blk-throttle: collapse throtl_dispatch() into the work function
[deliverable/linux.git] / block / blk-throttle.c
1 /*
2 * Interface for controlling IO bandwidth on a request queue
3 *
4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5 */
6
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include "blk-cgroup.h"
13 #include "blk.h"
14
15 /* Max dispatch from a group in 1 round */
16 static int throtl_grp_quantum = 8;
17
18 /* Total max dispatch from all groups in one round */
19 static int throtl_quantum = 32;
20
21 /* Throttling is performed over 100ms slice and after that slice is renewed */
22 static unsigned long throtl_slice = HZ/10; /* 100 ms */
23
24 static struct blkcg_policy blkcg_policy_throtl;
25
26 /* A workqueue to queue throttle related work */
27 static struct workqueue_struct *kthrotld_workqueue;
28 static void throtl_schedule_delayed_work(struct throtl_data *td,
29 unsigned long delay);
30
31 struct throtl_rb_root {
32 struct rb_root rb;
33 struct rb_node *left;
34 unsigned int count;
35 unsigned long min_disptime;
36 };
37
38 #define THROTL_RB_ROOT (struct throtl_rb_root) { .rb = RB_ROOT, .left = NULL, \
39 .count = 0, .min_disptime = 0}
40
41 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
42
43 /* Per-cpu group stats */
44 struct tg_stats_cpu {
45 /* total bytes transferred */
46 struct blkg_rwstat service_bytes;
47 /* total IOs serviced, post merge */
48 struct blkg_rwstat serviced;
49 };
50
51 struct throtl_grp {
52 /* must be the first member */
53 struct blkg_policy_data pd;
54
55 /* active throtl group service_tree member */
56 struct rb_node rb_node;
57
58 /*
59 * Dispatch time in jiffies. This is the estimated time when group
60 * will unthrottle and is ready to dispatch more bio. It is used as
61 * key to sort active groups in service tree.
62 */
63 unsigned long disptime;
64
65 unsigned int flags;
66
67 /* Two lists for READ and WRITE */
68 struct bio_list bio_lists[2];
69
70 /* Number of queued bios on READ and WRITE lists */
71 unsigned int nr_queued[2];
72
73 /* bytes per second rate limits */
74 uint64_t bps[2];
75
76 /* IOPS limits */
77 unsigned int iops[2];
78
79 /* Number of bytes disptached in current slice */
80 uint64_t bytes_disp[2];
81 /* Number of bio's dispatched in current slice */
82 unsigned int io_disp[2];
83
84 /* When did we start a new slice */
85 unsigned long slice_start[2];
86 unsigned long slice_end[2];
87
88 /* Per cpu stats pointer */
89 struct tg_stats_cpu __percpu *stats_cpu;
90
91 /* List of tgs waiting for per cpu stats memory to be allocated */
92 struct list_head stats_alloc_node;
93 };
94
95 struct throtl_data
96 {
97 /* service tree for active throtl groups */
98 struct throtl_rb_root tg_service_tree;
99
100 struct request_queue *queue;
101
102 /* Total Number of queued bios on READ and WRITE lists */
103 unsigned int nr_queued[2];
104
105 /*
106 * number of total undestroyed groups
107 */
108 unsigned int nr_undestroyed_grps;
109
110 /* Work for dispatching throttled bios */
111 struct delayed_work dispatch_work;
112 };
113
114 /* list and work item to allocate percpu group stats */
115 static DEFINE_SPINLOCK(tg_stats_alloc_lock);
116 static LIST_HEAD(tg_stats_alloc_list);
117
118 static void tg_stats_alloc_fn(struct work_struct *);
119 static DECLARE_DELAYED_WORK(tg_stats_alloc_work, tg_stats_alloc_fn);
120
121 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
122 {
123 return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
124 }
125
126 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
127 {
128 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
129 }
130
131 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
132 {
133 return pd_to_blkg(&tg->pd);
134 }
135
136 static inline struct throtl_grp *td_root_tg(struct throtl_data *td)
137 {
138 return blkg_to_tg(td->queue->root_blkg);
139 }
140
141 enum tg_state_flags {
142 THROTL_TG_FLAG_on_rr = 0, /* on round-robin busy list */
143 };
144
145 #define THROTL_TG_FNS(name) \
146 static inline void throtl_mark_tg_##name(struct throtl_grp *tg) \
147 { \
148 (tg)->flags |= (1 << THROTL_TG_FLAG_##name); \
149 } \
150 static inline void throtl_clear_tg_##name(struct throtl_grp *tg) \
151 { \
152 (tg)->flags &= ~(1 << THROTL_TG_FLAG_##name); \
153 } \
154 static inline int throtl_tg_##name(const struct throtl_grp *tg) \
155 { \
156 return ((tg)->flags & (1 << THROTL_TG_FLAG_##name)) != 0; \
157 }
158
159 THROTL_TG_FNS(on_rr);
160
161 #define throtl_log_tg(td, tg, fmt, args...) do { \
162 char __pbuf[128]; \
163 \
164 blkg_path(tg_to_blkg(tg), __pbuf, sizeof(__pbuf)); \
165 blk_add_trace_msg((td)->queue, "throtl %s " fmt, __pbuf, ##args); \
166 } while (0)
167
168 #define throtl_log(td, fmt, args...) \
169 blk_add_trace_msg((td)->queue, "throtl " fmt, ##args)
170
171 static inline unsigned int total_nr_queued(struct throtl_data *td)
172 {
173 return td->nr_queued[0] + td->nr_queued[1];
174 }
175
176 /*
177 * Worker for allocating per cpu stat for tgs. This is scheduled on the
178 * system_wq once there are some groups on the alloc_list waiting for
179 * allocation.
180 */
181 static void tg_stats_alloc_fn(struct work_struct *work)
182 {
183 static struct tg_stats_cpu *stats_cpu; /* this fn is non-reentrant */
184 struct delayed_work *dwork = to_delayed_work(work);
185 bool empty = false;
186
187 alloc_stats:
188 if (!stats_cpu) {
189 stats_cpu = alloc_percpu(struct tg_stats_cpu);
190 if (!stats_cpu) {
191 /* allocation failed, try again after some time */
192 schedule_delayed_work(dwork, msecs_to_jiffies(10));
193 return;
194 }
195 }
196
197 spin_lock_irq(&tg_stats_alloc_lock);
198
199 if (!list_empty(&tg_stats_alloc_list)) {
200 struct throtl_grp *tg = list_first_entry(&tg_stats_alloc_list,
201 struct throtl_grp,
202 stats_alloc_node);
203 swap(tg->stats_cpu, stats_cpu);
204 list_del_init(&tg->stats_alloc_node);
205 }
206
207 empty = list_empty(&tg_stats_alloc_list);
208 spin_unlock_irq(&tg_stats_alloc_lock);
209 if (!empty)
210 goto alloc_stats;
211 }
212
213 static void throtl_pd_init(struct blkcg_gq *blkg)
214 {
215 struct throtl_grp *tg = blkg_to_tg(blkg);
216 unsigned long flags;
217
218 RB_CLEAR_NODE(&tg->rb_node);
219 bio_list_init(&tg->bio_lists[0]);
220 bio_list_init(&tg->bio_lists[1]);
221
222 tg->bps[READ] = -1;
223 tg->bps[WRITE] = -1;
224 tg->iops[READ] = -1;
225 tg->iops[WRITE] = -1;
226
227 /*
228 * Ugh... We need to perform per-cpu allocation for tg->stats_cpu
229 * but percpu allocator can't be called from IO path. Queue tg on
230 * tg_stats_alloc_list and allocate from work item.
231 */
232 spin_lock_irqsave(&tg_stats_alloc_lock, flags);
233 list_add(&tg->stats_alloc_node, &tg_stats_alloc_list);
234 schedule_delayed_work(&tg_stats_alloc_work, 0);
235 spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
236 }
237
238 static void throtl_pd_exit(struct blkcg_gq *blkg)
239 {
240 struct throtl_grp *tg = blkg_to_tg(blkg);
241 unsigned long flags;
242
243 spin_lock_irqsave(&tg_stats_alloc_lock, flags);
244 list_del_init(&tg->stats_alloc_node);
245 spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
246
247 free_percpu(tg->stats_cpu);
248 }
249
250 static void throtl_pd_reset_stats(struct blkcg_gq *blkg)
251 {
252 struct throtl_grp *tg = blkg_to_tg(blkg);
253 int cpu;
254
255 if (tg->stats_cpu == NULL)
256 return;
257
258 for_each_possible_cpu(cpu) {
259 struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
260
261 blkg_rwstat_reset(&sc->service_bytes);
262 blkg_rwstat_reset(&sc->serviced);
263 }
264 }
265
266 static struct throtl_grp *throtl_lookup_tg(struct throtl_data *td,
267 struct blkcg *blkcg)
268 {
269 /*
270 * This is the common case when there are no blkcgs. Avoid lookup
271 * in this case
272 */
273 if (blkcg == &blkcg_root)
274 return td_root_tg(td);
275
276 return blkg_to_tg(blkg_lookup(blkcg, td->queue));
277 }
278
279 static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td,
280 struct blkcg *blkcg)
281 {
282 struct request_queue *q = td->queue;
283 struct throtl_grp *tg = NULL;
284
285 /*
286 * This is the common case when there are no blkcgs. Avoid lookup
287 * in this case
288 */
289 if (blkcg == &blkcg_root) {
290 tg = td_root_tg(td);
291 } else {
292 struct blkcg_gq *blkg;
293
294 blkg = blkg_lookup_create(blkcg, q);
295
296 /* if %NULL and @q is alive, fall back to root_tg */
297 if (!IS_ERR(blkg))
298 tg = blkg_to_tg(blkg);
299 else if (!blk_queue_dying(q))
300 tg = td_root_tg(td);
301 }
302
303 return tg;
304 }
305
306 static struct throtl_grp *throtl_rb_first(struct throtl_rb_root *root)
307 {
308 /* Service tree is empty */
309 if (!root->count)
310 return NULL;
311
312 if (!root->left)
313 root->left = rb_first(&root->rb);
314
315 if (root->left)
316 return rb_entry_tg(root->left);
317
318 return NULL;
319 }
320
321 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
322 {
323 rb_erase(n, root);
324 RB_CLEAR_NODE(n);
325 }
326
327 static void throtl_rb_erase(struct rb_node *n, struct throtl_rb_root *root)
328 {
329 if (root->left == n)
330 root->left = NULL;
331 rb_erase_init(n, &root->rb);
332 --root->count;
333 }
334
335 static void update_min_dispatch_time(struct throtl_rb_root *st)
336 {
337 struct throtl_grp *tg;
338
339 tg = throtl_rb_first(st);
340 if (!tg)
341 return;
342
343 st->min_disptime = tg->disptime;
344 }
345
346 static void
347 tg_service_tree_add(struct throtl_rb_root *st, struct throtl_grp *tg)
348 {
349 struct rb_node **node = &st->rb.rb_node;
350 struct rb_node *parent = NULL;
351 struct throtl_grp *__tg;
352 unsigned long key = tg->disptime;
353 int left = 1;
354
355 while (*node != NULL) {
356 parent = *node;
357 __tg = rb_entry_tg(parent);
358
359 if (time_before(key, __tg->disptime))
360 node = &parent->rb_left;
361 else {
362 node = &parent->rb_right;
363 left = 0;
364 }
365 }
366
367 if (left)
368 st->left = &tg->rb_node;
369
370 rb_link_node(&tg->rb_node, parent, node);
371 rb_insert_color(&tg->rb_node, &st->rb);
372 }
373
374 static void __throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
375 {
376 struct throtl_rb_root *st = &td->tg_service_tree;
377
378 tg_service_tree_add(st, tg);
379 throtl_mark_tg_on_rr(tg);
380 st->count++;
381 }
382
383 static void throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
384 {
385 if (!throtl_tg_on_rr(tg))
386 __throtl_enqueue_tg(td, tg);
387 }
388
389 static void __throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
390 {
391 throtl_rb_erase(&tg->rb_node, &td->tg_service_tree);
392 throtl_clear_tg_on_rr(tg);
393 }
394
395 static void throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
396 {
397 if (throtl_tg_on_rr(tg))
398 __throtl_dequeue_tg(td, tg);
399 }
400
401 static void throtl_schedule_next_dispatch(struct throtl_data *td)
402 {
403 struct throtl_rb_root *st = &td->tg_service_tree;
404
405 /*
406 * If there are more bios pending, schedule more work.
407 */
408 if (!total_nr_queued(td))
409 return;
410
411 BUG_ON(!st->count);
412
413 update_min_dispatch_time(st);
414
415 if (time_before_eq(st->min_disptime, jiffies))
416 throtl_schedule_delayed_work(td, 0);
417 else
418 throtl_schedule_delayed_work(td, (st->min_disptime - jiffies));
419 }
420
421 static inline void
422 throtl_start_new_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
423 {
424 tg->bytes_disp[rw] = 0;
425 tg->io_disp[rw] = 0;
426 tg->slice_start[rw] = jiffies;
427 tg->slice_end[rw] = jiffies + throtl_slice;
428 throtl_log_tg(td, tg, "[%c] new slice start=%lu end=%lu jiffies=%lu",
429 rw == READ ? 'R' : 'W', tg->slice_start[rw],
430 tg->slice_end[rw], jiffies);
431 }
432
433 static inline void throtl_set_slice_end(struct throtl_data *td,
434 struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
435 {
436 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
437 }
438
439 static inline void throtl_extend_slice(struct throtl_data *td,
440 struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
441 {
442 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
443 throtl_log_tg(td, tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu",
444 rw == READ ? 'R' : 'W', tg->slice_start[rw],
445 tg->slice_end[rw], jiffies);
446 }
447
448 /* Determine if previously allocated or extended slice is complete or not */
449 static bool
450 throtl_slice_used(struct throtl_data *td, struct throtl_grp *tg, bool rw)
451 {
452 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
453 return 0;
454
455 return 1;
456 }
457
458 /* Trim the used slices and adjust slice start accordingly */
459 static inline void
460 throtl_trim_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
461 {
462 unsigned long nr_slices, time_elapsed, io_trim;
463 u64 bytes_trim, tmp;
464
465 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
466
467 /*
468 * If bps are unlimited (-1), then time slice don't get
469 * renewed. Don't try to trim the slice if slice is used. A new
470 * slice will start when appropriate.
471 */
472 if (throtl_slice_used(td, tg, rw))
473 return;
474
475 /*
476 * A bio has been dispatched. Also adjust slice_end. It might happen
477 * that initially cgroup limit was very low resulting in high
478 * slice_end, but later limit was bumped up and bio was dispached
479 * sooner, then we need to reduce slice_end. A high bogus slice_end
480 * is bad because it does not allow new slice to start.
481 */
482
483 throtl_set_slice_end(td, tg, rw, jiffies + throtl_slice);
484
485 time_elapsed = jiffies - tg->slice_start[rw];
486
487 nr_slices = time_elapsed / throtl_slice;
488
489 if (!nr_slices)
490 return;
491 tmp = tg->bps[rw] * throtl_slice * nr_slices;
492 do_div(tmp, HZ);
493 bytes_trim = tmp;
494
495 io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
496
497 if (!bytes_trim && !io_trim)
498 return;
499
500 if (tg->bytes_disp[rw] >= bytes_trim)
501 tg->bytes_disp[rw] -= bytes_trim;
502 else
503 tg->bytes_disp[rw] = 0;
504
505 if (tg->io_disp[rw] >= io_trim)
506 tg->io_disp[rw] -= io_trim;
507 else
508 tg->io_disp[rw] = 0;
509
510 tg->slice_start[rw] += nr_slices * throtl_slice;
511
512 throtl_log_tg(td, tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu"
513 " start=%lu end=%lu jiffies=%lu",
514 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
515 tg->slice_start[rw], tg->slice_end[rw], jiffies);
516 }
517
518 static bool tg_with_in_iops_limit(struct throtl_data *td, struct throtl_grp *tg,
519 struct bio *bio, unsigned long *wait)
520 {
521 bool rw = bio_data_dir(bio);
522 unsigned int io_allowed;
523 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
524 u64 tmp;
525
526 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
527
528 /* Slice has just started. Consider one slice interval */
529 if (!jiffy_elapsed)
530 jiffy_elapsed_rnd = throtl_slice;
531
532 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
533
534 /*
535 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
536 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
537 * will allow dispatch after 1 second and after that slice should
538 * have been trimmed.
539 */
540
541 tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
542 do_div(tmp, HZ);
543
544 if (tmp > UINT_MAX)
545 io_allowed = UINT_MAX;
546 else
547 io_allowed = tmp;
548
549 if (tg->io_disp[rw] + 1 <= io_allowed) {
550 if (wait)
551 *wait = 0;
552 return 1;
553 }
554
555 /* Calc approx time to dispatch */
556 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
557
558 if (jiffy_wait > jiffy_elapsed)
559 jiffy_wait = jiffy_wait - jiffy_elapsed;
560 else
561 jiffy_wait = 1;
562
563 if (wait)
564 *wait = jiffy_wait;
565 return 0;
566 }
567
568 static bool tg_with_in_bps_limit(struct throtl_data *td, struct throtl_grp *tg,
569 struct bio *bio, unsigned long *wait)
570 {
571 bool rw = bio_data_dir(bio);
572 u64 bytes_allowed, extra_bytes, tmp;
573 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
574
575 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
576
577 /* Slice has just started. Consider one slice interval */
578 if (!jiffy_elapsed)
579 jiffy_elapsed_rnd = throtl_slice;
580
581 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
582
583 tmp = tg->bps[rw] * jiffy_elapsed_rnd;
584 do_div(tmp, HZ);
585 bytes_allowed = tmp;
586
587 if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
588 if (wait)
589 *wait = 0;
590 return 1;
591 }
592
593 /* Calc approx time to dispatch */
594 extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
595 jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
596
597 if (!jiffy_wait)
598 jiffy_wait = 1;
599
600 /*
601 * This wait time is without taking into consideration the rounding
602 * up we did. Add that time also.
603 */
604 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
605 if (wait)
606 *wait = jiffy_wait;
607 return 0;
608 }
609
610 static bool tg_no_rule_group(struct throtl_grp *tg, bool rw) {
611 if (tg->bps[rw] == -1 && tg->iops[rw] == -1)
612 return 1;
613 return 0;
614 }
615
616 /*
617 * Returns whether one can dispatch a bio or not. Also returns approx number
618 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
619 */
620 static bool tg_may_dispatch(struct throtl_data *td, struct throtl_grp *tg,
621 struct bio *bio, unsigned long *wait)
622 {
623 bool rw = bio_data_dir(bio);
624 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
625
626 /*
627 * Currently whole state machine of group depends on first bio
628 * queued in the group bio list. So one should not be calling
629 * this function with a different bio if there are other bios
630 * queued.
631 */
632 BUG_ON(tg->nr_queued[rw] && bio != bio_list_peek(&tg->bio_lists[rw]));
633
634 /* If tg->bps = -1, then BW is unlimited */
635 if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
636 if (wait)
637 *wait = 0;
638 return 1;
639 }
640
641 /*
642 * If previous slice expired, start a new one otherwise renew/extend
643 * existing slice to make sure it is at least throtl_slice interval
644 * long since now.
645 */
646 if (throtl_slice_used(td, tg, rw))
647 throtl_start_new_slice(td, tg, rw);
648 else {
649 if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
650 throtl_extend_slice(td, tg, rw, jiffies + throtl_slice);
651 }
652
653 if (tg_with_in_bps_limit(td, tg, bio, &bps_wait)
654 && tg_with_in_iops_limit(td, tg, bio, &iops_wait)) {
655 if (wait)
656 *wait = 0;
657 return 1;
658 }
659
660 max_wait = max(bps_wait, iops_wait);
661
662 if (wait)
663 *wait = max_wait;
664
665 if (time_before(tg->slice_end[rw], jiffies + max_wait))
666 throtl_extend_slice(td, tg, rw, jiffies + max_wait);
667
668 return 0;
669 }
670
671 static void throtl_update_dispatch_stats(struct blkcg_gq *blkg, u64 bytes,
672 int rw)
673 {
674 struct throtl_grp *tg = blkg_to_tg(blkg);
675 struct tg_stats_cpu *stats_cpu;
676 unsigned long flags;
677
678 /* If per cpu stats are not allocated yet, don't do any accounting. */
679 if (tg->stats_cpu == NULL)
680 return;
681
682 /*
683 * Disabling interrupts to provide mutual exclusion between two
684 * writes on same cpu. It probably is not needed for 64bit. Not
685 * optimizing that case yet.
686 */
687 local_irq_save(flags);
688
689 stats_cpu = this_cpu_ptr(tg->stats_cpu);
690
691 blkg_rwstat_add(&stats_cpu->serviced, rw, 1);
692 blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes);
693
694 local_irq_restore(flags);
695 }
696
697 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
698 {
699 bool rw = bio_data_dir(bio);
700
701 /* Charge the bio to the group */
702 tg->bytes_disp[rw] += bio->bi_size;
703 tg->io_disp[rw]++;
704
705 throtl_update_dispatch_stats(tg_to_blkg(tg), bio->bi_size, bio->bi_rw);
706 }
707
708 static void throtl_add_bio_tg(struct throtl_data *td, struct throtl_grp *tg,
709 struct bio *bio)
710 {
711 bool rw = bio_data_dir(bio);
712
713 bio_list_add(&tg->bio_lists[rw], bio);
714 /* Take a bio reference on tg */
715 blkg_get(tg_to_blkg(tg));
716 tg->nr_queued[rw]++;
717 td->nr_queued[rw]++;
718 throtl_enqueue_tg(td, tg);
719 }
720
721 static void tg_update_disptime(struct throtl_data *td, struct throtl_grp *tg)
722 {
723 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
724 struct bio *bio;
725
726 if ((bio = bio_list_peek(&tg->bio_lists[READ])))
727 tg_may_dispatch(td, tg, bio, &read_wait);
728
729 if ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
730 tg_may_dispatch(td, tg, bio, &write_wait);
731
732 min_wait = min(read_wait, write_wait);
733 disptime = jiffies + min_wait;
734
735 /* Update dispatch time */
736 throtl_dequeue_tg(td, tg);
737 tg->disptime = disptime;
738 throtl_enqueue_tg(td, tg);
739 }
740
741 static void tg_dispatch_one_bio(struct throtl_data *td, struct throtl_grp *tg,
742 bool rw, struct bio_list *bl)
743 {
744 struct bio *bio;
745
746 bio = bio_list_pop(&tg->bio_lists[rw]);
747 tg->nr_queued[rw]--;
748 /* Drop bio reference on blkg */
749 blkg_put(tg_to_blkg(tg));
750
751 BUG_ON(td->nr_queued[rw] <= 0);
752 td->nr_queued[rw]--;
753
754 throtl_charge_bio(tg, bio);
755 bio_list_add(bl, bio);
756 bio->bi_rw |= REQ_THROTTLED;
757
758 throtl_trim_slice(td, tg, rw);
759 }
760
761 static int throtl_dispatch_tg(struct throtl_data *td, struct throtl_grp *tg,
762 struct bio_list *bl)
763 {
764 unsigned int nr_reads = 0, nr_writes = 0;
765 unsigned int max_nr_reads = throtl_grp_quantum*3/4;
766 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
767 struct bio *bio;
768
769 /* Try to dispatch 75% READS and 25% WRITES */
770
771 while ((bio = bio_list_peek(&tg->bio_lists[READ]))
772 && tg_may_dispatch(td, tg, bio, NULL)) {
773
774 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
775 nr_reads++;
776
777 if (nr_reads >= max_nr_reads)
778 break;
779 }
780
781 while ((bio = bio_list_peek(&tg->bio_lists[WRITE]))
782 && tg_may_dispatch(td, tg, bio, NULL)) {
783
784 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
785 nr_writes++;
786
787 if (nr_writes >= max_nr_writes)
788 break;
789 }
790
791 return nr_reads + nr_writes;
792 }
793
794 static int throtl_select_dispatch(struct throtl_data *td, struct bio_list *bl)
795 {
796 unsigned int nr_disp = 0;
797 struct throtl_grp *tg;
798 struct throtl_rb_root *st = &td->tg_service_tree;
799
800 while (1) {
801 tg = throtl_rb_first(st);
802
803 if (!tg)
804 break;
805
806 if (time_before(jiffies, tg->disptime))
807 break;
808
809 throtl_dequeue_tg(td, tg);
810
811 nr_disp += throtl_dispatch_tg(td, tg, bl);
812
813 if (tg->nr_queued[0] || tg->nr_queued[1])
814 tg_update_disptime(td, tg);
815
816 if (nr_disp >= throtl_quantum)
817 break;
818 }
819
820 return nr_disp;
821 }
822
823 /* work function to dispatch throttled bios */
824 void blk_throtl_dispatch_work_fn(struct work_struct *work)
825 {
826 struct throtl_data *td = container_of(to_delayed_work(work),
827 struct throtl_data, dispatch_work);
828 struct request_queue *q = td->queue;
829 unsigned int nr_disp = 0;
830 struct bio_list bio_list_on_stack;
831 struct bio *bio;
832 struct blk_plug plug;
833
834 spin_lock_irq(q->queue_lock);
835
836 if (!total_nr_queued(td))
837 goto out;
838
839 bio_list_init(&bio_list_on_stack);
840
841 throtl_log(td, "dispatch nr_queued=%u read=%u write=%u",
842 total_nr_queued(td), td->nr_queued[READ],
843 td->nr_queued[WRITE]);
844
845 nr_disp = throtl_select_dispatch(td, &bio_list_on_stack);
846
847 if (nr_disp)
848 throtl_log(td, "bios disp=%u", nr_disp);
849
850 throtl_schedule_next_dispatch(td);
851 out:
852 spin_unlock_irq(q->queue_lock);
853
854 /*
855 * If we dispatched some requests, unplug the queue to make sure
856 * immediate dispatch
857 */
858 if (nr_disp) {
859 blk_start_plug(&plug);
860 while((bio = bio_list_pop(&bio_list_on_stack)))
861 generic_make_request(bio);
862 blk_finish_plug(&plug);
863 }
864 }
865
866 /* Call with queue lock held */
867 static void
868 throtl_schedule_delayed_work(struct throtl_data *td, unsigned long delay)
869 {
870
871 struct delayed_work *dwork = &td->dispatch_work;
872
873 if (total_nr_queued(td)) {
874 mod_delayed_work(kthrotld_workqueue, dwork, delay);
875 throtl_log(td, "schedule work. delay=%lu jiffies=%lu",
876 delay, jiffies);
877 }
878 }
879
880 static u64 tg_prfill_cpu_rwstat(struct seq_file *sf,
881 struct blkg_policy_data *pd, int off)
882 {
883 struct throtl_grp *tg = pd_to_tg(pd);
884 struct blkg_rwstat rwstat = { }, tmp;
885 int i, cpu;
886
887 for_each_possible_cpu(cpu) {
888 struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
889
890 tmp = blkg_rwstat_read((void *)sc + off);
891 for (i = 0; i < BLKG_RWSTAT_NR; i++)
892 rwstat.cnt[i] += tmp.cnt[i];
893 }
894
895 return __blkg_prfill_rwstat(sf, pd, &rwstat);
896 }
897
898 static int tg_print_cpu_rwstat(struct cgroup *cgrp, struct cftype *cft,
899 struct seq_file *sf)
900 {
901 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
902
903 blkcg_print_blkgs(sf, blkcg, tg_prfill_cpu_rwstat, &blkcg_policy_throtl,
904 cft->private, true);
905 return 0;
906 }
907
908 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
909 int off)
910 {
911 struct throtl_grp *tg = pd_to_tg(pd);
912 u64 v = *(u64 *)((void *)tg + off);
913
914 if (v == -1)
915 return 0;
916 return __blkg_prfill_u64(sf, pd, v);
917 }
918
919 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
920 int off)
921 {
922 struct throtl_grp *tg = pd_to_tg(pd);
923 unsigned int v = *(unsigned int *)((void *)tg + off);
924
925 if (v == -1)
926 return 0;
927 return __blkg_prfill_u64(sf, pd, v);
928 }
929
930 static int tg_print_conf_u64(struct cgroup *cgrp, struct cftype *cft,
931 struct seq_file *sf)
932 {
933 blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp), tg_prfill_conf_u64,
934 &blkcg_policy_throtl, cft->private, false);
935 return 0;
936 }
937
938 static int tg_print_conf_uint(struct cgroup *cgrp, struct cftype *cft,
939 struct seq_file *sf)
940 {
941 blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp), tg_prfill_conf_uint,
942 &blkcg_policy_throtl, cft->private, false);
943 return 0;
944 }
945
946 static int tg_set_conf(struct cgroup *cgrp, struct cftype *cft, const char *buf,
947 bool is_u64)
948 {
949 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
950 struct blkg_conf_ctx ctx;
951 struct throtl_grp *tg;
952 struct throtl_data *td;
953 int ret;
954
955 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
956 if (ret)
957 return ret;
958
959 tg = blkg_to_tg(ctx.blkg);
960 td = ctx.blkg->q->td;
961
962 if (!ctx.v)
963 ctx.v = -1;
964
965 if (is_u64)
966 *(u64 *)((void *)tg + cft->private) = ctx.v;
967 else
968 *(unsigned int *)((void *)tg + cft->private) = ctx.v;
969
970 throtl_log_tg(td, tg, "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
971 tg->bps[READ], tg->bps[WRITE],
972 tg->iops[READ], tg->iops[WRITE]);
973
974 /*
975 * We're already holding queue_lock and know @tg is valid. Let's
976 * apply the new config directly.
977 *
978 * Restart the slices for both READ and WRITES. It might happen
979 * that a group's limit are dropped suddenly and we don't want to
980 * account recently dispatched IO with new low rate.
981 */
982 throtl_start_new_slice(td, tg, 0);
983 throtl_start_new_slice(td, tg, 1);
984
985 if (throtl_tg_on_rr(tg)) {
986 tg_update_disptime(td, tg);
987 throtl_schedule_next_dispatch(td);
988 }
989
990 blkg_conf_finish(&ctx);
991 return 0;
992 }
993
994 static int tg_set_conf_u64(struct cgroup *cgrp, struct cftype *cft,
995 const char *buf)
996 {
997 return tg_set_conf(cgrp, cft, buf, true);
998 }
999
1000 static int tg_set_conf_uint(struct cgroup *cgrp, struct cftype *cft,
1001 const char *buf)
1002 {
1003 return tg_set_conf(cgrp, cft, buf, false);
1004 }
1005
1006 static struct cftype throtl_files[] = {
1007 {
1008 .name = "throttle.read_bps_device",
1009 .private = offsetof(struct throtl_grp, bps[READ]),
1010 .read_seq_string = tg_print_conf_u64,
1011 .write_string = tg_set_conf_u64,
1012 .max_write_len = 256,
1013 },
1014 {
1015 .name = "throttle.write_bps_device",
1016 .private = offsetof(struct throtl_grp, bps[WRITE]),
1017 .read_seq_string = tg_print_conf_u64,
1018 .write_string = tg_set_conf_u64,
1019 .max_write_len = 256,
1020 },
1021 {
1022 .name = "throttle.read_iops_device",
1023 .private = offsetof(struct throtl_grp, iops[READ]),
1024 .read_seq_string = tg_print_conf_uint,
1025 .write_string = tg_set_conf_uint,
1026 .max_write_len = 256,
1027 },
1028 {
1029 .name = "throttle.write_iops_device",
1030 .private = offsetof(struct throtl_grp, iops[WRITE]),
1031 .read_seq_string = tg_print_conf_uint,
1032 .write_string = tg_set_conf_uint,
1033 .max_write_len = 256,
1034 },
1035 {
1036 .name = "throttle.io_service_bytes",
1037 .private = offsetof(struct tg_stats_cpu, service_bytes),
1038 .read_seq_string = tg_print_cpu_rwstat,
1039 },
1040 {
1041 .name = "throttle.io_serviced",
1042 .private = offsetof(struct tg_stats_cpu, serviced),
1043 .read_seq_string = tg_print_cpu_rwstat,
1044 },
1045 { } /* terminate */
1046 };
1047
1048 static void throtl_shutdown_wq(struct request_queue *q)
1049 {
1050 struct throtl_data *td = q->td;
1051
1052 cancel_delayed_work_sync(&td->dispatch_work);
1053 }
1054
1055 static struct blkcg_policy blkcg_policy_throtl = {
1056 .pd_size = sizeof(struct throtl_grp),
1057 .cftypes = throtl_files,
1058
1059 .pd_init_fn = throtl_pd_init,
1060 .pd_exit_fn = throtl_pd_exit,
1061 .pd_reset_stats_fn = throtl_pd_reset_stats,
1062 };
1063
1064 bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
1065 {
1066 struct throtl_data *td = q->td;
1067 struct throtl_grp *tg;
1068 bool rw = bio_data_dir(bio), update_disptime = true;
1069 struct blkcg *blkcg;
1070 bool throttled = false;
1071
1072 if (bio->bi_rw & REQ_THROTTLED) {
1073 bio->bi_rw &= ~REQ_THROTTLED;
1074 goto out;
1075 }
1076
1077 /*
1078 * A throtl_grp pointer retrieved under rcu can be used to access
1079 * basic fields like stats and io rates. If a group has no rules,
1080 * just update the dispatch stats in lockless manner and return.
1081 */
1082 rcu_read_lock();
1083 blkcg = bio_blkcg(bio);
1084 tg = throtl_lookup_tg(td, blkcg);
1085 if (tg) {
1086 if (tg_no_rule_group(tg, rw)) {
1087 throtl_update_dispatch_stats(tg_to_blkg(tg),
1088 bio->bi_size, bio->bi_rw);
1089 goto out_unlock_rcu;
1090 }
1091 }
1092
1093 /*
1094 * Either group has not been allocated yet or it is not an unlimited
1095 * IO group
1096 */
1097 spin_lock_irq(q->queue_lock);
1098 tg = throtl_lookup_create_tg(td, blkcg);
1099 if (unlikely(!tg))
1100 goto out_unlock;
1101
1102 if (tg->nr_queued[rw]) {
1103 /*
1104 * There is already another bio queued in same dir. No
1105 * need to update dispatch time.
1106 */
1107 update_disptime = false;
1108 goto queue_bio;
1109
1110 }
1111
1112 /* Bio is with-in rate limit of group */
1113 if (tg_may_dispatch(td, tg, bio, NULL)) {
1114 throtl_charge_bio(tg, bio);
1115
1116 /*
1117 * We need to trim slice even when bios are not being queued
1118 * otherwise it might happen that a bio is not queued for
1119 * a long time and slice keeps on extending and trim is not
1120 * called for a long time. Now if limits are reduced suddenly
1121 * we take into account all the IO dispatched so far at new
1122 * low rate and * newly queued IO gets a really long dispatch
1123 * time.
1124 *
1125 * So keep on trimming slice even if bio is not queued.
1126 */
1127 throtl_trim_slice(td, tg, rw);
1128 goto out_unlock;
1129 }
1130
1131 queue_bio:
1132 throtl_log_tg(td, tg, "[%c] bio. bdisp=%llu sz=%u bps=%llu"
1133 " iodisp=%u iops=%u queued=%d/%d",
1134 rw == READ ? 'R' : 'W',
1135 tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
1136 tg->io_disp[rw], tg->iops[rw],
1137 tg->nr_queued[READ], tg->nr_queued[WRITE]);
1138
1139 bio_associate_current(bio);
1140 throtl_add_bio_tg(q->td, tg, bio);
1141 throttled = true;
1142
1143 if (update_disptime) {
1144 tg_update_disptime(td, tg);
1145 throtl_schedule_next_dispatch(td);
1146 }
1147
1148 out_unlock:
1149 spin_unlock_irq(q->queue_lock);
1150 out_unlock_rcu:
1151 rcu_read_unlock();
1152 out:
1153 return throttled;
1154 }
1155
1156 /**
1157 * blk_throtl_drain - drain throttled bios
1158 * @q: request_queue to drain throttled bios for
1159 *
1160 * Dispatch all currently throttled bios on @q through ->make_request_fn().
1161 */
1162 void blk_throtl_drain(struct request_queue *q)
1163 __releases(q->queue_lock) __acquires(q->queue_lock)
1164 {
1165 struct throtl_data *td = q->td;
1166 struct throtl_rb_root *st = &td->tg_service_tree;
1167 struct throtl_grp *tg;
1168 struct bio_list bl;
1169 struct bio *bio;
1170
1171 queue_lockdep_assert_held(q);
1172
1173 bio_list_init(&bl);
1174
1175 while ((tg = throtl_rb_first(st))) {
1176 throtl_dequeue_tg(td, tg);
1177
1178 while ((bio = bio_list_peek(&tg->bio_lists[READ])))
1179 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
1180 while ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
1181 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
1182 }
1183 spin_unlock_irq(q->queue_lock);
1184
1185 while ((bio = bio_list_pop(&bl)))
1186 generic_make_request(bio);
1187
1188 spin_lock_irq(q->queue_lock);
1189 }
1190
1191 int blk_throtl_init(struct request_queue *q)
1192 {
1193 struct throtl_data *td;
1194 int ret;
1195
1196 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1197 if (!td)
1198 return -ENOMEM;
1199
1200 td->tg_service_tree = THROTL_RB_ROOT;
1201 INIT_DELAYED_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1202
1203 q->td = td;
1204 td->queue = q;
1205
1206 /* activate policy */
1207 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1208 if (ret)
1209 kfree(td);
1210 return ret;
1211 }
1212
1213 void blk_throtl_exit(struct request_queue *q)
1214 {
1215 BUG_ON(!q->td);
1216 throtl_shutdown_wq(q);
1217 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
1218 kfree(q->td);
1219 }
1220
1221 static int __init throtl_init(void)
1222 {
1223 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1224 if (!kthrotld_workqueue)
1225 panic("Failed to create kthrotld\n");
1226
1227 return blkcg_policy_register(&blkcg_policy_throtl);
1228 }
1229
1230 module_init(throtl_init);
This page took 0.058142 seconds and 6 git commands to generate.