Pull acpica into release branch
[deliverable/linux.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14
15 /*
16 * tunables
17 */
18 static const int cfq_quantum = 4; /* max queue in one round of service */
19 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
20 static const int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */
21 static const int cfq_back_penalty = 2; /* penalty of a backwards seek */
22
23 static const int cfq_slice_sync = HZ / 10;
24 static int cfq_slice_async = HZ / 25;
25 static const int cfq_slice_async_rq = 2;
26 static int cfq_slice_idle = HZ / 125;
27
28 /*
29 * grace period before allowing idle class to get disk access
30 */
31 #define CFQ_IDLE_GRACE (HZ / 10)
32
33 /*
34 * below this threshold, we consider thinktime immediate
35 */
36 #define CFQ_MIN_TT (2)
37
38 #define CFQ_SLICE_SCALE (5)
39
40 #define RQ_CIC(rq) ((struct cfq_io_context*)(rq)->elevator_private)
41 #define RQ_CFQQ(rq) ((rq)->elevator_private2)
42
43 static struct kmem_cache *cfq_pool;
44 static struct kmem_cache *cfq_ioc_pool;
45
46 static DEFINE_PER_CPU(unsigned long, ioc_count);
47 static struct completion *ioc_gone;
48
49 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
50 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
51 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
52
53 #define ASYNC (0)
54 #define SYNC (1)
55
56 #define sample_valid(samples) ((samples) > 80)
57
58 /*
59 * Most of our rbtree usage is for sorting with min extraction, so
60 * if we cache the leftmost node we don't have to walk down the tree
61 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
62 * move this into the elevator for the rq sorting as well.
63 */
64 struct cfq_rb_root {
65 struct rb_root rb;
66 struct rb_node *left;
67 };
68 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
69
70 /*
71 * Per block device queue structure
72 */
73 struct cfq_data {
74 request_queue_t *queue;
75
76 /*
77 * rr list of queues with requests and the count of them
78 */
79 struct cfq_rb_root service_tree;
80 unsigned int busy_queues;
81
82 int rq_in_driver;
83 int sync_flight;
84 int hw_tag;
85
86 /*
87 * idle window management
88 */
89 struct timer_list idle_slice_timer;
90 struct work_struct unplug_work;
91
92 struct cfq_queue *active_queue;
93 struct cfq_io_context *active_cic;
94
95 /*
96 * async queue for each priority case
97 */
98 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
99 struct cfq_queue *async_idle_cfqq;
100
101 struct timer_list idle_class_timer;
102
103 sector_t last_position;
104 unsigned long last_end_request;
105
106 /*
107 * tunables, see top of file
108 */
109 unsigned int cfq_quantum;
110 unsigned int cfq_fifo_expire[2];
111 unsigned int cfq_back_penalty;
112 unsigned int cfq_back_max;
113 unsigned int cfq_slice[2];
114 unsigned int cfq_slice_async_rq;
115 unsigned int cfq_slice_idle;
116
117 struct list_head cic_list;
118 };
119
120 /*
121 * Per process-grouping structure
122 */
123 struct cfq_queue {
124 /* reference count */
125 atomic_t ref;
126 /* parent cfq_data */
127 struct cfq_data *cfqd;
128 /* service_tree member */
129 struct rb_node rb_node;
130 /* service_tree key */
131 unsigned long rb_key;
132 /* sorted list of pending requests */
133 struct rb_root sort_list;
134 /* if fifo isn't expired, next request to serve */
135 struct request *next_rq;
136 /* requests queued in sort_list */
137 int queued[2];
138 /* currently allocated requests */
139 int allocated[2];
140 /* pending metadata requests */
141 int meta_pending;
142 /* fifo list of requests in sort_list */
143 struct list_head fifo;
144
145 unsigned long slice_end;
146 long slice_resid;
147
148 /* number of requests that are on the dispatch list or inside driver */
149 int dispatched;
150
151 /* io prio of this group */
152 unsigned short ioprio, org_ioprio;
153 unsigned short ioprio_class, org_ioprio_class;
154
155 /* various state flags, see below */
156 unsigned int flags;
157 };
158
159 enum cfqq_state_flags {
160 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
161 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
162 CFQ_CFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
163 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
164 CFQ_CFQQ_FLAG_must_dispatch, /* must dispatch, even if expired */
165 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
166 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
167 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
168 CFQ_CFQQ_FLAG_queue_new, /* queue never been serviced */
169 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
170 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
171 };
172
173 #define CFQ_CFQQ_FNS(name) \
174 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
175 { \
176 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
177 } \
178 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
179 { \
180 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
181 } \
182 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
183 { \
184 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
185 }
186
187 CFQ_CFQQ_FNS(on_rr);
188 CFQ_CFQQ_FNS(wait_request);
189 CFQ_CFQQ_FNS(must_alloc);
190 CFQ_CFQQ_FNS(must_alloc_slice);
191 CFQ_CFQQ_FNS(must_dispatch);
192 CFQ_CFQQ_FNS(fifo_expire);
193 CFQ_CFQQ_FNS(idle_window);
194 CFQ_CFQQ_FNS(prio_changed);
195 CFQ_CFQQ_FNS(queue_new);
196 CFQ_CFQQ_FNS(slice_new);
197 CFQ_CFQQ_FNS(sync);
198 #undef CFQ_CFQQ_FNS
199
200 static void cfq_dispatch_insert(request_queue_t *, struct request *);
201 static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
202 struct task_struct *, gfp_t);
203 static struct cfq_io_context *cfq_cic_rb_lookup(struct cfq_data *,
204 struct io_context *);
205
206 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
207 int is_sync)
208 {
209 return cic->cfqq[!!is_sync];
210 }
211
212 static inline void cic_set_cfqq(struct cfq_io_context *cic,
213 struct cfq_queue *cfqq, int is_sync)
214 {
215 cic->cfqq[!!is_sync] = cfqq;
216 }
217
218 /*
219 * We regard a request as SYNC, if it's either a read or has the SYNC bit
220 * set (in which case it could also be direct WRITE).
221 */
222 static inline int cfq_bio_sync(struct bio *bio)
223 {
224 if (bio_data_dir(bio) == READ || bio_sync(bio))
225 return 1;
226
227 return 0;
228 }
229
230 /*
231 * scheduler run of queue, if there are requests pending and no one in the
232 * driver that will restart queueing
233 */
234 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
235 {
236 if (cfqd->busy_queues)
237 kblockd_schedule_work(&cfqd->unplug_work);
238 }
239
240 static int cfq_queue_empty(request_queue_t *q)
241 {
242 struct cfq_data *cfqd = q->elevator->elevator_data;
243
244 return !cfqd->busy_queues;
245 }
246
247 /*
248 * Scale schedule slice based on io priority. Use the sync time slice only
249 * if a queue is marked sync and has sync io queued. A sync queue with async
250 * io only, should not get full sync slice length.
251 */
252 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
253 unsigned short prio)
254 {
255 const int base_slice = cfqd->cfq_slice[sync];
256
257 WARN_ON(prio >= IOPRIO_BE_NR);
258
259 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
260 }
261
262 static inline int
263 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
264 {
265 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
266 }
267
268 static inline void
269 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
270 {
271 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
272 }
273
274 /*
275 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
276 * isn't valid until the first request from the dispatch is activated
277 * and the slice time set.
278 */
279 static inline int cfq_slice_used(struct cfq_queue *cfqq)
280 {
281 if (cfq_cfqq_slice_new(cfqq))
282 return 0;
283 if (time_before(jiffies, cfqq->slice_end))
284 return 0;
285
286 return 1;
287 }
288
289 /*
290 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
291 * We choose the request that is closest to the head right now. Distance
292 * behind the head is penalized and only allowed to a certain extent.
293 */
294 static struct request *
295 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
296 {
297 sector_t last, s1, s2, d1 = 0, d2 = 0;
298 unsigned long back_max;
299 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
300 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
301 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
302
303 if (rq1 == NULL || rq1 == rq2)
304 return rq2;
305 if (rq2 == NULL)
306 return rq1;
307
308 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
309 return rq1;
310 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
311 return rq2;
312 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
313 return rq1;
314 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
315 return rq2;
316
317 s1 = rq1->sector;
318 s2 = rq2->sector;
319
320 last = cfqd->last_position;
321
322 /*
323 * by definition, 1KiB is 2 sectors
324 */
325 back_max = cfqd->cfq_back_max * 2;
326
327 /*
328 * Strict one way elevator _except_ in the case where we allow
329 * short backward seeks which are biased as twice the cost of a
330 * similar forward seek.
331 */
332 if (s1 >= last)
333 d1 = s1 - last;
334 else if (s1 + back_max >= last)
335 d1 = (last - s1) * cfqd->cfq_back_penalty;
336 else
337 wrap |= CFQ_RQ1_WRAP;
338
339 if (s2 >= last)
340 d2 = s2 - last;
341 else if (s2 + back_max >= last)
342 d2 = (last - s2) * cfqd->cfq_back_penalty;
343 else
344 wrap |= CFQ_RQ2_WRAP;
345
346 /* Found required data */
347
348 /*
349 * By doing switch() on the bit mask "wrap" we avoid having to
350 * check two variables for all permutations: --> faster!
351 */
352 switch (wrap) {
353 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
354 if (d1 < d2)
355 return rq1;
356 else if (d2 < d1)
357 return rq2;
358 else {
359 if (s1 >= s2)
360 return rq1;
361 else
362 return rq2;
363 }
364
365 case CFQ_RQ2_WRAP:
366 return rq1;
367 case CFQ_RQ1_WRAP:
368 return rq2;
369 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
370 default:
371 /*
372 * Since both rqs are wrapped,
373 * start with the one that's further behind head
374 * (--> only *one* back seek required),
375 * since back seek takes more time than forward.
376 */
377 if (s1 <= s2)
378 return rq1;
379 else
380 return rq2;
381 }
382 }
383
384 /*
385 * The below is leftmost cache rbtree addon
386 */
387 static struct rb_node *cfq_rb_first(struct cfq_rb_root *root)
388 {
389 if (!root->left)
390 root->left = rb_first(&root->rb);
391
392 return root->left;
393 }
394
395 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
396 {
397 if (root->left == n)
398 root->left = NULL;
399
400 rb_erase(n, &root->rb);
401 RB_CLEAR_NODE(n);
402 }
403
404 /*
405 * would be nice to take fifo expire time into account as well
406 */
407 static struct request *
408 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
409 struct request *last)
410 {
411 struct rb_node *rbnext = rb_next(&last->rb_node);
412 struct rb_node *rbprev = rb_prev(&last->rb_node);
413 struct request *next = NULL, *prev = NULL;
414
415 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
416
417 if (rbprev)
418 prev = rb_entry_rq(rbprev);
419
420 if (rbnext)
421 next = rb_entry_rq(rbnext);
422 else {
423 rbnext = rb_first(&cfqq->sort_list);
424 if (rbnext && rbnext != &last->rb_node)
425 next = rb_entry_rq(rbnext);
426 }
427
428 return cfq_choose_req(cfqd, next, prev);
429 }
430
431 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
432 struct cfq_queue *cfqq)
433 {
434 /*
435 * just an approximation, should be ok.
436 */
437 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
438 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
439 }
440
441 /*
442 * The cfqd->service_tree holds all pending cfq_queue's that have
443 * requests waiting to be processed. It is sorted in the order that
444 * we will service the queues.
445 */
446 static void cfq_service_tree_add(struct cfq_data *cfqd,
447 struct cfq_queue *cfqq, int add_front)
448 {
449 struct rb_node **p = &cfqd->service_tree.rb.rb_node;
450 struct rb_node *parent = NULL;
451 unsigned long rb_key;
452 int left;
453
454 if (!add_front) {
455 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
456 rb_key += cfqq->slice_resid;
457 cfqq->slice_resid = 0;
458 } else
459 rb_key = 0;
460
461 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
462 /*
463 * same position, nothing more to do
464 */
465 if (rb_key == cfqq->rb_key)
466 return;
467
468 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
469 }
470
471 left = 1;
472 while (*p) {
473 struct cfq_queue *__cfqq;
474 struct rb_node **n;
475
476 parent = *p;
477 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
478
479 /*
480 * sort RT queues first, we always want to give
481 * preference to them. IDLE queues goes to the back.
482 * after that, sort on the next service time.
483 */
484 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
485 n = &(*p)->rb_left;
486 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
487 n = &(*p)->rb_right;
488 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
489 n = &(*p)->rb_left;
490 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
491 n = &(*p)->rb_right;
492 else if (rb_key < __cfqq->rb_key)
493 n = &(*p)->rb_left;
494 else
495 n = &(*p)->rb_right;
496
497 if (n == &(*p)->rb_right)
498 left = 0;
499
500 p = n;
501 }
502
503 if (left)
504 cfqd->service_tree.left = &cfqq->rb_node;
505
506 cfqq->rb_key = rb_key;
507 rb_link_node(&cfqq->rb_node, parent, p);
508 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
509 }
510
511 /*
512 * Update cfqq's position in the service tree.
513 */
514 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
515 {
516 /*
517 * Resorting requires the cfqq to be on the RR list already.
518 */
519 if (cfq_cfqq_on_rr(cfqq))
520 cfq_service_tree_add(cfqd, cfqq, 0);
521 }
522
523 /*
524 * add to busy list of queues for service, trying to be fair in ordering
525 * the pending list according to last request service
526 */
527 static inline void
528 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
529 {
530 BUG_ON(cfq_cfqq_on_rr(cfqq));
531 cfq_mark_cfqq_on_rr(cfqq);
532 cfqd->busy_queues++;
533
534 cfq_resort_rr_list(cfqd, cfqq);
535 }
536
537 /*
538 * Called when the cfqq no longer has requests pending, remove it from
539 * the service tree.
540 */
541 static inline void
542 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
543 {
544 BUG_ON(!cfq_cfqq_on_rr(cfqq));
545 cfq_clear_cfqq_on_rr(cfqq);
546
547 if (!RB_EMPTY_NODE(&cfqq->rb_node))
548 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
549
550 BUG_ON(!cfqd->busy_queues);
551 cfqd->busy_queues--;
552 }
553
554 /*
555 * rb tree support functions
556 */
557 static inline void cfq_del_rq_rb(struct request *rq)
558 {
559 struct cfq_queue *cfqq = RQ_CFQQ(rq);
560 struct cfq_data *cfqd = cfqq->cfqd;
561 const int sync = rq_is_sync(rq);
562
563 BUG_ON(!cfqq->queued[sync]);
564 cfqq->queued[sync]--;
565
566 elv_rb_del(&cfqq->sort_list, rq);
567
568 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
569 cfq_del_cfqq_rr(cfqd, cfqq);
570 }
571
572 static void cfq_add_rq_rb(struct request *rq)
573 {
574 struct cfq_queue *cfqq = RQ_CFQQ(rq);
575 struct cfq_data *cfqd = cfqq->cfqd;
576 struct request *__alias;
577
578 cfqq->queued[rq_is_sync(rq)]++;
579
580 /*
581 * looks a little odd, but the first insert might return an alias.
582 * if that happens, put the alias on the dispatch list
583 */
584 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
585 cfq_dispatch_insert(cfqd->queue, __alias);
586
587 if (!cfq_cfqq_on_rr(cfqq))
588 cfq_add_cfqq_rr(cfqd, cfqq);
589
590 /*
591 * check if this request is a better next-serve candidate
592 */
593 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
594 BUG_ON(!cfqq->next_rq);
595 }
596
597 static inline void
598 cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
599 {
600 elv_rb_del(&cfqq->sort_list, rq);
601 cfqq->queued[rq_is_sync(rq)]--;
602 cfq_add_rq_rb(rq);
603 }
604
605 static struct request *
606 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
607 {
608 struct task_struct *tsk = current;
609 struct cfq_io_context *cic;
610 struct cfq_queue *cfqq;
611
612 cic = cfq_cic_rb_lookup(cfqd, tsk->io_context);
613 if (!cic)
614 return NULL;
615
616 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
617 if (cfqq) {
618 sector_t sector = bio->bi_sector + bio_sectors(bio);
619
620 return elv_rb_find(&cfqq->sort_list, sector);
621 }
622
623 return NULL;
624 }
625
626 static void cfq_activate_request(request_queue_t *q, struct request *rq)
627 {
628 struct cfq_data *cfqd = q->elevator->elevator_data;
629
630 cfqd->rq_in_driver++;
631
632 /*
633 * If the depth is larger 1, it really could be queueing. But lets
634 * make the mark a little higher - idling could still be good for
635 * low queueing, and a low queueing number could also just indicate
636 * a SCSI mid layer like behaviour where limit+1 is often seen.
637 */
638 if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
639 cfqd->hw_tag = 1;
640
641 cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
642 }
643
644 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
645 {
646 struct cfq_data *cfqd = q->elevator->elevator_data;
647
648 WARN_ON(!cfqd->rq_in_driver);
649 cfqd->rq_in_driver--;
650 }
651
652 static void cfq_remove_request(struct request *rq)
653 {
654 struct cfq_queue *cfqq = RQ_CFQQ(rq);
655
656 if (cfqq->next_rq == rq)
657 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
658
659 list_del_init(&rq->queuelist);
660 cfq_del_rq_rb(rq);
661
662 if (rq_is_meta(rq)) {
663 WARN_ON(!cfqq->meta_pending);
664 cfqq->meta_pending--;
665 }
666 }
667
668 static int cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
669 {
670 struct cfq_data *cfqd = q->elevator->elevator_data;
671 struct request *__rq;
672
673 __rq = cfq_find_rq_fmerge(cfqd, bio);
674 if (__rq && elv_rq_merge_ok(__rq, bio)) {
675 *req = __rq;
676 return ELEVATOR_FRONT_MERGE;
677 }
678
679 return ELEVATOR_NO_MERGE;
680 }
681
682 static void cfq_merged_request(request_queue_t *q, struct request *req,
683 int type)
684 {
685 if (type == ELEVATOR_FRONT_MERGE) {
686 struct cfq_queue *cfqq = RQ_CFQQ(req);
687
688 cfq_reposition_rq_rb(cfqq, req);
689 }
690 }
691
692 static void
693 cfq_merged_requests(request_queue_t *q, struct request *rq,
694 struct request *next)
695 {
696 /*
697 * reposition in fifo if next is older than rq
698 */
699 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
700 time_before(next->start_time, rq->start_time))
701 list_move(&rq->queuelist, &next->queuelist);
702
703 cfq_remove_request(next);
704 }
705
706 static int cfq_allow_merge(request_queue_t *q, struct request *rq,
707 struct bio *bio)
708 {
709 struct cfq_data *cfqd = q->elevator->elevator_data;
710 struct cfq_io_context *cic;
711 struct cfq_queue *cfqq;
712
713 /*
714 * Disallow merge of a sync bio into an async request.
715 */
716 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
717 return 0;
718
719 /*
720 * Lookup the cfqq that this bio will be queued with. Allow
721 * merge only if rq is queued there.
722 */
723 cic = cfq_cic_rb_lookup(cfqd, current->io_context);
724 if (!cic)
725 return 0;
726
727 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
728 if (cfqq == RQ_CFQQ(rq))
729 return 1;
730
731 return 0;
732 }
733
734 static inline void
735 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
736 {
737 if (cfqq) {
738 /*
739 * stop potential idle class queues waiting service
740 */
741 del_timer(&cfqd->idle_class_timer);
742
743 cfqq->slice_end = 0;
744 cfq_clear_cfqq_must_alloc_slice(cfqq);
745 cfq_clear_cfqq_fifo_expire(cfqq);
746 cfq_mark_cfqq_slice_new(cfqq);
747 cfq_clear_cfqq_queue_new(cfqq);
748 }
749
750 cfqd->active_queue = cfqq;
751 }
752
753 /*
754 * current cfqq expired its slice (or was too idle), select new one
755 */
756 static void
757 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
758 int timed_out)
759 {
760 if (cfq_cfqq_wait_request(cfqq))
761 del_timer(&cfqd->idle_slice_timer);
762
763 cfq_clear_cfqq_must_dispatch(cfqq);
764 cfq_clear_cfqq_wait_request(cfqq);
765
766 /*
767 * store what was left of this slice, if the queue idled/timed out
768 */
769 if (timed_out && !cfq_cfqq_slice_new(cfqq))
770 cfqq->slice_resid = cfqq->slice_end - jiffies;
771
772 cfq_resort_rr_list(cfqd, cfqq);
773
774 if (cfqq == cfqd->active_queue)
775 cfqd->active_queue = NULL;
776
777 if (cfqd->active_cic) {
778 put_io_context(cfqd->active_cic->ioc);
779 cfqd->active_cic = NULL;
780 }
781 }
782
783 static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
784 {
785 struct cfq_queue *cfqq = cfqd->active_queue;
786
787 if (cfqq)
788 __cfq_slice_expired(cfqd, cfqq, timed_out);
789 }
790
791 /*
792 * Get next queue for service. Unless we have a queue preemption,
793 * we'll simply select the first cfqq in the service tree.
794 */
795 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
796 {
797 struct cfq_queue *cfqq;
798 struct rb_node *n;
799
800 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
801 return NULL;
802
803 n = cfq_rb_first(&cfqd->service_tree);
804 cfqq = rb_entry(n, struct cfq_queue, rb_node);
805
806 if (cfq_class_idle(cfqq)) {
807 unsigned long end;
808
809 /*
810 * if we have idle queues and no rt or be queues had
811 * pending requests, either allow immediate service if
812 * the grace period has passed or arm the idle grace
813 * timer
814 */
815 end = cfqd->last_end_request + CFQ_IDLE_GRACE;
816 if (time_before(jiffies, end)) {
817 mod_timer(&cfqd->idle_class_timer, end);
818 cfqq = NULL;
819 }
820 }
821
822 return cfqq;
823 }
824
825 /*
826 * Get and set a new active queue for service.
827 */
828 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
829 {
830 struct cfq_queue *cfqq;
831
832 cfqq = cfq_get_next_queue(cfqd);
833 __cfq_set_active_queue(cfqd, cfqq);
834 return cfqq;
835 }
836
837 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
838 struct request *rq)
839 {
840 if (rq->sector >= cfqd->last_position)
841 return rq->sector - cfqd->last_position;
842 else
843 return cfqd->last_position - rq->sector;
844 }
845
846 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
847 {
848 struct cfq_io_context *cic = cfqd->active_cic;
849
850 if (!sample_valid(cic->seek_samples))
851 return 0;
852
853 return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
854 }
855
856 static int cfq_close_cooperator(struct cfq_data *cfq_data,
857 struct cfq_queue *cfqq)
858 {
859 /*
860 * We should notice if some of the queues are cooperating, eg
861 * working closely on the same area of the disk. In that case,
862 * we can group them together and don't waste time idling.
863 */
864 return 0;
865 }
866
867 #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
868
869 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
870 {
871 struct cfq_queue *cfqq = cfqd->active_queue;
872 struct cfq_io_context *cic;
873 unsigned long sl;
874
875 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
876 WARN_ON(cfq_cfqq_slice_new(cfqq));
877
878 /*
879 * idle is disabled, either manually or by past process history
880 */
881 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
882 return;
883
884 /*
885 * task has exited, don't wait
886 */
887 cic = cfqd->active_cic;
888 if (!cic || !cic->ioc->task)
889 return;
890
891 /*
892 * See if this prio level has a good candidate
893 */
894 if (cfq_close_cooperator(cfqd, cfqq) &&
895 (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
896 return;
897
898 cfq_mark_cfqq_must_dispatch(cfqq);
899 cfq_mark_cfqq_wait_request(cfqq);
900
901 /*
902 * we don't want to idle for seeks, but we do want to allow
903 * fair distribution of slice time for a process doing back-to-back
904 * seeks. so allow a little bit of time for him to submit a new rq
905 */
906 sl = cfqd->cfq_slice_idle;
907 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
908 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
909
910 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
911 }
912
913 /*
914 * Move request from internal lists to the request queue dispatch list.
915 */
916 static void cfq_dispatch_insert(request_queue_t *q, struct request *rq)
917 {
918 struct cfq_data *cfqd = q->elevator->elevator_data;
919 struct cfq_queue *cfqq = RQ_CFQQ(rq);
920
921 cfq_remove_request(rq);
922 cfqq->dispatched++;
923 elv_dispatch_sort(q, rq);
924
925 if (cfq_cfqq_sync(cfqq))
926 cfqd->sync_flight++;
927 }
928
929 /*
930 * return expired entry, or NULL to just start from scratch in rbtree
931 */
932 static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
933 {
934 struct cfq_data *cfqd = cfqq->cfqd;
935 struct request *rq;
936 int fifo;
937
938 if (cfq_cfqq_fifo_expire(cfqq))
939 return NULL;
940
941 cfq_mark_cfqq_fifo_expire(cfqq);
942
943 if (list_empty(&cfqq->fifo))
944 return NULL;
945
946 fifo = cfq_cfqq_sync(cfqq);
947 rq = rq_entry_fifo(cfqq->fifo.next);
948
949 if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
950 return NULL;
951
952 return rq;
953 }
954
955 static inline int
956 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
957 {
958 const int base_rq = cfqd->cfq_slice_async_rq;
959
960 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
961
962 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
963 }
964
965 /*
966 * Select a queue for service. If we have a current active queue,
967 * check whether to continue servicing it, or retrieve and set a new one.
968 */
969 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
970 {
971 struct cfq_queue *cfqq;
972
973 cfqq = cfqd->active_queue;
974 if (!cfqq)
975 goto new_queue;
976
977 /*
978 * The active queue has run out of time, expire it and select new.
979 */
980 if (cfq_slice_used(cfqq))
981 goto expire;
982
983 /*
984 * The active queue has requests and isn't expired, allow it to
985 * dispatch.
986 */
987 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
988 goto keep_queue;
989
990 /*
991 * No requests pending. If the active queue still has requests in
992 * flight or is idling for a new request, allow either of these
993 * conditions to happen (or time out) before selecting a new queue.
994 */
995 if (timer_pending(&cfqd->idle_slice_timer) ||
996 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
997 cfqq = NULL;
998 goto keep_queue;
999 }
1000
1001 expire:
1002 cfq_slice_expired(cfqd, 0);
1003 new_queue:
1004 cfqq = cfq_set_active_queue(cfqd);
1005 keep_queue:
1006 return cfqq;
1007 }
1008
1009 /*
1010 * Dispatch some requests from cfqq, moving them to the request queue
1011 * dispatch list.
1012 */
1013 static int
1014 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1015 int max_dispatch)
1016 {
1017 int dispatched = 0;
1018
1019 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1020
1021 do {
1022 struct request *rq;
1023
1024 /*
1025 * follow expired path, else get first next available
1026 */
1027 if ((rq = cfq_check_fifo(cfqq)) == NULL)
1028 rq = cfqq->next_rq;
1029
1030 /*
1031 * finally, insert request into driver dispatch list
1032 */
1033 cfq_dispatch_insert(cfqd->queue, rq);
1034
1035 dispatched++;
1036
1037 if (!cfqd->active_cic) {
1038 atomic_inc(&RQ_CIC(rq)->ioc->refcount);
1039 cfqd->active_cic = RQ_CIC(rq);
1040 }
1041
1042 if (RB_EMPTY_ROOT(&cfqq->sort_list))
1043 break;
1044
1045 } while (dispatched < max_dispatch);
1046
1047 /*
1048 * expire an async queue immediately if it has used up its slice. idle
1049 * queue always expire after 1 dispatch round.
1050 */
1051 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1052 dispatched >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1053 cfq_class_idle(cfqq))) {
1054 cfqq->slice_end = jiffies + 1;
1055 cfq_slice_expired(cfqd, 0);
1056 }
1057
1058 return dispatched;
1059 }
1060
1061 static inline int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1062 {
1063 int dispatched = 0;
1064
1065 while (cfqq->next_rq) {
1066 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1067 dispatched++;
1068 }
1069
1070 BUG_ON(!list_empty(&cfqq->fifo));
1071 return dispatched;
1072 }
1073
1074 /*
1075 * Drain our current requests. Used for barriers and when switching
1076 * io schedulers on-the-fly.
1077 */
1078 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1079 {
1080 int dispatched = 0;
1081 struct rb_node *n;
1082
1083 while ((n = cfq_rb_first(&cfqd->service_tree)) != NULL) {
1084 struct cfq_queue *cfqq = rb_entry(n, struct cfq_queue, rb_node);
1085
1086 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1087 }
1088
1089 cfq_slice_expired(cfqd, 0);
1090
1091 BUG_ON(cfqd->busy_queues);
1092
1093 return dispatched;
1094 }
1095
1096 static int cfq_dispatch_requests(request_queue_t *q, int force)
1097 {
1098 struct cfq_data *cfqd = q->elevator->elevator_data;
1099 struct cfq_queue *cfqq;
1100 int dispatched;
1101
1102 if (!cfqd->busy_queues)
1103 return 0;
1104
1105 if (unlikely(force))
1106 return cfq_forced_dispatch(cfqd);
1107
1108 dispatched = 0;
1109 while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1110 int max_dispatch;
1111
1112 max_dispatch = cfqd->cfq_quantum;
1113 if (cfq_class_idle(cfqq))
1114 max_dispatch = 1;
1115
1116 if (cfqq->dispatched >= max_dispatch) {
1117 if (cfqd->busy_queues > 1)
1118 break;
1119 if (cfqq->dispatched >= 4 * max_dispatch)
1120 break;
1121 }
1122
1123 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1124 break;
1125
1126 cfq_clear_cfqq_must_dispatch(cfqq);
1127 cfq_clear_cfqq_wait_request(cfqq);
1128 del_timer(&cfqd->idle_slice_timer);
1129
1130 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1131 }
1132
1133 return dispatched;
1134 }
1135
1136 /*
1137 * task holds one reference to the queue, dropped when task exits. each rq
1138 * in-flight on this queue also holds a reference, dropped when rq is freed.
1139 *
1140 * queue lock must be held here.
1141 */
1142 static void cfq_put_queue(struct cfq_queue *cfqq)
1143 {
1144 struct cfq_data *cfqd = cfqq->cfqd;
1145
1146 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1147
1148 if (!atomic_dec_and_test(&cfqq->ref))
1149 return;
1150
1151 BUG_ON(rb_first(&cfqq->sort_list));
1152 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1153 BUG_ON(cfq_cfqq_on_rr(cfqq));
1154
1155 if (unlikely(cfqd->active_queue == cfqq)) {
1156 __cfq_slice_expired(cfqd, cfqq, 0);
1157 cfq_schedule_dispatch(cfqd);
1158 }
1159
1160 kmem_cache_free(cfq_pool, cfqq);
1161 }
1162
1163 static void cfq_free_io_context(struct io_context *ioc)
1164 {
1165 struct cfq_io_context *__cic;
1166 struct rb_node *n;
1167 int freed = 0;
1168
1169 ioc->ioc_data = NULL;
1170
1171 while ((n = rb_first(&ioc->cic_root)) != NULL) {
1172 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1173 rb_erase(&__cic->rb_node, &ioc->cic_root);
1174 kmem_cache_free(cfq_ioc_pool, __cic);
1175 freed++;
1176 }
1177
1178 elv_ioc_count_mod(ioc_count, -freed);
1179
1180 if (ioc_gone && !elv_ioc_count_read(ioc_count))
1181 complete(ioc_gone);
1182 }
1183
1184 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1185 {
1186 if (unlikely(cfqq == cfqd->active_queue)) {
1187 __cfq_slice_expired(cfqd, cfqq, 0);
1188 cfq_schedule_dispatch(cfqd);
1189 }
1190
1191 cfq_put_queue(cfqq);
1192 }
1193
1194 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1195 struct cfq_io_context *cic)
1196 {
1197 list_del_init(&cic->queue_list);
1198 smp_wmb();
1199 cic->key = NULL;
1200
1201 if (cic->cfqq[ASYNC]) {
1202 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1203 cic->cfqq[ASYNC] = NULL;
1204 }
1205
1206 if (cic->cfqq[SYNC]) {
1207 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1208 cic->cfqq[SYNC] = NULL;
1209 }
1210 }
1211
1212 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1213 {
1214 struct cfq_data *cfqd = cic->key;
1215
1216 if (cfqd) {
1217 request_queue_t *q = cfqd->queue;
1218
1219 spin_lock_irq(q->queue_lock);
1220 __cfq_exit_single_io_context(cfqd, cic);
1221 spin_unlock_irq(q->queue_lock);
1222 }
1223 }
1224
1225 /*
1226 * The process that ioc belongs to has exited, we need to clean up
1227 * and put the internal structures we have that belongs to that process.
1228 */
1229 static void cfq_exit_io_context(struct io_context *ioc)
1230 {
1231 struct cfq_io_context *__cic;
1232 struct rb_node *n;
1233
1234 ioc->ioc_data = NULL;
1235
1236 /*
1237 * put the reference this task is holding to the various queues
1238 */
1239 n = rb_first(&ioc->cic_root);
1240 while (n != NULL) {
1241 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1242
1243 cfq_exit_single_io_context(__cic);
1244 n = rb_next(n);
1245 }
1246 }
1247
1248 static struct cfq_io_context *
1249 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1250 {
1251 struct cfq_io_context *cic;
1252
1253 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1254 cfqd->queue->node);
1255 if (cic) {
1256 cic->last_end_request = jiffies;
1257 INIT_LIST_HEAD(&cic->queue_list);
1258 cic->dtor = cfq_free_io_context;
1259 cic->exit = cfq_exit_io_context;
1260 elv_ioc_count_inc(ioc_count);
1261 }
1262
1263 return cic;
1264 }
1265
1266 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1267 {
1268 struct task_struct *tsk = current;
1269 int ioprio_class;
1270
1271 if (!cfq_cfqq_prio_changed(cfqq))
1272 return;
1273
1274 ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1275 switch (ioprio_class) {
1276 default:
1277 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1278 case IOPRIO_CLASS_NONE:
1279 /*
1280 * no prio set, place us in the middle of the BE classes
1281 */
1282 cfqq->ioprio = task_nice_ioprio(tsk);
1283 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1284 break;
1285 case IOPRIO_CLASS_RT:
1286 cfqq->ioprio = task_ioprio(tsk);
1287 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1288 break;
1289 case IOPRIO_CLASS_BE:
1290 cfqq->ioprio = task_ioprio(tsk);
1291 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1292 break;
1293 case IOPRIO_CLASS_IDLE:
1294 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1295 cfqq->ioprio = 7;
1296 cfq_clear_cfqq_idle_window(cfqq);
1297 break;
1298 }
1299
1300 /*
1301 * keep track of original prio settings in case we have to temporarily
1302 * elevate the priority of this queue
1303 */
1304 cfqq->org_ioprio = cfqq->ioprio;
1305 cfqq->org_ioprio_class = cfqq->ioprio_class;
1306 cfq_clear_cfqq_prio_changed(cfqq);
1307 }
1308
1309 static inline void changed_ioprio(struct cfq_io_context *cic)
1310 {
1311 struct cfq_data *cfqd = cic->key;
1312 struct cfq_queue *cfqq;
1313 unsigned long flags;
1314
1315 if (unlikely(!cfqd))
1316 return;
1317
1318 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1319
1320 cfqq = cic->cfqq[ASYNC];
1321 if (cfqq) {
1322 struct cfq_queue *new_cfqq;
1323 new_cfqq = cfq_get_queue(cfqd, ASYNC, cic->ioc->task,
1324 GFP_ATOMIC);
1325 if (new_cfqq) {
1326 cic->cfqq[ASYNC] = new_cfqq;
1327 cfq_put_queue(cfqq);
1328 }
1329 }
1330
1331 cfqq = cic->cfqq[SYNC];
1332 if (cfqq)
1333 cfq_mark_cfqq_prio_changed(cfqq);
1334
1335 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1336 }
1337
1338 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1339 {
1340 struct cfq_io_context *cic;
1341 struct rb_node *n;
1342
1343 ioc->ioprio_changed = 0;
1344
1345 n = rb_first(&ioc->cic_root);
1346 while (n != NULL) {
1347 cic = rb_entry(n, struct cfq_io_context, rb_node);
1348
1349 changed_ioprio(cic);
1350 n = rb_next(n);
1351 }
1352 }
1353
1354 static struct cfq_queue *
1355 cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1356 struct task_struct *tsk, gfp_t gfp_mask)
1357 {
1358 struct cfq_queue *cfqq, *new_cfqq = NULL;
1359 struct cfq_io_context *cic;
1360
1361 retry:
1362 cic = cfq_cic_rb_lookup(cfqd, tsk->io_context);
1363 /* cic always exists here */
1364 cfqq = cic_to_cfqq(cic, is_sync);
1365
1366 if (!cfqq) {
1367 if (new_cfqq) {
1368 cfqq = new_cfqq;
1369 new_cfqq = NULL;
1370 } else if (gfp_mask & __GFP_WAIT) {
1371 /*
1372 * Inform the allocator of the fact that we will
1373 * just repeat this allocation if it fails, to allow
1374 * the allocator to do whatever it needs to attempt to
1375 * free memory.
1376 */
1377 spin_unlock_irq(cfqd->queue->queue_lock);
1378 new_cfqq = kmem_cache_alloc_node(cfq_pool,
1379 gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
1380 cfqd->queue->node);
1381 spin_lock_irq(cfqd->queue->queue_lock);
1382 goto retry;
1383 } else {
1384 cfqq = kmem_cache_alloc_node(cfq_pool,
1385 gfp_mask | __GFP_ZERO,
1386 cfqd->queue->node);
1387 if (!cfqq)
1388 goto out;
1389 }
1390
1391 RB_CLEAR_NODE(&cfqq->rb_node);
1392 INIT_LIST_HEAD(&cfqq->fifo);
1393
1394 atomic_set(&cfqq->ref, 0);
1395 cfqq->cfqd = cfqd;
1396
1397 if (is_sync) {
1398 cfq_mark_cfqq_idle_window(cfqq);
1399 cfq_mark_cfqq_sync(cfqq);
1400 }
1401
1402 cfq_mark_cfqq_prio_changed(cfqq);
1403 cfq_mark_cfqq_queue_new(cfqq);
1404
1405 cfq_init_prio_data(cfqq);
1406 }
1407
1408 if (new_cfqq)
1409 kmem_cache_free(cfq_pool, new_cfqq);
1410
1411 out:
1412 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1413 return cfqq;
1414 }
1415
1416 static struct cfq_queue **
1417 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1418 {
1419 switch(ioprio_class) {
1420 case IOPRIO_CLASS_RT:
1421 return &cfqd->async_cfqq[0][ioprio];
1422 case IOPRIO_CLASS_BE:
1423 return &cfqd->async_cfqq[1][ioprio];
1424 case IOPRIO_CLASS_IDLE:
1425 return &cfqd->async_idle_cfqq;
1426 default:
1427 BUG();
1428 }
1429 }
1430
1431 static struct cfq_queue *
1432 cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct task_struct *tsk,
1433 gfp_t gfp_mask)
1434 {
1435 const int ioprio = task_ioprio(tsk);
1436 const int ioprio_class = task_ioprio_class(tsk);
1437 struct cfq_queue **async_cfqq = NULL;
1438 struct cfq_queue *cfqq = NULL;
1439
1440 if (!is_sync) {
1441 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1442 cfqq = *async_cfqq;
1443 }
1444
1445 if (!cfqq)
1446 cfqq = cfq_find_alloc_queue(cfqd, is_sync, tsk, gfp_mask);
1447
1448 /*
1449 * pin the queue now that it's allocated, scheduler exit will prune it
1450 */
1451 if (!is_sync && !(*async_cfqq)) {
1452 atomic_inc(&cfqq->ref);
1453 *async_cfqq = cfqq;
1454 }
1455
1456 atomic_inc(&cfqq->ref);
1457 return cfqq;
1458 }
1459
1460 /*
1461 * We drop cfq io contexts lazily, so we may find a dead one.
1462 */
1463 static void
1464 cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1465 {
1466 WARN_ON(!list_empty(&cic->queue_list));
1467
1468 if (ioc->ioc_data == cic)
1469 ioc->ioc_data = NULL;
1470
1471 rb_erase(&cic->rb_node, &ioc->cic_root);
1472 kmem_cache_free(cfq_ioc_pool, cic);
1473 elv_ioc_count_dec(ioc_count);
1474 }
1475
1476 static struct cfq_io_context *
1477 cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1478 {
1479 struct rb_node *n;
1480 struct cfq_io_context *cic;
1481 void *k, *key = cfqd;
1482
1483 if (unlikely(!ioc))
1484 return NULL;
1485
1486 /*
1487 * we maintain a last-hit cache, to avoid browsing over the tree
1488 */
1489 cic = ioc->ioc_data;
1490 if (cic && cic->key == cfqd)
1491 return cic;
1492
1493 restart:
1494 n = ioc->cic_root.rb_node;
1495 while (n) {
1496 cic = rb_entry(n, struct cfq_io_context, rb_node);
1497 /* ->key must be copied to avoid race with cfq_exit_queue() */
1498 k = cic->key;
1499 if (unlikely(!k)) {
1500 cfq_drop_dead_cic(ioc, cic);
1501 goto restart;
1502 }
1503
1504 if (key < k)
1505 n = n->rb_left;
1506 else if (key > k)
1507 n = n->rb_right;
1508 else {
1509 ioc->ioc_data = cic;
1510 return cic;
1511 }
1512 }
1513
1514 return NULL;
1515 }
1516
1517 static inline void
1518 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1519 struct cfq_io_context *cic)
1520 {
1521 struct rb_node **p;
1522 struct rb_node *parent;
1523 struct cfq_io_context *__cic;
1524 unsigned long flags;
1525 void *k;
1526
1527 cic->ioc = ioc;
1528 cic->key = cfqd;
1529
1530 restart:
1531 parent = NULL;
1532 p = &ioc->cic_root.rb_node;
1533 while (*p) {
1534 parent = *p;
1535 __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1536 /* ->key must be copied to avoid race with cfq_exit_queue() */
1537 k = __cic->key;
1538 if (unlikely(!k)) {
1539 cfq_drop_dead_cic(ioc, __cic);
1540 goto restart;
1541 }
1542
1543 if (cic->key < k)
1544 p = &(*p)->rb_left;
1545 else if (cic->key > k)
1546 p = &(*p)->rb_right;
1547 else
1548 BUG();
1549 }
1550
1551 rb_link_node(&cic->rb_node, parent, p);
1552 rb_insert_color(&cic->rb_node, &ioc->cic_root);
1553
1554 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1555 list_add(&cic->queue_list, &cfqd->cic_list);
1556 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1557 }
1558
1559 /*
1560 * Setup general io context and cfq io context. There can be several cfq
1561 * io contexts per general io context, if this process is doing io to more
1562 * than one device managed by cfq.
1563 */
1564 static struct cfq_io_context *
1565 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1566 {
1567 struct io_context *ioc = NULL;
1568 struct cfq_io_context *cic;
1569
1570 might_sleep_if(gfp_mask & __GFP_WAIT);
1571
1572 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1573 if (!ioc)
1574 return NULL;
1575
1576 cic = cfq_cic_rb_lookup(cfqd, ioc);
1577 if (cic)
1578 goto out;
1579
1580 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1581 if (cic == NULL)
1582 goto err;
1583
1584 cfq_cic_link(cfqd, ioc, cic);
1585 out:
1586 smp_read_barrier_depends();
1587 if (unlikely(ioc->ioprio_changed))
1588 cfq_ioc_set_ioprio(ioc);
1589
1590 return cic;
1591 err:
1592 put_io_context(ioc);
1593 return NULL;
1594 }
1595
1596 static void
1597 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1598 {
1599 unsigned long elapsed = jiffies - cic->last_end_request;
1600 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1601
1602 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1603 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1604 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1605 }
1606
1607 static void
1608 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1609 struct request *rq)
1610 {
1611 sector_t sdist;
1612 u64 total;
1613
1614 if (cic->last_request_pos < rq->sector)
1615 sdist = rq->sector - cic->last_request_pos;
1616 else
1617 sdist = cic->last_request_pos - rq->sector;
1618
1619 /*
1620 * Don't allow the seek distance to get too large from the
1621 * odd fragment, pagein, etc
1622 */
1623 if (cic->seek_samples <= 60) /* second&third seek */
1624 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1625 else
1626 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1627
1628 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1629 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1630 total = cic->seek_total + (cic->seek_samples/2);
1631 do_div(total, cic->seek_samples);
1632 cic->seek_mean = (sector_t)total;
1633 }
1634
1635 /*
1636 * Disable idle window if the process thinks too long or seeks so much that
1637 * it doesn't matter
1638 */
1639 static void
1640 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1641 struct cfq_io_context *cic)
1642 {
1643 int enable_idle;
1644
1645 if (!cfq_cfqq_sync(cfqq))
1646 return;
1647
1648 enable_idle = cfq_cfqq_idle_window(cfqq);
1649
1650 if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
1651 (cfqd->hw_tag && CIC_SEEKY(cic)))
1652 enable_idle = 0;
1653 else if (sample_valid(cic->ttime_samples)) {
1654 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1655 enable_idle = 0;
1656 else
1657 enable_idle = 1;
1658 }
1659
1660 if (enable_idle)
1661 cfq_mark_cfqq_idle_window(cfqq);
1662 else
1663 cfq_clear_cfqq_idle_window(cfqq);
1664 }
1665
1666 /*
1667 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1668 * no or if we aren't sure, a 1 will cause a preempt.
1669 */
1670 static int
1671 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1672 struct request *rq)
1673 {
1674 struct cfq_queue *cfqq;
1675
1676 cfqq = cfqd->active_queue;
1677 if (!cfqq)
1678 return 0;
1679
1680 if (cfq_slice_used(cfqq))
1681 return 1;
1682
1683 if (cfq_class_idle(new_cfqq))
1684 return 0;
1685
1686 if (cfq_class_idle(cfqq))
1687 return 1;
1688
1689 /*
1690 * if the new request is sync, but the currently running queue is
1691 * not, let the sync request have priority.
1692 */
1693 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1694 return 1;
1695
1696 /*
1697 * So both queues are sync. Let the new request get disk time if
1698 * it's a metadata request and the current queue is doing regular IO.
1699 */
1700 if (rq_is_meta(rq) && !cfqq->meta_pending)
1701 return 1;
1702
1703 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
1704 return 0;
1705
1706 /*
1707 * if this request is as-good as one we would expect from the
1708 * current cfqq, let it preempt
1709 */
1710 if (cfq_rq_close(cfqd, rq))
1711 return 1;
1712
1713 return 0;
1714 }
1715
1716 /*
1717 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1718 * let it have half of its nominal slice.
1719 */
1720 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1721 {
1722 cfq_slice_expired(cfqd, 1);
1723
1724 /*
1725 * Put the new queue at the front of the of the current list,
1726 * so we know that it will be selected next.
1727 */
1728 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1729
1730 cfq_service_tree_add(cfqd, cfqq, 1);
1731
1732 cfqq->slice_end = 0;
1733 cfq_mark_cfqq_slice_new(cfqq);
1734 }
1735
1736 /*
1737 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1738 * something we should do about it
1739 */
1740 static void
1741 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1742 struct request *rq)
1743 {
1744 struct cfq_io_context *cic = RQ_CIC(rq);
1745
1746 if (rq_is_meta(rq))
1747 cfqq->meta_pending++;
1748
1749 cfq_update_io_thinktime(cfqd, cic);
1750 cfq_update_io_seektime(cfqd, cic, rq);
1751 cfq_update_idle_window(cfqd, cfqq, cic);
1752
1753 cic->last_request_pos = rq->sector + rq->nr_sectors;
1754
1755 if (cfqq == cfqd->active_queue) {
1756 /*
1757 * if we are waiting for a request for this queue, let it rip
1758 * immediately and flag that we must not expire this queue
1759 * just now
1760 */
1761 if (cfq_cfqq_wait_request(cfqq)) {
1762 cfq_mark_cfqq_must_dispatch(cfqq);
1763 del_timer(&cfqd->idle_slice_timer);
1764 blk_start_queueing(cfqd->queue);
1765 }
1766 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1767 /*
1768 * not the active queue - expire current slice if it is
1769 * idle and has expired it's mean thinktime or this new queue
1770 * has some old slice time left and is of higher priority
1771 */
1772 cfq_preempt_queue(cfqd, cfqq);
1773 cfq_mark_cfqq_must_dispatch(cfqq);
1774 blk_start_queueing(cfqd->queue);
1775 }
1776 }
1777
1778 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1779 {
1780 struct cfq_data *cfqd = q->elevator->elevator_data;
1781 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1782
1783 cfq_init_prio_data(cfqq);
1784
1785 cfq_add_rq_rb(rq);
1786
1787 list_add_tail(&rq->queuelist, &cfqq->fifo);
1788
1789 cfq_rq_enqueued(cfqd, cfqq, rq);
1790 }
1791
1792 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1793 {
1794 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1795 struct cfq_data *cfqd = cfqq->cfqd;
1796 const int sync = rq_is_sync(rq);
1797 unsigned long now;
1798
1799 now = jiffies;
1800
1801 WARN_ON(!cfqd->rq_in_driver);
1802 WARN_ON(!cfqq->dispatched);
1803 cfqd->rq_in_driver--;
1804 cfqq->dispatched--;
1805
1806 if (cfq_cfqq_sync(cfqq))
1807 cfqd->sync_flight--;
1808
1809 if (!cfq_class_idle(cfqq))
1810 cfqd->last_end_request = now;
1811
1812 if (sync)
1813 RQ_CIC(rq)->last_end_request = now;
1814
1815 /*
1816 * If this is the active queue, check if it needs to be expired,
1817 * or if we want to idle in case it has no pending requests.
1818 */
1819 if (cfqd->active_queue == cfqq) {
1820 if (cfq_cfqq_slice_new(cfqq)) {
1821 cfq_set_prio_slice(cfqd, cfqq);
1822 cfq_clear_cfqq_slice_new(cfqq);
1823 }
1824 if (cfq_slice_used(cfqq))
1825 cfq_slice_expired(cfqd, 1);
1826 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list))
1827 cfq_arm_slice_timer(cfqd);
1828 }
1829
1830 if (!cfqd->rq_in_driver)
1831 cfq_schedule_dispatch(cfqd);
1832 }
1833
1834 /*
1835 * we temporarily boost lower priority queues if they are holding fs exclusive
1836 * resources. they are boosted to normal prio (CLASS_BE/4)
1837 */
1838 static void cfq_prio_boost(struct cfq_queue *cfqq)
1839 {
1840 if (has_fs_excl()) {
1841 /*
1842 * boost idle prio on transactions that would lock out other
1843 * users of the filesystem
1844 */
1845 if (cfq_class_idle(cfqq))
1846 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1847 if (cfqq->ioprio > IOPRIO_NORM)
1848 cfqq->ioprio = IOPRIO_NORM;
1849 } else {
1850 /*
1851 * check if we need to unboost the queue
1852 */
1853 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1854 cfqq->ioprio_class = cfqq->org_ioprio_class;
1855 if (cfqq->ioprio != cfqq->org_ioprio)
1856 cfqq->ioprio = cfqq->org_ioprio;
1857 }
1858 }
1859
1860 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1861 {
1862 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1863 !cfq_cfqq_must_alloc_slice(cfqq)) {
1864 cfq_mark_cfqq_must_alloc_slice(cfqq);
1865 return ELV_MQUEUE_MUST;
1866 }
1867
1868 return ELV_MQUEUE_MAY;
1869 }
1870
1871 static int cfq_may_queue(request_queue_t *q, int rw)
1872 {
1873 struct cfq_data *cfqd = q->elevator->elevator_data;
1874 struct task_struct *tsk = current;
1875 struct cfq_io_context *cic;
1876 struct cfq_queue *cfqq;
1877
1878 /*
1879 * don't force setup of a queue from here, as a call to may_queue
1880 * does not necessarily imply that a request actually will be queued.
1881 * so just lookup a possibly existing queue, or return 'may queue'
1882 * if that fails
1883 */
1884 cic = cfq_cic_rb_lookup(cfqd, tsk->io_context);
1885 if (!cic)
1886 return ELV_MQUEUE_MAY;
1887
1888 cfqq = cic_to_cfqq(cic, rw & REQ_RW_SYNC);
1889 if (cfqq) {
1890 cfq_init_prio_data(cfqq);
1891 cfq_prio_boost(cfqq);
1892
1893 return __cfq_may_queue(cfqq);
1894 }
1895
1896 return ELV_MQUEUE_MAY;
1897 }
1898
1899 /*
1900 * queue lock held here
1901 */
1902 static void cfq_put_request(struct request *rq)
1903 {
1904 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1905
1906 if (cfqq) {
1907 const int rw = rq_data_dir(rq);
1908
1909 BUG_ON(!cfqq->allocated[rw]);
1910 cfqq->allocated[rw]--;
1911
1912 put_io_context(RQ_CIC(rq)->ioc);
1913
1914 rq->elevator_private = NULL;
1915 rq->elevator_private2 = NULL;
1916
1917 cfq_put_queue(cfqq);
1918 }
1919 }
1920
1921 /*
1922 * Allocate cfq data structures associated with this request.
1923 */
1924 static int
1925 cfq_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
1926 {
1927 struct cfq_data *cfqd = q->elevator->elevator_data;
1928 struct task_struct *tsk = current;
1929 struct cfq_io_context *cic;
1930 const int rw = rq_data_dir(rq);
1931 const int is_sync = rq_is_sync(rq);
1932 struct cfq_queue *cfqq;
1933 unsigned long flags;
1934
1935 might_sleep_if(gfp_mask & __GFP_WAIT);
1936
1937 cic = cfq_get_io_context(cfqd, gfp_mask);
1938
1939 spin_lock_irqsave(q->queue_lock, flags);
1940
1941 if (!cic)
1942 goto queue_fail;
1943
1944 cfqq = cic_to_cfqq(cic, is_sync);
1945 if (!cfqq) {
1946 cfqq = cfq_get_queue(cfqd, is_sync, tsk, gfp_mask);
1947
1948 if (!cfqq)
1949 goto queue_fail;
1950
1951 cic_set_cfqq(cic, cfqq, is_sync);
1952 }
1953
1954 cfqq->allocated[rw]++;
1955 cfq_clear_cfqq_must_alloc(cfqq);
1956 atomic_inc(&cfqq->ref);
1957
1958 spin_unlock_irqrestore(q->queue_lock, flags);
1959
1960 rq->elevator_private = cic;
1961 rq->elevator_private2 = cfqq;
1962 return 0;
1963
1964 queue_fail:
1965 if (cic)
1966 put_io_context(cic->ioc);
1967
1968 cfq_schedule_dispatch(cfqd);
1969 spin_unlock_irqrestore(q->queue_lock, flags);
1970 return 1;
1971 }
1972
1973 static void cfq_kick_queue(struct work_struct *work)
1974 {
1975 struct cfq_data *cfqd =
1976 container_of(work, struct cfq_data, unplug_work);
1977 request_queue_t *q = cfqd->queue;
1978 unsigned long flags;
1979
1980 spin_lock_irqsave(q->queue_lock, flags);
1981 blk_start_queueing(q);
1982 spin_unlock_irqrestore(q->queue_lock, flags);
1983 }
1984
1985 /*
1986 * Timer running if the active_queue is currently idling inside its time slice
1987 */
1988 static void cfq_idle_slice_timer(unsigned long data)
1989 {
1990 struct cfq_data *cfqd = (struct cfq_data *) data;
1991 struct cfq_queue *cfqq;
1992 unsigned long flags;
1993 int timed_out = 1;
1994
1995 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1996
1997 if ((cfqq = cfqd->active_queue) != NULL) {
1998 timed_out = 0;
1999
2000 /*
2001 * expired
2002 */
2003 if (cfq_slice_used(cfqq))
2004 goto expire;
2005
2006 /*
2007 * only expire and reinvoke request handler, if there are
2008 * other queues with pending requests
2009 */
2010 if (!cfqd->busy_queues)
2011 goto out_cont;
2012
2013 /*
2014 * not expired and it has a request pending, let it dispatch
2015 */
2016 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
2017 cfq_mark_cfqq_must_dispatch(cfqq);
2018 goto out_kick;
2019 }
2020 }
2021 expire:
2022 cfq_slice_expired(cfqd, timed_out);
2023 out_kick:
2024 cfq_schedule_dispatch(cfqd);
2025 out_cont:
2026 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2027 }
2028
2029 /*
2030 * Timer running if an idle class queue is waiting for service
2031 */
2032 static void cfq_idle_class_timer(unsigned long data)
2033 {
2034 struct cfq_data *cfqd = (struct cfq_data *) data;
2035 unsigned long flags, end;
2036
2037 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2038
2039 /*
2040 * race with a non-idle queue, reset timer
2041 */
2042 end = cfqd->last_end_request + CFQ_IDLE_GRACE;
2043 if (!time_after_eq(jiffies, end))
2044 mod_timer(&cfqd->idle_class_timer, end);
2045 else
2046 cfq_schedule_dispatch(cfqd);
2047
2048 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2049 }
2050
2051 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2052 {
2053 del_timer_sync(&cfqd->idle_slice_timer);
2054 del_timer_sync(&cfqd->idle_class_timer);
2055 blk_sync_queue(cfqd->queue);
2056 }
2057
2058 static void cfq_put_async_queues(struct cfq_data *cfqd)
2059 {
2060 int i;
2061
2062 for (i = 0; i < IOPRIO_BE_NR; i++) {
2063 if (cfqd->async_cfqq[0][i])
2064 cfq_put_queue(cfqd->async_cfqq[0][i]);
2065 if (cfqd->async_cfqq[1][i])
2066 cfq_put_queue(cfqd->async_cfqq[1][i]);
2067 if (cfqd->async_idle_cfqq)
2068 cfq_put_queue(cfqd->async_idle_cfqq);
2069 }
2070 }
2071
2072 static void cfq_exit_queue(elevator_t *e)
2073 {
2074 struct cfq_data *cfqd = e->elevator_data;
2075 request_queue_t *q = cfqd->queue;
2076
2077 cfq_shutdown_timer_wq(cfqd);
2078
2079 spin_lock_irq(q->queue_lock);
2080
2081 if (cfqd->active_queue)
2082 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2083
2084 while (!list_empty(&cfqd->cic_list)) {
2085 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2086 struct cfq_io_context,
2087 queue_list);
2088
2089 __cfq_exit_single_io_context(cfqd, cic);
2090 }
2091
2092 cfq_put_async_queues(cfqd);
2093
2094 spin_unlock_irq(q->queue_lock);
2095
2096 cfq_shutdown_timer_wq(cfqd);
2097
2098 kfree(cfqd);
2099 }
2100
2101 static void *cfq_init_queue(request_queue_t *q)
2102 {
2103 struct cfq_data *cfqd;
2104
2105 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2106 if (!cfqd)
2107 return NULL;
2108
2109 cfqd->service_tree = CFQ_RB_ROOT;
2110 INIT_LIST_HEAD(&cfqd->cic_list);
2111
2112 cfqd->queue = q;
2113
2114 init_timer(&cfqd->idle_slice_timer);
2115 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2116 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2117
2118 init_timer(&cfqd->idle_class_timer);
2119 cfqd->idle_class_timer.function = cfq_idle_class_timer;
2120 cfqd->idle_class_timer.data = (unsigned long) cfqd;
2121
2122 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2123
2124 cfqd->cfq_quantum = cfq_quantum;
2125 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2126 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2127 cfqd->cfq_back_max = cfq_back_max;
2128 cfqd->cfq_back_penalty = cfq_back_penalty;
2129 cfqd->cfq_slice[0] = cfq_slice_async;
2130 cfqd->cfq_slice[1] = cfq_slice_sync;
2131 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2132 cfqd->cfq_slice_idle = cfq_slice_idle;
2133
2134 return cfqd;
2135 }
2136
2137 static void cfq_slab_kill(void)
2138 {
2139 if (cfq_pool)
2140 kmem_cache_destroy(cfq_pool);
2141 if (cfq_ioc_pool)
2142 kmem_cache_destroy(cfq_ioc_pool);
2143 }
2144
2145 static int __init cfq_slab_setup(void)
2146 {
2147 cfq_pool = KMEM_CACHE(cfq_queue, 0);
2148 if (!cfq_pool)
2149 goto fail;
2150
2151 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2152 if (!cfq_ioc_pool)
2153 goto fail;
2154
2155 return 0;
2156 fail:
2157 cfq_slab_kill();
2158 return -ENOMEM;
2159 }
2160
2161 /*
2162 * sysfs parts below -->
2163 */
2164 static ssize_t
2165 cfq_var_show(unsigned int var, char *page)
2166 {
2167 return sprintf(page, "%d\n", var);
2168 }
2169
2170 static ssize_t
2171 cfq_var_store(unsigned int *var, const char *page, size_t count)
2172 {
2173 char *p = (char *) page;
2174
2175 *var = simple_strtoul(p, &p, 10);
2176 return count;
2177 }
2178
2179 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2180 static ssize_t __FUNC(elevator_t *e, char *page) \
2181 { \
2182 struct cfq_data *cfqd = e->elevator_data; \
2183 unsigned int __data = __VAR; \
2184 if (__CONV) \
2185 __data = jiffies_to_msecs(__data); \
2186 return cfq_var_show(__data, (page)); \
2187 }
2188 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2189 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2190 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2191 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2192 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2193 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2194 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2195 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2196 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2197 #undef SHOW_FUNCTION
2198
2199 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2200 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2201 { \
2202 struct cfq_data *cfqd = e->elevator_data; \
2203 unsigned int __data; \
2204 int ret = cfq_var_store(&__data, (page), count); \
2205 if (__data < (MIN)) \
2206 __data = (MIN); \
2207 else if (__data > (MAX)) \
2208 __data = (MAX); \
2209 if (__CONV) \
2210 *(__PTR) = msecs_to_jiffies(__data); \
2211 else \
2212 *(__PTR) = __data; \
2213 return ret; \
2214 }
2215 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2216 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2217 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2218 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2219 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2220 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2221 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2222 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2223 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2224 #undef STORE_FUNCTION
2225
2226 #define CFQ_ATTR(name) \
2227 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2228
2229 static struct elv_fs_entry cfq_attrs[] = {
2230 CFQ_ATTR(quantum),
2231 CFQ_ATTR(fifo_expire_sync),
2232 CFQ_ATTR(fifo_expire_async),
2233 CFQ_ATTR(back_seek_max),
2234 CFQ_ATTR(back_seek_penalty),
2235 CFQ_ATTR(slice_sync),
2236 CFQ_ATTR(slice_async),
2237 CFQ_ATTR(slice_async_rq),
2238 CFQ_ATTR(slice_idle),
2239 __ATTR_NULL
2240 };
2241
2242 static struct elevator_type iosched_cfq = {
2243 .ops = {
2244 .elevator_merge_fn = cfq_merge,
2245 .elevator_merged_fn = cfq_merged_request,
2246 .elevator_merge_req_fn = cfq_merged_requests,
2247 .elevator_allow_merge_fn = cfq_allow_merge,
2248 .elevator_dispatch_fn = cfq_dispatch_requests,
2249 .elevator_add_req_fn = cfq_insert_request,
2250 .elevator_activate_req_fn = cfq_activate_request,
2251 .elevator_deactivate_req_fn = cfq_deactivate_request,
2252 .elevator_queue_empty_fn = cfq_queue_empty,
2253 .elevator_completed_req_fn = cfq_completed_request,
2254 .elevator_former_req_fn = elv_rb_former_request,
2255 .elevator_latter_req_fn = elv_rb_latter_request,
2256 .elevator_set_req_fn = cfq_set_request,
2257 .elevator_put_req_fn = cfq_put_request,
2258 .elevator_may_queue_fn = cfq_may_queue,
2259 .elevator_init_fn = cfq_init_queue,
2260 .elevator_exit_fn = cfq_exit_queue,
2261 .trim = cfq_free_io_context,
2262 },
2263 .elevator_attrs = cfq_attrs,
2264 .elevator_name = "cfq",
2265 .elevator_owner = THIS_MODULE,
2266 };
2267
2268 static int __init cfq_init(void)
2269 {
2270 int ret;
2271
2272 /*
2273 * could be 0 on HZ < 1000 setups
2274 */
2275 if (!cfq_slice_async)
2276 cfq_slice_async = 1;
2277 if (!cfq_slice_idle)
2278 cfq_slice_idle = 1;
2279
2280 if (cfq_slab_setup())
2281 return -ENOMEM;
2282
2283 ret = elv_register(&iosched_cfq);
2284 if (ret)
2285 cfq_slab_kill();
2286
2287 return ret;
2288 }
2289
2290 static void __exit cfq_exit(void)
2291 {
2292 DECLARE_COMPLETION_ONSTACK(all_gone);
2293 elv_unregister(&iosched_cfq);
2294 ioc_gone = &all_gone;
2295 /* ioc_gone's update must be visible before reading ioc_count */
2296 smp_wmb();
2297 if (elv_ioc_count_read(ioc_count))
2298 wait_for_completion(ioc_gone);
2299 synchronize_rcu();
2300 cfq_slab_kill();
2301 }
2302
2303 module_init(cfq_init);
2304 module_exit(cfq_exit);
2305
2306 MODULE_AUTHOR("Jens Axboe");
2307 MODULE_LICENSE("GPL");
2308 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
This page took 0.078936 seconds and 5 git commands to generate.