CFQ: move think time check variables to a separate struct
[deliverable/linux.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "cfq.h"
18
19 /*
20 * tunables
21 */
22 /* max queue in one round of service */
23 static const int cfq_quantum = 8;
24 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25 /* maximum backwards seek, in KiB */
26 static const int cfq_back_max = 16 * 1024;
27 /* penalty of a backwards seek */
28 static const int cfq_back_penalty = 2;
29 static const int cfq_slice_sync = HZ / 10;
30 static int cfq_slice_async = HZ / 25;
31 static const int cfq_slice_async_rq = 2;
32 static int cfq_slice_idle = HZ / 125;
33 static int cfq_group_idle = HZ / 125;
34 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
35 static const int cfq_hist_divisor = 4;
36
37 /*
38 * offset from end of service tree
39 */
40 #define CFQ_IDLE_DELAY (HZ / 5)
41
42 /*
43 * below this threshold, we consider thinktime immediate
44 */
45 #define CFQ_MIN_TT (2)
46
47 #define CFQ_SLICE_SCALE (5)
48 #define CFQ_HW_QUEUE_MIN (5)
49 #define CFQ_SERVICE_SHIFT 12
50
51 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
52 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
53 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
54 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
55
56 #define RQ_CIC(rq) \
57 ((struct cfq_io_context *) (rq)->elevator_private[0])
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
60
61 static struct kmem_cache *cfq_pool;
62 static struct kmem_cache *cfq_ioc_pool;
63
64 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
65 static struct completion *ioc_gone;
66 static DEFINE_SPINLOCK(ioc_gone_lock);
67
68 static DEFINE_SPINLOCK(cic_index_lock);
69 static DEFINE_IDA(cic_index_ida);
70
71 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
72 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
73 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
74
75 #define sample_valid(samples) ((samples) > 80)
76 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
77
78 /*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84 struct cfq_rb_root {
85 struct rb_root rb;
86 struct rb_node *left;
87 unsigned count;
88 unsigned total_weight;
89 u64 min_vdisktime;
90 };
91 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
92 .count = 0, .min_vdisktime = 0, }
93
94 /*
95 * Per process-grouping structure
96 */
97 struct cfq_queue {
98 /* reference count */
99 int ref;
100 /* various state flags, see below */
101 unsigned int flags;
102 /* parent cfq_data */
103 struct cfq_data *cfqd;
104 /* service_tree member */
105 struct rb_node rb_node;
106 /* service_tree key */
107 unsigned long rb_key;
108 /* prio tree member */
109 struct rb_node p_node;
110 /* prio tree root we belong to, if any */
111 struct rb_root *p_root;
112 /* sorted list of pending requests */
113 struct rb_root sort_list;
114 /* if fifo isn't expired, next request to serve */
115 struct request *next_rq;
116 /* requests queued in sort_list */
117 int queued[2];
118 /* currently allocated requests */
119 int allocated[2];
120 /* fifo list of requests in sort_list */
121 struct list_head fifo;
122
123 /* time when queue got scheduled in to dispatch first request. */
124 unsigned long dispatch_start;
125 unsigned int allocated_slice;
126 unsigned int slice_dispatch;
127 /* time when first request from queue completed and slice started. */
128 unsigned long slice_start;
129 unsigned long slice_end;
130 long slice_resid;
131
132 /* number of requests that are on the dispatch list or inside driver */
133 int dispatched;
134
135 /* io prio of this group */
136 unsigned short ioprio, org_ioprio;
137 unsigned short ioprio_class;
138
139 pid_t pid;
140
141 u32 seek_history;
142 sector_t last_request_pos;
143
144 struct cfq_rb_root *service_tree;
145 struct cfq_queue *new_cfqq;
146 struct cfq_group *cfqg;
147 /* Number of sectors dispatched from queue in single dispatch round */
148 unsigned long nr_sectors;
149 };
150
151 /*
152 * First index in the service_trees.
153 * IDLE is handled separately, so it has negative index
154 */
155 enum wl_prio_t {
156 BE_WORKLOAD = 0,
157 RT_WORKLOAD = 1,
158 IDLE_WORKLOAD = 2,
159 CFQ_PRIO_NR,
160 };
161
162 /*
163 * Second index in the service_trees.
164 */
165 enum wl_type_t {
166 ASYNC_WORKLOAD = 0,
167 SYNC_NOIDLE_WORKLOAD = 1,
168 SYNC_WORKLOAD = 2
169 };
170
171 /* This is per cgroup per device grouping structure */
172 struct cfq_group {
173 /* group service_tree member */
174 struct rb_node rb_node;
175
176 /* group service_tree key */
177 u64 vdisktime;
178 unsigned int weight;
179 unsigned int new_weight;
180 bool needs_update;
181
182 /* number of cfqq currently on this group */
183 int nr_cfqq;
184
185 /*
186 * Per group busy queues average. Useful for workload slice calc. We
187 * create the array for each prio class but at run time it is used
188 * only for RT and BE class and slot for IDLE class remains unused.
189 * This is primarily done to avoid confusion and a gcc warning.
190 */
191 unsigned int busy_queues_avg[CFQ_PRIO_NR];
192 /*
193 * rr lists of queues with requests. We maintain service trees for
194 * RT and BE classes. These trees are subdivided in subclasses
195 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
196 * class there is no subclassification and all the cfq queues go on
197 * a single tree service_tree_idle.
198 * Counts are embedded in the cfq_rb_root
199 */
200 struct cfq_rb_root service_trees[2][3];
201 struct cfq_rb_root service_tree_idle;
202
203 unsigned long saved_workload_slice;
204 enum wl_type_t saved_workload;
205 enum wl_prio_t saved_serving_prio;
206 struct blkio_group blkg;
207 #ifdef CONFIG_CFQ_GROUP_IOSCHED
208 struct hlist_node cfqd_node;
209 int ref;
210 #endif
211 /* number of requests that are on the dispatch list or inside driver */
212 int dispatched;
213 };
214
215 /*
216 * Per block device queue structure
217 */
218 struct cfq_data {
219 struct request_queue *queue;
220 /* Root service tree for cfq_groups */
221 struct cfq_rb_root grp_service_tree;
222 struct cfq_group root_group;
223
224 /*
225 * The priority currently being served
226 */
227 enum wl_prio_t serving_prio;
228 enum wl_type_t serving_type;
229 unsigned long workload_expires;
230 struct cfq_group *serving_group;
231
232 /*
233 * Each priority tree is sorted by next_request position. These
234 * trees are used when determining if two or more queues are
235 * interleaving requests (see cfq_close_cooperator).
236 */
237 struct rb_root prio_trees[CFQ_PRIO_LISTS];
238
239 unsigned int busy_queues;
240 unsigned int busy_sync_queues;
241
242 int rq_in_driver;
243 int rq_in_flight[2];
244
245 /*
246 * queue-depth detection
247 */
248 int rq_queued;
249 int hw_tag;
250 /*
251 * hw_tag can be
252 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
253 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
254 * 0 => no NCQ
255 */
256 int hw_tag_est_depth;
257 unsigned int hw_tag_samples;
258
259 /*
260 * idle window management
261 */
262 struct timer_list idle_slice_timer;
263 struct work_struct unplug_work;
264
265 struct cfq_queue *active_queue;
266 struct cfq_io_context *active_cic;
267
268 /*
269 * async queue for each priority case
270 */
271 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
272 struct cfq_queue *async_idle_cfqq;
273
274 sector_t last_position;
275
276 /*
277 * tunables, see top of file
278 */
279 unsigned int cfq_quantum;
280 unsigned int cfq_fifo_expire[2];
281 unsigned int cfq_back_penalty;
282 unsigned int cfq_back_max;
283 unsigned int cfq_slice[2];
284 unsigned int cfq_slice_async_rq;
285 unsigned int cfq_slice_idle;
286 unsigned int cfq_group_idle;
287 unsigned int cfq_latency;
288
289 unsigned int cic_index;
290 struct list_head cic_list;
291
292 /*
293 * Fallback dummy cfqq for extreme OOM conditions
294 */
295 struct cfq_queue oom_cfqq;
296
297 unsigned long last_delayed_sync;
298
299 /* List of cfq groups being managed on this device*/
300 struct hlist_head cfqg_list;
301
302 /* Number of groups which are on blkcg->blkg_list */
303 unsigned int nr_blkcg_linked_grps;
304 };
305
306 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
307
308 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
309 enum wl_prio_t prio,
310 enum wl_type_t type)
311 {
312 if (!cfqg)
313 return NULL;
314
315 if (prio == IDLE_WORKLOAD)
316 return &cfqg->service_tree_idle;
317
318 return &cfqg->service_trees[prio][type];
319 }
320
321 enum cfqq_state_flags {
322 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
323 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
324 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
325 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
326 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
327 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
328 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
329 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
330 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
331 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
332 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
333 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
334 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
335 };
336
337 #define CFQ_CFQQ_FNS(name) \
338 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
339 { \
340 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
341 } \
342 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
343 { \
344 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
345 } \
346 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
347 { \
348 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
349 }
350
351 CFQ_CFQQ_FNS(on_rr);
352 CFQ_CFQQ_FNS(wait_request);
353 CFQ_CFQQ_FNS(must_dispatch);
354 CFQ_CFQQ_FNS(must_alloc_slice);
355 CFQ_CFQQ_FNS(fifo_expire);
356 CFQ_CFQQ_FNS(idle_window);
357 CFQ_CFQQ_FNS(prio_changed);
358 CFQ_CFQQ_FNS(slice_new);
359 CFQ_CFQQ_FNS(sync);
360 CFQ_CFQQ_FNS(coop);
361 CFQ_CFQQ_FNS(split_coop);
362 CFQ_CFQQ_FNS(deep);
363 CFQ_CFQQ_FNS(wait_busy);
364 #undef CFQ_CFQQ_FNS
365
366 #ifdef CONFIG_CFQ_GROUP_IOSCHED
367 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
368 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
369 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
370 blkg_path(&(cfqq)->cfqg->blkg), ##args)
371
372 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
373 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
374 blkg_path(&(cfqg)->blkg), ##args) \
375
376 #else
377 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
378 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
379 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
380 #endif
381 #define cfq_log(cfqd, fmt, args...) \
382 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
383
384 /* Traverses through cfq group service trees */
385 #define for_each_cfqg_st(cfqg, i, j, st) \
386 for (i = 0; i <= IDLE_WORKLOAD; i++) \
387 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
388 : &cfqg->service_tree_idle; \
389 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
390 (i == IDLE_WORKLOAD && j == 0); \
391 j++, st = i < IDLE_WORKLOAD ? \
392 &cfqg->service_trees[i][j]: NULL) \
393
394
395 static inline bool iops_mode(struct cfq_data *cfqd)
396 {
397 /*
398 * If we are not idling on queues and it is a NCQ drive, parallel
399 * execution of requests is on and measuring time is not possible
400 * in most of the cases until and unless we drive shallower queue
401 * depths and that becomes a performance bottleneck. In such cases
402 * switch to start providing fairness in terms of number of IOs.
403 */
404 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
405 return true;
406 else
407 return false;
408 }
409
410 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
411 {
412 if (cfq_class_idle(cfqq))
413 return IDLE_WORKLOAD;
414 if (cfq_class_rt(cfqq))
415 return RT_WORKLOAD;
416 return BE_WORKLOAD;
417 }
418
419
420 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
421 {
422 if (!cfq_cfqq_sync(cfqq))
423 return ASYNC_WORKLOAD;
424 if (!cfq_cfqq_idle_window(cfqq))
425 return SYNC_NOIDLE_WORKLOAD;
426 return SYNC_WORKLOAD;
427 }
428
429 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
430 struct cfq_data *cfqd,
431 struct cfq_group *cfqg)
432 {
433 if (wl == IDLE_WORKLOAD)
434 return cfqg->service_tree_idle.count;
435
436 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
437 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
438 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
439 }
440
441 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
442 struct cfq_group *cfqg)
443 {
444 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
445 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
446 }
447
448 static void cfq_dispatch_insert(struct request_queue *, struct request *);
449 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
450 struct io_context *, gfp_t);
451 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
452 struct io_context *);
453
454 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
455 bool is_sync)
456 {
457 return cic->cfqq[is_sync];
458 }
459
460 static inline void cic_set_cfqq(struct cfq_io_context *cic,
461 struct cfq_queue *cfqq, bool is_sync)
462 {
463 cic->cfqq[is_sync] = cfqq;
464 }
465
466 #define CIC_DEAD_KEY 1ul
467 #define CIC_DEAD_INDEX_SHIFT 1
468
469 static inline void *cfqd_dead_key(struct cfq_data *cfqd)
470 {
471 return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
472 }
473
474 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
475 {
476 struct cfq_data *cfqd = cic->key;
477
478 if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
479 return NULL;
480
481 return cfqd;
482 }
483
484 /*
485 * We regard a request as SYNC, if it's either a read or has the SYNC bit
486 * set (in which case it could also be direct WRITE).
487 */
488 static inline bool cfq_bio_sync(struct bio *bio)
489 {
490 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
491 }
492
493 /*
494 * scheduler run of queue, if there are requests pending and no one in the
495 * driver that will restart queueing
496 */
497 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
498 {
499 if (cfqd->busy_queues) {
500 cfq_log(cfqd, "schedule dispatch");
501 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
502 }
503 }
504
505 /*
506 * Scale schedule slice based on io priority. Use the sync time slice only
507 * if a queue is marked sync and has sync io queued. A sync queue with async
508 * io only, should not get full sync slice length.
509 */
510 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
511 unsigned short prio)
512 {
513 const int base_slice = cfqd->cfq_slice[sync];
514
515 WARN_ON(prio >= IOPRIO_BE_NR);
516
517 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
518 }
519
520 static inline int
521 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
522 {
523 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
524 }
525
526 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
527 {
528 u64 d = delta << CFQ_SERVICE_SHIFT;
529
530 d = d * BLKIO_WEIGHT_DEFAULT;
531 do_div(d, cfqg->weight);
532 return d;
533 }
534
535 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
536 {
537 s64 delta = (s64)(vdisktime - min_vdisktime);
538 if (delta > 0)
539 min_vdisktime = vdisktime;
540
541 return min_vdisktime;
542 }
543
544 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
545 {
546 s64 delta = (s64)(vdisktime - min_vdisktime);
547 if (delta < 0)
548 min_vdisktime = vdisktime;
549
550 return min_vdisktime;
551 }
552
553 static void update_min_vdisktime(struct cfq_rb_root *st)
554 {
555 struct cfq_group *cfqg;
556
557 if (st->left) {
558 cfqg = rb_entry_cfqg(st->left);
559 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
560 cfqg->vdisktime);
561 }
562 }
563
564 /*
565 * get averaged number of queues of RT/BE priority.
566 * average is updated, with a formula that gives more weight to higher numbers,
567 * to quickly follows sudden increases and decrease slowly
568 */
569
570 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
571 struct cfq_group *cfqg, bool rt)
572 {
573 unsigned min_q, max_q;
574 unsigned mult = cfq_hist_divisor - 1;
575 unsigned round = cfq_hist_divisor / 2;
576 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
577
578 min_q = min(cfqg->busy_queues_avg[rt], busy);
579 max_q = max(cfqg->busy_queues_avg[rt], busy);
580 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
581 cfq_hist_divisor;
582 return cfqg->busy_queues_avg[rt];
583 }
584
585 static inline unsigned
586 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
587 {
588 struct cfq_rb_root *st = &cfqd->grp_service_tree;
589
590 return cfq_target_latency * cfqg->weight / st->total_weight;
591 }
592
593 static inline unsigned
594 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
595 {
596 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
597 if (cfqd->cfq_latency) {
598 /*
599 * interested queues (we consider only the ones with the same
600 * priority class in the cfq group)
601 */
602 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
603 cfq_class_rt(cfqq));
604 unsigned sync_slice = cfqd->cfq_slice[1];
605 unsigned expect_latency = sync_slice * iq;
606 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
607
608 if (expect_latency > group_slice) {
609 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
610 /* scale low_slice according to IO priority
611 * and sync vs async */
612 unsigned low_slice =
613 min(slice, base_low_slice * slice / sync_slice);
614 /* the adapted slice value is scaled to fit all iqs
615 * into the target latency */
616 slice = max(slice * group_slice / expect_latency,
617 low_slice);
618 }
619 }
620 return slice;
621 }
622
623 static inline void
624 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
625 {
626 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
627
628 cfqq->slice_start = jiffies;
629 cfqq->slice_end = jiffies + slice;
630 cfqq->allocated_slice = slice;
631 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
632 }
633
634 /*
635 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
636 * isn't valid until the first request from the dispatch is activated
637 * and the slice time set.
638 */
639 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
640 {
641 if (cfq_cfqq_slice_new(cfqq))
642 return false;
643 if (time_before(jiffies, cfqq->slice_end))
644 return false;
645
646 return true;
647 }
648
649 /*
650 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
651 * We choose the request that is closest to the head right now. Distance
652 * behind the head is penalized and only allowed to a certain extent.
653 */
654 static struct request *
655 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
656 {
657 sector_t s1, s2, d1 = 0, d2 = 0;
658 unsigned long back_max;
659 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
660 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
661 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
662
663 if (rq1 == NULL || rq1 == rq2)
664 return rq2;
665 if (rq2 == NULL)
666 return rq1;
667
668 if (rq_is_sync(rq1) != rq_is_sync(rq2))
669 return rq_is_sync(rq1) ? rq1 : rq2;
670
671 s1 = blk_rq_pos(rq1);
672 s2 = blk_rq_pos(rq2);
673
674 /*
675 * by definition, 1KiB is 2 sectors
676 */
677 back_max = cfqd->cfq_back_max * 2;
678
679 /*
680 * Strict one way elevator _except_ in the case where we allow
681 * short backward seeks which are biased as twice the cost of a
682 * similar forward seek.
683 */
684 if (s1 >= last)
685 d1 = s1 - last;
686 else if (s1 + back_max >= last)
687 d1 = (last - s1) * cfqd->cfq_back_penalty;
688 else
689 wrap |= CFQ_RQ1_WRAP;
690
691 if (s2 >= last)
692 d2 = s2 - last;
693 else if (s2 + back_max >= last)
694 d2 = (last - s2) * cfqd->cfq_back_penalty;
695 else
696 wrap |= CFQ_RQ2_WRAP;
697
698 /* Found required data */
699
700 /*
701 * By doing switch() on the bit mask "wrap" we avoid having to
702 * check two variables for all permutations: --> faster!
703 */
704 switch (wrap) {
705 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
706 if (d1 < d2)
707 return rq1;
708 else if (d2 < d1)
709 return rq2;
710 else {
711 if (s1 >= s2)
712 return rq1;
713 else
714 return rq2;
715 }
716
717 case CFQ_RQ2_WRAP:
718 return rq1;
719 case CFQ_RQ1_WRAP:
720 return rq2;
721 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
722 default:
723 /*
724 * Since both rqs are wrapped,
725 * start with the one that's further behind head
726 * (--> only *one* back seek required),
727 * since back seek takes more time than forward.
728 */
729 if (s1 <= s2)
730 return rq1;
731 else
732 return rq2;
733 }
734 }
735
736 /*
737 * The below is leftmost cache rbtree addon
738 */
739 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
740 {
741 /* Service tree is empty */
742 if (!root->count)
743 return NULL;
744
745 if (!root->left)
746 root->left = rb_first(&root->rb);
747
748 if (root->left)
749 return rb_entry(root->left, struct cfq_queue, rb_node);
750
751 return NULL;
752 }
753
754 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
755 {
756 if (!root->left)
757 root->left = rb_first(&root->rb);
758
759 if (root->left)
760 return rb_entry_cfqg(root->left);
761
762 return NULL;
763 }
764
765 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
766 {
767 rb_erase(n, root);
768 RB_CLEAR_NODE(n);
769 }
770
771 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
772 {
773 if (root->left == n)
774 root->left = NULL;
775 rb_erase_init(n, &root->rb);
776 --root->count;
777 }
778
779 /*
780 * would be nice to take fifo expire time into account as well
781 */
782 static struct request *
783 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
784 struct request *last)
785 {
786 struct rb_node *rbnext = rb_next(&last->rb_node);
787 struct rb_node *rbprev = rb_prev(&last->rb_node);
788 struct request *next = NULL, *prev = NULL;
789
790 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
791
792 if (rbprev)
793 prev = rb_entry_rq(rbprev);
794
795 if (rbnext)
796 next = rb_entry_rq(rbnext);
797 else {
798 rbnext = rb_first(&cfqq->sort_list);
799 if (rbnext && rbnext != &last->rb_node)
800 next = rb_entry_rq(rbnext);
801 }
802
803 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
804 }
805
806 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
807 struct cfq_queue *cfqq)
808 {
809 /*
810 * just an approximation, should be ok.
811 */
812 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
813 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
814 }
815
816 static inline s64
817 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
818 {
819 return cfqg->vdisktime - st->min_vdisktime;
820 }
821
822 static void
823 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
824 {
825 struct rb_node **node = &st->rb.rb_node;
826 struct rb_node *parent = NULL;
827 struct cfq_group *__cfqg;
828 s64 key = cfqg_key(st, cfqg);
829 int left = 1;
830
831 while (*node != NULL) {
832 parent = *node;
833 __cfqg = rb_entry_cfqg(parent);
834
835 if (key < cfqg_key(st, __cfqg))
836 node = &parent->rb_left;
837 else {
838 node = &parent->rb_right;
839 left = 0;
840 }
841 }
842
843 if (left)
844 st->left = &cfqg->rb_node;
845
846 rb_link_node(&cfqg->rb_node, parent, node);
847 rb_insert_color(&cfqg->rb_node, &st->rb);
848 }
849
850 static void
851 cfq_update_group_weight(struct cfq_group *cfqg)
852 {
853 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
854 if (cfqg->needs_update) {
855 cfqg->weight = cfqg->new_weight;
856 cfqg->needs_update = false;
857 }
858 }
859
860 static void
861 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
862 {
863 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
864
865 cfq_update_group_weight(cfqg);
866 __cfq_group_service_tree_add(st, cfqg);
867 st->total_weight += cfqg->weight;
868 }
869
870 static void
871 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
872 {
873 struct cfq_rb_root *st = &cfqd->grp_service_tree;
874 struct cfq_group *__cfqg;
875 struct rb_node *n;
876
877 cfqg->nr_cfqq++;
878 if (!RB_EMPTY_NODE(&cfqg->rb_node))
879 return;
880
881 /*
882 * Currently put the group at the end. Later implement something
883 * so that groups get lesser vtime based on their weights, so that
884 * if group does not loose all if it was not continuously backlogged.
885 */
886 n = rb_last(&st->rb);
887 if (n) {
888 __cfqg = rb_entry_cfqg(n);
889 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
890 } else
891 cfqg->vdisktime = st->min_vdisktime;
892 cfq_group_service_tree_add(st, cfqg);
893 }
894
895 static void
896 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
897 {
898 st->total_weight -= cfqg->weight;
899 if (!RB_EMPTY_NODE(&cfqg->rb_node))
900 cfq_rb_erase(&cfqg->rb_node, st);
901 }
902
903 static void
904 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
905 {
906 struct cfq_rb_root *st = &cfqd->grp_service_tree;
907
908 BUG_ON(cfqg->nr_cfqq < 1);
909 cfqg->nr_cfqq--;
910
911 /* If there are other cfq queues under this group, don't delete it */
912 if (cfqg->nr_cfqq)
913 return;
914
915 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
916 cfq_group_service_tree_del(st, cfqg);
917 cfqg->saved_workload_slice = 0;
918 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
919 }
920
921 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
922 unsigned int *unaccounted_time)
923 {
924 unsigned int slice_used;
925
926 /*
927 * Queue got expired before even a single request completed or
928 * got expired immediately after first request completion.
929 */
930 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
931 /*
932 * Also charge the seek time incurred to the group, otherwise
933 * if there are mutiple queues in the group, each can dispatch
934 * a single request on seeky media and cause lots of seek time
935 * and group will never know it.
936 */
937 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
938 1);
939 } else {
940 slice_used = jiffies - cfqq->slice_start;
941 if (slice_used > cfqq->allocated_slice) {
942 *unaccounted_time = slice_used - cfqq->allocated_slice;
943 slice_used = cfqq->allocated_slice;
944 }
945 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
946 *unaccounted_time += cfqq->slice_start -
947 cfqq->dispatch_start;
948 }
949
950 return slice_used;
951 }
952
953 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
954 struct cfq_queue *cfqq)
955 {
956 struct cfq_rb_root *st = &cfqd->grp_service_tree;
957 unsigned int used_sl, charge, unaccounted_sl = 0;
958 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
959 - cfqg->service_tree_idle.count;
960
961 BUG_ON(nr_sync < 0);
962 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
963
964 if (iops_mode(cfqd))
965 charge = cfqq->slice_dispatch;
966 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
967 charge = cfqq->allocated_slice;
968
969 /* Can't update vdisktime while group is on service tree */
970 cfq_group_service_tree_del(st, cfqg);
971 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
972 /* If a new weight was requested, update now, off tree */
973 cfq_group_service_tree_add(st, cfqg);
974
975 /* This group is being expired. Save the context */
976 if (time_after(cfqd->workload_expires, jiffies)) {
977 cfqg->saved_workload_slice = cfqd->workload_expires
978 - jiffies;
979 cfqg->saved_workload = cfqd->serving_type;
980 cfqg->saved_serving_prio = cfqd->serving_prio;
981 } else
982 cfqg->saved_workload_slice = 0;
983
984 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
985 st->min_vdisktime);
986 cfq_log_cfqq(cfqq->cfqd, cfqq,
987 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
988 used_sl, cfqq->slice_dispatch, charge,
989 iops_mode(cfqd), cfqq->nr_sectors);
990 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
991 unaccounted_sl);
992 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
993 }
994
995 #ifdef CONFIG_CFQ_GROUP_IOSCHED
996 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
997 {
998 if (blkg)
999 return container_of(blkg, struct cfq_group, blkg);
1000 return NULL;
1001 }
1002
1003 static void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
1004 unsigned int weight)
1005 {
1006 struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1007 cfqg->new_weight = weight;
1008 cfqg->needs_update = true;
1009 }
1010
1011 static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
1012 struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
1013 {
1014 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1015 unsigned int major, minor;
1016
1017 /*
1018 * Add group onto cgroup list. It might happen that bdi->dev is
1019 * not initialized yet. Initialize this new group without major
1020 * and minor info and this info will be filled in once a new thread
1021 * comes for IO.
1022 */
1023 if (bdi->dev) {
1024 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1025 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1026 (void *)cfqd, MKDEV(major, minor));
1027 } else
1028 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1029 (void *)cfqd, 0);
1030
1031 cfqd->nr_blkcg_linked_grps++;
1032 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1033
1034 /* Add group on cfqd list */
1035 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1036 }
1037
1038 /*
1039 * Should be called from sleepable context. No request queue lock as per
1040 * cpu stats are allocated dynamically and alloc_percpu needs to be called
1041 * from sleepable context.
1042 */
1043 static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
1044 {
1045 struct cfq_group *cfqg = NULL;
1046 int i, j, ret;
1047 struct cfq_rb_root *st;
1048
1049 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1050 if (!cfqg)
1051 return NULL;
1052
1053 for_each_cfqg_st(cfqg, i, j, st)
1054 *st = CFQ_RB_ROOT;
1055 RB_CLEAR_NODE(&cfqg->rb_node);
1056
1057 /*
1058 * Take the initial reference that will be released on destroy
1059 * This can be thought of a joint reference by cgroup and
1060 * elevator which will be dropped by either elevator exit
1061 * or cgroup deletion path depending on who is exiting first.
1062 */
1063 cfqg->ref = 1;
1064
1065 ret = blkio_alloc_blkg_stats(&cfqg->blkg);
1066 if (ret) {
1067 kfree(cfqg);
1068 return NULL;
1069 }
1070
1071 return cfqg;
1072 }
1073
1074 static struct cfq_group *
1075 cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
1076 {
1077 struct cfq_group *cfqg = NULL;
1078 void *key = cfqd;
1079 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1080 unsigned int major, minor;
1081
1082 /*
1083 * This is the common case when there are no blkio cgroups.
1084 * Avoid lookup in this case
1085 */
1086 if (blkcg == &blkio_root_cgroup)
1087 cfqg = &cfqd->root_group;
1088 else
1089 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
1090
1091 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1092 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1093 cfqg->blkg.dev = MKDEV(major, minor);
1094 }
1095
1096 return cfqg;
1097 }
1098
1099 /*
1100 * Search for the cfq group current task belongs to. request_queue lock must
1101 * be held.
1102 */
1103 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1104 {
1105 struct blkio_cgroup *blkcg;
1106 struct cfq_group *cfqg = NULL, *__cfqg = NULL;
1107 struct request_queue *q = cfqd->queue;
1108
1109 rcu_read_lock();
1110 blkcg = task_blkio_cgroup(current);
1111 cfqg = cfq_find_cfqg(cfqd, blkcg);
1112 if (cfqg) {
1113 rcu_read_unlock();
1114 return cfqg;
1115 }
1116
1117 /*
1118 * Need to allocate a group. Allocation of group also needs allocation
1119 * of per cpu stats which in-turn takes a mutex() and can block. Hence
1120 * we need to drop rcu lock and queue_lock before we call alloc.
1121 *
1122 * Not taking any queue reference here and assuming that queue is
1123 * around by the time we return. CFQ queue allocation code does
1124 * the same. It might be racy though.
1125 */
1126
1127 rcu_read_unlock();
1128 spin_unlock_irq(q->queue_lock);
1129
1130 cfqg = cfq_alloc_cfqg(cfqd);
1131
1132 spin_lock_irq(q->queue_lock);
1133
1134 rcu_read_lock();
1135 blkcg = task_blkio_cgroup(current);
1136
1137 /*
1138 * If some other thread already allocated the group while we were
1139 * not holding queue lock, free up the group
1140 */
1141 __cfqg = cfq_find_cfqg(cfqd, blkcg);
1142
1143 if (__cfqg) {
1144 kfree(cfqg);
1145 rcu_read_unlock();
1146 return __cfqg;
1147 }
1148
1149 if (!cfqg)
1150 cfqg = &cfqd->root_group;
1151
1152 cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
1153 rcu_read_unlock();
1154 return cfqg;
1155 }
1156
1157 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1158 {
1159 cfqg->ref++;
1160 return cfqg;
1161 }
1162
1163 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1164 {
1165 /* Currently, all async queues are mapped to root group */
1166 if (!cfq_cfqq_sync(cfqq))
1167 cfqg = &cfqq->cfqd->root_group;
1168
1169 cfqq->cfqg = cfqg;
1170 /* cfqq reference on cfqg */
1171 cfqq->cfqg->ref++;
1172 }
1173
1174 static void cfq_put_cfqg(struct cfq_group *cfqg)
1175 {
1176 struct cfq_rb_root *st;
1177 int i, j;
1178
1179 BUG_ON(cfqg->ref <= 0);
1180 cfqg->ref--;
1181 if (cfqg->ref)
1182 return;
1183 for_each_cfqg_st(cfqg, i, j, st)
1184 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
1185 free_percpu(cfqg->blkg.stats_cpu);
1186 kfree(cfqg);
1187 }
1188
1189 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1190 {
1191 /* Something wrong if we are trying to remove same group twice */
1192 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1193
1194 hlist_del_init(&cfqg->cfqd_node);
1195
1196 /*
1197 * Put the reference taken at the time of creation so that when all
1198 * queues are gone, group can be destroyed.
1199 */
1200 cfq_put_cfqg(cfqg);
1201 }
1202
1203 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1204 {
1205 struct hlist_node *pos, *n;
1206 struct cfq_group *cfqg;
1207
1208 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1209 /*
1210 * If cgroup removal path got to blk_group first and removed
1211 * it from cgroup list, then it will take care of destroying
1212 * cfqg also.
1213 */
1214 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1215 cfq_destroy_cfqg(cfqd, cfqg);
1216 }
1217 }
1218
1219 /*
1220 * Blk cgroup controller notification saying that blkio_group object is being
1221 * delinked as associated cgroup object is going away. That also means that
1222 * no new IO will come in this group. So get rid of this group as soon as
1223 * any pending IO in the group is finished.
1224 *
1225 * This function is called under rcu_read_lock(). key is the rcu protected
1226 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1227 * read lock.
1228 *
1229 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1230 * it should not be NULL as even if elevator was exiting, cgroup deltion
1231 * path got to it first.
1232 */
1233 static void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1234 {
1235 unsigned long flags;
1236 struct cfq_data *cfqd = key;
1237
1238 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1239 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1240 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1241 }
1242
1243 #else /* GROUP_IOSCHED */
1244 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1245 {
1246 return &cfqd->root_group;
1247 }
1248
1249 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1250 {
1251 return cfqg;
1252 }
1253
1254 static inline void
1255 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1256 cfqq->cfqg = cfqg;
1257 }
1258
1259 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1260 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1261
1262 #endif /* GROUP_IOSCHED */
1263
1264 /*
1265 * The cfqd->service_trees holds all pending cfq_queue's that have
1266 * requests waiting to be processed. It is sorted in the order that
1267 * we will service the queues.
1268 */
1269 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1270 bool add_front)
1271 {
1272 struct rb_node **p, *parent;
1273 struct cfq_queue *__cfqq;
1274 unsigned long rb_key;
1275 struct cfq_rb_root *service_tree;
1276 int left;
1277 int new_cfqq = 1;
1278
1279 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1280 cfqq_type(cfqq));
1281 if (cfq_class_idle(cfqq)) {
1282 rb_key = CFQ_IDLE_DELAY;
1283 parent = rb_last(&service_tree->rb);
1284 if (parent && parent != &cfqq->rb_node) {
1285 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1286 rb_key += __cfqq->rb_key;
1287 } else
1288 rb_key += jiffies;
1289 } else if (!add_front) {
1290 /*
1291 * Get our rb key offset. Subtract any residual slice
1292 * value carried from last service. A negative resid
1293 * count indicates slice overrun, and this should position
1294 * the next service time further away in the tree.
1295 */
1296 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1297 rb_key -= cfqq->slice_resid;
1298 cfqq->slice_resid = 0;
1299 } else {
1300 rb_key = -HZ;
1301 __cfqq = cfq_rb_first(service_tree);
1302 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1303 }
1304
1305 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1306 new_cfqq = 0;
1307 /*
1308 * same position, nothing more to do
1309 */
1310 if (rb_key == cfqq->rb_key &&
1311 cfqq->service_tree == service_tree)
1312 return;
1313
1314 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1315 cfqq->service_tree = NULL;
1316 }
1317
1318 left = 1;
1319 parent = NULL;
1320 cfqq->service_tree = service_tree;
1321 p = &service_tree->rb.rb_node;
1322 while (*p) {
1323 struct rb_node **n;
1324
1325 parent = *p;
1326 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1327
1328 /*
1329 * sort by key, that represents service time.
1330 */
1331 if (time_before(rb_key, __cfqq->rb_key))
1332 n = &(*p)->rb_left;
1333 else {
1334 n = &(*p)->rb_right;
1335 left = 0;
1336 }
1337
1338 p = n;
1339 }
1340
1341 if (left)
1342 service_tree->left = &cfqq->rb_node;
1343
1344 cfqq->rb_key = rb_key;
1345 rb_link_node(&cfqq->rb_node, parent, p);
1346 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1347 service_tree->count++;
1348 if (add_front || !new_cfqq)
1349 return;
1350 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1351 }
1352
1353 static struct cfq_queue *
1354 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1355 sector_t sector, struct rb_node **ret_parent,
1356 struct rb_node ***rb_link)
1357 {
1358 struct rb_node **p, *parent;
1359 struct cfq_queue *cfqq = NULL;
1360
1361 parent = NULL;
1362 p = &root->rb_node;
1363 while (*p) {
1364 struct rb_node **n;
1365
1366 parent = *p;
1367 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1368
1369 /*
1370 * Sort strictly based on sector. Smallest to the left,
1371 * largest to the right.
1372 */
1373 if (sector > blk_rq_pos(cfqq->next_rq))
1374 n = &(*p)->rb_right;
1375 else if (sector < blk_rq_pos(cfqq->next_rq))
1376 n = &(*p)->rb_left;
1377 else
1378 break;
1379 p = n;
1380 cfqq = NULL;
1381 }
1382
1383 *ret_parent = parent;
1384 if (rb_link)
1385 *rb_link = p;
1386 return cfqq;
1387 }
1388
1389 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1390 {
1391 struct rb_node **p, *parent;
1392 struct cfq_queue *__cfqq;
1393
1394 if (cfqq->p_root) {
1395 rb_erase(&cfqq->p_node, cfqq->p_root);
1396 cfqq->p_root = NULL;
1397 }
1398
1399 if (cfq_class_idle(cfqq))
1400 return;
1401 if (!cfqq->next_rq)
1402 return;
1403
1404 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1405 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1406 blk_rq_pos(cfqq->next_rq), &parent, &p);
1407 if (!__cfqq) {
1408 rb_link_node(&cfqq->p_node, parent, p);
1409 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1410 } else
1411 cfqq->p_root = NULL;
1412 }
1413
1414 /*
1415 * Update cfqq's position in the service tree.
1416 */
1417 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1418 {
1419 /*
1420 * Resorting requires the cfqq to be on the RR list already.
1421 */
1422 if (cfq_cfqq_on_rr(cfqq)) {
1423 cfq_service_tree_add(cfqd, cfqq, 0);
1424 cfq_prio_tree_add(cfqd, cfqq);
1425 }
1426 }
1427
1428 /*
1429 * add to busy list of queues for service, trying to be fair in ordering
1430 * the pending list according to last request service
1431 */
1432 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1433 {
1434 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1435 BUG_ON(cfq_cfqq_on_rr(cfqq));
1436 cfq_mark_cfqq_on_rr(cfqq);
1437 cfqd->busy_queues++;
1438 if (cfq_cfqq_sync(cfqq))
1439 cfqd->busy_sync_queues++;
1440
1441 cfq_resort_rr_list(cfqd, cfqq);
1442 }
1443
1444 /*
1445 * Called when the cfqq no longer has requests pending, remove it from
1446 * the service tree.
1447 */
1448 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1449 {
1450 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1451 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1452 cfq_clear_cfqq_on_rr(cfqq);
1453
1454 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1455 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1456 cfqq->service_tree = NULL;
1457 }
1458 if (cfqq->p_root) {
1459 rb_erase(&cfqq->p_node, cfqq->p_root);
1460 cfqq->p_root = NULL;
1461 }
1462
1463 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1464 BUG_ON(!cfqd->busy_queues);
1465 cfqd->busy_queues--;
1466 if (cfq_cfqq_sync(cfqq))
1467 cfqd->busy_sync_queues--;
1468 }
1469
1470 /*
1471 * rb tree support functions
1472 */
1473 static void cfq_del_rq_rb(struct request *rq)
1474 {
1475 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1476 const int sync = rq_is_sync(rq);
1477
1478 BUG_ON(!cfqq->queued[sync]);
1479 cfqq->queued[sync]--;
1480
1481 elv_rb_del(&cfqq->sort_list, rq);
1482
1483 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1484 /*
1485 * Queue will be deleted from service tree when we actually
1486 * expire it later. Right now just remove it from prio tree
1487 * as it is empty.
1488 */
1489 if (cfqq->p_root) {
1490 rb_erase(&cfqq->p_node, cfqq->p_root);
1491 cfqq->p_root = NULL;
1492 }
1493 }
1494 }
1495
1496 static void cfq_add_rq_rb(struct request *rq)
1497 {
1498 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1499 struct cfq_data *cfqd = cfqq->cfqd;
1500 struct request *prev;
1501
1502 cfqq->queued[rq_is_sync(rq)]++;
1503
1504 elv_rb_add(&cfqq->sort_list, rq);
1505
1506 if (!cfq_cfqq_on_rr(cfqq))
1507 cfq_add_cfqq_rr(cfqd, cfqq);
1508
1509 /*
1510 * check if this request is a better next-serve candidate
1511 */
1512 prev = cfqq->next_rq;
1513 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1514
1515 /*
1516 * adjust priority tree position, if ->next_rq changes
1517 */
1518 if (prev != cfqq->next_rq)
1519 cfq_prio_tree_add(cfqd, cfqq);
1520
1521 BUG_ON(!cfqq->next_rq);
1522 }
1523
1524 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1525 {
1526 elv_rb_del(&cfqq->sort_list, rq);
1527 cfqq->queued[rq_is_sync(rq)]--;
1528 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1529 rq_data_dir(rq), rq_is_sync(rq));
1530 cfq_add_rq_rb(rq);
1531 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1532 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1533 rq_is_sync(rq));
1534 }
1535
1536 static struct request *
1537 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1538 {
1539 struct task_struct *tsk = current;
1540 struct cfq_io_context *cic;
1541 struct cfq_queue *cfqq;
1542
1543 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1544 if (!cic)
1545 return NULL;
1546
1547 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1548 if (cfqq) {
1549 sector_t sector = bio->bi_sector + bio_sectors(bio);
1550
1551 return elv_rb_find(&cfqq->sort_list, sector);
1552 }
1553
1554 return NULL;
1555 }
1556
1557 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1558 {
1559 struct cfq_data *cfqd = q->elevator->elevator_data;
1560
1561 cfqd->rq_in_driver++;
1562 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1563 cfqd->rq_in_driver);
1564
1565 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1566 }
1567
1568 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1569 {
1570 struct cfq_data *cfqd = q->elevator->elevator_data;
1571
1572 WARN_ON(!cfqd->rq_in_driver);
1573 cfqd->rq_in_driver--;
1574 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1575 cfqd->rq_in_driver);
1576 }
1577
1578 static void cfq_remove_request(struct request *rq)
1579 {
1580 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1581
1582 if (cfqq->next_rq == rq)
1583 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1584
1585 list_del_init(&rq->queuelist);
1586 cfq_del_rq_rb(rq);
1587
1588 cfqq->cfqd->rq_queued--;
1589 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1590 rq_data_dir(rq), rq_is_sync(rq));
1591 }
1592
1593 static int cfq_merge(struct request_queue *q, struct request **req,
1594 struct bio *bio)
1595 {
1596 struct cfq_data *cfqd = q->elevator->elevator_data;
1597 struct request *__rq;
1598
1599 __rq = cfq_find_rq_fmerge(cfqd, bio);
1600 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1601 *req = __rq;
1602 return ELEVATOR_FRONT_MERGE;
1603 }
1604
1605 return ELEVATOR_NO_MERGE;
1606 }
1607
1608 static void cfq_merged_request(struct request_queue *q, struct request *req,
1609 int type)
1610 {
1611 if (type == ELEVATOR_FRONT_MERGE) {
1612 struct cfq_queue *cfqq = RQ_CFQQ(req);
1613
1614 cfq_reposition_rq_rb(cfqq, req);
1615 }
1616 }
1617
1618 static void cfq_bio_merged(struct request_queue *q, struct request *req,
1619 struct bio *bio)
1620 {
1621 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1622 bio_data_dir(bio), cfq_bio_sync(bio));
1623 }
1624
1625 static void
1626 cfq_merged_requests(struct request_queue *q, struct request *rq,
1627 struct request *next)
1628 {
1629 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1630 /*
1631 * reposition in fifo if next is older than rq
1632 */
1633 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1634 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1635 list_move(&rq->queuelist, &next->queuelist);
1636 rq_set_fifo_time(rq, rq_fifo_time(next));
1637 }
1638
1639 if (cfqq->next_rq == next)
1640 cfqq->next_rq = rq;
1641 cfq_remove_request(next);
1642 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1643 rq_data_dir(next), rq_is_sync(next));
1644 }
1645
1646 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1647 struct bio *bio)
1648 {
1649 struct cfq_data *cfqd = q->elevator->elevator_data;
1650 struct cfq_io_context *cic;
1651 struct cfq_queue *cfqq;
1652
1653 /*
1654 * Disallow merge of a sync bio into an async request.
1655 */
1656 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1657 return false;
1658
1659 /*
1660 * Lookup the cfqq that this bio will be queued with. Allow
1661 * merge only if rq is queued there.
1662 */
1663 cic = cfq_cic_lookup(cfqd, current->io_context);
1664 if (!cic)
1665 return false;
1666
1667 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1668 return cfqq == RQ_CFQQ(rq);
1669 }
1670
1671 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1672 {
1673 del_timer(&cfqd->idle_slice_timer);
1674 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1675 }
1676
1677 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1678 struct cfq_queue *cfqq)
1679 {
1680 if (cfqq) {
1681 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1682 cfqd->serving_prio, cfqd->serving_type);
1683 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1684 cfqq->slice_start = 0;
1685 cfqq->dispatch_start = jiffies;
1686 cfqq->allocated_slice = 0;
1687 cfqq->slice_end = 0;
1688 cfqq->slice_dispatch = 0;
1689 cfqq->nr_sectors = 0;
1690
1691 cfq_clear_cfqq_wait_request(cfqq);
1692 cfq_clear_cfqq_must_dispatch(cfqq);
1693 cfq_clear_cfqq_must_alloc_slice(cfqq);
1694 cfq_clear_cfqq_fifo_expire(cfqq);
1695 cfq_mark_cfqq_slice_new(cfqq);
1696
1697 cfq_del_timer(cfqd, cfqq);
1698 }
1699
1700 cfqd->active_queue = cfqq;
1701 }
1702
1703 /*
1704 * current cfqq expired its slice (or was too idle), select new one
1705 */
1706 static void
1707 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1708 bool timed_out)
1709 {
1710 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1711
1712 if (cfq_cfqq_wait_request(cfqq))
1713 cfq_del_timer(cfqd, cfqq);
1714
1715 cfq_clear_cfqq_wait_request(cfqq);
1716 cfq_clear_cfqq_wait_busy(cfqq);
1717
1718 /*
1719 * If this cfqq is shared between multiple processes, check to
1720 * make sure that those processes are still issuing I/Os within
1721 * the mean seek distance. If not, it may be time to break the
1722 * queues apart again.
1723 */
1724 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1725 cfq_mark_cfqq_split_coop(cfqq);
1726
1727 /*
1728 * store what was left of this slice, if the queue idled/timed out
1729 */
1730 if (timed_out) {
1731 if (cfq_cfqq_slice_new(cfqq))
1732 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
1733 else
1734 cfqq->slice_resid = cfqq->slice_end - jiffies;
1735 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1736 }
1737
1738 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1739
1740 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1741 cfq_del_cfqq_rr(cfqd, cfqq);
1742
1743 cfq_resort_rr_list(cfqd, cfqq);
1744
1745 if (cfqq == cfqd->active_queue)
1746 cfqd->active_queue = NULL;
1747
1748 if (cfqd->active_cic) {
1749 put_io_context(cfqd->active_cic->ioc);
1750 cfqd->active_cic = NULL;
1751 }
1752 }
1753
1754 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1755 {
1756 struct cfq_queue *cfqq = cfqd->active_queue;
1757
1758 if (cfqq)
1759 __cfq_slice_expired(cfqd, cfqq, timed_out);
1760 }
1761
1762 /*
1763 * Get next queue for service. Unless we have a queue preemption,
1764 * we'll simply select the first cfqq in the service tree.
1765 */
1766 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1767 {
1768 struct cfq_rb_root *service_tree =
1769 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1770 cfqd->serving_type);
1771
1772 if (!cfqd->rq_queued)
1773 return NULL;
1774
1775 /* There is nothing to dispatch */
1776 if (!service_tree)
1777 return NULL;
1778 if (RB_EMPTY_ROOT(&service_tree->rb))
1779 return NULL;
1780 return cfq_rb_first(service_tree);
1781 }
1782
1783 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1784 {
1785 struct cfq_group *cfqg;
1786 struct cfq_queue *cfqq;
1787 int i, j;
1788 struct cfq_rb_root *st;
1789
1790 if (!cfqd->rq_queued)
1791 return NULL;
1792
1793 cfqg = cfq_get_next_cfqg(cfqd);
1794 if (!cfqg)
1795 return NULL;
1796
1797 for_each_cfqg_st(cfqg, i, j, st)
1798 if ((cfqq = cfq_rb_first(st)) != NULL)
1799 return cfqq;
1800 return NULL;
1801 }
1802
1803 /*
1804 * Get and set a new active queue for service.
1805 */
1806 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1807 struct cfq_queue *cfqq)
1808 {
1809 if (!cfqq)
1810 cfqq = cfq_get_next_queue(cfqd);
1811
1812 __cfq_set_active_queue(cfqd, cfqq);
1813 return cfqq;
1814 }
1815
1816 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1817 struct request *rq)
1818 {
1819 if (blk_rq_pos(rq) >= cfqd->last_position)
1820 return blk_rq_pos(rq) - cfqd->last_position;
1821 else
1822 return cfqd->last_position - blk_rq_pos(rq);
1823 }
1824
1825 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1826 struct request *rq)
1827 {
1828 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1829 }
1830
1831 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1832 struct cfq_queue *cur_cfqq)
1833 {
1834 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1835 struct rb_node *parent, *node;
1836 struct cfq_queue *__cfqq;
1837 sector_t sector = cfqd->last_position;
1838
1839 if (RB_EMPTY_ROOT(root))
1840 return NULL;
1841
1842 /*
1843 * First, if we find a request starting at the end of the last
1844 * request, choose it.
1845 */
1846 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1847 if (__cfqq)
1848 return __cfqq;
1849
1850 /*
1851 * If the exact sector wasn't found, the parent of the NULL leaf
1852 * will contain the closest sector.
1853 */
1854 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1855 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1856 return __cfqq;
1857
1858 if (blk_rq_pos(__cfqq->next_rq) < sector)
1859 node = rb_next(&__cfqq->p_node);
1860 else
1861 node = rb_prev(&__cfqq->p_node);
1862 if (!node)
1863 return NULL;
1864
1865 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1866 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1867 return __cfqq;
1868
1869 return NULL;
1870 }
1871
1872 /*
1873 * cfqd - obvious
1874 * cur_cfqq - passed in so that we don't decide that the current queue is
1875 * closely cooperating with itself.
1876 *
1877 * So, basically we're assuming that that cur_cfqq has dispatched at least
1878 * one request, and that cfqd->last_position reflects a position on the disk
1879 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1880 * assumption.
1881 */
1882 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1883 struct cfq_queue *cur_cfqq)
1884 {
1885 struct cfq_queue *cfqq;
1886
1887 if (cfq_class_idle(cur_cfqq))
1888 return NULL;
1889 if (!cfq_cfqq_sync(cur_cfqq))
1890 return NULL;
1891 if (CFQQ_SEEKY(cur_cfqq))
1892 return NULL;
1893
1894 /*
1895 * Don't search priority tree if it's the only queue in the group.
1896 */
1897 if (cur_cfqq->cfqg->nr_cfqq == 1)
1898 return NULL;
1899
1900 /*
1901 * We should notice if some of the queues are cooperating, eg
1902 * working closely on the same area of the disk. In that case,
1903 * we can group them together and don't waste time idling.
1904 */
1905 cfqq = cfqq_close(cfqd, cur_cfqq);
1906 if (!cfqq)
1907 return NULL;
1908
1909 /* If new queue belongs to different cfq_group, don't choose it */
1910 if (cur_cfqq->cfqg != cfqq->cfqg)
1911 return NULL;
1912
1913 /*
1914 * It only makes sense to merge sync queues.
1915 */
1916 if (!cfq_cfqq_sync(cfqq))
1917 return NULL;
1918 if (CFQQ_SEEKY(cfqq))
1919 return NULL;
1920
1921 /*
1922 * Do not merge queues of different priority classes
1923 */
1924 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1925 return NULL;
1926
1927 return cfqq;
1928 }
1929
1930 /*
1931 * Determine whether we should enforce idle window for this queue.
1932 */
1933
1934 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1935 {
1936 enum wl_prio_t prio = cfqq_prio(cfqq);
1937 struct cfq_rb_root *service_tree = cfqq->service_tree;
1938
1939 BUG_ON(!service_tree);
1940 BUG_ON(!service_tree->count);
1941
1942 if (!cfqd->cfq_slice_idle)
1943 return false;
1944
1945 /* We never do for idle class queues. */
1946 if (prio == IDLE_WORKLOAD)
1947 return false;
1948
1949 /* We do for queues that were marked with idle window flag. */
1950 if (cfq_cfqq_idle_window(cfqq) &&
1951 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1952 return true;
1953
1954 /*
1955 * Otherwise, we do only if they are the last ones
1956 * in their service tree.
1957 */
1958 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1959 return true;
1960 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1961 service_tree->count);
1962 return false;
1963 }
1964
1965 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1966 {
1967 struct cfq_queue *cfqq = cfqd->active_queue;
1968 struct cfq_io_context *cic;
1969 unsigned long sl, group_idle = 0;
1970
1971 /*
1972 * SSD device without seek penalty, disable idling. But only do so
1973 * for devices that support queuing, otherwise we still have a problem
1974 * with sync vs async workloads.
1975 */
1976 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1977 return;
1978
1979 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1980 WARN_ON(cfq_cfqq_slice_new(cfqq));
1981
1982 /*
1983 * idle is disabled, either manually or by past process history
1984 */
1985 if (!cfq_should_idle(cfqd, cfqq)) {
1986 /* no queue idling. Check for group idling */
1987 if (cfqd->cfq_group_idle)
1988 group_idle = cfqd->cfq_group_idle;
1989 else
1990 return;
1991 }
1992
1993 /*
1994 * still active requests from this queue, don't idle
1995 */
1996 if (cfqq->dispatched)
1997 return;
1998
1999 /*
2000 * task has exited, don't wait
2001 */
2002 cic = cfqd->active_cic;
2003 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
2004 return;
2005
2006 /*
2007 * If our average think time is larger than the remaining time
2008 * slice, then don't idle. This avoids overrunning the allotted
2009 * time slice.
2010 */
2011 if (sample_valid(cic->ttime.ttime_samples) &&
2012 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2013 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2014 cic->ttime.ttime_mean);
2015 return;
2016 }
2017
2018 /* There are other queues in the group, don't do group idle */
2019 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2020 return;
2021
2022 cfq_mark_cfqq_wait_request(cfqq);
2023
2024 if (group_idle)
2025 sl = cfqd->cfq_group_idle;
2026 else
2027 sl = cfqd->cfq_slice_idle;
2028
2029 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2030 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
2031 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2032 group_idle ? 1 : 0);
2033 }
2034
2035 /*
2036 * Move request from internal lists to the request queue dispatch list.
2037 */
2038 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2039 {
2040 struct cfq_data *cfqd = q->elevator->elevator_data;
2041 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2042
2043 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2044
2045 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2046 cfq_remove_request(rq);
2047 cfqq->dispatched++;
2048 (RQ_CFQG(rq))->dispatched++;
2049 elv_dispatch_sort(q, rq);
2050
2051 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2052 cfqq->nr_sectors += blk_rq_sectors(rq);
2053 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
2054 rq_data_dir(rq), rq_is_sync(rq));
2055 }
2056
2057 /*
2058 * return expired entry, or NULL to just start from scratch in rbtree
2059 */
2060 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2061 {
2062 struct request *rq = NULL;
2063
2064 if (cfq_cfqq_fifo_expire(cfqq))
2065 return NULL;
2066
2067 cfq_mark_cfqq_fifo_expire(cfqq);
2068
2069 if (list_empty(&cfqq->fifo))
2070 return NULL;
2071
2072 rq = rq_entry_fifo(cfqq->fifo.next);
2073 if (time_before(jiffies, rq_fifo_time(rq)))
2074 rq = NULL;
2075
2076 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2077 return rq;
2078 }
2079
2080 static inline int
2081 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2082 {
2083 const int base_rq = cfqd->cfq_slice_async_rq;
2084
2085 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2086
2087 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2088 }
2089
2090 /*
2091 * Must be called with the queue_lock held.
2092 */
2093 static int cfqq_process_refs(struct cfq_queue *cfqq)
2094 {
2095 int process_refs, io_refs;
2096
2097 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2098 process_refs = cfqq->ref - io_refs;
2099 BUG_ON(process_refs < 0);
2100 return process_refs;
2101 }
2102
2103 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2104 {
2105 int process_refs, new_process_refs;
2106 struct cfq_queue *__cfqq;
2107
2108 /*
2109 * If there are no process references on the new_cfqq, then it is
2110 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2111 * chain may have dropped their last reference (not just their
2112 * last process reference).
2113 */
2114 if (!cfqq_process_refs(new_cfqq))
2115 return;
2116
2117 /* Avoid a circular list and skip interim queue merges */
2118 while ((__cfqq = new_cfqq->new_cfqq)) {
2119 if (__cfqq == cfqq)
2120 return;
2121 new_cfqq = __cfqq;
2122 }
2123
2124 process_refs = cfqq_process_refs(cfqq);
2125 new_process_refs = cfqq_process_refs(new_cfqq);
2126 /*
2127 * If the process for the cfqq has gone away, there is no
2128 * sense in merging the queues.
2129 */
2130 if (process_refs == 0 || new_process_refs == 0)
2131 return;
2132
2133 /*
2134 * Merge in the direction of the lesser amount of work.
2135 */
2136 if (new_process_refs >= process_refs) {
2137 cfqq->new_cfqq = new_cfqq;
2138 new_cfqq->ref += process_refs;
2139 } else {
2140 new_cfqq->new_cfqq = cfqq;
2141 cfqq->ref += new_process_refs;
2142 }
2143 }
2144
2145 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2146 struct cfq_group *cfqg, enum wl_prio_t prio)
2147 {
2148 struct cfq_queue *queue;
2149 int i;
2150 bool key_valid = false;
2151 unsigned long lowest_key = 0;
2152 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2153
2154 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2155 /* select the one with lowest rb_key */
2156 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2157 if (queue &&
2158 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2159 lowest_key = queue->rb_key;
2160 cur_best = i;
2161 key_valid = true;
2162 }
2163 }
2164
2165 return cur_best;
2166 }
2167
2168 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2169 {
2170 unsigned slice;
2171 unsigned count;
2172 struct cfq_rb_root *st;
2173 unsigned group_slice;
2174 enum wl_prio_t original_prio = cfqd->serving_prio;
2175
2176 /* Choose next priority. RT > BE > IDLE */
2177 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2178 cfqd->serving_prio = RT_WORKLOAD;
2179 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2180 cfqd->serving_prio = BE_WORKLOAD;
2181 else {
2182 cfqd->serving_prio = IDLE_WORKLOAD;
2183 cfqd->workload_expires = jiffies + 1;
2184 return;
2185 }
2186
2187 if (original_prio != cfqd->serving_prio)
2188 goto new_workload;
2189
2190 /*
2191 * For RT and BE, we have to choose also the type
2192 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2193 * expiration time
2194 */
2195 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2196 count = st->count;
2197
2198 /*
2199 * check workload expiration, and that we still have other queues ready
2200 */
2201 if (count && !time_after(jiffies, cfqd->workload_expires))
2202 return;
2203
2204 new_workload:
2205 /* otherwise select new workload type */
2206 cfqd->serving_type =
2207 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2208 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2209 count = st->count;
2210
2211 /*
2212 * the workload slice is computed as a fraction of target latency
2213 * proportional to the number of queues in that workload, over
2214 * all the queues in the same priority class
2215 */
2216 group_slice = cfq_group_slice(cfqd, cfqg);
2217
2218 slice = group_slice * count /
2219 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2220 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2221
2222 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2223 unsigned int tmp;
2224
2225 /*
2226 * Async queues are currently system wide. Just taking
2227 * proportion of queues with-in same group will lead to higher
2228 * async ratio system wide as generally root group is going
2229 * to have higher weight. A more accurate thing would be to
2230 * calculate system wide asnc/sync ratio.
2231 */
2232 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2233 tmp = tmp/cfqd->busy_queues;
2234 slice = min_t(unsigned, slice, tmp);
2235
2236 /* async workload slice is scaled down according to
2237 * the sync/async slice ratio. */
2238 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2239 } else
2240 /* sync workload slice is at least 2 * cfq_slice_idle */
2241 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2242
2243 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2244 cfq_log(cfqd, "workload slice:%d", slice);
2245 cfqd->workload_expires = jiffies + slice;
2246 }
2247
2248 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2249 {
2250 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2251 struct cfq_group *cfqg;
2252
2253 if (RB_EMPTY_ROOT(&st->rb))
2254 return NULL;
2255 cfqg = cfq_rb_first_group(st);
2256 update_min_vdisktime(st);
2257 return cfqg;
2258 }
2259
2260 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2261 {
2262 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2263
2264 cfqd->serving_group = cfqg;
2265
2266 /* Restore the workload type data */
2267 if (cfqg->saved_workload_slice) {
2268 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2269 cfqd->serving_type = cfqg->saved_workload;
2270 cfqd->serving_prio = cfqg->saved_serving_prio;
2271 } else
2272 cfqd->workload_expires = jiffies - 1;
2273
2274 choose_service_tree(cfqd, cfqg);
2275 }
2276
2277 /*
2278 * Select a queue for service. If we have a current active queue,
2279 * check whether to continue servicing it, or retrieve and set a new one.
2280 */
2281 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2282 {
2283 struct cfq_queue *cfqq, *new_cfqq = NULL;
2284
2285 cfqq = cfqd->active_queue;
2286 if (!cfqq)
2287 goto new_queue;
2288
2289 if (!cfqd->rq_queued)
2290 return NULL;
2291
2292 /*
2293 * We were waiting for group to get backlogged. Expire the queue
2294 */
2295 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2296 goto expire;
2297
2298 /*
2299 * The active queue has run out of time, expire it and select new.
2300 */
2301 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2302 /*
2303 * If slice had not expired at the completion of last request
2304 * we might not have turned on wait_busy flag. Don't expire
2305 * the queue yet. Allow the group to get backlogged.
2306 *
2307 * The very fact that we have used the slice, that means we
2308 * have been idling all along on this queue and it should be
2309 * ok to wait for this request to complete.
2310 */
2311 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2312 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2313 cfqq = NULL;
2314 goto keep_queue;
2315 } else
2316 goto check_group_idle;
2317 }
2318
2319 /*
2320 * The active queue has requests and isn't expired, allow it to
2321 * dispatch.
2322 */
2323 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2324 goto keep_queue;
2325
2326 /*
2327 * If another queue has a request waiting within our mean seek
2328 * distance, let it run. The expire code will check for close
2329 * cooperators and put the close queue at the front of the service
2330 * tree. If possible, merge the expiring queue with the new cfqq.
2331 */
2332 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2333 if (new_cfqq) {
2334 if (!cfqq->new_cfqq)
2335 cfq_setup_merge(cfqq, new_cfqq);
2336 goto expire;
2337 }
2338
2339 /*
2340 * No requests pending. If the active queue still has requests in
2341 * flight or is idling for a new request, allow either of these
2342 * conditions to happen (or time out) before selecting a new queue.
2343 */
2344 if (timer_pending(&cfqd->idle_slice_timer)) {
2345 cfqq = NULL;
2346 goto keep_queue;
2347 }
2348
2349 /*
2350 * This is a deep seek queue, but the device is much faster than
2351 * the queue can deliver, don't idle
2352 **/
2353 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2354 (cfq_cfqq_slice_new(cfqq) ||
2355 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2356 cfq_clear_cfqq_deep(cfqq);
2357 cfq_clear_cfqq_idle_window(cfqq);
2358 }
2359
2360 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2361 cfqq = NULL;
2362 goto keep_queue;
2363 }
2364
2365 /*
2366 * If group idle is enabled and there are requests dispatched from
2367 * this group, wait for requests to complete.
2368 */
2369 check_group_idle:
2370 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
2371 && cfqq->cfqg->dispatched) {
2372 cfqq = NULL;
2373 goto keep_queue;
2374 }
2375
2376 expire:
2377 cfq_slice_expired(cfqd, 0);
2378 new_queue:
2379 /*
2380 * Current queue expired. Check if we have to switch to a new
2381 * service tree
2382 */
2383 if (!new_cfqq)
2384 cfq_choose_cfqg(cfqd);
2385
2386 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2387 keep_queue:
2388 return cfqq;
2389 }
2390
2391 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2392 {
2393 int dispatched = 0;
2394
2395 while (cfqq->next_rq) {
2396 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2397 dispatched++;
2398 }
2399
2400 BUG_ON(!list_empty(&cfqq->fifo));
2401
2402 /* By default cfqq is not expired if it is empty. Do it explicitly */
2403 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2404 return dispatched;
2405 }
2406
2407 /*
2408 * Drain our current requests. Used for barriers and when switching
2409 * io schedulers on-the-fly.
2410 */
2411 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2412 {
2413 struct cfq_queue *cfqq;
2414 int dispatched = 0;
2415
2416 /* Expire the timeslice of the current active queue first */
2417 cfq_slice_expired(cfqd, 0);
2418 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2419 __cfq_set_active_queue(cfqd, cfqq);
2420 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2421 }
2422
2423 BUG_ON(cfqd->busy_queues);
2424
2425 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2426 return dispatched;
2427 }
2428
2429 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2430 struct cfq_queue *cfqq)
2431 {
2432 /* the queue hasn't finished any request, can't estimate */
2433 if (cfq_cfqq_slice_new(cfqq))
2434 return true;
2435 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2436 cfqq->slice_end))
2437 return true;
2438
2439 return false;
2440 }
2441
2442 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2443 {
2444 unsigned int max_dispatch;
2445
2446 /*
2447 * Drain async requests before we start sync IO
2448 */
2449 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2450 return false;
2451
2452 /*
2453 * If this is an async queue and we have sync IO in flight, let it wait
2454 */
2455 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2456 return false;
2457
2458 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2459 if (cfq_class_idle(cfqq))
2460 max_dispatch = 1;
2461
2462 /*
2463 * Does this cfqq already have too much IO in flight?
2464 */
2465 if (cfqq->dispatched >= max_dispatch) {
2466 bool promote_sync = false;
2467 /*
2468 * idle queue must always only have a single IO in flight
2469 */
2470 if (cfq_class_idle(cfqq))
2471 return false;
2472
2473 /*
2474 * If there is only one sync queue
2475 * we can ignore async queue here and give the sync
2476 * queue no dispatch limit. The reason is a sync queue can
2477 * preempt async queue, limiting the sync queue doesn't make
2478 * sense. This is useful for aiostress test.
2479 */
2480 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2481 promote_sync = true;
2482
2483 /*
2484 * We have other queues, don't allow more IO from this one
2485 */
2486 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2487 !promote_sync)
2488 return false;
2489
2490 /*
2491 * Sole queue user, no limit
2492 */
2493 if (cfqd->busy_queues == 1 || promote_sync)
2494 max_dispatch = -1;
2495 else
2496 /*
2497 * Normally we start throttling cfqq when cfq_quantum/2
2498 * requests have been dispatched. But we can drive
2499 * deeper queue depths at the beginning of slice
2500 * subjected to upper limit of cfq_quantum.
2501 * */
2502 max_dispatch = cfqd->cfq_quantum;
2503 }
2504
2505 /*
2506 * Async queues must wait a bit before being allowed dispatch.
2507 * We also ramp up the dispatch depth gradually for async IO,
2508 * based on the last sync IO we serviced
2509 */
2510 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2511 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2512 unsigned int depth;
2513
2514 depth = last_sync / cfqd->cfq_slice[1];
2515 if (!depth && !cfqq->dispatched)
2516 depth = 1;
2517 if (depth < max_dispatch)
2518 max_dispatch = depth;
2519 }
2520
2521 /*
2522 * If we're below the current max, allow a dispatch
2523 */
2524 return cfqq->dispatched < max_dispatch;
2525 }
2526
2527 /*
2528 * Dispatch a request from cfqq, moving them to the request queue
2529 * dispatch list.
2530 */
2531 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2532 {
2533 struct request *rq;
2534
2535 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2536
2537 if (!cfq_may_dispatch(cfqd, cfqq))
2538 return false;
2539
2540 /*
2541 * follow expired path, else get first next available
2542 */
2543 rq = cfq_check_fifo(cfqq);
2544 if (!rq)
2545 rq = cfqq->next_rq;
2546
2547 /*
2548 * insert request into driver dispatch list
2549 */
2550 cfq_dispatch_insert(cfqd->queue, rq);
2551
2552 if (!cfqd->active_cic) {
2553 struct cfq_io_context *cic = RQ_CIC(rq);
2554
2555 atomic_long_inc(&cic->ioc->refcount);
2556 cfqd->active_cic = cic;
2557 }
2558
2559 return true;
2560 }
2561
2562 /*
2563 * Find the cfqq that we need to service and move a request from that to the
2564 * dispatch list
2565 */
2566 static int cfq_dispatch_requests(struct request_queue *q, int force)
2567 {
2568 struct cfq_data *cfqd = q->elevator->elevator_data;
2569 struct cfq_queue *cfqq;
2570
2571 if (!cfqd->busy_queues)
2572 return 0;
2573
2574 if (unlikely(force))
2575 return cfq_forced_dispatch(cfqd);
2576
2577 cfqq = cfq_select_queue(cfqd);
2578 if (!cfqq)
2579 return 0;
2580
2581 /*
2582 * Dispatch a request from this cfqq, if it is allowed
2583 */
2584 if (!cfq_dispatch_request(cfqd, cfqq))
2585 return 0;
2586
2587 cfqq->slice_dispatch++;
2588 cfq_clear_cfqq_must_dispatch(cfqq);
2589
2590 /*
2591 * expire an async queue immediately if it has used up its slice. idle
2592 * queue always expire after 1 dispatch round.
2593 */
2594 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2595 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2596 cfq_class_idle(cfqq))) {
2597 cfqq->slice_end = jiffies + 1;
2598 cfq_slice_expired(cfqd, 0);
2599 }
2600
2601 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2602 return 1;
2603 }
2604
2605 /*
2606 * task holds one reference to the queue, dropped when task exits. each rq
2607 * in-flight on this queue also holds a reference, dropped when rq is freed.
2608 *
2609 * Each cfq queue took a reference on the parent group. Drop it now.
2610 * queue lock must be held here.
2611 */
2612 static void cfq_put_queue(struct cfq_queue *cfqq)
2613 {
2614 struct cfq_data *cfqd = cfqq->cfqd;
2615 struct cfq_group *cfqg;
2616
2617 BUG_ON(cfqq->ref <= 0);
2618
2619 cfqq->ref--;
2620 if (cfqq->ref)
2621 return;
2622
2623 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2624 BUG_ON(rb_first(&cfqq->sort_list));
2625 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2626 cfqg = cfqq->cfqg;
2627
2628 if (unlikely(cfqd->active_queue == cfqq)) {
2629 __cfq_slice_expired(cfqd, cfqq, 0);
2630 cfq_schedule_dispatch(cfqd);
2631 }
2632
2633 BUG_ON(cfq_cfqq_on_rr(cfqq));
2634 kmem_cache_free(cfq_pool, cfqq);
2635 cfq_put_cfqg(cfqg);
2636 }
2637
2638 /*
2639 * Call func for each cic attached to this ioc.
2640 */
2641 static void
2642 call_for_each_cic(struct io_context *ioc,
2643 void (*func)(struct io_context *, struct cfq_io_context *))
2644 {
2645 struct cfq_io_context *cic;
2646 struct hlist_node *n;
2647
2648 rcu_read_lock();
2649
2650 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2651 func(ioc, cic);
2652
2653 rcu_read_unlock();
2654 }
2655
2656 static void cfq_cic_free_rcu(struct rcu_head *head)
2657 {
2658 struct cfq_io_context *cic;
2659
2660 cic = container_of(head, struct cfq_io_context, rcu_head);
2661
2662 kmem_cache_free(cfq_ioc_pool, cic);
2663 elv_ioc_count_dec(cfq_ioc_count);
2664
2665 if (ioc_gone) {
2666 /*
2667 * CFQ scheduler is exiting, grab exit lock and check
2668 * the pending io context count. If it hits zero,
2669 * complete ioc_gone and set it back to NULL
2670 */
2671 spin_lock(&ioc_gone_lock);
2672 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2673 complete(ioc_gone);
2674 ioc_gone = NULL;
2675 }
2676 spin_unlock(&ioc_gone_lock);
2677 }
2678 }
2679
2680 static void cfq_cic_free(struct cfq_io_context *cic)
2681 {
2682 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2683 }
2684
2685 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2686 {
2687 unsigned long flags;
2688 unsigned long dead_key = (unsigned long) cic->key;
2689
2690 BUG_ON(!(dead_key & CIC_DEAD_KEY));
2691
2692 spin_lock_irqsave(&ioc->lock, flags);
2693 radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
2694 hlist_del_rcu(&cic->cic_list);
2695 spin_unlock_irqrestore(&ioc->lock, flags);
2696
2697 cfq_cic_free(cic);
2698 }
2699
2700 /*
2701 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2702 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2703 * and ->trim() which is called with the task lock held
2704 */
2705 static void cfq_free_io_context(struct io_context *ioc)
2706 {
2707 /*
2708 * ioc->refcount is zero here, or we are called from elv_unregister(),
2709 * so no more cic's are allowed to be linked into this ioc. So it
2710 * should be ok to iterate over the known list, we will see all cic's
2711 * since no new ones are added.
2712 */
2713 call_for_each_cic(ioc, cic_free_func);
2714 }
2715
2716 static void cfq_put_cooperator(struct cfq_queue *cfqq)
2717 {
2718 struct cfq_queue *__cfqq, *next;
2719
2720 /*
2721 * If this queue was scheduled to merge with another queue, be
2722 * sure to drop the reference taken on that queue (and others in
2723 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2724 */
2725 __cfqq = cfqq->new_cfqq;
2726 while (__cfqq) {
2727 if (__cfqq == cfqq) {
2728 WARN(1, "cfqq->new_cfqq loop detected\n");
2729 break;
2730 }
2731 next = __cfqq->new_cfqq;
2732 cfq_put_queue(__cfqq);
2733 __cfqq = next;
2734 }
2735 }
2736
2737 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2738 {
2739 if (unlikely(cfqq == cfqd->active_queue)) {
2740 __cfq_slice_expired(cfqd, cfqq, 0);
2741 cfq_schedule_dispatch(cfqd);
2742 }
2743
2744 cfq_put_cooperator(cfqq);
2745
2746 cfq_put_queue(cfqq);
2747 }
2748
2749 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2750 struct cfq_io_context *cic)
2751 {
2752 struct io_context *ioc = cic->ioc;
2753
2754 list_del_init(&cic->queue_list);
2755
2756 /*
2757 * Make sure dead mark is seen for dead queues
2758 */
2759 smp_wmb();
2760 cic->key = cfqd_dead_key(cfqd);
2761
2762 rcu_read_lock();
2763 if (rcu_dereference(ioc->ioc_data) == cic) {
2764 rcu_read_unlock();
2765 spin_lock(&ioc->lock);
2766 rcu_assign_pointer(ioc->ioc_data, NULL);
2767 spin_unlock(&ioc->lock);
2768 } else
2769 rcu_read_unlock();
2770
2771 if (cic->cfqq[BLK_RW_ASYNC]) {
2772 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2773 cic->cfqq[BLK_RW_ASYNC] = NULL;
2774 }
2775
2776 if (cic->cfqq[BLK_RW_SYNC]) {
2777 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2778 cic->cfqq[BLK_RW_SYNC] = NULL;
2779 }
2780 }
2781
2782 static void cfq_exit_single_io_context(struct io_context *ioc,
2783 struct cfq_io_context *cic)
2784 {
2785 struct cfq_data *cfqd = cic_to_cfqd(cic);
2786
2787 if (cfqd) {
2788 struct request_queue *q = cfqd->queue;
2789 unsigned long flags;
2790
2791 spin_lock_irqsave(q->queue_lock, flags);
2792
2793 /*
2794 * Ensure we get a fresh copy of the ->key to prevent
2795 * race between exiting task and queue
2796 */
2797 smp_read_barrier_depends();
2798 if (cic->key == cfqd)
2799 __cfq_exit_single_io_context(cfqd, cic);
2800
2801 spin_unlock_irqrestore(q->queue_lock, flags);
2802 }
2803 }
2804
2805 /*
2806 * The process that ioc belongs to has exited, we need to clean up
2807 * and put the internal structures we have that belongs to that process.
2808 */
2809 static void cfq_exit_io_context(struct io_context *ioc)
2810 {
2811 call_for_each_cic(ioc, cfq_exit_single_io_context);
2812 }
2813
2814 static struct cfq_io_context *
2815 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2816 {
2817 struct cfq_io_context *cic;
2818
2819 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2820 cfqd->queue->node);
2821 if (cic) {
2822 cic->ttime.last_end_request = jiffies;
2823 INIT_LIST_HEAD(&cic->queue_list);
2824 INIT_HLIST_NODE(&cic->cic_list);
2825 cic->dtor = cfq_free_io_context;
2826 cic->exit = cfq_exit_io_context;
2827 elv_ioc_count_inc(cfq_ioc_count);
2828 }
2829
2830 return cic;
2831 }
2832
2833 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2834 {
2835 struct task_struct *tsk = current;
2836 int ioprio_class;
2837
2838 if (!cfq_cfqq_prio_changed(cfqq))
2839 return;
2840
2841 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2842 switch (ioprio_class) {
2843 default:
2844 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2845 case IOPRIO_CLASS_NONE:
2846 /*
2847 * no prio set, inherit CPU scheduling settings
2848 */
2849 cfqq->ioprio = task_nice_ioprio(tsk);
2850 cfqq->ioprio_class = task_nice_ioclass(tsk);
2851 break;
2852 case IOPRIO_CLASS_RT:
2853 cfqq->ioprio = task_ioprio(ioc);
2854 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2855 break;
2856 case IOPRIO_CLASS_BE:
2857 cfqq->ioprio = task_ioprio(ioc);
2858 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2859 break;
2860 case IOPRIO_CLASS_IDLE:
2861 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2862 cfqq->ioprio = 7;
2863 cfq_clear_cfqq_idle_window(cfqq);
2864 break;
2865 }
2866
2867 /*
2868 * keep track of original prio settings in case we have to temporarily
2869 * elevate the priority of this queue
2870 */
2871 cfqq->org_ioprio = cfqq->ioprio;
2872 cfq_clear_cfqq_prio_changed(cfqq);
2873 }
2874
2875 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2876 {
2877 struct cfq_data *cfqd = cic_to_cfqd(cic);
2878 struct cfq_queue *cfqq;
2879 unsigned long flags;
2880
2881 if (unlikely(!cfqd))
2882 return;
2883
2884 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2885
2886 cfqq = cic->cfqq[BLK_RW_ASYNC];
2887 if (cfqq) {
2888 struct cfq_queue *new_cfqq;
2889 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2890 GFP_ATOMIC);
2891 if (new_cfqq) {
2892 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2893 cfq_put_queue(cfqq);
2894 }
2895 }
2896
2897 cfqq = cic->cfqq[BLK_RW_SYNC];
2898 if (cfqq)
2899 cfq_mark_cfqq_prio_changed(cfqq);
2900
2901 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2902 }
2903
2904 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2905 {
2906 call_for_each_cic(ioc, changed_ioprio);
2907 ioc->ioprio_changed = 0;
2908 }
2909
2910 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2911 pid_t pid, bool is_sync)
2912 {
2913 RB_CLEAR_NODE(&cfqq->rb_node);
2914 RB_CLEAR_NODE(&cfqq->p_node);
2915 INIT_LIST_HEAD(&cfqq->fifo);
2916
2917 cfqq->ref = 0;
2918 cfqq->cfqd = cfqd;
2919
2920 cfq_mark_cfqq_prio_changed(cfqq);
2921
2922 if (is_sync) {
2923 if (!cfq_class_idle(cfqq))
2924 cfq_mark_cfqq_idle_window(cfqq);
2925 cfq_mark_cfqq_sync(cfqq);
2926 }
2927 cfqq->pid = pid;
2928 }
2929
2930 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2931 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2932 {
2933 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2934 struct cfq_data *cfqd = cic_to_cfqd(cic);
2935 unsigned long flags;
2936 struct request_queue *q;
2937
2938 if (unlikely(!cfqd))
2939 return;
2940
2941 q = cfqd->queue;
2942
2943 spin_lock_irqsave(q->queue_lock, flags);
2944
2945 if (sync_cfqq) {
2946 /*
2947 * Drop reference to sync queue. A new sync queue will be
2948 * assigned in new group upon arrival of a fresh request.
2949 */
2950 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2951 cic_set_cfqq(cic, NULL, 1);
2952 cfq_put_queue(sync_cfqq);
2953 }
2954
2955 spin_unlock_irqrestore(q->queue_lock, flags);
2956 }
2957
2958 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2959 {
2960 call_for_each_cic(ioc, changed_cgroup);
2961 ioc->cgroup_changed = 0;
2962 }
2963 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2964
2965 static struct cfq_queue *
2966 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2967 struct io_context *ioc, gfp_t gfp_mask)
2968 {
2969 struct cfq_queue *cfqq, *new_cfqq = NULL;
2970 struct cfq_io_context *cic;
2971 struct cfq_group *cfqg;
2972
2973 retry:
2974 cfqg = cfq_get_cfqg(cfqd);
2975 cic = cfq_cic_lookup(cfqd, ioc);
2976 /* cic always exists here */
2977 cfqq = cic_to_cfqq(cic, is_sync);
2978
2979 /*
2980 * Always try a new alloc if we fell back to the OOM cfqq
2981 * originally, since it should just be a temporary situation.
2982 */
2983 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2984 cfqq = NULL;
2985 if (new_cfqq) {
2986 cfqq = new_cfqq;
2987 new_cfqq = NULL;
2988 } else if (gfp_mask & __GFP_WAIT) {
2989 spin_unlock_irq(cfqd->queue->queue_lock);
2990 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2991 gfp_mask | __GFP_ZERO,
2992 cfqd->queue->node);
2993 spin_lock_irq(cfqd->queue->queue_lock);
2994 if (new_cfqq)
2995 goto retry;
2996 } else {
2997 cfqq = kmem_cache_alloc_node(cfq_pool,
2998 gfp_mask | __GFP_ZERO,
2999 cfqd->queue->node);
3000 }
3001
3002 if (cfqq) {
3003 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3004 cfq_init_prio_data(cfqq, ioc);
3005 cfq_link_cfqq_cfqg(cfqq, cfqg);
3006 cfq_log_cfqq(cfqd, cfqq, "alloced");
3007 } else
3008 cfqq = &cfqd->oom_cfqq;
3009 }
3010
3011 if (new_cfqq)
3012 kmem_cache_free(cfq_pool, new_cfqq);
3013
3014 return cfqq;
3015 }
3016
3017 static struct cfq_queue **
3018 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3019 {
3020 switch (ioprio_class) {
3021 case IOPRIO_CLASS_RT:
3022 return &cfqd->async_cfqq[0][ioprio];
3023 case IOPRIO_CLASS_BE:
3024 return &cfqd->async_cfqq[1][ioprio];
3025 case IOPRIO_CLASS_IDLE:
3026 return &cfqd->async_idle_cfqq;
3027 default:
3028 BUG();
3029 }
3030 }
3031
3032 static struct cfq_queue *
3033 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
3034 gfp_t gfp_mask)
3035 {
3036 const int ioprio = task_ioprio(ioc);
3037 const int ioprio_class = task_ioprio_class(ioc);
3038 struct cfq_queue **async_cfqq = NULL;
3039 struct cfq_queue *cfqq = NULL;
3040
3041 if (!is_sync) {
3042 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3043 cfqq = *async_cfqq;
3044 }
3045
3046 if (!cfqq)
3047 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
3048
3049 /*
3050 * pin the queue now that it's allocated, scheduler exit will prune it
3051 */
3052 if (!is_sync && !(*async_cfqq)) {
3053 cfqq->ref++;
3054 *async_cfqq = cfqq;
3055 }
3056
3057 cfqq->ref++;
3058 return cfqq;
3059 }
3060
3061 /*
3062 * We drop cfq io contexts lazily, so we may find a dead one.
3063 */
3064 static void
3065 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
3066 struct cfq_io_context *cic)
3067 {
3068 unsigned long flags;
3069
3070 WARN_ON(!list_empty(&cic->queue_list));
3071 BUG_ON(cic->key != cfqd_dead_key(cfqd));
3072
3073 spin_lock_irqsave(&ioc->lock, flags);
3074
3075 BUG_ON(rcu_dereference_check(ioc->ioc_data,
3076 lockdep_is_held(&ioc->lock)) == cic);
3077
3078 radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
3079 hlist_del_rcu(&cic->cic_list);
3080 spin_unlock_irqrestore(&ioc->lock, flags);
3081
3082 cfq_cic_free(cic);
3083 }
3084
3085 static struct cfq_io_context *
3086 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
3087 {
3088 struct cfq_io_context *cic;
3089 unsigned long flags;
3090
3091 if (unlikely(!ioc))
3092 return NULL;
3093
3094 rcu_read_lock();
3095
3096 /*
3097 * we maintain a last-hit cache, to avoid browsing over the tree
3098 */
3099 cic = rcu_dereference(ioc->ioc_data);
3100 if (cic && cic->key == cfqd) {
3101 rcu_read_unlock();
3102 return cic;
3103 }
3104
3105 do {
3106 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
3107 rcu_read_unlock();
3108 if (!cic)
3109 break;
3110 if (unlikely(cic->key != cfqd)) {
3111 cfq_drop_dead_cic(cfqd, ioc, cic);
3112 rcu_read_lock();
3113 continue;
3114 }
3115
3116 spin_lock_irqsave(&ioc->lock, flags);
3117 rcu_assign_pointer(ioc->ioc_data, cic);
3118 spin_unlock_irqrestore(&ioc->lock, flags);
3119 break;
3120 } while (1);
3121
3122 return cic;
3123 }
3124
3125 /*
3126 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3127 * the process specific cfq io context when entered from the block layer.
3128 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3129 */
3130 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
3131 struct cfq_io_context *cic, gfp_t gfp_mask)
3132 {
3133 unsigned long flags;
3134 int ret;
3135
3136 ret = radix_tree_preload(gfp_mask);
3137 if (!ret) {
3138 cic->ioc = ioc;
3139 cic->key = cfqd;
3140
3141 spin_lock_irqsave(&ioc->lock, flags);
3142 ret = radix_tree_insert(&ioc->radix_root,
3143 cfqd->cic_index, cic);
3144 if (!ret)
3145 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
3146 spin_unlock_irqrestore(&ioc->lock, flags);
3147
3148 radix_tree_preload_end();
3149
3150 if (!ret) {
3151 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3152 list_add(&cic->queue_list, &cfqd->cic_list);
3153 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3154 }
3155 }
3156
3157 if (ret)
3158 printk(KERN_ERR "cfq: cic link failed!\n");
3159
3160 return ret;
3161 }
3162
3163 /*
3164 * Setup general io context and cfq io context. There can be several cfq
3165 * io contexts per general io context, if this process is doing io to more
3166 * than one device managed by cfq.
3167 */
3168 static struct cfq_io_context *
3169 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
3170 {
3171 struct io_context *ioc = NULL;
3172 struct cfq_io_context *cic;
3173
3174 might_sleep_if(gfp_mask & __GFP_WAIT);
3175
3176 ioc = get_io_context(gfp_mask, cfqd->queue->node);
3177 if (!ioc)
3178 return NULL;
3179
3180 cic = cfq_cic_lookup(cfqd, ioc);
3181 if (cic)
3182 goto out;
3183
3184 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3185 if (cic == NULL)
3186 goto err;
3187
3188 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3189 goto err_free;
3190
3191 out:
3192 smp_read_barrier_depends();
3193 if (unlikely(ioc->ioprio_changed))
3194 cfq_ioc_set_ioprio(ioc);
3195
3196 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3197 if (unlikely(ioc->cgroup_changed))
3198 cfq_ioc_set_cgroup(ioc);
3199 #endif
3200 return cic;
3201 err_free:
3202 cfq_cic_free(cic);
3203 err:
3204 put_io_context(ioc);
3205 return NULL;
3206 }
3207
3208 static void
3209 __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3210 {
3211 unsigned long elapsed = jiffies - ttime->last_end_request;
3212 elapsed = min(elapsed, 2UL * slice_idle);
3213
3214 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3215 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3216 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3217 }
3218
3219 static void
3220 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3221 struct cfq_io_context *cic)
3222 {
3223 if (cfq_cfqq_sync(cfqq))
3224 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3225 }
3226
3227 static void
3228 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3229 struct request *rq)
3230 {
3231 sector_t sdist = 0;
3232 sector_t n_sec = blk_rq_sectors(rq);
3233 if (cfqq->last_request_pos) {
3234 if (cfqq->last_request_pos < blk_rq_pos(rq))
3235 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3236 else
3237 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3238 }
3239
3240 cfqq->seek_history <<= 1;
3241 if (blk_queue_nonrot(cfqd->queue))
3242 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3243 else
3244 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3245 }
3246
3247 /*
3248 * Disable idle window if the process thinks too long or seeks so much that
3249 * it doesn't matter
3250 */
3251 static void
3252 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3253 struct cfq_io_context *cic)
3254 {
3255 int old_idle, enable_idle;
3256
3257 /*
3258 * Don't idle for async or idle io prio class
3259 */
3260 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3261 return;
3262
3263 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3264
3265 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3266 cfq_mark_cfqq_deep(cfqq);
3267
3268 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3269 enable_idle = 0;
3270 else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3271 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3272 enable_idle = 0;
3273 else if (sample_valid(cic->ttime.ttime_samples)) {
3274 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3275 enable_idle = 0;
3276 else
3277 enable_idle = 1;
3278 }
3279
3280 if (old_idle != enable_idle) {
3281 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3282 if (enable_idle)
3283 cfq_mark_cfqq_idle_window(cfqq);
3284 else
3285 cfq_clear_cfqq_idle_window(cfqq);
3286 }
3287 }
3288
3289 /*
3290 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3291 * no or if we aren't sure, a 1 will cause a preempt.
3292 */
3293 static bool
3294 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3295 struct request *rq)
3296 {
3297 struct cfq_queue *cfqq;
3298
3299 cfqq = cfqd->active_queue;
3300 if (!cfqq)
3301 return false;
3302
3303 if (cfq_class_idle(new_cfqq))
3304 return false;
3305
3306 if (cfq_class_idle(cfqq))
3307 return true;
3308
3309 /*
3310 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3311 */
3312 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3313 return false;
3314
3315 /*
3316 * if the new request is sync, but the currently running queue is
3317 * not, let the sync request have priority.
3318 */
3319 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3320 return true;
3321
3322 if (new_cfqq->cfqg != cfqq->cfqg)
3323 return false;
3324
3325 if (cfq_slice_used(cfqq))
3326 return true;
3327
3328 /* Allow preemption only if we are idling on sync-noidle tree */
3329 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3330 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3331 new_cfqq->service_tree->count == 2 &&
3332 RB_EMPTY_ROOT(&cfqq->sort_list))
3333 return true;
3334
3335 /*
3336 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3337 */
3338 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3339 return true;
3340
3341 /* An idle queue should not be idle now for some reason */
3342 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3343 return true;
3344
3345 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3346 return false;
3347
3348 /*
3349 * if this request is as-good as one we would expect from the
3350 * current cfqq, let it preempt
3351 */
3352 if (cfq_rq_close(cfqd, cfqq, rq))
3353 return true;
3354
3355 return false;
3356 }
3357
3358 /*
3359 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3360 * let it have half of its nominal slice.
3361 */
3362 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3363 {
3364 struct cfq_queue *old_cfqq = cfqd->active_queue;
3365
3366 cfq_log_cfqq(cfqd, cfqq, "preempt");
3367 cfq_slice_expired(cfqd, 1);
3368
3369 /*
3370 * workload type is changed, don't save slice, otherwise preempt
3371 * doesn't happen
3372 */
3373 if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
3374 cfqq->cfqg->saved_workload_slice = 0;
3375
3376 /*
3377 * Put the new queue at the front of the of the current list,
3378 * so we know that it will be selected next.
3379 */
3380 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3381
3382 cfq_service_tree_add(cfqd, cfqq, 1);
3383
3384 cfqq->slice_end = 0;
3385 cfq_mark_cfqq_slice_new(cfqq);
3386 }
3387
3388 /*
3389 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3390 * something we should do about it
3391 */
3392 static void
3393 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3394 struct request *rq)
3395 {
3396 struct cfq_io_context *cic = RQ_CIC(rq);
3397
3398 cfqd->rq_queued++;
3399
3400 cfq_update_io_thinktime(cfqd, cfqq, cic);
3401 cfq_update_io_seektime(cfqd, cfqq, rq);
3402 cfq_update_idle_window(cfqd, cfqq, cic);
3403
3404 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3405
3406 if (cfqq == cfqd->active_queue) {
3407 /*
3408 * Remember that we saw a request from this process, but
3409 * don't start queuing just yet. Otherwise we risk seeing lots
3410 * of tiny requests, because we disrupt the normal plugging
3411 * and merging. If the request is already larger than a single
3412 * page, let it rip immediately. For that case we assume that
3413 * merging is already done. Ditto for a busy system that
3414 * has other work pending, don't risk delaying until the
3415 * idle timer unplug to continue working.
3416 */
3417 if (cfq_cfqq_wait_request(cfqq)) {
3418 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3419 cfqd->busy_queues > 1) {
3420 cfq_del_timer(cfqd, cfqq);
3421 cfq_clear_cfqq_wait_request(cfqq);
3422 __blk_run_queue(cfqd->queue);
3423 } else {
3424 cfq_blkiocg_update_idle_time_stats(
3425 &cfqq->cfqg->blkg);
3426 cfq_mark_cfqq_must_dispatch(cfqq);
3427 }
3428 }
3429 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3430 /*
3431 * not the active queue - expire current slice if it is
3432 * idle and has expired it's mean thinktime or this new queue
3433 * has some old slice time left and is of higher priority or
3434 * this new queue is RT and the current one is BE
3435 */
3436 cfq_preempt_queue(cfqd, cfqq);
3437 __blk_run_queue(cfqd->queue);
3438 }
3439 }
3440
3441 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3442 {
3443 struct cfq_data *cfqd = q->elevator->elevator_data;
3444 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3445
3446 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3447 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3448
3449 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3450 list_add_tail(&rq->queuelist, &cfqq->fifo);
3451 cfq_add_rq_rb(rq);
3452 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3453 &cfqd->serving_group->blkg, rq_data_dir(rq),
3454 rq_is_sync(rq));
3455 cfq_rq_enqueued(cfqd, cfqq, rq);
3456 }
3457
3458 /*
3459 * Update hw_tag based on peak queue depth over 50 samples under
3460 * sufficient load.
3461 */
3462 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3463 {
3464 struct cfq_queue *cfqq = cfqd->active_queue;
3465
3466 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3467 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3468
3469 if (cfqd->hw_tag == 1)
3470 return;
3471
3472 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3473 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3474 return;
3475
3476 /*
3477 * If active queue hasn't enough requests and can idle, cfq might not
3478 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3479 * case
3480 */
3481 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3482 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3483 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3484 return;
3485
3486 if (cfqd->hw_tag_samples++ < 50)
3487 return;
3488
3489 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3490 cfqd->hw_tag = 1;
3491 else
3492 cfqd->hw_tag = 0;
3493 }
3494
3495 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3496 {
3497 struct cfq_io_context *cic = cfqd->active_cic;
3498
3499 /* If the queue already has requests, don't wait */
3500 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3501 return false;
3502
3503 /* If there are other queues in the group, don't wait */
3504 if (cfqq->cfqg->nr_cfqq > 1)
3505 return false;
3506
3507 if (cfq_slice_used(cfqq))
3508 return true;
3509
3510 /* if slice left is less than think time, wait busy */
3511 if (cic && sample_valid(cic->ttime.ttime_samples)
3512 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3513 return true;
3514
3515 /*
3516 * If think times is less than a jiffy than ttime_mean=0 and above
3517 * will not be true. It might happen that slice has not expired yet
3518 * but will expire soon (4-5 ns) during select_queue(). To cover the
3519 * case where think time is less than a jiffy, mark the queue wait
3520 * busy if only 1 jiffy is left in the slice.
3521 */
3522 if (cfqq->slice_end - jiffies == 1)
3523 return true;
3524
3525 return false;
3526 }
3527
3528 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3529 {
3530 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3531 struct cfq_data *cfqd = cfqq->cfqd;
3532 const int sync = rq_is_sync(rq);
3533 unsigned long now;
3534
3535 now = jiffies;
3536 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3537 !!(rq->cmd_flags & REQ_NOIDLE));
3538
3539 cfq_update_hw_tag(cfqd);
3540
3541 WARN_ON(!cfqd->rq_in_driver);
3542 WARN_ON(!cfqq->dispatched);
3543 cfqd->rq_in_driver--;
3544 cfqq->dispatched--;
3545 (RQ_CFQG(rq))->dispatched--;
3546 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3547 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3548 rq_data_dir(rq), rq_is_sync(rq));
3549
3550 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3551
3552 if (sync) {
3553 RQ_CIC(rq)->ttime.last_end_request = now;
3554 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3555 cfqd->last_delayed_sync = now;
3556 }
3557
3558 /*
3559 * If this is the active queue, check if it needs to be expired,
3560 * or if we want to idle in case it has no pending requests.
3561 */
3562 if (cfqd->active_queue == cfqq) {
3563 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3564
3565 if (cfq_cfqq_slice_new(cfqq)) {
3566 cfq_set_prio_slice(cfqd, cfqq);
3567 cfq_clear_cfqq_slice_new(cfqq);
3568 }
3569
3570 /*
3571 * Should we wait for next request to come in before we expire
3572 * the queue.
3573 */
3574 if (cfq_should_wait_busy(cfqd, cfqq)) {
3575 unsigned long extend_sl = cfqd->cfq_slice_idle;
3576 if (!cfqd->cfq_slice_idle)
3577 extend_sl = cfqd->cfq_group_idle;
3578 cfqq->slice_end = jiffies + extend_sl;
3579 cfq_mark_cfqq_wait_busy(cfqq);
3580 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3581 }
3582
3583 /*
3584 * Idling is not enabled on:
3585 * - expired queues
3586 * - idle-priority queues
3587 * - async queues
3588 * - queues with still some requests queued
3589 * - when there is a close cooperator
3590 */
3591 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3592 cfq_slice_expired(cfqd, 1);
3593 else if (sync && cfqq_empty &&
3594 !cfq_close_cooperator(cfqd, cfqq)) {
3595 cfq_arm_slice_timer(cfqd);
3596 }
3597 }
3598
3599 if (!cfqd->rq_in_driver)
3600 cfq_schedule_dispatch(cfqd);
3601 }
3602
3603 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3604 {
3605 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3606 cfq_mark_cfqq_must_alloc_slice(cfqq);
3607 return ELV_MQUEUE_MUST;
3608 }
3609
3610 return ELV_MQUEUE_MAY;
3611 }
3612
3613 static int cfq_may_queue(struct request_queue *q, int rw)
3614 {
3615 struct cfq_data *cfqd = q->elevator->elevator_data;
3616 struct task_struct *tsk = current;
3617 struct cfq_io_context *cic;
3618 struct cfq_queue *cfqq;
3619
3620 /*
3621 * don't force setup of a queue from here, as a call to may_queue
3622 * does not necessarily imply that a request actually will be queued.
3623 * so just lookup a possibly existing queue, or return 'may queue'
3624 * if that fails
3625 */
3626 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3627 if (!cic)
3628 return ELV_MQUEUE_MAY;
3629
3630 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3631 if (cfqq) {
3632 cfq_init_prio_data(cfqq, cic->ioc);
3633
3634 return __cfq_may_queue(cfqq);
3635 }
3636
3637 return ELV_MQUEUE_MAY;
3638 }
3639
3640 /*
3641 * queue lock held here
3642 */
3643 static void cfq_put_request(struct request *rq)
3644 {
3645 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3646
3647 if (cfqq) {
3648 const int rw = rq_data_dir(rq);
3649
3650 BUG_ON(!cfqq->allocated[rw]);
3651 cfqq->allocated[rw]--;
3652
3653 put_io_context(RQ_CIC(rq)->ioc);
3654
3655 rq->elevator_private[0] = NULL;
3656 rq->elevator_private[1] = NULL;
3657
3658 /* Put down rq reference on cfqg */
3659 cfq_put_cfqg(RQ_CFQG(rq));
3660 rq->elevator_private[2] = NULL;
3661
3662 cfq_put_queue(cfqq);
3663 }
3664 }
3665
3666 static struct cfq_queue *
3667 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3668 struct cfq_queue *cfqq)
3669 {
3670 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3671 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3672 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3673 cfq_put_queue(cfqq);
3674 return cic_to_cfqq(cic, 1);
3675 }
3676
3677 /*
3678 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3679 * was the last process referring to said cfqq.
3680 */
3681 static struct cfq_queue *
3682 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3683 {
3684 if (cfqq_process_refs(cfqq) == 1) {
3685 cfqq->pid = current->pid;
3686 cfq_clear_cfqq_coop(cfqq);
3687 cfq_clear_cfqq_split_coop(cfqq);
3688 return cfqq;
3689 }
3690
3691 cic_set_cfqq(cic, NULL, 1);
3692
3693 cfq_put_cooperator(cfqq);
3694
3695 cfq_put_queue(cfqq);
3696 return NULL;
3697 }
3698 /*
3699 * Allocate cfq data structures associated with this request.
3700 */
3701 static int
3702 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3703 {
3704 struct cfq_data *cfqd = q->elevator->elevator_data;
3705 struct cfq_io_context *cic;
3706 const int rw = rq_data_dir(rq);
3707 const bool is_sync = rq_is_sync(rq);
3708 struct cfq_queue *cfqq;
3709 unsigned long flags;
3710
3711 might_sleep_if(gfp_mask & __GFP_WAIT);
3712
3713 cic = cfq_get_io_context(cfqd, gfp_mask);
3714
3715 spin_lock_irqsave(q->queue_lock, flags);
3716
3717 if (!cic)
3718 goto queue_fail;
3719
3720 new_queue:
3721 cfqq = cic_to_cfqq(cic, is_sync);
3722 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3723 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3724 cic_set_cfqq(cic, cfqq, is_sync);
3725 } else {
3726 /*
3727 * If the queue was seeky for too long, break it apart.
3728 */
3729 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3730 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3731 cfqq = split_cfqq(cic, cfqq);
3732 if (!cfqq)
3733 goto new_queue;
3734 }
3735
3736 /*
3737 * Check to see if this queue is scheduled to merge with
3738 * another, closely cooperating queue. The merging of
3739 * queues happens here as it must be done in process context.
3740 * The reference on new_cfqq was taken in merge_cfqqs.
3741 */
3742 if (cfqq->new_cfqq)
3743 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3744 }
3745
3746 cfqq->allocated[rw]++;
3747
3748 cfqq->ref++;
3749 rq->elevator_private[0] = cic;
3750 rq->elevator_private[1] = cfqq;
3751 rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
3752 spin_unlock_irqrestore(q->queue_lock, flags);
3753 return 0;
3754
3755 queue_fail:
3756 cfq_schedule_dispatch(cfqd);
3757 spin_unlock_irqrestore(q->queue_lock, flags);
3758 cfq_log(cfqd, "set_request fail");
3759 return 1;
3760 }
3761
3762 static void cfq_kick_queue(struct work_struct *work)
3763 {
3764 struct cfq_data *cfqd =
3765 container_of(work, struct cfq_data, unplug_work);
3766 struct request_queue *q = cfqd->queue;
3767
3768 spin_lock_irq(q->queue_lock);
3769 __blk_run_queue(cfqd->queue);
3770 spin_unlock_irq(q->queue_lock);
3771 }
3772
3773 /*
3774 * Timer running if the active_queue is currently idling inside its time slice
3775 */
3776 static void cfq_idle_slice_timer(unsigned long data)
3777 {
3778 struct cfq_data *cfqd = (struct cfq_data *) data;
3779 struct cfq_queue *cfqq;
3780 unsigned long flags;
3781 int timed_out = 1;
3782
3783 cfq_log(cfqd, "idle timer fired");
3784
3785 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3786
3787 cfqq = cfqd->active_queue;
3788 if (cfqq) {
3789 timed_out = 0;
3790
3791 /*
3792 * We saw a request before the queue expired, let it through
3793 */
3794 if (cfq_cfqq_must_dispatch(cfqq))
3795 goto out_kick;
3796
3797 /*
3798 * expired
3799 */
3800 if (cfq_slice_used(cfqq))
3801 goto expire;
3802
3803 /*
3804 * only expire and reinvoke request handler, if there are
3805 * other queues with pending requests
3806 */
3807 if (!cfqd->busy_queues)
3808 goto out_cont;
3809
3810 /*
3811 * not expired and it has a request pending, let it dispatch
3812 */
3813 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3814 goto out_kick;
3815
3816 /*
3817 * Queue depth flag is reset only when the idle didn't succeed
3818 */
3819 cfq_clear_cfqq_deep(cfqq);
3820 }
3821 expire:
3822 cfq_slice_expired(cfqd, timed_out);
3823 out_kick:
3824 cfq_schedule_dispatch(cfqd);
3825 out_cont:
3826 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3827 }
3828
3829 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3830 {
3831 del_timer_sync(&cfqd->idle_slice_timer);
3832 cancel_work_sync(&cfqd->unplug_work);
3833 }
3834
3835 static void cfq_put_async_queues(struct cfq_data *cfqd)
3836 {
3837 int i;
3838
3839 for (i = 0; i < IOPRIO_BE_NR; i++) {
3840 if (cfqd->async_cfqq[0][i])
3841 cfq_put_queue(cfqd->async_cfqq[0][i]);
3842 if (cfqd->async_cfqq[1][i])
3843 cfq_put_queue(cfqd->async_cfqq[1][i]);
3844 }
3845
3846 if (cfqd->async_idle_cfqq)
3847 cfq_put_queue(cfqd->async_idle_cfqq);
3848 }
3849
3850 static void cfq_exit_queue(struct elevator_queue *e)
3851 {
3852 struct cfq_data *cfqd = e->elevator_data;
3853 struct request_queue *q = cfqd->queue;
3854 bool wait = false;
3855
3856 cfq_shutdown_timer_wq(cfqd);
3857
3858 spin_lock_irq(q->queue_lock);
3859
3860 if (cfqd->active_queue)
3861 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3862
3863 while (!list_empty(&cfqd->cic_list)) {
3864 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3865 struct cfq_io_context,
3866 queue_list);
3867
3868 __cfq_exit_single_io_context(cfqd, cic);
3869 }
3870
3871 cfq_put_async_queues(cfqd);
3872 cfq_release_cfq_groups(cfqd);
3873
3874 /*
3875 * If there are groups which we could not unlink from blkcg list,
3876 * wait for a rcu period for them to be freed.
3877 */
3878 if (cfqd->nr_blkcg_linked_grps)
3879 wait = true;
3880
3881 spin_unlock_irq(q->queue_lock);
3882
3883 cfq_shutdown_timer_wq(cfqd);
3884
3885 spin_lock(&cic_index_lock);
3886 ida_remove(&cic_index_ida, cfqd->cic_index);
3887 spin_unlock(&cic_index_lock);
3888
3889 /*
3890 * Wait for cfqg->blkg->key accessors to exit their grace periods.
3891 * Do this wait only if there are other unlinked groups out
3892 * there. This can happen if cgroup deletion path claimed the
3893 * responsibility of cleaning up a group before queue cleanup code
3894 * get to the group.
3895 *
3896 * Do not call synchronize_rcu() unconditionally as there are drivers
3897 * which create/delete request queue hundreds of times during scan/boot
3898 * and synchronize_rcu() can take significant time and slow down boot.
3899 */
3900 if (wait)
3901 synchronize_rcu();
3902
3903 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3904 /* Free up per cpu stats for root group */
3905 free_percpu(cfqd->root_group.blkg.stats_cpu);
3906 #endif
3907 kfree(cfqd);
3908 }
3909
3910 static int cfq_alloc_cic_index(void)
3911 {
3912 int index, error;
3913
3914 do {
3915 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3916 return -ENOMEM;
3917
3918 spin_lock(&cic_index_lock);
3919 error = ida_get_new(&cic_index_ida, &index);
3920 spin_unlock(&cic_index_lock);
3921 if (error && error != -EAGAIN)
3922 return error;
3923 } while (error);
3924
3925 return index;
3926 }
3927
3928 static void *cfq_init_queue(struct request_queue *q)
3929 {
3930 struct cfq_data *cfqd;
3931 int i, j;
3932 struct cfq_group *cfqg;
3933 struct cfq_rb_root *st;
3934
3935 i = cfq_alloc_cic_index();
3936 if (i < 0)
3937 return NULL;
3938
3939 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3940 if (!cfqd) {
3941 spin_lock(&cic_index_lock);
3942 ida_remove(&cic_index_ida, i);
3943 spin_unlock(&cic_index_lock);
3944 return NULL;
3945 }
3946
3947 /*
3948 * Don't need take queue_lock in the routine, since we are
3949 * initializing the ioscheduler, and nobody is using cfqd
3950 */
3951 cfqd->cic_index = i;
3952
3953 /* Init root service tree */
3954 cfqd->grp_service_tree = CFQ_RB_ROOT;
3955
3956 /* Init root group */
3957 cfqg = &cfqd->root_group;
3958 for_each_cfqg_st(cfqg, i, j, st)
3959 *st = CFQ_RB_ROOT;
3960 RB_CLEAR_NODE(&cfqg->rb_node);
3961
3962 /* Give preference to root group over other groups */
3963 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3964
3965 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3966 /*
3967 * Set root group reference to 2. One reference will be dropped when
3968 * all groups on cfqd->cfqg_list are being deleted during queue exit.
3969 * Other reference will remain there as we don't want to delete this
3970 * group as it is statically allocated and gets destroyed when
3971 * throtl_data goes away.
3972 */
3973 cfqg->ref = 2;
3974
3975 if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
3976 kfree(cfqg);
3977 kfree(cfqd);
3978 return NULL;
3979 }
3980
3981 rcu_read_lock();
3982
3983 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
3984 (void *)cfqd, 0);
3985 rcu_read_unlock();
3986 cfqd->nr_blkcg_linked_grps++;
3987
3988 /* Add group on cfqd->cfqg_list */
3989 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
3990 #endif
3991 /*
3992 * Not strictly needed (since RB_ROOT just clears the node and we
3993 * zeroed cfqd on alloc), but better be safe in case someone decides
3994 * to add magic to the rb code
3995 */
3996 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3997 cfqd->prio_trees[i] = RB_ROOT;
3998
3999 /*
4000 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4001 * Grab a permanent reference to it, so that the normal code flow
4002 * will not attempt to free it.
4003 */
4004 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4005 cfqd->oom_cfqq.ref++;
4006 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
4007
4008 INIT_LIST_HEAD(&cfqd->cic_list);
4009
4010 cfqd->queue = q;
4011
4012 init_timer(&cfqd->idle_slice_timer);
4013 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4014 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4015
4016 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4017
4018 cfqd->cfq_quantum = cfq_quantum;
4019 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4020 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4021 cfqd->cfq_back_max = cfq_back_max;
4022 cfqd->cfq_back_penalty = cfq_back_penalty;
4023 cfqd->cfq_slice[0] = cfq_slice_async;
4024 cfqd->cfq_slice[1] = cfq_slice_sync;
4025 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4026 cfqd->cfq_slice_idle = cfq_slice_idle;
4027 cfqd->cfq_group_idle = cfq_group_idle;
4028 cfqd->cfq_latency = 1;
4029 cfqd->hw_tag = -1;
4030 /*
4031 * we optimistically start assuming sync ops weren't delayed in last
4032 * second, in order to have larger depth for async operations.
4033 */
4034 cfqd->last_delayed_sync = jiffies - HZ;
4035 return cfqd;
4036 }
4037
4038 static void cfq_slab_kill(void)
4039 {
4040 /*
4041 * Caller already ensured that pending RCU callbacks are completed,
4042 * so we should have no busy allocations at this point.
4043 */
4044 if (cfq_pool)
4045 kmem_cache_destroy(cfq_pool);
4046 if (cfq_ioc_pool)
4047 kmem_cache_destroy(cfq_ioc_pool);
4048 }
4049
4050 static int __init cfq_slab_setup(void)
4051 {
4052 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4053 if (!cfq_pool)
4054 goto fail;
4055
4056 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
4057 if (!cfq_ioc_pool)
4058 goto fail;
4059
4060 return 0;
4061 fail:
4062 cfq_slab_kill();
4063 return -ENOMEM;
4064 }
4065
4066 /*
4067 * sysfs parts below -->
4068 */
4069 static ssize_t
4070 cfq_var_show(unsigned int var, char *page)
4071 {
4072 return sprintf(page, "%d\n", var);
4073 }
4074
4075 static ssize_t
4076 cfq_var_store(unsigned int *var, const char *page, size_t count)
4077 {
4078 char *p = (char *) page;
4079
4080 *var = simple_strtoul(p, &p, 10);
4081 return count;
4082 }
4083
4084 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4085 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4086 { \
4087 struct cfq_data *cfqd = e->elevator_data; \
4088 unsigned int __data = __VAR; \
4089 if (__CONV) \
4090 __data = jiffies_to_msecs(__data); \
4091 return cfq_var_show(__data, (page)); \
4092 }
4093 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4094 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4095 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4096 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4097 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4098 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4099 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4100 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4101 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4102 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4103 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4104 #undef SHOW_FUNCTION
4105
4106 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4107 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4108 { \
4109 struct cfq_data *cfqd = e->elevator_data; \
4110 unsigned int __data; \
4111 int ret = cfq_var_store(&__data, (page), count); \
4112 if (__data < (MIN)) \
4113 __data = (MIN); \
4114 else if (__data > (MAX)) \
4115 __data = (MAX); \
4116 if (__CONV) \
4117 *(__PTR) = msecs_to_jiffies(__data); \
4118 else \
4119 *(__PTR) = __data; \
4120 return ret; \
4121 }
4122 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4123 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4124 UINT_MAX, 1);
4125 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4126 UINT_MAX, 1);
4127 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4128 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4129 UINT_MAX, 0);
4130 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4131 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4132 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4133 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4134 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4135 UINT_MAX, 0);
4136 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4137 #undef STORE_FUNCTION
4138
4139 #define CFQ_ATTR(name) \
4140 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4141
4142 static struct elv_fs_entry cfq_attrs[] = {
4143 CFQ_ATTR(quantum),
4144 CFQ_ATTR(fifo_expire_sync),
4145 CFQ_ATTR(fifo_expire_async),
4146 CFQ_ATTR(back_seek_max),
4147 CFQ_ATTR(back_seek_penalty),
4148 CFQ_ATTR(slice_sync),
4149 CFQ_ATTR(slice_async),
4150 CFQ_ATTR(slice_async_rq),
4151 CFQ_ATTR(slice_idle),
4152 CFQ_ATTR(group_idle),
4153 CFQ_ATTR(low_latency),
4154 __ATTR_NULL
4155 };
4156
4157 static struct elevator_type iosched_cfq = {
4158 .ops = {
4159 .elevator_merge_fn = cfq_merge,
4160 .elevator_merged_fn = cfq_merged_request,
4161 .elevator_merge_req_fn = cfq_merged_requests,
4162 .elevator_allow_merge_fn = cfq_allow_merge,
4163 .elevator_bio_merged_fn = cfq_bio_merged,
4164 .elevator_dispatch_fn = cfq_dispatch_requests,
4165 .elevator_add_req_fn = cfq_insert_request,
4166 .elevator_activate_req_fn = cfq_activate_request,
4167 .elevator_deactivate_req_fn = cfq_deactivate_request,
4168 .elevator_completed_req_fn = cfq_completed_request,
4169 .elevator_former_req_fn = elv_rb_former_request,
4170 .elevator_latter_req_fn = elv_rb_latter_request,
4171 .elevator_set_req_fn = cfq_set_request,
4172 .elevator_put_req_fn = cfq_put_request,
4173 .elevator_may_queue_fn = cfq_may_queue,
4174 .elevator_init_fn = cfq_init_queue,
4175 .elevator_exit_fn = cfq_exit_queue,
4176 .trim = cfq_free_io_context,
4177 },
4178 .elevator_attrs = cfq_attrs,
4179 .elevator_name = "cfq",
4180 .elevator_owner = THIS_MODULE,
4181 };
4182
4183 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4184 static struct blkio_policy_type blkio_policy_cfq = {
4185 .ops = {
4186 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
4187 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4188 },
4189 .plid = BLKIO_POLICY_PROP,
4190 };
4191 #else
4192 static struct blkio_policy_type blkio_policy_cfq;
4193 #endif
4194
4195 static int __init cfq_init(void)
4196 {
4197 /*
4198 * could be 0 on HZ < 1000 setups
4199 */
4200 if (!cfq_slice_async)
4201 cfq_slice_async = 1;
4202 if (!cfq_slice_idle)
4203 cfq_slice_idle = 1;
4204
4205 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4206 if (!cfq_group_idle)
4207 cfq_group_idle = 1;
4208 #else
4209 cfq_group_idle = 0;
4210 #endif
4211 if (cfq_slab_setup())
4212 return -ENOMEM;
4213
4214 elv_register(&iosched_cfq);
4215 blkio_policy_register(&blkio_policy_cfq);
4216
4217 return 0;
4218 }
4219
4220 static void __exit cfq_exit(void)
4221 {
4222 DECLARE_COMPLETION_ONSTACK(all_gone);
4223 blkio_policy_unregister(&blkio_policy_cfq);
4224 elv_unregister(&iosched_cfq);
4225 ioc_gone = &all_gone;
4226 /* ioc_gone's update must be visible before reading ioc_count */
4227 smp_wmb();
4228
4229 /*
4230 * this also protects us from entering cfq_slab_kill() with
4231 * pending RCU callbacks
4232 */
4233 if (elv_ioc_count_read(cfq_ioc_count))
4234 wait_for_completion(&all_gone);
4235 ida_destroy(&cic_index_ida);
4236 cfq_slab_kill();
4237 }
4238
4239 module_init(cfq_init);
4240 module_exit(cfq_exit);
4241
4242 MODULE_AUTHOR("Jens Axboe");
4243 MODULE_LICENSE("GPL");
4244 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
This page took 0.175873 seconds and 5 git commands to generate.