08db2fc70c2900bfad9eb64ac143eb2714cf3b0f
[deliverable/linux.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "blk.h"
18 #include "blk-cgroup.h"
19
20 static struct blkio_policy_type blkio_policy_cfq __maybe_unused;
21
22 /*
23 * tunables
24 */
25 /* max queue in one round of service */
26 static const int cfq_quantum = 8;
27 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
28 /* maximum backwards seek, in KiB */
29 static const int cfq_back_max = 16 * 1024;
30 /* penalty of a backwards seek */
31 static const int cfq_back_penalty = 2;
32 static const int cfq_slice_sync = HZ / 10;
33 static int cfq_slice_async = HZ / 25;
34 static const int cfq_slice_async_rq = 2;
35 static int cfq_slice_idle = HZ / 125;
36 static int cfq_group_idle = HZ / 125;
37 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
38 static const int cfq_hist_divisor = 4;
39
40 /*
41 * offset from end of service tree
42 */
43 #define CFQ_IDLE_DELAY (HZ / 5)
44
45 /*
46 * below this threshold, we consider thinktime immediate
47 */
48 #define CFQ_MIN_TT (2)
49
50 #define CFQ_SLICE_SCALE (5)
51 #define CFQ_HW_QUEUE_MIN (5)
52 #define CFQ_SERVICE_SHIFT 12
53
54 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
55 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
56 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
57 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
58
59 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
60 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
61 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
62
63 static struct kmem_cache *cfq_pool;
64
65 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
66 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
67 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
68
69 #define sample_valid(samples) ((samples) > 80)
70 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
71
72 struct cfq_ttime {
73 unsigned long last_end_request;
74
75 unsigned long ttime_total;
76 unsigned long ttime_samples;
77 unsigned long ttime_mean;
78 };
79
80 /*
81 * Most of our rbtree usage is for sorting with min extraction, so
82 * if we cache the leftmost node we don't have to walk down the tree
83 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
84 * move this into the elevator for the rq sorting as well.
85 */
86 struct cfq_rb_root {
87 struct rb_root rb;
88 struct rb_node *left;
89 unsigned count;
90 unsigned total_weight;
91 u64 min_vdisktime;
92 struct cfq_ttime ttime;
93 };
94 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
95 .ttime = {.last_end_request = jiffies,},}
96
97 /*
98 * Per process-grouping structure
99 */
100 struct cfq_queue {
101 /* reference count */
102 int ref;
103 /* various state flags, see below */
104 unsigned int flags;
105 /* parent cfq_data */
106 struct cfq_data *cfqd;
107 /* service_tree member */
108 struct rb_node rb_node;
109 /* service_tree key */
110 unsigned long rb_key;
111 /* prio tree member */
112 struct rb_node p_node;
113 /* prio tree root we belong to, if any */
114 struct rb_root *p_root;
115 /* sorted list of pending requests */
116 struct rb_root sort_list;
117 /* if fifo isn't expired, next request to serve */
118 struct request *next_rq;
119 /* requests queued in sort_list */
120 int queued[2];
121 /* currently allocated requests */
122 int allocated[2];
123 /* fifo list of requests in sort_list */
124 struct list_head fifo;
125
126 /* time when queue got scheduled in to dispatch first request. */
127 unsigned long dispatch_start;
128 unsigned int allocated_slice;
129 unsigned int slice_dispatch;
130 /* time when first request from queue completed and slice started. */
131 unsigned long slice_start;
132 unsigned long slice_end;
133 long slice_resid;
134
135 /* pending priority requests */
136 int prio_pending;
137 /* number of requests that are on the dispatch list or inside driver */
138 int dispatched;
139
140 /* io prio of this group */
141 unsigned short ioprio, org_ioprio;
142 unsigned short ioprio_class;
143
144 pid_t pid;
145
146 u32 seek_history;
147 sector_t last_request_pos;
148
149 struct cfq_rb_root *service_tree;
150 struct cfq_queue *new_cfqq;
151 struct cfq_group *cfqg;
152 /* Number of sectors dispatched from queue in single dispatch round */
153 unsigned long nr_sectors;
154 };
155
156 /*
157 * First index in the service_trees.
158 * IDLE is handled separately, so it has negative index
159 */
160 enum wl_prio_t {
161 BE_WORKLOAD = 0,
162 RT_WORKLOAD = 1,
163 IDLE_WORKLOAD = 2,
164 CFQ_PRIO_NR,
165 };
166
167 /*
168 * Second index in the service_trees.
169 */
170 enum wl_type_t {
171 ASYNC_WORKLOAD = 0,
172 SYNC_NOIDLE_WORKLOAD = 1,
173 SYNC_WORKLOAD = 2
174 };
175
176 struct cfqg_stats {
177 #ifdef CONFIG_CFQ_GROUP_IOSCHED
178 /* total bytes transferred */
179 struct blkg_rwstat service_bytes;
180 /* total IOs serviced, post merge */
181 struct blkg_rwstat serviced;
182 /* number of ios merged */
183 struct blkg_rwstat merged;
184 /* total time spent on device in ns, may not be accurate w/ queueing */
185 struct blkg_rwstat service_time;
186 /* total time spent waiting in scheduler queue in ns */
187 struct blkg_rwstat wait_time;
188 /* number of IOs queued up */
189 struct blkg_rwstat queued;
190 /* total sectors transferred */
191 struct blkg_stat sectors;
192 /* total disk time and nr sectors dispatched by this group */
193 struct blkg_stat time;
194 #ifdef CONFIG_DEBUG_BLK_CGROUP
195 /* time not charged to this cgroup */
196 struct blkg_stat unaccounted_time;
197 /* sum of number of ios queued across all samples */
198 struct blkg_stat avg_queue_size_sum;
199 /* count of samples taken for average */
200 struct blkg_stat avg_queue_size_samples;
201 /* how many times this group has been removed from service tree */
202 struct blkg_stat dequeue;
203 /* total time spent waiting for it to be assigned a timeslice. */
204 struct blkg_stat group_wait_time;
205 /* time spent idling for this blkio_group */
206 struct blkg_stat idle_time;
207 /* total time with empty current active q with other requests queued */
208 struct blkg_stat empty_time;
209 /* fields after this shouldn't be cleared on stat reset */
210 uint64_t start_group_wait_time;
211 uint64_t start_idle_time;
212 uint64_t start_empty_time;
213 uint16_t flags;
214 #endif /* CONFIG_DEBUG_BLK_CGROUP */
215 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
216 };
217
218 /* This is per cgroup per device grouping structure */
219 struct cfq_group {
220 /* group service_tree member */
221 struct rb_node rb_node;
222
223 /* group service_tree key */
224 u64 vdisktime;
225 unsigned int weight;
226 unsigned int new_weight;
227 unsigned int dev_weight;
228
229 /* number of cfqq currently on this group */
230 int nr_cfqq;
231
232 /*
233 * Per group busy queues average. Useful for workload slice calc. We
234 * create the array for each prio class but at run time it is used
235 * only for RT and BE class and slot for IDLE class remains unused.
236 * This is primarily done to avoid confusion and a gcc warning.
237 */
238 unsigned int busy_queues_avg[CFQ_PRIO_NR];
239 /*
240 * rr lists of queues with requests. We maintain service trees for
241 * RT and BE classes. These trees are subdivided in subclasses
242 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
243 * class there is no subclassification and all the cfq queues go on
244 * a single tree service_tree_idle.
245 * Counts are embedded in the cfq_rb_root
246 */
247 struct cfq_rb_root service_trees[2][3];
248 struct cfq_rb_root service_tree_idle;
249
250 unsigned long saved_workload_slice;
251 enum wl_type_t saved_workload;
252 enum wl_prio_t saved_serving_prio;
253
254 /* number of requests that are on the dispatch list or inside driver */
255 int dispatched;
256 struct cfq_ttime ttime;
257 struct cfqg_stats stats;
258 };
259
260 struct cfq_io_cq {
261 struct io_cq icq; /* must be the first member */
262 struct cfq_queue *cfqq[2];
263 struct cfq_ttime ttime;
264 int ioprio; /* the current ioprio */
265 #ifdef CONFIG_CFQ_GROUP_IOSCHED
266 uint64_t blkcg_id; /* the current blkcg ID */
267 #endif
268 };
269
270 /*
271 * Per block device queue structure
272 */
273 struct cfq_data {
274 struct request_queue *queue;
275 /* Root service tree for cfq_groups */
276 struct cfq_rb_root grp_service_tree;
277 struct cfq_group *root_group;
278
279 /*
280 * The priority currently being served
281 */
282 enum wl_prio_t serving_prio;
283 enum wl_type_t serving_type;
284 unsigned long workload_expires;
285 struct cfq_group *serving_group;
286
287 /*
288 * Each priority tree is sorted by next_request position. These
289 * trees are used when determining if two or more queues are
290 * interleaving requests (see cfq_close_cooperator).
291 */
292 struct rb_root prio_trees[CFQ_PRIO_LISTS];
293
294 unsigned int busy_queues;
295 unsigned int busy_sync_queues;
296
297 int rq_in_driver;
298 int rq_in_flight[2];
299
300 /*
301 * queue-depth detection
302 */
303 int rq_queued;
304 int hw_tag;
305 /*
306 * hw_tag can be
307 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
308 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
309 * 0 => no NCQ
310 */
311 int hw_tag_est_depth;
312 unsigned int hw_tag_samples;
313
314 /*
315 * idle window management
316 */
317 struct timer_list idle_slice_timer;
318 struct work_struct unplug_work;
319
320 struct cfq_queue *active_queue;
321 struct cfq_io_cq *active_cic;
322
323 /*
324 * async queue for each priority case
325 */
326 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
327 struct cfq_queue *async_idle_cfqq;
328
329 sector_t last_position;
330
331 /*
332 * tunables, see top of file
333 */
334 unsigned int cfq_quantum;
335 unsigned int cfq_fifo_expire[2];
336 unsigned int cfq_back_penalty;
337 unsigned int cfq_back_max;
338 unsigned int cfq_slice[2];
339 unsigned int cfq_slice_async_rq;
340 unsigned int cfq_slice_idle;
341 unsigned int cfq_group_idle;
342 unsigned int cfq_latency;
343
344 /*
345 * Fallback dummy cfqq for extreme OOM conditions
346 */
347 struct cfq_queue oom_cfqq;
348
349 unsigned long last_delayed_sync;
350 };
351
352 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
353
354 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
355 enum wl_prio_t prio,
356 enum wl_type_t type)
357 {
358 if (!cfqg)
359 return NULL;
360
361 if (prio == IDLE_WORKLOAD)
362 return &cfqg->service_tree_idle;
363
364 return &cfqg->service_trees[prio][type];
365 }
366
367 enum cfqq_state_flags {
368 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
369 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
370 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
371 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
372 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
373 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
374 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
375 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
376 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
377 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
378 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
379 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
380 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
381 };
382
383 #define CFQ_CFQQ_FNS(name) \
384 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
385 { \
386 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
387 } \
388 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
389 { \
390 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
391 } \
392 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
393 { \
394 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
395 }
396
397 CFQ_CFQQ_FNS(on_rr);
398 CFQ_CFQQ_FNS(wait_request);
399 CFQ_CFQQ_FNS(must_dispatch);
400 CFQ_CFQQ_FNS(must_alloc_slice);
401 CFQ_CFQQ_FNS(fifo_expire);
402 CFQ_CFQQ_FNS(idle_window);
403 CFQ_CFQQ_FNS(prio_changed);
404 CFQ_CFQQ_FNS(slice_new);
405 CFQ_CFQQ_FNS(sync);
406 CFQ_CFQQ_FNS(coop);
407 CFQ_CFQQ_FNS(split_coop);
408 CFQ_CFQQ_FNS(deep);
409 CFQ_CFQQ_FNS(wait_busy);
410 #undef CFQ_CFQQ_FNS
411
412 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
413
414 /* cfqg stats flags */
415 enum cfqg_stats_flags {
416 CFQG_stats_waiting = 0,
417 CFQG_stats_idling,
418 CFQG_stats_empty,
419 };
420
421 #define CFQG_FLAG_FNS(name) \
422 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
423 { \
424 stats->flags |= (1 << CFQG_stats_##name); \
425 } \
426 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
427 { \
428 stats->flags &= ~(1 << CFQG_stats_##name); \
429 } \
430 static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
431 { \
432 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
433 } \
434
435 CFQG_FLAG_FNS(waiting)
436 CFQG_FLAG_FNS(idling)
437 CFQG_FLAG_FNS(empty)
438 #undef CFQG_FLAG_FNS
439
440 /* This should be called with the queue_lock held. */
441 static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
442 {
443 unsigned long long now;
444
445 if (!cfqg_stats_waiting(stats))
446 return;
447
448 now = sched_clock();
449 if (time_after64(now, stats->start_group_wait_time))
450 blkg_stat_add(&stats->group_wait_time,
451 now - stats->start_group_wait_time);
452 cfqg_stats_clear_waiting(stats);
453 }
454
455 /* This should be called with the queue_lock held. */
456 static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
457 struct cfq_group *curr_cfqg)
458 {
459 struct cfqg_stats *stats = &cfqg->stats;
460
461 if (cfqg_stats_waiting(stats))
462 return;
463 if (cfqg == curr_cfqg)
464 return;
465 stats->start_group_wait_time = sched_clock();
466 cfqg_stats_mark_waiting(stats);
467 }
468
469 /* This should be called with the queue_lock held. */
470 static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
471 {
472 unsigned long long now;
473
474 if (!cfqg_stats_empty(stats))
475 return;
476
477 now = sched_clock();
478 if (time_after64(now, stats->start_empty_time))
479 blkg_stat_add(&stats->empty_time,
480 now - stats->start_empty_time);
481 cfqg_stats_clear_empty(stats);
482 }
483
484 static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
485 {
486 blkg_stat_add(&cfqg->stats.dequeue, 1);
487 }
488
489 static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
490 {
491 struct cfqg_stats *stats = &cfqg->stats;
492
493 if (blkg_rwstat_sum(&stats->queued))
494 return;
495
496 /*
497 * group is already marked empty. This can happen if cfqq got new
498 * request in parent group and moved to this group while being added
499 * to service tree. Just ignore the event and move on.
500 */
501 if (cfqg_stats_empty(stats))
502 return;
503
504 stats->start_empty_time = sched_clock();
505 cfqg_stats_mark_empty(stats);
506 }
507
508 static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
509 {
510 struct cfqg_stats *stats = &cfqg->stats;
511
512 if (cfqg_stats_idling(stats)) {
513 unsigned long long now = sched_clock();
514
515 if (time_after64(now, stats->start_idle_time))
516 blkg_stat_add(&stats->idle_time,
517 now - stats->start_idle_time);
518 cfqg_stats_clear_idling(stats);
519 }
520 }
521
522 static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
523 {
524 struct cfqg_stats *stats = &cfqg->stats;
525
526 BUG_ON(cfqg_stats_idling(stats));
527
528 stats->start_idle_time = sched_clock();
529 cfqg_stats_mark_idling(stats);
530 }
531
532 static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
533 {
534 struct cfqg_stats *stats = &cfqg->stats;
535
536 blkg_stat_add(&stats->avg_queue_size_sum,
537 blkg_rwstat_sum(&stats->queued));
538 blkg_stat_add(&stats->avg_queue_size_samples, 1);
539 cfqg_stats_update_group_wait_time(stats);
540 }
541
542 #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
543
544 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
545 static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
546 static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
547 static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
548 static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
549 static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
550 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
551
552 #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
553
554 #ifdef CONFIG_CFQ_GROUP_IOSCHED
555
556 static inline struct cfq_group *blkg_to_cfqg(struct blkio_group *blkg)
557 {
558 return blkg_to_pdata(blkg, &blkio_policy_cfq);
559 }
560
561 static inline struct blkio_group *cfqg_to_blkg(struct cfq_group *cfqg)
562 {
563 return pdata_to_blkg(cfqg);
564 }
565
566 static inline void cfqg_get(struct cfq_group *cfqg)
567 {
568 return blkg_get(cfqg_to_blkg(cfqg));
569 }
570
571 static inline void cfqg_put(struct cfq_group *cfqg)
572 {
573 return blkg_put(cfqg_to_blkg(cfqg));
574 }
575
576 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
577 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
578 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
579 blkg_path(cfqg_to_blkg((cfqq)->cfqg)), ##args)
580
581 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
582 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
583 blkg_path(cfqg_to_blkg((cfqg))), ##args) \
584
585 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
586 struct cfq_group *curr_cfqg, int rw)
587 {
588 blkg_rwstat_add(&cfqg->stats.queued, rw, 1);
589 cfqg_stats_end_empty_time(&cfqg->stats);
590 cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
591 }
592
593 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
594 unsigned long time, unsigned long unaccounted_time)
595 {
596 blkg_stat_add(&cfqg->stats.time, time);
597 #ifdef CONFIG_DEBUG_BLK_CGROUP
598 blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
599 #endif
600 }
601
602 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw)
603 {
604 blkg_rwstat_add(&cfqg->stats.queued, rw, -1);
605 }
606
607 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw)
608 {
609 blkg_rwstat_add(&cfqg->stats.merged, rw, 1);
610 }
611
612 static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
613 uint64_t bytes, int rw)
614 {
615 blkg_stat_add(&cfqg->stats.sectors, bytes >> 9);
616 blkg_rwstat_add(&cfqg->stats.serviced, rw, 1);
617 blkg_rwstat_add(&cfqg->stats.service_bytes, rw, bytes);
618 }
619
620 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
621 uint64_t start_time, uint64_t io_start_time, int rw)
622 {
623 struct cfqg_stats *stats = &cfqg->stats;
624 unsigned long long now = sched_clock();
625
626 if (time_after64(now, io_start_time))
627 blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
628 if (time_after64(io_start_time, start_time))
629 blkg_rwstat_add(&stats->wait_time, rw,
630 io_start_time - start_time);
631 }
632
633 static void cfqg_stats_reset(struct blkio_group *blkg)
634 {
635 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
636 struct cfqg_stats *stats = &cfqg->stats;
637
638 /* queued stats shouldn't be cleared */
639 blkg_rwstat_reset(&stats->service_bytes);
640 blkg_rwstat_reset(&stats->serviced);
641 blkg_rwstat_reset(&stats->merged);
642 blkg_rwstat_reset(&stats->service_time);
643 blkg_rwstat_reset(&stats->wait_time);
644 blkg_stat_reset(&stats->time);
645 #ifdef CONFIG_DEBUG_BLK_CGROUP
646 blkg_stat_reset(&stats->unaccounted_time);
647 blkg_stat_reset(&stats->avg_queue_size_sum);
648 blkg_stat_reset(&stats->avg_queue_size_samples);
649 blkg_stat_reset(&stats->dequeue);
650 blkg_stat_reset(&stats->group_wait_time);
651 blkg_stat_reset(&stats->idle_time);
652 blkg_stat_reset(&stats->empty_time);
653 #endif
654 }
655
656 #else /* CONFIG_CFQ_GROUP_IOSCHED */
657
658 static inline struct cfq_group *blkg_to_cfqg(struct blkio_group *blkg) { return NULL; }
659 static inline struct blkio_group *cfqg_to_blkg(struct cfq_group *cfqg) { return NULL; }
660 static inline void cfqg_get(struct cfq_group *cfqg) { }
661 static inline void cfqg_put(struct cfq_group *cfqg) { }
662
663 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
664 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
665 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
666
667 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
668 struct cfq_group *curr_cfqg, int rw) { }
669 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
670 unsigned long time, unsigned long unaccounted_time) { }
671 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) { }
672 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) { }
673 static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
674 uint64_t bytes, int rw) { }
675 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
676 uint64_t start_time, uint64_t io_start_time, int rw) { }
677
678 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
679
680 #define cfq_log(cfqd, fmt, args...) \
681 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
682
683 /* Traverses through cfq group service trees */
684 #define for_each_cfqg_st(cfqg, i, j, st) \
685 for (i = 0; i <= IDLE_WORKLOAD; i++) \
686 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
687 : &cfqg->service_tree_idle; \
688 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
689 (i == IDLE_WORKLOAD && j == 0); \
690 j++, st = i < IDLE_WORKLOAD ? \
691 &cfqg->service_trees[i][j]: NULL) \
692
693 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
694 struct cfq_ttime *ttime, bool group_idle)
695 {
696 unsigned long slice;
697 if (!sample_valid(ttime->ttime_samples))
698 return false;
699 if (group_idle)
700 slice = cfqd->cfq_group_idle;
701 else
702 slice = cfqd->cfq_slice_idle;
703 return ttime->ttime_mean > slice;
704 }
705
706 static inline bool iops_mode(struct cfq_data *cfqd)
707 {
708 /*
709 * If we are not idling on queues and it is a NCQ drive, parallel
710 * execution of requests is on and measuring time is not possible
711 * in most of the cases until and unless we drive shallower queue
712 * depths and that becomes a performance bottleneck. In such cases
713 * switch to start providing fairness in terms of number of IOs.
714 */
715 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
716 return true;
717 else
718 return false;
719 }
720
721 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
722 {
723 if (cfq_class_idle(cfqq))
724 return IDLE_WORKLOAD;
725 if (cfq_class_rt(cfqq))
726 return RT_WORKLOAD;
727 return BE_WORKLOAD;
728 }
729
730
731 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
732 {
733 if (!cfq_cfqq_sync(cfqq))
734 return ASYNC_WORKLOAD;
735 if (!cfq_cfqq_idle_window(cfqq))
736 return SYNC_NOIDLE_WORKLOAD;
737 return SYNC_WORKLOAD;
738 }
739
740 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
741 struct cfq_data *cfqd,
742 struct cfq_group *cfqg)
743 {
744 if (wl == IDLE_WORKLOAD)
745 return cfqg->service_tree_idle.count;
746
747 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
748 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
749 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
750 }
751
752 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
753 struct cfq_group *cfqg)
754 {
755 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
756 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
757 }
758
759 static void cfq_dispatch_insert(struct request_queue *, struct request *);
760 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
761 struct cfq_io_cq *cic, struct bio *bio,
762 gfp_t gfp_mask);
763
764 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
765 {
766 /* cic->icq is the first member, %NULL will convert to %NULL */
767 return container_of(icq, struct cfq_io_cq, icq);
768 }
769
770 static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
771 struct io_context *ioc)
772 {
773 if (ioc)
774 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
775 return NULL;
776 }
777
778 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
779 {
780 return cic->cfqq[is_sync];
781 }
782
783 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
784 bool is_sync)
785 {
786 cic->cfqq[is_sync] = cfqq;
787 }
788
789 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
790 {
791 return cic->icq.q->elevator->elevator_data;
792 }
793
794 /*
795 * We regard a request as SYNC, if it's either a read or has the SYNC bit
796 * set (in which case it could also be direct WRITE).
797 */
798 static inline bool cfq_bio_sync(struct bio *bio)
799 {
800 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
801 }
802
803 /*
804 * scheduler run of queue, if there are requests pending and no one in the
805 * driver that will restart queueing
806 */
807 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
808 {
809 if (cfqd->busy_queues) {
810 cfq_log(cfqd, "schedule dispatch");
811 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
812 }
813 }
814
815 /*
816 * Scale schedule slice based on io priority. Use the sync time slice only
817 * if a queue is marked sync and has sync io queued. A sync queue with async
818 * io only, should not get full sync slice length.
819 */
820 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
821 unsigned short prio)
822 {
823 const int base_slice = cfqd->cfq_slice[sync];
824
825 WARN_ON(prio >= IOPRIO_BE_NR);
826
827 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
828 }
829
830 static inline int
831 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
832 {
833 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
834 }
835
836 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
837 {
838 u64 d = delta << CFQ_SERVICE_SHIFT;
839
840 d = d * CFQ_WEIGHT_DEFAULT;
841 do_div(d, cfqg->weight);
842 return d;
843 }
844
845 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
846 {
847 s64 delta = (s64)(vdisktime - min_vdisktime);
848 if (delta > 0)
849 min_vdisktime = vdisktime;
850
851 return min_vdisktime;
852 }
853
854 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
855 {
856 s64 delta = (s64)(vdisktime - min_vdisktime);
857 if (delta < 0)
858 min_vdisktime = vdisktime;
859
860 return min_vdisktime;
861 }
862
863 static void update_min_vdisktime(struct cfq_rb_root *st)
864 {
865 struct cfq_group *cfqg;
866
867 if (st->left) {
868 cfqg = rb_entry_cfqg(st->left);
869 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
870 cfqg->vdisktime);
871 }
872 }
873
874 /*
875 * get averaged number of queues of RT/BE priority.
876 * average is updated, with a formula that gives more weight to higher numbers,
877 * to quickly follows sudden increases and decrease slowly
878 */
879
880 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
881 struct cfq_group *cfqg, bool rt)
882 {
883 unsigned min_q, max_q;
884 unsigned mult = cfq_hist_divisor - 1;
885 unsigned round = cfq_hist_divisor / 2;
886 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
887
888 min_q = min(cfqg->busy_queues_avg[rt], busy);
889 max_q = max(cfqg->busy_queues_avg[rt], busy);
890 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
891 cfq_hist_divisor;
892 return cfqg->busy_queues_avg[rt];
893 }
894
895 static inline unsigned
896 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
897 {
898 struct cfq_rb_root *st = &cfqd->grp_service_tree;
899
900 return cfq_target_latency * cfqg->weight / st->total_weight;
901 }
902
903 static inline unsigned
904 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
905 {
906 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
907 if (cfqd->cfq_latency) {
908 /*
909 * interested queues (we consider only the ones with the same
910 * priority class in the cfq group)
911 */
912 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
913 cfq_class_rt(cfqq));
914 unsigned sync_slice = cfqd->cfq_slice[1];
915 unsigned expect_latency = sync_slice * iq;
916 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
917
918 if (expect_latency > group_slice) {
919 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
920 /* scale low_slice according to IO priority
921 * and sync vs async */
922 unsigned low_slice =
923 min(slice, base_low_slice * slice / sync_slice);
924 /* the adapted slice value is scaled to fit all iqs
925 * into the target latency */
926 slice = max(slice * group_slice / expect_latency,
927 low_slice);
928 }
929 }
930 return slice;
931 }
932
933 static inline void
934 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
935 {
936 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
937
938 cfqq->slice_start = jiffies;
939 cfqq->slice_end = jiffies + slice;
940 cfqq->allocated_slice = slice;
941 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
942 }
943
944 /*
945 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
946 * isn't valid until the first request from the dispatch is activated
947 * and the slice time set.
948 */
949 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
950 {
951 if (cfq_cfqq_slice_new(cfqq))
952 return false;
953 if (time_before(jiffies, cfqq->slice_end))
954 return false;
955
956 return true;
957 }
958
959 /*
960 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
961 * We choose the request that is closest to the head right now. Distance
962 * behind the head is penalized and only allowed to a certain extent.
963 */
964 static struct request *
965 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
966 {
967 sector_t s1, s2, d1 = 0, d2 = 0;
968 unsigned long back_max;
969 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
970 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
971 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
972
973 if (rq1 == NULL || rq1 == rq2)
974 return rq2;
975 if (rq2 == NULL)
976 return rq1;
977
978 if (rq_is_sync(rq1) != rq_is_sync(rq2))
979 return rq_is_sync(rq1) ? rq1 : rq2;
980
981 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
982 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
983
984 s1 = blk_rq_pos(rq1);
985 s2 = blk_rq_pos(rq2);
986
987 /*
988 * by definition, 1KiB is 2 sectors
989 */
990 back_max = cfqd->cfq_back_max * 2;
991
992 /*
993 * Strict one way elevator _except_ in the case where we allow
994 * short backward seeks which are biased as twice the cost of a
995 * similar forward seek.
996 */
997 if (s1 >= last)
998 d1 = s1 - last;
999 else if (s1 + back_max >= last)
1000 d1 = (last - s1) * cfqd->cfq_back_penalty;
1001 else
1002 wrap |= CFQ_RQ1_WRAP;
1003
1004 if (s2 >= last)
1005 d2 = s2 - last;
1006 else if (s2 + back_max >= last)
1007 d2 = (last - s2) * cfqd->cfq_back_penalty;
1008 else
1009 wrap |= CFQ_RQ2_WRAP;
1010
1011 /* Found required data */
1012
1013 /*
1014 * By doing switch() on the bit mask "wrap" we avoid having to
1015 * check two variables for all permutations: --> faster!
1016 */
1017 switch (wrap) {
1018 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1019 if (d1 < d2)
1020 return rq1;
1021 else if (d2 < d1)
1022 return rq2;
1023 else {
1024 if (s1 >= s2)
1025 return rq1;
1026 else
1027 return rq2;
1028 }
1029
1030 case CFQ_RQ2_WRAP:
1031 return rq1;
1032 case CFQ_RQ1_WRAP:
1033 return rq2;
1034 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1035 default:
1036 /*
1037 * Since both rqs are wrapped,
1038 * start with the one that's further behind head
1039 * (--> only *one* back seek required),
1040 * since back seek takes more time than forward.
1041 */
1042 if (s1 <= s2)
1043 return rq1;
1044 else
1045 return rq2;
1046 }
1047 }
1048
1049 /*
1050 * The below is leftmost cache rbtree addon
1051 */
1052 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1053 {
1054 /* Service tree is empty */
1055 if (!root->count)
1056 return NULL;
1057
1058 if (!root->left)
1059 root->left = rb_first(&root->rb);
1060
1061 if (root->left)
1062 return rb_entry(root->left, struct cfq_queue, rb_node);
1063
1064 return NULL;
1065 }
1066
1067 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1068 {
1069 if (!root->left)
1070 root->left = rb_first(&root->rb);
1071
1072 if (root->left)
1073 return rb_entry_cfqg(root->left);
1074
1075 return NULL;
1076 }
1077
1078 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
1079 {
1080 rb_erase(n, root);
1081 RB_CLEAR_NODE(n);
1082 }
1083
1084 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1085 {
1086 if (root->left == n)
1087 root->left = NULL;
1088 rb_erase_init(n, &root->rb);
1089 --root->count;
1090 }
1091
1092 /*
1093 * would be nice to take fifo expire time into account as well
1094 */
1095 static struct request *
1096 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1097 struct request *last)
1098 {
1099 struct rb_node *rbnext = rb_next(&last->rb_node);
1100 struct rb_node *rbprev = rb_prev(&last->rb_node);
1101 struct request *next = NULL, *prev = NULL;
1102
1103 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1104
1105 if (rbprev)
1106 prev = rb_entry_rq(rbprev);
1107
1108 if (rbnext)
1109 next = rb_entry_rq(rbnext);
1110 else {
1111 rbnext = rb_first(&cfqq->sort_list);
1112 if (rbnext && rbnext != &last->rb_node)
1113 next = rb_entry_rq(rbnext);
1114 }
1115
1116 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1117 }
1118
1119 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
1120 struct cfq_queue *cfqq)
1121 {
1122 /*
1123 * just an approximation, should be ok.
1124 */
1125 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1126 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1127 }
1128
1129 static inline s64
1130 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1131 {
1132 return cfqg->vdisktime - st->min_vdisktime;
1133 }
1134
1135 static void
1136 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1137 {
1138 struct rb_node **node = &st->rb.rb_node;
1139 struct rb_node *parent = NULL;
1140 struct cfq_group *__cfqg;
1141 s64 key = cfqg_key(st, cfqg);
1142 int left = 1;
1143
1144 while (*node != NULL) {
1145 parent = *node;
1146 __cfqg = rb_entry_cfqg(parent);
1147
1148 if (key < cfqg_key(st, __cfqg))
1149 node = &parent->rb_left;
1150 else {
1151 node = &parent->rb_right;
1152 left = 0;
1153 }
1154 }
1155
1156 if (left)
1157 st->left = &cfqg->rb_node;
1158
1159 rb_link_node(&cfqg->rb_node, parent, node);
1160 rb_insert_color(&cfqg->rb_node, &st->rb);
1161 }
1162
1163 static void
1164 cfq_update_group_weight(struct cfq_group *cfqg)
1165 {
1166 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1167 if (cfqg->new_weight) {
1168 cfqg->weight = cfqg->new_weight;
1169 cfqg->new_weight = 0;
1170 }
1171 }
1172
1173 static void
1174 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1175 {
1176 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1177
1178 cfq_update_group_weight(cfqg);
1179 __cfq_group_service_tree_add(st, cfqg);
1180 st->total_weight += cfqg->weight;
1181 }
1182
1183 static void
1184 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1185 {
1186 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1187 struct cfq_group *__cfqg;
1188 struct rb_node *n;
1189
1190 cfqg->nr_cfqq++;
1191 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1192 return;
1193
1194 /*
1195 * Currently put the group at the end. Later implement something
1196 * so that groups get lesser vtime based on their weights, so that
1197 * if group does not loose all if it was not continuously backlogged.
1198 */
1199 n = rb_last(&st->rb);
1200 if (n) {
1201 __cfqg = rb_entry_cfqg(n);
1202 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
1203 } else
1204 cfqg->vdisktime = st->min_vdisktime;
1205 cfq_group_service_tree_add(st, cfqg);
1206 }
1207
1208 static void
1209 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1210 {
1211 st->total_weight -= cfqg->weight;
1212 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1213 cfq_rb_erase(&cfqg->rb_node, st);
1214 }
1215
1216 static void
1217 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1218 {
1219 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1220
1221 BUG_ON(cfqg->nr_cfqq < 1);
1222 cfqg->nr_cfqq--;
1223
1224 /* If there are other cfq queues under this group, don't delete it */
1225 if (cfqg->nr_cfqq)
1226 return;
1227
1228 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1229 cfq_group_service_tree_del(st, cfqg);
1230 cfqg->saved_workload_slice = 0;
1231 cfqg_stats_update_dequeue(cfqg);
1232 }
1233
1234 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1235 unsigned int *unaccounted_time)
1236 {
1237 unsigned int slice_used;
1238
1239 /*
1240 * Queue got expired before even a single request completed or
1241 * got expired immediately after first request completion.
1242 */
1243 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
1244 /*
1245 * Also charge the seek time incurred to the group, otherwise
1246 * if there are mutiple queues in the group, each can dispatch
1247 * a single request on seeky media and cause lots of seek time
1248 * and group will never know it.
1249 */
1250 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
1251 1);
1252 } else {
1253 slice_used = jiffies - cfqq->slice_start;
1254 if (slice_used > cfqq->allocated_slice) {
1255 *unaccounted_time = slice_used - cfqq->allocated_slice;
1256 slice_used = cfqq->allocated_slice;
1257 }
1258 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
1259 *unaccounted_time += cfqq->slice_start -
1260 cfqq->dispatch_start;
1261 }
1262
1263 return slice_used;
1264 }
1265
1266 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1267 struct cfq_queue *cfqq)
1268 {
1269 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1270 unsigned int used_sl, charge, unaccounted_sl = 0;
1271 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1272 - cfqg->service_tree_idle.count;
1273
1274 BUG_ON(nr_sync < 0);
1275 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1276
1277 if (iops_mode(cfqd))
1278 charge = cfqq->slice_dispatch;
1279 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1280 charge = cfqq->allocated_slice;
1281
1282 /* Can't update vdisktime while group is on service tree */
1283 cfq_group_service_tree_del(st, cfqg);
1284 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
1285 /* If a new weight was requested, update now, off tree */
1286 cfq_group_service_tree_add(st, cfqg);
1287
1288 /* This group is being expired. Save the context */
1289 if (time_after(cfqd->workload_expires, jiffies)) {
1290 cfqg->saved_workload_slice = cfqd->workload_expires
1291 - jiffies;
1292 cfqg->saved_workload = cfqd->serving_type;
1293 cfqg->saved_serving_prio = cfqd->serving_prio;
1294 } else
1295 cfqg->saved_workload_slice = 0;
1296
1297 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1298 st->min_vdisktime);
1299 cfq_log_cfqq(cfqq->cfqd, cfqq,
1300 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1301 used_sl, cfqq->slice_dispatch, charge,
1302 iops_mode(cfqd), cfqq->nr_sectors);
1303 cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1304 cfqg_stats_set_start_empty_time(cfqg);
1305 }
1306
1307 /**
1308 * cfq_init_cfqg_base - initialize base part of a cfq_group
1309 * @cfqg: cfq_group to initialize
1310 *
1311 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1312 * is enabled or not.
1313 */
1314 static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1315 {
1316 struct cfq_rb_root *st;
1317 int i, j;
1318
1319 for_each_cfqg_st(cfqg, i, j, st)
1320 *st = CFQ_RB_ROOT;
1321 RB_CLEAR_NODE(&cfqg->rb_node);
1322
1323 cfqg->ttime.last_end_request = jiffies;
1324 }
1325
1326 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1327 static void cfq_init_blkio_group(struct blkio_group *blkg)
1328 {
1329 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1330
1331 cfq_init_cfqg_base(cfqg);
1332 cfqg->weight = blkg->blkcg->cfq_weight;
1333 }
1334
1335 /*
1336 * Search for the cfq group current task belongs to. request_queue lock must
1337 * be held.
1338 */
1339 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1340 struct blkio_cgroup *blkcg)
1341 {
1342 struct request_queue *q = cfqd->queue;
1343 struct cfq_group *cfqg = NULL;
1344
1345 /* avoid lookup for the common case where there's no blkio cgroup */
1346 if (blkcg == &blkio_root_cgroup) {
1347 cfqg = cfqd->root_group;
1348 } else {
1349 struct blkio_group *blkg;
1350
1351 blkg = blkg_lookup_create(blkcg, q, false);
1352 if (!IS_ERR(blkg))
1353 cfqg = blkg_to_cfqg(blkg);
1354 }
1355
1356 return cfqg;
1357 }
1358
1359 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1360 {
1361 /* Currently, all async queues are mapped to root group */
1362 if (!cfq_cfqq_sync(cfqq))
1363 cfqg = cfqq->cfqd->root_group;
1364
1365 cfqq->cfqg = cfqg;
1366 /* cfqq reference on cfqg */
1367 cfqg_get(cfqg);
1368 }
1369
1370 static u64 cfqg_prfill_weight_device(struct seq_file *sf, void *pdata, int off)
1371 {
1372 struct cfq_group *cfqg = pdata;
1373
1374 if (!cfqg->dev_weight)
1375 return 0;
1376 return __blkg_prfill_u64(sf, pdata, cfqg->dev_weight);
1377 }
1378
1379 static int cfqg_print_weight_device(struct cgroup *cgrp, struct cftype *cft,
1380 struct seq_file *sf)
1381 {
1382 blkcg_print_blkgs(sf, cgroup_to_blkio_cgroup(cgrp),
1383 cfqg_prfill_weight_device, &blkio_policy_cfq, 0,
1384 false);
1385 return 0;
1386 }
1387
1388 static int cfq_print_weight(struct cgroup *cgrp, struct cftype *cft,
1389 struct seq_file *sf)
1390 {
1391 seq_printf(sf, "%u\n", cgroup_to_blkio_cgroup(cgrp)->cfq_weight);
1392 return 0;
1393 }
1394
1395 static int cfqg_set_weight_device(struct cgroup *cgrp, struct cftype *cft,
1396 const char *buf)
1397 {
1398 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgrp);
1399 struct blkg_conf_ctx ctx;
1400 struct cfq_group *cfqg;
1401 int ret;
1402
1403 ret = blkg_conf_prep(blkcg, buf, &ctx);
1404 if (ret)
1405 return ret;
1406
1407 ret = -EINVAL;
1408 cfqg = blkg_to_cfqg(ctx.blkg);
1409 if (cfqg && (!ctx.v || (ctx.v >= CFQ_WEIGHT_MIN &&
1410 ctx.v <= CFQ_WEIGHT_MAX))) {
1411 cfqg->dev_weight = ctx.v;
1412 cfqg->new_weight = cfqg->dev_weight ?: blkcg->cfq_weight;
1413 ret = 0;
1414 }
1415
1416 blkg_conf_finish(&ctx);
1417 return ret;
1418 }
1419
1420 static int cfq_set_weight(struct cgroup *cgrp, struct cftype *cft, u64 val)
1421 {
1422 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgrp);
1423 struct blkio_group *blkg;
1424 struct hlist_node *n;
1425
1426 if (val < CFQ_WEIGHT_MIN || val > CFQ_WEIGHT_MAX)
1427 return -EINVAL;
1428
1429 spin_lock_irq(&blkcg->lock);
1430 blkcg->cfq_weight = (unsigned int)val;
1431
1432 hlist_for_each_entry(blkg, n, &blkcg->blkg_list, blkcg_node) {
1433 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1434
1435 if (cfqg && !cfqg->dev_weight)
1436 cfqg->new_weight = blkcg->cfq_weight;
1437 }
1438
1439 spin_unlock_irq(&blkcg->lock);
1440 return 0;
1441 }
1442
1443 static int cfqg_print_stat(struct cgroup *cgrp, struct cftype *cft,
1444 struct seq_file *sf)
1445 {
1446 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgrp);
1447
1448 blkcg_print_blkgs(sf, blkcg, blkg_prfill_stat, &blkio_policy_cfq,
1449 cft->private, false);
1450 return 0;
1451 }
1452
1453 static int cfqg_print_rwstat(struct cgroup *cgrp, struct cftype *cft,
1454 struct seq_file *sf)
1455 {
1456 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgrp);
1457
1458 blkcg_print_blkgs(sf, blkcg, blkg_prfill_rwstat, &blkio_policy_cfq,
1459 cft->private, true);
1460 return 0;
1461 }
1462
1463 #ifdef CONFIG_DEBUG_BLK_CGROUP
1464 static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf, void *pdata, int off)
1465 {
1466 struct cfq_group *cfqg = pdata;
1467 u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1468 u64 v = 0;
1469
1470 if (samples) {
1471 v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1472 do_div(v, samples);
1473 }
1474 __blkg_prfill_u64(sf, pdata, v);
1475 return 0;
1476 }
1477
1478 /* print avg_queue_size */
1479 static int cfqg_print_avg_queue_size(struct cgroup *cgrp, struct cftype *cft,
1480 struct seq_file *sf)
1481 {
1482 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgrp);
1483
1484 blkcg_print_blkgs(sf, blkcg, cfqg_prfill_avg_queue_size,
1485 &blkio_policy_cfq, 0, false);
1486 return 0;
1487 }
1488 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1489
1490 static struct cftype cfq_blkcg_files[] = {
1491 {
1492 .name = "weight_device",
1493 .read_seq_string = cfqg_print_weight_device,
1494 .write_string = cfqg_set_weight_device,
1495 .max_write_len = 256,
1496 },
1497 {
1498 .name = "weight",
1499 .read_seq_string = cfq_print_weight,
1500 .write_u64 = cfq_set_weight,
1501 },
1502 {
1503 .name = "time",
1504 .private = offsetof(struct cfq_group, stats.time),
1505 .read_seq_string = cfqg_print_stat,
1506 },
1507 {
1508 .name = "sectors",
1509 .private = offsetof(struct cfq_group, stats.sectors),
1510 .read_seq_string = cfqg_print_stat,
1511 },
1512 {
1513 .name = "io_service_bytes",
1514 .private = offsetof(struct cfq_group, stats.service_bytes),
1515 .read_seq_string = cfqg_print_rwstat,
1516 },
1517 {
1518 .name = "io_serviced",
1519 .private = offsetof(struct cfq_group, stats.serviced),
1520 .read_seq_string = cfqg_print_rwstat,
1521 },
1522 {
1523 .name = "io_service_time",
1524 .private = offsetof(struct cfq_group, stats.service_time),
1525 .read_seq_string = cfqg_print_rwstat,
1526 },
1527 {
1528 .name = "io_wait_time",
1529 .private = offsetof(struct cfq_group, stats.wait_time),
1530 .read_seq_string = cfqg_print_rwstat,
1531 },
1532 {
1533 .name = "io_merged",
1534 .private = offsetof(struct cfq_group, stats.merged),
1535 .read_seq_string = cfqg_print_rwstat,
1536 },
1537 {
1538 .name = "io_queued",
1539 .private = offsetof(struct cfq_group, stats.queued),
1540 .read_seq_string = cfqg_print_rwstat,
1541 },
1542 #ifdef CONFIG_DEBUG_BLK_CGROUP
1543 {
1544 .name = "avg_queue_size",
1545 .read_seq_string = cfqg_print_avg_queue_size,
1546 },
1547 {
1548 .name = "group_wait_time",
1549 .private = offsetof(struct cfq_group, stats.group_wait_time),
1550 .read_seq_string = cfqg_print_stat,
1551 },
1552 {
1553 .name = "idle_time",
1554 .private = offsetof(struct cfq_group, stats.idle_time),
1555 .read_seq_string = cfqg_print_stat,
1556 },
1557 {
1558 .name = "empty_time",
1559 .private = offsetof(struct cfq_group, stats.empty_time),
1560 .read_seq_string = cfqg_print_stat,
1561 },
1562 {
1563 .name = "dequeue",
1564 .private = offsetof(struct cfq_group, stats.dequeue),
1565 .read_seq_string = cfqg_print_stat,
1566 },
1567 {
1568 .name = "unaccounted_time",
1569 .private = offsetof(struct cfq_group, stats.unaccounted_time),
1570 .read_seq_string = cfqg_print_stat,
1571 },
1572 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1573 { } /* terminate */
1574 };
1575 #else /* GROUP_IOSCHED */
1576 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1577 struct blkio_cgroup *blkcg)
1578 {
1579 return cfqd->root_group;
1580 }
1581
1582 static inline void
1583 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1584 cfqq->cfqg = cfqg;
1585 }
1586
1587 #endif /* GROUP_IOSCHED */
1588
1589 /*
1590 * The cfqd->service_trees holds all pending cfq_queue's that have
1591 * requests waiting to be processed. It is sorted in the order that
1592 * we will service the queues.
1593 */
1594 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1595 bool add_front)
1596 {
1597 struct rb_node **p, *parent;
1598 struct cfq_queue *__cfqq;
1599 unsigned long rb_key;
1600 struct cfq_rb_root *service_tree;
1601 int left;
1602 int new_cfqq = 1;
1603
1604 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1605 cfqq_type(cfqq));
1606 if (cfq_class_idle(cfqq)) {
1607 rb_key = CFQ_IDLE_DELAY;
1608 parent = rb_last(&service_tree->rb);
1609 if (parent && parent != &cfqq->rb_node) {
1610 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1611 rb_key += __cfqq->rb_key;
1612 } else
1613 rb_key += jiffies;
1614 } else if (!add_front) {
1615 /*
1616 * Get our rb key offset. Subtract any residual slice
1617 * value carried from last service. A negative resid
1618 * count indicates slice overrun, and this should position
1619 * the next service time further away in the tree.
1620 */
1621 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1622 rb_key -= cfqq->slice_resid;
1623 cfqq->slice_resid = 0;
1624 } else {
1625 rb_key = -HZ;
1626 __cfqq = cfq_rb_first(service_tree);
1627 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1628 }
1629
1630 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1631 new_cfqq = 0;
1632 /*
1633 * same position, nothing more to do
1634 */
1635 if (rb_key == cfqq->rb_key &&
1636 cfqq->service_tree == service_tree)
1637 return;
1638
1639 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1640 cfqq->service_tree = NULL;
1641 }
1642
1643 left = 1;
1644 parent = NULL;
1645 cfqq->service_tree = service_tree;
1646 p = &service_tree->rb.rb_node;
1647 while (*p) {
1648 struct rb_node **n;
1649
1650 parent = *p;
1651 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1652
1653 /*
1654 * sort by key, that represents service time.
1655 */
1656 if (time_before(rb_key, __cfqq->rb_key))
1657 n = &(*p)->rb_left;
1658 else {
1659 n = &(*p)->rb_right;
1660 left = 0;
1661 }
1662
1663 p = n;
1664 }
1665
1666 if (left)
1667 service_tree->left = &cfqq->rb_node;
1668
1669 cfqq->rb_key = rb_key;
1670 rb_link_node(&cfqq->rb_node, parent, p);
1671 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1672 service_tree->count++;
1673 if (add_front || !new_cfqq)
1674 return;
1675 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1676 }
1677
1678 static struct cfq_queue *
1679 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1680 sector_t sector, struct rb_node **ret_parent,
1681 struct rb_node ***rb_link)
1682 {
1683 struct rb_node **p, *parent;
1684 struct cfq_queue *cfqq = NULL;
1685
1686 parent = NULL;
1687 p = &root->rb_node;
1688 while (*p) {
1689 struct rb_node **n;
1690
1691 parent = *p;
1692 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1693
1694 /*
1695 * Sort strictly based on sector. Smallest to the left,
1696 * largest to the right.
1697 */
1698 if (sector > blk_rq_pos(cfqq->next_rq))
1699 n = &(*p)->rb_right;
1700 else if (sector < blk_rq_pos(cfqq->next_rq))
1701 n = &(*p)->rb_left;
1702 else
1703 break;
1704 p = n;
1705 cfqq = NULL;
1706 }
1707
1708 *ret_parent = parent;
1709 if (rb_link)
1710 *rb_link = p;
1711 return cfqq;
1712 }
1713
1714 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1715 {
1716 struct rb_node **p, *parent;
1717 struct cfq_queue *__cfqq;
1718
1719 if (cfqq->p_root) {
1720 rb_erase(&cfqq->p_node, cfqq->p_root);
1721 cfqq->p_root = NULL;
1722 }
1723
1724 if (cfq_class_idle(cfqq))
1725 return;
1726 if (!cfqq->next_rq)
1727 return;
1728
1729 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1730 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1731 blk_rq_pos(cfqq->next_rq), &parent, &p);
1732 if (!__cfqq) {
1733 rb_link_node(&cfqq->p_node, parent, p);
1734 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1735 } else
1736 cfqq->p_root = NULL;
1737 }
1738
1739 /*
1740 * Update cfqq's position in the service tree.
1741 */
1742 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1743 {
1744 /*
1745 * Resorting requires the cfqq to be on the RR list already.
1746 */
1747 if (cfq_cfqq_on_rr(cfqq)) {
1748 cfq_service_tree_add(cfqd, cfqq, 0);
1749 cfq_prio_tree_add(cfqd, cfqq);
1750 }
1751 }
1752
1753 /*
1754 * add to busy list of queues for service, trying to be fair in ordering
1755 * the pending list according to last request service
1756 */
1757 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1758 {
1759 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1760 BUG_ON(cfq_cfqq_on_rr(cfqq));
1761 cfq_mark_cfqq_on_rr(cfqq);
1762 cfqd->busy_queues++;
1763 if (cfq_cfqq_sync(cfqq))
1764 cfqd->busy_sync_queues++;
1765
1766 cfq_resort_rr_list(cfqd, cfqq);
1767 }
1768
1769 /*
1770 * Called when the cfqq no longer has requests pending, remove it from
1771 * the service tree.
1772 */
1773 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1774 {
1775 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1776 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1777 cfq_clear_cfqq_on_rr(cfqq);
1778
1779 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1780 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1781 cfqq->service_tree = NULL;
1782 }
1783 if (cfqq->p_root) {
1784 rb_erase(&cfqq->p_node, cfqq->p_root);
1785 cfqq->p_root = NULL;
1786 }
1787
1788 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1789 BUG_ON(!cfqd->busy_queues);
1790 cfqd->busy_queues--;
1791 if (cfq_cfqq_sync(cfqq))
1792 cfqd->busy_sync_queues--;
1793 }
1794
1795 /*
1796 * rb tree support functions
1797 */
1798 static void cfq_del_rq_rb(struct request *rq)
1799 {
1800 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1801 const int sync = rq_is_sync(rq);
1802
1803 BUG_ON(!cfqq->queued[sync]);
1804 cfqq->queued[sync]--;
1805
1806 elv_rb_del(&cfqq->sort_list, rq);
1807
1808 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1809 /*
1810 * Queue will be deleted from service tree when we actually
1811 * expire it later. Right now just remove it from prio tree
1812 * as it is empty.
1813 */
1814 if (cfqq->p_root) {
1815 rb_erase(&cfqq->p_node, cfqq->p_root);
1816 cfqq->p_root = NULL;
1817 }
1818 }
1819 }
1820
1821 static void cfq_add_rq_rb(struct request *rq)
1822 {
1823 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1824 struct cfq_data *cfqd = cfqq->cfqd;
1825 struct request *prev;
1826
1827 cfqq->queued[rq_is_sync(rq)]++;
1828
1829 elv_rb_add(&cfqq->sort_list, rq);
1830
1831 if (!cfq_cfqq_on_rr(cfqq))
1832 cfq_add_cfqq_rr(cfqd, cfqq);
1833
1834 /*
1835 * check if this request is a better next-serve candidate
1836 */
1837 prev = cfqq->next_rq;
1838 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1839
1840 /*
1841 * adjust priority tree position, if ->next_rq changes
1842 */
1843 if (prev != cfqq->next_rq)
1844 cfq_prio_tree_add(cfqd, cfqq);
1845
1846 BUG_ON(!cfqq->next_rq);
1847 }
1848
1849 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1850 {
1851 elv_rb_del(&cfqq->sort_list, rq);
1852 cfqq->queued[rq_is_sync(rq)]--;
1853 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
1854 cfq_add_rq_rb(rq);
1855 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
1856 rq->cmd_flags);
1857 }
1858
1859 static struct request *
1860 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1861 {
1862 struct task_struct *tsk = current;
1863 struct cfq_io_cq *cic;
1864 struct cfq_queue *cfqq;
1865
1866 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1867 if (!cic)
1868 return NULL;
1869
1870 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1871 if (cfqq) {
1872 sector_t sector = bio->bi_sector + bio_sectors(bio);
1873
1874 return elv_rb_find(&cfqq->sort_list, sector);
1875 }
1876
1877 return NULL;
1878 }
1879
1880 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1881 {
1882 struct cfq_data *cfqd = q->elevator->elevator_data;
1883
1884 cfqd->rq_in_driver++;
1885 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1886 cfqd->rq_in_driver);
1887
1888 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1889 }
1890
1891 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1892 {
1893 struct cfq_data *cfqd = q->elevator->elevator_data;
1894
1895 WARN_ON(!cfqd->rq_in_driver);
1896 cfqd->rq_in_driver--;
1897 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1898 cfqd->rq_in_driver);
1899 }
1900
1901 static void cfq_remove_request(struct request *rq)
1902 {
1903 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1904
1905 if (cfqq->next_rq == rq)
1906 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1907
1908 list_del_init(&rq->queuelist);
1909 cfq_del_rq_rb(rq);
1910
1911 cfqq->cfqd->rq_queued--;
1912 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
1913 if (rq->cmd_flags & REQ_PRIO) {
1914 WARN_ON(!cfqq->prio_pending);
1915 cfqq->prio_pending--;
1916 }
1917 }
1918
1919 static int cfq_merge(struct request_queue *q, struct request **req,
1920 struct bio *bio)
1921 {
1922 struct cfq_data *cfqd = q->elevator->elevator_data;
1923 struct request *__rq;
1924
1925 __rq = cfq_find_rq_fmerge(cfqd, bio);
1926 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1927 *req = __rq;
1928 return ELEVATOR_FRONT_MERGE;
1929 }
1930
1931 return ELEVATOR_NO_MERGE;
1932 }
1933
1934 static void cfq_merged_request(struct request_queue *q, struct request *req,
1935 int type)
1936 {
1937 if (type == ELEVATOR_FRONT_MERGE) {
1938 struct cfq_queue *cfqq = RQ_CFQQ(req);
1939
1940 cfq_reposition_rq_rb(cfqq, req);
1941 }
1942 }
1943
1944 static void cfq_bio_merged(struct request_queue *q, struct request *req,
1945 struct bio *bio)
1946 {
1947 cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_rw);
1948 }
1949
1950 static void
1951 cfq_merged_requests(struct request_queue *q, struct request *rq,
1952 struct request *next)
1953 {
1954 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1955 struct cfq_data *cfqd = q->elevator->elevator_data;
1956
1957 /*
1958 * reposition in fifo if next is older than rq
1959 */
1960 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1961 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1962 list_move(&rq->queuelist, &next->queuelist);
1963 rq_set_fifo_time(rq, rq_fifo_time(next));
1964 }
1965
1966 if (cfqq->next_rq == next)
1967 cfqq->next_rq = rq;
1968 cfq_remove_request(next);
1969 cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
1970
1971 cfqq = RQ_CFQQ(next);
1972 /*
1973 * all requests of this queue are merged to other queues, delete it
1974 * from the service tree. If it's the active_queue,
1975 * cfq_dispatch_requests() will choose to expire it or do idle
1976 */
1977 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
1978 cfqq != cfqd->active_queue)
1979 cfq_del_cfqq_rr(cfqd, cfqq);
1980 }
1981
1982 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1983 struct bio *bio)
1984 {
1985 struct cfq_data *cfqd = q->elevator->elevator_data;
1986 struct cfq_io_cq *cic;
1987 struct cfq_queue *cfqq;
1988
1989 /*
1990 * Disallow merge of a sync bio into an async request.
1991 */
1992 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1993 return false;
1994
1995 /*
1996 * Lookup the cfqq that this bio will be queued with and allow
1997 * merge only if rq is queued there.
1998 */
1999 cic = cfq_cic_lookup(cfqd, current->io_context);
2000 if (!cic)
2001 return false;
2002
2003 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2004 return cfqq == RQ_CFQQ(rq);
2005 }
2006
2007 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2008 {
2009 del_timer(&cfqd->idle_slice_timer);
2010 cfqg_stats_update_idle_time(cfqq->cfqg);
2011 }
2012
2013 static void __cfq_set_active_queue(struct cfq_data *cfqd,
2014 struct cfq_queue *cfqq)
2015 {
2016 if (cfqq) {
2017 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
2018 cfqd->serving_prio, cfqd->serving_type);
2019 cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2020 cfqq->slice_start = 0;
2021 cfqq->dispatch_start = jiffies;
2022 cfqq->allocated_slice = 0;
2023 cfqq->slice_end = 0;
2024 cfqq->slice_dispatch = 0;
2025 cfqq->nr_sectors = 0;
2026
2027 cfq_clear_cfqq_wait_request(cfqq);
2028 cfq_clear_cfqq_must_dispatch(cfqq);
2029 cfq_clear_cfqq_must_alloc_slice(cfqq);
2030 cfq_clear_cfqq_fifo_expire(cfqq);
2031 cfq_mark_cfqq_slice_new(cfqq);
2032
2033 cfq_del_timer(cfqd, cfqq);
2034 }
2035
2036 cfqd->active_queue = cfqq;
2037 }
2038
2039 /*
2040 * current cfqq expired its slice (or was too idle), select new one
2041 */
2042 static void
2043 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2044 bool timed_out)
2045 {
2046 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2047
2048 if (cfq_cfqq_wait_request(cfqq))
2049 cfq_del_timer(cfqd, cfqq);
2050
2051 cfq_clear_cfqq_wait_request(cfqq);
2052 cfq_clear_cfqq_wait_busy(cfqq);
2053
2054 /*
2055 * If this cfqq is shared between multiple processes, check to
2056 * make sure that those processes are still issuing I/Os within
2057 * the mean seek distance. If not, it may be time to break the
2058 * queues apart again.
2059 */
2060 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2061 cfq_mark_cfqq_split_coop(cfqq);
2062
2063 /*
2064 * store what was left of this slice, if the queue idled/timed out
2065 */
2066 if (timed_out) {
2067 if (cfq_cfqq_slice_new(cfqq))
2068 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2069 else
2070 cfqq->slice_resid = cfqq->slice_end - jiffies;
2071 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
2072 }
2073
2074 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2075
2076 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2077 cfq_del_cfqq_rr(cfqd, cfqq);
2078
2079 cfq_resort_rr_list(cfqd, cfqq);
2080
2081 if (cfqq == cfqd->active_queue)
2082 cfqd->active_queue = NULL;
2083
2084 if (cfqd->active_cic) {
2085 put_io_context(cfqd->active_cic->icq.ioc);
2086 cfqd->active_cic = NULL;
2087 }
2088 }
2089
2090 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2091 {
2092 struct cfq_queue *cfqq = cfqd->active_queue;
2093
2094 if (cfqq)
2095 __cfq_slice_expired(cfqd, cfqq, timed_out);
2096 }
2097
2098 /*
2099 * Get next queue for service. Unless we have a queue preemption,
2100 * we'll simply select the first cfqq in the service tree.
2101 */
2102 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2103 {
2104 struct cfq_rb_root *service_tree =
2105 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
2106 cfqd->serving_type);
2107
2108 if (!cfqd->rq_queued)
2109 return NULL;
2110
2111 /* There is nothing to dispatch */
2112 if (!service_tree)
2113 return NULL;
2114 if (RB_EMPTY_ROOT(&service_tree->rb))
2115 return NULL;
2116 return cfq_rb_first(service_tree);
2117 }
2118
2119 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2120 {
2121 struct cfq_group *cfqg;
2122 struct cfq_queue *cfqq;
2123 int i, j;
2124 struct cfq_rb_root *st;
2125
2126 if (!cfqd->rq_queued)
2127 return NULL;
2128
2129 cfqg = cfq_get_next_cfqg(cfqd);
2130 if (!cfqg)
2131 return NULL;
2132
2133 for_each_cfqg_st(cfqg, i, j, st)
2134 if ((cfqq = cfq_rb_first(st)) != NULL)
2135 return cfqq;
2136 return NULL;
2137 }
2138
2139 /*
2140 * Get and set a new active queue for service.
2141 */
2142 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2143 struct cfq_queue *cfqq)
2144 {
2145 if (!cfqq)
2146 cfqq = cfq_get_next_queue(cfqd);
2147
2148 __cfq_set_active_queue(cfqd, cfqq);
2149 return cfqq;
2150 }
2151
2152 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2153 struct request *rq)
2154 {
2155 if (blk_rq_pos(rq) >= cfqd->last_position)
2156 return blk_rq_pos(rq) - cfqd->last_position;
2157 else
2158 return cfqd->last_position - blk_rq_pos(rq);
2159 }
2160
2161 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2162 struct request *rq)
2163 {
2164 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2165 }
2166
2167 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2168 struct cfq_queue *cur_cfqq)
2169 {
2170 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2171 struct rb_node *parent, *node;
2172 struct cfq_queue *__cfqq;
2173 sector_t sector = cfqd->last_position;
2174
2175 if (RB_EMPTY_ROOT(root))
2176 return NULL;
2177
2178 /*
2179 * First, if we find a request starting at the end of the last
2180 * request, choose it.
2181 */
2182 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2183 if (__cfqq)
2184 return __cfqq;
2185
2186 /*
2187 * If the exact sector wasn't found, the parent of the NULL leaf
2188 * will contain the closest sector.
2189 */
2190 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
2191 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2192 return __cfqq;
2193
2194 if (blk_rq_pos(__cfqq->next_rq) < sector)
2195 node = rb_next(&__cfqq->p_node);
2196 else
2197 node = rb_prev(&__cfqq->p_node);
2198 if (!node)
2199 return NULL;
2200
2201 __cfqq = rb_entry(node, struct cfq_queue, p_node);
2202 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2203 return __cfqq;
2204
2205 return NULL;
2206 }
2207
2208 /*
2209 * cfqd - obvious
2210 * cur_cfqq - passed in so that we don't decide that the current queue is
2211 * closely cooperating with itself.
2212 *
2213 * So, basically we're assuming that that cur_cfqq has dispatched at least
2214 * one request, and that cfqd->last_position reflects a position on the disk
2215 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2216 * assumption.
2217 */
2218 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2219 struct cfq_queue *cur_cfqq)
2220 {
2221 struct cfq_queue *cfqq;
2222
2223 if (cfq_class_idle(cur_cfqq))
2224 return NULL;
2225 if (!cfq_cfqq_sync(cur_cfqq))
2226 return NULL;
2227 if (CFQQ_SEEKY(cur_cfqq))
2228 return NULL;
2229
2230 /*
2231 * Don't search priority tree if it's the only queue in the group.
2232 */
2233 if (cur_cfqq->cfqg->nr_cfqq == 1)
2234 return NULL;
2235
2236 /*
2237 * We should notice if some of the queues are cooperating, eg
2238 * working closely on the same area of the disk. In that case,
2239 * we can group them together and don't waste time idling.
2240 */
2241 cfqq = cfqq_close(cfqd, cur_cfqq);
2242 if (!cfqq)
2243 return NULL;
2244
2245 /* If new queue belongs to different cfq_group, don't choose it */
2246 if (cur_cfqq->cfqg != cfqq->cfqg)
2247 return NULL;
2248
2249 /*
2250 * It only makes sense to merge sync queues.
2251 */
2252 if (!cfq_cfqq_sync(cfqq))
2253 return NULL;
2254 if (CFQQ_SEEKY(cfqq))
2255 return NULL;
2256
2257 /*
2258 * Do not merge queues of different priority classes
2259 */
2260 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2261 return NULL;
2262
2263 return cfqq;
2264 }
2265
2266 /*
2267 * Determine whether we should enforce idle window for this queue.
2268 */
2269
2270 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2271 {
2272 enum wl_prio_t prio = cfqq_prio(cfqq);
2273 struct cfq_rb_root *service_tree = cfqq->service_tree;
2274
2275 BUG_ON(!service_tree);
2276 BUG_ON(!service_tree->count);
2277
2278 if (!cfqd->cfq_slice_idle)
2279 return false;
2280
2281 /* We never do for idle class queues. */
2282 if (prio == IDLE_WORKLOAD)
2283 return false;
2284
2285 /* We do for queues that were marked with idle window flag. */
2286 if (cfq_cfqq_idle_window(cfqq) &&
2287 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2288 return true;
2289
2290 /*
2291 * Otherwise, we do only if they are the last ones
2292 * in their service tree.
2293 */
2294 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
2295 !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
2296 return true;
2297 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
2298 service_tree->count);
2299 return false;
2300 }
2301
2302 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2303 {
2304 struct cfq_queue *cfqq = cfqd->active_queue;
2305 struct cfq_io_cq *cic;
2306 unsigned long sl, group_idle = 0;
2307
2308 /*
2309 * SSD device without seek penalty, disable idling. But only do so
2310 * for devices that support queuing, otherwise we still have a problem
2311 * with sync vs async workloads.
2312 */
2313 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2314 return;
2315
2316 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2317 WARN_ON(cfq_cfqq_slice_new(cfqq));
2318
2319 /*
2320 * idle is disabled, either manually or by past process history
2321 */
2322 if (!cfq_should_idle(cfqd, cfqq)) {
2323 /* no queue idling. Check for group idling */
2324 if (cfqd->cfq_group_idle)
2325 group_idle = cfqd->cfq_group_idle;
2326 else
2327 return;
2328 }
2329
2330 /*
2331 * still active requests from this queue, don't idle
2332 */
2333 if (cfqq->dispatched)
2334 return;
2335
2336 /*
2337 * task has exited, don't wait
2338 */
2339 cic = cfqd->active_cic;
2340 if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2341 return;
2342
2343 /*
2344 * If our average think time is larger than the remaining time
2345 * slice, then don't idle. This avoids overrunning the allotted
2346 * time slice.
2347 */
2348 if (sample_valid(cic->ttime.ttime_samples) &&
2349 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2350 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2351 cic->ttime.ttime_mean);
2352 return;
2353 }
2354
2355 /* There are other queues in the group, don't do group idle */
2356 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2357 return;
2358
2359 cfq_mark_cfqq_wait_request(cfqq);
2360
2361 if (group_idle)
2362 sl = cfqd->cfq_group_idle;
2363 else
2364 sl = cfqd->cfq_slice_idle;
2365
2366 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2367 cfqg_stats_set_start_idle_time(cfqq->cfqg);
2368 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2369 group_idle ? 1 : 0);
2370 }
2371
2372 /*
2373 * Move request from internal lists to the request queue dispatch list.
2374 */
2375 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2376 {
2377 struct cfq_data *cfqd = q->elevator->elevator_data;
2378 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2379
2380 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2381
2382 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2383 cfq_remove_request(rq);
2384 cfqq->dispatched++;
2385 (RQ_CFQG(rq))->dispatched++;
2386 elv_dispatch_sort(q, rq);
2387
2388 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2389 cfqq->nr_sectors += blk_rq_sectors(rq);
2390 cfqg_stats_update_dispatch(cfqq->cfqg, blk_rq_bytes(rq), rq->cmd_flags);
2391 }
2392
2393 /*
2394 * return expired entry, or NULL to just start from scratch in rbtree
2395 */
2396 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2397 {
2398 struct request *rq = NULL;
2399
2400 if (cfq_cfqq_fifo_expire(cfqq))
2401 return NULL;
2402
2403 cfq_mark_cfqq_fifo_expire(cfqq);
2404
2405 if (list_empty(&cfqq->fifo))
2406 return NULL;
2407
2408 rq = rq_entry_fifo(cfqq->fifo.next);
2409 if (time_before(jiffies, rq_fifo_time(rq)))
2410 rq = NULL;
2411
2412 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2413 return rq;
2414 }
2415
2416 static inline int
2417 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2418 {
2419 const int base_rq = cfqd->cfq_slice_async_rq;
2420
2421 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2422
2423 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2424 }
2425
2426 /*
2427 * Must be called with the queue_lock held.
2428 */
2429 static int cfqq_process_refs(struct cfq_queue *cfqq)
2430 {
2431 int process_refs, io_refs;
2432
2433 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2434 process_refs = cfqq->ref - io_refs;
2435 BUG_ON(process_refs < 0);
2436 return process_refs;
2437 }
2438
2439 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2440 {
2441 int process_refs, new_process_refs;
2442 struct cfq_queue *__cfqq;
2443
2444 /*
2445 * If there are no process references on the new_cfqq, then it is
2446 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2447 * chain may have dropped their last reference (not just their
2448 * last process reference).
2449 */
2450 if (!cfqq_process_refs(new_cfqq))
2451 return;
2452
2453 /* Avoid a circular list and skip interim queue merges */
2454 while ((__cfqq = new_cfqq->new_cfqq)) {
2455 if (__cfqq == cfqq)
2456 return;
2457 new_cfqq = __cfqq;
2458 }
2459
2460 process_refs = cfqq_process_refs(cfqq);
2461 new_process_refs = cfqq_process_refs(new_cfqq);
2462 /*
2463 * If the process for the cfqq has gone away, there is no
2464 * sense in merging the queues.
2465 */
2466 if (process_refs == 0 || new_process_refs == 0)
2467 return;
2468
2469 /*
2470 * Merge in the direction of the lesser amount of work.
2471 */
2472 if (new_process_refs >= process_refs) {
2473 cfqq->new_cfqq = new_cfqq;
2474 new_cfqq->ref += process_refs;
2475 } else {
2476 new_cfqq->new_cfqq = cfqq;
2477 cfqq->ref += new_process_refs;
2478 }
2479 }
2480
2481 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2482 struct cfq_group *cfqg, enum wl_prio_t prio)
2483 {
2484 struct cfq_queue *queue;
2485 int i;
2486 bool key_valid = false;
2487 unsigned long lowest_key = 0;
2488 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2489
2490 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2491 /* select the one with lowest rb_key */
2492 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2493 if (queue &&
2494 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2495 lowest_key = queue->rb_key;
2496 cur_best = i;
2497 key_valid = true;
2498 }
2499 }
2500
2501 return cur_best;
2502 }
2503
2504 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2505 {
2506 unsigned slice;
2507 unsigned count;
2508 struct cfq_rb_root *st;
2509 unsigned group_slice;
2510 enum wl_prio_t original_prio = cfqd->serving_prio;
2511
2512 /* Choose next priority. RT > BE > IDLE */
2513 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2514 cfqd->serving_prio = RT_WORKLOAD;
2515 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2516 cfqd->serving_prio = BE_WORKLOAD;
2517 else {
2518 cfqd->serving_prio = IDLE_WORKLOAD;
2519 cfqd->workload_expires = jiffies + 1;
2520 return;
2521 }
2522
2523 if (original_prio != cfqd->serving_prio)
2524 goto new_workload;
2525
2526 /*
2527 * For RT and BE, we have to choose also the type
2528 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2529 * expiration time
2530 */
2531 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2532 count = st->count;
2533
2534 /*
2535 * check workload expiration, and that we still have other queues ready
2536 */
2537 if (count && !time_after(jiffies, cfqd->workload_expires))
2538 return;
2539
2540 new_workload:
2541 /* otherwise select new workload type */
2542 cfqd->serving_type =
2543 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2544 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2545 count = st->count;
2546
2547 /*
2548 * the workload slice is computed as a fraction of target latency
2549 * proportional to the number of queues in that workload, over
2550 * all the queues in the same priority class
2551 */
2552 group_slice = cfq_group_slice(cfqd, cfqg);
2553
2554 slice = group_slice * count /
2555 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2556 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2557
2558 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2559 unsigned int tmp;
2560
2561 /*
2562 * Async queues are currently system wide. Just taking
2563 * proportion of queues with-in same group will lead to higher
2564 * async ratio system wide as generally root group is going
2565 * to have higher weight. A more accurate thing would be to
2566 * calculate system wide asnc/sync ratio.
2567 */
2568 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2569 tmp = tmp/cfqd->busy_queues;
2570 slice = min_t(unsigned, slice, tmp);
2571
2572 /* async workload slice is scaled down according to
2573 * the sync/async slice ratio. */
2574 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2575 } else
2576 /* sync workload slice is at least 2 * cfq_slice_idle */
2577 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2578
2579 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2580 cfq_log(cfqd, "workload slice:%d", slice);
2581 cfqd->workload_expires = jiffies + slice;
2582 }
2583
2584 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2585 {
2586 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2587 struct cfq_group *cfqg;
2588
2589 if (RB_EMPTY_ROOT(&st->rb))
2590 return NULL;
2591 cfqg = cfq_rb_first_group(st);
2592 update_min_vdisktime(st);
2593 return cfqg;
2594 }
2595
2596 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2597 {
2598 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2599
2600 cfqd->serving_group = cfqg;
2601
2602 /* Restore the workload type data */
2603 if (cfqg->saved_workload_slice) {
2604 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2605 cfqd->serving_type = cfqg->saved_workload;
2606 cfqd->serving_prio = cfqg->saved_serving_prio;
2607 } else
2608 cfqd->workload_expires = jiffies - 1;
2609
2610 choose_service_tree(cfqd, cfqg);
2611 }
2612
2613 /*
2614 * Select a queue for service. If we have a current active queue,
2615 * check whether to continue servicing it, or retrieve and set a new one.
2616 */
2617 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2618 {
2619 struct cfq_queue *cfqq, *new_cfqq = NULL;
2620
2621 cfqq = cfqd->active_queue;
2622 if (!cfqq)
2623 goto new_queue;
2624
2625 if (!cfqd->rq_queued)
2626 return NULL;
2627
2628 /*
2629 * We were waiting for group to get backlogged. Expire the queue
2630 */
2631 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2632 goto expire;
2633
2634 /*
2635 * The active queue has run out of time, expire it and select new.
2636 */
2637 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2638 /*
2639 * If slice had not expired at the completion of last request
2640 * we might not have turned on wait_busy flag. Don't expire
2641 * the queue yet. Allow the group to get backlogged.
2642 *
2643 * The very fact that we have used the slice, that means we
2644 * have been idling all along on this queue and it should be
2645 * ok to wait for this request to complete.
2646 */
2647 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2648 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2649 cfqq = NULL;
2650 goto keep_queue;
2651 } else
2652 goto check_group_idle;
2653 }
2654
2655 /*
2656 * The active queue has requests and isn't expired, allow it to
2657 * dispatch.
2658 */
2659 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2660 goto keep_queue;
2661
2662 /*
2663 * If another queue has a request waiting within our mean seek
2664 * distance, let it run. The expire code will check for close
2665 * cooperators and put the close queue at the front of the service
2666 * tree. If possible, merge the expiring queue with the new cfqq.
2667 */
2668 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2669 if (new_cfqq) {
2670 if (!cfqq->new_cfqq)
2671 cfq_setup_merge(cfqq, new_cfqq);
2672 goto expire;
2673 }
2674
2675 /*
2676 * No requests pending. If the active queue still has requests in
2677 * flight or is idling for a new request, allow either of these
2678 * conditions to happen (or time out) before selecting a new queue.
2679 */
2680 if (timer_pending(&cfqd->idle_slice_timer)) {
2681 cfqq = NULL;
2682 goto keep_queue;
2683 }
2684
2685 /*
2686 * This is a deep seek queue, but the device is much faster than
2687 * the queue can deliver, don't idle
2688 **/
2689 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2690 (cfq_cfqq_slice_new(cfqq) ||
2691 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2692 cfq_clear_cfqq_deep(cfqq);
2693 cfq_clear_cfqq_idle_window(cfqq);
2694 }
2695
2696 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2697 cfqq = NULL;
2698 goto keep_queue;
2699 }
2700
2701 /*
2702 * If group idle is enabled and there are requests dispatched from
2703 * this group, wait for requests to complete.
2704 */
2705 check_group_idle:
2706 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
2707 cfqq->cfqg->dispatched &&
2708 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
2709 cfqq = NULL;
2710 goto keep_queue;
2711 }
2712
2713 expire:
2714 cfq_slice_expired(cfqd, 0);
2715 new_queue:
2716 /*
2717 * Current queue expired. Check if we have to switch to a new
2718 * service tree
2719 */
2720 if (!new_cfqq)
2721 cfq_choose_cfqg(cfqd);
2722
2723 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2724 keep_queue:
2725 return cfqq;
2726 }
2727
2728 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2729 {
2730 int dispatched = 0;
2731
2732 while (cfqq->next_rq) {
2733 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2734 dispatched++;
2735 }
2736
2737 BUG_ON(!list_empty(&cfqq->fifo));
2738
2739 /* By default cfqq is not expired if it is empty. Do it explicitly */
2740 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2741 return dispatched;
2742 }
2743
2744 /*
2745 * Drain our current requests. Used for barriers and when switching
2746 * io schedulers on-the-fly.
2747 */
2748 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2749 {
2750 struct cfq_queue *cfqq;
2751 int dispatched = 0;
2752
2753 /* Expire the timeslice of the current active queue first */
2754 cfq_slice_expired(cfqd, 0);
2755 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2756 __cfq_set_active_queue(cfqd, cfqq);
2757 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2758 }
2759
2760 BUG_ON(cfqd->busy_queues);
2761
2762 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2763 return dispatched;
2764 }
2765
2766 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2767 struct cfq_queue *cfqq)
2768 {
2769 /* the queue hasn't finished any request, can't estimate */
2770 if (cfq_cfqq_slice_new(cfqq))
2771 return true;
2772 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2773 cfqq->slice_end))
2774 return true;
2775
2776 return false;
2777 }
2778
2779 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2780 {
2781 unsigned int max_dispatch;
2782
2783 /*
2784 * Drain async requests before we start sync IO
2785 */
2786 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2787 return false;
2788
2789 /*
2790 * If this is an async queue and we have sync IO in flight, let it wait
2791 */
2792 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2793 return false;
2794
2795 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2796 if (cfq_class_idle(cfqq))
2797 max_dispatch = 1;
2798
2799 /*
2800 * Does this cfqq already have too much IO in flight?
2801 */
2802 if (cfqq->dispatched >= max_dispatch) {
2803 bool promote_sync = false;
2804 /*
2805 * idle queue must always only have a single IO in flight
2806 */
2807 if (cfq_class_idle(cfqq))
2808 return false;
2809
2810 /*
2811 * If there is only one sync queue
2812 * we can ignore async queue here and give the sync
2813 * queue no dispatch limit. The reason is a sync queue can
2814 * preempt async queue, limiting the sync queue doesn't make
2815 * sense. This is useful for aiostress test.
2816 */
2817 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2818 promote_sync = true;
2819
2820 /*
2821 * We have other queues, don't allow more IO from this one
2822 */
2823 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2824 !promote_sync)
2825 return false;
2826
2827 /*
2828 * Sole queue user, no limit
2829 */
2830 if (cfqd->busy_queues == 1 || promote_sync)
2831 max_dispatch = -1;
2832 else
2833 /*
2834 * Normally we start throttling cfqq when cfq_quantum/2
2835 * requests have been dispatched. But we can drive
2836 * deeper queue depths at the beginning of slice
2837 * subjected to upper limit of cfq_quantum.
2838 * */
2839 max_dispatch = cfqd->cfq_quantum;
2840 }
2841
2842 /*
2843 * Async queues must wait a bit before being allowed dispatch.
2844 * We also ramp up the dispatch depth gradually for async IO,
2845 * based on the last sync IO we serviced
2846 */
2847 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2848 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2849 unsigned int depth;
2850
2851 depth = last_sync / cfqd->cfq_slice[1];
2852 if (!depth && !cfqq->dispatched)
2853 depth = 1;
2854 if (depth < max_dispatch)
2855 max_dispatch = depth;
2856 }
2857
2858 /*
2859 * If we're below the current max, allow a dispatch
2860 */
2861 return cfqq->dispatched < max_dispatch;
2862 }
2863
2864 /*
2865 * Dispatch a request from cfqq, moving them to the request queue
2866 * dispatch list.
2867 */
2868 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2869 {
2870 struct request *rq;
2871
2872 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2873
2874 if (!cfq_may_dispatch(cfqd, cfqq))
2875 return false;
2876
2877 /*
2878 * follow expired path, else get first next available
2879 */
2880 rq = cfq_check_fifo(cfqq);
2881 if (!rq)
2882 rq = cfqq->next_rq;
2883
2884 /*
2885 * insert request into driver dispatch list
2886 */
2887 cfq_dispatch_insert(cfqd->queue, rq);
2888
2889 if (!cfqd->active_cic) {
2890 struct cfq_io_cq *cic = RQ_CIC(rq);
2891
2892 atomic_long_inc(&cic->icq.ioc->refcount);
2893 cfqd->active_cic = cic;
2894 }
2895
2896 return true;
2897 }
2898
2899 /*
2900 * Find the cfqq that we need to service and move a request from that to the
2901 * dispatch list
2902 */
2903 static int cfq_dispatch_requests(struct request_queue *q, int force)
2904 {
2905 struct cfq_data *cfqd = q->elevator->elevator_data;
2906 struct cfq_queue *cfqq;
2907
2908 if (!cfqd->busy_queues)
2909 return 0;
2910
2911 if (unlikely(force))
2912 return cfq_forced_dispatch(cfqd);
2913
2914 cfqq = cfq_select_queue(cfqd);
2915 if (!cfqq)
2916 return 0;
2917
2918 /*
2919 * Dispatch a request from this cfqq, if it is allowed
2920 */
2921 if (!cfq_dispatch_request(cfqd, cfqq))
2922 return 0;
2923
2924 cfqq->slice_dispatch++;
2925 cfq_clear_cfqq_must_dispatch(cfqq);
2926
2927 /*
2928 * expire an async queue immediately if it has used up its slice. idle
2929 * queue always expire after 1 dispatch round.
2930 */
2931 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2932 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2933 cfq_class_idle(cfqq))) {
2934 cfqq->slice_end = jiffies + 1;
2935 cfq_slice_expired(cfqd, 0);
2936 }
2937
2938 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2939 return 1;
2940 }
2941
2942 /*
2943 * task holds one reference to the queue, dropped when task exits. each rq
2944 * in-flight on this queue also holds a reference, dropped when rq is freed.
2945 *
2946 * Each cfq queue took a reference on the parent group. Drop it now.
2947 * queue lock must be held here.
2948 */
2949 static void cfq_put_queue(struct cfq_queue *cfqq)
2950 {
2951 struct cfq_data *cfqd = cfqq->cfqd;
2952 struct cfq_group *cfqg;
2953
2954 BUG_ON(cfqq->ref <= 0);
2955
2956 cfqq->ref--;
2957 if (cfqq->ref)
2958 return;
2959
2960 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2961 BUG_ON(rb_first(&cfqq->sort_list));
2962 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2963 cfqg = cfqq->cfqg;
2964
2965 if (unlikely(cfqd->active_queue == cfqq)) {
2966 __cfq_slice_expired(cfqd, cfqq, 0);
2967 cfq_schedule_dispatch(cfqd);
2968 }
2969
2970 BUG_ON(cfq_cfqq_on_rr(cfqq));
2971 kmem_cache_free(cfq_pool, cfqq);
2972 cfqg_put(cfqg);
2973 }
2974
2975 static void cfq_put_cooperator(struct cfq_queue *cfqq)
2976 {
2977 struct cfq_queue *__cfqq, *next;
2978
2979 /*
2980 * If this queue was scheduled to merge with another queue, be
2981 * sure to drop the reference taken on that queue (and others in
2982 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2983 */
2984 __cfqq = cfqq->new_cfqq;
2985 while (__cfqq) {
2986 if (__cfqq == cfqq) {
2987 WARN(1, "cfqq->new_cfqq loop detected\n");
2988 break;
2989 }
2990 next = __cfqq->new_cfqq;
2991 cfq_put_queue(__cfqq);
2992 __cfqq = next;
2993 }
2994 }
2995
2996 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2997 {
2998 if (unlikely(cfqq == cfqd->active_queue)) {
2999 __cfq_slice_expired(cfqd, cfqq, 0);
3000 cfq_schedule_dispatch(cfqd);
3001 }
3002
3003 cfq_put_cooperator(cfqq);
3004
3005 cfq_put_queue(cfqq);
3006 }
3007
3008 static void cfq_init_icq(struct io_cq *icq)
3009 {
3010 struct cfq_io_cq *cic = icq_to_cic(icq);
3011
3012 cic->ttime.last_end_request = jiffies;
3013 }
3014
3015 static void cfq_exit_icq(struct io_cq *icq)
3016 {
3017 struct cfq_io_cq *cic = icq_to_cic(icq);
3018 struct cfq_data *cfqd = cic_to_cfqd(cic);
3019
3020 if (cic->cfqq[BLK_RW_ASYNC]) {
3021 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
3022 cic->cfqq[BLK_RW_ASYNC] = NULL;
3023 }
3024
3025 if (cic->cfqq[BLK_RW_SYNC]) {
3026 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
3027 cic->cfqq[BLK_RW_SYNC] = NULL;
3028 }
3029 }
3030
3031 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3032 {
3033 struct task_struct *tsk = current;
3034 int ioprio_class;
3035
3036 if (!cfq_cfqq_prio_changed(cfqq))
3037 return;
3038
3039 ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3040 switch (ioprio_class) {
3041 default:
3042 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3043 case IOPRIO_CLASS_NONE:
3044 /*
3045 * no prio set, inherit CPU scheduling settings
3046 */
3047 cfqq->ioprio = task_nice_ioprio(tsk);
3048 cfqq->ioprio_class = task_nice_ioclass(tsk);
3049 break;
3050 case IOPRIO_CLASS_RT:
3051 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3052 cfqq->ioprio_class = IOPRIO_CLASS_RT;
3053 break;
3054 case IOPRIO_CLASS_BE:
3055 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3056 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3057 break;
3058 case IOPRIO_CLASS_IDLE:
3059 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3060 cfqq->ioprio = 7;
3061 cfq_clear_cfqq_idle_window(cfqq);
3062 break;
3063 }
3064
3065 /*
3066 * keep track of original prio settings in case we have to temporarily
3067 * elevate the priority of this queue
3068 */
3069 cfqq->org_ioprio = cfqq->ioprio;
3070 cfq_clear_cfqq_prio_changed(cfqq);
3071 }
3072
3073 static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3074 {
3075 int ioprio = cic->icq.ioc->ioprio;
3076 struct cfq_data *cfqd = cic_to_cfqd(cic);
3077 struct cfq_queue *cfqq;
3078
3079 /*
3080 * Check whether ioprio has changed. The condition may trigger
3081 * spuriously on a newly created cic but there's no harm.
3082 */
3083 if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3084 return;
3085
3086 cfqq = cic->cfqq[BLK_RW_ASYNC];
3087 if (cfqq) {
3088 struct cfq_queue *new_cfqq;
3089 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio,
3090 GFP_ATOMIC);
3091 if (new_cfqq) {
3092 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
3093 cfq_put_queue(cfqq);
3094 }
3095 }
3096
3097 cfqq = cic->cfqq[BLK_RW_SYNC];
3098 if (cfqq)
3099 cfq_mark_cfqq_prio_changed(cfqq);
3100
3101 cic->ioprio = ioprio;
3102 }
3103
3104 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3105 pid_t pid, bool is_sync)
3106 {
3107 RB_CLEAR_NODE(&cfqq->rb_node);
3108 RB_CLEAR_NODE(&cfqq->p_node);
3109 INIT_LIST_HEAD(&cfqq->fifo);
3110
3111 cfqq->ref = 0;
3112 cfqq->cfqd = cfqd;
3113
3114 cfq_mark_cfqq_prio_changed(cfqq);
3115
3116 if (is_sync) {
3117 if (!cfq_class_idle(cfqq))
3118 cfq_mark_cfqq_idle_window(cfqq);
3119 cfq_mark_cfqq_sync(cfqq);
3120 }
3121 cfqq->pid = pid;
3122 }
3123
3124 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3125 static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3126 {
3127 struct cfq_data *cfqd = cic_to_cfqd(cic);
3128 struct cfq_queue *sync_cfqq;
3129 uint64_t id;
3130
3131 rcu_read_lock();
3132 id = bio_blkio_cgroup(bio)->id;
3133 rcu_read_unlock();
3134
3135 /*
3136 * Check whether blkcg has changed. The condition may trigger
3137 * spuriously on a newly created cic but there's no harm.
3138 */
3139 if (unlikely(!cfqd) || likely(cic->blkcg_id == id))
3140 return;
3141
3142 sync_cfqq = cic_to_cfqq(cic, 1);
3143 if (sync_cfqq) {
3144 /*
3145 * Drop reference to sync queue. A new sync queue will be
3146 * assigned in new group upon arrival of a fresh request.
3147 */
3148 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
3149 cic_set_cfqq(cic, NULL, 1);
3150 cfq_put_queue(sync_cfqq);
3151 }
3152
3153 cic->blkcg_id = id;
3154 }
3155 #else
3156 static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
3157 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
3158
3159 static struct cfq_queue *
3160 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3161 struct bio *bio, gfp_t gfp_mask)
3162 {
3163 struct blkio_cgroup *blkcg;
3164 struct cfq_queue *cfqq, *new_cfqq = NULL;
3165 struct cfq_group *cfqg;
3166
3167 retry:
3168 rcu_read_lock();
3169
3170 blkcg = bio_blkio_cgroup(bio);
3171 cfqg = cfq_lookup_create_cfqg(cfqd, blkcg);
3172 cfqq = cic_to_cfqq(cic, is_sync);
3173
3174 /*
3175 * Always try a new alloc if we fell back to the OOM cfqq
3176 * originally, since it should just be a temporary situation.
3177 */
3178 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3179 cfqq = NULL;
3180 if (new_cfqq) {
3181 cfqq = new_cfqq;
3182 new_cfqq = NULL;
3183 } else if (gfp_mask & __GFP_WAIT) {
3184 rcu_read_unlock();
3185 spin_unlock_irq(cfqd->queue->queue_lock);
3186 new_cfqq = kmem_cache_alloc_node(cfq_pool,
3187 gfp_mask | __GFP_ZERO,
3188 cfqd->queue->node);
3189 spin_lock_irq(cfqd->queue->queue_lock);
3190 if (new_cfqq)
3191 goto retry;
3192 } else {
3193 cfqq = kmem_cache_alloc_node(cfq_pool,
3194 gfp_mask | __GFP_ZERO,
3195 cfqd->queue->node);
3196 }
3197
3198 if (cfqq) {
3199 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3200 cfq_init_prio_data(cfqq, cic);
3201 cfq_link_cfqq_cfqg(cfqq, cfqg);
3202 cfq_log_cfqq(cfqd, cfqq, "alloced");
3203 } else
3204 cfqq = &cfqd->oom_cfqq;
3205 }
3206
3207 if (new_cfqq)
3208 kmem_cache_free(cfq_pool, new_cfqq);
3209
3210 rcu_read_unlock();
3211 return cfqq;
3212 }
3213
3214 static struct cfq_queue **
3215 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3216 {
3217 switch (ioprio_class) {
3218 case IOPRIO_CLASS_RT:
3219 return &cfqd->async_cfqq[0][ioprio];
3220 case IOPRIO_CLASS_NONE:
3221 ioprio = IOPRIO_NORM;
3222 /* fall through */
3223 case IOPRIO_CLASS_BE:
3224 return &cfqd->async_cfqq[1][ioprio];
3225 case IOPRIO_CLASS_IDLE:
3226 return &cfqd->async_idle_cfqq;
3227 default:
3228 BUG();
3229 }
3230 }
3231
3232 static struct cfq_queue *
3233 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3234 struct bio *bio, gfp_t gfp_mask)
3235 {
3236 const int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3237 const int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3238 struct cfq_queue **async_cfqq = NULL;
3239 struct cfq_queue *cfqq = NULL;
3240
3241 if (!is_sync) {
3242 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3243 cfqq = *async_cfqq;
3244 }
3245
3246 if (!cfqq)
3247 cfqq = cfq_find_alloc_queue(cfqd, is_sync, cic, bio, gfp_mask);
3248
3249 /*
3250 * pin the queue now that it's allocated, scheduler exit will prune it
3251 */
3252 if (!is_sync && !(*async_cfqq)) {
3253 cfqq->ref++;
3254 *async_cfqq = cfqq;
3255 }
3256
3257 cfqq->ref++;
3258 return cfqq;
3259 }
3260
3261 static void
3262 __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3263 {
3264 unsigned long elapsed = jiffies - ttime->last_end_request;
3265 elapsed = min(elapsed, 2UL * slice_idle);
3266
3267 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3268 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3269 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3270 }
3271
3272 static void
3273 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3274 struct cfq_io_cq *cic)
3275 {
3276 if (cfq_cfqq_sync(cfqq)) {
3277 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3278 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3279 cfqd->cfq_slice_idle);
3280 }
3281 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3282 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3283 #endif
3284 }
3285
3286 static void
3287 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3288 struct request *rq)
3289 {
3290 sector_t sdist = 0;
3291 sector_t n_sec = blk_rq_sectors(rq);
3292 if (cfqq->last_request_pos) {
3293 if (cfqq->last_request_pos < blk_rq_pos(rq))
3294 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3295 else
3296 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3297 }
3298
3299 cfqq->seek_history <<= 1;
3300 if (blk_queue_nonrot(cfqd->queue))
3301 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3302 else
3303 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3304 }
3305
3306 /*
3307 * Disable idle window if the process thinks too long or seeks so much that
3308 * it doesn't matter
3309 */
3310 static void
3311 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3312 struct cfq_io_cq *cic)
3313 {
3314 int old_idle, enable_idle;
3315
3316 /*
3317 * Don't idle for async or idle io prio class
3318 */
3319 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3320 return;
3321
3322 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3323
3324 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3325 cfq_mark_cfqq_deep(cfqq);
3326
3327 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3328 enable_idle = 0;
3329 else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3330 !cfqd->cfq_slice_idle ||
3331 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3332 enable_idle = 0;
3333 else if (sample_valid(cic->ttime.ttime_samples)) {
3334 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3335 enable_idle = 0;
3336 else
3337 enable_idle = 1;
3338 }
3339
3340 if (old_idle != enable_idle) {
3341 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3342 if (enable_idle)
3343 cfq_mark_cfqq_idle_window(cfqq);
3344 else
3345 cfq_clear_cfqq_idle_window(cfqq);
3346 }
3347 }
3348
3349 /*
3350 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3351 * no or if we aren't sure, a 1 will cause a preempt.
3352 */
3353 static bool
3354 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3355 struct request *rq)
3356 {
3357 struct cfq_queue *cfqq;
3358
3359 cfqq = cfqd->active_queue;
3360 if (!cfqq)
3361 return false;
3362
3363 if (cfq_class_idle(new_cfqq))
3364 return false;
3365
3366 if (cfq_class_idle(cfqq))
3367 return true;
3368
3369 /*
3370 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3371 */
3372 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3373 return false;
3374
3375 /*
3376 * if the new request is sync, but the currently running queue is
3377 * not, let the sync request have priority.
3378 */
3379 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3380 return true;
3381
3382 if (new_cfqq->cfqg != cfqq->cfqg)
3383 return false;
3384
3385 if (cfq_slice_used(cfqq))
3386 return true;
3387
3388 /* Allow preemption only if we are idling on sync-noidle tree */
3389 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3390 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3391 new_cfqq->service_tree->count == 2 &&
3392 RB_EMPTY_ROOT(&cfqq->sort_list))
3393 return true;
3394
3395 /*
3396 * So both queues are sync. Let the new request get disk time if
3397 * it's a metadata request and the current queue is doing regular IO.
3398 */
3399 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3400 return true;
3401
3402 /*
3403 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3404 */
3405 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3406 return true;
3407
3408 /* An idle queue should not be idle now for some reason */
3409 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3410 return true;
3411
3412 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3413 return false;
3414
3415 /*
3416 * if this request is as-good as one we would expect from the
3417 * current cfqq, let it preempt
3418 */
3419 if (cfq_rq_close(cfqd, cfqq, rq))
3420 return true;
3421
3422 return false;
3423 }
3424
3425 /*
3426 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3427 * let it have half of its nominal slice.
3428 */
3429 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3430 {
3431 enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
3432
3433 cfq_log_cfqq(cfqd, cfqq, "preempt");
3434 cfq_slice_expired(cfqd, 1);
3435
3436 /*
3437 * workload type is changed, don't save slice, otherwise preempt
3438 * doesn't happen
3439 */
3440 if (old_type != cfqq_type(cfqq))
3441 cfqq->cfqg->saved_workload_slice = 0;
3442
3443 /*
3444 * Put the new queue at the front of the of the current list,
3445 * so we know that it will be selected next.
3446 */
3447 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3448
3449 cfq_service_tree_add(cfqd, cfqq, 1);
3450
3451 cfqq->slice_end = 0;
3452 cfq_mark_cfqq_slice_new(cfqq);
3453 }
3454
3455 /*
3456 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3457 * something we should do about it
3458 */
3459 static void
3460 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3461 struct request *rq)
3462 {
3463 struct cfq_io_cq *cic = RQ_CIC(rq);
3464
3465 cfqd->rq_queued++;
3466 if (rq->cmd_flags & REQ_PRIO)
3467 cfqq->prio_pending++;
3468
3469 cfq_update_io_thinktime(cfqd, cfqq, cic);
3470 cfq_update_io_seektime(cfqd, cfqq, rq);
3471 cfq_update_idle_window(cfqd, cfqq, cic);
3472
3473 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3474
3475 if (cfqq == cfqd->active_queue) {
3476 /*
3477 * Remember that we saw a request from this process, but
3478 * don't start queuing just yet. Otherwise we risk seeing lots
3479 * of tiny requests, because we disrupt the normal plugging
3480 * and merging. If the request is already larger than a single
3481 * page, let it rip immediately. For that case we assume that
3482 * merging is already done. Ditto for a busy system that
3483 * has other work pending, don't risk delaying until the
3484 * idle timer unplug to continue working.
3485 */
3486 if (cfq_cfqq_wait_request(cfqq)) {
3487 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3488 cfqd->busy_queues > 1) {
3489 cfq_del_timer(cfqd, cfqq);
3490 cfq_clear_cfqq_wait_request(cfqq);
3491 __blk_run_queue(cfqd->queue);
3492 } else {
3493 cfqg_stats_update_idle_time(cfqq->cfqg);
3494 cfq_mark_cfqq_must_dispatch(cfqq);
3495 }
3496 }
3497 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3498 /*
3499 * not the active queue - expire current slice if it is
3500 * idle and has expired it's mean thinktime or this new queue
3501 * has some old slice time left and is of higher priority or
3502 * this new queue is RT and the current one is BE
3503 */
3504 cfq_preempt_queue(cfqd, cfqq);
3505 __blk_run_queue(cfqd->queue);
3506 }
3507 }
3508
3509 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3510 {
3511 struct cfq_data *cfqd = q->elevator->elevator_data;
3512 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3513
3514 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3515 cfq_init_prio_data(cfqq, RQ_CIC(rq));
3516
3517 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3518 list_add_tail(&rq->queuelist, &cfqq->fifo);
3519 cfq_add_rq_rb(rq);
3520 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
3521 rq->cmd_flags);
3522 cfq_rq_enqueued(cfqd, cfqq, rq);
3523 }
3524
3525 /*
3526 * Update hw_tag based on peak queue depth over 50 samples under
3527 * sufficient load.
3528 */
3529 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3530 {
3531 struct cfq_queue *cfqq = cfqd->active_queue;
3532
3533 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3534 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3535
3536 if (cfqd->hw_tag == 1)
3537 return;
3538
3539 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3540 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3541 return;
3542
3543 /*
3544 * If active queue hasn't enough requests and can idle, cfq might not
3545 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3546 * case
3547 */
3548 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3549 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3550 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3551 return;
3552
3553 if (cfqd->hw_tag_samples++ < 50)
3554 return;
3555
3556 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3557 cfqd->hw_tag = 1;
3558 else
3559 cfqd->hw_tag = 0;
3560 }
3561
3562 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3563 {
3564 struct cfq_io_cq *cic = cfqd->active_cic;
3565
3566 /* If the queue already has requests, don't wait */
3567 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3568 return false;
3569
3570 /* If there are other queues in the group, don't wait */
3571 if (cfqq->cfqg->nr_cfqq > 1)
3572 return false;
3573
3574 /* the only queue in the group, but think time is big */
3575 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3576 return false;
3577
3578 if (cfq_slice_used(cfqq))
3579 return true;
3580
3581 /* if slice left is less than think time, wait busy */
3582 if (cic && sample_valid(cic->ttime.ttime_samples)
3583 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3584 return true;
3585
3586 /*
3587 * If think times is less than a jiffy than ttime_mean=0 and above
3588 * will not be true. It might happen that slice has not expired yet
3589 * but will expire soon (4-5 ns) during select_queue(). To cover the
3590 * case where think time is less than a jiffy, mark the queue wait
3591 * busy if only 1 jiffy is left in the slice.
3592 */
3593 if (cfqq->slice_end - jiffies == 1)
3594 return true;
3595
3596 return false;
3597 }
3598
3599 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3600 {
3601 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3602 struct cfq_data *cfqd = cfqq->cfqd;
3603 const int sync = rq_is_sync(rq);
3604 unsigned long now;
3605
3606 now = jiffies;
3607 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3608 !!(rq->cmd_flags & REQ_NOIDLE));
3609
3610 cfq_update_hw_tag(cfqd);
3611
3612 WARN_ON(!cfqd->rq_in_driver);
3613 WARN_ON(!cfqq->dispatched);
3614 cfqd->rq_in_driver--;
3615 cfqq->dispatched--;
3616 (RQ_CFQG(rq))->dispatched--;
3617 cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
3618 rq_io_start_time_ns(rq), rq->cmd_flags);
3619
3620 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3621
3622 if (sync) {
3623 struct cfq_rb_root *service_tree;
3624
3625 RQ_CIC(rq)->ttime.last_end_request = now;
3626
3627 if (cfq_cfqq_on_rr(cfqq))
3628 service_tree = cfqq->service_tree;
3629 else
3630 service_tree = service_tree_for(cfqq->cfqg,
3631 cfqq_prio(cfqq), cfqq_type(cfqq));
3632 service_tree->ttime.last_end_request = now;
3633 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3634 cfqd->last_delayed_sync = now;
3635 }
3636
3637 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3638 cfqq->cfqg->ttime.last_end_request = now;
3639 #endif
3640
3641 /*
3642 * If this is the active queue, check if it needs to be expired,
3643 * or if we want to idle in case it has no pending requests.
3644 */
3645 if (cfqd->active_queue == cfqq) {
3646 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3647
3648 if (cfq_cfqq_slice_new(cfqq)) {
3649 cfq_set_prio_slice(cfqd, cfqq);
3650 cfq_clear_cfqq_slice_new(cfqq);
3651 }
3652
3653 /*
3654 * Should we wait for next request to come in before we expire
3655 * the queue.
3656 */
3657 if (cfq_should_wait_busy(cfqd, cfqq)) {
3658 unsigned long extend_sl = cfqd->cfq_slice_idle;
3659 if (!cfqd->cfq_slice_idle)
3660 extend_sl = cfqd->cfq_group_idle;
3661 cfqq->slice_end = jiffies + extend_sl;
3662 cfq_mark_cfqq_wait_busy(cfqq);
3663 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3664 }
3665
3666 /*
3667 * Idling is not enabled on:
3668 * - expired queues
3669 * - idle-priority queues
3670 * - async queues
3671 * - queues with still some requests queued
3672 * - when there is a close cooperator
3673 */
3674 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3675 cfq_slice_expired(cfqd, 1);
3676 else if (sync && cfqq_empty &&
3677 !cfq_close_cooperator(cfqd, cfqq)) {
3678 cfq_arm_slice_timer(cfqd);
3679 }
3680 }
3681
3682 if (!cfqd->rq_in_driver)
3683 cfq_schedule_dispatch(cfqd);
3684 }
3685
3686 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3687 {
3688 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3689 cfq_mark_cfqq_must_alloc_slice(cfqq);
3690 return ELV_MQUEUE_MUST;
3691 }
3692
3693 return ELV_MQUEUE_MAY;
3694 }
3695
3696 static int cfq_may_queue(struct request_queue *q, int rw)
3697 {
3698 struct cfq_data *cfqd = q->elevator->elevator_data;
3699 struct task_struct *tsk = current;
3700 struct cfq_io_cq *cic;
3701 struct cfq_queue *cfqq;
3702
3703 /*
3704 * don't force setup of a queue from here, as a call to may_queue
3705 * does not necessarily imply that a request actually will be queued.
3706 * so just lookup a possibly existing queue, or return 'may queue'
3707 * if that fails
3708 */
3709 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3710 if (!cic)
3711 return ELV_MQUEUE_MAY;
3712
3713 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3714 if (cfqq) {
3715 cfq_init_prio_data(cfqq, cic);
3716
3717 return __cfq_may_queue(cfqq);
3718 }
3719
3720 return ELV_MQUEUE_MAY;
3721 }
3722
3723 /*
3724 * queue lock held here
3725 */
3726 static void cfq_put_request(struct request *rq)
3727 {
3728 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3729
3730 if (cfqq) {
3731 const int rw = rq_data_dir(rq);
3732
3733 BUG_ON(!cfqq->allocated[rw]);
3734 cfqq->allocated[rw]--;
3735
3736 /* Put down rq reference on cfqg */
3737 cfqg_put(RQ_CFQG(rq));
3738 rq->elv.priv[0] = NULL;
3739 rq->elv.priv[1] = NULL;
3740
3741 cfq_put_queue(cfqq);
3742 }
3743 }
3744
3745 static struct cfq_queue *
3746 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
3747 struct cfq_queue *cfqq)
3748 {
3749 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3750 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3751 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3752 cfq_put_queue(cfqq);
3753 return cic_to_cfqq(cic, 1);
3754 }
3755
3756 /*
3757 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3758 * was the last process referring to said cfqq.
3759 */
3760 static struct cfq_queue *
3761 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
3762 {
3763 if (cfqq_process_refs(cfqq) == 1) {
3764 cfqq->pid = current->pid;
3765 cfq_clear_cfqq_coop(cfqq);
3766 cfq_clear_cfqq_split_coop(cfqq);
3767 return cfqq;
3768 }
3769
3770 cic_set_cfqq(cic, NULL, 1);
3771
3772 cfq_put_cooperator(cfqq);
3773
3774 cfq_put_queue(cfqq);
3775 return NULL;
3776 }
3777 /*
3778 * Allocate cfq data structures associated with this request.
3779 */
3780 static int
3781 cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
3782 gfp_t gfp_mask)
3783 {
3784 struct cfq_data *cfqd = q->elevator->elevator_data;
3785 struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
3786 const int rw = rq_data_dir(rq);
3787 const bool is_sync = rq_is_sync(rq);
3788 struct cfq_queue *cfqq;
3789
3790 might_sleep_if(gfp_mask & __GFP_WAIT);
3791
3792 spin_lock_irq(q->queue_lock);
3793
3794 check_ioprio_changed(cic, bio);
3795 check_blkcg_changed(cic, bio);
3796 new_queue:
3797 cfqq = cic_to_cfqq(cic, is_sync);
3798 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3799 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio, gfp_mask);
3800 cic_set_cfqq(cic, cfqq, is_sync);
3801 } else {
3802 /*
3803 * If the queue was seeky for too long, break it apart.
3804 */
3805 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3806 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3807 cfqq = split_cfqq(cic, cfqq);
3808 if (!cfqq)
3809 goto new_queue;
3810 }
3811
3812 /*
3813 * Check to see if this queue is scheduled to merge with
3814 * another, closely cooperating queue. The merging of
3815 * queues happens here as it must be done in process context.
3816 * The reference on new_cfqq was taken in merge_cfqqs.
3817 */
3818 if (cfqq->new_cfqq)
3819 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3820 }
3821
3822 cfqq->allocated[rw]++;
3823
3824 cfqq->ref++;
3825 cfqg_get(cfqq->cfqg);
3826 rq->elv.priv[0] = cfqq;
3827 rq->elv.priv[1] = cfqq->cfqg;
3828 spin_unlock_irq(q->queue_lock);
3829 return 0;
3830 }
3831
3832 static void cfq_kick_queue(struct work_struct *work)
3833 {
3834 struct cfq_data *cfqd =
3835 container_of(work, struct cfq_data, unplug_work);
3836 struct request_queue *q = cfqd->queue;
3837
3838 spin_lock_irq(q->queue_lock);
3839 __blk_run_queue(cfqd->queue);
3840 spin_unlock_irq(q->queue_lock);
3841 }
3842
3843 /*
3844 * Timer running if the active_queue is currently idling inside its time slice
3845 */
3846 static void cfq_idle_slice_timer(unsigned long data)
3847 {
3848 struct cfq_data *cfqd = (struct cfq_data *) data;
3849 struct cfq_queue *cfqq;
3850 unsigned long flags;
3851 int timed_out = 1;
3852
3853 cfq_log(cfqd, "idle timer fired");
3854
3855 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3856
3857 cfqq = cfqd->active_queue;
3858 if (cfqq) {
3859 timed_out = 0;
3860
3861 /*
3862 * We saw a request before the queue expired, let it through
3863 */
3864 if (cfq_cfqq_must_dispatch(cfqq))
3865 goto out_kick;
3866
3867 /*
3868 * expired
3869 */
3870 if (cfq_slice_used(cfqq))
3871 goto expire;
3872
3873 /*
3874 * only expire and reinvoke request handler, if there are
3875 * other queues with pending requests
3876 */
3877 if (!cfqd->busy_queues)
3878 goto out_cont;
3879
3880 /*
3881 * not expired and it has a request pending, let it dispatch
3882 */
3883 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3884 goto out_kick;
3885
3886 /*
3887 * Queue depth flag is reset only when the idle didn't succeed
3888 */
3889 cfq_clear_cfqq_deep(cfqq);
3890 }
3891 expire:
3892 cfq_slice_expired(cfqd, timed_out);
3893 out_kick:
3894 cfq_schedule_dispatch(cfqd);
3895 out_cont:
3896 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3897 }
3898
3899 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3900 {
3901 del_timer_sync(&cfqd->idle_slice_timer);
3902 cancel_work_sync(&cfqd->unplug_work);
3903 }
3904
3905 static void cfq_put_async_queues(struct cfq_data *cfqd)
3906 {
3907 int i;
3908
3909 for (i = 0; i < IOPRIO_BE_NR; i++) {
3910 if (cfqd->async_cfqq[0][i])
3911 cfq_put_queue(cfqd->async_cfqq[0][i]);
3912 if (cfqd->async_cfqq[1][i])
3913 cfq_put_queue(cfqd->async_cfqq[1][i]);
3914 }
3915
3916 if (cfqd->async_idle_cfqq)
3917 cfq_put_queue(cfqd->async_idle_cfqq);
3918 }
3919
3920 static void cfq_exit_queue(struct elevator_queue *e)
3921 {
3922 struct cfq_data *cfqd = e->elevator_data;
3923 struct request_queue *q = cfqd->queue;
3924
3925 cfq_shutdown_timer_wq(cfqd);
3926
3927 spin_lock_irq(q->queue_lock);
3928
3929 if (cfqd->active_queue)
3930 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3931
3932 cfq_put_async_queues(cfqd);
3933
3934 spin_unlock_irq(q->queue_lock);
3935
3936 cfq_shutdown_timer_wq(cfqd);
3937
3938 #ifndef CONFIG_CFQ_GROUP_IOSCHED
3939 kfree(cfqd->root_group);
3940 #endif
3941 update_root_blkg_pd(q, &blkio_policy_cfq);
3942 kfree(cfqd);
3943 }
3944
3945 static int cfq_init_queue(struct request_queue *q)
3946 {
3947 struct cfq_data *cfqd;
3948 struct blkio_group *blkg __maybe_unused;
3949 int i;
3950
3951 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3952 if (!cfqd)
3953 return -ENOMEM;
3954
3955 cfqd->queue = q;
3956 q->elevator->elevator_data = cfqd;
3957
3958 /* Init root service tree */
3959 cfqd->grp_service_tree = CFQ_RB_ROOT;
3960
3961 /* Init root group and prefer root group over other groups by default */
3962 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3963 rcu_read_lock();
3964 spin_lock_irq(q->queue_lock);
3965
3966 blkg = blkg_lookup_create(&blkio_root_cgroup, q, true);
3967 if (!IS_ERR(blkg))
3968 cfqd->root_group = blkg_to_cfqg(blkg);
3969
3970 spin_unlock_irq(q->queue_lock);
3971 rcu_read_unlock();
3972 #else
3973 cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
3974 GFP_KERNEL, cfqd->queue->node);
3975 if (cfqd->root_group)
3976 cfq_init_cfqg_base(cfqd->root_group);
3977 #endif
3978 if (!cfqd->root_group) {
3979 kfree(cfqd);
3980 return -ENOMEM;
3981 }
3982
3983 cfqd->root_group->weight = 2 * CFQ_WEIGHT_DEFAULT;
3984
3985 /*
3986 * Not strictly needed (since RB_ROOT just clears the node and we
3987 * zeroed cfqd on alloc), but better be safe in case someone decides
3988 * to add magic to the rb code
3989 */
3990 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3991 cfqd->prio_trees[i] = RB_ROOT;
3992
3993 /*
3994 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3995 * Grab a permanent reference to it, so that the normal code flow
3996 * will not attempt to free it. oom_cfqq is linked to root_group
3997 * but shouldn't hold a reference as it'll never be unlinked. Lose
3998 * the reference from linking right away.
3999 */
4000 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4001 cfqd->oom_cfqq.ref++;
4002
4003 spin_lock_irq(q->queue_lock);
4004 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4005 cfqg_put(cfqd->root_group);
4006 spin_unlock_irq(q->queue_lock);
4007
4008 init_timer(&cfqd->idle_slice_timer);
4009 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4010 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4011
4012 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4013
4014 cfqd->cfq_quantum = cfq_quantum;
4015 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4016 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4017 cfqd->cfq_back_max = cfq_back_max;
4018 cfqd->cfq_back_penalty = cfq_back_penalty;
4019 cfqd->cfq_slice[0] = cfq_slice_async;
4020 cfqd->cfq_slice[1] = cfq_slice_sync;
4021 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4022 cfqd->cfq_slice_idle = cfq_slice_idle;
4023 cfqd->cfq_group_idle = cfq_group_idle;
4024 cfqd->cfq_latency = 1;
4025 cfqd->hw_tag = -1;
4026 /*
4027 * we optimistically start assuming sync ops weren't delayed in last
4028 * second, in order to have larger depth for async operations.
4029 */
4030 cfqd->last_delayed_sync = jiffies - HZ;
4031 return 0;
4032 }
4033
4034 /*
4035 * sysfs parts below -->
4036 */
4037 static ssize_t
4038 cfq_var_show(unsigned int var, char *page)
4039 {
4040 return sprintf(page, "%d\n", var);
4041 }
4042
4043 static ssize_t
4044 cfq_var_store(unsigned int *var, const char *page, size_t count)
4045 {
4046 char *p = (char *) page;
4047
4048 *var = simple_strtoul(p, &p, 10);
4049 return count;
4050 }
4051
4052 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4053 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4054 { \
4055 struct cfq_data *cfqd = e->elevator_data; \
4056 unsigned int __data = __VAR; \
4057 if (__CONV) \
4058 __data = jiffies_to_msecs(__data); \
4059 return cfq_var_show(__data, (page)); \
4060 }
4061 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4062 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4063 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4064 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4065 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4066 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4067 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4068 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4069 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4070 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4071 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4072 #undef SHOW_FUNCTION
4073
4074 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4075 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4076 { \
4077 struct cfq_data *cfqd = e->elevator_data; \
4078 unsigned int __data; \
4079 int ret = cfq_var_store(&__data, (page), count); \
4080 if (__data < (MIN)) \
4081 __data = (MIN); \
4082 else if (__data > (MAX)) \
4083 __data = (MAX); \
4084 if (__CONV) \
4085 *(__PTR) = msecs_to_jiffies(__data); \
4086 else \
4087 *(__PTR) = __data; \
4088 return ret; \
4089 }
4090 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4091 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4092 UINT_MAX, 1);
4093 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4094 UINT_MAX, 1);
4095 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4096 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4097 UINT_MAX, 0);
4098 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4099 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4100 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4101 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4102 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4103 UINT_MAX, 0);
4104 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4105 #undef STORE_FUNCTION
4106
4107 #define CFQ_ATTR(name) \
4108 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4109
4110 static struct elv_fs_entry cfq_attrs[] = {
4111 CFQ_ATTR(quantum),
4112 CFQ_ATTR(fifo_expire_sync),
4113 CFQ_ATTR(fifo_expire_async),
4114 CFQ_ATTR(back_seek_max),
4115 CFQ_ATTR(back_seek_penalty),
4116 CFQ_ATTR(slice_sync),
4117 CFQ_ATTR(slice_async),
4118 CFQ_ATTR(slice_async_rq),
4119 CFQ_ATTR(slice_idle),
4120 CFQ_ATTR(group_idle),
4121 CFQ_ATTR(low_latency),
4122 __ATTR_NULL
4123 };
4124
4125 static struct elevator_type iosched_cfq = {
4126 .ops = {
4127 .elevator_merge_fn = cfq_merge,
4128 .elevator_merged_fn = cfq_merged_request,
4129 .elevator_merge_req_fn = cfq_merged_requests,
4130 .elevator_allow_merge_fn = cfq_allow_merge,
4131 .elevator_bio_merged_fn = cfq_bio_merged,
4132 .elevator_dispatch_fn = cfq_dispatch_requests,
4133 .elevator_add_req_fn = cfq_insert_request,
4134 .elevator_activate_req_fn = cfq_activate_request,
4135 .elevator_deactivate_req_fn = cfq_deactivate_request,
4136 .elevator_completed_req_fn = cfq_completed_request,
4137 .elevator_former_req_fn = elv_rb_former_request,
4138 .elevator_latter_req_fn = elv_rb_latter_request,
4139 .elevator_init_icq_fn = cfq_init_icq,
4140 .elevator_exit_icq_fn = cfq_exit_icq,
4141 .elevator_set_req_fn = cfq_set_request,
4142 .elevator_put_req_fn = cfq_put_request,
4143 .elevator_may_queue_fn = cfq_may_queue,
4144 .elevator_init_fn = cfq_init_queue,
4145 .elevator_exit_fn = cfq_exit_queue,
4146 },
4147 .icq_size = sizeof(struct cfq_io_cq),
4148 .icq_align = __alignof__(struct cfq_io_cq),
4149 .elevator_attrs = cfq_attrs,
4150 .elevator_name = "cfq",
4151 .elevator_owner = THIS_MODULE,
4152 };
4153
4154 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4155 static struct blkio_policy_type blkio_policy_cfq = {
4156 .ops = {
4157 .blkio_init_group_fn = cfq_init_blkio_group,
4158 .blkio_reset_group_stats_fn = cfqg_stats_reset,
4159 },
4160 .pdata_size = sizeof(struct cfq_group),
4161 .cftypes = cfq_blkcg_files,
4162 };
4163 #endif
4164
4165 static int __init cfq_init(void)
4166 {
4167 int ret;
4168
4169 /*
4170 * could be 0 on HZ < 1000 setups
4171 */
4172 if (!cfq_slice_async)
4173 cfq_slice_async = 1;
4174 if (!cfq_slice_idle)
4175 cfq_slice_idle = 1;
4176
4177 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4178 if (!cfq_group_idle)
4179 cfq_group_idle = 1;
4180 #else
4181 cfq_group_idle = 0;
4182 #endif
4183
4184 ret = blkio_policy_register(&blkio_policy_cfq);
4185 if (ret)
4186 return ret;
4187
4188 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4189 if (!cfq_pool)
4190 goto err_pol_unreg;
4191
4192 ret = elv_register(&iosched_cfq);
4193 if (ret)
4194 goto err_free_pool;
4195
4196 return 0;
4197
4198 err_free_pool:
4199 kmem_cache_destroy(cfq_pool);
4200 err_pol_unreg:
4201 blkio_policy_unregister(&blkio_policy_cfq);
4202 return ret;
4203 }
4204
4205 static void __exit cfq_exit(void)
4206 {
4207 blkio_policy_unregister(&blkio_policy_cfq);
4208 elv_unregister(&iosched_cfq);
4209 kmem_cache_destroy(cfq_pool);
4210 }
4211
4212 module_init(cfq_init);
4213 module_exit(cfq_exit);
4214
4215 MODULE_AUTHOR("Jens Axboe");
4216 MODULE_LICENSE("GPL");
4217 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
This page took 0.124349 seconds and 5 git commands to generate.