cfq: Remove useless css reference get
[deliverable/linux.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
16 #include "blk-cgroup.h"
17
18 /*
19 * tunables
20 */
21 /* max queue in one round of service */
22 static const int cfq_quantum = 4;
23 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24 /* maximum backwards seek, in KiB */
25 static const int cfq_back_max = 16 * 1024;
26 /* penalty of a backwards seek */
27 static const int cfq_back_penalty = 2;
28 static const int cfq_slice_sync = HZ / 10;
29 static int cfq_slice_async = HZ / 25;
30 static const int cfq_slice_async_rq = 2;
31 static int cfq_slice_idle = HZ / 125;
32 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33 static const int cfq_hist_divisor = 4;
34
35 /*
36 * offset from end of service tree
37 */
38 #define CFQ_IDLE_DELAY (HZ / 5)
39
40 /*
41 * below this threshold, we consider thinktime immediate
42 */
43 #define CFQ_MIN_TT (2)
44
45 #define CFQ_SLICE_SCALE (5)
46 #define CFQ_HW_QUEUE_MIN (5)
47 #define CFQ_SERVICE_SHIFT 12
48
49 #define CFQQ_SEEK_THR 8 * 1024
50 #define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
51
52 #define RQ_CIC(rq) \
53 ((struct cfq_io_context *) (rq)->elevator_private)
54 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
55
56 static struct kmem_cache *cfq_pool;
57 static struct kmem_cache *cfq_ioc_pool;
58
59 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
60 static struct completion *ioc_gone;
61 static DEFINE_SPINLOCK(ioc_gone_lock);
62
63 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
64 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
67 #define sample_valid(samples) ((samples) > 80)
68 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
69
70 /*
71 * Most of our rbtree usage is for sorting with min extraction, so
72 * if we cache the leftmost node we don't have to walk down the tree
73 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
74 * move this into the elevator for the rq sorting as well.
75 */
76 struct cfq_rb_root {
77 struct rb_root rb;
78 struct rb_node *left;
79 unsigned count;
80 u64 min_vdisktime;
81 struct rb_node *active;
82 unsigned total_weight;
83 };
84 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
85
86 /*
87 * Per process-grouping structure
88 */
89 struct cfq_queue {
90 /* reference count */
91 atomic_t ref;
92 /* various state flags, see below */
93 unsigned int flags;
94 /* parent cfq_data */
95 struct cfq_data *cfqd;
96 /* service_tree member */
97 struct rb_node rb_node;
98 /* service_tree key */
99 unsigned long rb_key;
100 /* prio tree member */
101 struct rb_node p_node;
102 /* prio tree root we belong to, if any */
103 struct rb_root *p_root;
104 /* sorted list of pending requests */
105 struct rb_root sort_list;
106 /* if fifo isn't expired, next request to serve */
107 struct request *next_rq;
108 /* requests queued in sort_list */
109 int queued[2];
110 /* currently allocated requests */
111 int allocated[2];
112 /* fifo list of requests in sort_list */
113 struct list_head fifo;
114
115 /* time when queue got scheduled in to dispatch first request. */
116 unsigned long dispatch_start;
117 unsigned int allocated_slice;
118 unsigned int slice_dispatch;
119 /* time when first request from queue completed and slice started. */
120 unsigned long slice_start;
121 unsigned long slice_end;
122 long slice_resid;
123
124 /* pending metadata requests */
125 int meta_pending;
126 /* number of requests that are on the dispatch list or inside driver */
127 int dispatched;
128
129 /* io prio of this group */
130 unsigned short ioprio, org_ioprio;
131 unsigned short ioprio_class, org_ioprio_class;
132
133 pid_t pid;
134
135 unsigned int seek_samples;
136 u64 seek_total;
137 sector_t seek_mean;
138 sector_t last_request_pos;
139
140 struct cfq_rb_root *service_tree;
141 struct cfq_queue *new_cfqq;
142 struct cfq_group *cfqg;
143 struct cfq_group *orig_cfqg;
144 /* Sectors dispatched in current dispatch round */
145 unsigned long nr_sectors;
146 };
147
148 /*
149 * First index in the service_trees.
150 * IDLE is handled separately, so it has negative index
151 */
152 enum wl_prio_t {
153 BE_WORKLOAD = 0,
154 RT_WORKLOAD = 1,
155 IDLE_WORKLOAD = 2,
156 };
157
158 /*
159 * Second index in the service_trees.
160 */
161 enum wl_type_t {
162 ASYNC_WORKLOAD = 0,
163 SYNC_NOIDLE_WORKLOAD = 1,
164 SYNC_WORKLOAD = 2
165 };
166
167 /* This is per cgroup per device grouping structure */
168 struct cfq_group {
169 /* group service_tree member */
170 struct rb_node rb_node;
171
172 /* group service_tree key */
173 u64 vdisktime;
174 unsigned int weight;
175 bool on_st;
176
177 /* number of cfqq currently on this group */
178 int nr_cfqq;
179
180 /* Per group busy queus average. Useful for workload slice calc. */
181 unsigned int busy_queues_avg[2];
182 /*
183 * rr lists of queues with requests, onle rr for each priority class.
184 * Counts are embedded in the cfq_rb_root
185 */
186 struct cfq_rb_root service_trees[2][3];
187 struct cfq_rb_root service_tree_idle;
188
189 unsigned long saved_workload_slice;
190 enum wl_type_t saved_workload;
191 enum wl_prio_t saved_serving_prio;
192 struct blkio_group blkg;
193 #ifdef CONFIG_CFQ_GROUP_IOSCHED
194 struct hlist_node cfqd_node;
195 atomic_t ref;
196 #endif
197 };
198
199 /*
200 * Per block device queue structure
201 */
202 struct cfq_data {
203 struct request_queue *queue;
204 /* Root service tree for cfq_groups */
205 struct cfq_rb_root grp_service_tree;
206 struct cfq_group root_group;
207
208 /*
209 * The priority currently being served
210 */
211 enum wl_prio_t serving_prio;
212 enum wl_type_t serving_type;
213 unsigned long workload_expires;
214 struct cfq_group *serving_group;
215 bool noidle_tree_requires_idle;
216
217 /*
218 * Each priority tree is sorted by next_request position. These
219 * trees are used when determining if two or more queues are
220 * interleaving requests (see cfq_close_cooperator).
221 */
222 struct rb_root prio_trees[CFQ_PRIO_LISTS];
223
224 unsigned int busy_queues;
225
226 int rq_in_driver[2];
227 int sync_flight;
228
229 /*
230 * queue-depth detection
231 */
232 int rq_queued;
233 int hw_tag;
234 /*
235 * hw_tag can be
236 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
237 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
238 * 0 => no NCQ
239 */
240 int hw_tag_est_depth;
241 unsigned int hw_tag_samples;
242
243 /*
244 * idle window management
245 */
246 struct timer_list idle_slice_timer;
247 struct work_struct unplug_work;
248
249 struct cfq_queue *active_queue;
250 struct cfq_io_context *active_cic;
251
252 /*
253 * async queue for each priority case
254 */
255 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
256 struct cfq_queue *async_idle_cfqq;
257
258 sector_t last_position;
259
260 /*
261 * tunables, see top of file
262 */
263 unsigned int cfq_quantum;
264 unsigned int cfq_fifo_expire[2];
265 unsigned int cfq_back_penalty;
266 unsigned int cfq_back_max;
267 unsigned int cfq_slice[2];
268 unsigned int cfq_slice_async_rq;
269 unsigned int cfq_slice_idle;
270 unsigned int cfq_latency;
271 unsigned int cfq_group_isolation;
272
273 struct list_head cic_list;
274
275 /*
276 * Fallback dummy cfqq for extreme OOM conditions
277 */
278 struct cfq_queue oom_cfqq;
279
280 unsigned long last_delayed_sync;
281
282 /* List of cfq groups being managed on this device*/
283 struct hlist_head cfqg_list;
284 struct rcu_head rcu;
285 };
286
287 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
288
289 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
290 enum wl_prio_t prio,
291 enum wl_type_t type)
292 {
293 if (!cfqg)
294 return NULL;
295
296 if (prio == IDLE_WORKLOAD)
297 return &cfqg->service_tree_idle;
298
299 return &cfqg->service_trees[prio][type];
300 }
301
302 enum cfqq_state_flags {
303 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
304 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
305 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
306 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
307 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
308 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
309 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
310 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
311 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
312 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
313 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
314 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
315 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
316 };
317
318 #define CFQ_CFQQ_FNS(name) \
319 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
320 { \
321 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
322 } \
323 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
324 { \
325 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
326 } \
327 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
328 { \
329 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
330 }
331
332 CFQ_CFQQ_FNS(on_rr);
333 CFQ_CFQQ_FNS(wait_request);
334 CFQ_CFQQ_FNS(must_dispatch);
335 CFQ_CFQQ_FNS(must_alloc_slice);
336 CFQ_CFQQ_FNS(fifo_expire);
337 CFQ_CFQQ_FNS(idle_window);
338 CFQ_CFQQ_FNS(prio_changed);
339 CFQ_CFQQ_FNS(slice_new);
340 CFQ_CFQQ_FNS(sync);
341 CFQ_CFQQ_FNS(coop);
342 CFQ_CFQQ_FNS(split_coop);
343 CFQ_CFQQ_FNS(deep);
344 CFQ_CFQQ_FNS(wait_busy);
345 #undef CFQ_CFQQ_FNS
346
347 #ifdef CONFIG_DEBUG_CFQ_IOSCHED
348 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
349 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
350 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
351 blkg_path(&(cfqq)->cfqg->blkg), ##args);
352
353 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
354 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
355 blkg_path(&(cfqg)->blkg), ##args); \
356
357 #else
358 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
359 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
360 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
361 #endif
362 #define cfq_log(cfqd, fmt, args...) \
363 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
364
365 /* Traverses through cfq group service trees */
366 #define for_each_cfqg_st(cfqg, i, j, st) \
367 for (i = 0; i <= IDLE_WORKLOAD; i++) \
368 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
369 : &cfqg->service_tree_idle; \
370 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
371 (i == IDLE_WORKLOAD && j == 0); \
372 j++, st = i < IDLE_WORKLOAD ? \
373 &cfqg->service_trees[i][j]: NULL) \
374
375
376 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
377 {
378 if (cfq_class_idle(cfqq))
379 return IDLE_WORKLOAD;
380 if (cfq_class_rt(cfqq))
381 return RT_WORKLOAD;
382 return BE_WORKLOAD;
383 }
384
385
386 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
387 {
388 if (!cfq_cfqq_sync(cfqq))
389 return ASYNC_WORKLOAD;
390 if (!cfq_cfqq_idle_window(cfqq))
391 return SYNC_NOIDLE_WORKLOAD;
392 return SYNC_WORKLOAD;
393 }
394
395 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
396 struct cfq_data *cfqd,
397 struct cfq_group *cfqg)
398 {
399 if (wl == IDLE_WORKLOAD)
400 return cfqg->service_tree_idle.count;
401
402 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
403 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
404 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
405 }
406
407 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
408 struct cfq_group *cfqg)
409 {
410 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
411 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
412 }
413
414 static void cfq_dispatch_insert(struct request_queue *, struct request *);
415 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
416 struct io_context *, gfp_t);
417 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
418 struct io_context *);
419
420 static inline int rq_in_driver(struct cfq_data *cfqd)
421 {
422 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
423 }
424
425 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
426 bool is_sync)
427 {
428 return cic->cfqq[is_sync];
429 }
430
431 static inline void cic_set_cfqq(struct cfq_io_context *cic,
432 struct cfq_queue *cfqq, bool is_sync)
433 {
434 cic->cfqq[is_sync] = cfqq;
435 }
436
437 /*
438 * We regard a request as SYNC, if it's either a read or has the SYNC bit
439 * set (in which case it could also be direct WRITE).
440 */
441 static inline bool cfq_bio_sync(struct bio *bio)
442 {
443 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
444 }
445
446 /*
447 * scheduler run of queue, if there are requests pending and no one in the
448 * driver that will restart queueing
449 */
450 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
451 {
452 if (cfqd->busy_queues) {
453 cfq_log(cfqd, "schedule dispatch");
454 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
455 }
456 }
457
458 static int cfq_queue_empty(struct request_queue *q)
459 {
460 struct cfq_data *cfqd = q->elevator->elevator_data;
461
462 return !cfqd->rq_queued;
463 }
464
465 /*
466 * Scale schedule slice based on io priority. Use the sync time slice only
467 * if a queue is marked sync and has sync io queued. A sync queue with async
468 * io only, should not get full sync slice length.
469 */
470 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
471 unsigned short prio)
472 {
473 const int base_slice = cfqd->cfq_slice[sync];
474
475 WARN_ON(prio >= IOPRIO_BE_NR);
476
477 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
478 }
479
480 static inline int
481 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
482 {
483 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
484 }
485
486 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
487 {
488 u64 d = delta << CFQ_SERVICE_SHIFT;
489
490 d = d * BLKIO_WEIGHT_DEFAULT;
491 do_div(d, cfqg->weight);
492 return d;
493 }
494
495 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
496 {
497 s64 delta = (s64)(vdisktime - min_vdisktime);
498 if (delta > 0)
499 min_vdisktime = vdisktime;
500
501 return min_vdisktime;
502 }
503
504 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
505 {
506 s64 delta = (s64)(vdisktime - min_vdisktime);
507 if (delta < 0)
508 min_vdisktime = vdisktime;
509
510 return min_vdisktime;
511 }
512
513 static void update_min_vdisktime(struct cfq_rb_root *st)
514 {
515 u64 vdisktime = st->min_vdisktime;
516 struct cfq_group *cfqg;
517
518 if (st->active) {
519 cfqg = rb_entry_cfqg(st->active);
520 vdisktime = cfqg->vdisktime;
521 }
522
523 if (st->left) {
524 cfqg = rb_entry_cfqg(st->left);
525 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
526 }
527
528 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
529 }
530
531 /*
532 * get averaged number of queues of RT/BE priority.
533 * average is updated, with a formula that gives more weight to higher numbers,
534 * to quickly follows sudden increases and decrease slowly
535 */
536
537 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
538 struct cfq_group *cfqg, bool rt)
539 {
540 unsigned min_q, max_q;
541 unsigned mult = cfq_hist_divisor - 1;
542 unsigned round = cfq_hist_divisor / 2;
543 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
544
545 min_q = min(cfqg->busy_queues_avg[rt], busy);
546 max_q = max(cfqg->busy_queues_avg[rt], busy);
547 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
548 cfq_hist_divisor;
549 return cfqg->busy_queues_avg[rt];
550 }
551
552 static inline unsigned
553 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
554 {
555 struct cfq_rb_root *st = &cfqd->grp_service_tree;
556
557 return cfq_target_latency * cfqg->weight / st->total_weight;
558 }
559
560 static inline void
561 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
562 {
563 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
564 if (cfqd->cfq_latency) {
565 /*
566 * interested queues (we consider only the ones with the same
567 * priority class in the cfq group)
568 */
569 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
570 cfq_class_rt(cfqq));
571 unsigned sync_slice = cfqd->cfq_slice[1];
572 unsigned expect_latency = sync_slice * iq;
573 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
574
575 if (expect_latency > group_slice) {
576 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
577 /* scale low_slice according to IO priority
578 * and sync vs async */
579 unsigned low_slice =
580 min(slice, base_low_slice * slice / sync_slice);
581 /* the adapted slice value is scaled to fit all iqs
582 * into the target latency */
583 slice = max(slice * group_slice / expect_latency,
584 low_slice);
585 }
586 }
587 cfqq->slice_start = jiffies;
588 cfqq->slice_end = jiffies + slice;
589 cfqq->allocated_slice = slice;
590 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
591 }
592
593 /*
594 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
595 * isn't valid until the first request from the dispatch is activated
596 * and the slice time set.
597 */
598 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
599 {
600 if (cfq_cfqq_slice_new(cfqq))
601 return 0;
602 if (time_before(jiffies, cfqq->slice_end))
603 return 0;
604
605 return 1;
606 }
607
608 /*
609 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
610 * We choose the request that is closest to the head right now. Distance
611 * behind the head is penalized and only allowed to a certain extent.
612 */
613 static struct request *
614 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
615 {
616 sector_t s1, s2, d1 = 0, d2 = 0;
617 unsigned long back_max;
618 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
619 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
620 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
621
622 if (rq1 == NULL || rq1 == rq2)
623 return rq2;
624 if (rq2 == NULL)
625 return rq1;
626
627 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
628 return rq1;
629 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
630 return rq2;
631 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
632 return rq1;
633 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
634 return rq2;
635
636 s1 = blk_rq_pos(rq1);
637 s2 = blk_rq_pos(rq2);
638
639 /*
640 * by definition, 1KiB is 2 sectors
641 */
642 back_max = cfqd->cfq_back_max * 2;
643
644 /*
645 * Strict one way elevator _except_ in the case where we allow
646 * short backward seeks which are biased as twice the cost of a
647 * similar forward seek.
648 */
649 if (s1 >= last)
650 d1 = s1 - last;
651 else if (s1 + back_max >= last)
652 d1 = (last - s1) * cfqd->cfq_back_penalty;
653 else
654 wrap |= CFQ_RQ1_WRAP;
655
656 if (s2 >= last)
657 d2 = s2 - last;
658 else if (s2 + back_max >= last)
659 d2 = (last - s2) * cfqd->cfq_back_penalty;
660 else
661 wrap |= CFQ_RQ2_WRAP;
662
663 /* Found required data */
664
665 /*
666 * By doing switch() on the bit mask "wrap" we avoid having to
667 * check two variables for all permutations: --> faster!
668 */
669 switch (wrap) {
670 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
671 if (d1 < d2)
672 return rq1;
673 else if (d2 < d1)
674 return rq2;
675 else {
676 if (s1 >= s2)
677 return rq1;
678 else
679 return rq2;
680 }
681
682 case CFQ_RQ2_WRAP:
683 return rq1;
684 case CFQ_RQ1_WRAP:
685 return rq2;
686 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
687 default:
688 /*
689 * Since both rqs are wrapped,
690 * start with the one that's further behind head
691 * (--> only *one* back seek required),
692 * since back seek takes more time than forward.
693 */
694 if (s1 <= s2)
695 return rq1;
696 else
697 return rq2;
698 }
699 }
700
701 /*
702 * The below is leftmost cache rbtree addon
703 */
704 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
705 {
706 /* Service tree is empty */
707 if (!root->count)
708 return NULL;
709
710 if (!root->left)
711 root->left = rb_first(&root->rb);
712
713 if (root->left)
714 return rb_entry(root->left, struct cfq_queue, rb_node);
715
716 return NULL;
717 }
718
719 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
720 {
721 if (!root->left)
722 root->left = rb_first(&root->rb);
723
724 if (root->left)
725 return rb_entry_cfqg(root->left);
726
727 return NULL;
728 }
729
730 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
731 {
732 rb_erase(n, root);
733 RB_CLEAR_NODE(n);
734 }
735
736 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
737 {
738 if (root->left == n)
739 root->left = NULL;
740 rb_erase_init(n, &root->rb);
741 --root->count;
742 }
743
744 /*
745 * would be nice to take fifo expire time into account as well
746 */
747 static struct request *
748 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
749 struct request *last)
750 {
751 struct rb_node *rbnext = rb_next(&last->rb_node);
752 struct rb_node *rbprev = rb_prev(&last->rb_node);
753 struct request *next = NULL, *prev = NULL;
754
755 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
756
757 if (rbprev)
758 prev = rb_entry_rq(rbprev);
759
760 if (rbnext)
761 next = rb_entry_rq(rbnext);
762 else {
763 rbnext = rb_first(&cfqq->sort_list);
764 if (rbnext && rbnext != &last->rb_node)
765 next = rb_entry_rq(rbnext);
766 }
767
768 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
769 }
770
771 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
772 struct cfq_queue *cfqq)
773 {
774 /*
775 * just an approximation, should be ok.
776 */
777 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
778 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
779 }
780
781 static inline s64
782 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
783 {
784 return cfqg->vdisktime - st->min_vdisktime;
785 }
786
787 static void
788 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
789 {
790 struct rb_node **node = &st->rb.rb_node;
791 struct rb_node *parent = NULL;
792 struct cfq_group *__cfqg;
793 s64 key = cfqg_key(st, cfqg);
794 int left = 1;
795
796 while (*node != NULL) {
797 parent = *node;
798 __cfqg = rb_entry_cfqg(parent);
799
800 if (key < cfqg_key(st, __cfqg))
801 node = &parent->rb_left;
802 else {
803 node = &parent->rb_right;
804 left = 0;
805 }
806 }
807
808 if (left)
809 st->left = &cfqg->rb_node;
810
811 rb_link_node(&cfqg->rb_node, parent, node);
812 rb_insert_color(&cfqg->rb_node, &st->rb);
813 }
814
815 static void
816 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
817 {
818 struct cfq_rb_root *st = &cfqd->grp_service_tree;
819 struct cfq_group *__cfqg;
820 struct rb_node *n;
821
822 cfqg->nr_cfqq++;
823 if (cfqg->on_st)
824 return;
825
826 /*
827 * Currently put the group at the end. Later implement something
828 * so that groups get lesser vtime based on their weights, so that
829 * if group does not loose all if it was not continously backlogged.
830 */
831 n = rb_last(&st->rb);
832 if (n) {
833 __cfqg = rb_entry_cfqg(n);
834 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
835 } else
836 cfqg->vdisktime = st->min_vdisktime;
837
838 __cfq_group_service_tree_add(st, cfqg);
839 cfqg->on_st = true;
840 st->total_weight += cfqg->weight;
841 }
842
843 static void
844 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
845 {
846 struct cfq_rb_root *st = &cfqd->grp_service_tree;
847
848 if (st->active == &cfqg->rb_node)
849 st->active = NULL;
850
851 BUG_ON(cfqg->nr_cfqq < 1);
852 cfqg->nr_cfqq--;
853
854 /* If there are other cfq queues under this group, don't delete it */
855 if (cfqg->nr_cfqq)
856 return;
857
858 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
859 cfqg->on_st = false;
860 st->total_weight -= cfqg->weight;
861 if (!RB_EMPTY_NODE(&cfqg->rb_node))
862 cfq_rb_erase(&cfqg->rb_node, st);
863 cfqg->saved_workload_slice = 0;
864 blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
865 }
866
867 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
868 {
869 unsigned int slice_used;
870
871 /*
872 * Queue got expired before even a single request completed or
873 * got expired immediately after first request completion.
874 */
875 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
876 /*
877 * Also charge the seek time incurred to the group, otherwise
878 * if there are mutiple queues in the group, each can dispatch
879 * a single request on seeky media and cause lots of seek time
880 * and group will never know it.
881 */
882 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
883 1);
884 } else {
885 slice_used = jiffies - cfqq->slice_start;
886 if (slice_used > cfqq->allocated_slice)
887 slice_used = cfqq->allocated_slice;
888 }
889
890 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
891 cfqq->nr_sectors);
892 return slice_used;
893 }
894
895 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
896 struct cfq_queue *cfqq)
897 {
898 struct cfq_rb_root *st = &cfqd->grp_service_tree;
899 unsigned int used_sl, charge_sl;
900 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
901 - cfqg->service_tree_idle.count;
902
903 BUG_ON(nr_sync < 0);
904 used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
905
906 if (!cfq_cfqq_sync(cfqq) && !nr_sync)
907 charge_sl = cfqq->allocated_slice;
908
909 /* Can't update vdisktime while group is on service tree */
910 cfq_rb_erase(&cfqg->rb_node, st);
911 cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
912 __cfq_group_service_tree_add(st, cfqg);
913
914 /* This group is being expired. Save the context */
915 if (time_after(cfqd->workload_expires, jiffies)) {
916 cfqg->saved_workload_slice = cfqd->workload_expires
917 - jiffies;
918 cfqg->saved_workload = cfqd->serving_type;
919 cfqg->saved_serving_prio = cfqd->serving_prio;
920 } else
921 cfqg->saved_workload_slice = 0;
922
923 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
924 st->min_vdisktime);
925 blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
926 cfqq->nr_sectors);
927 }
928
929 #ifdef CONFIG_CFQ_GROUP_IOSCHED
930 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
931 {
932 if (blkg)
933 return container_of(blkg, struct cfq_group, blkg);
934 return NULL;
935 }
936
937 void
938 cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
939 {
940 cfqg_of_blkg(blkg)->weight = weight;
941 }
942
943 static struct cfq_group *
944 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
945 {
946 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
947 struct cfq_group *cfqg = NULL;
948 void *key = cfqd;
949 int i, j;
950 struct cfq_rb_root *st;
951 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
952 unsigned int major, minor;
953
954 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
955 if (cfqg || !create)
956 goto done;
957
958 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
959 if (!cfqg)
960 goto done;
961
962 cfqg->weight = blkcg->weight;
963 for_each_cfqg_st(cfqg, i, j, st)
964 *st = CFQ_RB_ROOT;
965 RB_CLEAR_NODE(&cfqg->rb_node);
966
967 /*
968 * Take the initial reference that will be released on destroy
969 * This can be thought of a joint reference by cgroup and
970 * elevator which will be dropped by either elevator exit
971 * or cgroup deletion path depending on who is exiting first.
972 */
973 atomic_set(&cfqg->ref, 1);
974
975 /* Add group onto cgroup list */
976 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
977 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
978 MKDEV(major, minor));
979
980 /* Add group on cfqd list */
981 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
982
983 done:
984 return cfqg;
985 }
986
987 /*
988 * Search for the cfq group current task belongs to. If create = 1, then also
989 * create the cfq group if it does not exist. request_queue lock must be held.
990 */
991 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
992 {
993 struct cgroup *cgroup;
994 struct cfq_group *cfqg = NULL;
995
996 rcu_read_lock();
997 cgroup = task_cgroup(current, blkio_subsys_id);
998 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
999 if (!cfqg && create)
1000 cfqg = &cfqd->root_group;
1001 rcu_read_unlock();
1002 return cfqg;
1003 }
1004
1005 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1006 {
1007 /* Currently, all async queues are mapped to root group */
1008 if (!cfq_cfqq_sync(cfqq))
1009 cfqg = &cfqq->cfqd->root_group;
1010
1011 cfqq->cfqg = cfqg;
1012 /* cfqq reference on cfqg */
1013 atomic_inc(&cfqq->cfqg->ref);
1014 }
1015
1016 static void cfq_put_cfqg(struct cfq_group *cfqg)
1017 {
1018 struct cfq_rb_root *st;
1019 int i, j;
1020
1021 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1022 if (!atomic_dec_and_test(&cfqg->ref))
1023 return;
1024 for_each_cfqg_st(cfqg, i, j, st)
1025 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1026 kfree(cfqg);
1027 }
1028
1029 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1030 {
1031 /* Something wrong if we are trying to remove same group twice */
1032 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1033
1034 hlist_del_init(&cfqg->cfqd_node);
1035
1036 /*
1037 * Put the reference taken at the time of creation so that when all
1038 * queues are gone, group can be destroyed.
1039 */
1040 cfq_put_cfqg(cfqg);
1041 }
1042
1043 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1044 {
1045 struct hlist_node *pos, *n;
1046 struct cfq_group *cfqg;
1047
1048 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1049 /*
1050 * If cgroup removal path got to blk_group first and removed
1051 * it from cgroup list, then it will take care of destroying
1052 * cfqg also.
1053 */
1054 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1055 cfq_destroy_cfqg(cfqd, cfqg);
1056 }
1057 }
1058
1059 /*
1060 * Blk cgroup controller notification saying that blkio_group object is being
1061 * delinked as associated cgroup object is going away. That also means that
1062 * no new IO will come in this group. So get rid of this group as soon as
1063 * any pending IO in the group is finished.
1064 *
1065 * This function is called under rcu_read_lock(). key is the rcu protected
1066 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1067 * read lock.
1068 *
1069 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1070 * it should not be NULL as even if elevator was exiting, cgroup deltion
1071 * path got to it first.
1072 */
1073 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1074 {
1075 unsigned long flags;
1076 struct cfq_data *cfqd = key;
1077
1078 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1079 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1080 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1081 }
1082
1083 #else /* GROUP_IOSCHED */
1084 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1085 {
1086 return &cfqd->root_group;
1087 }
1088 static inline void
1089 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1090 cfqq->cfqg = cfqg;
1091 }
1092
1093 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1094 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1095
1096 #endif /* GROUP_IOSCHED */
1097
1098 /*
1099 * The cfqd->service_trees holds all pending cfq_queue's that have
1100 * requests waiting to be processed. It is sorted in the order that
1101 * we will service the queues.
1102 */
1103 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1104 bool add_front)
1105 {
1106 struct rb_node **p, *parent;
1107 struct cfq_queue *__cfqq;
1108 unsigned long rb_key;
1109 struct cfq_rb_root *service_tree;
1110 int left;
1111 int new_cfqq = 1;
1112 int group_changed = 0;
1113
1114 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1115 if (!cfqd->cfq_group_isolation
1116 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1117 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1118 /* Move this cfq to root group */
1119 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1120 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1121 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1122 cfqq->orig_cfqg = cfqq->cfqg;
1123 cfqq->cfqg = &cfqd->root_group;
1124 atomic_inc(&cfqd->root_group.ref);
1125 group_changed = 1;
1126 } else if (!cfqd->cfq_group_isolation
1127 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1128 /* cfqq is sequential now needs to go to its original group */
1129 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1130 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1131 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1132 cfq_put_cfqg(cfqq->cfqg);
1133 cfqq->cfqg = cfqq->orig_cfqg;
1134 cfqq->orig_cfqg = NULL;
1135 group_changed = 1;
1136 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1137 }
1138 #endif
1139
1140 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1141 cfqq_type(cfqq));
1142 if (cfq_class_idle(cfqq)) {
1143 rb_key = CFQ_IDLE_DELAY;
1144 parent = rb_last(&service_tree->rb);
1145 if (parent && parent != &cfqq->rb_node) {
1146 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1147 rb_key += __cfqq->rb_key;
1148 } else
1149 rb_key += jiffies;
1150 } else if (!add_front) {
1151 /*
1152 * Get our rb key offset. Subtract any residual slice
1153 * value carried from last service. A negative resid
1154 * count indicates slice overrun, and this should position
1155 * the next service time further away in the tree.
1156 */
1157 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1158 rb_key -= cfqq->slice_resid;
1159 cfqq->slice_resid = 0;
1160 } else {
1161 rb_key = -HZ;
1162 __cfqq = cfq_rb_first(service_tree);
1163 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1164 }
1165
1166 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1167 new_cfqq = 0;
1168 /*
1169 * same position, nothing more to do
1170 */
1171 if (rb_key == cfqq->rb_key &&
1172 cfqq->service_tree == service_tree)
1173 return;
1174
1175 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1176 cfqq->service_tree = NULL;
1177 }
1178
1179 left = 1;
1180 parent = NULL;
1181 cfqq->service_tree = service_tree;
1182 p = &service_tree->rb.rb_node;
1183 while (*p) {
1184 struct rb_node **n;
1185
1186 parent = *p;
1187 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1188
1189 /*
1190 * sort by key, that represents service time.
1191 */
1192 if (time_before(rb_key, __cfqq->rb_key))
1193 n = &(*p)->rb_left;
1194 else {
1195 n = &(*p)->rb_right;
1196 left = 0;
1197 }
1198
1199 p = n;
1200 }
1201
1202 if (left)
1203 service_tree->left = &cfqq->rb_node;
1204
1205 cfqq->rb_key = rb_key;
1206 rb_link_node(&cfqq->rb_node, parent, p);
1207 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1208 service_tree->count++;
1209 if ((add_front || !new_cfqq) && !group_changed)
1210 return;
1211 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1212 }
1213
1214 static struct cfq_queue *
1215 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1216 sector_t sector, struct rb_node **ret_parent,
1217 struct rb_node ***rb_link)
1218 {
1219 struct rb_node **p, *parent;
1220 struct cfq_queue *cfqq = NULL;
1221
1222 parent = NULL;
1223 p = &root->rb_node;
1224 while (*p) {
1225 struct rb_node **n;
1226
1227 parent = *p;
1228 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1229
1230 /*
1231 * Sort strictly based on sector. Smallest to the left,
1232 * largest to the right.
1233 */
1234 if (sector > blk_rq_pos(cfqq->next_rq))
1235 n = &(*p)->rb_right;
1236 else if (sector < blk_rq_pos(cfqq->next_rq))
1237 n = &(*p)->rb_left;
1238 else
1239 break;
1240 p = n;
1241 cfqq = NULL;
1242 }
1243
1244 *ret_parent = parent;
1245 if (rb_link)
1246 *rb_link = p;
1247 return cfqq;
1248 }
1249
1250 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1251 {
1252 struct rb_node **p, *parent;
1253 struct cfq_queue *__cfqq;
1254
1255 if (cfqq->p_root) {
1256 rb_erase(&cfqq->p_node, cfqq->p_root);
1257 cfqq->p_root = NULL;
1258 }
1259
1260 if (cfq_class_idle(cfqq))
1261 return;
1262 if (!cfqq->next_rq)
1263 return;
1264
1265 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1266 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1267 blk_rq_pos(cfqq->next_rq), &parent, &p);
1268 if (!__cfqq) {
1269 rb_link_node(&cfqq->p_node, parent, p);
1270 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1271 } else
1272 cfqq->p_root = NULL;
1273 }
1274
1275 /*
1276 * Update cfqq's position in the service tree.
1277 */
1278 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1279 {
1280 /*
1281 * Resorting requires the cfqq to be on the RR list already.
1282 */
1283 if (cfq_cfqq_on_rr(cfqq)) {
1284 cfq_service_tree_add(cfqd, cfqq, 0);
1285 cfq_prio_tree_add(cfqd, cfqq);
1286 }
1287 }
1288
1289 /*
1290 * add to busy list of queues for service, trying to be fair in ordering
1291 * the pending list according to last request service
1292 */
1293 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1294 {
1295 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1296 BUG_ON(cfq_cfqq_on_rr(cfqq));
1297 cfq_mark_cfqq_on_rr(cfqq);
1298 cfqd->busy_queues++;
1299
1300 cfq_resort_rr_list(cfqd, cfqq);
1301 }
1302
1303 /*
1304 * Called when the cfqq no longer has requests pending, remove it from
1305 * the service tree.
1306 */
1307 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1308 {
1309 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1310 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1311 cfq_clear_cfqq_on_rr(cfqq);
1312
1313 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1314 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1315 cfqq->service_tree = NULL;
1316 }
1317 if (cfqq->p_root) {
1318 rb_erase(&cfqq->p_node, cfqq->p_root);
1319 cfqq->p_root = NULL;
1320 }
1321
1322 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1323 BUG_ON(!cfqd->busy_queues);
1324 cfqd->busy_queues--;
1325 }
1326
1327 /*
1328 * rb tree support functions
1329 */
1330 static void cfq_del_rq_rb(struct request *rq)
1331 {
1332 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1333 const int sync = rq_is_sync(rq);
1334
1335 BUG_ON(!cfqq->queued[sync]);
1336 cfqq->queued[sync]--;
1337
1338 elv_rb_del(&cfqq->sort_list, rq);
1339
1340 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1341 /*
1342 * Queue will be deleted from service tree when we actually
1343 * expire it later. Right now just remove it from prio tree
1344 * as it is empty.
1345 */
1346 if (cfqq->p_root) {
1347 rb_erase(&cfqq->p_node, cfqq->p_root);
1348 cfqq->p_root = NULL;
1349 }
1350 }
1351 }
1352
1353 static void cfq_add_rq_rb(struct request *rq)
1354 {
1355 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1356 struct cfq_data *cfqd = cfqq->cfqd;
1357 struct request *__alias, *prev;
1358
1359 cfqq->queued[rq_is_sync(rq)]++;
1360
1361 /*
1362 * looks a little odd, but the first insert might return an alias.
1363 * if that happens, put the alias on the dispatch list
1364 */
1365 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1366 cfq_dispatch_insert(cfqd->queue, __alias);
1367
1368 if (!cfq_cfqq_on_rr(cfqq))
1369 cfq_add_cfqq_rr(cfqd, cfqq);
1370
1371 /*
1372 * check if this request is a better next-serve candidate
1373 */
1374 prev = cfqq->next_rq;
1375 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1376
1377 /*
1378 * adjust priority tree position, if ->next_rq changes
1379 */
1380 if (prev != cfqq->next_rq)
1381 cfq_prio_tree_add(cfqd, cfqq);
1382
1383 BUG_ON(!cfqq->next_rq);
1384 }
1385
1386 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1387 {
1388 elv_rb_del(&cfqq->sort_list, rq);
1389 cfqq->queued[rq_is_sync(rq)]--;
1390 cfq_add_rq_rb(rq);
1391 }
1392
1393 static struct request *
1394 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1395 {
1396 struct task_struct *tsk = current;
1397 struct cfq_io_context *cic;
1398 struct cfq_queue *cfqq;
1399
1400 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1401 if (!cic)
1402 return NULL;
1403
1404 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1405 if (cfqq) {
1406 sector_t sector = bio->bi_sector + bio_sectors(bio);
1407
1408 return elv_rb_find(&cfqq->sort_list, sector);
1409 }
1410
1411 return NULL;
1412 }
1413
1414 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1415 {
1416 struct cfq_data *cfqd = q->elevator->elevator_data;
1417
1418 cfqd->rq_in_driver[rq_is_sync(rq)]++;
1419 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1420 rq_in_driver(cfqd));
1421
1422 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1423 }
1424
1425 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1426 {
1427 struct cfq_data *cfqd = q->elevator->elevator_data;
1428 const int sync = rq_is_sync(rq);
1429
1430 WARN_ON(!cfqd->rq_in_driver[sync]);
1431 cfqd->rq_in_driver[sync]--;
1432 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1433 rq_in_driver(cfqd));
1434 }
1435
1436 static void cfq_remove_request(struct request *rq)
1437 {
1438 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1439
1440 if (cfqq->next_rq == rq)
1441 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1442
1443 list_del_init(&rq->queuelist);
1444 cfq_del_rq_rb(rq);
1445
1446 cfqq->cfqd->rq_queued--;
1447 if (rq_is_meta(rq)) {
1448 WARN_ON(!cfqq->meta_pending);
1449 cfqq->meta_pending--;
1450 }
1451 }
1452
1453 static int cfq_merge(struct request_queue *q, struct request **req,
1454 struct bio *bio)
1455 {
1456 struct cfq_data *cfqd = q->elevator->elevator_data;
1457 struct request *__rq;
1458
1459 __rq = cfq_find_rq_fmerge(cfqd, bio);
1460 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1461 *req = __rq;
1462 return ELEVATOR_FRONT_MERGE;
1463 }
1464
1465 return ELEVATOR_NO_MERGE;
1466 }
1467
1468 static void cfq_merged_request(struct request_queue *q, struct request *req,
1469 int type)
1470 {
1471 if (type == ELEVATOR_FRONT_MERGE) {
1472 struct cfq_queue *cfqq = RQ_CFQQ(req);
1473
1474 cfq_reposition_rq_rb(cfqq, req);
1475 }
1476 }
1477
1478 static void
1479 cfq_merged_requests(struct request_queue *q, struct request *rq,
1480 struct request *next)
1481 {
1482 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1483 /*
1484 * reposition in fifo if next is older than rq
1485 */
1486 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1487 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1488 list_move(&rq->queuelist, &next->queuelist);
1489 rq_set_fifo_time(rq, rq_fifo_time(next));
1490 }
1491
1492 if (cfqq->next_rq == next)
1493 cfqq->next_rq = rq;
1494 cfq_remove_request(next);
1495 }
1496
1497 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1498 struct bio *bio)
1499 {
1500 struct cfq_data *cfqd = q->elevator->elevator_data;
1501 struct cfq_io_context *cic;
1502 struct cfq_queue *cfqq;
1503
1504 /*
1505 * Disallow merge of a sync bio into an async request.
1506 */
1507 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1508 return false;
1509
1510 /*
1511 * Lookup the cfqq that this bio will be queued with. Allow
1512 * merge only if rq is queued there.
1513 */
1514 cic = cfq_cic_lookup(cfqd, current->io_context);
1515 if (!cic)
1516 return false;
1517
1518 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1519 return cfqq == RQ_CFQQ(rq);
1520 }
1521
1522 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1523 struct cfq_queue *cfqq)
1524 {
1525 if (cfqq) {
1526 cfq_log_cfqq(cfqd, cfqq, "set_active");
1527 cfqq->slice_start = 0;
1528 cfqq->dispatch_start = jiffies;
1529 cfqq->allocated_slice = 0;
1530 cfqq->slice_end = 0;
1531 cfqq->slice_dispatch = 0;
1532 cfqq->nr_sectors = 0;
1533
1534 cfq_clear_cfqq_wait_request(cfqq);
1535 cfq_clear_cfqq_must_dispatch(cfqq);
1536 cfq_clear_cfqq_must_alloc_slice(cfqq);
1537 cfq_clear_cfqq_fifo_expire(cfqq);
1538 cfq_mark_cfqq_slice_new(cfqq);
1539
1540 del_timer(&cfqd->idle_slice_timer);
1541 }
1542
1543 cfqd->active_queue = cfqq;
1544 }
1545
1546 /*
1547 * current cfqq expired its slice (or was too idle), select new one
1548 */
1549 static void
1550 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1551 bool timed_out)
1552 {
1553 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1554
1555 if (cfq_cfqq_wait_request(cfqq))
1556 del_timer(&cfqd->idle_slice_timer);
1557
1558 cfq_clear_cfqq_wait_request(cfqq);
1559 cfq_clear_cfqq_wait_busy(cfqq);
1560
1561 /*
1562 * If this cfqq is shared between multiple processes, check to
1563 * make sure that those processes are still issuing I/Os within
1564 * the mean seek distance. If not, it may be time to break the
1565 * queues apart again.
1566 */
1567 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1568 cfq_mark_cfqq_split_coop(cfqq);
1569
1570 /*
1571 * store what was left of this slice, if the queue idled/timed out
1572 */
1573 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1574 cfqq->slice_resid = cfqq->slice_end - jiffies;
1575 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1576 }
1577
1578 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1579
1580 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1581 cfq_del_cfqq_rr(cfqd, cfqq);
1582
1583 cfq_resort_rr_list(cfqd, cfqq);
1584
1585 if (cfqq == cfqd->active_queue)
1586 cfqd->active_queue = NULL;
1587
1588 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1589 cfqd->grp_service_tree.active = NULL;
1590
1591 if (cfqd->active_cic) {
1592 put_io_context(cfqd->active_cic->ioc);
1593 cfqd->active_cic = NULL;
1594 }
1595 }
1596
1597 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1598 {
1599 struct cfq_queue *cfqq = cfqd->active_queue;
1600
1601 if (cfqq)
1602 __cfq_slice_expired(cfqd, cfqq, timed_out);
1603 }
1604
1605 /*
1606 * Get next queue for service. Unless we have a queue preemption,
1607 * we'll simply select the first cfqq in the service tree.
1608 */
1609 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1610 {
1611 struct cfq_rb_root *service_tree =
1612 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1613 cfqd->serving_type);
1614
1615 if (!cfqd->rq_queued)
1616 return NULL;
1617
1618 /* There is nothing to dispatch */
1619 if (!service_tree)
1620 return NULL;
1621 if (RB_EMPTY_ROOT(&service_tree->rb))
1622 return NULL;
1623 return cfq_rb_first(service_tree);
1624 }
1625
1626 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1627 {
1628 struct cfq_group *cfqg;
1629 struct cfq_queue *cfqq;
1630 int i, j;
1631 struct cfq_rb_root *st;
1632
1633 if (!cfqd->rq_queued)
1634 return NULL;
1635
1636 cfqg = cfq_get_next_cfqg(cfqd);
1637 if (!cfqg)
1638 return NULL;
1639
1640 for_each_cfqg_st(cfqg, i, j, st)
1641 if ((cfqq = cfq_rb_first(st)) != NULL)
1642 return cfqq;
1643 return NULL;
1644 }
1645
1646 /*
1647 * Get and set a new active queue for service.
1648 */
1649 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1650 struct cfq_queue *cfqq)
1651 {
1652 if (!cfqq)
1653 cfqq = cfq_get_next_queue(cfqd);
1654
1655 __cfq_set_active_queue(cfqd, cfqq);
1656 return cfqq;
1657 }
1658
1659 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1660 struct request *rq)
1661 {
1662 if (blk_rq_pos(rq) >= cfqd->last_position)
1663 return blk_rq_pos(rq) - cfqd->last_position;
1664 else
1665 return cfqd->last_position - blk_rq_pos(rq);
1666 }
1667
1668 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1669 struct request *rq, bool for_preempt)
1670 {
1671 sector_t sdist = cfqq->seek_mean;
1672
1673 if (!sample_valid(cfqq->seek_samples))
1674 sdist = CFQQ_SEEK_THR;
1675
1676 /* if seek_mean is big, using it as close criteria is meaningless */
1677 if (sdist > CFQQ_SEEK_THR && !for_preempt)
1678 sdist = CFQQ_SEEK_THR;
1679
1680 return cfq_dist_from_last(cfqd, rq) <= sdist;
1681 }
1682
1683 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1684 struct cfq_queue *cur_cfqq)
1685 {
1686 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1687 struct rb_node *parent, *node;
1688 struct cfq_queue *__cfqq;
1689 sector_t sector = cfqd->last_position;
1690
1691 if (RB_EMPTY_ROOT(root))
1692 return NULL;
1693
1694 /*
1695 * First, if we find a request starting at the end of the last
1696 * request, choose it.
1697 */
1698 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1699 if (__cfqq)
1700 return __cfqq;
1701
1702 /*
1703 * If the exact sector wasn't found, the parent of the NULL leaf
1704 * will contain the closest sector.
1705 */
1706 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1707 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq, false))
1708 return __cfqq;
1709
1710 if (blk_rq_pos(__cfqq->next_rq) < sector)
1711 node = rb_next(&__cfqq->p_node);
1712 else
1713 node = rb_prev(&__cfqq->p_node);
1714 if (!node)
1715 return NULL;
1716
1717 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1718 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq, false))
1719 return __cfqq;
1720
1721 return NULL;
1722 }
1723
1724 /*
1725 * cfqd - obvious
1726 * cur_cfqq - passed in so that we don't decide that the current queue is
1727 * closely cooperating with itself.
1728 *
1729 * So, basically we're assuming that that cur_cfqq has dispatched at least
1730 * one request, and that cfqd->last_position reflects a position on the disk
1731 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1732 * assumption.
1733 */
1734 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1735 struct cfq_queue *cur_cfqq)
1736 {
1737 struct cfq_queue *cfqq;
1738
1739 if (!cfq_cfqq_sync(cur_cfqq))
1740 return NULL;
1741 if (CFQQ_SEEKY(cur_cfqq))
1742 return NULL;
1743
1744 /*
1745 * Don't search priority tree if it's the only queue in the group.
1746 */
1747 if (cur_cfqq->cfqg->nr_cfqq == 1)
1748 return NULL;
1749
1750 /*
1751 * We should notice if some of the queues are cooperating, eg
1752 * working closely on the same area of the disk. In that case,
1753 * we can group them together and don't waste time idling.
1754 */
1755 cfqq = cfqq_close(cfqd, cur_cfqq);
1756 if (!cfqq)
1757 return NULL;
1758
1759 /* If new queue belongs to different cfq_group, don't choose it */
1760 if (cur_cfqq->cfqg != cfqq->cfqg)
1761 return NULL;
1762
1763 /*
1764 * It only makes sense to merge sync queues.
1765 */
1766 if (!cfq_cfqq_sync(cfqq))
1767 return NULL;
1768 if (CFQQ_SEEKY(cfqq))
1769 return NULL;
1770
1771 /*
1772 * Do not merge queues of different priority classes
1773 */
1774 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1775 return NULL;
1776
1777 return cfqq;
1778 }
1779
1780 /*
1781 * Determine whether we should enforce idle window for this queue.
1782 */
1783
1784 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1785 {
1786 enum wl_prio_t prio = cfqq_prio(cfqq);
1787 struct cfq_rb_root *service_tree = cfqq->service_tree;
1788
1789 BUG_ON(!service_tree);
1790 BUG_ON(!service_tree->count);
1791
1792 /* We never do for idle class queues. */
1793 if (prio == IDLE_WORKLOAD)
1794 return false;
1795
1796 /* We do for queues that were marked with idle window flag. */
1797 if (cfq_cfqq_idle_window(cfqq) &&
1798 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1799 return true;
1800
1801 /*
1802 * Otherwise, we do only if they are the last ones
1803 * in their service tree.
1804 */
1805 return service_tree->count == 1 && cfq_cfqq_sync(cfqq);
1806 }
1807
1808 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1809 {
1810 struct cfq_queue *cfqq = cfqd->active_queue;
1811 struct cfq_io_context *cic;
1812 unsigned long sl;
1813
1814 /*
1815 * SSD device without seek penalty, disable idling. But only do so
1816 * for devices that support queuing, otherwise we still have a problem
1817 * with sync vs async workloads.
1818 */
1819 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1820 return;
1821
1822 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1823 WARN_ON(cfq_cfqq_slice_new(cfqq));
1824
1825 /*
1826 * idle is disabled, either manually or by past process history
1827 */
1828 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1829 return;
1830
1831 /*
1832 * still active requests from this queue, don't idle
1833 */
1834 if (cfqq->dispatched)
1835 return;
1836
1837 /*
1838 * task has exited, don't wait
1839 */
1840 cic = cfqd->active_cic;
1841 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1842 return;
1843
1844 /*
1845 * If our average think time is larger than the remaining time
1846 * slice, then don't idle. This avoids overrunning the allotted
1847 * time slice.
1848 */
1849 if (sample_valid(cic->ttime_samples) &&
1850 (cfqq->slice_end - jiffies < cic->ttime_mean))
1851 return;
1852
1853 cfq_mark_cfqq_wait_request(cfqq);
1854
1855 sl = cfqd->cfq_slice_idle;
1856
1857 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1858 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1859 }
1860
1861 /*
1862 * Move request from internal lists to the request queue dispatch list.
1863 */
1864 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1865 {
1866 struct cfq_data *cfqd = q->elevator->elevator_data;
1867 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1868
1869 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1870
1871 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1872 cfq_remove_request(rq);
1873 cfqq->dispatched++;
1874 elv_dispatch_sort(q, rq);
1875
1876 if (cfq_cfqq_sync(cfqq))
1877 cfqd->sync_flight++;
1878 cfqq->nr_sectors += blk_rq_sectors(rq);
1879 }
1880
1881 /*
1882 * return expired entry, or NULL to just start from scratch in rbtree
1883 */
1884 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1885 {
1886 struct request *rq = NULL;
1887
1888 if (cfq_cfqq_fifo_expire(cfqq))
1889 return NULL;
1890
1891 cfq_mark_cfqq_fifo_expire(cfqq);
1892
1893 if (list_empty(&cfqq->fifo))
1894 return NULL;
1895
1896 rq = rq_entry_fifo(cfqq->fifo.next);
1897 if (time_before(jiffies, rq_fifo_time(rq)))
1898 rq = NULL;
1899
1900 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1901 return rq;
1902 }
1903
1904 static inline int
1905 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1906 {
1907 const int base_rq = cfqd->cfq_slice_async_rq;
1908
1909 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1910
1911 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1912 }
1913
1914 /*
1915 * Must be called with the queue_lock held.
1916 */
1917 static int cfqq_process_refs(struct cfq_queue *cfqq)
1918 {
1919 int process_refs, io_refs;
1920
1921 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1922 process_refs = atomic_read(&cfqq->ref) - io_refs;
1923 BUG_ON(process_refs < 0);
1924 return process_refs;
1925 }
1926
1927 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1928 {
1929 int process_refs, new_process_refs;
1930 struct cfq_queue *__cfqq;
1931
1932 /* Avoid a circular list and skip interim queue merges */
1933 while ((__cfqq = new_cfqq->new_cfqq)) {
1934 if (__cfqq == cfqq)
1935 return;
1936 new_cfqq = __cfqq;
1937 }
1938
1939 process_refs = cfqq_process_refs(cfqq);
1940 /*
1941 * If the process for the cfqq has gone away, there is no
1942 * sense in merging the queues.
1943 */
1944 if (process_refs == 0)
1945 return;
1946
1947 /*
1948 * Merge in the direction of the lesser amount of work.
1949 */
1950 new_process_refs = cfqq_process_refs(new_cfqq);
1951 if (new_process_refs >= process_refs) {
1952 cfqq->new_cfqq = new_cfqq;
1953 atomic_add(process_refs, &new_cfqq->ref);
1954 } else {
1955 new_cfqq->new_cfqq = cfqq;
1956 atomic_add(new_process_refs, &cfqq->ref);
1957 }
1958 }
1959
1960 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1961 struct cfq_group *cfqg, enum wl_prio_t prio)
1962 {
1963 struct cfq_queue *queue;
1964 int i;
1965 bool key_valid = false;
1966 unsigned long lowest_key = 0;
1967 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1968
1969 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
1970 /* select the one with lowest rb_key */
1971 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
1972 if (queue &&
1973 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1974 lowest_key = queue->rb_key;
1975 cur_best = i;
1976 key_valid = true;
1977 }
1978 }
1979
1980 return cur_best;
1981 }
1982
1983 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1984 {
1985 unsigned slice;
1986 unsigned count;
1987 struct cfq_rb_root *st;
1988 unsigned group_slice;
1989
1990 if (!cfqg) {
1991 cfqd->serving_prio = IDLE_WORKLOAD;
1992 cfqd->workload_expires = jiffies + 1;
1993 return;
1994 }
1995
1996 /* Choose next priority. RT > BE > IDLE */
1997 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
1998 cfqd->serving_prio = RT_WORKLOAD;
1999 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2000 cfqd->serving_prio = BE_WORKLOAD;
2001 else {
2002 cfqd->serving_prio = IDLE_WORKLOAD;
2003 cfqd->workload_expires = jiffies + 1;
2004 return;
2005 }
2006
2007 /*
2008 * For RT and BE, we have to choose also the type
2009 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2010 * expiration time
2011 */
2012 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2013 count = st->count;
2014
2015 /*
2016 * check workload expiration, and that we still have other queues ready
2017 */
2018 if (count && !time_after(jiffies, cfqd->workload_expires))
2019 return;
2020
2021 /* otherwise select new workload type */
2022 cfqd->serving_type =
2023 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2024 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2025 count = st->count;
2026
2027 /*
2028 * the workload slice is computed as a fraction of target latency
2029 * proportional to the number of queues in that workload, over
2030 * all the queues in the same priority class
2031 */
2032 group_slice = cfq_group_slice(cfqd, cfqg);
2033
2034 slice = group_slice * count /
2035 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2036 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2037
2038 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2039 unsigned int tmp;
2040
2041 /*
2042 * Async queues are currently system wide. Just taking
2043 * proportion of queues with-in same group will lead to higher
2044 * async ratio system wide as generally root group is going
2045 * to have higher weight. A more accurate thing would be to
2046 * calculate system wide asnc/sync ratio.
2047 */
2048 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2049 tmp = tmp/cfqd->busy_queues;
2050 slice = min_t(unsigned, slice, tmp);
2051
2052 /* async workload slice is scaled down according to
2053 * the sync/async slice ratio. */
2054 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2055 } else
2056 /* sync workload slice is at least 2 * cfq_slice_idle */
2057 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2058
2059 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2060 cfqd->workload_expires = jiffies + slice;
2061 cfqd->noidle_tree_requires_idle = false;
2062 }
2063
2064 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2065 {
2066 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2067 struct cfq_group *cfqg;
2068
2069 if (RB_EMPTY_ROOT(&st->rb))
2070 return NULL;
2071 cfqg = cfq_rb_first_group(st);
2072 st->active = &cfqg->rb_node;
2073 update_min_vdisktime(st);
2074 return cfqg;
2075 }
2076
2077 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2078 {
2079 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2080
2081 cfqd->serving_group = cfqg;
2082
2083 /* Restore the workload type data */
2084 if (cfqg->saved_workload_slice) {
2085 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2086 cfqd->serving_type = cfqg->saved_workload;
2087 cfqd->serving_prio = cfqg->saved_serving_prio;
2088 } else
2089 cfqd->workload_expires = jiffies - 1;
2090
2091 choose_service_tree(cfqd, cfqg);
2092 }
2093
2094 /*
2095 * Select a queue for service. If we have a current active queue,
2096 * check whether to continue servicing it, or retrieve and set a new one.
2097 */
2098 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2099 {
2100 struct cfq_queue *cfqq, *new_cfqq = NULL;
2101
2102 cfqq = cfqd->active_queue;
2103 if (!cfqq)
2104 goto new_queue;
2105
2106 if (!cfqd->rq_queued)
2107 return NULL;
2108
2109 /*
2110 * We were waiting for group to get backlogged. Expire the queue
2111 */
2112 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2113 goto expire;
2114
2115 /*
2116 * The active queue has run out of time, expire it and select new.
2117 */
2118 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2119 /*
2120 * If slice had not expired at the completion of last request
2121 * we might not have turned on wait_busy flag. Don't expire
2122 * the queue yet. Allow the group to get backlogged.
2123 *
2124 * The very fact that we have used the slice, that means we
2125 * have been idling all along on this queue and it should be
2126 * ok to wait for this request to complete.
2127 */
2128 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2129 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2130 cfqq = NULL;
2131 goto keep_queue;
2132 } else
2133 goto expire;
2134 }
2135
2136 /*
2137 * The active queue has requests and isn't expired, allow it to
2138 * dispatch.
2139 */
2140 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2141 goto keep_queue;
2142
2143 /*
2144 * If another queue has a request waiting within our mean seek
2145 * distance, let it run. The expire code will check for close
2146 * cooperators and put the close queue at the front of the service
2147 * tree. If possible, merge the expiring queue with the new cfqq.
2148 */
2149 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2150 if (new_cfqq) {
2151 if (!cfqq->new_cfqq)
2152 cfq_setup_merge(cfqq, new_cfqq);
2153 goto expire;
2154 }
2155
2156 /*
2157 * No requests pending. If the active queue still has requests in
2158 * flight or is idling for a new request, allow either of these
2159 * conditions to happen (or time out) before selecting a new queue.
2160 */
2161 if (timer_pending(&cfqd->idle_slice_timer) ||
2162 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2163 cfqq = NULL;
2164 goto keep_queue;
2165 }
2166
2167 expire:
2168 cfq_slice_expired(cfqd, 0);
2169 new_queue:
2170 /*
2171 * Current queue expired. Check if we have to switch to a new
2172 * service tree
2173 */
2174 if (!new_cfqq)
2175 cfq_choose_cfqg(cfqd);
2176
2177 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2178 keep_queue:
2179 return cfqq;
2180 }
2181
2182 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2183 {
2184 int dispatched = 0;
2185
2186 while (cfqq->next_rq) {
2187 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2188 dispatched++;
2189 }
2190
2191 BUG_ON(!list_empty(&cfqq->fifo));
2192
2193 /* By default cfqq is not expired if it is empty. Do it explicitly */
2194 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2195 return dispatched;
2196 }
2197
2198 /*
2199 * Drain our current requests. Used for barriers and when switching
2200 * io schedulers on-the-fly.
2201 */
2202 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2203 {
2204 struct cfq_queue *cfqq;
2205 int dispatched = 0;
2206
2207 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2208 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2209
2210 cfq_slice_expired(cfqd, 0);
2211 BUG_ON(cfqd->busy_queues);
2212
2213 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2214 return dispatched;
2215 }
2216
2217 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2218 {
2219 unsigned int max_dispatch;
2220
2221 /*
2222 * Drain async requests before we start sync IO
2223 */
2224 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
2225 return false;
2226
2227 /*
2228 * If this is an async queue and we have sync IO in flight, let it wait
2229 */
2230 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
2231 return false;
2232
2233 max_dispatch = cfqd->cfq_quantum;
2234 if (cfq_class_idle(cfqq))
2235 max_dispatch = 1;
2236
2237 /*
2238 * Does this cfqq already have too much IO in flight?
2239 */
2240 if (cfqq->dispatched >= max_dispatch) {
2241 /*
2242 * idle queue must always only have a single IO in flight
2243 */
2244 if (cfq_class_idle(cfqq))
2245 return false;
2246
2247 /*
2248 * We have other queues, don't allow more IO from this one
2249 */
2250 if (cfqd->busy_queues > 1)
2251 return false;
2252
2253 /*
2254 * Sole queue user, no limit
2255 */
2256 max_dispatch = -1;
2257 }
2258
2259 /*
2260 * Async queues must wait a bit before being allowed dispatch.
2261 * We also ramp up the dispatch depth gradually for async IO,
2262 * based on the last sync IO we serviced
2263 */
2264 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2265 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2266 unsigned int depth;
2267
2268 depth = last_sync / cfqd->cfq_slice[1];
2269 if (!depth && !cfqq->dispatched)
2270 depth = 1;
2271 if (depth < max_dispatch)
2272 max_dispatch = depth;
2273 }
2274
2275 /*
2276 * If we're below the current max, allow a dispatch
2277 */
2278 return cfqq->dispatched < max_dispatch;
2279 }
2280
2281 /*
2282 * Dispatch a request from cfqq, moving them to the request queue
2283 * dispatch list.
2284 */
2285 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2286 {
2287 struct request *rq;
2288
2289 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2290
2291 if (!cfq_may_dispatch(cfqd, cfqq))
2292 return false;
2293
2294 /*
2295 * follow expired path, else get first next available
2296 */
2297 rq = cfq_check_fifo(cfqq);
2298 if (!rq)
2299 rq = cfqq->next_rq;
2300
2301 /*
2302 * insert request into driver dispatch list
2303 */
2304 cfq_dispatch_insert(cfqd->queue, rq);
2305
2306 if (!cfqd->active_cic) {
2307 struct cfq_io_context *cic = RQ_CIC(rq);
2308
2309 atomic_long_inc(&cic->ioc->refcount);
2310 cfqd->active_cic = cic;
2311 }
2312
2313 return true;
2314 }
2315
2316 /*
2317 * Find the cfqq that we need to service and move a request from that to the
2318 * dispatch list
2319 */
2320 static int cfq_dispatch_requests(struct request_queue *q, int force)
2321 {
2322 struct cfq_data *cfqd = q->elevator->elevator_data;
2323 struct cfq_queue *cfqq;
2324
2325 if (!cfqd->busy_queues)
2326 return 0;
2327
2328 if (unlikely(force))
2329 return cfq_forced_dispatch(cfqd);
2330
2331 cfqq = cfq_select_queue(cfqd);
2332 if (!cfqq)
2333 return 0;
2334
2335 /*
2336 * Dispatch a request from this cfqq, if it is allowed
2337 */
2338 if (!cfq_dispatch_request(cfqd, cfqq))
2339 return 0;
2340
2341 cfqq->slice_dispatch++;
2342 cfq_clear_cfqq_must_dispatch(cfqq);
2343
2344 /*
2345 * expire an async queue immediately if it has used up its slice. idle
2346 * queue always expire after 1 dispatch round.
2347 */
2348 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2349 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2350 cfq_class_idle(cfqq))) {
2351 cfqq->slice_end = jiffies + 1;
2352 cfq_slice_expired(cfqd, 0);
2353 }
2354
2355 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2356 return 1;
2357 }
2358
2359 /*
2360 * task holds one reference to the queue, dropped when task exits. each rq
2361 * in-flight on this queue also holds a reference, dropped when rq is freed.
2362 *
2363 * Each cfq queue took a reference on the parent group. Drop it now.
2364 * queue lock must be held here.
2365 */
2366 static void cfq_put_queue(struct cfq_queue *cfqq)
2367 {
2368 struct cfq_data *cfqd = cfqq->cfqd;
2369 struct cfq_group *cfqg, *orig_cfqg;
2370
2371 BUG_ON(atomic_read(&cfqq->ref) <= 0);
2372
2373 if (!atomic_dec_and_test(&cfqq->ref))
2374 return;
2375
2376 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2377 BUG_ON(rb_first(&cfqq->sort_list));
2378 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2379 cfqg = cfqq->cfqg;
2380 orig_cfqg = cfqq->orig_cfqg;
2381
2382 if (unlikely(cfqd->active_queue == cfqq)) {
2383 __cfq_slice_expired(cfqd, cfqq, 0);
2384 cfq_schedule_dispatch(cfqd);
2385 }
2386
2387 BUG_ON(cfq_cfqq_on_rr(cfqq));
2388 kmem_cache_free(cfq_pool, cfqq);
2389 cfq_put_cfqg(cfqg);
2390 if (orig_cfqg)
2391 cfq_put_cfqg(orig_cfqg);
2392 }
2393
2394 /*
2395 * Must always be called with the rcu_read_lock() held
2396 */
2397 static void
2398 __call_for_each_cic(struct io_context *ioc,
2399 void (*func)(struct io_context *, struct cfq_io_context *))
2400 {
2401 struct cfq_io_context *cic;
2402 struct hlist_node *n;
2403
2404 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2405 func(ioc, cic);
2406 }
2407
2408 /*
2409 * Call func for each cic attached to this ioc.
2410 */
2411 static void
2412 call_for_each_cic(struct io_context *ioc,
2413 void (*func)(struct io_context *, struct cfq_io_context *))
2414 {
2415 rcu_read_lock();
2416 __call_for_each_cic(ioc, func);
2417 rcu_read_unlock();
2418 }
2419
2420 static void cfq_cic_free_rcu(struct rcu_head *head)
2421 {
2422 struct cfq_io_context *cic;
2423
2424 cic = container_of(head, struct cfq_io_context, rcu_head);
2425
2426 kmem_cache_free(cfq_ioc_pool, cic);
2427 elv_ioc_count_dec(cfq_ioc_count);
2428
2429 if (ioc_gone) {
2430 /*
2431 * CFQ scheduler is exiting, grab exit lock and check
2432 * the pending io context count. If it hits zero,
2433 * complete ioc_gone and set it back to NULL
2434 */
2435 spin_lock(&ioc_gone_lock);
2436 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2437 complete(ioc_gone);
2438 ioc_gone = NULL;
2439 }
2440 spin_unlock(&ioc_gone_lock);
2441 }
2442 }
2443
2444 static void cfq_cic_free(struct cfq_io_context *cic)
2445 {
2446 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2447 }
2448
2449 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2450 {
2451 unsigned long flags;
2452
2453 BUG_ON(!cic->dead_key);
2454
2455 spin_lock_irqsave(&ioc->lock, flags);
2456 radix_tree_delete(&ioc->radix_root, cic->dead_key);
2457 hlist_del_rcu(&cic->cic_list);
2458 spin_unlock_irqrestore(&ioc->lock, flags);
2459
2460 cfq_cic_free(cic);
2461 }
2462
2463 /*
2464 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2465 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2466 * and ->trim() which is called with the task lock held
2467 */
2468 static void cfq_free_io_context(struct io_context *ioc)
2469 {
2470 /*
2471 * ioc->refcount is zero here, or we are called from elv_unregister(),
2472 * so no more cic's are allowed to be linked into this ioc. So it
2473 * should be ok to iterate over the known list, we will see all cic's
2474 * since no new ones are added.
2475 */
2476 __call_for_each_cic(ioc, cic_free_func);
2477 }
2478
2479 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2480 {
2481 struct cfq_queue *__cfqq, *next;
2482
2483 if (unlikely(cfqq == cfqd->active_queue)) {
2484 __cfq_slice_expired(cfqd, cfqq, 0);
2485 cfq_schedule_dispatch(cfqd);
2486 }
2487
2488 /*
2489 * If this queue was scheduled to merge with another queue, be
2490 * sure to drop the reference taken on that queue (and others in
2491 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2492 */
2493 __cfqq = cfqq->new_cfqq;
2494 while (__cfqq) {
2495 if (__cfqq == cfqq) {
2496 WARN(1, "cfqq->new_cfqq loop detected\n");
2497 break;
2498 }
2499 next = __cfqq->new_cfqq;
2500 cfq_put_queue(__cfqq);
2501 __cfqq = next;
2502 }
2503
2504 cfq_put_queue(cfqq);
2505 }
2506
2507 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2508 struct cfq_io_context *cic)
2509 {
2510 struct io_context *ioc = cic->ioc;
2511
2512 list_del_init(&cic->queue_list);
2513
2514 /*
2515 * Make sure key == NULL is seen for dead queues
2516 */
2517 smp_wmb();
2518 cic->dead_key = (unsigned long) cic->key;
2519 cic->key = NULL;
2520
2521 if (ioc->ioc_data == cic)
2522 rcu_assign_pointer(ioc->ioc_data, NULL);
2523
2524 if (cic->cfqq[BLK_RW_ASYNC]) {
2525 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2526 cic->cfqq[BLK_RW_ASYNC] = NULL;
2527 }
2528
2529 if (cic->cfqq[BLK_RW_SYNC]) {
2530 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2531 cic->cfqq[BLK_RW_SYNC] = NULL;
2532 }
2533 }
2534
2535 static void cfq_exit_single_io_context(struct io_context *ioc,
2536 struct cfq_io_context *cic)
2537 {
2538 struct cfq_data *cfqd = cic->key;
2539
2540 if (cfqd) {
2541 struct request_queue *q = cfqd->queue;
2542 unsigned long flags;
2543
2544 spin_lock_irqsave(q->queue_lock, flags);
2545
2546 /*
2547 * Ensure we get a fresh copy of the ->key to prevent
2548 * race between exiting task and queue
2549 */
2550 smp_read_barrier_depends();
2551 if (cic->key)
2552 __cfq_exit_single_io_context(cfqd, cic);
2553
2554 spin_unlock_irqrestore(q->queue_lock, flags);
2555 }
2556 }
2557
2558 /*
2559 * The process that ioc belongs to has exited, we need to clean up
2560 * and put the internal structures we have that belongs to that process.
2561 */
2562 static void cfq_exit_io_context(struct io_context *ioc)
2563 {
2564 call_for_each_cic(ioc, cfq_exit_single_io_context);
2565 }
2566
2567 static struct cfq_io_context *
2568 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2569 {
2570 struct cfq_io_context *cic;
2571
2572 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2573 cfqd->queue->node);
2574 if (cic) {
2575 cic->last_end_request = jiffies;
2576 INIT_LIST_HEAD(&cic->queue_list);
2577 INIT_HLIST_NODE(&cic->cic_list);
2578 cic->dtor = cfq_free_io_context;
2579 cic->exit = cfq_exit_io_context;
2580 elv_ioc_count_inc(cfq_ioc_count);
2581 }
2582
2583 return cic;
2584 }
2585
2586 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2587 {
2588 struct task_struct *tsk = current;
2589 int ioprio_class;
2590
2591 if (!cfq_cfqq_prio_changed(cfqq))
2592 return;
2593
2594 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2595 switch (ioprio_class) {
2596 default:
2597 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2598 case IOPRIO_CLASS_NONE:
2599 /*
2600 * no prio set, inherit CPU scheduling settings
2601 */
2602 cfqq->ioprio = task_nice_ioprio(tsk);
2603 cfqq->ioprio_class = task_nice_ioclass(tsk);
2604 break;
2605 case IOPRIO_CLASS_RT:
2606 cfqq->ioprio = task_ioprio(ioc);
2607 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2608 break;
2609 case IOPRIO_CLASS_BE:
2610 cfqq->ioprio = task_ioprio(ioc);
2611 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2612 break;
2613 case IOPRIO_CLASS_IDLE:
2614 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2615 cfqq->ioprio = 7;
2616 cfq_clear_cfqq_idle_window(cfqq);
2617 break;
2618 }
2619
2620 /*
2621 * keep track of original prio settings in case we have to temporarily
2622 * elevate the priority of this queue
2623 */
2624 cfqq->org_ioprio = cfqq->ioprio;
2625 cfqq->org_ioprio_class = cfqq->ioprio_class;
2626 cfq_clear_cfqq_prio_changed(cfqq);
2627 }
2628
2629 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2630 {
2631 struct cfq_data *cfqd = cic->key;
2632 struct cfq_queue *cfqq;
2633 unsigned long flags;
2634
2635 if (unlikely(!cfqd))
2636 return;
2637
2638 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2639
2640 cfqq = cic->cfqq[BLK_RW_ASYNC];
2641 if (cfqq) {
2642 struct cfq_queue *new_cfqq;
2643 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2644 GFP_ATOMIC);
2645 if (new_cfqq) {
2646 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2647 cfq_put_queue(cfqq);
2648 }
2649 }
2650
2651 cfqq = cic->cfqq[BLK_RW_SYNC];
2652 if (cfqq)
2653 cfq_mark_cfqq_prio_changed(cfqq);
2654
2655 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2656 }
2657
2658 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2659 {
2660 call_for_each_cic(ioc, changed_ioprio);
2661 ioc->ioprio_changed = 0;
2662 }
2663
2664 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2665 pid_t pid, bool is_sync)
2666 {
2667 RB_CLEAR_NODE(&cfqq->rb_node);
2668 RB_CLEAR_NODE(&cfqq->p_node);
2669 INIT_LIST_HEAD(&cfqq->fifo);
2670
2671 atomic_set(&cfqq->ref, 0);
2672 cfqq->cfqd = cfqd;
2673
2674 cfq_mark_cfqq_prio_changed(cfqq);
2675
2676 if (is_sync) {
2677 if (!cfq_class_idle(cfqq))
2678 cfq_mark_cfqq_idle_window(cfqq);
2679 cfq_mark_cfqq_sync(cfqq);
2680 }
2681 cfqq->pid = pid;
2682 }
2683
2684 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2685 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2686 {
2687 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2688 struct cfq_data *cfqd = cic->key;
2689 unsigned long flags;
2690 struct request_queue *q;
2691
2692 if (unlikely(!cfqd))
2693 return;
2694
2695 q = cfqd->queue;
2696
2697 spin_lock_irqsave(q->queue_lock, flags);
2698
2699 if (sync_cfqq) {
2700 /*
2701 * Drop reference to sync queue. A new sync queue will be
2702 * assigned in new group upon arrival of a fresh request.
2703 */
2704 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2705 cic_set_cfqq(cic, NULL, 1);
2706 cfq_put_queue(sync_cfqq);
2707 }
2708
2709 spin_unlock_irqrestore(q->queue_lock, flags);
2710 }
2711
2712 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2713 {
2714 call_for_each_cic(ioc, changed_cgroup);
2715 ioc->cgroup_changed = 0;
2716 }
2717 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2718
2719 static struct cfq_queue *
2720 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2721 struct io_context *ioc, gfp_t gfp_mask)
2722 {
2723 struct cfq_queue *cfqq, *new_cfqq = NULL;
2724 struct cfq_io_context *cic;
2725 struct cfq_group *cfqg;
2726
2727 retry:
2728 cfqg = cfq_get_cfqg(cfqd, 1);
2729 cic = cfq_cic_lookup(cfqd, ioc);
2730 /* cic always exists here */
2731 cfqq = cic_to_cfqq(cic, is_sync);
2732
2733 /*
2734 * Always try a new alloc if we fell back to the OOM cfqq
2735 * originally, since it should just be a temporary situation.
2736 */
2737 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2738 cfqq = NULL;
2739 if (new_cfqq) {
2740 cfqq = new_cfqq;
2741 new_cfqq = NULL;
2742 } else if (gfp_mask & __GFP_WAIT) {
2743 spin_unlock_irq(cfqd->queue->queue_lock);
2744 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2745 gfp_mask | __GFP_ZERO,
2746 cfqd->queue->node);
2747 spin_lock_irq(cfqd->queue->queue_lock);
2748 if (new_cfqq)
2749 goto retry;
2750 } else {
2751 cfqq = kmem_cache_alloc_node(cfq_pool,
2752 gfp_mask | __GFP_ZERO,
2753 cfqd->queue->node);
2754 }
2755
2756 if (cfqq) {
2757 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2758 cfq_init_prio_data(cfqq, ioc);
2759 cfq_link_cfqq_cfqg(cfqq, cfqg);
2760 cfq_log_cfqq(cfqd, cfqq, "alloced");
2761 } else
2762 cfqq = &cfqd->oom_cfqq;
2763 }
2764
2765 if (new_cfqq)
2766 kmem_cache_free(cfq_pool, new_cfqq);
2767
2768 return cfqq;
2769 }
2770
2771 static struct cfq_queue **
2772 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2773 {
2774 switch (ioprio_class) {
2775 case IOPRIO_CLASS_RT:
2776 return &cfqd->async_cfqq[0][ioprio];
2777 case IOPRIO_CLASS_BE:
2778 return &cfqd->async_cfqq[1][ioprio];
2779 case IOPRIO_CLASS_IDLE:
2780 return &cfqd->async_idle_cfqq;
2781 default:
2782 BUG();
2783 }
2784 }
2785
2786 static struct cfq_queue *
2787 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2788 gfp_t gfp_mask)
2789 {
2790 const int ioprio = task_ioprio(ioc);
2791 const int ioprio_class = task_ioprio_class(ioc);
2792 struct cfq_queue **async_cfqq = NULL;
2793 struct cfq_queue *cfqq = NULL;
2794
2795 if (!is_sync) {
2796 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2797 cfqq = *async_cfqq;
2798 }
2799
2800 if (!cfqq)
2801 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2802
2803 /*
2804 * pin the queue now that it's allocated, scheduler exit will prune it
2805 */
2806 if (!is_sync && !(*async_cfqq)) {
2807 atomic_inc(&cfqq->ref);
2808 *async_cfqq = cfqq;
2809 }
2810
2811 atomic_inc(&cfqq->ref);
2812 return cfqq;
2813 }
2814
2815 /*
2816 * We drop cfq io contexts lazily, so we may find a dead one.
2817 */
2818 static void
2819 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2820 struct cfq_io_context *cic)
2821 {
2822 unsigned long flags;
2823
2824 WARN_ON(!list_empty(&cic->queue_list));
2825
2826 spin_lock_irqsave(&ioc->lock, flags);
2827
2828 BUG_ON(ioc->ioc_data == cic);
2829
2830 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2831 hlist_del_rcu(&cic->cic_list);
2832 spin_unlock_irqrestore(&ioc->lock, flags);
2833
2834 cfq_cic_free(cic);
2835 }
2836
2837 static struct cfq_io_context *
2838 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2839 {
2840 struct cfq_io_context *cic;
2841 unsigned long flags;
2842 void *k;
2843
2844 if (unlikely(!ioc))
2845 return NULL;
2846
2847 rcu_read_lock();
2848
2849 /*
2850 * we maintain a last-hit cache, to avoid browsing over the tree
2851 */
2852 cic = rcu_dereference(ioc->ioc_data);
2853 if (cic && cic->key == cfqd) {
2854 rcu_read_unlock();
2855 return cic;
2856 }
2857
2858 do {
2859 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2860 rcu_read_unlock();
2861 if (!cic)
2862 break;
2863 /* ->key must be copied to avoid race with cfq_exit_queue() */
2864 k = cic->key;
2865 if (unlikely(!k)) {
2866 cfq_drop_dead_cic(cfqd, ioc, cic);
2867 rcu_read_lock();
2868 continue;
2869 }
2870
2871 spin_lock_irqsave(&ioc->lock, flags);
2872 rcu_assign_pointer(ioc->ioc_data, cic);
2873 spin_unlock_irqrestore(&ioc->lock, flags);
2874 break;
2875 } while (1);
2876
2877 return cic;
2878 }
2879
2880 /*
2881 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2882 * the process specific cfq io context when entered from the block layer.
2883 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2884 */
2885 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2886 struct cfq_io_context *cic, gfp_t gfp_mask)
2887 {
2888 unsigned long flags;
2889 int ret;
2890
2891 ret = radix_tree_preload(gfp_mask);
2892 if (!ret) {
2893 cic->ioc = ioc;
2894 cic->key = cfqd;
2895
2896 spin_lock_irqsave(&ioc->lock, flags);
2897 ret = radix_tree_insert(&ioc->radix_root,
2898 (unsigned long) cfqd, cic);
2899 if (!ret)
2900 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2901 spin_unlock_irqrestore(&ioc->lock, flags);
2902
2903 radix_tree_preload_end();
2904
2905 if (!ret) {
2906 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2907 list_add(&cic->queue_list, &cfqd->cic_list);
2908 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2909 }
2910 }
2911
2912 if (ret)
2913 printk(KERN_ERR "cfq: cic link failed!\n");
2914
2915 return ret;
2916 }
2917
2918 /*
2919 * Setup general io context and cfq io context. There can be several cfq
2920 * io contexts per general io context, if this process is doing io to more
2921 * than one device managed by cfq.
2922 */
2923 static struct cfq_io_context *
2924 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2925 {
2926 struct io_context *ioc = NULL;
2927 struct cfq_io_context *cic;
2928
2929 might_sleep_if(gfp_mask & __GFP_WAIT);
2930
2931 ioc = get_io_context(gfp_mask, cfqd->queue->node);
2932 if (!ioc)
2933 return NULL;
2934
2935 cic = cfq_cic_lookup(cfqd, ioc);
2936 if (cic)
2937 goto out;
2938
2939 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2940 if (cic == NULL)
2941 goto err;
2942
2943 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2944 goto err_free;
2945
2946 out:
2947 smp_read_barrier_depends();
2948 if (unlikely(ioc->ioprio_changed))
2949 cfq_ioc_set_ioprio(ioc);
2950
2951 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2952 if (unlikely(ioc->cgroup_changed))
2953 cfq_ioc_set_cgroup(ioc);
2954 #endif
2955 return cic;
2956 err_free:
2957 cfq_cic_free(cic);
2958 err:
2959 put_io_context(ioc);
2960 return NULL;
2961 }
2962
2963 static void
2964 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2965 {
2966 unsigned long elapsed = jiffies - cic->last_end_request;
2967 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2968
2969 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2970 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2971 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2972 }
2973
2974 static void
2975 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2976 struct request *rq)
2977 {
2978 sector_t sdist;
2979 u64 total;
2980
2981 if (!cfqq->last_request_pos)
2982 sdist = 0;
2983 else if (cfqq->last_request_pos < blk_rq_pos(rq))
2984 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2985 else
2986 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2987
2988 /*
2989 * Don't allow the seek distance to get too large from the
2990 * odd fragment, pagein, etc
2991 */
2992 if (cfqq->seek_samples <= 60) /* second&third seek */
2993 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2994 else
2995 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2996
2997 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2998 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2999 total = cfqq->seek_total + (cfqq->seek_samples/2);
3000 do_div(total, cfqq->seek_samples);
3001 cfqq->seek_mean = (sector_t)total;
3002 }
3003
3004 /*
3005 * Disable idle window if the process thinks too long or seeks so much that
3006 * it doesn't matter
3007 */
3008 static void
3009 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3010 struct cfq_io_context *cic)
3011 {
3012 int old_idle, enable_idle;
3013
3014 /*
3015 * Don't idle for async or idle io prio class
3016 */
3017 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3018 return;
3019
3020 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3021
3022 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3023 cfq_mark_cfqq_deep(cfqq);
3024
3025 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3026 (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
3027 && CFQQ_SEEKY(cfqq)))
3028 enable_idle = 0;
3029 else if (sample_valid(cic->ttime_samples)) {
3030 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3031 enable_idle = 0;
3032 else
3033 enable_idle = 1;
3034 }
3035
3036 if (old_idle != enable_idle) {
3037 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3038 if (enable_idle)
3039 cfq_mark_cfqq_idle_window(cfqq);
3040 else
3041 cfq_clear_cfqq_idle_window(cfqq);
3042 }
3043 }
3044
3045 /*
3046 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3047 * no or if we aren't sure, a 1 will cause a preempt.
3048 */
3049 static bool
3050 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3051 struct request *rq)
3052 {
3053 struct cfq_queue *cfqq;
3054
3055 cfqq = cfqd->active_queue;
3056 if (!cfqq)
3057 return false;
3058
3059 if (cfq_class_idle(new_cfqq))
3060 return false;
3061
3062 if (cfq_class_idle(cfqq))
3063 return true;
3064
3065 /*
3066 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3067 */
3068 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3069 return false;
3070
3071 /*
3072 * if the new request is sync, but the currently running queue is
3073 * not, let the sync request have priority.
3074 */
3075 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3076 return true;
3077
3078 if (new_cfqq->cfqg != cfqq->cfqg)
3079 return false;
3080
3081 if (cfq_slice_used(cfqq))
3082 return true;
3083
3084 /* Allow preemption only if we are idling on sync-noidle tree */
3085 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3086 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3087 new_cfqq->service_tree->count == 2 &&
3088 RB_EMPTY_ROOT(&cfqq->sort_list))
3089 return true;
3090
3091 /*
3092 * So both queues are sync. Let the new request get disk time if
3093 * it's a metadata request and the current queue is doing regular IO.
3094 */
3095 if (rq_is_meta(rq) && !cfqq->meta_pending)
3096 return true;
3097
3098 /*
3099 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3100 */
3101 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3102 return true;
3103
3104 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3105 return false;
3106
3107 /*
3108 * if this request is as-good as one we would expect from the
3109 * current cfqq, let it preempt
3110 */
3111 if (cfq_rq_close(cfqd, cfqq, rq, true))
3112 return true;
3113
3114 return false;
3115 }
3116
3117 /*
3118 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3119 * let it have half of its nominal slice.
3120 */
3121 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3122 {
3123 cfq_log_cfqq(cfqd, cfqq, "preempt");
3124 cfq_slice_expired(cfqd, 1);
3125
3126 /*
3127 * Put the new queue at the front of the of the current list,
3128 * so we know that it will be selected next.
3129 */
3130 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3131
3132 cfq_service_tree_add(cfqd, cfqq, 1);
3133
3134 cfqq->slice_end = 0;
3135 cfq_mark_cfqq_slice_new(cfqq);
3136 }
3137
3138 /*
3139 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3140 * something we should do about it
3141 */
3142 static void
3143 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3144 struct request *rq)
3145 {
3146 struct cfq_io_context *cic = RQ_CIC(rq);
3147
3148 cfqd->rq_queued++;
3149 if (rq_is_meta(rq))
3150 cfqq->meta_pending++;
3151
3152 cfq_update_io_thinktime(cfqd, cic);
3153 cfq_update_io_seektime(cfqd, cfqq, rq);
3154 cfq_update_idle_window(cfqd, cfqq, cic);
3155
3156 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3157
3158 if (cfqq == cfqd->active_queue) {
3159 /*
3160 * Remember that we saw a request from this process, but
3161 * don't start queuing just yet. Otherwise we risk seeing lots
3162 * of tiny requests, because we disrupt the normal plugging
3163 * and merging. If the request is already larger than a single
3164 * page, let it rip immediately. For that case we assume that
3165 * merging is already done. Ditto for a busy system that
3166 * has other work pending, don't risk delaying until the
3167 * idle timer unplug to continue working.
3168 */
3169 if (cfq_cfqq_wait_request(cfqq)) {
3170 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3171 cfqd->busy_queues > 1) {
3172 del_timer(&cfqd->idle_slice_timer);
3173 cfq_clear_cfqq_wait_request(cfqq);
3174 __blk_run_queue(cfqd->queue);
3175 } else
3176 cfq_mark_cfqq_must_dispatch(cfqq);
3177 }
3178 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3179 /*
3180 * not the active queue - expire current slice if it is
3181 * idle and has expired it's mean thinktime or this new queue
3182 * has some old slice time left and is of higher priority or
3183 * this new queue is RT and the current one is BE
3184 */
3185 cfq_preempt_queue(cfqd, cfqq);
3186 __blk_run_queue(cfqd->queue);
3187 }
3188 }
3189
3190 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3191 {
3192 struct cfq_data *cfqd = q->elevator->elevator_data;
3193 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3194
3195 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3196 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3197
3198 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3199 list_add_tail(&rq->queuelist, &cfqq->fifo);
3200 cfq_add_rq_rb(rq);
3201
3202 cfq_rq_enqueued(cfqd, cfqq, rq);
3203 }
3204
3205 /*
3206 * Update hw_tag based on peak queue depth over 50 samples under
3207 * sufficient load.
3208 */
3209 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3210 {
3211 struct cfq_queue *cfqq = cfqd->active_queue;
3212
3213 if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
3214 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
3215
3216 if (cfqd->hw_tag == 1)
3217 return;
3218
3219 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3220 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
3221 return;
3222
3223 /*
3224 * If active queue hasn't enough requests and can idle, cfq might not
3225 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3226 * case
3227 */
3228 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3229 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3230 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
3231 return;
3232
3233 if (cfqd->hw_tag_samples++ < 50)
3234 return;
3235
3236 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3237 cfqd->hw_tag = 1;
3238 else
3239 cfqd->hw_tag = 0;
3240 }
3241
3242 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3243 {
3244 struct cfq_io_context *cic = cfqd->active_cic;
3245
3246 /* If there are other queues in the group, don't wait */
3247 if (cfqq->cfqg->nr_cfqq > 1)
3248 return false;
3249
3250 if (cfq_slice_used(cfqq))
3251 return true;
3252
3253 /* if slice left is less than think time, wait busy */
3254 if (cic && sample_valid(cic->ttime_samples)
3255 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3256 return true;
3257
3258 /*
3259 * If think times is less than a jiffy than ttime_mean=0 and above
3260 * will not be true. It might happen that slice has not expired yet
3261 * but will expire soon (4-5 ns) during select_queue(). To cover the
3262 * case where think time is less than a jiffy, mark the queue wait
3263 * busy if only 1 jiffy is left in the slice.
3264 */
3265 if (cfqq->slice_end - jiffies == 1)
3266 return true;
3267
3268 return false;
3269 }
3270
3271 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3272 {
3273 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3274 struct cfq_data *cfqd = cfqq->cfqd;
3275 const int sync = rq_is_sync(rq);
3276 unsigned long now;
3277
3278 now = jiffies;
3279 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3280
3281 cfq_update_hw_tag(cfqd);
3282
3283 WARN_ON(!cfqd->rq_in_driver[sync]);
3284 WARN_ON(!cfqq->dispatched);
3285 cfqd->rq_in_driver[sync]--;
3286 cfqq->dispatched--;
3287
3288 if (cfq_cfqq_sync(cfqq))
3289 cfqd->sync_flight--;
3290
3291 if (sync) {
3292 RQ_CIC(rq)->last_end_request = now;
3293 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3294 cfqd->last_delayed_sync = now;
3295 }
3296
3297 /*
3298 * If this is the active queue, check if it needs to be expired,
3299 * or if we want to idle in case it has no pending requests.
3300 */
3301 if (cfqd->active_queue == cfqq) {
3302 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3303
3304 if (cfq_cfqq_slice_new(cfqq)) {
3305 cfq_set_prio_slice(cfqd, cfqq);
3306 cfq_clear_cfqq_slice_new(cfqq);
3307 }
3308
3309 /*
3310 * Should we wait for next request to come in before we expire
3311 * the queue.
3312 */
3313 if (cfq_should_wait_busy(cfqd, cfqq)) {
3314 cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3315 cfq_mark_cfqq_wait_busy(cfqq);
3316 }
3317
3318 /*
3319 * Idling is not enabled on:
3320 * - expired queues
3321 * - idle-priority queues
3322 * - async queues
3323 * - queues with still some requests queued
3324 * - when there is a close cooperator
3325 */
3326 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3327 cfq_slice_expired(cfqd, 1);
3328 else if (sync && cfqq_empty &&
3329 !cfq_close_cooperator(cfqd, cfqq)) {
3330 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3331 /*
3332 * Idling is enabled for SYNC_WORKLOAD.
3333 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3334 * only if we processed at least one !rq_noidle request
3335 */
3336 if (cfqd->serving_type == SYNC_WORKLOAD
3337 || cfqd->noidle_tree_requires_idle
3338 || cfqq->cfqg->nr_cfqq == 1)
3339 cfq_arm_slice_timer(cfqd);
3340 }
3341 }
3342
3343 if (!rq_in_driver(cfqd))
3344 cfq_schedule_dispatch(cfqd);
3345 }
3346
3347 /*
3348 * we temporarily boost lower priority queues if they are holding fs exclusive
3349 * resources. they are boosted to normal prio (CLASS_BE/4)
3350 */
3351 static void cfq_prio_boost(struct cfq_queue *cfqq)
3352 {
3353 if (has_fs_excl()) {
3354 /*
3355 * boost idle prio on transactions that would lock out other
3356 * users of the filesystem
3357 */
3358 if (cfq_class_idle(cfqq))
3359 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3360 if (cfqq->ioprio > IOPRIO_NORM)
3361 cfqq->ioprio = IOPRIO_NORM;
3362 } else {
3363 /*
3364 * unboost the queue (if needed)
3365 */
3366 cfqq->ioprio_class = cfqq->org_ioprio_class;
3367 cfqq->ioprio = cfqq->org_ioprio;
3368 }
3369 }
3370
3371 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3372 {
3373 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3374 cfq_mark_cfqq_must_alloc_slice(cfqq);
3375 return ELV_MQUEUE_MUST;
3376 }
3377
3378 return ELV_MQUEUE_MAY;
3379 }
3380
3381 static int cfq_may_queue(struct request_queue *q, int rw)
3382 {
3383 struct cfq_data *cfqd = q->elevator->elevator_data;
3384 struct task_struct *tsk = current;
3385 struct cfq_io_context *cic;
3386 struct cfq_queue *cfqq;
3387
3388 /*
3389 * don't force setup of a queue from here, as a call to may_queue
3390 * does not necessarily imply that a request actually will be queued.
3391 * so just lookup a possibly existing queue, or return 'may queue'
3392 * if that fails
3393 */
3394 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3395 if (!cic)
3396 return ELV_MQUEUE_MAY;
3397
3398 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3399 if (cfqq) {
3400 cfq_init_prio_data(cfqq, cic->ioc);
3401 cfq_prio_boost(cfqq);
3402
3403 return __cfq_may_queue(cfqq);
3404 }
3405
3406 return ELV_MQUEUE_MAY;
3407 }
3408
3409 /*
3410 * queue lock held here
3411 */
3412 static void cfq_put_request(struct request *rq)
3413 {
3414 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3415
3416 if (cfqq) {
3417 const int rw = rq_data_dir(rq);
3418
3419 BUG_ON(!cfqq->allocated[rw]);
3420 cfqq->allocated[rw]--;
3421
3422 put_io_context(RQ_CIC(rq)->ioc);
3423
3424 rq->elevator_private = NULL;
3425 rq->elevator_private2 = NULL;
3426
3427 cfq_put_queue(cfqq);
3428 }
3429 }
3430
3431 static struct cfq_queue *
3432 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3433 struct cfq_queue *cfqq)
3434 {
3435 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3436 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3437 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3438 cfq_put_queue(cfqq);
3439 return cic_to_cfqq(cic, 1);
3440 }
3441
3442 /*
3443 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3444 * was the last process referring to said cfqq.
3445 */
3446 static struct cfq_queue *
3447 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3448 {
3449 if (cfqq_process_refs(cfqq) == 1) {
3450 cfqq->pid = current->pid;
3451 cfq_clear_cfqq_coop(cfqq);
3452 cfq_clear_cfqq_split_coop(cfqq);
3453 return cfqq;
3454 }
3455
3456 cic_set_cfqq(cic, NULL, 1);
3457 cfq_put_queue(cfqq);
3458 return NULL;
3459 }
3460 /*
3461 * Allocate cfq data structures associated with this request.
3462 */
3463 static int
3464 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3465 {
3466 struct cfq_data *cfqd = q->elevator->elevator_data;
3467 struct cfq_io_context *cic;
3468 const int rw = rq_data_dir(rq);
3469 const bool is_sync = rq_is_sync(rq);
3470 struct cfq_queue *cfqq;
3471 unsigned long flags;
3472
3473 might_sleep_if(gfp_mask & __GFP_WAIT);
3474
3475 cic = cfq_get_io_context(cfqd, gfp_mask);
3476
3477 spin_lock_irqsave(q->queue_lock, flags);
3478
3479 if (!cic)
3480 goto queue_fail;
3481
3482 new_queue:
3483 cfqq = cic_to_cfqq(cic, is_sync);
3484 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3485 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3486 cic_set_cfqq(cic, cfqq, is_sync);
3487 } else {
3488 /*
3489 * If the queue was seeky for too long, break it apart.
3490 */
3491 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3492 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3493 cfqq = split_cfqq(cic, cfqq);
3494 if (!cfqq)
3495 goto new_queue;
3496 }
3497
3498 /*
3499 * Check to see if this queue is scheduled to merge with
3500 * another, closely cooperating queue. The merging of
3501 * queues happens here as it must be done in process context.
3502 * The reference on new_cfqq was taken in merge_cfqqs.
3503 */
3504 if (cfqq->new_cfqq)
3505 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3506 }
3507
3508 cfqq->allocated[rw]++;
3509 atomic_inc(&cfqq->ref);
3510
3511 spin_unlock_irqrestore(q->queue_lock, flags);
3512
3513 rq->elevator_private = cic;
3514 rq->elevator_private2 = cfqq;
3515 return 0;
3516
3517 queue_fail:
3518 if (cic)
3519 put_io_context(cic->ioc);
3520
3521 cfq_schedule_dispatch(cfqd);
3522 spin_unlock_irqrestore(q->queue_lock, flags);
3523 cfq_log(cfqd, "set_request fail");
3524 return 1;
3525 }
3526
3527 static void cfq_kick_queue(struct work_struct *work)
3528 {
3529 struct cfq_data *cfqd =
3530 container_of(work, struct cfq_data, unplug_work);
3531 struct request_queue *q = cfqd->queue;
3532
3533 spin_lock_irq(q->queue_lock);
3534 __blk_run_queue(cfqd->queue);
3535 spin_unlock_irq(q->queue_lock);
3536 }
3537
3538 /*
3539 * Timer running if the active_queue is currently idling inside its time slice
3540 */
3541 static void cfq_idle_slice_timer(unsigned long data)
3542 {
3543 struct cfq_data *cfqd = (struct cfq_data *) data;
3544 struct cfq_queue *cfqq;
3545 unsigned long flags;
3546 int timed_out = 1;
3547
3548 cfq_log(cfqd, "idle timer fired");
3549
3550 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3551
3552 cfqq = cfqd->active_queue;
3553 if (cfqq) {
3554 timed_out = 0;
3555
3556 /*
3557 * We saw a request before the queue expired, let it through
3558 */
3559 if (cfq_cfqq_must_dispatch(cfqq))
3560 goto out_kick;
3561
3562 /*
3563 * expired
3564 */
3565 if (cfq_slice_used(cfqq))
3566 goto expire;
3567
3568 /*
3569 * only expire and reinvoke request handler, if there are
3570 * other queues with pending requests
3571 */
3572 if (!cfqd->busy_queues)
3573 goto out_cont;
3574
3575 /*
3576 * not expired and it has a request pending, let it dispatch
3577 */
3578 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3579 goto out_kick;
3580
3581 /*
3582 * Queue depth flag is reset only when the idle didn't succeed
3583 */
3584 cfq_clear_cfqq_deep(cfqq);
3585 }
3586 expire:
3587 cfq_slice_expired(cfqd, timed_out);
3588 out_kick:
3589 cfq_schedule_dispatch(cfqd);
3590 out_cont:
3591 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3592 }
3593
3594 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3595 {
3596 del_timer_sync(&cfqd->idle_slice_timer);
3597 cancel_work_sync(&cfqd->unplug_work);
3598 }
3599
3600 static void cfq_put_async_queues(struct cfq_data *cfqd)
3601 {
3602 int i;
3603
3604 for (i = 0; i < IOPRIO_BE_NR; i++) {
3605 if (cfqd->async_cfqq[0][i])
3606 cfq_put_queue(cfqd->async_cfqq[0][i]);
3607 if (cfqd->async_cfqq[1][i])
3608 cfq_put_queue(cfqd->async_cfqq[1][i]);
3609 }
3610
3611 if (cfqd->async_idle_cfqq)
3612 cfq_put_queue(cfqd->async_idle_cfqq);
3613 }
3614
3615 static void cfq_cfqd_free(struct rcu_head *head)
3616 {
3617 kfree(container_of(head, struct cfq_data, rcu));
3618 }
3619
3620 static void cfq_exit_queue(struct elevator_queue *e)
3621 {
3622 struct cfq_data *cfqd = e->elevator_data;
3623 struct request_queue *q = cfqd->queue;
3624
3625 cfq_shutdown_timer_wq(cfqd);
3626
3627 spin_lock_irq(q->queue_lock);
3628
3629 if (cfqd->active_queue)
3630 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3631
3632 while (!list_empty(&cfqd->cic_list)) {
3633 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3634 struct cfq_io_context,
3635 queue_list);
3636
3637 __cfq_exit_single_io_context(cfqd, cic);
3638 }
3639
3640 cfq_put_async_queues(cfqd);
3641 cfq_release_cfq_groups(cfqd);
3642 blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3643
3644 spin_unlock_irq(q->queue_lock);
3645
3646 cfq_shutdown_timer_wq(cfqd);
3647
3648 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3649 call_rcu(&cfqd->rcu, cfq_cfqd_free);
3650 }
3651
3652 static void *cfq_init_queue(struct request_queue *q)
3653 {
3654 struct cfq_data *cfqd;
3655 int i, j;
3656 struct cfq_group *cfqg;
3657 struct cfq_rb_root *st;
3658
3659 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3660 if (!cfqd)
3661 return NULL;
3662
3663 /* Init root service tree */
3664 cfqd->grp_service_tree = CFQ_RB_ROOT;
3665
3666 /* Init root group */
3667 cfqg = &cfqd->root_group;
3668 for_each_cfqg_st(cfqg, i, j, st)
3669 *st = CFQ_RB_ROOT;
3670 RB_CLEAR_NODE(&cfqg->rb_node);
3671
3672 /* Give preference to root group over other groups */
3673 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3674
3675 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3676 /*
3677 * Take a reference to root group which we never drop. This is just
3678 * to make sure that cfq_put_cfqg() does not try to kfree root group
3679 */
3680 atomic_set(&cfqg->ref, 1);
3681 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3682 0);
3683 #endif
3684 /*
3685 * Not strictly needed (since RB_ROOT just clears the node and we
3686 * zeroed cfqd on alloc), but better be safe in case someone decides
3687 * to add magic to the rb code
3688 */
3689 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3690 cfqd->prio_trees[i] = RB_ROOT;
3691
3692 /*
3693 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3694 * Grab a permanent reference to it, so that the normal code flow
3695 * will not attempt to free it.
3696 */
3697 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3698 atomic_inc(&cfqd->oom_cfqq.ref);
3699 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3700
3701 INIT_LIST_HEAD(&cfqd->cic_list);
3702
3703 cfqd->queue = q;
3704
3705 init_timer(&cfqd->idle_slice_timer);
3706 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3707 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3708
3709 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3710
3711 cfqd->cfq_quantum = cfq_quantum;
3712 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3713 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3714 cfqd->cfq_back_max = cfq_back_max;
3715 cfqd->cfq_back_penalty = cfq_back_penalty;
3716 cfqd->cfq_slice[0] = cfq_slice_async;
3717 cfqd->cfq_slice[1] = cfq_slice_sync;
3718 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3719 cfqd->cfq_slice_idle = cfq_slice_idle;
3720 cfqd->cfq_latency = 1;
3721 cfqd->cfq_group_isolation = 0;
3722 cfqd->hw_tag = -1;
3723 /*
3724 * we optimistically start assuming sync ops weren't delayed in last
3725 * second, in order to have larger depth for async operations.
3726 */
3727 cfqd->last_delayed_sync = jiffies - HZ;
3728 INIT_RCU_HEAD(&cfqd->rcu);
3729 return cfqd;
3730 }
3731
3732 static void cfq_slab_kill(void)
3733 {
3734 /*
3735 * Caller already ensured that pending RCU callbacks are completed,
3736 * so we should have no busy allocations at this point.
3737 */
3738 if (cfq_pool)
3739 kmem_cache_destroy(cfq_pool);
3740 if (cfq_ioc_pool)
3741 kmem_cache_destroy(cfq_ioc_pool);
3742 }
3743
3744 static int __init cfq_slab_setup(void)
3745 {
3746 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3747 if (!cfq_pool)
3748 goto fail;
3749
3750 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3751 if (!cfq_ioc_pool)
3752 goto fail;
3753
3754 return 0;
3755 fail:
3756 cfq_slab_kill();
3757 return -ENOMEM;
3758 }
3759
3760 /*
3761 * sysfs parts below -->
3762 */
3763 static ssize_t
3764 cfq_var_show(unsigned int var, char *page)
3765 {
3766 return sprintf(page, "%d\n", var);
3767 }
3768
3769 static ssize_t
3770 cfq_var_store(unsigned int *var, const char *page, size_t count)
3771 {
3772 char *p = (char *) page;
3773
3774 *var = simple_strtoul(p, &p, 10);
3775 return count;
3776 }
3777
3778 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3779 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3780 { \
3781 struct cfq_data *cfqd = e->elevator_data; \
3782 unsigned int __data = __VAR; \
3783 if (__CONV) \
3784 __data = jiffies_to_msecs(__data); \
3785 return cfq_var_show(__data, (page)); \
3786 }
3787 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3788 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3789 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3790 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3791 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3792 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3793 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3794 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3795 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3796 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3797 SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
3798 #undef SHOW_FUNCTION
3799
3800 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3801 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3802 { \
3803 struct cfq_data *cfqd = e->elevator_data; \
3804 unsigned int __data; \
3805 int ret = cfq_var_store(&__data, (page), count); \
3806 if (__data < (MIN)) \
3807 __data = (MIN); \
3808 else if (__data > (MAX)) \
3809 __data = (MAX); \
3810 if (__CONV) \
3811 *(__PTR) = msecs_to_jiffies(__data); \
3812 else \
3813 *(__PTR) = __data; \
3814 return ret; \
3815 }
3816 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3817 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3818 UINT_MAX, 1);
3819 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3820 UINT_MAX, 1);
3821 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3822 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3823 UINT_MAX, 0);
3824 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3825 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3826 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3827 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3828 UINT_MAX, 0);
3829 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3830 STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
3831 #undef STORE_FUNCTION
3832
3833 #define CFQ_ATTR(name) \
3834 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3835
3836 static struct elv_fs_entry cfq_attrs[] = {
3837 CFQ_ATTR(quantum),
3838 CFQ_ATTR(fifo_expire_sync),
3839 CFQ_ATTR(fifo_expire_async),
3840 CFQ_ATTR(back_seek_max),
3841 CFQ_ATTR(back_seek_penalty),
3842 CFQ_ATTR(slice_sync),
3843 CFQ_ATTR(slice_async),
3844 CFQ_ATTR(slice_async_rq),
3845 CFQ_ATTR(slice_idle),
3846 CFQ_ATTR(low_latency),
3847 CFQ_ATTR(group_isolation),
3848 __ATTR_NULL
3849 };
3850
3851 static struct elevator_type iosched_cfq = {
3852 .ops = {
3853 .elevator_merge_fn = cfq_merge,
3854 .elevator_merged_fn = cfq_merged_request,
3855 .elevator_merge_req_fn = cfq_merged_requests,
3856 .elevator_allow_merge_fn = cfq_allow_merge,
3857 .elevator_dispatch_fn = cfq_dispatch_requests,
3858 .elevator_add_req_fn = cfq_insert_request,
3859 .elevator_activate_req_fn = cfq_activate_request,
3860 .elevator_deactivate_req_fn = cfq_deactivate_request,
3861 .elevator_queue_empty_fn = cfq_queue_empty,
3862 .elevator_completed_req_fn = cfq_completed_request,
3863 .elevator_former_req_fn = elv_rb_former_request,
3864 .elevator_latter_req_fn = elv_rb_latter_request,
3865 .elevator_set_req_fn = cfq_set_request,
3866 .elevator_put_req_fn = cfq_put_request,
3867 .elevator_may_queue_fn = cfq_may_queue,
3868 .elevator_init_fn = cfq_init_queue,
3869 .elevator_exit_fn = cfq_exit_queue,
3870 .trim = cfq_free_io_context,
3871 },
3872 .elevator_attrs = cfq_attrs,
3873 .elevator_name = "cfq",
3874 .elevator_owner = THIS_MODULE,
3875 };
3876
3877 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3878 static struct blkio_policy_type blkio_policy_cfq = {
3879 .ops = {
3880 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
3881 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3882 },
3883 };
3884 #else
3885 static struct blkio_policy_type blkio_policy_cfq;
3886 #endif
3887
3888 static int __init cfq_init(void)
3889 {
3890 /*
3891 * could be 0 on HZ < 1000 setups
3892 */
3893 if (!cfq_slice_async)
3894 cfq_slice_async = 1;
3895 if (!cfq_slice_idle)
3896 cfq_slice_idle = 1;
3897
3898 if (cfq_slab_setup())
3899 return -ENOMEM;
3900
3901 elv_register(&iosched_cfq);
3902 blkio_policy_register(&blkio_policy_cfq);
3903
3904 return 0;
3905 }
3906
3907 static void __exit cfq_exit(void)
3908 {
3909 DECLARE_COMPLETION_ONSTACK(all_gone);
3910 blkio_policy_unregister(&blkio_policy_cfq);
3911 elv_unregister(&iosched_cfq);
3912 ioc_gone = &all_gone;
3913 /* ioc_gone's update must be visible before reading ioc_count */
3914 smp_wmb();
3915
3916 /*
3917 * this also protects us from entering cfq_slab_kill() with
3918 * pending RCU callbacks
3919 */
3920 if (elv_ioc_count_read(cfq_ioc_count))
3921 wait_for_completion(&all_gone);
3922 cfq_slab_kill();
3923 }
3924
3925 module_init(cfq_init);
3926 module_exit(cfq_exit);
3927
3928 MODULE_AUTHOR("Jens Axboe");
3929 MODULE_LICENSE("GPL");
3930 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
This page took 0.162195 seconds and 6 git commands to generate.