ARM: SMDK6410: Hook up regulator supplies for WM8580
[deliverable/linux.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
15
16 /*
17 * tunables
18 */
19 /* max queue in one round of service */
20 static const int cfq_quantum = 4;
21 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max = 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty = 2;
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 125;
30
31 /*
32 * offset from end of service tree
33 */
34 #define CFQ_IDLE_DELAY (HZ / 5)
35
36 /*
37 * below this threshold, we consider thinktime immediate
38 */
39 #define CFQ_MIN_TT (2)
40
41 #define CFQ_SLICE_SCALE (5)
42 #define CFQ_HW_QUEUE_MIN (5)
43
44 #define RQ_CIC(rq) \
45 ((struct cfq_io_context *) (rq)->elevator_private)
46 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
47
48 static struct kmem_cache *cfq_pool;
49 static struct kmem_cache *cfq_ioc_pool;
50
51 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
52 static struct completion *ioc_gone;
53 static DEFINE_SPINLOCK(ioc_gone_lock);
54
55 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
56 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
58
59 #define sample_valid(samples) ((samples) > 80)
60
61 /*
62 * Most of our rbtree usage is for sorting with min extraction, so
63 * if we cache the leftmost node we don't have to walk down the tree
64 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65 * move this into the elevator for the rq sorting as well.
66 */
67 struct cfq_rb_root {
68 struct rb_root rb;
69 struct rb_node *left;
70 };
71 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
72
73 /*
74 * Per process-grouping structure
75 */
76 struct cfq_queue {
77 /* reference count */
78 atomic_t ref;
79 /* various state flags, see below */
80 unsigned int flags;
81 /* parent cfq_data */
82 struct cfq_data *cfqd;
83 /* service_tree member */
84 struct rb_node rb_node;
85 /* service_tree key */
86 unsigned long rb_key;
87 /* prio tree member */
88 struct rb_node p_node;
89 /* prio tree root we belong to, if any */
90 struct rb_root *p_root;
91 /* sorted list of pending requests */
92 struct rb_root sort_list;
93 /* if fifo isn't expired, next request to serve */
94 struct request *next_rq;
95 /* requests queued in sort_list */
96 int queued[2];
97 /* currently allocated requests */
98 int allocated[2];
99 /* fifo list of requests in sort_list */
100 struct list_head fifo;
101
102 unsigned long slice_end;
103 long slice_resid;
104 unsigned int slice_dispatch;
105
106 /* pending metadata requests */
107 int meta_pending;
108 /* number of requests that are on the dispatch list or inside driver */
109 int dispatched;
110
111 /* io prio of this group */
112 unsigned short ioprio, org_ioprio;
113 unsigned short ioprio_class, org_ioprio_class;
114
115 pid_t pid;
116 };
117
118 /*
119 * Per block device queue structure
120 */
121 struct cfq_data {
122 struct request_queue *queue;
123
124 /*
125 * rr list of queues with requests and the count of them
126 */
127 struct cfq_rb_root service_tree;
128
129 /*
130 * Each priority tree is sorted by next_request position. These
131 * trees are used when determining if two or more queues are
132 * interleaving requests (see cfq_close_cooperator).
133 */
134 struct rb_root prio_trees[CFQ_PRIO_LISTS];
135
136 unsigned int busy_queues;
137
138 int rq_in_driver[2];
139 int sync_flight;
140
141 /*
142 * queue-depth detection
143 */
144 int rq_queued;
145 int hw_tag;
146 int hw_tag_samples;
147 int rq_in_driver_peak;
148
149 /*
150 * idle window management
151 */
152 struct timer_list idle_slice_timer;
153 struct work_struct unplug_work;
154
155 struct cfq_queue *active_queue;
156 struct cfq_io_context *active_cic;
157
158 /*
159 * async queue for each priority case
160 */
161 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
162 struct cfq_queue *async_idle_cfqq;
163
164 sector_t last_position;
165
166 /*
167 * tunables, see top of file
168 */
169 unsigned int cfq_quantum;
170 unsigned int cfq_fifo_expire[2];
171 unsigned int cfq_back_penalty;
172 unsigned int cfq_back_max;
173 unsigned int cfq_slice[2];
174 unsigned int cfq_slice_async_rq;
175 unsigned int cfq_slice_idle;
176 unsigned int cfq_latency;
177
178 struct list_head cic_list;
179
180 /*
181 * Fallback dummy cfqq for extreme OOM conditions
182 */
183 struct cfq_queue oom_cfqq;
184
185 unsigned long last_end_sync_rq;
186 };
187
188 enum cfqq_state_flags {
189 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
190 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
191 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
192 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
193 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
194 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
195 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
196 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
197 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
198 CFQ_CFQQ_FLAG_coop, /* has done a coop jump of the queue */
199 CFQ_CFQQ_FLAG_coop_preempt, /* coop preempt */
200 };
201
202 #define CFQ_CFQQ_FNS(name) \
203 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
204 { \
205 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
206 } \
207 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
208 { \
209 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
210 } \
211 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
212 { \
213 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
214 }
215
216 CFQ_CFQQ_FNS(on_rr);
217 CFQ_CFQQ_FNS(wait_request);
218 CFQ_CFQQ_FNS(must_dispatch);
219 CFQ_CFQQ_FNS(must_alloc_slice);
220 CFQ_CFQQ_FNS(fifo_expire);
221 CFQ_CFQQ_FNS(idle_window);
222 CFQ_CFQQ_FNS(prio_changed);
223 CFQ_CFQQ_FNS(slice_new);
224 CFQ_CFQQ_FNS(sync);
225 CFQ_CFQQ_FNS(coop);
226 CFQ_CFQQ_FNS(coop_preempt);
227 #undef CFQ_CFQQ_FNS
228
229 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
230 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
231 #define cfq_log(cfqd, fmt, args...) \
232 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
233
234 static void cfq_dispatch_insert(struct request_queue *, struct request *);
235 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
236 struct io_context *, gfp_t);
237 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
238 struct io_context *);
239
240 static inline int rq_in_driver(struct cfq_data *cfqd)
241 {
242 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
243 }
244
245 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
246 bool is_sync)
247 {
248 return cic->cfqq[is_sync];
249 }
250
251 static inline void cic_set_cfqq(struct cfq_io_context *cic,
252 struct cfq_queue *cfqq, bool is_sync)
253 {
254 cic->cfqq[is_sync] = cfqq;
255 }
256
257 /*
258 * We regard a request as SYNC, if it's either a read or has the SYNC bit
259 * set (in which case it could also be direct WRITE).
260 */
261 static inline bool cfq_bio_sync(struct bio *bio)
262 {
263 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
264 }
265
266 /*
267 * scheduler run of queue, if there are requests pending and no one in the
268 * driver that will restart queueing
269 */
270 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
271 {
272 if (cfqd->busy_queues) {
273 cfq_log(cfqd, "schedule dispatch");
274 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
275 }
276 }
277
278 static int cfq_queue_empty(struct request_queue *q)
279 {
280 struct cfq_data *cfqd = q->elevator->elevator_data;
281
282 return !cfqd->busy_queues;
283 }
284
285 /*
286 * Scale schedule slice based on io priority. Use the sync time slice only
287 * if a queue is marked sync and has sync io queued. A sync queue with async
288 * io only, should not get full sync slice length.
289 */
290 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
291 unsigned short prio)
292 {
293 const int base_slice = cfqd->cfq_slice[sync];
294
295 WARN_ON(prio >= IOPRIO_BE_NR);
296
297 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
298 }
299
300 static inline int
301 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
302 {
303 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
304 }
305
306 static inline void
307 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
308 {
309 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
310 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
311 }
312
313 /*
314 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
315 * isn't valid until the first request from the dispatch is activated
316 * and the slice time set.
317 */
318 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
319 {
320 if (cfq_cfqq_slice_new(cfqq))
321 return 0;
322 if (time_before(jiffies, cfqq->slice_end))
323 return 0;
324
325 return 1;
326 }
327
328 /*
329 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
330 * We choose the request that is closest to the head right now. Distance
331 * behind the head is penalized and only allowed to a certain extent.
332 */
333 static struct request *
334 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
335 {
336 sector_t last, s1, s2, d1 = 0, d2 = 0;
337 unsigned long back_max;
338 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
339 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
340 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
341
342 if (rq1 == NULL || rq1 == rq2)
343 return rq2;
344 if (rq2 == NULL)
345 return rq1;
346
347 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
348 return rq1;
349 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
350 return rq2;
351 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
352 return rq1;
353 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
354 return rq2;
355
356 s1 = blk_rq_pos(rq1);
357 s2 = blk_rq_pos(rq2);
358
359 last = cfqd->last_position;
360
361 /*
362 * by definition, 1KiB is 2 sectors
363 */
364 back_max = cfqd->cfq_back_max * 2;
365
366 /*
367 * Strict one way elevator _except_ in the case where we allow
368 * short backward seeks which are biased as twice the cost of a
369 * similar forward seek.
370 */
371 if (s1 >= last)
372 d1 = s1 - last;
373 else if (s1 + back_max >= last)
374 d1 = (last - s1) * cfqd->cfq_back_penalty;
375 else
376 wrap |= CFQ_RQ1_WRAP;
377
378 if (s2 >= last)
379 d2 = s2 - last;
380 else if (s2 + back_max >= last)
381 d2 = (last - s2) * cfqd->cfq_back_penalty;
382 else
383 wrap |= CFQ_RQ2_WRAP;
384
385 /* Found required data */
386
387 /*
388 * By doing switch() on the bit mask "wrap" we avoid having to
389 * check two variables for all permutations: --> faster!
390 */
391 switch (wrap) {
392 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
393 if (d1 < d2)
394 return rq1;
395 else if (d2 < d1)
396 return rq2;
397 else {
398 if (s1 >= s2)
399 return rq1;
400 else
401 return rq2;
402 }
403
404 case CFQ_RQ2_WRAP:
405 return rq1;
406 case CFQ_RQ1_WRAP:
407 return rq2;
408 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
409 default:
410 /*
411 * Since both rqs are wrapped,
412 * start with the one that's further behind head
413 * (--> only *one* back seek required),
414 * since back seek takes more time than forward.
415 */
416 if (s1 <= s2)
417 return rq1;
418 else
419 return rq2;
420 }
421 }
422
423 /*
424 * The below is leftmost cache rbtree addon
425 */
426 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
427 {
428 if (!root->left)
429 root->left = rb_first(&root->rb);
430
431 if (root->left)
432 return rb_entry(root->left, struct cfq_queue, rb_node);
433
434 return NULL;
435 }
436
437 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
438 {
439 rb_erase(n, root);
440 RB_CLEAR_NODE(n);
441 }
442
443 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
444 {
445 if (root->left == n)
446 root->left = NULL;
447 rb_erase_init(n, &root->rb);
448 }
449
450 /*
451 * would be nice to take fifo expire time into account as well
452 */
453 static struct request *
454 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
455 struct request *last)
456 {
457 struct rb_node *rbnext = rb_next(&last->rb_node);
458 struct rb_node *rbprev = rb_prev(&last->rb_node);
459 struct request *next = NULL, *prev = NULL;
460
461 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
462
463 if (rbprev)
464 prev = rb_entry_rq(rbprev);
465
466 if (rbnext)
467 next = rb_entry_rq(rbnext);
468 else {
469 rbnext = rb_first(&cfqq->sort_list);
470 if (rbnext && rbnext != &last->rb_node)
471 next = rb_entry_rq(rbnext);
472 }
473
474 return cfq_choose_req(cfqd, next, prev);
475 }
476
477 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
478 struct cfq_queue *cfqq)
479 {
480 /*
481 * just an approximation, should be ok.
482 */
483 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
484 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
485 }
486
487 /*
488 * The cfqd->service_tree holds all pending cfq_queue's that have
489 * requests waiting to be processed. It is sorted in the order that
490 * we will service the queues.
491 */
492 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
493 bool add_front)
494 {
495 struct rb_node **p, *parent;
496 struct cfq_queue *__cfqq;
497 unsigned long rb_key;
498 int left;
499
500 if (cfq_class_idle(cfqq)) {
501 rb_key = CFQ_IDLE_DELAY;
502 parent = rb_last(&cfqd->service_tree.rb);
503 if (parent && parent != &cfqq->rb_node) {
504 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
505 rb_key += __cfqq->rb_key;
506 } else
507 rb_key += jiffies;
508 } else if (!add_front) {
509 /*
510 * Get our rb key offset. Subtract any residual slice
511 * value carried from last service. A negative resid
512 * count indicates slice overrun, and this should position
513 * the next service time further away in the tree.
514 */
515 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
516 rb_key -= cfqq->slice_resid;
517 cfqq->slice_resid = 0;
518 } else {
519 rb_key = -HZ;
520 __cfqq = cfq_rb_first(&cfqd->service_tree);
521 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
522 }
523
524 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
525 /*
526 * same position, nothing more to do
527 */
528 if (rb_key == cfqq->rb_key)
529 return;
530
531 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
532 }
533
534 left = 1;
535 parent = NULL;
536 p = &cfqd->service_tree.rb.rb_node;
537 while (*p) {
538 struct rb_node **n;
539
540 parent = *p;
541 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
542
543 /*
544 * sort RT queues first, we always want to give
545 * preference to them. IDLE queues goes to the back.
546 * after that, sort on the next service time.
547 */
548 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
549 n = &(*p)->rb_left;
550 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
551 n = &(*p)->rb_right;
552 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
553 n = &(*p)->rb_left;
554 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
555 n = &(*p)->rb_right;
556 else if (time_before(rb_key, __cfqq->rb_key))
557 n = &(*p)->rb_left;
558 else
559 n = &(*p)->rb_right;
560
561 if (n == &(*p)->rb_right)
562 left = 0;
563
564 p = n;
565 }
566
567 if (left)
568 cfqd->service_tree.left = &cfqq->rb_node;
569
570 cfqq->rb_key = rb_key;
571 rb_link_node(&cfqq->rb_node, parent, p);
572 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
573 }
574
575 static struct cfq_queue *
576 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
577 sector_t sector, struct rb_node **ret_parent,
578 struct rb_node ***rb_link)
579 {
580 struct rb_node **p, *parent;
581 struct cfq_queue *cfqq = NULL;
582
583 parent = NULL;
584 p = &root->rb_node;
585 while (*p) {
586 struct rb_node **n;
587
588 parent = *p;
589 cfqq = rb_entry(parent, struct cfq_queue, p_node);
590
591 /*
592 * Sort strictly based on sector. Smallest to the left,
593 * largest to the right.
594 */
595 if (sector > blk_rq_pos(cfqq->next_rq))
596 n = &(*p)->rb_right;
597 else if (sector < blk_rq_pos(cfqq->next_rq))
598 n = &(*p)->rb_left;
599 else
600 break;
601 p = n;
602 cfqq = NULL;
603 }
604
605 *ret_parent = parent;
606 if (rb_link)
607 *rb_link = p;
608 return cfqq;
609 }
610
611 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
612 {
613 struct rb_node **p, *parent;
614 struct cfq_queue *__cfqq;
615
616 if (cfqq->p_root) {
617 rb_erase(&cfqq->p_node, cfqq->p_root);
618 cfqq->p_root = NULL;
619 }
620
621 if (cfq_class_idle(cfqq))
622 return;
623 if (!cfqq->next_rq)
624 return;
625
626 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
627 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
628 blk_rq_pos(cfqq->next_rq), &parent, &p);
629 if (!__cfqq) {
630 rb_link_node(&cfqq->p_node, parent, p);
631 rb_insert_color(&cfqq->p_node, cfqq->p_root);
632 } else
633 cfqq->p_root = NULL;
634 }
635
636 /*
637 * Update cfqq's position in the service tree.
638 */
639 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
640 {
641 /*
642 * Resorting requires the cfqq to be on the RR list already.
643 */
644 if (cfq_cfqq_on_rr(cfqq)) {
645 cfq_service_tree_add(cfqd, cfqq, 0);
646 cfq_prio_tree_add(cfqd, cfqq);
647 }
648 }
649
650 /*
651 * add to busy list of queues for service, trying to be fair in ordering
652 * the pending list according to last request service
653 */
654 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
655 {
656 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
657 BUG_ON(cfq_cfqq_on_rr(cfqq));
658 cfq_mark_cfqq_on_rr(cfqq);
659 cfqd->busy_queues++;
660
661 cfq_resort_rr_list(cfqd, cfqq);
662 }
663
664 /*
665 * Called when the cfqq no longer has requests pending, remove it from
666 * the service tree.
667 */
668 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
669 {
670 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
671 BUG_ON(!cfq_cfqq_on_rr(cfqq));
672 cfq_clear_cfqq_on_rr(cfqq);
673
674 if (!RB_EMPTY_NODE(&cfqq->rb_node))
675 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
676 if (cfqq->p_root) {
677 rb_erase(&cfqq->p_node, cfqq->p_root);
678 cfqq->p_root = NULL;
679 }
680
681 BUG_ON(!cfqd->busy_queues);
682 cfqd->busy_queues--;
683 }
684
685 /*
686 * rb tree support functions
687 */
688 static void cfq_del_rq_rb(struct request *rq)
689 {
690 struct cfq_queue *cfqq = RQ_CFQQ(rq);
691 struct cfq_data *cfqd = cfqq->cfqd;
692 const int sync = rq_is_sync(rq);
693
694 BUG_ON(!cfqq->queued[sync]);
695 cfqq->queued[sync]--;
696
697 elv_rb_del(&cfqq->sort_list, rq);
698
699 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
700 cfq_del_cfqq_rr(cfqd, cfqq);
701 }
702
703 static void cfq_add_rq_rb(struct request *rq)
704 {
705 struct cfq_queue *cfqq = RQ_CFQQ(rq);
706 struct cfq_data *cfqd = cfqq->cfqd;
707 struct request *__alias, *prev;
708
709 cfqq->queued[rq_is_sync(rq)]++;
710
711 /*
712 * looks a little odd, but the first insert might return an alias.
713 * if that happens, put the alias on the dispatch list
714 */
715 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
716 cfq_dispatch_insert(cfqd->queue, __alias);
717
718 if (!cfq_cfqq_on_rr(cfqq))
719 cfq_add_cfqq_rr(cfqd, cfqq);
720
721 /*
722 * check if this request is a better next-serve candidate
723 */
724 prev = cfqq->next_rq;
725 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
726
727 /*
728 * adjust priority tree position, if ->next_rq changes
729 */
730 if (prev != cfqq->next_rq)
731 cfq_prio_tree_add(cfqd, cfqq);
732
733 BUG_ON(!cfqq->next_rq);
734 }
735
736 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
737 {
738 elv_rb_del(&cfqq->sort_list, rq);
739 cfqq->queued[rq_is_sync(rq)]--;
740 cfq_add_rq_rb(rq);
741 }
742
743 static struct request *
744 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
745 {
746 struct task_struct *tsk = current;
747 struct cfq_io_context *cic;
748 struct cfq_queue *cfqq;
749
750 cic = cfq_cic_lookup(cfqd, tsk->io_context);
751 if (!cic)
752 return NULL;
753
754 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
755 if (cfqq) {
756 sector_t sector = bio->bi_sector + bio_sectors(bio);
757
758 return elv_rb_find(&cfqq->sort_list, sector);
759 }
760
761 return NULL;
762 }
763
764 static void cfq_activate_request(struct request_queue *q, struct request *rq)
765 {
766 struct cfq_data *cfqd = q->elevator->elevator_data;
767
768 cfqd->rq_in_driver[rq_is_sync(rq)]++;
769 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
770 rq_in_driver(cfqd));
771
772 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
773 }
774
775 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
776 {
777 struct cfq_data *cfqd = q->elevator->elevator_data;
778 const int sync = rq_is_sync(rq);
779
780 WARN_ON(!cfqd->rq_in_driver[sync]);
781 cfqd->rq_in_driver[sync]--;
782 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
783 rq_in_driver(cfqd));
784 }
785
786 static void cfq_remove_request(struct request *rq)
787 {
788 struct cfq_queue *cfqq = RQ_CFQQ(rq);
789
790 if (cfqq->next_rq == rq)
791 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
792
793 list_del_init(&rq->queuelist);
794 cfq_del_rq_rb(rq);
795
796 cfqq->cfqd->rq_queued--;
797 if (rq_is_meta(rq)) {
798 WARN_ON(!cfqq->meta_pending);
799 cfqq->meta_pending--;
800 }
801 }
802
803 static int cfq_merge(struct request_queue *q, struct request **req,
804 struct bio *bio)
805 {
806 struct cfq_data *cfqd = q->elevator->elevator_data;
807 struct request *__rq;
808
809 __rq = cfq_find_rq_fmerge(cfqd, bio);
810 if (__rq && elv_rq_merge_ok(__rq, bio)) {
811 *req = __rq;
812 return ELEVATOR_FRONT_MERGE;
813 }
814
815 return ELEVATOR_NO_MERGE;
816 }
817
818 static void cfq_merged_request(struct request_queue *q, struct request *req,
819 int type)
820 {
821 if (type == ELEVATOR_FRONT_MERGE) {
822 struct cfq_queue *cfqq = RQ_CFQQ(req);
823
824 cfq_reposition_rq_rb(cfqq, req);
825 }
826 }
827
828 static void
829 cfq_merged_requests(struct request_queue *q, struct request *rq,
830 struct request *next)
831 {
832 /*
833 * reposition in fifo if next is older than rq
834 */
835 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
836 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
837 list_move(&rq->queuelist, &next->queuelist);
838 rq_set_fifo_time(rq, rq_fifo_time(next));
839 }
840
841 cfq_remove_request(next);
842 }
843
844 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
845 struct bio *bio)
846 {
847 struct cfq_data *cfqd = q->elevator->elevator_data;
848 struct cfq_io_context *cic;
849 struct cfq_queue *cfqq;
850
851 /*
852 * Disallow merge of a sync bio into an async request.
853 */
854 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
855 return false;
856
857 /*
858 * Lookup the cfqq that this bio will be queued with. Allow
859 * merge only if rq is queued there.
860 */
861 cic = cfq_cic_lookup(cfqd, current->io_context);
862 if (!cic)
863 return false;
864
865 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
866 return cfqq == RQ_CFQQ(rq);
867 }
868
869 static void __cfq_set_active_queue(struct cfq_data *cfqd,
870 struct cfq_queue *cfqq)
871 {
872 if (cfqq) {
873 cfq_log_cfqq(cfqd, cfqq, "set_active");
874 cfqq->slice_end = 0;
875 cfqq->slice_dispatch = 0;
876
877 cfq_clear_cfqq_wait_request(cfqq);
878 cfq_clear_cfqq_must_dispatch(cfqq);
879 cfq_clear_cfqq_must_alloc_slice(cfqq);
880 cfq_clear_cfqq_fifo_expire(cfqq);
881 cfq_mark_cfqq_slice_new(cfqq);
882
883 del_timer(&cfqd->idle_slice_timer);
884 }
885
886 cfqd->active_queue = cfqq;
887 }
888
889 /*
890 * current cfqq expired its slice (or was too idle), select new one
891 */
892 static void
893 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
894 bool timed_out)
895 {
896 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
897
898 if (cfq_cfqq_wait_request(cfqq))
899 del_timer(&cfqd->idle_slice_timer);
900
901 cfq_clear_cfqq_wait_request(cfqq);
902
903 /*
904 * store what was left of this slice, if the queue idled/timed out
905 */
906 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
907 cfqq->slice_resid = cfqq->slice_end - jiffies;
908 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
909 }
910
911 cfq_resort_rr_list(cfqd, cfqq);
912
913 if (cfqq == cfqd->active_queue)
914 cfqd->active_queue = NULL;
915
916 if (cfqd->active_cic) {
917 put_io_context(cfqd->active_cic->ioc);
918 cfqd->active_cic = NULL;
919 }
920 }
921
922 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
923 {
924 struct cfq_queue *cfqq = cfqd->active_queue;
925
926 if (cfqq)
927 __cfq_slice_expired(cfqd, cfqq, timed_out);
928 }
929
930 /*
931 * Get next queue for service. Unless we have a queue preemption,
932 * we'll simply select the first cfqq in the service tree.
933 */
934 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
935 {
936 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
937 return NULL;
938
939 return cfq_rb_first(&cfqd->service_tree);
940 }
941
942 /*
943 * Get and set a new active queue for service.
944 */
945 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
946 struct cfq_queue *cfqq)
947 {
948 if (!cfqq) {
949 cfqq = cfq_get_next_queue(cfqd);
950 if (cfqq && !cfq_cfqq_coop_preempt(cfqq))
951 cfq_clear_cfqq_coop(cfqq);
952 }
953
954 if (cfqq)
955 cfq_clear_cfqq_coop_preempt(cfqq);
956
957 __cfq_set_active_queue(cfqd, cfqq);
958 return cfqq;
959 }
960
961 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
962 struct request *rq)
963 {
964 if (blk_rq_pos(rq) >= cfqd->last_position)
965 return blk_rq_pos(rq) - cfqd->last_position;
966 else
967 return cfqd->last_position - blk_rq_pos(rq);
968 }
969
970 #define CIC_SEEK_THR 8 * 1024
971 #define CIC_SEEKY(cic) ((cic)->seek_mean > CIC_SEEK_THR)
972
973 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
974 {
975 struct cfq_io_context *cic = cfqd->active_cic;
976 sector_t sdist = cic->seek_mean;
977
978 if (!sample_valid(cic->seek_samples))
979 sdist = CIC_SEEK_THR;
980
981 return cfq_dist_from_last(cfqd, rq) <= sdist;
982 }
983
984 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
985 struct cfq_queue *cur_cfqq)
986 {
987 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
988 struct rb_node *parent, *node;
989 struct cfq_queue *__cfqq;
990 sector_t sector = cfqd->last_position;
991
992 if (RB_EMPTY_ROOT(root))
993 return NULL;
994
995 /*
996 * First, if we find a request starting at the end of the last
997 * request, choose it.
998 */
999 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1000 if (__cfqq)
1001 return __cfqq;
1002
1003 /*
1004 * If the exact sector wasn't found, the parent of the NULL leaf
1005 * will contain the closest sector.
1006 */
1007 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1008 if (cfq_rq_close(cfqd, __cfqq->next_rq))
1009 return __cfqq;
1010
1011 if (blk_rq_pos(__cfqq->next_rq) < sector)
1012 node = rb_next(&__cfqq->p_node);
1013 else
1014 node = rb_prev(&__cfqq->p_node);
1015 if (!node)
1016 return NULL;
1017
1018 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1019 if (cfq_rq_close(cfqd, __cfqq->next_rq))
1020 return __cfqq;
1021
1022 return NULL;
1023 }
1024
1025 /*
1026 * cfqd - obvious
1027 * cur_cfqq - passed in so that we don't decide that the current queue is
1028 * closely cooperating with itself.
1029 *
1030 * So, basically we're assuming that that cur_cfqq has dispatched at least
1031 * one request, and that cfqd->last_position reflects a position on the disk
1032 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1033 * assumption.
1034 */
1035 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1036 struct cfq_queue *cur_cfqq,
1037 bool probe)
1038 {
1039 struct cfq_queue *cfqq;
1040
1041 /*
1042 * A valid cfq_io_context is necessary to compare requests against
1043 * the seek_mean of the current cfqq.
1044 */
1045 if (!cfqd->active_cic)
1046 return NULL;
1047
1048 /*
1049 * We should notice if some of the queues are cooperating, eg
1050 * working closely on the same area of the disk. In that case,
1051 * we can group them together and don't waste time idling.
1052 */
1053 cfqq = cfqq_close(cfqd, cur_cfqq);
1054 if (!cfqq)
1055 return NULL;
1056
1057 if (cfq_cfqq_coop(cfqq))
1058 return NULL;
1059
1060 if (!probe)
1061 cfq_mark_cfqq_coop(cfqq);
1062 return cfqq;
1063 }
1064
1065 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1066 {
1067 struct cfq_queue *cfqq = cfqd->active_queue;
1068 struct cfq_io_context *cic;
1069 unsigned long sl;
1070
1071 /*
1072 * SSD device without seek penalty, disable idling. But only do so
1073 * for devices that support queuing, otherwise we still have a problem
1074 * with sync vs async workloads.
1075 */
1076 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1077 return;
1078
1079 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1080 WARN_ON(cfq_cfqq_slice_new(cfqq));
1081
1082 /*
1083 * idle is disabled, either manually or by past process history
1084 */
1085 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
1086 return;
1087
1088 /*
1089 * still requests with the driver, don't idle
1090 */
1091 if (rq_in_driver(cfqd))
1092 return;
1093
1094 /*
1095 * task has exited, don't wait
1096 */
1097 cic = cfqd->active_cic;
1098 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1099 return;
1100
1101 /*
1102 * If our average think time is larger than the remaining time
1103 * slice, then don't idle. This avoids overrunning the allotted
1104 * time slice.
1105 */
1106 if (sample_valid(cic->ttime_samples) &&
1107 (cfqq->slice_end - jiffies < cic->ttime_mean))
1108 return;
1109
1110 cfq_mark_cfqq_wait_request(cfqq);
1111
1112 /*
1113 * we don't want to idle for seeks, but we do want to allow
1114 * fair distribution of slice time for a process doing back-to-back
1115 * seeks. so allow a little bit of time for him to submit a new rq
1116 */
1117 sl = cfqd->cfq_slice_idle;
1118 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
1119 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
1120
1121 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1122 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1123 }
1124
1125 /*
1126 * Move request from internal lists to the request queue dispatch list.
1127 */
1128 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1129 {
1130 struct cfq_data *cfqd = q->elevator->elevator_data;
1131 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1132
1133 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1134
1135 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1136 cfq_remove_request(rq);
1137 cfqq->dispatched++;
1138 elv_dispatch_sort(q, rq);
1139
1140 if (cfq_cfqq_sync(cfqq))
1141 cfqd->sync_flight++;
1142 }
1143
1144 /*
1145 * return expired entry, or NULL to just start from scratch in rbtree
1146 */
1147 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1148 {
1149 struct request *rq = NULL;
1150
1151 if (cfq_cfqq_fifo_expire(cfqq))
1152 return NULL;
1153
1154 cfq_mark_cfqq_fifo_expire(cfqq);
1155
1156 if (list_empty(&cfqq->fifo))
1157 return NULL;
1158
1159 rq = rq_entry_fifo(cfqq->fifo.next);
1160 if (time_before(jiffies, rq_fifo_time(rq)))
1161 rq = NULL;
1162
1163 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1164 return rq;
1165 }
1166
1167 static inline int
1168 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1169 {
1170 const int base_rq = cfqd->cfq_slice_async_rq;
1171
1172 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1173
1174 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1175 }
1176
1177 /*
1178 * Select a queue for service. If we have a current active queue,
1179 * check whether to continue servicing it, or retrieve and set a new one.
1180 */
1181 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1182 {
1183 struct cfq_queue *cfqq, *new_cfqq = NULL;
1184
1185 cfqq = cfqd->active_queue;
1186 if (!cfqq)
1187 goto new_queue;
1188
1189 /*
1190 * The active queue has run out of time, expire it and select new.
1191 */
1192 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1193 goto expire;
1194
1195 /*
1196 * The active queue has requests and isn't expired, allow it to
1197 * dispatch.
1198 */
1199 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1200 goto keep_queue;
1201
1202 /*
1203 * If another queue has a request waiting within our mean seek
1204 * distance, let it run. The expire code will check for close
1205 * cooperators and put the close queue at the front of the service
1206 * tree.
1207 */
1208 new_cfqq = cfq_close_cooperator(cfqd, cfqq, 0);
1209 if (new_cfqq)
1210 goto expire;
1211
1212 /*
1213 * No requests pending. If the active queue still has requests in
1214 * flight or is idling for a new request, allow either of these
1215 * conditions to happen (or time out) before selecting a new queue.
1216 */
1217 if (timer_pending(&cfqd->idle_slice_timer) ||
1218 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1219 cfqq = NULL;
1220 goto keep_queue;
1221 }
1222
1223 expire:
1224 cfq_slice_expired(cfqd, 0);
1225 new_queue:
1226 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1227 keep_queue:
1228 return cfqq;
1229 }
1230
1231 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1232 {
1233 int dispatched = 0;
1234
1235 while (cfqq->next_rq) {
1236 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1237 dispatched++;
1238 }
1239
1240 BUG_ON(!list_empty(&cfqq->fifo));
1241 return dispatched;
1242 }
1243
1244 /*
1245 * Drain our current requests. Used for barriers and when switching
1246 * io schedulers on-the-fly.
1247 */
1248 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1249 {
1250 struct cfq_queue *cfqq;
1251 int dispatched = 0;
1252
1253 while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1254 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1255
1256 cfq_slice_expired(cfqd, 0);
1257
1258 BUG_ON(cfqd->busy_queues);
1259
1260 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1261 return dispatched;
1262 }
1263
1264 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1265 {
1266 unsigned int max_dispatch;
1267
1268 /*
1269 * Drain async requests before we start sync IO
1270 */
1271 if (cfq_cfqq_idle_window(cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1272 return false;
1273
1274 /*
1275 * If this is an async queue and we have sync IO in flight, let it wait
1276 */
1277 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1278 return false;
1279
1280 max_dispatch = cfqd->cfq_quantum;
1281 if (cfq_class_idle(cfqq))
1282 max_dispatch = 1;
1283
1284 /*
1285 * Does this cfqq already have too much IO in flight?
1286 */
1287 if (cfqq->dispatched >= max_dispatch) {
1288 /*
1289 * idle queue must always only have a single IO in flight
1290 */
1291 if (cfq_class_idle(cfqq))
1292 return false;
1293
1294 /*
1295 * We have other queues, don't allow more IO from this one
1296 */
1297 if (cfqd->busy_queues > 1)
1298 return false;
1299
1300 /*
1301 * Sole queue user, allow bigger slice
1302 */
1303 max_dispatch *= 4;
1304 }
1305
1306 /*
1307 * Async queues must wait a bit before being allowed dispatch.
1308 * We also ramp up the dispatch depth gradually for async IO,
1309 * based on the last sync IO we serviced
1310 */
1311 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
1312 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1313 unsigned int depth;
1314
1315 depth = last_sync / cfqd->cfq_slice[1];
1316 if (!depth && !cfqq->dispatched)
1317 depth = 1;
1318 if (depth < max_dispatch)
1319 max_dispatch = depth;
1320 }
1321
1322 /*
1323 * If we're below the current max, allow a dispatch
1324 */
1325 return cfqq->dispatched < max_dispatch;
1326 }
1327
1328 /*
1329 * Dispatch a request from cfqq, moving them to the request queue
1330 * dispatch list.
1331 */
1332 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1333 {
1334 struct request *rq;
1335
1336 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1337
1338 if (!cfq_may_dispatch(cfqd, cfqq))
1339 return false;
1340
1341 /*
1342 * follow expired path, else get first next available
1343 */
1344 rq = cfq_check_fifo(cfqq);
1345 if (!rq)
1346 rq = cfqq->next_rq;
1347
1348 /*
1349 * insert request into driver dispatch list
1350 */
1351 cfq_dispatch_insert(cfqd->queue, rq);
1352
1353 if (!cfqd->active_cic) {
1354 struct cfq_io_context *cic = RQ_CIC(rq);
1355
1356 atomic_long_inc(&cic->ioc->refcount);
1357 cfqd->active_cic = cic;
1358 }
1359
1360 return true;
1361 }
1362
1363 /*
1364 * Find the cfqq that we need to service and move a request from that to the
1365 * dispatch list
1366 */
1367 static int cfq_dispatch_requests(struct request_queue *q, int force)
1368 {
1369 struct cfq_data *cfqd = q->elevator->elevator_data;
1370 struct cfq_queue *cfqq;
1371
1372 if (!cfqd->busy_queues)
1373 return 0;
1374
1375 if (unlikely(force))
1376 return cfq_forced_dispatch(cfqd);
1377
1378 cfqq = cfq_select_queue(cfqd);
1379 if (!cfqq)
1380 return 0;
1381
1382 /*
1383 * Dispatch a request from this cfqq, if it is allowed
1384 */
1385 if (!cfq_dispatch_request(cfqd, cfqq))
1386 return 0;
1387
1388 cfqq->slice_dispatch++;
1389 cfq_clear_cfqq_must_dispatch(cfqq);
1390
1391 /*
1392 * expire an async queue immediately if it has used up its slice. idle
1393 * queue always expire after 1 dispatch round.
1394 */
1395 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1396 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1397 cfq_class_idle(cfqq))) {
1398 cfqq->slice_end = jiffies + 1;
1399 cfq_slice_expired(cfqd, 0);
1400 }
1401
1402 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
1403 return 1;
1404 }
1405
1406 /*
1407 * task holds one reference to the queue, dropped when task exits. each rq
1408 * in-flight on this queue also holds a reference, dropped when rq is freed.
1409 *
1410 * queue lock must be held here.
1411 */
1412 static void cfq_put_queue(struct cfq_queue *cfqq)
1413 {
1414 struct cfq_data *cfqd = cfqq->cfqd;
1415
1416 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1417
1418 if (!atomic_dec_and_test(&cfqq->ref))
1419 return;
1420
1421 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1422 BUG_ON(rb_first(&cfqq->sort_list));
1423 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1424 BUG_ON(cfq_cfqq_on_rr(cfqq));
1425
1426 if (unlikely(cfqd->active_queue == cfqq)) {
1427 __cfq_slice_expired(cfqd, cfqq, 0);
1428 cfq_schedule_dispatch(cfqd);
1429 }
1430
1431 kmem_cache_free(cfq_pool, cfqq);
1432 }
1433
1434 /*
1435 * Must always be called with the rcu_read_lock() held
1436 */
1437 static void
1438 __call_for_each_cic(struct io_context *ioc,
1439 void (*func)(struct io_context *, struct cfq_io_context *))
1440 {
1441 struct cfq_io_context *cic;
1442 struct hlist_node *n;
1443
1444 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1445 func(ioc, cic);
1446 }
1447
1448 /*
1449 * Call func for each cic attached to this ioc.
1450 */
1451 static void
1452 call_for_each_cic(struct io_context *ioc,
1453 void (*func)(struct io_context *, struct cfq_io_context *))
1454 {
1455 rcu_read_lock();
1456 __call_for_each_cic(ioc, func);
1457 rcu_read_unlock();
1458 }
1459
1460 static void cfq_cic_free_rcu(struct rcu_head *head)
1461 {
1462 struct cfq_io_context *cic;
1463
1464 cic = container_of(head, struct cfq_io_context, rcu_head);
1465
1466 kmem_cache_free(cfq_ioc_pool, cic);
1467 elv_ioc_count_dec(cfq_ioc_count);
1468
1469 if (ioc_gone) {
1470 /*
1471 * CFQ scheduler is exiting, grab exit lock and check
1472 * the pending io context count. If it hits zero,
1473 * complete ioc_gone and set it back to NULL
1474 */
1475 spin_lock(&ioc_gone_lock);
1476 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
1477 complete(ioc_gone);
1478 ioc_gone = NULL;
1479 }
1480 spin_unlock(&ioc_gone_lock);
1481 }
1482 }
1483
1484 static void cfq_cic_free(struct cfq_io_context *cic)
1485 {
1486 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1487 }
1488
1489 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1490 {
1491 unsigned long flags;
1492
1493 BUG_ON(!cic->dead_key);
1494
1495 spin_lock_irqsave(&ioc->lock, flags);
1496 radix_tree_delete(&ioc->radix_root, cic->dead_key);
1497 hlist_del_rcu(&cic->cic_list);
1498 spin_unlock_irqrestore(&ioc->lock, flags);
1499
1500 cfq_cic_free(cic);
1501 }
1502
1503 /*
1504 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1505 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1506 * and ->trim() which is called with the task lock held
1507 */
1508 static void cfq_free_io_context(struct io_context *ioc)
1509 {
1510 /*
1511 * ioc->refcount is zero here, or we are called from elv_unregister(),
1512 * so no more cic's are allowed to be linked into this ioc. So it
1513 * should be ok to iterate over the known list, we will see all cic's
1514 * since no new ones are added.
1515 */
1516 __call_for_each_cic(ioc, cic_free_func);
1517 }
1518
1519 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1520 {
1521 if (unlikely(cfqq == cfqd->active_queue)) {
1522 __cfq_slice_expired(cfqd, cfqq, 0);
1523 cfq_schedule_dispatch(cfqd);
1524 }
1525
1526 cfq_put_queue(cfqq);
1527 }
1528
1529 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1530 struct cfq_io_context *cic)
1531 {
1532 struct io_context *ioc = cic->ioc;
1533
1534 list_del_init(&cic->queue_list);
1535
1536 /*
1537 * Make sure key == NULL is seen for dead queues
1538 */
1539 smp_wmb();
1540 cic->dead_key = (unsigned long) cic->key;
1541 cic->key = NULL;
1542
1543 if (ioc->ioc_data == cic)
1544 rcu_assign_pointer(ioc->ioc_data, NULL);
1545
1546 if (cic->cfqq[BLK_RW_ASYNC]) {
1547 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1548 cic->cfqq[BLK_RW_ASYNC] = NULL;
1549 }
1550
1551 if (cic->cfqq[BLK_RW_SYNC]) {
1552 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1553 cic->cfqq[BLK_RW_SYNC] = NULL;
1554 }
1555 }
1556
1557 static void cfq_exit_single_io_context(struct io_context *ioc,
1558 struct cfq_io_context *cic)
1559 {
1560 struct cfq_data *cfqd = cic->key;
1561
1562 if (cfqd) {
1563 struct request_queue *q = cfqd->queue;
1564 unsigned long flags;
1565
1566 spin_lock_irqsave(q->queue_lock, flags);
1567
1568 /*
1569 * Ensure we get a fresh copy of the ->key to prevent
1570 * race between exiting task and queue
1571 */
1572 smp_read_barrier_depends();
1573 if (cic->key)
1574 __cfq_exit_single_io_context(cfqd, cic);
1575
1576 spin_unlock_irqrestore(q->queue_lock, flags);
1577 }
1578 }
1579
1580 /*
1581 * The process that ioc belongs to has exited, we need to clean up
1582 * and put the internal structures we have that belongs to that process.
1583 */
1584 static void cfq_exit_io_context(struct io_context *ioc)
1585 {
1586 call_for_each_cic(ioc, cfq_exit_single_io_context);
1587 }
1588
1589 static struct cfq_io_context *
1590 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1591 {
1592 struct cfq_io_context *cic;
1593
1594 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1595 cfqd->queue->node);
1596 if (cic) {
1597 cic->last_end_request = jiffies;
1598 INIT_LIST_HEAD(&cic->queue_list);
1599 INIT_HLIST_NODE(&cic->cic_list);
1600 cic->dtor = cfq_free_io_context;
1601 cic->exit = cfq_exit_io_context;
1602 elv_ioc_count_inc(cfq_ioc_count);
1603 }
1604
1605 return cic;
1606 }
1607
1608 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1609 {
1610 struct task_struct *tsk = current;
1611 int ioprio_class;
1612
1613 if (!cfq_cfqq_prio_changed(cfqq))
1614 return;
1615
1616 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1617 switch (ioprio_class) {
1618 default:
1619 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1620 case IOPRIO_CLASS_NONE:
1621 /*
1622 * no prio set, inherit CPU scheduling settings
1623 */
1624 cfqq->ioprio = task_nice_ioprio(tsk);
1625 cfqq->ioprio_class = task_nice_ioclass(tsk);
1626 break;
1627 case IOPRIO_CLASS_RT:
1628 cfqq->ioprio = task_ioprio(ioc);
1629 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1630 break;
1631 case IOPRIO_CLASS_BE:
1632 cfqq->ioprio = task_ioprio(ioc);
1633 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1634 break;
1635 case IOPRIO_CLASS_IDLE:
1636 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1637 cfqq->ioprio = 7;
1638 cfq_clear_cfqq_idle_window(cfqq);
1639 break;
1640 }
1641
1642 /*
1643 * keep track of original prio settings in case we have to temporarily
1644 * elevate the priority of this queue
1645 */
1646 cfqq->org_ioprio = cfqq->ioprio;
1647 cfqq->org_ioprio_class = cfqq->ioprio_class;
1648 cfq_clear_cfqq_prio_changed(cfqq);
1649 }
1650
1651 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1652 {
1653 struct cfq_data *cfqd = cic->key;
1654 struct cfq_queue *cfqq;
1655 unsigned long flags;
1656
1657 if (unlikely(!cfqd))
1658 return;
1659
1660 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1661
1662 cfqq = cic->cfqq[BLK_RW_ASYNC];
1663 if (cfqq) {
1664 struct cfq_queue *new_cfqq;
1665 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1666 GFP_ATOMIC);
1667 if (new_cfqq) {
1668 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
1669 cfq_put_queue(cfqq);
1670 }
1671 }
1672
1673 cfqq = cic->cfqq[BLK_RW_SYNC];
1674 if (cfqq)
1675 cfq_mark_cfqq_prio_changed(cfqq);
1676
1677 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1678 }
1679
1680 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1681 {
1682 call_for_each_cic(ioc, changed_ioprio);
1683 ioc->ioprio_changed = 0;
1684 }
1685
1686 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1687 pid_t pid, bool is_sync)
1688 {
1689 RB_CLEAR_NODE(&cfqq->rb_node);
1690 RB_CLEAR_NODE(&cfqq->p_node);
1691 INIT_LIST_HEAD(&cfqq->fifo);
1692
1693 atomic_set(&cfqq->ref, 0);
1694 cfqq->cfqd = cfqd;
1695
1696 cfq_mark_cfqq_prio_changed(cfqq);
1697
1698 if (is_sync) {
1699 if (!cfq_class_idle(cfqq))
1700 cfq_mark_cfqq_idle_window(cfqq);
1701 cfq_mark_cfqq_sync(cfqq);
1702 }
1703 cfqq->pid = pid;
1704 }
1705
1706 static struct cfq_queue *
1707 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
1708 struct io_context *ioc, gfp_t gfp_mask)
1709 {
1710 struct cfq_queue *cfqq, *new_cfqq = NULL;
1711 struct cfq_io_context *cic;
1712
1713 retry:
1714 cic = cfq_cic_lookup(cfqd, ioc);
1715 /* cic always exists here */
1716 cfqq = cic_to_cfqq(cic, is_sync);
1717
1718 /*
1719 * Always try a new alloc if we fell back to the OOM cfqq
1720 * originally, since it should just be a temporary situation.
1721 */
1722 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
1723 cfqq = NULL;
1724 if (new_cfqq) {
1725 cfqq = new_cfqq;
1726 new_cfqq = NULL;
1727 } else if (gfp_mask & __GFP_WAIT) {
1728 spin_unlock_irq(cfqd->queue->queue_lock);
1729 new_cfqq = kmem_cache_alloc_node(cfq_pool,
1730 gfp_mask | __GFP_ZERO,
1731 cfqd->queue->node);
1732 spin_lock_irq(cfqd->queue->queue_lock);
1733 if (new_cfqq)
1734 goto retry;
1735 } else {
1736 cfqq = kmem_cache_alloc_node(cfq_pool,
1737 gfp_mask | __GFP_ZERO,
1738 cfqd->queue->node);
1739 }
1740
1741 if (cfqq) {
1742 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
1743 cfq_init_prio_data(cfqq, ioc);
1744 cfq_log_cfqq(cfqd, cfqq, "alloced");
1745 } else
1746 cfqq = &cfqd->oom_cfqq;
1747 }
1748
1749 if (new_cfqq)
1750 kmem_cache_free(cfq_pool, new_cfqq);
1751
1752 return cfqq;
1753 }
1754
1755 static struct cfq_queue **
1756 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1757 {
1758 switch (ioprio_class) {
1759 case IOPRIO_CLASS_RT:
1760 return &cfqd->async_cfqq[0][ioprio];
1761 case IOPRIO_CLASS_BE:
1762 return &cfqd->async_cfqq[1][ioprio];
1763 case IOPRIO_CLASS_IDLE:
1764 return &cfqd->async_idle_cfqq;
1765 default:
1766 BUG();
1767 }
1768 }
1769
1770 static struct cfq_queue *
1771 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
1772 gfp_t gfp_mask)
1773 {
1774 const int ioprio = task_ioprio(ioc);
1775 const int ioprio_class = task_ioprio_class(ioc);
1776 struct cfq_queue **async_cfqq = NULL;
1777 struct cfq_queue *cfqq = NULL;
1778
1779 if (!is_sync) {
1780 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1781 cfqq = *async_cfqq;
1782 }
1783
1784 if (!cfqq)
1785 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1786
1787 /*
1788 * pin the queue now that it's allocated, scheduler exit will prune it
1789 */
1790 if (!is_sync && !(*async_cfqq)) {
1791 atomic_inc(&cfqq->ref);
1792 *async_cfqq = cfqq;
1793 }
1794
1795 atomic_inc(&cfqq->ref);
1796 return cfqq;
1797 }
1798
1799 /*
1800 * We drop cfq io contexts lazily, so we may find a dead one.
1801 */
1802 static void
1803 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1804 struct cfq_io_context *cic)
1805 {
1806 unsigned long flags;
1807
1808 WARN_ON(!list_empty(&cic->queue_list));
1809
1810 spin_lock_irqsave(&ioc->lock, flags);
1811
1812 BUG_ON(ioc->ioc_data == cic);
1813
1814 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1815 hlist_del_rcu(&cic->cic_list);
1816 spin_unlock_irqrestore(&ioc->lock, flags);
1817
1818 cfq_cic_free(cic);
1819 }
1820
1821 static struct cfq_io_context *
1822 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1823 {
1824 struct cfq_io_context *cic;
1825 unsigned long flags;
1826 void *k;
1827
1828 if (unlikely(!ioc))
1829 return NULL;
1830
1831 rcu_read_lock();
1832
1833 /*
1834 * we maintain a last-hit cache, to avoid browsing over the tree
1835 */
1836 cic = rcu_dereference(ioc->ioc_data);
1837 if (cic && cic->key == cfqd) {
1838 rcu_read_unlock();
1839 return cic;
1840 }
1841
1842 do {
1843 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1844 rcu_read_unlock();
1845 if (!cic)
1846 break;
1847 /* ->key must be copied to avoid race with cfq_exit_queue() */
1848 k = cic->key;
1849 if (unlikely(!k)) {
1850 cfq_drop_dead_cic(cfqd, ioc, cic);
1851 rcu_read_lock();
1852 continue;
1853 }
1854
1855 spin_lock_irqsave(&ioc->lock, flags);
1856 rcu_assign_pointer(ioc->ioc_data, cic);
1857 spin_unlock_irqrestore(&ioc->lock, flags);
1858 break;
1859 } while (1);
1860
1861 return cic;
1862 }
1863
1864 /*
1865 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1866 * the process specific cfq io context when entered from the block layer.
1867 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1868 */
1869 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1870 struct cfq_io_context *cic, gfp_t gfp_mask)
1871 {
1872 unsigned long flags;
1873 int ret;
1874
1875 ret = radix_tree_preload(gfp_mask);
1876 if (!ret) {
1877 cic->ioc = ioc;
1878 cic->key = cfqd;
1879
1880 spin_lock_irqsave(&ioc->lock, flags);
1881 ret = radix_tree_insert(&ioc->radix_root,
1882 (unsigned long) cfqd, cic);
1883 if (!ret)
1884 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
1885 spin_unlock_irqrestore(&ioc->lock, flags);
1886
1887 radix_tree_preload_end();
1888
1889 if (!ret) {
1890 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1891 list_add(&cic->queue_list, &cfqd->cic_list);
1892 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1893 }
1894 }
1895
1896 if (ret)
1897 printk(KERN_ERR "cfq: cic link failed!\n");
1898
1899 return ret;
1900 }
1901
1902 /*
1903 * Setup general io context and cfq io context. There can be several cfq
1904 * io contexts per general io context, if this process is doing io to more
1905 * than one device managed by cfq.
1906 */
1907 static struct cfq_io_context *
1908 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1909 {
1910 struct io_context *ioc = NULL;
1911 struct cfq_io_context *cic;
1912
1913 might_sleep_if(gfp_mask & __GFP_WAIT);
1914
1915 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1916 if (!ioc)
1917 return NULL;
1918
1919 cic = cfq_cic_lookup(cfqd, ioc);
1920 if (cic)
1921 goto out;
1922
1923 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1924 if (cic == NULL)
1925 goto err;
1926
1927 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1928 goto err_free;
1929
1930 out:
1931 smp_read_barrier_depends();
1932 if (unlikely(ioc->ioprio_changed))
1933 cfq_ioc_set_ioprio(ioc);
1934
1935 return cic;
1936 err_free:
1937 cfq_cic_free(cic);
1938 err:
1939 put_io_context(ioc);
1940 return NULL;
1941 }
1942
1943 static void
1944 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1945 {
1946 unsigned long elapsed = jiffies - cic->last_end_request;
1947 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1948
1949 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1950 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1951 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1952 }
1953
1954 static void
1955 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1956 struct request *rq)
1957 {
1958 sector_t sdist;
1959 u64 total;
1960
1961 if (!cic->last_request_pos)
1962 sdist = 0;
1963 else if (cic->last_request_pos < blk_rq_pos(rq))
1964 sdist = blk_rq_pos(rq) - cic->last_request_pos;
1965 else
1966 sdist = cic->last_request_pos - blk_rq_pos(rq);
1967
1968 /*
1969 * Don't allow the seek distance to get too large from the
1970 * odd fragment, pagein, etc
1971 */
1972 if (cic->seek_samples <= 60) /* second&third seek */
1973 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1974 else
1975 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1976
1977 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1978 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1979 total = cic->seek_total + (cic->seek_samples/2);
1980 do_div(total, cic->seek_samples);
1981 cic->seek_mean = (sector_t)total;
1982 }
1983
1984 /*
1985 * Disable idle window if the process thinks too long or seeks so much that
1986 * it doesn't matter
1987 */
1988 static void
1989 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1990 struct cfq_io_context *cic)
1991 {
1992 int old_idle, enable_idle;
1993
1994 /*
1995 * Don't idle for async or idle io prio class
1996 */
1997 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1998 return;
1999
2000 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
2001
2002 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2003 (!cfqd->cfq_latency && cfqd->hw_tag && CIC_SEEKY(cic)))
2004 enable_idle = 0;
2005 else if (sample_valid(cic->ttime_samples)) {
2006 unsigned int slice_idle = cfqd->cfq_slice_idle;
2007 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
2008 slice_idle = msecs_to_jiffies(CFQ_MIN_TT);
2009 if (cic->ttime_mean > slice_idle)
2010 enable_idle = 0;
2011 else
2012 enable_idle = 1;
2013 }
2014
2015 if (old_idle != enable_idle) {
2016 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2017 if (enable_idle)
2018 cfq_mark_cfqq_idle_window(cfqq);
2019 else
2020 cfq_clear_cfqq_idle_window(cfqq);
2021 }
2022 }
2023
2024 /*
2025 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2026 * no or if we aren't sure, a 1 will cause a preempt.
2027 */
2028 static bool
2029 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
2030 struct request *rq)
2031 {
2032 struct cfq_queue *cfqq;
2033
2034 cfqq = cfqd->active_queue;
2035 if (!cfqq)
2036 return false;
2037
2038 if (cfq_slice_used(cfqq))
2039 return true;
2040
2041 if (cfq_class_idle(new_cfqq))
2042 return false;
2043
2044 if (cfq_class_idle(cfqq))
2045 return true;
2046
2047 /*
2048 * if the new request is sync, but the currently running queue is
2049 * not, let the sync request have priority.
2050 */
2051 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2052 return true;
2053
2054 /*
2055 * So both queues are sync. Let the new request get disk time if
2056 * it's a metadata request and the current queue is doing regular IO.
2057 */
2058 if (rq_is_meta(rq) && !cfqq->meta_pending)
2059 return true;
2060
2061 /*
2062 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2063 */
2064 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2065 return true;
2066
2067 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2068 return false;
2069
2070 /*
2071 * if this request is as-good as one we would expect from the
2072 * current cfqq, let it preempt
2073 */
2074 if (cfq_rq_close(cfqd, rq) && (!cfq_cfqq_coop(new_cfqq) ||
2075 cfqd->busy_queues == 1)) {
2076 /*
2077 * Mark new queue coop_preempt, so its coop flag will not be
2078 * cleared when new queue gets scheduled at the very first time
2079 */
2080 cfq_mark_cfqq_coop_preempt(new_cfqq);
2081 cfq_mark_cfqq_coop(new_cfqq);
2082 return true;
2083 }
2084
2085 return false;
2086 }
2087
2088 /*
2089 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2090 * let it have half of its nominal slice.
2091 */
2092 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2093 {
2094 cfq_log_cfqq(cfqd, cfqq, "preempt");
2095 cfq_slice_expired(cfqd, 1);
2096
2097 /*
2098 * Put the new queue at the front of the of the current list,
2099 * so we know that it will be selected next.
2100 */
2101 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2102
2103 cfq_service_tree_add(cfqd, cfqq, 1);
2104
2105 cfqq->slice_end = 0;
2106 cfq_mark_cfqq_slice_new(cfqq);
2107 }
2108
2109 /*
2110 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2111 * something we should do about it
2112 */
2113 static void
2114 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2115 struct request *rq)
2116 {
2117 struct cfq_io_context *cic = RQ_CIC(rq);
2118
2119 cfqd->rq_queued++;
2120 if (rq_is_meta(rq))
2121 cfqq->meta_pending++;
2122
2123 cfq_update_io_thinktime(cfqd, cic);
2124 cfq_update_io_seektime(cfqd, cic, rq);
2125 cfq_update_idle_window(cfqd, cfqq, cic);
2126
2127 cic->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2128
2129 if (cfqq == cfqd->active_queue) {
2130 /*
2131 * Remember that we saw a request from this process, but
2132 * don't start queuing just yet. Otherwise we risk seeing lots
2133 * of tiny requests, because we disrupt the normal plugging
2134 * and merging. If the request is already larger than a single
2135 * page, let it rip immediately. For that case we assume that
2136 * merging is already done. Ditto for a busy system that
2137 * has other work pending, don't risk delaying until the
2138 * idle timer unplug to continue working.
2139 */
2140 if (cfq_cfqq_wait_request(cfqq)) {
2141 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2142 cfqd->busy_queues > 1) {
2143 del_timer(&cfqd->idle_slice_timer);
2144 __blk_run_queue(cfqd->queue);
2145 }
2146 cfq_mark_cfqq_must_dispatch(cfqq);
2147 }
2148 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2149 /*
2150 * not the active queue - expire current slice if it is
2151 * idle and has expired it's mean thinktime or this new queue
2152 * has some old slice time left and is of higher priority or
2153 * this new queue is RT and the current one is BE
2154 */
2155 cfq_preempt_queue(cfqd, cfqq);
2156 __blk_run_queue(cfqd->queue);
2157 }
2158 }
2159
2160 static void cfq_insert_request(struct request_queue *q, struct request *rq)
2161 {
2162 struct cfq_data *cfqd = q->elevator->elevator_data;
2163 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2164
2165 cfq_log_cfqq(cfqd, cfqq, "insert_request");
2166 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
2167
2168 cfq_add_rq_rb(rq);
2169
2170 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
2171 list_add_tail(&rq->queuelist, &cfqq->fifo);
2172
2173 cfq_rq_enqueued(cfqd, cfqq, rq);
2174 }
2175
2176 /*
2177 * Update hw_tag based on peak queue depth over 50 samples under
2178 * sufficient load.
2179 */
2180 static void cfq_update_hw_tag(struct cfq_data *cfqd)
2181 {
2182 if (rq_in_driver(cfqd) > cfqd->rq_in_driver_peak)
2183 cfqd->rq_in_driver_peak = rq_in_driver(cfqd);
2184
2185 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2186 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2187 return;
2188
2189 if (cfqd->hw_tag_samples++ < 50)
2190 return;
2191
2192 if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2193 cfqd->hw_tag = 1;
2194 else
2195 cfqd->hw_tag = 0;
2196
2197 cfqd->hw_tag_samples = 0;
2198 cfqd->rq_in_driver_peak = 0;
2199 }
2200
2201 static void cfq_completed_request(struct request_queue *q, struct request *rq)
2202 {
2203 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2204 struct cfq_data *cfqd = cfqq->cfqd;
2205 const int sync = rq_is_sync(rq);
2206 unsigned long now;
2207
2208 now = jiffies;
2209 cfq_log_cfqq(cfqd, cfqq, "complete");
2210
2211 cfq_update_hw_tag(cfqd);
2212
2213 WARN_ON(!cfqd->rq_in_driver[sync]);
2214 WARN_ON(!cfqq->dispatched);
2215 cfqd->rq_in_driver[sync]--;
2216 cfqq->dispatched--;
2217
2218 if (cfq_cfqq_sync(cfqq))
2219 cfqd->sync_flight--;
2220
2221 if (sync) {
2222 RQ_CIC(rq)->last_end_request = now;
2223 cfqd->last_end_sync_rq = now;
2224 }
2225
2226 /*
2227 * If this is the active queue, check if it needs to be expired,
2228 * or if we want to idle in case it has no pending requests.
2229 */
2230 if (cfqd->active_queue == cfqq) {
2231 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2232
2233 if (cfq_cfqq_slice_new(cfqq)) {
2234 cfq_set_prio_slice(cfqd, cfqq);
2235 cfq_clear_cfqq_slice_new(cfqq);
2236 }
2237 /*
2238 * If there are no requests waiting in this queue, and
2239 * there are other queues ready to issue requests, AND
2240 * those other queues are issuing requests within our
2241 * mean seek distance, give them a chance to run instead
2242 * of idling.
2243 */
2244 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2245 cfq_slice_expired(cfqd, 1);
2246 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq, 1) &&
2247 sync && !rq_noidle(rq))
2248 cfq_arm_slice_timer(cfqd);
2249 }
2250
2251 if (!rq_in_driver(cfqd))
2252 cfq_schedule_dispatch(cfqd);
2253 }
2254
2255 /*
2256 * we temporarily boost lower priority queues if they are holding fs exclusive
2257 * resources. they are boosted to normal prio (CLASS_BE/4)
2258 */
2259 static void cfq_prio_boost(struct cfq_queue *cfqq)
2260 {
2261 if (has_fs_excl()) {
2262 /*
2263 * boost idle prio on transactions that would lock out other
2264 * users of the filesystem
2265 */
2266 if (cfq_class_idle(cfqq))
2267 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2268 if (cfqq->ioprio > IOPRIO_NORM)
2269 cfqq->ioprio = IOPRIO_NORM;
2270 } else {
2271 /*
2272 * check if we need to unboost the queue
2273 */
2274 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2275 cfqq->ioprio_class = cfqq->org_ioprio_class;
2276 if (cfqq->ioprio != cfqq->org_ioprio)
2277 cfqq->ioprio = cfqq->org_ioprio;
2278 }
2279 }
2280
2281 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2282 {
2283 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
2284 cfq_mark_cfqq_must_alloc_slice(cfqq);
2285 return ELV_MQUEUE_MUST;
2286 }
2287
2288 return ELV_MQUEUE_MAY;
2289 }
2290
2291 static int cfq_may_queue(struct request_queue *q, int rw)
2292 {
2293 struct cfq_data *cfqd = q->elevator->elevator_data;
2294 struct task_struct *tsk = current;
2295 struct cfq_io_context *cic;
2296 struct cfq_queue *cfqq;
2297
2298 /*
2299 * don't force setup of a queue from here, as a call to may_queue
2300 * does not necessarily imply that a request actually will be queued.
2301 * so just lookup a possibly existing queue, or return 'may queue'
2302 * if that fails
2303 */
2304 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2305 if (!cic)
2306 return ELV_MQUEUE_MAY;
2307
2308 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2309 if (cfqq) {
2310 cfq_init_prio_data(cfqq, cic->ioc);
2311 cfq_prio_boost(cfqq);
2312
2313 return __cfq_may_queue(cfqq);
2314 }
2315
2316 return ELV_MQUEUE_MAY;
2317 }
2318
2319 /*
2320 * queue lock held here
2321 */
2322 static void cfq_put_request(struct request *rq)
2323 {
2324 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2325
2326 if (cfqq) {
2327 const int rw = rq_data_dir(rq);
2328
2329 BUG_ON(!cfqq->allocated[rw]);
2330 cfqq->allocated[rw]--;
2331
2332 put_io_context(RQ_CIC(rq)->ioc);
2333
2334 rq->elevator_private = NULL;
2335 rq->elevator_private2 = NULL;
2336
2337 cfq_put_queue(cfqq);
2338 }
2339 }
2340
2341 /*
2342 * Allocate cfq data structures associated with this request.
2343 */
2344 static int
2345 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2346 {
2347 struct cfq_data *cfqd = q->elevator->elevator_data;
2348 struct cfq_io_context *cic;
2349 const int rw = rq_data_dir(rq);
2350 const bool is_sync = rq_is_sync(rq);
2351 struct cfq_queue *cfqq;
2352 unsigned long flags;
2353
2354 might_sleep_if(gfp_mask & __GFP_WAIT);
2355
2356 cic = cfq_get_io_context(cfqd, gfp_mask);
2357
2358 spin_lock_irqsave(q->queue_lock, flags);
2359
2360 if (!cic)
2361 goto queue_fail;
2362
2363 cfqq = cic_to_cfqq(cic, is_sync);
2364 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2365 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2366 cic_set_cfqq(cic, cfqq, is_sync);
2367 }
2368
2369 cfqq->allocated[rw]++;
2370 atomic_inc(&cfqq->ref);
2371
2372 spin_unlock_irqrestore(q->queue_lock, flags);
2373
2374 rq->elevator_private = cic;
2375 rq->elevator_private2 = cfqq;
2376 return 0;
2377
2378 queue_fail:
2379 if (cic)
2380 put_io_context(cic->ioc);
2381
2382 cfq_schedule_dispatch(cfqd);
2383 spin_unlock_irqrestore(q->queue_lock, flags);
2384 cfq_log(cfqd, "set_request fail");
2385 return 1;
2386 }
2387
2388 static void cfq_kick_queue(struct work_struct *work)
2389 {
2390 struct cfq_data *cfqd =
2391 container_of(work, struct cfq_data, unplug_work);
2392 struct request_queue *q = cfqd->queue;
2393
2394 spin_lock_irq(q->queue_lock);
2395 __blk_run_queue(cfqd->queue);
2396 spin_unlock_irq(q->queue_lock);
2397 }
2398
2399 /*
2400 * Timer running if the active_queue is currently idling inside its time slice
2401 */
2402 static void cfq_idle_slice_timer(unsigned long data)
2403 {
2404 struct cfq_data *cfqd = (struct cfq_data *) data;
2405 struct cfq_queue *cfqq;
2406 unsigned long flags;
2407 int timed_out = 1;
2408
2409 cfq_log(cfqd, "idle timer fired");
2410
2411 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2412
2413 cfqq = cfqd->active_queue;
2414 if (cfqq) {
2415 timed_out = 0;
2416
2417 /*
2418 * We saw a request before the queue expired, let it through
2419 */
2420 if (cfq_cfqq_must_dispatch(cfqq))
2421 goto out_kick;
2422
2423 /*
2424 * expired
2425 */
2426 if (cfq_slice_used(cfqq))
2427 goto expire;
2428
2429 /*
2430 * only expire and reinvoke request handler, if there are
2431 * other queues with pending requests
2432 */
2433 if (!cfqd->busy_queues)
2434 goto out_cont;
2435
2436 /*
2437 * not expired and it has a request pending, let it dispatch
2438 */
2439 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2440 goto out_kick;
2441 }
2442 expire:
2443 cfq_slice_expired(cfqd, timed_out);
2444 out_kick:
2445 cfq_schedule_dispatch(cfqd);
2446 out_cont:
2447 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2448 }
2449
2450 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2451 {
2452 del_timer_sync(&cfqd->idle_slice_timer);
2453 cancel_work_sync(&cfqd->unplug_work);
2454 }
2455
2456 static void cfq_put_async_queues(struct cfq_data *cfqd)
2457 {
2458 int i;
2459
2460 for (i = 0; i < IOPRIO_BE_NR; i++) {
2461 if (cfqd->async_cfqq[0][i])
2462 cfq_put_queue(cfqd->async_cfqq[0][i]);
2463 if (cfqd->async_cfqq[1][i])
2464 cfq_put_queue(cfqd->async_cfqq[1][i]);
2465 }
2466
2467 if (cfqd->async_idle_cfqq)
2468 cfq_put_queue(cfqd->async_idle_cfqq);
2469 }
2470
2471 static void cfq_exit_queue(struct elevator_queue *e)
2472 {
2473 struct cfq_data *cfqd = e->elevator_data;
2474 struct request_queue *q = cfqd->queue;
2475
2476 cfq_shutdown_timer_wq(cfqd);
2477
2478 spin_lock_irq(q->queue_lock);
2479
2480 if (cfqd->active_queue)
2481 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2482
2483 while (!list_empty(&cfqd->cic_list)) {
2484 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2485 struct cfq_io_context,
2486 queue_list);
2487
2488 __cfq_exit_single_io_context(cfqd, cic);
2489 }
2490
2491 cfq_put_async_queues(cfqd);
2492
2493 spin_unlock_irq(q->queue_lock);
2494
2495 cfq_shutdown_timer_wq(cfqd);
2496
2497 kfree(cfqd);
2498 }
2499
2500 static void *cfq_init_queue(struct request_queue *q)
2501 {
2502 struct cfq_data *cfqd;
2503 int i;
2504
2505 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2506 if (!cfqd)
2507 return NULL;
2508
2509 cfqd->service_tree = CFQ_RB_ROOT;
2510
2511 /*
2512 * Not strictly needed (since RB_ROOT just clears the node and we
2513 * zeroed cfqd on alloc), but better be safe in case someone decides
2514 * to add magic to the rb code
2515 */
2516 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2517 cfqd->prio_trees[i] = RB_ROOT;
2518
2519 /*
2520 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2521 * Grab a permanent reference to it, so that the normal code flow
2522 * will not attempt to free it.
2523 */
2524 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2525 atomic_inc(&cfqd->oom_cfqq.ref);
2526
2527 INIT_LIST_HEAD(&cfqd->cic_list);
2528
2529 cfqd->queue = q;
2530
2531 init_timer(&cfqd->idle_slice_timer);
2532 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2533 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2534
2535 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2536
2537 cfqd->cfq_quantum = cfq_quantum;
2538 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2539 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2540 cfqd->cfq_back_max = cfq_back_max;
2541 cfqd->cfq_back_penalty = cfq_back_penalty;
2542 cfqd->cfq_slice[0] = cfq_slice_async;
2543 cfqd->cfq_slice[1] = cfq_slice_sync;
2544 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2545 cfqd->cfq_slice_idle = cfq_slice_idle;
2546 cfqd->cfq_latency = 1;
2547 cfqd->hw_tag = 1;
2548 cfqd->last_end_sync_rq = jiffies;
2549 return cfqd;
2550 }
2551
2552 static void cfq_slab_kill(void)
2553 {
2554 /*
2555 * Caller already ensured that pending RCU callbacks are completed,
2556 * so we should have no busy allocations at this point.
2557 */
2558 if (cfq_pool)
2559 kmem_cache_destroy(cfq_pool);
2560 if (cfq_ioc_pool)
2561 kmem_cache_destroy(cfq_ioc_pool);
2562 }
2563
2564 static int __init cfq_slab_setup(void)
2565 {
2566 cfq_pool = KMEM_CACHE(cfq_queue, 0);
2567 if (!cfq_pool)
2568 goto fail;
2569
2570 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2571 if (!cfq_ioc_pool)
2572 goto fail;
2573
2574 return 0;
2575 fail:
2576 cfq_slab_kill();
2577 return -ENOMEM;
2578 }
2579
2580 /*
2581 * sysfs parts below -->
2582 */
2583 static ssize_t
2584 cfq_var_show(unsigned int var, char *page)
2585 {
2586 return sprintf(page, "%d\n", var);
2587 }
2588
2589 static ssize_t
2590 cfq_var_store(unsigned int *var, const char *page, size_t count)
2591 {
2592 char *p = (char *) page;
2593
2594 *var = simple_strtoul(p, &p, 10);
2595 return count;
2596 }
2597
2598 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2599 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
2600 { \
2601 struct cfq_data *cfqd = e->elevator_data; \
2602 unsigned int __data = __VAR; \
2603 if (__CONV) \
2604 __data = jiffies_to_msecs(__data); \
2605 return cfq_var_show(__data, (page)); \
2606 }
2607 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2608 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2609 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2610 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2611 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2612 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2613 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2614 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2615 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2616 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
2617 #undef SHOW_FUNCTION
2618
2619 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2620 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2621 { \
2622 struct cfq_data *cfqd = e->elevator_data; \
2623 unsigned int __data; \
2624 int ret = cfq_var_store(&__data, (page), count); \
2625 if (__data < (MIN)) \
2626 __data = (MIN); \
2627 else if (__data > (MAX)) \
2628 __data = (MAX); \
2629 if (__CONV) \
2630 *(__PTR) = msecs_to_jiffies(__data); \
2631 else \
2632 *(__PTR) = __data; \
2633 return ret; \
2634 }
2635 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2636 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2637 UINT_MAX, 1);
2638 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2639 UINT_MAX, 1);
2640 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2641 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2642 UINT_MAX, 0);
2643 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2644 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2645 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2646 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2647 UINT_MAX, 0);
2648 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
2649 #undef STORE_FUNCTION
2650
2651 #define CFQ_ATTR(name) \
2652 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2653
2654 static struct elv_fs_entry cfq_attrs[] = {
2655 CFQ_ATTR(quantum),
2656 CFQ_ATTR(fifo_expire_sync),
2657 CFQ_ATTR(fifo_expire_async),
2658 CFQ_ATTR(back_seek_max),
2659 CFQ_ATTR(back_seek_penalty),
2660 CFQ_ATTR(slice_sync),
2661 CFQ_ATTR(slice_async),
2662 CFQ_ATTR(slice_async_rq),
2663 CFQ_ATTR(slice_idle),
2664 CFQ_ATTR(low_latency),
2665 __ATTR_NULL
2666 };
2667
2668 static struct elevator_type iosched_cfq = {
2669 .ops = {
2670 .elevator_merge_fn = cfq_merge,
2671 .elevator_merged_fn = cfq_merged_request,
2672 .elevator_merge_req_fn = cfq_merged_requests,
2673 .elevator_allow_merge_fn = cfq_allow_merge,
2674 .elevator_dispatch_fn = cfq_dispatch_requests,
2675 .elevator_add_req_fn = cfq_insert_request,
2676 .elevator_activate_req_fn = cfq_activate_request,
2677 .elevator_deactivate_req_fn = cfq_deactivate_request,
2678 .elevator_queue_empty_fn = cfq_queue_empty,
2679 .elevator_completed_req_fn = cfq_completed_request,
2680 .elevator_former_req_fn = elv_rb_former_request,
2681 .elevator_latter_req_fn = elv_rb_latter_request,
2682 .elevator_set_req_fn = cfq_set_request,
2683 .elevator_put_req_fn = cfq_put_request,
2684 .elevator_may_queue_fn = cfq_may_queue,
2685 .elevator_init_fn = cfq_init_queue,
2686 .elevator_exit_fn = cfq_exit_queue,
2687 .trim = cfq_free_io_context,
2688 },
2689 .elevator_attrs = cfq_attrs,
2690 .elevator_name = "cfq",
2691 .elevator_owner = THIS_MODULE,
2692 };
2693
2694 static int __init cfq_init(void)
2695 {
2696 /*
2697 * could be 0 on HZ < 1000 setups
2698 */
2699 if (!cfq_slice_async)
2700 cfq_slice_async = 1;
2701 if (!cfq_slice_idle)
2702 cfq_slice_idle = 1;
2703
2704 if (cfq_slab_setup())
2705 return -ENOMEM;
2706
2707 elv_register(&iosched_cfq);
2708
2709 return 0;
2710 }
2711
2712 static void __exit cfq_exit(void)
2713 {
2714 DECLARE_COMPLETION_ONSTACK(all_gone);
2715 elv_unregister(&iosched_cfq);
2716 ioc_gone = &all_gone;
2717 /* ioc_gone's update must be visible before reading ioc_count */
2718 smp_wmb();
2719
2720 /*
2721 * this also protects us from entering cfq_slab_kill() with
2722 * pending RCU callbacks
2723 */
2724 if (elv_ioc_count_read(cfq_ioc_count))
2725 wait_for_completion(&all_gone);
2726 cfq_slab_kill();
2727 }
2728
2729 module_init(cfq_init);
2730 module_exit(cfq_exit);
2731
2732 MODULE_AUTHOR("Jens Axboe");
2733 MODULE_LICENSE("GPL");
2734 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
This page took 0.128846 seconds and 5 git commands to generate.