigned int nr_queued[2]; /* number of queued bios */
67
68 /*
69 * RB tree of active children throtl_grp's, which are sorted by
70 * their ->disptime.
71 */
72 struct rb_root pending_tree; /* RB tree of active tgs */
73 struct rb_node *first_pending; /* first node in the tree */
74 unsigned int nr_pending; /* # queued in the tree */
75 unsigned long first_pending_disptime; /* disptime of the first tg */
76 struct timer_list pending_timer; /* fires on first_pending_disptime */
77 };
78
79 enum tg_state_flags {
80 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */
81 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */
82 };
83
84 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
85
86 /* Per-cpu group stats */
87 struct tg_stats_cpu {
88 /* total bytes transferred */
89 struct blkg_rwstat service_bytes;
90 /* total IOs serviced, post merge */
91 struct blkg_rwstat serviced;
92 };
93
94 struct throtl_grp {
95 /* must be the first member */
96 struct blkg_policy_data pd;
97
98 /* active throtl group service_queue member */
99 struct rb_node rb_node;
100
101 /* throtl_data this group belongs to */
102 struct throtl_data *td;
103
104 /* this group's service queue */
105 struct throtl_service_queue service_queue;
106
107 /*
108 * qnode_on_self is used when bios are directly queued to this
109 * throtl_grp so that local bios compete fairly with bios
110 * dispatched from children. qnode_on_parent is used when bios are
111 * dispatched from this throtl_grp into its parent and will compete
112 * with the sibling qnode_on_parents and the parent's
113 * qnode_on_self.
114 */
115 struct throtl_qnode qnode_on_self[2];
116 struct throtl_qnode qnode_on_parent[2];
117
118 /*
119 * Dispatch time in jiffies. This is the estimated time when group
120 * will unthrottle and is ready to dispatch more bio. It is used as
121 * key to sort active groups in service tree.
122 */
123 unsigned long disptime;
124
125 unsigned int flags;
126
127 /* bytes per second rate limits */
128 uint64_t bps[2];
129
130 /* IOPS limits */
131 unsigned int iops[2];
132
133 /* Number of bytes disptached in current slice */
134 uint64_t bytes_disp[2];
135 /* Number of bio's dispatched in current slice */
136 unsigned int io_disp[2];
137
138 /* When did we start a new slice */
139 unsigned long slice_start[2];
140 unsigned long slice_end[2];
141
142 /* Per cpu stats pointer */
143 struct tg_stats_cpu __percpu *stats_cpu;
144
145 /* List of tgs waiting for per cpu stats memory to be allocated */
146 struct list_head stats_alloc_node;
147 };
148
149 struct throtl_data
150 {
151 /* service tree for active throtl groups */
152 struct throtl_service_queue service_queue;
153
154 struct request_queue *queue;
155
156 /* Total Number of queued bios on READ and WRITE lists */
157 unsigned int nr_queued[2];
158
159 /*
160 * number of total undestroyed groups
161 */
162 unsigned int nr_undestroyed_grps;
163
164 /* Work for dispatching throttled bios */
165 struct work_struct dispatch_work;
166 };
167
168 /* list and work item to allocate percpu group stats */
169 static DEFINE_SPINLOCK(tg_stats_alloc_lock);
170 static LIST_HEAD(tg_stats_alloc_list);
171
172 static void tg_stats_alloc_fn(struct work_struct *);
173 static DECLARE_DELAYED_WORK(tg_stats_alloc_work, tg_stats_alloc_fn);
174
175 static void throtl_pending_timer_fn(unsigned long arg);
176
177 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
178 {
179 return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
180 }
181
182 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
183 {
184 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
185 }
186
187 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
188 {
189 return pd_to_blkg(&tg->pd);
190 }
191
192 static inline struct throtl_grp *td_root_tg(struct throtl_data *td)
193 {
194 return blkg_to_tg(td->queue->root_blkg);
195 }
196
197 /**
198 * sq_to_tg - return the throl_grp the specified service queue belongs to
199 * @sq: the throtl_service_queue of interest
200 *
201 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
202 * embedded in throtl_data, %NULL is returned.
203 */
204 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
205 {
206 if (sq && sq->parent_sq)
207 return container_of(sq, struct throtl_grp, service_queue);
208 else
209 return NULL;
210 }
211
212 /**
213 * sq_to_td - return throtl_data the specified service queue belongs to
214 * @sq: the throtl_service_queue of interest
215 *
216 * A service_queue can be embeded in either a throtl_grp or throtl_data.
217 * Determine the associated throtl_data accordingly and return it.
218 */
219 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
220 {
221 struct throtl_grp *tg = sq_to_tg(sq);
222
223 if (tg)
224 return tg->td;
225 else
226 return container_of(sq, struct throtl_data, service_queue);
227 }
228
229 /**
230 * throtl_log - log debug message via blktrace
231 * @sq: the service_queue being reported
232 * @fmt: printf format string
233 * @args: printf args
234 *
235 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
236 * throtl_grp; otherwise, just "throtl".
237 *
238 * TODO: this should be made a function and name formatting should happen
239 * after testing whether blktrace is enabled.
240 */
241 #define throtl_log(sq, fmt, args...) do { \
242 struct throtl_grp *__tg = sq_to_tg((sq)); \
243 struct throtl_data *__td = sq_to_td((sq)); \
244 \
245 (void)__td; \
246 if ((__tg)) { \
247 char __pbuf[128]; \
248 \
249 blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf)); \
250 blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
251 } else { \
252 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
253 } \
254 } while (0)
255
256 /*
257 * Worker for allocating per cpu stat for tgs. This is scheduled on the
258 * system_wq once there are some groups on the alloc_list waiting for
259 * allocation.
260 */
261 static void tg_stats_alloc_fn(struct work_struct *work)
262 {
263 static struct tg_stats_cpu *stats_cpu; /* this fn is non-reentrant */
264 struct delayed_work *dwork = to_delayed_work(work);
265 bool empty = false;
266
267 alloc_stats:
268 if (!stats_cpu) {
269 stats_cpu = alloc_percpu(struct tg_stats_cpu);
270 if (!stats_cpu) {
271 /* allocation failed, try again after some time */
272 schedule_delayed_work(dwork, msecs_to_jiffies(10));
273 return;
274 }
275 }
276
277 spin_lock_irq(&tg_stats_alloc_lock);
278
279 if (!list_empty(&tg_stats_alloc_list)) {
280 struct throtl_grp *tg = list_first_entry(&tg_stats_alloc_list,
281 struct throtl_grp,
282 stats_alloc_node);
283 swap(tg->stats_cpu, stats_cpu);
284 list_del_init(&tg->stats_alloc_node);
285 }
286
287 empty = list_empty(&tg_stats_alloc_list);
288 spin_unlock_irq(&tg_stats_alloc_lock);
289 if (!empty)
290 goto alloc_stats;
291 }
292
293 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
294 {
295 INIT_LIST_HEAD(&qn->node);
296 bio_list_init(&qn->bios);
297 qn->tg = tg;
298 }
299
300 /**
301 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
302 * @bio: bio being added
303 * @qn: qnode to add bio to
304 * @queued: the service_queue->queued[] list @qn belongs to
305 *
306 * Add @bio to @qn and put @qn on @queued if it's not already on.
307 * @qn->tg's reference count is bumped when @qn is activated. See the
308 * comment on top of throtl_qnode definition for details.
309 */
310 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
311 struct list_head *queued)
312 {
313 bio_list_add(&qn->bios, bio);
314 if (list_empty(&qn->node)) {
315 list_add_tail(&qn->node, queued);
316 blkg_get(tg_to_blkg(qn->tg));
317 }
318 }
319
320 /**
321 * throtl_peek_queued - peek the first bio on a qnode list
322 * @queued: the qnode list to peek
323 */
324 static struct bio *throtl_peek_queued(struct list_head *queued)
325 {
326 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
327 struct bio *bio;
328
329 if (list_empty(queued))
330 return NULL;
331
332 bio = bio_list_peek(&qn->bios);
333 WARN_ON_ONCE(!bio);
334 return bio;
335 }
336
337 /**
338 * throtl_pop_queued - pop the first bio form a qnode list
339 * @queued: the qnode list to pop a bio from
340 * @tg_to_put: optional out argument for throtl_grp to put
341 *
342 * Pop the first bio from the qnode list @queued. After popping, the first
343 * qnode is removed from @queued if empty or moved to the end of @queued so
344 * that the popping order is round-robin.
345 *
346 * When the first qnode is removed, its associated throtl_grp should be put
347 * too. If @tg_to_put is NULL, this function automatically puts it;
348 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
349 * responsible for putting it.
350 */
351 static struct bio *throtl_pop_queued(struct list_head *queued,
352 struct throtl_grp **tg_to_put)
353 {
354 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
355 struct bio *bio;
356
357 if (list_empty(queued))
358 return NULL;
359
360 bio = bio_list_pop(&qn->bios);
361 WARN_ON_ONCE(!bio);
362
363 if (bio_list_empty(&qn->bios)) {
364 list_del_init(&qn->node);
365 if (tg_to_put)
366 *tg_to_put = qn->tg;
367 else
368 blkg_put(tg_to_blkg(qn->tg));
369 } else {
370 list_move_tail(&qn->node, queued);
371 }
372
373 return bio;
374 }
375
376 /* init a service_queue, assumes the caller zeroed it */
377 static void throtl_service_queue_init(struct throtl_service_queue *sq,
378 struct throtl_service_queue *parent_sq)
379 {
380 INIT_LIST_HEAD(&sq->queued[0]);
381 INIT_LIST_HEAD(&sq->queued[1]);
382 sq->pending_tree = RB_ROOT;
383 sq->parent_sq = parent_sq;
384 setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
385 (unsigned long)sq);
386 }
387
388 static void throtl_service_queue_exit(struct throtl_service_queue *sq)
389 {
390 del_timer_sync(&sq->pending_timer);
391 }
392
393 static void throtl_pd_init(struct blkcg_gq *blkg)
394 {
395 struct throtl_grp *tg = blkg_to_tg(blkg);
396 struct throtl_data *td = blkg->q->td;
397 unsigned long flags;
398 int rw;
399
400 throtl_service_queue_init(&tg->service_queue, &td->service_queue);
401 for (rw = READ; rw <= WRITE; rw++) {
402 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
403 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
404 }
405
406 RB_CLEAR_NODE(&tg->rb_node);
407 tg->td = td;
408
409 tg->bps[READ] = -1;
410 tg->bps[WRITE] = -1;
411 tg->iops[READ] = -1;
412 tg->iops[WRITE] = -1;
413
414 /*
415 * Ugh... We need to perform per-cpu allocation for tg->stats_cpu
416 * but percpu allocator can't be called from IO path. Queue tg on
417 * tg_stats_alloc_list and allocate from work item.
418 */
419 spin_lock_irqsave(&tg_stats_alloc_lock, flags);
420 list_add(&tg->stats_alloc_node, &tg_stats_alloc_list);
421 schedule_delayed_work(&tg_stats_alloc_work, 0);
422 spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
423 }
424
425 static void throtl_pd_exit(struct blkcg_gq *blkg)
426 {
427 struct throtl_grp *tg = blkg_to_tg(blkg);
428 unsigned long flags;
429
430 spin_lock_irqsave(&tg_stats_alloc_lock, flags);
431 list_del_init(&tg->stats_alloc_node);
432 spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
433
434 free_percpu(tg->stats_cpu);
435
436 throtl_service_queue_exit(&tg->service_queue);
437 }
438
439 static void throtl_pd_reset_stats(struct blkcg_gq *blkg)
440 {
441 struct throtl_grp *tg = blkg_to_tg(blkg);
442 int cpu;
443
444 if (tg->stats_cpu == NULL)
445 return;
446
447 for_each_possible_cpu(cpu) {
448 struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
449
450 blkg_rwstat_reset(&sc->service_bytes);
451 blkg_rwstat_reset(&sc->serviced);
452 }
453 }
454
455 static struct throtl_grp *throtl_lookup_tg(struct throtl_data *td,
456 struct blkcg *blkcg)
457 {
458 /*
459 * This is the common case when there are no blkcgs. Avoid lookup
460 * in this case
461 */
462 if (blkcg == &blkcg_root)
463 return td_root_tg(td);
464
465 return blkg_to_tg(blkg_lookup(blkcg, td->queue));
466 }
467
468 static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td,
469 struct blkcg *blkcg)
470 {
471 struct request_queue *q = td->queue;
472 struct throtl_grp *tg = NULL;
473
474 /*
475 * This is the common case when there are no blkcgs. Avoid lookup
476 * in this case
477 */
478 if (blkcg == &blkcg_root) {
479 tg = td_root_tg(td);
480 } else {
481 struct blkcg_gq *blkg;
482
483 blkg = blkg_lookup_create(blkcg, q);
484
485 /* if %NULL and @q is alive, fall back to root_tg */
486 if (!IS_ERR(blkg))
487 tg = blkg_to_tg(blkg);
488 else if (!blk_queue_dying(q))
489 tg = td_root_tg(td);
490 }
491
492 return tg;
493 }
494
495 static struct throtl_grp *
496 throtl_rb_first(struct throtl_service_queue *parent_sq)
497 {
498 /* Service tree is empty */
499 if (!parent_sq->nr_pending)
500 return NULL;
501
502 if (!parent_sq->first_pending)
503 parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
504
505 if (parent_sq->first_pending)
506 return rb_entry_tg(parent_sq->first_pending);
507
508 return NULL;
509 }
510
511 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
512 {
513 rb_erase(n, root);
514 RB_CLEAR_NODE(n);
515 }
516
517 static void throtl_rb_erase(struct rb_node *n,
518 struct throtl_service_queue *parent_sq)
519 {
520 if (parent_sq->first_pending == n)
521 parent_sq->first_pending = NULL;
522 rb_erase_init(n, &parent_sq->pending_tree);
523 --parent_sq->nr_pending;
524 }
525
526 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
527 {
528 struct throtl_grp *tg;
529
530 tg = throtl_rb_first(parent_sq);
531 if (!tg)
532 return;
533
534 parent_sq->first_pending_disptime = tg->disptime;
535 }
536
537 static void tg_service_queue_add(struct throtl_grp *tg)
538 {
539 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
540 struct rb_node **node = &parent_sq->pending_tree.rb_node;
541 struct rb_node *parent = NULL;
542 struct throtl_grp *__tg;
543 unsigned long key = tg->disptime;
544 int left = 1;
545
546 while (*node != NULL) {
547 parent = *node;
548 __tg = rb_entry_tg(parent);
549
550 if (time_before(key, __tg->disptime))
551 node = &parent->rb_left;
552 else {
553 node = &parent->rb_right;
554 left = 0;
555 }
556 }
557
558 if (left)
559 parent_sq->first_pending = &tg->rb_node;
560
561 rb_link_node(&tg->rb_node, parent, node);
562 rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
563 }
564
565 static void __throtl_enqueue_tg(struct throtl_grp *tg)
566 {
567 tg_service_queue_add(tg);
568 tg->flags |= THROTL_TG_PENDING;
569 tg->service_queue.parent_sq->nr_pending++;
570 }
571
572 static void throtl_enqueue_tg(struct throtl_grp *tg)
573 {
574 if (!(tg->flags & THROTL_TG_PENDING))
575 __throtl_enqueue_tg(tg);
576 }
577
578 static void __throtl_dequeue_tg(struct throtl_grp *tg)
579 {
580 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
581 tg->flags &= ~THROTL_TG_PENDING;
582 }
583
584 static void throtl_dequeue_tg(struct throtl_grp *tg)
585 {
586 if (tg->flags & THROTL_TG_PENDING)
587 __throtl_dequeue_tg(tg);
588 }
589
590 /* Call with queue lock held */
591 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
592 unsigned long expires)
593 {
594 mod_timer(&sq->pending_timer, expires);
595 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
596 expires - jiffies, jiffies);
597 }
598
599 /**
600 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
601 * @sq: the service_queue to schedule dispatch for
602 * @force: force scheduling
603 *
604 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
605 * dispatch time of the first pending child. Returns %true if either timer
606 * is armed or there's no pending child left. %false if the current
607 * dispatch window is still open and the caller should continue
608 * dispatching.
609 *
610 * If @force is %true, the dispatch timer is always scheduled and this
611 * function is guaranteed to return %true. This is to be used when the
612 * caller can't dispatch itself and needs to invoke pending_timer
613 * unconditionally. Note that forced scheduling is likely to induce short
614 * delay before dispatch starts even if @sq->first_pending_disptime is not
615 * in the future and thus shouldn't be used in hot paths.
616 */
617 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
618 bool force)
619 {
620 /* any pending children left? */
621 if (!sq->nr_pending)
622 return true;
623
624 update_min_dispatch_time(sq);
625
626 /* is the next dispatch time in the future? */
627 if (force || time_after(sq->first_pending_disptime, jiffies)) {
628 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
629 return true;
630 }
631
632 /* tell the caller to continue dispatching */
633 return false;
634 }
635
636 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
637 {
638 tg->bytes_disp[rw] = 0;
639 tg->io_disp[rw] = 0;
640 tg->slice_start[rw] = jiffies;
641 tg->slice_end[rw] = jiffies + throtl_slice;
642 throtl_log(&tg->service_queue,
643 "[%c] new slice start=%lu end=%lu jiffies=%lu",
644 rw == READ ? 'R' : 'W', tg->slice_start[rw],
645 tg->slice_end[rw], jiffies);
646 }
647
648 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
649 unsigned long jiffy_end)
650 {
651 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
652 }
653
654 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
655 unsigned long jiffy_end)
656 {
657 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
658 throtl_log(&tg->service_queue,
659 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
660 rw == READ ? 'R' : 'W', tg->slice_start[rw],
661 tg->slice_end[rw], jiffies);
662 }
663
664 /* Determine if previously allocated or extended slice is complete or not */
665 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
666 {
667 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
668 return 0;
669
670 return 1;
671 }
672
673 /* Trim the used slices and adjust slice start accordingly */
674 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
675 {
676 unsigned long nr_slices, time_elapsed, io_trim;
677 u64 bytes_trim, tmp;
678
679 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
680
681 /*
682 * If bps are unlimited (-1), then time slice don't get
683 * renewed. Don't try to trim the slice if slice is used. A new
684 * slice will start when appropriate.
685 */
686 if (throtl_slice_used(tg, rw))
687 return;
688
689 /*
690 * A bio has been dispatched. Also adjust slice_end. It might happen
691 * that initially cgroup limit was very low resulting in high
692 * slice_end, but later limit was bumped up and bio was dispached
693 * sooner, then we need to reduce slice_end. A high bogus slice_end
694 * is bad because it does not allow new slice to start.
695 */
696
697 throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
698
699 time_elapsed = jiffies - tg->slice_start[rw];
700
701 nr_slices = time_elapsed / throtl_slice;
702
703 if (!nr_slices)
704 return;
705 tmp = tg->bps[rw] * throtl_slice * nr_slices;
706 do_div(tmp, HZ);
707 bytes_trim = tmp;
708
709 io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
710
711 if (!bytes_trim && !io_trim)
712 return;
713
714 if (tg->bytes_disp[rw] >= bytes_trim)
715 tg->bytes_disp[rw] -= bytes_trim;
716 else
717 tg->bytes_disp[rw] = 0;
718
719 if (tg->io_disp[rw] >= io_trim)
720 tg->io_disp[rw] -= io_trim;
721 else
722 tg->io_disp[rw] = 0;
723
724 tg->slice_start[rw] += nr_slices * throtl_slice;
725
726 throtl_log(&tg->service_queue,
727 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
728 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
729 tg->slice_start[rw], tg->slice_end[rw], jiffies);
730 }
731
732 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
733 unsigned long *wait)
734 {
735 bool rw = bio_data_dir(bio);
736 unsigned int io_allowed;
737 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
738 u64 tmp;
739
740 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
741
742 /* Slice has just started. Consider one slice interval */
743 if (!jiffy_elapsed)
744 jiffy_elapsed_rnd = throtl_slice;
745
746 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
747
748 /*
749 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
750 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
751 * will allow dispatch after 1 second and after that slice should
752 * have been trimmed.
753 */
754
755 tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
756 do_div(tmp, HZ);
757
758 if (tmp > UINT_MAX)
759 io_allowed = UINT_MAX;
760 else
761 io_allowed = tmp;
762
763 if (tg->io_disp[rw] + 1 <= io_allowed) {
764 if (wait)
765 *wait = 0;
766 return 1;
767 }
768
769 /* Calc approx time to dispatch */
770 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
771
772 if (jiffy_wait > jiffy_elapsed)
773 jiffy_wait = jiffy_wait - jiffy_elapsed;
774 else
775 jiffy_wait = 1;
776
777 if (wait)
778 *wait = jiffy_wait;
779 return 0;
780 }
781
782 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
783 unsigned long *wait)
784 {
785 bool rw = bio_data_dir(bio);
786 u64 bytes_allowed, extra_bytes, tmp;
787 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
788
789 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
790
791 /* Slice has just started. Consider one slice interval */
792 if (!jiffy_elapsed)
793 jiffy_elapsed_rnd = throtl_slice;
794
795 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
796
797 tmp = tg->bps[rw] * jiffy_elapsed_rnd;
798 do_div(tmp, HZ);
799 bytes_allowed = tmp;
800
801 if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
802 if (wait)
803 *wait = 0;
804 return 1;
805 }
806
807 /* Calc approx time to dispatch */
808 extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
809 jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
810
811 if (!jiffy_wait)
812 jiffy_wait = 1;
813
814 /*
815 * This wait time is without taking into consideration the rounding
816 * up we did. Add that time also.
817 */
818 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
819 if (wait)
820 *wait = jiffy_wait;
821 return 0;
822 }
823
824 static bool tg_no_rule_group(struct throtl_grp *tg, bool rw) {
825 if (tg->bps[rw] == -1 && tg->iops[rw] == -1)
826 return 1;
827 return 0;
828 }
829
830 /*
831 * Returns whether one can dispatch a bio or not. Also returns approx number
832 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
833 */
834 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
835 unsigned long *wait)
836 {
837 bool rw = bio_data_dir(bio);
838 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
839
840 /*
841 * Currently whole state machine of group depends on first bio
842 * queued in the group bio list. So one should not be calling
843 * this function with a different bio if there are other bios
844 * queued.
845 */
846 BUG_ON(tg->service_queue.nr_queued[rw] &&
847 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
848
849 /* If tg->bps = -1, then BW is unlimited */
850 if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
851 if (wait)
852 *wait = 0;
853 return 1;
854 }
855
856 /*
857 * If previous slice expired, start a new one otherwise renew/extend
858 * existing slice to make sure it is at least throtl_slice interval
859 * long since now.
860 */
861 if (throtl_slice_used(tg, rw))
862 throtl_start_new_slice(tg, rw);
863 else {
864 if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
865 throtl_extend_slice(tg, rw, jiffies + throtl_slice);
866 }
867
868 if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
869 tg_with_in_iops_limit(tg, bio, &iops_wait)) {
870 if (wait)
871 *wait = 0;
872 return 1;
873 }
874
875 max_wait = max(bps_wait, iops_wait);
876
877 if (wait)
878 *wait = max_wait;
879
880 if (time_before(tg->slice_end[rw], jiffies + max_wait))
881 throtl_extend_slice(tg, rw, jiffies + max_wait);
882
883 return 0;
884 }
885
886 static void throtl_update_dispatch_stats(struct blkcg_gq *blkg, u64 bytes,
887 int rw)
888 {
889 struct throtl_grp *tg = blkg_to_tg(blkg);
890 struct tg_stats_cpu *stats_cpu;
891 unsigned long flags;
892
893 /* If per cpu stats are not allocated yet, don't do any accounting. */
894 if (tg->stats_cpu == NULL)
895 return;
896
897 /*
898 * Disabling interrupts to provide mutual exclusion between two
899 * writes on same cpu. It probably is not needed for 64bit. Not
900 * optimizing that case yet.
901 */
902 local_irq_save(flags);
903
904 stats_cpu = this_cpu_ptr(tg->stats_cpu);
905
906 blkg_rwstat_add(&stats_cpu->serviced, rw, 1);
907 blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes);
908
909 local_irq_restore(flags);
910 }
911
912 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
913 {
914 bool rw = bio_data_dir(bio);
915
916 /* Charge the bio to the group */
917 tg->bytes_disp[rw] += bio->bi_size;
918 tg->io_disp[rw]++;
919
920 /*
921 * REQ_THROTTLED is used to prevent the same bio to be throttled
922 * more than once as a throttled bio will go through blk-throtl the
923 * second time when it eventually gets issued. Set it when a bio
924 * is being charged to a tg.
925 *
926 * Dispatch stats aren't recursive and each @bio should only be
927 * accounted by the @tg it was originally associated with. Let's
928 * update the stats when setting REQ_THROTTLED for the first time
929 * which is guaranteed to be for the @bio's original tg.
930 */
931 if (!(bio->bi_rw & REQ_THROTTLED)) {
932 bio->bi_rw |= REQ_THROTTLED;
933 throtl_update_dispatch_stats(tg_to_blkg(tg), bio->bi_size,
934 bio->bi_rw);
935 }
936 }
937
938 /**
939 * throtl_add_bio_tg - add a bio to the specified throtl_grp
940 * @bio: bio to add
941 * @qn: qnode to use
942 * @tg: the target throtl_grp
943 *
944 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
945 * tg->qnode_on_self[] is used.
946 */
947 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
948 struct throtl_grp *tg)
949 {
950 struct throtl_service_queue *sq = &tg->service_queue;
951 bool rw = bio_data_dir(bio);
952
953 if (!qn)
954 qn = &tg->qnode_on_self[rw];
955
956 /*
957 * If @tg doesn't currently have any bios queued in the same
958 * direction, queueing @bio can change when @tg should be
959 * dispatched. Mark that @tg was empty. This is automatically
960 * cleaered on the next tg_update_disptime().
961 */
962 if (!sq->nr_queued[rw])
963 tg->flags |= THROTL_TG_WAS_EMPTY;
964
965 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
966
967 sq->nr_queued[rw]++;
968 throtl_enqueue_tg(tg);
969 }
970
971 static void tg_update_disptime(struct throtl_grp *tg)
972 {
973 struct throtl_service_queue *sq = &tg->service_queue;
974 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
975 struct bio *bio;
976
977 if ((bio = throtl_peek_queued(&sq->queued[READ])))
978 tg_may_dispatch(tg, bio, &read_wait);
979
980 if ((bio = throtl_peek_queued(&sq->queued[WRITE])))
981 tg_may_dispatch(tg, bio, &write_wait);
982
983 min_wait = min(read_wait, write_wait);
984 disptime = jiffies + min_wait;
985
986 /* Update dispatch time */
987 throtl_dequeue_tg(tg);
988 tg->disptime = disptime;
989 throtl_enqueue_tg(tg);
990
991 /* see throtl_add_bio_tg() */
992 tg->flags &= ~THROTL_TG_WAS_EMPTY;
993 }
994
995 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
996 {
997 struct throtl_service_queue *sq = &tg->service_queue;
998 struct throtl_service_queue *parent_sq = sq->parent_sq;
999 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1000 struct throtl_grp *tg_to_put = NULL;
1001 struct bio *bio;
1002
1003 /*
1004 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1005 * from @tg may put its reference and @parent_sq might end up
1006 * getting released prematurely. Remember the tg to put and put it
1007 * after @bio is transferred to @parent_sq.
1008 */
1009 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1010 sq->nr_queued[rw]--;
1011
1012 throtl_charge_bio(tg, bio);
1013
1014 /*
1015 * If our parent is another tg, we just need to transfer @bio to
1016 * the parent using throtl_add_bio_tg(). If our parent is
1017 * @td->service_queue, @bio is ready to be issued. Put it on its
1018 * bio_lists[] and decrease total number queued. The caller is
1019 * responsible for issuing these bios.
1020 */
1021 if (parent_tg) {
1022 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1023 } else {
1024 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1025 &parent_sq->queued[rw]);
1026 BUG_ON(tg->td->nr_queued[rw] <= 0);
1027 tg->td->nr_queued[rw]--;
1028 }
1029
1030 throtl_trim_slice(tg, rw);
1031
1032 if (tg_to_put)
1033 blkg_put(tg_to_blkg(tg_to_put));
1034 }
1035
1036 static int throtl_dispatch_tg(struct throtl_grp *tg)
1037 {
1038 struct throtl_service_queue *sq = &tg->service_queue;
1039 unsigned int nr_reads = 0, nr_writes = 0;
1040 unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1041 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1042 struct bio *bio;
1043
1044 /* Try to dispatch 75% READS and 25% WRITES */
1045
1046 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1047 tg_may_dispatch(tg, bio, NULL)) {
1048
1049 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1050 nr_reads++;
1051
1052 if (nr_reads >= max_nr_reads)
1053 break;
1054 }
1055
1056 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1057 tg_may_dispatch(tg, bio, NULL)) {
1058
1059 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1060 nr_writes++;
1061
1062 if (nr_writes >= max_nr_writes)
1063 break;
1064 }
1065
1066 return nr_reads + nr_writes;
1067 }
1068
1069 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1070 {
1071 unsigned int nr_disp = 0;
1072
1073 while (1) {
1074 struct throtl_grp *tg = throtl_rb_first(parent_sq);
1075 struct throtl_service_queue *sq = &tg->service_queue;
1076
1077 if (!tg)
1078 break;
1079
1080 if (time_before(jiffies, tg->disptime))
1081 break;
1082
1083 throtl_dequeue_tg(tg);
1084
1085 nr_disp += throtl_dispatch_tg(tg);
1086
1087 if (sq->nr_queued[0] || sq->nr_queued[1])
1088 tg_update_disptime(tg);
1089
1090 if (nr_disp >= throtl_quantum)
1091 break;
1092 }
1093
1094 return nr_disp;
1095 }
1096
1097 /**
1098 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1099 * @arg: the throtl_service_queue being serviced
1100 *
1101 * This timer is armed when a child throtl_grp with active bio's become
1102 * pending and queued on the service_queue's pending_tree and expires when
1103 * the first child throtl_grp should be dispatched. This function
1104 * dispatches bio's from the children throtl_grps to the parent
1105 * service_queue.
1106 *
1107 * If the parent's parent is another throtl_grp, dispatching is propagated
1108 * by either arming its pending_timer or repeating dispatch directly. If
1109 * the top-level service_tree is reached, throtl_data->dispatch_work is
1110 * kicked so that the ready bio's are issued.
1111 */
1112 static void throtl_pending_timer_fn(unsigned long arg)
1113 {
1114 struct throtl_service_queue *sq = (void *)arg;
1115 struct throtl_grp *tg = sq_to_tg(sq);
1116 struct throtl_data *td = sq_to_td(sq);
1117 struct request_queue *q = td->queue;
1118 struct throtl_service_queue *parent_sq;
1119 bool dispatched;
1120 int ret;
1121
1122 spin_lock_irq(q->queue_lock);
1123 again:
1124 parent_sq = sq->parent_sq;
1125 dispatched = false;
1126
1127 while (true) {
1128 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1129 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1130 sq->nr_queued[READ], sq->nr_queued[WRITE]);
1131
1132 ret = throtl_select_dispatch(sq);
1133 if (ret) {
1134 throtl_log(sq, "bios disp=%u", ret);
1135 dispatched = true;
1136 }
1137
1138 if (throtl_schedule_next_dispatch(sq, false))
1139 break;
1140
1141 /* this dispatch windows is still open, relax and repeat */
1142 spin_unlock_irq(q->queue_lock);
1143 cpu_relax();
1144 spin_lock_irq(q->queue_lock);
1145 }
1146
1147 if (!dispatched)
1148 goto out_unlock;
1149
1150 if (parent_sq) {
1151 /* @parent_sq is another throl_grp, propagate dispatch */
1152 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1153 tg_update_disptime(tg);
1154 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1155 /* window is already open, repeat dispatching */
1156 sq = parent_sq;
1157 tg = sq_to_tg(sq);
1158 goto again;
1159 }
1160 }
1161 } else {
1162 /* reached the top-level, queue issueing */
1163 queue_work(kthrotld_workqueue, &td->dispatch_work);
1164 }
1165 out_unlock:
1166 spin_unlock_irq(q->queue_lock);
1167 }
1168
1169 /**
1170 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1171 * @work: work item being executed
1172 *
1173 * This function is queued for execution when bio's reach the bio_lists[]
1174 * of throtl_data->service_queue. Those bio's are ready and issued by this
1175 * function.
1176 */
1177 void blk_throtl_dispatch_work_fn(struct work_struct *work)
1178 {
1179 struct throtl_data *td = container_of(work, struct throtl_data,
1180 dispatch_work);
1181 struct throtl_service_queue *td_sq = &td->service_queue;
1182 struct request_queue *q = td->queue;
1183 struct bio_list bio_list_on_stack;
1184 struct bio *bio;
1185 struct blk_plug plug;
1186 int rw;
1187
1188 bio_list_init(&bio_list_on_stack);
1189
1190 spin_lock_irq(q->queue_lock);
1191 for (rw = READ; rw <= WRITE; rw++)
1192 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1193 bio_list_add(&bio_list_on_stack, bio);
1194 spin_unlock_irq(q->queue_lock);
1195
1196 if (!bio_list_empty(&bio_list_on_stack)) {
1197 blk_start_plug(&plug);
1198 while((bio = bio_list_pop(&bio_list_on_stack)))
1199 generic_make_request(bio);
1200 blk_finish_plug(&plug);
1201 }
1202 }
1203
1204 static u64 tg_prfill_cpu_rwstat(struct seq_file *sf,
1205 struct blkg_policy_data *pd, int off)
1206 {
1207 struct throtl_grp *tg = pd_to_tg(pd);
1208 struct blkg_rwstat rwstat = { }, tmp;
1209 int i, cpu;
1210
1211 for_each_possible_cpu(cpu) {
1212 struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
1213
1214 tmp = blkg_rwstat_read((void *)sc + off);
1215 for (i = 0; i < BLKG_RWSTAT_NR; i++)
1216 rwstat.cnt[i] += tmp.cnt[i];
1217 }
1218
1219 return __blkg_prfill_rwstat(sf, pd, &rwstat);
1220 }
1221
1222 static int tg_print_cpu_rwstat(struct cgroup *cgrp, struct cftype *cft,
1223 struct seq_file *sf)
1224 {
1225 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1226
1227 blkcg_print_blkgs(sf, blkcg, tg_prfill_cpu_rwstat, &blkcg_policy_throtl,
1228 cft->private, true);
1229 return 0;
1230 }
1231
1232 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1233 int off)
1234 {
1235 struct throtl_grp *tg = pd_to_tg(pd);
1236 u64 v = *(u64 *)((void *)tg + off);
1237
1238 if (v == -1)
1239 return 0;
1240 return __blkg_prfill_u64(sf, pd, v);
1241 }
1242
1243 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1244 int off)
1245 {
1246 struct throtl_grp *tg = pd_to_tg(pd);
1247 unsigned int v = *(unsigned int *)((void *)tg + off);
1248
1249 if (v == -1)
1250 return 0;
1251 return __blkg_prfill_u64(sf, pd, v);
1252 }
1253
1254 static int tg_print_conf_u64(struct cgroup *cgrp, struct cftype *cft,
1255 struct seq_file *sf)
1256 {
1257 blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp), tg_prfill_conf_u64,
1258 &blkcg_policy_throtl, cft->private, false);
1259 return 0;
1260 }
1261
1262 static int tg_print_conf_uint(struct cgroup *cgrp, struct cftype *cft,
1263 struct seq_file *sf)
1264 {
1265 blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp), tg_prfill_conf_uint,
1266 &blkcg_policy_throtl, cft->private, false);
1267 return 0;
1268 }
1269
1270 static int tg_set_conf(struct cgroup *cgrp, struct cftype *cft, const char *buf,
1271 bool is_u64)
1272 {
1273 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1274 struct blkg_conf_ctx ctx;
1275 struct throtl_grp *tg;
1276 struct throtl_service_queue *sq;
1277 int ret;
1278
1279 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1280 if (ret)
1281 return ret;
1282
1283 tg = blkg_to_tg(ctx.blkg);
1284 sq = &tg->service_queue;
1285
1286 if (!ctx.v)
1287 ctx.v = -1;
1288
1289 if (is_u64)
1290 *(u64 *)((void *)tg + cft->private) = ctx.v;
1291 else
1292 *(unsigned int *)((void *)tg + cft->private) = ctx.v;
1293
1294 throtl_log(&tg->service_queue,
1295 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1296 tg->bps[READ], tg->bps[WRITE],
1297 tg->iops[READ], tg->iops[WRITE]);
1298
1299 /*
1300 * We're already holding queue_lock and know @tg is valid. Let's
1301 * apply the new config directly.
1302 *
1303 * Restart the slices for both READ and WRITES. It might happen
1304 * that a group's limit are dropped suddenly and we don't want to
1305 * account recently dispatched IO with new low rate.
1306 */
1307 throtl_start_new_slice(tg, 0);
1308 throtl_start_new_slice(tg, 1);
1309
1310 if (tg->flags & THROTL_TG_PENDING) {
1311 tg_update_disptime(tg);
1312 throtl_schedule_next_dispatch(sq->parent_sq, true);
1313 }
1314
1315 blkg_conf_finish(&ctx);
1316 return 0;
1317 }
1318
1319 static int tg_set_conf_u64(struct cgroup *cgrp, struct cftype *cft,
1320 const char *buf)
1321 {
1322 return tg_set_conf(cgrp, cft, buf, true);
1323 }
1324
1325 static int tg_set_conf_uint(struct cgroup *cgrp, struct cftype *cft,
1326 const char *buf)
1327 {
1328 return tg_set_conf(cgrp, cft, buf, false);
1329 }
1330
1331 static struct cftype throtl_files[] = {
1332 {
1333 .name = "throttle.read_bps_device",
1334 .private = offsetof(struct throtl_grp, bps[READ]),
1335 .read_seq_string = tg_print_conf_u64,
1336 .write_string = tg_set_conf_u64,
1337 .max_write_len = 256,
1338 },
1339 {
1340 .name = "throttle.write_bps_device",
1341 .private = offsetof(struct throtl_grp, bps[WRITE]),
1342 .read_seq_string = tg_print_conf_u64,
1343 .write_string = tg_set_conf_u64,
1344 .max_write_len = 256,
1345 },
1346 {
1347 .name = "throttle.read_iops_device",
1348 .private = offsetof(struct throtl_grp, iops[READ]),
1349 .read_seq_string = tg_print_conf_uint,
1350 .write_string = tg_set_conf_uint,
1351 .max_write_len = 256,
1352 },
1353 {
1354 .name = "throttle.write_iops_device",
1355 .private = offsetof(struct throtl_grp, iops[WRITE]),
1356 .read_seq_string = tg_print_conf_uint,
1357 .write_string = tg_set_conf_uint,
1358 .max_write_len = 256,
1359 },
1360 {
1361 .name = "throttle.io_service_bytes",
1362 .private = offsetof(struct tg_stats_cpu, service_bytes),
1363 .read_seq_string = tg_print_cpu_rwstat,
1364 },
1365 {
1366 .name = "throttle.io_serviced",
1367 .private = offsetof(struct tg_stats_cpu, serviced),
1368 .read_seq_string = tg_print_cpu_rwstat,
1369 },
1370 { } /* terminate */
1371 };
1372
1373 static void throtl_shutdown_wq(struct request_queue *q)
1374 {
1375 struct throtl_data *td = q->td;
1376
1377 cancel_work_sync(&td->dispatch_work);
1378 }
1379
1380 static struct blkcg_policy blkcg_policy_throtl = {
1381 .pd_size = sizeof(struct throtl_grp),
1382 .cftypes = throtl_files,
1383
1384 .pd_init_fn = throtl_pd_init,
1385 .pd_exit_fn = throtl_pd_exit,
1386 .pd_reset_stats_fn = throtl_pd_reset_stats,
1387 };
1388
1389 bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
1390 {
1391 struct throtl_data *td = q->td;
1392 struct throtl_qnode *qn = NULL;
1393 struct throtl_grp *tg;
1394 struct throtl_service_queue *sq;
1395 bool rw = bio_data_dir(bio);
1396 struct blkcg *blkcg;
1397 bool throttled = false;
1398
1399 /* see throtl_charge_bio() */
1400 if (bio->bi_rw & REQ_THROTTLED)
1401 goto out;
1402
1403 /*
1404 * A throtl_grp pointer retrieved under rcu can be used to access
1405 * basic fields like stats and io rates. If a group has no rules,
1406 * just update the dispatch stats in lockless manner and return.
1407 */
1408 rcu_read_lock();
1409 blkcg = bio_blkcg(bio);
1410 tg = throtl_lookup_tg(td, blkcg);
1411 if (tg) {
1412 if (tg_no_rule_group(tg, rw)) {
1413 throtl_update_dispatch_stats(tg_to_blkg(tg),
1414 bio->bi_size, bio->bi_rw);
1415 goto out_unlock_rcu;
1416 }
1417 }
1418
1419 /*
1420 * Either group has not been allocated yet or it is not an unlimited
1421 * IO group
1422 */
1423 spin_lock_irq(q->queue_lock);
1424 tg = throtl_lookup_create_tg(td, blkcg);
1425 if (unlikely(!tg))
1426 goto out_unlock;
1427
1428 sq = &tg->service_queue;
1429
1430 while (true) {
1431 /* throtl is FIFO - if bios are already queued, should queue */
1432 if (sq->nr_queued[rw])
1433 break;
1434
1435 /* if above limits, break to queue */
1436 if (!tg_may_dispatch(tg, bio, NULL))
1437 break;
1438
1439 /* within limits, let's charge and dispatch directly */
1440 throtl_charge_bio(tg, bio);
1441
1442 /*
1443 * We need to trim slice even when bios are not being queued
1444 * otherwise it might happen that a bio is not queued for
1445 * a long time and slice keeps on extending and trim is not
1446 * called for a long time. Now if limits are reduced suddenly
1447 * we take into account all the IO dispatched so far at new
1448 * low rate and * newly queued IO gets a really long dispatch
1449 * time.
1450 *
1451 * So keep on trimming slice even if bio is not queued.
1452 */
1453 throtl_trim_slice(tg, rw);
1454
1455 /*
1456 * @bio passed through this layer without being throttled.
1457 * Climb up the ladder. If we''re already at the top, it
1458 * can be executed directly.
1459 */
1460 qn = &tg->qnode_on_parent[rw];
1461 sq = sq->parent_sq;
1462 tg = sq_to_tg(sq);
1463 if (!tg)
1464 goto out_unlock;
1465 }
1466
1467 /* out-of-limit, queue to @tg */
1468 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
1469 rw == READ ? 'R' : 'W',
1470 tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
1471 tg->io_disp[rw], tg->iops[rw],
1472 sq->nr_queued[READ], sq->nr_queued[WRITE]);
1473
1474 bio_associate_current(bio);
1475 tg->td->nr_queued[rw]++;
1476 throtl_add_bio_tg(bio, qn, tg);
1477 throttled = true;
1478
1479 /*
1480 * Update @tg's dispatch time and force schedule dispatch if @tg
1481 * was empty before @bio. The forced scheduling isn't likely to
1482 * cause undue delay as @bio is likely to be dispatched directly if
1483 * its @tg's disptime is not in the future.
1484 */
1485 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1486 tg_update_disptime(tg);
1487 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
1488 }
1489
1490 out_unlock:
1491 spin_unlock_irq(q->queue_lock);
1492 out_unlock_rcu:
1493 rcu_read_unlock();
1494 out:
1495 /*
1496 * As multiple blk-throtls may stack in the same issue path, we
1497 * don't want bios to leave with the flag set. Clear the flag if
1498 * being issued.
1499 */
1500 if (!throttled)
1501 bio->bi_rw &= ~REQ_THROTTLED;
1502 return throttled;
1503 }
1504
1505 /*
1506 * Dispatch all bios from all children tg's queued on @parent_sq. On
1507 * return, @parent_sq is guaranteed to not have any active children tg's
1508 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
1509 */
1510 static void tg_drain_bios(struct throtl_service_queue *parent_sq)
1511 {
1512 struct throtl_grp *tg;
1513
1514 while ((tg = throtl_rb_first(parent_sq))) {
1515 struct throtl_service_queue *sq = &tg->service_queue;
1516 struct bio *bio;
1517
1518 throtl_dequeue_tg(tg);
1519
1520 while ((bio = throtl_peek_queued(&sq->queued[READ])))
1521 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1522 while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1523 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1524 }
1525 }
1526
1527 /**
1528 * blk_throtl_drain - drain throttled bios
1529 * @q: request_queue to drain throttled bios for
1530 *
1531 * Dispatch all currently throttled bios on @q through ->make_request_fn().
1532 */
1533 void blk_throtl_drain(struct request_queue *q)
1534 __releases(q->queue_lock) __acquires(q->queue_lock)
1535 {
1536 struct throtl_data *td = q->td;
1537 struct blkcg_gq *blkg;
1538 struct cgroup *pos_cgrp;
1539 struct bio *bio;
1540 int rw;
1541
1542 queue_lockdep_assert_held(q);
1543 rcu_read_lock();
1544
1545 /*
1546 * Drain each tg while doing post-order walk on the blkg tree, so
1547 * that all bios are propagated to td->service_queue. It'd be
1548 * better to walk service_queue tree directly but blkg walk is
1549 * easier.
1550 */
1551 blkg_for_each_descendant_post(blkg, pos_cgrp, td->queue->root_blkg)
1552 tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
1553
1554 tg_drain_bios(&td_root_tg(td)->service_queue);
1555
1556 /* finally, transfer bios from top-level tg's into the td */
1557 tg_drain_bios(&td->service_queue);
1558
1559 rcu_read_unlock();
1560 spin_unlock_irq(q->queue_lock);
1561
1562 /* all bios now should be in td->service_queue, issue them */
1563 for (rw = READ; rw <= WRITE; rw++)
1564 while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
1565 NULL)))
1566 generic_make_request(bio);
1567
1568 spin_lock_irq(q->queue_lock);
1569 }
1570
1571 int blk_throtl_init(struct request_queue *q)
1572 {
1573 struct throtl_data *td;
1574 int ret;
1575
1576 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1577 if (!td)
1578 return -ENOMEM;
1579
1580 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1581 throtl_service_queue_init(&td->service_queue, NULL);
1582
1583 q->td = td;
1584 td->queue = q;
1585
1586 /* activate policy */
1587 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1588 if (ret)
1589 kfree(td);
1590 return ret;
1591 }
1592
1593 void blk_throtl_exit(struct request_queue *q)
1594 {
1595 BUG_ON(!q->td);
1596 throtl_shutdown_wq(q);
1597 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
1598 kfree(q->td);
1599 }
1600
1601 static int __init throtl_init(void)
1602 {
1603 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1604 if (!kthrotld_workqueue)
1605 panic("Failed to create kthrotld\n");
1606
1607 return blkcg_policy_register(&blkcg_policy_throtl);
1608 }
1609
1610 module_init(throtl_init);
This page took 0.06476 seconds and 6 git commands to generate.