cfq-iosched: rework the whole round-robin list concept
[deliverable/linux.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/hash.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15
16 /*
17 * tunables
18 */
19 static const int cfq_quantum = 4; /* max queue in one round of service */
20 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
21 static const int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */
22 static const int cfq_back_penalty = 2; /* penalty of a backwards seek */
23
24 static const int cfq_slice_sync = HZ / 10;
25 static int cfq_slice_async = HZ / 25;
26 static const int cfq_slice_async_rq = 2;
27 static int cfq_slice_idle = HZ / 125;
28
29 /*
30 * grace period before allowing idle class to get disk access
31 */
32 #define CFQ_IDLE_GRACE (HZ / 10)
33
34 /*
35 * below this threshold, we consider thinktime immediate
36 */
37 #define CFQ_MIN_TT (2)
38
39 #define CFQ_SLICE_SCALE (5)
40
41 #define CFQ_KEY_ASYNC (0)
42
43 /*
44 * for the hash of cfqq inside the cfqd
45 */
46 #define CFQ_QHASH_SHIFT 6
47 #define CFQ_QHASH_ENTRIES (1 << CFQ_QHASH_SHIFT)
48 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
49
50 #define list_entry_cfqq(ptr) list_entry((ptr), struct cfq_queue, cfq_list)
51
52 #define RQ_CIC(rq) ((struct cfq_io_context*)(rq)->elevator_private)
53 #define RQ_CFQQ(rq) ((rq)->elevator_private2)
54
55 static struct kmem_cache *cfq_pool;
56 static struct kmem_cache *cfq_ioc_pool;
57
58 static DEFINE_PER_CPU(unsigned long, ioc_count);
59 static struct completion *ioc_gone;
60
61 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
62 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
63 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
64
65 #define ASYNC (0)
66 #define SYNC (1)
67
68 #define cfq_cfqq_sync(cfqq) ((cfqq)->key != CFQ_KEY_ASYNC)
69
70 #define sample_valid(samples) ((samples) > 80)
71
72 /*
73 * Per block device queue structure
74 */
75 struct cfq_data {
76 request_queue_t *queue;
77
78 /*
79 * rr list of queues with requests and the count of them
80 */
81 struct rb_root service_tree;
82 struct list_head cur_rr;
83 struct list_head idle_rr;
84 unsigned int busy_queues;
85
86 /*
87 * cfqq lookup hash
88 */
89 struct hlist_head *cfq_hash;
90
91 int rq_in_driver;
92 int hw_tag;
93
94 /*
95 * idle window management
96 */
97 struct timer_list idle_slice_timer;
98 struct work_struct unplug_work;
99
100 struct cfq_queue *active_queue;
101 struct cfq_io_context *active_cic;
102 unsigned int dispatch_slice;
103
104 struct timer_list idle_class_timer;
105
106 sector_t last_position;
107 unsigned long last_end_request;
108
109 /*
110 * tunables, see top of file
111 */
112 unsigned int cfq_quantum;
113 unsigned int cfq_fifo_expire[2];
114 unsigned int cfq_back_penalty;
115 unsigned int cfq_back_max;
116 unsigned int cfq_slice[2];
117 unsigned int cfq_slice_async_rq;
118 unsigned int cfq_slice_idle;
119
120 struct list_head cic_list;
121
122 sector_t new_seek_mean;
123 u64 new_seek_total;
124 };
125
126 /*
127 * Per process-grouping structure
128 */
129 struct cfq_queue {
130 /* reference count */
131 atomic_t ref;
132 /* parent cfq_data */
133 struct cfq_data *cfqd;
134 /* cfqq lookup hash */
135 struct hlist_node cfq_hash;
136 /* hash key */
137 unsigned int key;
138 /* member of the rr/busy/cur/idle cfqd list */
139 struct list_head cfq_list;
140 /* service_tree member */
141 struct rb_node rb_node;
142 /* service_tree key */
143 unsigned long rb_key;
144 /* sorted list of pending requests */
145 struct rb_root sort_list;
146 /* if fifo isn't expired, next request to serve */
147 struct request *next_rq;
148 /* requests queued in sort_list */
149 int queued[2];
150 /* currently allocated requests */
151 int allocated[2];
152 /* pending metadata requests */
153 int meta_pending;
154 /* fifo list of requests in sort_list */
155 struct list_head fifo;
156
157 unsigned long slice_end;
158 long slice_resid;
159
160 /* number of requests that are on the dispatch list or inside driver */
161 int dispatched;
162
163 /* io prio of this group */
164 unsigned short ioprio, org_ioprio;
165 unsigned short ioprio_class, org_ioprio_class;
166
167 /* various state flags, see below */
168 unsigned int flags;
169
170 sector_t last_request_pos;
171 };
172
173 enum cfqq_state_flags {
174 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
175 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
176 CFQ_CFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
177 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
178 CFQ_CFQQ_FLAG_must_dispatch, /* must dispatch, even if expired */
179 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
180 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
181 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
182 CFQ_CFQQ_FLAG_queue_new, /* queue never been serviced */
183 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
184 };
185
186 #define CFQ_CFQQ_FNS(name) \
187 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
188 { \
189 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
190 } \
191 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
192 { \
193 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
194 } \
195 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
196 { \
197 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
198 }
199
200 CFQ_CFQQ_FNS(on_rr);
201 CFQ_CFQQ_FNS(wait_request);
202 CFQ_CFQQ_FNS(must_alloc);
203 CFQ_CFQQ_FNS(must_alloc_slice);
204 CFQ_CFQQ_FNS(must_dispatch);
205 CFQ_CFQQ_FNS(fifo_expire);
206 CFQ_CFQQ_FNS(idle_window);
207 CFQ_CFQQ_FNS(prio_changed);
208 CFQ_CFQQ_FNS(queue_new);
209 CFQ_CFQQ_FNS(slice_new);
210 #undef CFQ_CFQQ_FNS
211
212 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
213 static void cfq_dispatch_insert(request_queue_t *, struct request *);
214 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk, gfp_t gfp_mask);
215
216 /*
217 * scheduler run of queue, if there are requests pending and no one in the
218 * driver that will restart queueing
219 */
220 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
221 {
222 if (cfqd->busy_queues)
223 kblockd_schedule_work(&cfqd->unplug_work);
224 }
225
226 static int cfq_queue_empty(request_queue_t *q)
227 {
228 struct cfq_data *cfqd = q->elevator->elevator_data;
229
230 return !cfqd->busy_queues;
231 }
232
233 static inline pid_t cfq_queue_pid(struct task_struct *task, int rw, int is_sync)
234 {
235 /*
236 * Use the per-process queue, for read requests and syncronous writes
237 */
238 if (!(rw & REQ_RW) || is_sync)
239 return task->pid;
240
241 return CFQ_KEY_ASYNC;
242 }
243
244 /*
245 * Scale schedule slice based on io priority. Use the sync time slice only
246 * if a queue is marked sync and has sync io queued. A sync queue with async
247 * io only, should not get full sync slice length.
248 */
249 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
250 unsigned short prio)
251 {
252 const int base_slice = cfqd->cfq_slice[sync];
253
254 WARN_ON(prio >= IOPRIO_BE_NR);
255
256 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
257 }
258
259 static inline int
260 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
261 {
262 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
263 }
264
265 static inline void
266 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
267 {
268 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
269 }
270
271 /*
272 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
273 * isn't valid until the first request from the dispatch is activated
274 * and the slice time set.
275 */
276 static inline int cfq_slice_used(struct cfq_queue *cfqq)
277 {
278 if (cfq_cfqq_slice_new(cfqq))
279 return 0;
280 if (time_before(jiffies, cfqq->slice_end))
281 return 0;
282
283 return 1;
284 }
285
286 /*
287 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
288 * We choose the request that is closest to the head right now. Distance
289 * behind the head is penalized and only allowed to a certain extent.
290 */
291 static struct request *
292 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
293 {
294 sector_t last, s1, s2, d1 = 0, d2 = 0;
295 unsigned long back_max;
296 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
297 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
298 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
299
300 if (rq1 == NULL || rq1 == rq2)
301 return rq2;
302 if (rq2 == NULL)
303 return rq1;
304
305 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
306 return rq1;
307 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
308 return rq2;
309 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
310 return rq1;
311 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
312 return rq2;
313
314 s1 = rq1->sector;
315 s2 = rq2->sector;
316
317 last = cfqd->last_position;
318
319 /*
320 * by definition, 1KiB is 2 sectors
321 */
322 back_max = cfqd->cfq_back_max * 2;
323
324 /*
325 * Strict one way elevator _except_ in the case where we allow
326 * short backward seeks which are biased as twice the cost of a
327 * similar forward seek.
328 */
329 if (s1 >= last)
330 d1 = s1 - last;
331 else if (s1 + back_max >= last)
332 d1 = (last - s1) * cfqd->cfq_back_penalty;
333 else
334 wrap |= CFQ_RQ1_WRAP;
335
336 if (s2 >= last)
337 d2 = s2 - last;
338 else if (s2 + back_max >= last)
339 d2 = (last - s2) * cfqd->cfq_back_penalty;
340 else
341 wrap |= CFQ_RQ2_WRAP;
342
343 /* Found required data */
344
345 /*
346 * By doing switch() on the bit mask "wrap" we avoid having to
347 * check two variables for all permutations: --> faster!
348 */
349 switch (wrap) {
350 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
351 if (d1 < d2)
352 return rq1;
353 else if (d2 < d1)
354 return rq2;
355 else {
356 if (s1 >= s2)
357 return rq1;
358 else
359 return rq2;
360 }
361
362 case CFQ_RQ2_WRAP:
363 return rq1;
364 case CFQ_RQ1_WRAP:
365 return rq2;
366 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
367 default:
368 /*
369 * Since both rqs are wrapped,
370 * start with the one that's further behind head
371 * (--> only *one* back seek required),
372 * since back seek takes more time than forward.
373 */
374 if (s1 <= s2)
375 return rq1;
376 else
377 return rq2;
378 }
379 }
380
381 /*
382 * would be nice to take fifo expire time into account as well
383 */
384 static struct request *
385 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
386 struct request *last)
387 {
388 struct rb_node *rbnext = rb_next(&last->rb_node);
389 struct rb_node *rbprev = rb_prev(&last->rb_node);
390 struct request *next = NULL, *prev = NULL;
391
392 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
393
394 if (rbprev)
395 prev = rb_entry_rq(rbprev);
396
397 if (rbnext)
398 next = rb_entry_rq(rbnext);
399 else {
400 rbnext = rb_first(&cfqq->sort_list);
401 if (rbnext && rbnext != &last->rb_node)
402 next = rb_entry_rq(rbnext);
403 }
404
405 return cfq_choose_req(cfqd, next, prev);
406 }
407
408 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
409 struct cfq_queue *cfqq)
410 {
411 /*
412 * just an approximation, should be ok.
413 */
414 return ((cfqd->busy_queues - 1) * cfq_prio_slice(cfqd, 1, 0));
415 }
416
417 static void cfq_service_tree_add(struct cfq_data *cfqd,
418 struct cfq_queue *cfqq)
419 {
420 struct rb_node **p = &cfqd->service_tree.rb_node;
421 struct rb_node *parent = NULL;
422 struct cfq_queue *__cfqq;
423 unsigned long rb_key;
424
425 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
426 rb_key += cfqq->slice_resid;
427 cfqq->slice_resid = 0;
428
429 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
430 /*
431 * same position, nothing more to do
432 */
433 if (rb_key == cfqq->rb_key)
434 return;
435
436 rb_erase(&cfqq->rb_node, &cfqd->service_tree);
437 }
438
439 while (*p) {
440 parent = *p;
441 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
442
443 if (rb_key < __cfqq->rb_key)
444 p = &(*p)->rb_left;
445 else
446 p = &(*p)->rb_right;
447 }
448
449 cfqq->rb_key = rb_key;
450 rb_link_node(&cfqq->rb_node, parent, p);
451 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree);
452 }
453
454 static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
455 {
456 struct cfq_data *cfqd = cfqq->cfqd;
457 struct list_head *n;
458
459 /*
460 * Resorting requires the cfqq to be on the RR list already.
461 */
462 if (!cfq_cfqq_on_rr(cfqq))
463 return;
464
465 list_del_init(&cfqq->cfq_list);
466
467 if (cfq_class_rt(cfqq)) {
468 /*
469 * At to the front of the current list, but behind other
470 * RT queues.
471 */
472 n = &cfqd->cur_rr;
473 while (n->next != &cfqd->cur_rr)
474 if (!cfq_class_rt(cfqq))
475 break;
476
477 list_add(&cfqq->cfq_list, n);
478 } else if (cfq_class_idle(cfqq)) {
479 /*
480 * IDLE goes to the tail of the idle list
481 */
482 list_add_tail(&cfqq->cfq_list, &cfqd->idle_rr);
483 } else {
484 /*
485 * So we get here, ergo the queue is a regular best-effort queue
486 */
487 cfq_service_tree_add(cfqd, cfqq);
488 }
489 }
490
491 /*
492 * add to busy list of queues for service, trying to be fair in ordering
493 * the pending list according to last request service
494 */
495 static inline void
496 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
497 {
498 BUG_ON(cfq_cfqq_on_rr(cfqq));
499 cfq_mark_cfqq_on_rr(cfqq);
500 cfqd->busy_queues++;
501
502 cfq_resort_rr_list(cfqq, 0);
503 }
504
505 static inline void
506 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
507 {
508 BUG_ON(!cfq_cfqq_on_rr(cfqq));
509 cfq_clear_cfqq_on_rr(cfqq);
510 list_del_init(&cfqq->cfq_list);
511
512 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
513 rb_erase(&cfqq->rb_node, &cfqd->service_tree);
514 RB_CLEAR_NODE(&cfqq->rb_node);
515 }
516
517 BUG_ON(!cfqd->busy_queues);
518 cfqd->busy_queues--;
519 }
520
521 /*
522 * rb tree support functions
523 */
524 static inline void cfq_del_rq_rb(struct request *rq)
525 {
526 struct cfq_queue *cfqq = RQ_CFQQ(rq);
527 struct cfq_data *cfqd = cfqq->cfqd;
528 const int sync = rq_is_sync(rq);
529
530 BUG_ON(!cfqq->queued[sync]);
531 cfqq->queued[sync]--;
532
533 elv_rb_del(&cfqq->sort_list, rq);
534
535 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
536 cfq_del_cfqq_rr(cfqd, cfqq);
537 }
538
539 static void cfq_add_rq_rb(struct request *rq)
540 {
541 struct cfq_queue *cfqq = RQ_CFQQ(rq);
542 struct cfq_data *cfqd = cfqq->cfqd;
543 struct request *__alias;
544
545 cfqq->queued[rq_is_sync(rq)]++;
546
547 /*
548 * looks a little odd, but the first insert might return an alias.
549 * if that happens, put the alias on the dispatch list
550 */
551 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
552 cfq_dispatch_insert(cfqd->queue, __alias);
553
554 if (!cfq_cfqq_on_rr(cfqq))
555 cfq_add_cfqq_rr(cfqd, cfqq);
556
557 /*
558 * check if this request is a better next-serve candidate
559 */
560 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
561 BUG_ON(!cfqq->next_rq);
562 }
563
564 static inline void
565 cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
566 {
567 elv_rb_del(&cfqq->sort_list, rq);
568 cfqq->queued[rq_is_sync(rq)]--;
569 cfq_add_rq_rb(rq);
570 }
571
572 static struct request *
573 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
574 {
575 struct task_struct *tsk = current;
576 pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio), bio_sync(bio));
577 struct cfq_queue *cfqq;
578
579 cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
580 if (cfqq) {
581 sector_t sector = bio->bi_sector + bio_sectors(bio);
582
583 return elv_rb_find(&cfqq->sort_list, sector);
584 }
585
586 return NULL;
587 }
588
589 static void cfq_activate_request(request_queue_t *q, struct request *rq)
590 {
591 struct cfq_data *cfqd = q->elevator->elevator_data;
592
593 cfqd->rq_in_driver++;
594
595 /*
596 * If the depth is larger 1, it really could be queueing. But lets
597 * make the mark a little higher - idling could still be good for
598 * low queueing, and a low queueing number could also just indicate
599 * a SCSI mid layer like behaviour where limit+1 is often seen.
600 */
601 if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
602 cfqd->hw_tag = 1;
603
604 cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
605 }
606
607 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
608 {
609 struct cfq_data *cfqd = q->elevator->elevator_data;
610
611 WARN_ON(!cfqd->rq_in_driver);
612 cfqd->rq_in_driver--;
613 }
614
615 static void cfq_remove_request(struct request *rq)
616 {
617 struct cfq_queue *cfqq = RQ_CFQQ(rq);
618
619 if (cfqq->next_rq == rq)
620 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
621
622 list_del_init(&rq->queuelist);
623 cfq_del_rq_rb(rq);
624
625 if (rq_is_meta(rq)) {
626 WARN_ON(!cfqq->meta_pending);
627 cfqq->meta_pending--;
628 }
629 }
630
631 static int
632 cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
633 {
634 struct cfq_data *cfqd = q->elevator->elevator_data;
635 struct request *__rq;
636
637 __rq = cfq_find_rq_fmerge(cfqd, bio);
638 if (__rq && elv_rq_merge_ok(__rq, bio)) {
639 *req = __rq;
640 return ELEVATOR_FRONT_MERGE;
641 }
642
643 return ELEVATOR_NO_MERGE;
644 }
645
646 static void cfq_merged_request(request_queue_t *q, struct request *req,
647 int type)
648 {
649 if (type == ELEVATOR_FRONT_MERGE) {
650 struct cfq_queue *cfqq = RQ_CFQQ(req);
651
652 cfq_reposition_rq_rb(cfqq, req);
653 }
654 }
655
656 static void
657 cfq_merged_requests(request_queue_t *q, struct request *rq,
658 struct request *next)
659 {
660 /*
661 * reposition in fifo if next is older than rq
662 */
663 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
664 time_before(next->start_time, rq->start_time))
665 list_move(&rq->queuelist, &next->queuelist);
666
667 cfq_remove_request(next);
668 }
669
670 static int cfq_allow_merge(request_queue_t *q, struct request *rq,
671 struct bio *bio)
672 {
673 struct cfq_data *cfqd = q->elevator->elevator_data;
674 const int rw = bio_data_dir(bio);
675 struct cfq_queue *cfqq;
676 pid_t key;
677
678 /*
679 * Disallow merge of a sync bio into an async request.
680 */
681 if ((bio_data_dir(bio) == READ || bio_sync(bio)) && !rq_is_sync(rq))
682 return 0;
683
684 /*
685 * Lookup the cfqq that this bio will be queued with. Allow
686 * merge only if rq is queued there.
687 */
688 key = cfq_queue_pid(current, rw, bio_sync(bio));
689 cfqq = cfq_find_cfq_hash(cfqd, key, current->ioprio);
690
691 if (cfqq == RQ_CFQQ(rq))
692 return 1;
693
694 return 0;
695 }
696
697 static inline void
698 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
699 {
700 if (cfqq) {
701 /*
702 * stop potential idle class queues waiting service
703 */
704 del_timer(&cfqd->idle_class_timer);
705
706 cfqq->slice_end = 0;
707 cfq_clear_cfqq_must_alloc_slice(cfqq);
708 cfq_clear_cfqq_fifo_expire(cfqq);
709 cfq_mark_cfqq_slice_new(cfqq);
710 cfq_clear_cfqq_queue_new(cfqq);
711 }
712
713 cfqd->active_queue = cfqq;
714 }
715
716 /*
717 * current cfqq expired its slice (or was too idle), select new one
718 */
719 static void
720 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
721 int preempted, int timed_out)
722 {
723 if (cfq_cfqq_wait_request(cfqq))
724 del_timer(&cfqd->idle_slice_timer);
725
726 cfq_clear_cfqq_must_dispatch(cfqq);
727 cfq_clear_cfqq_wait_request(cfqq);
728
729 /*
730 * store what was left of this slice, if the queue idled out
731 * or was preempted
732 */
733 if (timed_out && !cfq_cfqq_slice_new(cfqq))
734 cfqq->slice_resid = cfqq->slice_end - jiffies;
735
736 cfq_resort_rr_list(cfqq, preempted);
737
738 if (cfqq == cfqd->active_queue)
739 cfqd->active_queue = NULL;
740
741 if (cfqd->active_cic) {
742 put_io_context(cfqd->active_cic->ioc);
743 cfqd->active_cic = NULL;
744 }
745
746 cfqd->dispatch_slice = 0;
747 }
748
749 static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted,
750 int timed_out)
751 {
752 struct cfq_queue *cfqq = cfqd->active_queue;
753
754 if (cfqq)
755 __cfq_slice_expired(cfqd, cfqq, preempted, timed_out);
756 }
757
758 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
759 {
760 struct cfq_queue *cfqq = NULL;
761
762 if (!list_empty(&cfqd->cur_rr)) {
763 /*
764 * if current list is non-empty, grab first entry.
765 */
766 cfqq = list_entry_cfqq(cfqd->cur_rr.next);
767 } else if (!RB_EMPTY_ROOT(&cfqd->service_tree)) {
768 struct rb_node *n = rb_first(&cfqd->service_tree);
769
770 cfqq = rb_entry(n, struct cfq_queue, rb_node);
771 } else if (!list_empty(&cfqd->idle_rr)) {
772 /*
773 * if we have idle queues and no rt or be queues had pending
774 * requests, either allow immediate service if the grace period
775 * has passed or arm the idle grace timer
776 */
777 unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
778
779 if (time_after_eq(jiffies, end))
780 cfqq = list_entry_cfqq(cfqd->idle_rr.next);
781 else
782 mod_timer(&cfqd->idle_class_timer, end);
783 }
784
785 return cfqq;
786 }
787
788 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
789 {
790 struct cfq_queue *cfqq;
791
792 cfqq = cfq_get_next_queue(cfqd);
793 __cfq_set_active_queue(cfqd, cfqq);
794 return cfqq;
795 }
796
797 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
798 struct request *rq)
799 {
800 if (rq->sector >= cfqd->last_position)
801 return rq->sector - cfqd->last_position;
802 else
803 return cfqd->last_position - rq->sector;
804 }
805
806 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
807 {
808 struct cfq_io_context *cic = cfqd->active_cic;
809
810 if (!sample_valid(cic->seek_samples))
811 return 0;
812
813 return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
814 }
815
816 static int cfq_close_cooperator(struct cfq_data *cfq_data,
817 struct cfq_queue *cfqq)
818 {
819 /*
820 * We should notice if some of the queues are cooperating, eg
821 * working closely on the same area of the disk. In that case,
822 * we can group them together and don't waste time idling.
823 */
824 return 0;
825 }
826
827 #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
828
829 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
830 {
831 struct cfq_queue *cfqq = cfqd->active_queue;
832 struct cfq_io_context *cic;
833 unsigned long sl;
834
835 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
836 WARN_ON(cfq_cfqq_slice_new(cfqq));
837
838 /*
839 * idle is disabled, either manually or by past process history
840 */
841 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
842 return;
843
844 /*
845 * task has exited, don't wait
846 */
847 cic = cfqd->active_cic;
848 if (!cic || !cic->ioc->task)
849 return;
850
851 /*
852 * See if this prio level has a good candidate
853 */
854 if (cfq_close_cooperator(cfqd, cfqq) &&
855 (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
856 return;
857
858 cfq_mark_cfqq_must_dispatch(cfqq);
859 cfq_mark_cfqq_wait_request(cfqq);
860
861 /*
862 * we don't want to idle for seeks, but we do want to allow
863 * fair distribution of slice time for a process doing back-to-back
864 * seeks. so allow a little bit of time for him to submit a new rq
865 */
866 sl = cfqd->cfq_slice_idle;
867 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
868 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
869
870 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
871 }
872
873 static void cfq_dispatch_insert(request_queue_t *q, struct request *rq)
874 {
875 struct cfq_queue *cfqq = RQ_CFQQ(rq);
876
877 cfq_remove_request(rq);
878 cfqq->dispatched++;
879 elv_dispatch_sort(q, rq);
880 }
881
882 /*
883 * return expired entry, or NULL to just start from scratch in rbtree
884 */
885 static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
886 {
887 struct cfq_data *cfqd = cfqq->cfqd;
888 struct request *rq;
889 int fifo;
890
891 if (cfq_cfqq_fifo_expire(cfqq))
892 return NULL;
893
894 cfq_mark_cfqq_fifo_expire(cfqq);
895
896 if (list_empty(&cfqq->fifo))
897 return NULL;
898
899 fifo = cfq_cfqq_sync(cfqq);
900 rq = rq_entry_fifo(cfqq->fifo.next);
901
902 if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
903 return NULL;
904
905 return rq;
906 }
907
908 static inline int
909 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
910 {
911 const int base_rq = cfqd->cfq_slice_async_rq;
912
913 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
914
915 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
916 }
917
918 /*
919 * get next queue for service
920 */
921 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
922 {
923 struct cfq_queue *cfqq;
924
925 cfqq = cfqd->active_queue;
926 if (!cfqq)
927 goto new_queue;
928
929 /*
930 * The active queue has run out of time, expire it and select new.
931 */
932 if (cfq_slice_used(cfqq))
933 goto expire;
934
935 /*
936 * The active queue has requests and isn't expired, allow it to
937 * dispatch.
938 */
939 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
940 goto keep_queue;
941
942 /*
943 * No requests pending. If the active queue still has requests in
944 * flight or is idling for a new request, allow either of these
945 * conditions to happen (or time out) before selecting a new queue.
946 */
947 if (cfqq->dispatched || timer_pending(&cfqd->idle_slice_timer)) {
948 cfqq = NULL;
949 goto keep_queue;
950 }
951
952 expire:
953 cfq_slice_expired(cfqd, 0, 0);
954 new_queue:
955 cfqq = cfq_set_active_queue(cfqd);
956 keep_queue:
957 return cfqq;
958 }
959
960 static int
961 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
962 int max_dispatch)
963 {
964 int dispatched = 0;
965
966 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
967
968 do {
969 struct request *rq;
970
971 /*
972 * follow expired path, else get first next available
973 */
974 if ((rq = cfq_check_fifo(cfqq)) == NULL)
975 rq = cfqq->next_rq;
976
977 /*
978 * finally, insert request into driver dispatch list
979 */
980 cfq_dispatch_insert(cfqd->queue, rq);
981
982 cfqd->dispatch_slice++;
983 dispatched++;
984
985 if (!cfqd->active_cic) {
986 atomic_inc(&RQ_CIC(rq)->ioc->refcount);
987 cfqd->active_cic = RQ_CIC(rq);
988 }
989
990 if (RB_EMPTY_ROOT(&cfqq->sort_list))
991 break;
992
993 } while (dispatched < max_dispatch);
994
995 /*
996 * expire an async queue immediately if it has used up its slice. idle
997 * queue always expire after 1 dispatch round.
998 */
999 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1000 cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1001 cfq_class_idle(cfqq))) {
1002 cfqq->slice_end = jiffies + 1;
1003 cfq_slice_expired(cfqd, 0, 0);
1004 }
1005
1006 return dispatched;
1007 }
1008
1009 static inline int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1010 {
1011 int dispatched = 0;
1012
1013 while (cfqq->next_rq) {
1014 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1015 dispatched++;
1016 }
1017
1018 BUG_ON(!list_empty(&cfqq->fifo));
1019 return dispatched;
1020 }
1021
1022 static int cfq_forced_dispatch_cfqqs(struct list_head *list)
1023 {
1024 struct cfq_queue *cfqq, *next;
1025 int dispatched;
1026
1027 dispatched = 0;
1028 list_for_each_entry_safe(cfqq, next, list, cfq_list)
1029 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1030
1031 return dispatched;
1032 }
1033
1034 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1035 {
1036 int dispatched = 0;
1037 struct rb_node *n;
1038
1039 while ((n = rb_first(&cfqd->service_tree)) != NULL) {
1040 struct cfq_queue *cfqq = rb_entry(n, struct cfq_queue, rb_node);
1041
1042 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1043 }
1044
1045 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->cur_rr);
1046 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->idle_rr);
1047
1048 cfq_slice_expired(cfqd, 0, 0);
1049
1050 BUG_ON(cfqd->busy_queues);
1051
1052 return dispatched;
1053 }
1054
1055 static int cfq_dispatch_requests(request_queue_t *q, int force)
1056 {
1057 struct cfq_data *cfqd = q->elevator->elevator_data;
1058 struct cfq_queue *cfqq;
1059 int dispatched;
1060
1061 if (!cfqd->busy_queues)
1062 return 0;
1063
1064 if (unlikely(force))
1065 return cfq_forced_dispatch(cfqd);
1066
1067 dispatched = 0;
1068 while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1069 int max_dispatch;
1070
1071 if (cfqd->busy_queues > 1) {
1072 /*
1073 * So we have dispatched before in this round, if the
1074 * next queue has idling enabled (must be sync), don't
1075 * allow it service until the previous have completed.
1076 */
1077 if (cfqd->rq_in_driver && cfq_cfqq_idle_window(cfqq) &&
1078 dispatched)
1079 break;
1080 if (cfqq->dispatched >= cfqd->cfq_quantum)
1081 break;
1082 }
1083
1084 cfq_clear_cfqq_must_dispatch(cfqq);
1085 cfq_clear_cfqq_wait_request(cfqq);
1086 del_timer(&cfqd->idle_slice_timer);
1087
1088 max_dispatch = cfqd->cfq_quantum;
1089 if (cfq_class_idle(cfqq))
1090 max_dispatch = 1;
1091
1092 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1093 }
1094
1095 return dispatched;
1096 }
1097
1098 /*
1099 * task holds one reference to the queue, dropped when task exits. each rq
1100 * in-flight on this queue also holds a reference, dropped when rq is freed.
1101 *
1102 * queue lock must be held here.
1103 */
1104 static void cfq_put_queue(struct cfq_queue *cfqq)
1105 {
1106 struct cfq_data *cfqd = cfqq->cfqd;
1107
1108 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1109
1110 if (!atomic_dec_and_test(&cfqq->ref))
1111 return;
1112
1113 BUG_ON(rb_first(&cfqq->sort_list));
1114 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1115 BUG_ON(cfq_cfqq_on_rr(cfqq));
1116
1117 if (unlikely(cfqd->active_queue == cfqq)) {
1118 __cfq_slice_expired(cfqd, cfqq, 0, 0);
1119 cfq_schedule_dispatch(cfqd);
1120 }
1121
1122 /*
1123 * it's on the empty list and still hashed
1124 */
1125 hlist_del(&cfqq->cfq_hash);
1126 kmem_cache_free(cfq_pool, cfqq);
1127 }
1128
1129 static struct cfq_queue *
1130 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1131 const int hashval)
1132 {
1133 struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1134 struct hlist_node *entry;
1135 struct cfq_queue *__cfqq;
1136
1137 hlist_for_each_entry(__cfqq, entry, hash_list, cfq_hash) {
1138 const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
1139
1140 if (__cfqq->key == key && (__p == prio || !prio))
1141 return __cfqq;
1142 }
1143
1144 return NULL;
1145 }
1146
1147 static struct cfq_queue *
1148 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1149 {
1150 return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1151 }
1152
1153 static void cfq_free_io_context(struct io_context *ioc)
1154 {
1155 struct cfq_io_context *__cic;
1156 struct rb_node *n;
1157 int freed = 0;
1158
1159 while ((n = rb_first(&ioc->cic_root)) != NULL) {
1160 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1161 rb_erase(&__cic->rb_node, &ioc->cic_root);
1162 kmem_cache_free(cfq_ioc_pool, __cic);
1163 freed++;
1164 }
1165
1166 elv_ioc_count_mod(ioc_count, -freed);
1167
1168 if (ioc_gone && !elv_ioc_count_read(ioc_count))
1169 complete(ioc_gone);
1170 }
1171
1172 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1173 {
1174 if (unlikely(cfqq == cfqd->active_queue)) {
1175 __cfq_slice_expired(cfqd, cfqq, 0, 0);
1176 cfq_schedule_dispatch(cfqd);
1177 }
1178
1179 cfq_put_queue(cfqq);
1180 }
1181
1182 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1183 struct cfq_io_context *cic)
1184 {
1185 list_del_init(&cic->queue_list);
1186 smp_wmb();
1187 cic->key = NULL;
1188
1189 if (cic->cfqq[ASYNC]) {
1190 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1191 cic->cfqq[ASYNC] = NULL;
1192 }
1193
1194 if (cic->cfqq[SYNC]) {
1195 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1196 cic->cfqq[SYNC] = NULL;
1197 }
1198 }
1199
1200
1201 /*
1202 * Called with interrupts disabled
1203 */
1204 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1205 {
1206 struct cfq_data *cfqd = cic->key;
1207
1208 if (cfqd) {
1209 request_queue_t *q = cfqd->queue;
1210
1211 spin_lock_irq(q->queue_lock);
1212 __cfq_exit_single_io_context(cfqd, cic);
1213 spin_unlock_irq(q->queue_lock);
1214 }
1215 }
1216
1217 static void cfq_exit_io_context(struct io_context *ioc)
1218 {
1219 struct cfq_io_context *__cic;
1220 struct rb_node *n;
1221
1222 /*
1223 * put the reference this task is holding to the various queues
1224 */
1225
1226 n = rb_first(&ioc->cic_root);
1227 while (n != NULL) {
1228 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1229
1230 cfq_exit_single_io_context(__cic);
1231 n = rb_next(n);
1232 }
1233 }
1234
1235 static struct cfq_io_context *
1236 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1237 {
1238 struct cfq_io_context *cic;
1239
1240 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask, cfqd->queue->node);
1241 if (cic) {
1242 memset(cic, 0, sizeof(*cic));
1243 cic->last_end_request = jiffies;
1244 INIT_LIST_HEAD(&cic->queue_list);
1245 cic->dtor = cfq_free_io_context;
1246 cic->exit = cfq_exit_io_context;
1247 elv_ioc_count_inc(ioc_count);
1248 }
1249
1250 return cic;
1251 }
1252
1253 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1254 {
1255 struct task_struct *tsk = current;
1256 int ioprio_class;
1257
1258 if (!cfq_cfqq_prio_changed(cfqq))
1259 return;
1260
1261 ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1262 switch (ioprio_class) {
1263 default:
1264 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1265 case IOPRIO_CLASS_NONE:
1266 /*
1267 * no prio set, place us in the middle of the BE classes
1268 */
1269 cfqq->ioprio = task_nice_ioprio(tsk);
1270 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1271 break;
1272 case IOPRIO_CLASS_RT:
1273 cfqq->ioprio = task_ioprio(tsk);
1274 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1275 break;
1276 case IOPRIO_CLASS_BE:
1277 cfqq->ioprio = task_ioprio(tsk);
1278 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1279 break;
1280 case IOPRIO_CLASS_IDLE:
1281 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1282 cfqq->ioprio = 7;
1283 cfq_clear_cfqq_idle_window(cfqq);
1284 break;
1285 }
1286
1287 /*
1288 * keep track of original prio settings in case we have to temporarily
1289 * elevate the priority of this queue
1290 */
1291 cfqq->org_ioprio = cfqq->ioprio;
1292 cfqq->org_ioprio_class = cfqq->ioprio_class;
1293 cfq_clear_cfqq_prio_changed(cfqq);
1294 }
1295
1296 static inline void changed_ioprio(struct cfq_io_context *cic)
1297 {
1298 struct cfq_data *cfqd = cic->key;
1299 struct cfq_queue *cfqq;
1300 unsigned long flags;
1301
1302 if (unlikely(!cfqd))
1303 return;
1304
1305 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1306
1307 cfqq = cic->cfqq[ASYNC];
1308 if (cfqq) {
1309 struct cfq_queue *new_cfqq;
1310 new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC, cic->ioc->task,
1311 GFP_ATOMIC);
1312 if (new_cfqq) {
1313 cic->cfqq[ASYNC] = new_cfqq;
1314 cfq_put_queue(cfqq);
1315 }
1316 }
1317
1318 cfqq = cic->cfqq[SYNC];
1319 if (cfqq)
1320 cfq_mark_cfqq_prio_changed(cfqq);
1321
1322 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1323 }
1324
1325 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1326 {
1327 struct cfq_io_context *cic;
1328 struct rb_node *n;
1329
1330 ioc->ioprio_changed = 0;
1331
1332 n = rb_first(&ioc->cic_root);
1333 while (n != NULL) {
1334 cic = rb_entry(n, struct cfq_io_context, rb_node);
1335
1336 changed_ioprio(cic);
1337 n = rb_next(n);
1338 }
1339 }
1340
1341 static struct cfq_queue *
1342 cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
1343 gfp_t gfp_mask)
1344 {
1345 const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1346 struct cfq_queue *cfqq, *new_cfqq = NULL;
1347 unsigned short ioprio;
1348
1349 retry:
1350 ioprio = tsk->ioprio;
1351 cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1352
1353 if (!cfqq) {
1354 if (new_cfqq) {
1355 cfqq = new_cfqq;
1356 new_cfqq = NULL;
1357 } else if (gfp_mask & __GFP_WAIT) {
1358 /*
1359 * Inform the allocator of the fact that we will
1360 * just repeat this allocation if it fails, to allow
1361 * the allocator to do whatever it needs to attempt to
1362 * free memory.
1363 */
1364 spin_unlock_irq(cfqd->queue->queue_lock);
1365 new_cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask|__GFP_NOFAIL, cfqd->queue->node);
1366 spin_lock_irq(cfqd->queue->queue_lock);
1367 goto retry;
1368 } else {
1369 cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask, cfqd->queue->node);
1370 if (!cfqq)
1371 goto out;
1372 }
1373
1374 memset(cfqq, 0, sizeof(*cfqq));
1375
1376 INIT_HLIST_NODE(&cfqq->cfq_hash);
1377 INIT_LIST_HEAD(&cfqq->cfq_list);
1378 RB_CLEAR_NODE(&cfqq->rb_node);
1379 INIT_LIST_HEAD(&cfqq->fifo);
1380
1381 cfqq->key = key;
1382 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1383 atomic_set(&cfqq->ref, 0);
1384 cfqq->cfqd = cfqd;
1385
1386 if (key != CFQ_KEY_ASYNC)
1387 cfq_mark_cfqq_idle_window(cfqq);
1388
1389 cfq_mark_cfqq_prio_changed(cfqq);
1390 cfq_mark_cfqq_queue_new(cfqq);
1391 cfq_init_prio_data(cfqq);
1392 }
1393
1394 if (new_cfqq)
1395 kmem_cache_free(cfq_pool, new_cfqq);
1396
1397 atomic_inc(&cfqq->ref);
1398 out:
1399 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1400 return cfqq;
1401 }
1402
1403 static void
1404 cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1405 {
1406 WARN_ON(!list_empty(&cic->queue_list));
1407 rb_erase(&cic->rb_node, &ioc->cic_root);
1408 kmem_cache_free(cfq_ioc_pool, cic);
1409 elv_ioc_count_dec(ioc_count);
1410 }
1411
1412 static struct cfq_io_context *
1413 cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1414 {
1415 struct rb_node *n;
1416 struct cfq_io_context *cic;
1417 void *k, *key = cfqd;
1418
1419 restart:
1420 n = ioc->cic_root.rb_node;
1421 while (n) {
1422 cic = rb_entry(n, struct cfq_io_context, rb_node);
1423 /* ->key must be copied to avoid race with cfq_exit_queue() */
1424 k = cic->key;
1425 if (unlikely(!k)) {
1426 cfq_drop_dead_cic(ioc, cic);
1427 goto restart;
1428 }
1429
1430 if (key < k)
1431 n = n->rb_left;
1432 else if (key > k)
1433 n = n->rb_right;
1434 else
1435 return cic;
1436 }
1437
1438 return NULL;
1439 }
1440
1441 static inline void
1442 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1443 struct cfq_io_context *cic)
1444 {
1445 struct rb_node **p;
1446 struct rb_node *parent;
1447 struct cfq_io_context *__cic;
1448 unsigned long flags;
1449 void *k;
1450
1451 cic->ioc = ioc;
1452 cic->key = cfqd;
1453
1454 restart:
1455 parent = NULL;
1456 p = &ioc->cic_root.rb_node;
1457 while (*p) {
1458 parent = *p;
1459 __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1460 /* ->key must be copied to avoid race with cfq_exit_queue() */
1461 k = __cic->key;
1462 if (unlikely(!k)) {
1463 cfq_drop_dead_cic(ioc, __cic);
1464 goto restart;
1465 }
1466
1467 if (cic->key < k)
1468 p = &(*p)->rb_left;
1469 else if (cic->key > k)
1470 p = &(*p)->rb_right;
1471 else
1472 BUG();
1473 }
1474
1475 rb_link_node(&cic->rb_node, parent, p);
1476 rb_insert_color(&cic->rb_node, &ioc->cic_root);
1477
1478 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1479 list_add(&cic->queue_list, &cfqd->cic_list);
1480 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1481 }
1482
1483 /*
1484 * Setup general io context and cfq io context. There can be several cfq
1485 * io contexts per general io context, if this process is doing io to more
1486 * than one device managed by cfq.
1487 */
1488 static struct cfq_io_context *
1489 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1490 {
1491 struct io_context *ioc = NULL;
1492 struct cfq_io_context *cic;
1493
1494 might_sleep_if(gfp_mask & __GFP_WAIT);
1495
1496 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1497 if (!ioc)
1498 return NULL;
1499
1500 cic = cfq_cic_rb_lookup(cfqd, ioc);
1501 if (cic)
1502 goto out;
1503
1504 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1505 if (cic == NULL)
1506 goto err;
1507
1508 cfq_cic_link(cfqd, ioc, cic);
1509 out:
1510 smp_read_barrier_depends();
1511 if (unlikely(ioc->ioprio_changed))
1512 cfq_ioc_set_ioprio(ioc);
1513
1514 return cic;
1515 err:
1516 put_io_context(ioc);
1517 return NULL;
1518 }
1519
1520 static void
1521 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1522 {
1523 unsigned long elapsed = jiffies - cic->last_end_request;
1524 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1525
1526 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1527 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1528 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1529 }
1530
1531 static void
1532 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1533 struct request *rq)
1534 {
1535 sector_t sdist;
1536 u64 total;
1537
1538 if (cic->last_request_pos < rq->sector)
1539 sdist = rq->sector - cic->last_request_pos;
1540 else
1541 sdist = cic->last_request_pos - rq->sector;
1542
1543 if (!cic->seek_samples) {
1544 cfqd->new_seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1545 cfqd->new_seek_mean = cfqd->new_seek_total / 256;
1546 }
1547
1548 /*
1549 * Don't allow the seek distance to get too large from the
1550 * odd fragment, pagein, etc
1551 */
1552 if (cic->seek_samples <= 60) /* second&third seek */
1553 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1554 else
1555 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1556
1557 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1558 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1559 total = cic->seek_total + (cic->seek_samples/2);
1560 do_div(total, cic->seek_samples);
1561 cic->seek_mean = (sector_t)total;
1562 }
1563
1564 /*
1565 * Disable idle window if the process thinks too long or seeks so much that
1566 * it doesn't matter
1567 */
1568 static void
1569 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1570 struct cfq_io_context *cic)
1571 {
1572 int enable_idle = cfq_cfqq_idle_window(cfqq);
1573
1574 if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
1575 (cfqd->hw_tag && CIC_SEEKY(cic)))
1576 enable_idle = 0;
1577 else if (sample_valid(cic->ttime_samples)) {
1578 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1579 enable_idle = 0;
1580 else
1581 enable_idle = 1;
1582 }
1583
1584 if (enable_idle)
1585 cfq_mark_cfqq_idle_window(cfqq);
1586 else
1587 cfq_clear_cfqq_idle_window(cfqq);
1588 }
1589
1590 /*
1591 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1592 * no or if we aren't sure, a 1 will cause a preempt.
1593 */
1594 static int
1595 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1596 struct request *rq)
1597 {
1598 struct cfq_queue *cfqq;
1599
1600 cfqq = cfqd->active_queue;
1601 if (!cfqq)
1602 return 0;
1603
1604 if (cfq_slice_used(cfqq))
1605 return 1;
1606
1607 if (cfq_class_idle(new_cfqq))
1608 return 0;
1609
1610 if (cfq_class_idle(cfqq))
1611 return 1;
1612
1613 /*
1614 * if the new request is sync, but the currently running queue is
1615 * not, let the sync request have priority.
1616 */
1617 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1618 return 1;
1619
1620 /*
1621 * So both queues are sync. Let the new request get disk time if
1622 * it's a metadata request and the current queue is doing regular IO.
1623 */
1624 if (rq_is_meta(rq) && !cfqq->meta_pending)
1625 return 1;
1626
1627 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
1628 return 0;
1629
1630 /*
1631 * if this request is as-good as one we would expect from the
1632 * current cfqq, let it preempt
1633 */
1634 if (cfq_rq_close(cfqd, rq))
1635 return 1;
1636
1637 return 0;
1638 }
1639
1640 /*
1641 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1642 * let it have half of its nominal slice.
1643 */
1644 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1645 {
1646 cfq_slice_expired(cfqd, 1, 1);
1647
1648 /*
1649 * Put the new queue at the front of the of the current list,
1650 * so we know that it will be selected next.
1651 */
1652 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1653 list_del_init(&cfqq->cfq_list);
1654 list_add(&cfqq->cfq_list, &cfqd->cur_rr);
1655
1656 cfqq->slice_end = 0;
1657 cfq_mark_cfqq_slice_new(cfqq);
1658 }
1659
1660 /*
1661 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1662 * something we should do about it
1663 */
1664 static void
1665 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1666 struct request *rq)
1667 {
1668 struct cfq_io_context *cic = RQ_CIC(rq);
1669
1670 if (rq_is_meta(rq))
1671 cfqq->meta_pending++;
1672
1673 cfq_update_io_thinktime(cfqd, cic);
1674 cfq_update_io_seektime(cfqd, cic, rq);
1675 cfq_update_idle_window(cfqd, cfqq, cic);
1676
1677 cic->last_request_pos = rq->sector + rq->nr_sectors;
1678 cfqq->last_request_pos = cic->last_request_pos;
1679
1680 if (cfqq == cfqd->active_queue) {
1681 /*
1682 * if we are waiting for a request for this queue, let it rip
1683 * immediately and flag that we must not expire this queue
1684 * just now
1685 */
1686 if (cfq_cfqq_wait_request(cfqq)) {
1687 cfq_mark_cfqq_must_dispatch(cfqq);
1688 del_timer(&cfqd->idle_slice_timer);
1689 blk_start_queueing(cfqd->queue);
1690 }
1691 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1692 /*
1693 * not the active queue - expire current slice if it is
1694 * idle and has expired it's mean thinktime or this new queue
1695 * has some old slice time left and is of higher priority
1696 */
1697 cfq_preempt_queue(cfqd, cfqq);
1698 cfq_mark_cfqq_must_dispatch(cfqq);
1699 blk_start_queueing(cfqd->queue);
1700 }
1701 }
1702
1703 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1704 {
1705 struct cfq_data *cfqd = q->elevator->elevator_data;
1706 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1707
1708 cfq_init_prio_data(cfqq);
1709
1710 cfq_add_rq_rb(rq);
1711
1712 list_add_tail(&rq->queuelist, &cfqq->fifo);
1713
1714 cfq_rq_enqueued(cfqd, cfqq, rq);
1715 }
1716
1717 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1718 {
1719 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1720 struct cfq_data *cfqd = cfqq->cfqd;
1721 const int sync = rq_is_sync(rq);
1722 unsigned long now;
1723
1724 now = jiffies;
1725
1726 WARN_ON(!cfqd->rq_in_driver);
1727 WARN_ON(!cfqq->dispatched);
1728 cfqd->rq_in_driver--;
1729 cfqq->dispatched--;
1730
1731 if (!cfq_class_idle(cfqq))
1732 cfqd->last_end_request = now;
1733
1734 if (sync)
1735 RQ_CIC(rq)->last_end_request = now;
1736
1737 /*
1738 * If this is the active queue, check if it needs to be expired,
1739 * or if we want to idle in case it has no pending requests.
1740 */
1741 if (cfqd->active_queue == cfqq) {
1742 if (cfq_cfqq_slice_new(cfqq)) {
1743 cfq_set_prio_slice(cfqd, cfqq);
1744 cfq_clear_cfqq_slice_new(cfqq);
1745 }
1746 if (cfq_slice_used(cfqq))
1747 cfq_slice_expired(cfqd, 0, 1);
1748 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list))
1749 cfq_arm_slice_timer(cfqd);
1750 }
1751
1752 if (!cfqd->rq_in_driver)
1753 cfq_schedule_dispatch(cfqd);
1754 }
1755
1756 /*
1757 * we temporarily boost lower priority queues if they are holding fs exclusive
1758 * resources. they are boosted to normal prio (CLASS_BE/4)
1759 */
1760 static void cfq_prio_boost(struct cfq_queue *cfqq)
1761 {
1762 if (has_fs_excl()) {
1763 /*
1764 * boost idle prio on transactions that would lock out other
1765 * users of the filesystem
1766 */
1767 if (cfq_class_idle(cfqq))
1768 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1769 if (cfqq->ioprio > IOPRIO_NORM)
1770 cfqq->ioprio = IOPRIO_NORM;
1771 } else {
1772 /*
1773 * check if we need to unboost the queue
1774 */
1775 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1776 cfqq->ioprio_class = cfqq->org_ioprio_class;
1777 if (cfqq->ioprio != cfqq->org_ioprio)
1778 cfqq->ioprio = cfqq->org_ioprio;
1779 }
1780 }
1781
1782 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1783 {
1784 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1785 !cfq_cfqq_must_alloc_slice(cfqq)) {
1786 cfq_mark_cfqq_must_alloc_slice(cfqq);
1787 return ELV_MQUEUE_MUST;
1788 }
1789
1790 return ELV_MQUEUE_MAY;
1791 }
1792
1793 static int cfq_may_queue(request_queue_t *q, int rw)
1794 {
1795 struct cfq_data *cfqd = q->elevator->elevator_data;
1796 struct task_struct *tsk = current;
1797 struct cfq_queue *cfqq;
1798 unsigned int key;
1799
1800 key = cfq_queue_pid(tsk, rw, rw & REQ_RW_SYNC);
1801
1802 /*
1803 * don't force setup of a queue from here, as a call to may_queue
1804 * does not necessarily imply that a request actually will be queued.
1805 * so just lookup a possibly existing queue, or return 'may queue'
1806 * if that fails
1807 */
1808 cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
1809 if (cfqq) {
1810 cfq_init_prio_data(cfqq);
1811 cfq_prio_boost(cfqq);
1812
1813 return __cfq_may_queue(cfqq);
1814 }
1815
1816 return ELV_MQUEUE_MAY;
1817 }
1818
1819 /*
1820 * queue lock held here
1821 */
1822 static void cfq_put_request(struct request *rq)
1823 {
1824 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1825
1826 if (cfqq) {
1827 const int rw = rq_data_dir(rq);
1828
1829 BUG_ON(!cfqq->allocated[rw]);
1830 cfqq->allocated[rw]--;
1831
1832 put_io_context(RQ_CIC(rq)->ioc);
1833
1834 rq->elevator_private = NULL;
1835 rq->elevator_private2 = NULL;
1836
1837 cfq_put_queue(cfqq);
1838 }
1839 }
1840
1841 /*
1842 * Allocate cfq data structures associated with this request.
1843 */
1844 static int
1845 cfq_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
1846 {
1847 struct cfq_data *cfqd = q->elevator->elevator_data;
1848 struct task_struct *tsk = current;
1849 struct cfq_io_context *cic;
1850 const int rw = rq_data_dir(rq);
1851 const int is_sync = rq_is_sync(rq);
1852 pid_t key = cfq_queue_pid(tsk, rw, is_sync);
1853 struct cfq_queue *cfqq;
1854 unsigned long flags;
1855
1856 might_sleep_if(gfp_mask & __GFP_WAIT);
1857
1858 cic = cfq_get_io_context(cfqd, gfp_mask);
1859
1860 spin_lock_irqsave(q->queue_lock, flags);
1861
1862 if (!cic)
1863 goto queue_fail;
1864
1865 if (!cic->cfqq[is_sync]) {
1866 cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
1867 if (!cfqq)
1868 goto queue_fail;
1869
1870 cic->cfqq[is_sync] = cfqq;
1871 } else
1872 cfqq = cic->cfqq[is_sync];
1873
1874 cfqq->allocated[rw]++;
1875 cfq_clear_cfqq_must_alloc(cfqq);
1876 atomic_inc(&cfqq->ref);
1877
1878 spin_unlock_irqrestore(q->queue_lock, flags);
1879
1880 rq->elevator_private = cic;
1881 rq->elevator_private2 = cfqq;
1882 return 0;
1883
1884 queue_fail:
1885 if (cic)
1886 put_io_context(cic->ioc);
1887
1888 cfq_schedule_dispatch(cfqd);
1889 spin_unlock_irqrestore(q->queue_lock, flags);
1890 return 1;
1891 }
1892
1893 static void cfq_kick_queue(struct work_struct *work)
1894 {
1895 struct cfq_data *cfqd =
1896 container_of(work, struct cfq_data, unplug_work);
1897 request_queue_t *q = cfqd->queue;
1898 unsigned long flags;
1899
1900 spin_lock_irqsave(q->queue_lock, flags);
1901 blk_start_queueing(q);
1902 spin_unlock_irqrestore(q->queue_lock, flags);
1903 }
1904
1905 /*
1906 * Timer running if the active_queue is currently idling inside its time slice
1907 */
1908 static void cfq_idle_slice_timer(unsigned long data)
1909 {
1910 struct cfq_data *cfqd = (struct cfq_data *) data;
1911 struct cfq_queue *cfqq;
1912 unsigned long flags;
1913 int timed_out = 1;
1914
1915 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1916
1917 if ((cfqq = cfqd->active_queue) != NULL) {
1918 timed_out = 0;
1919
1920 /*
1921 * expired
1922 */
1923 if (cfq_slice_used(cfqq))
1924 goto expire;
1925
1926 /*
1927 * only expire and reinvoke request handler, if there are
1928 * other queues with pending requests
1929 */
1930 if (!cfqd->busy_queues)
1931 goto out_cont;
1932
1933 /*
1934 * not expired and it has a request pending, let it dispatch
1935 */
1936 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
1937 cfq_mark_cfqq_must_dispatch(cfqq);
1938 goto out_kick;
1939 }
1940 }
1941 expire:
1942 cfq_slice_expired(cfqd, 0, timed_out);
1943 out_kick:
1944 cfq_schedule_dispatch(cfqd);
1945 out_cont:
1946 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1947 }
1948
1949 /*
1950 * Timer running if an idle class queue is waiting for service
1951 */
1952 static void cfq_idle_class_timer(unsigned long data)
1953 {
1954 struct cfq_data *cfqd = (struct cfq_data *) data;
1955 unsigned long flags, end;
1956
1957 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1958
1959 /*
1960 * race with a non-idle queue, reset timer
1961 */
1962 end = cfqd->last_end_request + CFQ_IDLE_GRACE;
1963 if (!time_after_eq(jiffies, end))
1964 mod_timer(&cfqd->idle_class_timer, end);
1965 else
1966 cfq_schedule_dispatch(cfqd);
1967
1968 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1969 }
1970
1971 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
1972 {
1973 del_timer_sync(&cfqd->idle_slice_timer);
1974 del_timer_sync(&cfqd->idle_class_timer);
1975 blk_sync_queue(cfqd->queue);
1976 }
1977
1978 static void cfq_exit_queue(elevator_t *e)
1979 {
1980 struct cfq_data *cfqd = e->elevator_data;
1981 request_queue_t *q = cfqd->queue;
1982
1983 cfq_shutdown_timer_wq(cfqd);
1984
1985 spin_lock_irq(q->queue_lock);
1986
1987 if (cfqd->active_queue)
1988 __cfq_slice_expired(cfqd, cfqd->active_queue, 0, 0);
1989
1990 while (!list_empty(&cfqd->cic_list)) {
1991 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
1992 struct cfq_io_context,
1993 queue_list);
1994
1995 __cfq_exit_single_io_context(cfqd, cic);
1996 }
1997
1998 spin_unlock_irq(q->queue_lock);
1999
2000 cfq_shutdown_timer_wq(cfqd);
2001
2002 kfree(cfqd->cfq_hash);
2003 kfree(cfqd);
2004 }
2005
2006 static void *cfq_init_queue(request_queue_t *q)
2007 {
2008 struct cfq_data *cfqd;
2009 int i;
2010
2011 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
2012 if (!cfqd)
2013 return NULL;
2014
2015 memset(cfqd, 0, sizeof(*cfqd));
2016
2017 cfqd->service_tree = RB_ROOT;
2018 INIT_LIST_HEAD(&cfqd->cur_rr);
2019 INIT_LIST_HEAD(&cfqd->idle_rr);
2020 INIT_LIST_HEAD(&cfqd->cic_list);
2021
2022 cfqd->cfq_hash = kmalloc_node(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL, q->node);
2023 if (!cfqd->cfq_hash)
2024 goto out_free;
2025
2026 for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
2027 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
2028
2029 cfqd->queue = q;
2030
2031 init_timer(&cfqd->idle_slice_timer);
2032 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2033 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2034
2035 init_timer(&cfqd->idle_class_timer);
2036 cfqd->idle_class_timer.function = cfq_idle_class_timer;
2037 cfqd->idle_class_timer.data = (unsigned long) cfqd;
2038
2039 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2040
2041 cfqd->cfq_quantum = cfq_quantum;
2042 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2043 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2044 cfqd->cfq_back_max = cfq_back_max;
2045 cfqd->cfq_back_penalty = cfq_back_penalty;
2046 cfqd->cfq_slice[0] = cfq_slice_async;
2047 cfqd->cfq_slice[1] = cfq_slice_sync;
2048 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2049 cfqd->cfq_slice_idle = cfq_slice_idle;
2050
2051 return cfqd;
2052 out_free:
2053 kfree(cfqd);
2054 return NULL;
2055 }
2056
2057 static void cfq_slab_kill(void)
2058 {
2059 if (cfq_pool)
2060 kmem_cache_destroy(cfq_pool);
2061 if (cfq_ioc_pool)
2062 kmem_cache_destroy(cfq_ioc_pool);
2063 }
2064
2065 static int __init cfq_slab_setup(void)
2066 {
2067 cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2068 NULL, NULL);
2069 if (!cfq_pool)
2070 goto fail;
2071
2072 cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2073 sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2074 if (!cfq_ioc_pool)
2075 goto fail;
2076
2077 return 0;
2078 fail:
2079 cfq_slab_kill();
2080 return -ENOMEM;
2081 }
2082
2083 /*
2084 * sysfs parts below -->
2085 */
2086 static ssize_t
2087 cfq_var_show(unsigned int var, char *page)
2088 {
2089 return sprintf(page, "%d\n", var);
2090 }
2091
2092 static ssize_t
2093 cfq_var_store(unsigned int *var, const char *page, size_t count)
2094 {
2095 char *p = (char *) page;
2096
2097 *var = simple_strtoul(p, &p, 10);
2098 return count;
2099 }
2100
2101 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2102 static ssize_t __FUNC(elevator_t *e, char *page) \
2103 { \
2104 struct cfq_data *cfqd = e->elevator_data; \
2105 unsigned int __data = __VAR; \
2106 if (__CONV) \
2107 __data = jiffies_to_msecs(__data); \
2108 return cfq_var_show(__data, (page)); \
2109 }
2110 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2111 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2112 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2113 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2114 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2115 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2116 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2117 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2118 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2119 #undef SHOW_FUNCTION
2120
2121 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2122 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2123 { \
2124 struct cfq_data *cfqd = e->elevator_data; \
2125 unsigned int __data; \
2126 int ret = cfq_var_store(&__data, (page), count); \
2127 if (__data < (MIN)) \
2128 __data = (MIN); \
2129 else if (__data > (MAX)) \
2130 __data = (MAX); \
2131 if (__CONV) \
2132 *(__PTR) = msecs_to_jiffies(__data); \
2133 else \
2134 *(__PTR) = __data; \
2135 return ret; \
2136 }
2137 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2138 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2139 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2140 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2141 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2142 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2143 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2144 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2145 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2146 #undef STORE_FUNCTION
2147
2148 #define CFQ_ATTR(name) \
2149 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2150
2151 static struct elv_fs_entry cfq_attrs[] = {
2152 CFQ_ATTR(quantum),
2153 CFQ_ATTR(fifo_expire_sync),
2154 CFQ_ATTR(fifo_expire_async),
2155 CFQ_ATTR(back_seek_max),
2156 CFQ_ATTR(back_seek_penalty),
2157 CFQ_ATTR(slice_sync),
2158 CFQ_ATTR(slice_async),
2159 CFQ_ATTR(slice_async_rq),
2160 CFQ_ATTR(slice_idle),
2161 __ATTR_NULL
2162 };
2163
2164 static struct elevator_type iosched_cfq = {
2165 .ops = {
2166 .elevator_merge_fn = cfq_merge,
2167 .elevator_merged_fn = cfq_merged_request,
2168 .elevator_merge_req_fn = cfq_merged_requests,
2169 .elevator_allow_merge_fn = cfq_allow_merge,
2170 .elevator_dispatch_fn = cfq_dispatch_requests,
2171 .elevator_add_req_fn = cfq_insert_request,
2172 .elevator_activate_req_fn = cfq_activate_request,
2173 .elevator_deactivate_req_fn = cfq_deactivate_request,
2174 .elevator_queue_empty_fn = cfq_queue_empty,
2175 .elevator_completed_req_fn = cfq_completed_request,
2176 .elevator_former_req_fn = elv_rb_former_request,
2177 .elevator_latter_req_fn = elv_rb_latter_request,
2178 .elevator_set_req_fn = cfq_set_request,
2179 .elevator_put_req_fn = cfq_put_request,
2180 .elevator_may_queue_fn = cfq_may_queue,
2181 .elevator_init_fn = cfq_init_queue,
2182 .elevator_exit_fn = cfq_exit_queue,
2183 .trim = cfq_free_io_context,
2184 },
2185 .elevator_attrs = cfq_attrs,
2186 .elevator_name = "cfq",
2187 .elevator_owner = THIS_MODULE,
2188 };
2189
2190 static int __init cfq_init(void)
2191 {
2192 int ret;
2193
2194 /*
2195 * could be 0 on HZ < 1000 setups
2196 */
2197 if (!cfq_slice_async)
2198 cfq_slice_async = 1;
2199 if (!cfq_slice_idle)
2200 cfq_slice_idle = 1;
2201
2202 if (cfq_slab_setup())
2203 return -ENOMEM;
2204
2205 ret = elv_register(&iosched_cfq);
2206 if (ret)
2207 cfq_slab_kill();
2208
2209 return ret;
2210 }
2211
2212 static void __exit cfq_exit(void)
2213 {
2214 DECLARE_COMPLETION_ONSTACK(all_gone);
2215 elv_unregister(&iosched_cfq);
2216 ioc_gone = &all_gone;
2217 /* ioc_gone's update must be visible before reading ioc_count */
2218 smp_wmb();
2219 if (elv_ioc_count_read(ioc_count))
2220 wait_for_completion(ioc_gone);
2221 synchronize_rcu();
2222 cfq_slab_kill();
2223 }
2224
2225 module_init(cfq_init);
2226 module_exit(cfq_exit);
2227
2228 MODULE_AUTHOR("Jens Axboe");
2229 MODULE_LICENSE("GPL");
2230 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
This page took 0.078037 seconds and 5 git commands to generate.