blkio: Introduce the root service tree for cfq groups
[deliverable/linux.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
16
17 /*
18 * tunables
19 */
20 /* max queue in one round of service */
21 static const int cfq_quantum = 4;
22 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
23 /* maximum backwards seek, in KiB */
24 static const int cfq_back_max = 16 * 1024;
25 /* penalty of a backwards seek */
26 static const int cfq_back_penalty = 2;
27 static const int cfq_slice_sync = HZ / 10;
28 static int cfq_slice_async = HZ / 25;
29 static const int cfq_slice_async_rq = 2;
30 static int cfq_slice_idle = HZ / 125;
31 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
32 static const int cfq_hist_divisor = 4;
33
34 /*
35 * offset from end of service tree
36 */
37 #define CFQ_IDLE_DELAY (HZ / 5)
38
39 /*
40 * below this threshold, we consider thinktime immediate
41 */
42 #define CFQ_MIN_TT (2)
43
44 /*
45 * Allow merged cfqqs to perform this amount of seeky I/O before
46 * deciding to break the queues up again.
47 */
48 #define CFQQ_COOP_TOUT (HZ)
49
50 #define CFQ_SLICE_SCALE (5)
51 #define CFQ_HW_QUEUE_MIN (5)
52
53 #define RQ_CIC(rq) \
54 ((struct cfq_io_context *) (rq)->elevator_private)
55 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
56
57 static struct kmem_cache *cfq_pool;
58 static struct kmem_cache *cfq_ioc_pool;
59
60 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
61 static struct completion *ioc_gone;
62 static DEFINE_SPINLOCK(ioc_gone_lock);
63
64 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
65 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
66 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
67
68 #define sample_valid(samples) ((samples) > 80)
69 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
70
71 /*
72 * Most of our rbtree usage is for sorting with min extraction, so
73 * if we cache the leftmost node we don't have to walk down the tree
74 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
75 * move this into the elevator for the rq sorting as well.
76 */
77 struct cfq_rb_root {
78 struct rb_root rb;
79 struct rb_node *left;
80 unsigned count;
81 u64 min_vdisktime;
82 };
83 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
84
85 /*
86 * Per process-grouping structure
87 */
88 struct cfq_queue {
89 /* reference count */
90 atomic_t ref;
91 /* various state flags, see below */
92 unsigned int flags;
93 /* parent cfq_data */
94 struct cfq_data *cfqd;
95 /* service_tree member */
96 struct rb_node rb_node;
97 /* service_tree key */
98 unsigned long rb_key;
99 /* prio tree member */
100 struct rb_node p_node;
101 /* prio tree root we belong to, if any */
102 struct rb_root *p_root;
103 /* sorted list of pending requests */
104 struct rb_root sort_list;
105 /* if fifo isn't expired, next request to serve */
106 struct request *next_rq;
107 /* requests queued in sort_list */
108 int queued[2];
109 /* currently allocated requests */
110 int allocated[2];
111 /* fifo list of requests in sort_list */
112 struct list_head fifo;
113
114 unsigned long slice_end;
115 long slice_resid;
116 unsigned int slice_dispatch;
117
118 /* pending metadata requests */
119 int meta_pending;
120 /* number of requests that are on the dispatch list or inside driver */
121 int dispatched;
122
123 /* io prio of this group */
124 unsigned short ioprio, org_ioprio;
125 unsigned short ioprio_class, org_ioprio_class;
126
127 unsigned int seek_samples;
128 u64 seek_total;
129 sector_t seek_mean;
130 sector_t last_request_pos;
131 unsigned long seeky_start;
132
133 pid_t pid;
134
135 struct cfq_rb_root *service_tree;
136 struct cfq_queue *new_cfqq;
137 struct cfq_group *cfqg;
138 };
139
140 /*
141 * First index in the service_trees.
142 * IDLE is handled separately, so it has negative index
143 */
144 enum wl_prio_t {
145 BE_WORKLOAD = 0,
146 RT_WORKLOAD = 1,
147 IDLE_WORKLOAD = 2,
148 };
149
150 /*
151 * Second index in the service_trees.
152 */
153 enum wl_type_t {
154 ASYNC_WORKLOAD = 0,
155 SYNC_NOIDLE_WORKLOAD = 1,
156 SYNC_WORKLOAD = 2
157 };
158
159 /* This is per cgroup per device grouping structure */
160 struct cfq_group {
161 /* group service_tree member */
162 struct rb_node rb_node;
163
164 /* group service_tree key */
165 u64 vdisktime;
166 bool on_st;
167
168 /* number of cfqq currently on this group */
169 int nr_cfqq;
170
171 /*
172 * rr lists of queues with requests, onle rr for each priority class.
173 * Counts are embedded in the cfq_rb_root
174 */
175 struct cfq_rb_root service_trees[2][3];
176 struct cfq_rb_root service_tree_idle;
177 };
178
179 /*
180 * Per block device queue structure
181 */
182 struct cfq_data {
183 struct request_queue *queue;
184 /* Root service tree for cfq_groups */
185 struct cfq_rb_root grp_service_tree;
186 struct cfq_group root_group;
187
188 /*
189 * The priority currently being served
190 */
191 enum wl_prio_t serving_prio;
192 enum wl_type_t serving_type;
193 unsigned long workload_expires;
194 struct cfq_group *serving_group;
195 bool noidle_tree_requires_idle;
196
197 /*
198 * Each priority tree is sorted by next_request position. These
199 * trees are used when determining if two or more queues are
200 * interleaving requests (see cfq_close_cooperator).
201 */
202 struct rb_root prio_trees[CFQ_PRIO_LISTS];
203
204 unsigned int busy_queues;
205 unsigned int busy_queues_avg[2];
206
207 int rq_in_driver[2];
208 int sync_flight;
209
210 /*
211 * queue-depth detection
212 */
213 int rq_queued;
214 int hw_tag;
215 /*
216 * hw_tag can be
217 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
218 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
219 * 0 => no NCQ
220 */
221 int hw_tag_est_depth;
222 unsigned int hw_tag_samples;
223
224 /*
225 * idle window management
226 */
227 struct timer_list idle_slice_timer;
228 struct work_struct unplug_work;
229
230 struct cfq_queue *active_queue;
231 struct cfq_io_context *active_cic;
232
233 /*
234 * async queue for each priority case
235 */
236 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
237 struct cfq_queue *async_idle_cfqq;
238
239 sector_t last_position;
240
241 /*
242 * tunables, see top of file
243 */
244 unsigned int cfq_quantum;
245 unsigned int cfq_fifo_expire[2];
246 unsigned int cfq_back_penalty;
247 unsigned int cfq_back_max;
248 unsigned int cfq_slice[2];
249 unsigned int cfq_slice_async_rq;
250 unsigned int cfq_slice_idle;
251 unsigned int cfq_latency;
252
253 struct list_head cic_list;
254
255 /*
256 * Fallback dummy cfqq for extreme OOM conditions
257 */
258 struct cfq_queue oom_cfqq;
259
260 unsigned long last_end_sync_rq;
261 };
262
263 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
264 enum wl_prio_t prio,
265 enum wl_type_t type,
266 struct cfq_data *cfqd)
267 {
268 if (!cfqg)
269 return NULL;
270
271 if (prio == IDLE_WORKLOAD)
272 return &cfqg->service_tree_idle;
273
274 return &cfqg->service_trees[prio][type];
275 }
276
277 enum cfqq_state_flags {
278 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
279 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
280 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
281 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
282 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
283 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
284 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
285 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
286 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
287 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
288 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
289 };
290
291 #define CFQ_CFQQ_FNS(name) \
292 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
293 { \
294 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
295 } \
296 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
297 { \
298 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
299 } \
300 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
301 { \
302 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
303 }
304
305 CFQ_CFQQ_FNS(on_rr);
306 CFQ_CFQQ_FNS(wait_request);
307 CFQ_CFQQ_FNS(must_dispatch);
308 CFQ_CFQQ_FNS(must_alloc_slice);
309 CFQ_CFQQ_FNS(fifo_expire);
310 CFQ_CFQQ_FNS(idle_window);
311 CFQ_CFQQ_FNS(prio_changed);
312 CFQ_CFQQ_FNS(slice_new);
313 CFQ_CFQQ_FNS(sync);
314 CFQ_CFQQ_FNS(coop);
315 CFQ_CFQQ_FNS(deep);
316 #undef CFQ_CFQQ_FNS
317
318 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
319 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
320 #define cfq_log(cfqd, fmt, args...) \
321 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
322
323 /* Traverses through cfq group service trees */
324 #define for_each_cfqg_st(cfqg, i, j, st) \
325 for (i = 0; i <= IDLE_WORKLOAD; i++) \
326 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
327 : &cfqg->service_tree_idle; \
328 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
329 (i == IDLE_WORKLOAD && j == 0); \
330 j++, st = i < IDLE_WORKLOAD ? \
331 &cfqg->service_trees[i][j]: NULL) \
332
333
334 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
335 {
336 if (cfq_class_idle(cfqq))
337 return IDLE_WORKLOAD;
338 if (cfq_class_rt(cfqq))
339 return RT_WORKLOAD;
340 return BE_WORKLOAD;
341 }
342
343
344 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
345 {
346 if (!cfq_cfqq_sync(cfqq))
347 return ASYNC_WORKLOAD;
348 if (!cfq_cfqq_idle_window(cfqq))
349 return SYNC_NOIDLE_WORKLOAD;
350 return SYNC_WORKLOAD;
351 }
352
353 static inline int cfq_busy_queues_wl(enum wl_prio_t wl, struct cfq_data *cfqd)
354 {
355 struct cfq_group *cfqg = &cfqd->root_group;
356
357 if (wl == IDLE_WORKLOAD)
358 return cfqg->service_tree_idle.count;
359
360 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
361 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
362 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
363 }
364
365 static void cfq_dispatch_insert(struct request_queue *, struct request *);
366 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
367 struct io_context *, gfp_t);
368 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
369 struct io_context *);
370
371 static inline int rq_in_driver(struct cfq_data *cfqd)
372 {
373 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
374 }
375
376 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
377 bool is_sync)
378 {
379 return cic->cfqq[is_sync];
380 }
381
382 static inline void cic_set_cfqq(struct cfq_io_context *cic,
383 struct cfq_queue *cfqq, bool is_sync)
384 {
385 cic->cfqq[is_sync] = cfqq;
386 }
387
388 /*
389 * We regard a request as SYNC, if it's either a read or has the SYNC bit
390 * set (in which case it could also be direct WRITE).
391 */
392 static inline bool cfq_bio_sync(struct bio *bio)
393 {
394 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
395 }
396
397 /*
398 * scheduler run of queue, if there are requests pending and no one in the
399 * driver that will restart queueing
400 */
401 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
402 {
403 if (cfqd->busy_queues) {
404 cfq_log(cfqd, "schedule dispatch");
405 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
406 }
407 }
408
409 static int cfq_queue_empty(struct request_queue *q)
410 {
411 struct cfq_data *cfqd = q->elevator->elevator_data;
412
413 return !cfqd->rq_queued;
414 }
415
416 /*
417 * Scale schedule slice based on io priority. Use the sync time slice only
418 * if a queue is marked sync and has sync io queued. A sync queue with async
419 * io only, should not get full sync slice length.
420 */
421 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
422 unsigned short prio)
423 {
424 const int base_slice = cfqd->cfq_slice[sync];
425
426 WARN_ON(prio >= IOPRIO_BE_NR);
427
428 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
429 }
430
431 static inline int
432 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
433 {
434 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
435 }
436
437 /*
438 * get averaged number of queues of RT/BE priority.
439 * average is updated, with a formula that gives more weight to higher numbers,
440 * to quickly follows sudden increases and decrease slowly
441 */
442
443 static inline unsigned cfq_get_avg_queues(struct cfq_data *cfqd, bool rt)
444 {
445 unsigned min_q, max_q;
446 unsigned mult = cfq_hist_divisor - 1;
447 unsigned round = cfq_hist_divisor / 2;
448 unsigned busy = cfq_busy_queues_wl(rt, cfqd);
449
450 min_q = min(cfqd->busy_queues_avg[rt], busy);
451 max_q = max(cfqd->busy_queues_avg[rt], busy);
452 cfqd->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
453 cfq_hist_divisor;
454 return cfqd->busy_queues_avg[rt];
455 }
456
457 static inline void
458 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
459 {
460 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
461 if (cfqd->cfq_latency) {
462 /* interested queues (we consider only the ones with the same
463 * priority class) */
464 unsigned iq = cfq_get_avg_queues(cfqd, cfq_class_rt(cfqq));
465 unsigned sync_slice = cfqd->cfq_slice[1];
466 unsigned expect_latency = sync_slice * iq;
467 if (expect_latency > cfq_target_latency) {
468 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
469 /* scale low_slice according to IO priority
470 * and sync vs async */
471 unsigned low_slice =
472 min(slice, base_low_slice * slice / sync_slice);
473 /* the adapted slice value is scaled to fit all iqs
474 * into the target latency */
475 slice = max(slice * cfq_target_latency / expect_latency,
476 low_slice);
477 }
478 }
479 cfqq->slice_end = jiffies + slice;
480 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
481 }
482
483 /*
484 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
485 * isn't valid until the first request from the dispatch is activated
486 * and the slice time set.
487 */
488 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
489 {
490 if (cfq_cfqq_slice_new(cfqq))
491 return 0;
492 if (time_before(jiffies, cfqq->slice_end))
493 return 0;
494
495 return 1;
496 }
497
498 /*
499 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
500 * We choose the request that is closest to the head right now. Distance
501 * behind the head is penalized and only allowed to a certain extent.
502 */
503 static struct request *
504 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
505 {
506 sector_t s1, s2, d1 = 0, d2 = 0;
507 unsigned long back_max;
508 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
509 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
510 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
511
512 if (rq1 == NULL || rq1 == rq2)
513 return rq2;
514 if (rq2 == NULL)
515 return rq1;
516
517 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
518 return rq1;
519 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
520 return rq2;
521 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
522 return rq1;
523 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
524 return rq2;
525
526 s1 = blk_rq_pos(rq1);
527 s2 = blk_rq_pos(rq2);
528
529 /*
530 * by definition, 1KiB is 2 sectors
531 */
532 back_max = cfqd->cfq_back_max * 2;
533
534 /*
535 * Strict one way elevator _except_ in the case where we allow
536 * short backward seeks which are biased as twice the cost of a
537 * similar forward seek.
538 */
539 if (s1 >= last)
540 d1 = s1 - last;
541 else if (s1 + back_max >= last)
542 d1 = (last - s1) * cfqd->cfq_back_penalty;
543 else
544 wrap |= CFQ_RQ1_WRAP;
545
546 if (s2 >= last)
547 d2 = s2 - last;
548 else if (s2 + back_max >= last)
549 d2 = (last - s2) * cfqd->cfq_back_penalty;
550 else
551 wrap |= CFQ_RQ2_WRAP;
552
553 /* Found required data */
554
555 /*
556 * By doing switch() on the bit mask "wrap" we avoid having to
557 * check two variables for all permutations: --> faster!
558 */
559 switch (wrap) {
560 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
561 if (d1 < d2)
562 return rq1;
563 else if (d2 < d1)
564 return rq2;
565 else {
566 if (s1 >= s2)
567 return rq1;
568 else
569 return rq2;
570 }
571
572 case CFQ_RQ2_WRAP:
573 return rq1;
574 case CFQ_RQ1_WRAP:
575 return rq2;
576 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
577 default:
578 /*
579 * Since both rqs are wrapped,
580 * start with the one that's further behind head
581 * (--> only *one* back seek required),
582 * since back seek takes more time than forward.
583 */
584 if (s1 <= s2)
585 return rq1;
586 else
587 return rq2;
588 }
589 }
590
591 /*
592 * The below is leftmost cache rbtree addon
593 */
594 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
595 {
596 /* Service tree is empty */
597 if (!root->count)
598 return NULL;
599
600 if (!root->left)
601 root->left = rb_first(&root->rb);
602
603 if (root->left)
604 return rb_entry(root->left, struct cfq_queue, rb_node);
605
606 return NULL;
607 }
608
609 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
610 {
611 if (!root->left)
612 root->left = rb_first(&root->rb);
613
614 if (root->left)
615 return rb_entry_cfqg(root->left);
616
617 return NULL;
618 }
619
620 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
621 {
622 rb_erase(n, root);
623 RB_CLEAR_NODE(n);
624 }
625
626 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
627 {
628 if (root->left == n)
629 root->left = NULL;
630 rb_erase_init(n, &root->rb);
631 --root->count;
632 }
633
634 /*
635 * would be nice to take fifo expire time into account as well
636 */
637 static struct request *
638 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
639 struct request *last)
640 {
641 struct rb_node *rbnext = rb_next(&last->rb_node);
642 struct rb_node *rbprev = rb_prev(&last->rb_node);
643 struct request *next = NULL, *prev = NULL;
644
645 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
646
647 if (rbprev)
648 prev = rb_entry_rq(rbprev);
649
650 if (rbnext)
651 next = rb_entry_rq(rbnext);
652 else {
653 rbnext = rb_first(&cfqq->sort_list);
654 if (rbnext && rbnext != &last->rb_node)
655 next = rb_entry_rq(rbnext);
656 }
657
658 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
659 }
660
661 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
662 struct cfq_queue *cfqq)
663 {
664 /*
665 * just an approximation, should be ok.
666 */
667 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
668 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
669 }
670
671 static inline s64
672 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
673 {
674 return cfqg->vdisktime - st->min_vdisktime;
675 }
676
677 static void
678 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
679 {
680 struct rb_node **node = &st->rb.rb_node;
681 struct rb_node *parent = NULL;
682 struct cfq_group *__cfqg;
683 s64 key = cfqg_key(st, cfqg);
684 int left = 1;
685
686 while (*node != NULL) {
687 parent = *node;
688 __cfqg = rb_entry_cfqg(parent);
689
690 if (key < cfqg_key(st, __cfqg))
691 node = &parent->rb_left;
692 else {
693 node = &parent->rb_right;
694 left = 0;
695 }
696 }
697
698 if (left)
699 st->left = &cfqg->rb_node;
700
701 rb_link_node(&cfqg->rb_node, parent, node);
702 rb_insert_color(&cfqg->rb_node, &st->rb);
703 }
704
705 static void
706 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
707 {
708 struct cfq_rb_root *st = &cfqd->grp_service_tree;
709 struct cfq_group *__cfqg;
710 struct rb_node *n;
711
712 cfqg->nr_cfqq++;
713 if (cfqg->on_st)
714 return;
715
716 /*
717 * Currently put the group at the end. Later implement something
718 * so that groups get lesser vtime based on their weights, so that
719 * if group does not loose all if it was not continously backlogged.
720 */
721 n = rb_last(&st->rb);
722 if (n) {
723 __cfqg = rb_entry_cfqg(n);
724 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
725 } else
726 cfqg->vdisktime = st->min_vdisktime;
727
728 __cfq_group_service_tree_add(st, cfqg);
729 cfqg->on_st = true;
730 }
731
732 static void
733 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
734 {
735 struct cfq_rb_root *st = &cfqd->grp_service_tree;
736
737 BUG_ON(cfqg->nr_cfqq < 1);
738 cfqg->nr_cfqq--;
739 /* If there are other cfq queues under this group, don't delete it */
740 if (cfqg->nr_cfqq)
741 return;
742
743 cfqg->on_st = false;
744 if (!RB_EMPTY_NODE(&cfqg->rb_node))
745 cfq_rb_erase(&cfqg->rb_node, st);
746 }
747
748 /*
749 * The cfqd->service_trees holds all pending cfq_queue's that have
750 * requests waiting to be processed. It is sorted in the order that
751 * we will service the queues.
752 */
753 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
754 bool add_front)
755 {
756 struct rb_node **p, *parent;
757 struct cfq_queue *__cfqq;
758 unsigned long rb_key;
759 struct cfq_rb_root *service_tree;
760 int left;
761
762 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
763 cfqq_type(cfqq), cfqd);
764 if (cfq_class_idle(cfqq)) {
765 rb_key = CFQ_IDLE_DELAY;
766 parent = rb_last(&service_tree->rb);
767 if (parent && parent != &cfqq->rb_node) {
768 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
769 rb_key += __cfqq->rb_key;
770 } else
771 rb_key += jiffies;
772 } else if (!add_front) {
773 /*
774 * Get our rb key offset. Subtract any residual slice
775 * value carried from last service. A negative resid
776 * count indicates slice overrun, and this should position
777 * the next service time further away in the tree.
778 */
779 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
780 rb_key -= cfqq->slice_resid;
781 cfqq->slice_resid = 0;
782 } else {
783 rb_key = -HZ;
784 __cfqq = cfq_rb_first(service_tree);
785 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
786 }
787
788 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
789 /*
790 * same position, nothing more to do
791 */
792 if (rb_key == cfqq->rb_key &&
793 cfqq->service_tree == service_tree)
794 return;
795
796 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
797 cfqq->service_tree = NULL;
798 }
799
800 left = 1;
801 parent = NULL;
802 cfqq->service_tree = service_tree;
803 p = &service_tree->rb.rb_node;
804 while (*p) {
805 struct rb_node **n;
806
807 parent = *p;
808 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
809
810 /*
811 * sort by key, that represents service time.
812 */
813 if (time_before(rb_key, __cfqq->rb_key))
814 n = &(*p)->rb_left;
815 else {
816 n = &(*p)->rb_right;
817 left = 0;
818 }
819
820 p = n;
821 }
822
823 if (left)
824 service_tree->left = &cfqq->rb_node;
825
826 cfqq->rb_key = rb_key;
827 rb_link_node(&cfqq->rb_node, parent, p);
828 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
829 service_tree->count++;
830 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
831 }
832
833 static struct cfq_queue *
834 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
835 sector_t sector, struct rb_node **ret_parent,
836 struct rb_node ***rb_link)
837 {
838 struct rb_node **p, *parent;
839 struct cfq_queue *cfqq = NULL;
840
841 parent = NULL;
842 p = &root->rb_node;
843 while (*p) {
844 struct rb_node **n;
845
846 parent = *p;
847 cfqq = rb_entry(parent, struct cfq_queue, p_node);
848
849 /*
850 * Sort strictly based on sector. Smallest to the left,
851 * largest to the right.
852 */
853 if (sector > blk_rq_pos(cfqq->next_rq))
854 n = &(*p)->rb_right;
855 else if (sector < blk_rq_pos(cfqq->next_rq))
856 n = &(*p)->rb_left;
857 else
858 break;
859 p = n;
860 cfqq = NULL;
861 }
862
863 *ret_parent = parent;
864 if (rb_link)
865 *rb_link = p;
866 return cfqq;
867 }
868
869 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
870 {
871 struct rb_node **p, *parent;
872 struct cfq_queue *__cfqq;
873
874 if (cfqq->p_root) {
875 rb_erase(&cfqq->p_node, cfqq->p_root);
876 cfqq->p_root = NULL;
877 }
878
879 if (cfq_class_idle(cfqq))
880 return;
881 if (!cfqq->next_rq)
882 return;
883
884 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
885 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
886 blk_rq_pos(cfqq->next_rq), &parent, &p);
887 if (!__cfqq) {
888 rb_link_node(&cfqq->p_node, parent, p);
889 rb_insert_color(&cfqq->p_node, cfqq->p_root);
890 } else
891 cfqq->p_root = NULL;
892 }
893
894 /*
895 * Update cfqq's position in the service tree.
896 */
897 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
898 {
899 /*
900 * Resorting requires the cfqq to be on the RR list already.
901 */
902 if (cfq_cfqq_on_rr(cfqq)) {
903 cfq_service_tree_add(cfqd, cfqq, 0);
904 cfq_prio_tree_add(cfqd, cfqq);
905 }
906 }
907
908 /*
909 * add to busy list of queues for service, trying to be fair in ordering
910 * the pending list according to last request service
911 */
912 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
913 {
914 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
915 BUG_ON(cfq_cfqq_on_rr(cfqq));
916 cfq_mark_cfqq_on_rr(cfqq);
917 cfqd->busy_queues++;
918
919 cfq_resort_rr_list(cfqd, cfqq);
920 }
921
922 /*
923 * Called when the cfqq no longer has requests pending, remove it from
924 * the service tree.
925 */
926 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
927 {
928 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
929 BUG_ON(!cfq_cfqq_on_rr(cfqq));
930 cfq_clear_cfqq_on_rr(cfqq);
931
932 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
933 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
934 cfqq->service_tree = NULL;
935 }
936 if (cfqq->p_root) {
937 rb_erase(&cfqq->p_node, cfqq->p_root);
938 cfqq->p_root = NULL;
939 }
940
941 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
942 BUG_ON(!cfqd->busy_queues);
943 cfqd->busy_queues--;
944 }
945
946 /*
947 * rb tree support functions
948 */
949 static void cfq_del_rq_rb(struct request *rq)
950 {
951 struct cfq_queue *cfqq = RQ_CFQQ(rq);
952 const int sync = rq_is_sync(rq);
953
954 BUG_ON(!cfqq->queued[sync]);
955 cfqq->queued[sync]--;
956
957 elv_rb_del(&cfqq->sort_list, rq);
958
959 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
960 /*
961 * Queue will be deleted from service tree when we actually
962 * expire it later. Right now just remove it from prio tree
963 * as it is empty.
964 */
965 if (cfqq->p_root) {
966 rb_erase(&cfqq->p_node, cfqq->p_root);
967 cfqq->p_root = NULL;
968 }
969 }
970 }
971
972 static void cfq_add_rq_rb(struct request *rq)
973 {
974 struct cfq_queue *cfqq = RQ_CFQQ(rq);
975 struct cfq_data *cfqd = cfqq->cfqd;
976 struct request *__alias, *prev;
977
978 cfqq->queued[rq_is_sync(rq)]++;
979
980 /*
981 * looks a little odd, but the first insert might return an alias.
982 * if that happens, put the alias on the dispatch list
983 */
984 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
985 cfq_dispatch_insert(cfqd->queue, __alias);
986
987 if (!cfq_cfqq_on_rr(cfqq))
988 cfq_add_cfqq_rr(cfqd, cfqq);
989
990 /*
991 * check if this request is a better next-serve candidate
992 */
993 prev = cfqq->next_rq;
994 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
995
996 /*
997 * adjust priority tree position, if ->next_rq changes
998 */
999 if (prev != cfqq->next_rq)
1000 cfq_prio_tree_add(cfqd, cfqq);
1001
1002 BUG_ON(!cfqq->next_rq);
1003 }
1004
1005 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1006 {
1007 elv_rb_del(&cfqq->sort_list, rq);
1008 cfqq->queued[rq_is_sync(rq)]--;
1009 cfq_add_rq_rb(rq);
1010 }
1011
1012 static struct request *
1013 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1014 {
1015 struct task_struct *tsk = current;
1016 struct cfq_io_context *cic;
1017 struct cfq_queue *cfqq;
1018
1019 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1020 if (!cic)
1021 return NULL;
1022
1023 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1024 if (cfqq) {
1025 sector_t sector = bio->bi_sector + bio_sectors(bio);
1026
1027 return elv_rb_find(&cfqq->sort_list, sector);
1028 }
1029
1030 return NULL;
1031 }
1032
1033 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1034 {
1035 struct cfq_data *cfqd = q->elevator->elevator_data;
1036
1037 cfqd->rq_in_driver[rq_is_sync(rq)]++;
1038 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1039 rq_in_driver(cfqd));
1040
1041 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1042 }
1043
1044 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1045 {
1046 struct cfq_data *cfqd = q->elevator->elevator_data;
1047 const int sync = rq_is_sync(rq);
1048
1049 WARN_ON(!cfqd->rq_in_driver[sync]);
1050 cfqd->rq_in_driver[sync]--;
1051 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1052 rq_in_driver(cfqd));
1053 }
1054
1055 static void cfq_remove_request(struct request *rq)
1056 {
1057 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1058
1059 if (cfqq->next_rq == rq)
1060 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1061
1062 list_del_init(&rq->queuelist);
1063 cfq_del_rq_rb(rq);
1064
1065 cfqq->cfqd->rq_queued--;
1066 if (rq_is_meta(rq)) {
1067 WARN_ON(!cfqq->meta_pending);
1068 cfqq->meta_pending--;
1069 }
1070 }
1071
1072 static int cfq_merge(struct request_queue *q, struct request **req,
1073 struct bio *bio)
1074 {
1075 struct cfq_data *cfqd = q->elevator->elevator_data;
1076 struct request *__rq;
1077
1078 __rq = cfq_find_rq_fmerge(cfqd, bio);
1079 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1080 *req = __rq;
1081 return ELEVATOR_FRONT_MERGE;
1082 }
1083
1084 return ELEVATOR_NO_MERGE;
1085 }
1086
1087 static void cfq_merged_request(struct request_queue *q, struct request *req,
1088 int type)
1089 {
1090 if (type == ELEVATOR_FRONT_MERGE) {
1091 struct cfq_queue *cfqq = RQ_CFQQ(req);
1092
1093 cfq_reposition_rq_rb(cfqq, req);
1094 }
1095 }
1096
1097 static void
1098 cfq_merged_requests(struct request_queue *q, struct request *rq,
1099 struct request *next)
1100 {
1101 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1102 /*
1103 * reposition in fifo if next is older than rq
1104 */
1105 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1106 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1107 list_move(&rq->queuelist, &next->queuelist);
1108 rq_set_fifo_time(rq, rq_fifo_time(next));
1109 }
1110
1111 if (cfqq->next_rq == next)
1112 cfqq->next_rq = rq;
1113 cfq_remove_request(next);
1114 }
1115
1116 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1117 struct bio *bio)
1118 {
1119 struct cfq_data *cfqd = q->elevator->elevator_data;
1120 struct cfq_io_context *cic;
1121 struct cfq_queue *cfqq;
1122
1123 /*
1124 * Disallow merge of a sync bio into an async request.
1125 */
1126 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1127 return false;
1128
1129 /*
1130 * Lookup the cfqq that this bio will be queued with. Allow
1131 * merge only if rq is queued there.
1132 */
1133 cic = cfq_cic_lookup(cfqd, current->io_context);
1134 if (!cic)
1135 return false;
1136
1137 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1138 return cfqq == RQ_CFQQ(rq);
1139 }
1140
1141 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1142 struct cfq_queue *cfqq)
1143 {
1144 if (cfqq) {
1145 cfq_log_cfqq(cfqd, cfqq, "set_active");
1146 cfqq->slice_end = 0;
1147 cfqq->slice_dispatch = 0;
1148
1149 cfq_clear_cfqq_wait_request(cfqq);
1150 cfq_clear_cfqq_must_dispatch(cfqq);
1151 cfq_clear_cfqq_must_alloc_slice(cfqq);
1152 cfq_clear_cfqq_fifo_expire(cfqq);
1153 cfq_mark_cfqq_slice_new(cfqq);
1154
1155 del_timer(&cfqd->idle_slice_timer);
1156 }
1157
1158 cfqd->active_queue = cfqq;
1159 }
1160
1161 /*
1162 * current cfqq expired its slice (or was too idle), select new one
1163 */
1164 static void
1165 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1166 bool timed_out)
1167 {
1168 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1169
1170 if (cfq_cfqq_wait_request(cfqq))
1171 del_timer(&cfqd->idle_slice_timer);
1172
1173 cfq_clear_cfqq_wait_request(cfqq);
1174
1175 /*
1176 * store what was left of this slice, if the queue idled/timed out
1177 */
1178 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1179 cfqq->slice_resid = cfqq->slice_end - jiffies;
1180 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1181 }
1182
1183 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1184 cfq_del_cfqq_rr(cfqd, cfqq);
1185
1186 cfq_resort_rr_list(cfqd, cfqq);
1187
1188 if (cfqq == cfqd->active_queue)
1189 cfqd->active_queue = NULL;
1190
1191 if (cfqd->active_cic) {
1192 put_io_context(cfqd->active_cic->ioc);
1193 cfqd->active_cic = NULL;
1194 }
1195 }
1196
1197 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1198 {
1199 struct cfq_queue *cfqq = cfqd->active_queue;
1200
1201 if (cfqq)
1202 __cfq_slice_expired(cfqd, cfqq, timed_out);
1203 }
1204
1205 /*
1206 * Get next queue for service. Unless we have a queue preemption,
1207 * we'll simply select the first cfqq in the service tree.
1208 */
1209 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1210 {
1211 struct cfq_rb_root *service_tree =
1212 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1213 cfqd->serving_type, cfqd);
1214
1215 if (!cfqd->rq_queued)
1216 return NULL;
1217
1218 /* There is nothing to dispatch */
1219 if (!service_tree)
1220 return NULL;
1221 if (RB_EMPTY_ROOT(&service_tree->rb))
1222 return NULL;
1223 return cfq_rb_first(service_tree);
1224 }
1225
1226 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1227 {
1228 struct cfq_group *cfqg = &cfqd->root_group;
1229 struct cfq_queue *cfqq;
1230 int i, j;
1231 struct cfq_rb_root *st;
1232
1233 if (!cfqd->rq_queued)
1234 return NULL;
1235
1236 for_each_cfqg_st(cfqg, i, j, st)
1237 if ((cfqq = cfq_rb_first(st)) != NULL)
1238 return cfqq;
1239 return NULL;
1240 }
1241
1242 /*
1243 * Get and set a new active queue for service.
1244 */
1245 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1246 struct cfq_queue *cfqq)
1247 {
1248 if (!cfqq)
1249 cfqq = cfq_get_next_queue(cfqd);
1250
1251 __cfq_set_active_queue(cfqd, cfqq);
1252 return cfqq;
1253 }
1254
1255 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1256 struct request *rq)
1257 {
1258 if (blk_rq_pos(rq) >= cfqd->last_position)
1259 return blk_rq_pos(rq) - cfqd->last_position;
1260 else
1261 return cfqd->last_position - blk_rq_pos(rq);
1262 }
1263
1264 #define CFQQ_SEEK_THR 8 * 1024
1265 #define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
1266
1267 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1268 struct request *rq)
1269 {
1270 sector_t sdist = cfqq->seek_mean;
1271
1272 if (!sample_valid(cfqq->seek_samples))
1273 sdist = CFQQ_SEEK_THR;
1274
1275 return cfq_dist_from_last(cfqd, rq) <= sdist;
1276 }
1277
1278 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1279 struct cfq_queue *cur_cfqq)
1280 {
1281 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1282 struct rb_node *parent, *node;
1283 struct cfq_queue *__cfqq;
1284 sector_t sector = cfqd->last_position;
1285
1286 if (RB_EMPTY_ROOT(root))
1287 return NULL;
1288
1289 /*
1290 * First, if we find a request starting at the end of the last
1291 * request, choose it.
1292 */
1293 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1294 if (__cfqq)
1295 return __cfqq;
1296
1297 /*
1298 * If the exact sector wasn't found, the parent of the NULL leaf
1299 * will contain the closest sector.
1300 */
1301 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1302 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1303 return __cfqq;
1304
1305 if (blk_rq_pos(__cfqq->next_rq) < sector)
1306 node = rb_next(&__cfqq->p_node);
1307 else
1308 node = rb_prev(&__cfqq->p_node);
1309 if (!node)
1310 return NULL;
1311
1312 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1313 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1314 return __cfqq;
1315
1316 return NULL;
1317 }
1318
1319 /*
1320 * cfqd - obvious
1321 * cur_cfqq - passed in so that we don't decide that the current queue is
1322 * closely cooperating with itself.
1323 *
1324 * So, basically we're assuming that that cur_cfqq has dispatched at least
1325 * one request, and that cfqd->last_position reflects a position on the disk
1326 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1327 * assumption.
1328 */
1329 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1330 struct cfq_queue *cur_cfqq)
1331 {
1332 struct cfq_queue *cfqq;
1333
1334 if (!cfq_cfqq_sync(cur_cfqq))
1335 return NULL;
1336 if (CFQQ_SEEKY(cur_cfqq))
1337 return NULL;
1338
1339 /*
1340 * We should notice if some of the queues are cooperating, eg
1341 * working closely on the same area of the disk. In that case,
1342 * we can group them together and don't waste time idling.
1343 */
1344 cfqq = cfqq_close(cfqd, cur_cfqq);
1345 if (!cfqq)
1346 return NULL;
1347
1348 /*
1349 * It only makes sense to merge sync queues.
1350 */
1351 if (!cfq_cfqq_sync(cfqq))
1352 return NULL;
1353 if (CFQQ_SEEKY(cfqq))
1354 return NULL;
1355
1356 /*
1357 * Do not merge queues of different priority classes
1358 */
1359 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1360 return NULL;
1361
1362 return cfqq;
1363 }
1364
1365 /*
1366 * Determine whether we should enforce idle window for this queue.
1367 */
1368
1369 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1370 {
1371 enum wl_prio_t prio = cfqq_prio(cfqq);
1372 struct cfq_rb_root *service_tree = cfqq->service_tree;
1373
1374 BUG_ON(!service_tree);
1375 BUG_ON(!service_tree->count);
1376
1377 /* We never do for idle class queues. */
1378 if (prio == IDLE_WORKLOAD)
1379 return false;
1380
1381 /* We do for queues that were marked with idle window flag. */
1382 if (cfq_cfqq_idle_window(cfqq))
1383 return true;
1384
1385 /*
1386 * Otherwise, we do only if they are the last ones
1387 * in their service tree.
1388 */
1389 return service_tree->count == 1;
1390 }
1391
1392 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1393 {
1394 struct cfq_queue *cfqq = cfqd->active_queue;
1395 struct cfq_io_context *cic;
1396 unsigned long sl;
1397
1398 /*
1399 * SSD device without seek penalty, disable idling. But only do so
1400 * for devices that support queuing, otherwise we still have a problem
1401 * with sync vs async workloads.
1402 */
1403 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1404 return;
1405
1406 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1407 WARN_ON(cfq_cfqq_slice_new(cfqq));
1408
1409 /*
1410 * idle is disabled, either manually or by past process history
1411 */
1412 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1413 return;
1414
1415 /*
1416 * still active requests from this queue, don't idle
1417 */
1418 if (cfqq->dispatched)
1419 return;
1420
1421 /*
1422 * task has exited, don't wait
1423 */
1424 cic = cfqd->active_cic;
1425 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1426 return;
1427
1428 /*
1429 * If our average think time is larger than the remaining time
1430 * slice, then don't idle. This avoids overrunning the allotted
1431 * time slice.
1432 */
1433 if (sample_valid(cic->ttime_samples) &&
1434 (cfqq->slice_end - jiffies < cic->ttime_mean))
1435 return;
1436
1437 cfq_mark_cfqq_wait_request(cfqq);
1438
1439 sl = cfqd->cfq_slice_idle;
1440
1441 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1442 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1443 }
1444
1445 /*
1446 * Move request from internal lists to the request queue dispatch list.
1447 */
1448 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1449 {
1450 struct cfq_data *cfqd = q->elevator->elevator_data;
1451 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1452
1453 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1454
1455 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1456 cfq_remove_request(rq);
1457 cfqq->dispatched++;
1458 elv_dispatch_sort(q, rq);
1459
1460 if (cfq_cfqq_sync(cfqq))
1461 cfqd->sync_flight++;
1462 }
1463
1464 /*
1465 * return expired entry, or NULL to just start from scratch in rbtree
1466 */
1467 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1468 {
1469 struct request *rq = NULL;
1470
1471 if (cfq_cfqq_fifo_expire(cfqq))
1472 return NULL;
1473
1474 cfq_mark_cfqq_fifo_expire(cfqq);
1475
1476 if (list_empty(&cfqq->fifo))
1477 return NULL;
1478
1479 rq = rq_entry_fifo(cfqq->fifo.next);
1480 if (time_before(jiffies, rq_fifo_time(rq)))
1481 rq = NULL;
1482
1483 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1484 return rq;
1485 }
1486
1487 static inline int
1488 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1489 {
1490 const int base_rq = cfqd->cfq_slice_async_rq;
1491
1492 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1493
1494 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1495 }
1496
1497 /*
1498 * Must be called with the queue_lock held.
1499 */
1500 static int cfqq_process_refs(struct cfq_queue *cfqq)
1501 {
1502 int process_refs, io_refs;
1503
1504 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1505 process_refs = atomic_read(&cfqq->ref) - io_refs;
1506 BUG_ON(process_refs < 0);
1507 return process_refs;
1508 }
1509
1510 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1511 {
1512 int process_refs, new_process_refs;
1513 struct cfq_queue *__cfqq;
1514
1515 /* Avoid a circular list and skip interim queue merges */
1516 while ((__cfqq = new_cfqq->new_cfqq)) {
1517 if (__cfqq == cfqq)
1518 return;
1519 new_cfqq = __cfqq;
1520 }
1521
1522 process_refs = cfqq_process_refs(cfqq);
1523 /*
1524 * If the process for the cfqq has gone away, there is no
1525 * sense in merging the queues.
1526 */
1527 if (process_refs == 0)
1528 return;
1529
1530 /*
1531 * Merge in the direction of the lesser amount of work.
1532 */
1533 new_process_refs = cfqq_process_refs(new_cfqq);
1534 if (new_process_refs >= process_refs) {
1535 cfqq->new_cfqq = new_cfqq;
1536 atomic_add(process_refs, &new_cfqq->ref);
1537 } else {
1538 new_cfqq->new_cfqq = cfqq;
1539 atomic_add(new_process_refs, &cfqq->ref);
1540 }
1541 }
1542
1543 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1544 struct cfq_group *cfqg, enum wl_prio_t prio,
1545 bool prio_changed)
1546 {
1547 struct cfq_queue *queue;
1548 int i;
1549 bool key_valid = false;
1550 unsigned long lowest_key = 0;
1551 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1552
1553 if (prio_changed) {
1554 /*
1555 * When priorities switched, we prefer starting
1556 * from SYNC_NOIDLE (first choice), or just SYNC
1557 * over ASYNC
1558 */
1559 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1560 return cur_best;
1561 cur_best = SYNC_WORKLOAD;
1562 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1563 return cur_best;
1564
1565 return ASYNC_WORKLOAD;
1566 }
1567
1568 for (i = 0; i < 3; ++i) {
1569 /* otherwise, select the one with lowest rb_key */
1570 queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
1571 if (queue &&
1572 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1573 lowest_key = queue->rb_key;
1574 cur_best = i;
1575 key_valid = true;
1576 }
1577 }
1578
1579 return cur_best;
1580 }
1581
1582 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1583 {
1584 enum wl_prio_t previous_prio = cfqd->serving_prio;
1585 bool prio_changed;
1586 unsigned slice;
1587 unsigned count;
1588 struct cfq_rb_root *st;
1589
1590 if (!cfqg) {
1591 cfqd->serving_prio = IDLE_WORKLOAD;
1592 cfqd->workload_expires = jiffies + 1;
1593 return;
1594 }
1595
1596 /* Choose next priority. RT > BE > IDLE */
1597 if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd))
1598 cfqd->serving_prio = RT_WORKLOAD;
1599 else if (cfq_busy_queues_wl(BE_WORKLOAD, cfqd))
1600 cfqd->serving_prio = BE_WORKLOAD;
1601 else {
1602 cfqd->serving_prio = IDLE_WORKLOAD;
1603 cfqd->workload_expires = jiffies + 1;
1604 return;
1605 }
1606
1607 /*
1608 * For RT and BE, we have to choose also the type
1609 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1610 * expiration time
1611 */
1612 prio_changed = (cfqd->serving_prio != previous_prio);
1613 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1614 cfqd);
1615 count = st->count;
1616
1617 /*
1618 * If priority didn't change, check workload expiration,
1619 * and that we still have other queues ready
1620 */
1621 if (!prio_changed && count &&
1622 !time_after(jiffies, cfqd->workload_expires))
1623 return;
1624
1625 /* otherwise select new workload type */
1626 cfqd->serving_type =
1627 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
1628 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1629 cfqd);
1630 count = st->count;
1631
1632 /*
1633 * the workload slice is computed as a fraction of target latency
1634 * proportional to the number of queues in that workload, over
1635 * all the queues in the same priority class
1636 */
1637 slice = cfq_target_latency * count /
1638 max_t(unsigned, cfqd->busy_queues_avg[cfqd->serving_prio],
1639 cfq_busy_queues_wl(cfqd->serving_prio, cfqd));
1640
1641 if (cfqd->serving_type == ASYNC_WORKLOAD)
1642 /* async workload slice is scaled down according to
1643 * the sync/async slice ratio. */
1644 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
1645 else
1646 /* sync workload slice is at least 2 * cfq_slice_idle */
1647 slice = max(slice, 2 * cfqd->cfq_slice_idle);
1648
1649 slice = max_t(unsigned, slice, CFQ_MIN_TT);
1650 cfqd->workload_expires = jiffies + slice;
1651 cfqd->noidle_tree_requires_idle = false;
1652 }
1653
1654 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
1655 {
1656 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1657
1658 if (RB_EMPTY_ROOT(&st->rb))
1659 return NULL;
1660 return cfq_rb_first_group(st);
1661 }
1662
1663 static void cfq_choose_cfqg(struct cfq_data *cfqd)
1664 {
1665 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
1666
1667 cfqd->serving_group = cfqg;
1668 choose_service_tree(cfqd, cfqg);
1669 }
1670
1671 /*
1672 * Select a queue for service. If we have a current active queue,
1673 * check whether to continue servicing it, or retrieve and set a new one.
1674 */
1675 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1676 {
1677 struct cfq_queue *cfqq, *new_cfqq = NULL;
1678
1679 cfqq = cfqd->active_queue;
1680 if (!cfqq)
1681 goto new_queue;
1682
1683 if (!cfqd->rq_queued)
1684 return NULL;
1685 /*
1686 * The active queue has run out of time, expire it and select new.
1687 */
1688 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1689 goto expire;
1690
1691 /*
1692 * The active queue has requests and isn't expired, allow it to
1693 * dispatch.
1694 */
1695 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1696 goto keep_queue;
1697
1698 /*
1699 * If another queue has a request waiting within our mean seek
1700 * distance, let it run. The expire code will check for close
1701 * cooperators and put the close queue at the front of the service
1702 * tree. If possible, merge the expiring queue with the new cfqq.
1703 */
1704 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
1705 if (new_cfqq) {
1706 if (!cfqq->new_cfqq)
1707 cfq_setup_merge(cfqq, new_cfqq);
1708 goto expire;
1709 }
1710
1711 /*
1712 * No requests pending. If the active queue still has requests in
1713 * flight or is idling for a new request, allow either of these
1714 * conditions to happen (or time out) before selecting a new queue.
1715 */
1716 if (timer_pending(&cfqd->idle_slice_timer) ||
1717 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
1718 cfqq = NULL;
1719 goto keep_queue;
1720 }
1721
1722 expire:
1723 cfq_slice_expired(cfqd, 0);
1724 new_queue:
1725 /*
1726 * Current queue expired. Check if we have to switch to a new
1727 * service tree
1728 */
1729 if (!new_cfqq)
1730 cfq_choose_cfqg(cfqd);
1731
1732 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1733 keep_queue:
1734 return cfqq;
1735 }
1736
1737 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1738 {
1739 int dispatched = 0;
1740
1741 while (cfqq->next_rq) {
1742 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1743 dispatched++;
1744 }
1745
1746 BUG_ON(!list_empty(&cfqq->fifo));
1747
1748 /* By default cfqq is not expired if it is empty. Do it explicitly */
1749 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
1750 return dispatched;
1751 }
1752
1753 /*
1754 * Drain our current requests. Used for barriers and when switching
1755 * io schedulers on-the-fly.
1756 */
1757 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1758 {
1759 struct cfq_queue *cfqq;
1760 int dispatched = 0;
1761
1762 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
1763 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1764
1765 cfq_slice_expired(cfqd, 0);
1766 BUG_ON(cfqd->busy_queues);
1767
1768 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1769 return dispatched;
1770 }
1771
1772 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1773 {
1774 unsigned int max_dispatch;
1775
1776 /*
1777 * Drain async requests before we start sync IO
1778 */
1779 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1780 return false;
1781
1782 /*
1783 * If this is an async queue and we have sync IO in flight, let it wait
1784 */
1785 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1786 return false;
1787
1788 max_dispatch = cfqd->cfq_quantum;
1789 if (cfq_class_idle(cfqq))
1790 max_dispatch = 1;
1791
1792 /*
1793 * Does this cfqq already have too much IO in flight?
1794 */
1795 if (cfqq->dispatched >= max_dispatch) {
1796 /*
1797 * idle queue must always only have a single IO in flight
1798 */
1799 if (cfq_class_idle(cfqq))
1800 return false;
1801
1802 /*
1803 * We have other queues, don't allow more IO from this one
1804 */
1805 if (cfqd->busy_queues > 1)
1806 return false;
1807
1808 /*
1809 * Sole queue user, no limit
1810 */
1811 max_dispatch = -1;
1812 }
1813
1814 /*
1815 * Async queues must wait a bit before being allowed dispatch.
1816 * We also ramp up the dispatch depth gradually for async IO,
1817 * based on the last sync IO we serviced
1818 */
1819 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
1820 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1821 unsigned int depth;
1822
1823 depth = last_sync / cfqd->cfq_slice[1];
1824 if (!depth && !cfqq->dispatched)
1825 depth = 1;
1826 if (depth < max_dispatch)
1827 max_dispatch = depth;
1828 }
1829
1830 /*
1831 * If we're below the current max, allow a dispatch
1832 */
1833 return cfqq->dispatched < max_dispatch;
1834 }
1835
1836 /*
1837 * Dispatch a request from cfqq, moving them to the request queue
1838 * dispatch list.
1839 */
1840 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1841 {
1842 struct request *rq;
1843
1844 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1845
1846 if (!cfq_may_dispatch(cfqd, cfqq))
1847 return false;
1848
1849 /*
1850 * follow expired path, else get first next available
1851 */
1852 rq = cfq_check_fifo(cfqq);
1853 if (!rq)
1854 rq = cfqq->next_rq;
1855
1856 /*
1857 * insert request into driver dispatch list
1858 */
1859 cfq_dispatch_insert(cfqd->queue, rq);
1860
1861 if (!cfqd->active_cic) {
1862 struct cfq_io_context *cic = RQ_CIC(rq);
1863
1864 atomic_long_inc(&cic->ioc->refcount);
1865 cfqd->active_cic = cic;
1866 }
1867
1868 return true;
1869 }
1870
1871 /*
1872 * Find the cfqq that we need to service and move a request from that to the
1873 * dispatch list
1874 */
1875 static int cfq_dispatch_requests(struct request_queue *q, int force)
1876 {
1877 struct cfq_data *cfqd = q->elevator->elevator_data;
1878 struct cfq_queue *cfqq;
1879
1880 if (!cfqd->busy_queues)
1881 return 0;
1882
1883 if (unlikely(force))
1884 return cfq_forced_dispatch(cfqd);
1885
1886 cfqq = cfq_select_queue(cfqd);
1887 if (!cfqq)
1888 return 0;
1889
1890 /*
1891 * Dispatch a request from this cfqq, if it is allowed
1892 */
1893 if (!cfq_dispatch_request(cfqd, cfqq))
1894 return 0;
1895
1896 cfqq->slice_dispatch++;
1897 cfq_clear_cfqq_must_dispatch(cfqq);
1898
1899 /*
1900 * expire an async queue immediately if it has used up its slice. idle
1901 * queue always expire after 1 dispatch round.
1902 */
1903 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1904 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1905 cfq_class_idle(cfqq))) {
1906 cfqq->slice_end = jiffies + 1;
1907 cfq_slice_expired(cfqd, 0);
1908 }
1909
1910 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
1911 return 1;
1912 }
1913
1914 /*
1915 * task holds one reference to the queue, dropped when task exits. each rq
1916 * in-flight on this queue also holds a reference, dropped when rq is freed.
1917 *
1918 * queue lock must be held here.
1919 */
1920 static void cfq_put_queue(struct cfq_queue *cfqq)
1921 {
1922 struct cfq_data *cfqd = cfqq->cfqd;
1923
1924 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1925
1926 if (!atomic_dec_and_test(&cfqq->ref))
1927 return;
1928
1929 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1930 BUG_ON(rb_first(&cfqq->sort_list));
1931 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1932
1933 if (unlikely(cfqd->active_queue == cfqq)) {
1934 __cfq_slice_expired(cfqd, cfqq, 0);
1935 cfq_schedule_dispatch(cfqd);
1936 }
1937
1938 BUG_ON(cfq_cfqq_on_rr(cfqq));
1939 kmem_cache_free(cfq_pool, cfqq);
1940 }
1941
1942 /*
1943 * Must always be called with the rcu_read_lock() held
1944 */
1945 static void
1946 __call_for_each_cic(struct io_context *ioc,
1947 void (*func)(struct io_context *, struct cfq_io_context *))
1948 {
1949 struct cfq_io_context *cic;
1950 struct hlist_node *n;
1951
1952 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1953 func(ioc, cic);
1954 }
1955
1956 /*
1957 * Call func for each cic attached to this ioc.
1958 */
1959 static void
1960 call_for_each_cic(struct io_context *ioc,
1961 void (*func)(struct io_context *, struct cfq_io_context *))
1962 {
1963 rcu_read_lock();
1964 __call_for_each_cic(ioc, func);
1965 rcu_read_unlock();
1966 }
1967
1968 static void cfq_cic_free_rcu(struct rcu_head *head)
1969 {
1970 struct cfq_io_context *cic;
1971
1972 cic = container_of(head, struct cfq_io_context, rcu_head);
1973
1974 kmem_cache_free(cfq_ioc_pool, cic);
1975 elv_ioc_count_dec(cfq_ioc_count);
1976
1977 if (ioc_gone) {
1978 /*
1979 * CFQ scheduler is exiting, grab exit lock and check
1980 * the pending io context count. If it hits zero,
1981 * complete ioc_gone and set it back to NULL
1982 */
1983 spin_lock(&ioc_gone_lock);
1984 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
1985 complete(ioc_gone);
1986 ioc_gone = NULL;
1987 }
1988 spin_unlock(&ioc_gone_lock);
1989 }
1990 }
1991
1992 static void cfq_cic_free(struct cfq_io_context *cic)
1993 {
1994 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1995 }
1996
1997 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1998 {
1999 unsigned long flags;
2000
2001 BUG_ON(!cic->dead_key);
2002
2003 spin_lock_irqsave(&ioc->lock, flags);
2004 radix_tree_delete(&ioc->radix_root, cic->dead_key);
2005 hlist_del_rcu(&cic->cic_list);
2006 spin_unlock_irqrestore(&ioc->lock, flags);
2007
2008 cfq_cic_free(cic);
2009 }
2010
2011 /*
2012 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2013 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2014 * and ->trim() which is called with the task lock held
2015 */
2016 static void cfq_free_io_context(struct io_context *ioc)
2017 {
2018 /*
2019 * ioc->refcount is zero here, or we are called from elv_unregister(),
2020 * so no more cic's are allowed to be linked into this ioc. So it
2021 * should be ok to iterate over the known list, we will see all cic's
2022 * since no new ones are added.
2023 */
2024 __call_for_each_cic(ioc, cic_free_func);
2025 }
2026
2027 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2028 {
2029 struct cfq_queue *__cfqq, *next;
2030
2031 if (unlikely(cfqq == cfqd->active_queue)) {
2032 __cfq_slice_expired(cfqd, cfqq, 0);
2033 cfq_schedule_dispatch(cfqd);
2034 }
2035
2036 /*
2037 * If this queue was scheduled to merge with another queue, be
2038 * sure to drop the reference taken on that queue (and others in
2039 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2040 */
2041 __cfqq = cfqq->new_cfqq;
2042 while (__cfqq) {
2043 if (__cfqq == cfqq) {
2044 WARN(1, "cfqq->new_cfqq loop detected\n");
2045 break;
2046 }
2047 next = __cfqq->new_cfqq;
2048 cfq_put_queue(__cfqq);
2049 __cfqq = next;
2050 }
2051
2052 cfq_put_queue(cfqq);
2053 }
2054
2055 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2056 struct cfq_io_context *cic)
2057 {
2058 struct io_context *ioc = cic->ioc;
2059
2060 list_del_init(&cic->queue_list);
2061
2062 /*
2063 * Make sure key == NULL is seen for dead queues
2064 */
2065 smp_wmb();
2066 cic->dead_key = (unsigned long) cic->key;
2067 cic->key = NULL;
2068
2069 if (ioc->ioc_data == cic)
2070 rcu_assign_pointer(ioc->ioc_data, NULL);
2071
2072 if (cic->cfqq[BLK_RW_ASYNC]) {
2073 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2074 cic->cfqq[BLK_RW_ASYNC] = NULL;
2075 }
2076
2077 if (cic->cfqq[BLK_RW_SYNC]) {
2078 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2079 cic->cfqq[BLK_RW_SYNC] = NULL;
2080 }
2081 }
2082
2083 static void cfq_exit_single_io_context(struct io_context *ioc,
2084 struct cfq_io_context *cic)
2085 {
2086 struct cfq_data *cfqd = cic->key;
2087
2088 if (cfqd) {
2089 struct request_queue *q = cfqd->queue;
2090 unsigned long flags;
2091
2092 spin_lock_irqsave(q->queue_lock, flags);
2093
2094 /*
2095 * Ensure we get a fresh copy of the ->key to prevent
2096 * race between exiting task and queue
2097 */
2098 smp_read_barrier_depends();
2099 if (cic->key)
2100 __cfq_exit_single_io_context(cfqd, cic);
2101
2102 spin_unlock_irqrestore(q->queue_lock, flags);
2103 }
2104 }
2105
2106 /*
2107 * The process that ioc belongs to has exited, we need to clean up
2108 * and put the internal structures we have that belongs to that process.
2109 */
2110 static void cfq_exit_io_context(struct io_context *ioc)
2111 {
2112 call_for_each_cic(ioc, cfq_exit_single_io_context);
2113 }
2114
2115 static struct cfq_io_context *
2116 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2117 {
2118 struct cfq_io_context *cic;
2119
2120 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2121 cfqd->queue->node);
2122 if (cic) {
2123 cic->last_end_request = jiffies;
2124 INIT_LIST_HEAD(&cic->queue_list);
2125 INIT_HLIST_NODE(&cic->cic_list);
2126 cic->dtor = cfq_free_io_context;
2127 cic->exit = cfq_exit_io_context;
2128 elv_ioc_count_inc(cfq_ioc_count);
2129 }
2130
2131 return cic;
2132 }
2133
2134 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2135 {
2136 struct task_struct *tsk = current;
2137 int ioprio_class;
2138
2139 if (!cfq_cfqq_prio_changed(cfqq))
2140 return;
2141
2142 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2143 switch (ioprio_class) {
2144 default:
2145 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2146 case IOPRIO_CLASS_NONE:
2147 /*
2148 * no prio set, inherit CPU scheduling settings
2149 */
2150 cfqq->ioprio = task_nice_ioprio(tsk);
2151 cfqq->ioprio_class = task_nice_ioclass(tsk);
2152 break;
2153 case IOPRIO_CLASS_RT:
2154 cfqq->ioprio = task_ioprio(ioc);
2155 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2156 break;
2157 case IOPRIO_CLASS_BE:
2158 cfqq->ioprio = task_ioprio(ioc);
2159 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2160 break;
2161 case IOPRIO_CLASS_IDLE:
2162 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2163 cfqq->ioprio = 7;
2164 cfq_clear_cfqq_idle_window(cfqq);
2165 break;
2166 }
2167
2168 /*
2169 * keep track of original prio settings in case we have to temporarily
2170 * elevate the priority of this queue
2171 */
2172 cfqq->org_ioprio = cfqq->ioprio;
2173 cfqq->org_ioprio_class = cfqq->ioprio_class;
2174 cfq_clear_cfqq_prio_changed(cfqq);
2175 }
2176
2177 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2178 {
2179 struct cfq_data *cfqd = cic->key;
2180 struct cfq_queue *cfqq;
2181 unsigned long flags;
2182
2183 if (unlikely(!cfqd))
2184 return;
2185
2186 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2187
2188 cfqq = cic->cfqq[BLK_RW_ASYNC];
2189 if (cfqq) {
2190 struct cfq_queue *new_cfqq;
2191 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2192 GFP_ATOMIC);
2193 if (new_cfqq) {
2194 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2195 cfq_put_queue(cfqq);
2196 }
2197 }
2198
2199 cfqq = cic->cfqq[BLK_RW_SYNC];
2200 if (cfqq)
2201 cfq_mark_cfqq_prio_changed(cfqq);
2202
2203 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2204 }
2205
2206 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2207 {
2208 call_for_each_cic(ioc, changed_ioprio);
2209 ioc->ioprio_changed = 0;
2210 }
2211
2212 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2213 pid_t pid, bool is_sync)
2214 {
2215 RB_CLEAR_NODE(&cfqq->rb_node);
2216 RB_CLEAR_NODE(&cfqq->p_node);
2217 INIT_LIST_HEAD(&cfqq->fifo);
2218
2219 atomic_set(&cfqq->ref, 0);
2220 cfqq->cfqd = cfqd;
2221
2222 cfq_mark_cfqq_prio_changed(cfqq);
2223
2224 if (is_sync) {
2225 if (!cfq_class_idle(cfqq))
2226 cfq_mark_cfqq_idle_window(cfqq);
2227 cfq_mark_cfqq_sync(cfqq);
2228 }
2229 cfqq->pid = pid;
2230 }
2231
2232 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
2233 {
2234 cfqq->cfqg = cfqg;
2235 }
2236
2237 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
2238 {
2239 return &cfqd->root_group;
2240 }
2241
2242 static struct cfq_queue *
2243 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2244 struct io_context *ioc, gfp_t gfp_mask)
2245 {
2246 struct cfq_queue *cfqq, *new_cfqq = NULL;
2247 struct cfq_io_context *cic;
2248 struct cfq_group *cfqg;
2249
2250 retry:
2251 cfqg = cfq_get_cfqg(cfqd, 1);
2252 cic = cfq_cic_lookup(cfqd, ioc);
2253 /* cic always exists here */
2254 cfqq = cic_to_cfqq(cic, is_sync);
2255
2256 /*
2257 * Always try a new alloc if we fell back to the OOM cfqq
2258 * originally, since it should just be a temporary situation.
2259 */
2260 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2261 cfqq = NULL;
2262 if (new_cfqq) {
2263 cfqq = new_cfqq;
2264 new_cfqq = NULL;
2265 } else if (gfp_mask & __GFP_WAIT) {
2266 spin_unlock_irq(cfqd->queue->queue_lock);
2267 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2268 gfp_mask | __GFP_ZERO,
2269 cfqd->queue->node);
2270 spin_lock_irq(cfqd->queue->queue_lock);
2271 if (new_cfqq)
2272 goto retry;
2273 } else {
2274 cfqq = kmem_cache_alloc_node(cfq_pool,
2275 gfp_mask | __GFP_ZERO,
2276 cfqd->queue->node);
2277 }
2278
2279 if (cfqq) {
2280 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2281 cfq_init_prio_data(cfqq, ioc);
2282 cfq_link_cfqq_cfqg(cfqq, cfqg);
2283 cfq_log_cfqq(cfqd, cfqq, "alloced");
2284 } else
2285 cfqq = &cfqd->oom_cfqq;
2286 }
2287
2288 if (new_cfqq)
2289 kmem_cache_free(cfq_pool, new_cfqq);
2290
2291 return cfqq;
2292 }
2293
2294 static struct cfq_queue **
2295 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2296 {
2297 switch (ioprio_class) {
2298 case IOPRIO_CLASS_RT:
2299 return &cfqd->async_cfqq[0][ioprio];
2300 case IOPRIO_CLASS_BE:
2301 return &cfqd->async_cfqq[1][ioprio];
2302 case IOPRIO_CLASS_IDLE:
2303 return &cfqd->async_idle_cfqq;
2304 default:
2305 BUG();
2306 }
2307 }
2308
2309 static struct cfq_queue *
2310 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2311 gfp_t gfp_mask)
2312 {
2313 const int ioprio = task_ioprio(ioc);
2314 const int ioprio_class = task_ioprio_class(ioc);
2315 struct cfq_queue **async_cfqq = NULL;
2316 struct cfq_queue *cfqq = NULL;
2317
2318 if (!is_sync) {
2319 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2320 cfqq = *async_cfqq;
2321 }
2322
2323 if (!cfqq)
2324 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2325
2326 /*
2327 * pin the queue now that it's allocated, scheduler exit will prune it
2328 */
2329 if (!is_sync && !(*async_cfqq)) {
2330 atomic_inc(&cfqq->ref);
2331 *async_cfqq = cfqq;
2332 }
2333
2334 atomic_inc(&cfqq->ref);
2335 return cfqq;
2336 }
2337
2338 /*
2339 * We drop cfq io contexts lazily, so we may find a dead one.
2340 */
2341 static void
2342 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2343 struct cfq_io_context *cic)
2344 {
2345 unsigned long flags;
2346
2347 WARN_ON(!list_empty(&cic->queue_list));
2348
2349 spin_lock_irqsave(&ioc->lock, flags);
2350
2351 BUG_ON(ioc->ioc_data == cic);
2352
2353 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2354 hlist_del_rcu(&cic->cic_list);
2355 spin_unlock_irqrestore(&ioc->lock, flags);
2356
2357 cfq_cic_free(cic);
2358 }
2359
2360 static struct cfq_io_context *
2361 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2362 {
2363 struct cfq_io_context *cic;
2364 unsigned long flags;
2365 void *k;
2366
2367 if (unlikely(!ioc))
2368 return NULL;
2369
2370 rcu_read_lock();
2371
2372 /*
2373 * we maintain a last-hit cache, to avoid browsing over the tree
2374 */
2375 cic = rcu_dereference(ioc->ioc_data);
2376 if (cic && cic->key == cfqd) {
2377 rcu_read_unlock();
2378 return cic;
2379 }
2380
2381 do {
2382 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2383 rcu_read_unlock();
2384 if (!cic)
2385 break;
2386 /* ->key must be copied to avoid race with cfq_exit_queue() */
2387 k = cic->key;
2388 if (unlikely(!k)) {
2389 cfq_drop_dead_cic(cfqd, ioc, cic);
2390 rcu_read_lock();
2391 continue;
2392 }
2393
2394 spin_lock_irqsave(&ioc->lock, flags);
2395 rcu_assign_pointer(ioc->ioc_data, cic);
2396 spin_unlock_irqrestore(&ioc->lock, flags);
2397 break;
2398 } while (1);
2399
2400 return cic;
2401 }
2402
2403 /*
2404 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2405 * the process specific cfq io context when entered from the block layer.
2406 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2407 */
2408 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2409 struct cfq_io_context *cic, gfp_t gfp_mask)
2410 {
2411 unsigned long flags;
2412 int ret;
2413
2414 ret = radix_tree_preload(gfp_mask);
2415 if (!ret) {
2416 cic->ioc = ioc;
2417 cic->key = cfqd;
2418
2419 spin_lock_irqsave(&ioc->lock, flags);
2420 ret = radix_tree_insert(&ioc->radix_root,
2421 (unsigned long) cfqd, cic);
2422 if (!ret)
2423 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2424 spin_unlock_irqrestore(&ioc->lock, flags);
2425
2426 radix_tree_preload_end();
2427
2428 if (!ret) {
2429 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2430 list_add(&cic->queue_list, &cfqd->cic_list);
2431 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2432 }
2433 }
2434
2435 if (ret)
2436 printk(KERN_ERR "cfq: cic link failed!\n");
2437
2438 return ret;
2439 }
2440
2441 /*
2442 * Setup general io context and cfq io context. There can be several cfq
2443 * io contexts per general io context, if this process is doing io to more
2444 * than one device managed by cfq.
2445 */
2446 static struct cfq_io_context *
2447 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2448 {
2449 struct io_context *ioc = NULL;
2450 struct cfq_io_context *cic;
2451
2452 might_sleep_if(gfp_mask & __GFP_WAIT);
2453
2454 ioc = get_io_context(gfp_mask, cfqd->queue->node);
2455 if (!ioc)
2456 return NULL;
2457
2458 cic = cfq_cic_lookup(cfqd, ioc);
2459 if (cic)
2460 goto out;
2461
2462 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2463 if (cic == NULL)
2464 goto err;
2465
2466 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2467 goto err_free;
2468
2469 out:
2470 smp_read_barrier_depends();
2471 if (unlikely(ioc->ioprio_changed))
2472 cfq_ioc_set_ioprio(ioc);
2473
2474 return cic;
2475 err_free:
2476 cfq_cic_free(cic);
2477 err:
2478 put_io_context(ioc);
2479 return NULL;
2480 }
2481
2482 static void
2483 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2484 {
2485 unsigned long elapsed = jiffies - cic->last_end_request;
2486 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2487
2488 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2489 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2490 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2491 }
2492
2493 static void
2494 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2495 struct request *rq)
2496 {
2497 sector_t sdist;
2498 u64 total;
2499
2500 if (!cfqq->last_request_pos)
2501 sdist = 0;
2502 else if (cfqq->last_request_pos < blk_rq_pos(rq))
2503 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2504 else
2505 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2506
2507 /*
2508 * Don't allow the seek distance to get too large from the
2509 * odd fragment, pagein, etc
2510 */
2511 if (cfqq->seek_samples <= 60) /* second&third seek */
2512 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2513 else
2514 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2515
2516 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2517 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2518 total = cfqq->seek_total + (cfqq->seek_samples/2);
2519 do_div(total, cfqq->seek_samples);
2520 cfqq->seek_mean = (sector_t)total;
2521
2522 /*
2523 * If this cfqq is shared between multiple processes, check to
2524 * make sure that those processes are still issuing I/Os within
2525 * the mean seek distance. If not, it may be time to break the
2526 * queues apart again.
2527 */
2528 if (cfq_cfqq_coop(cfqq)) {
2529 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2530 cfqq->seeky_start = jiffies;
2531 else if (!CFQQ_SEEKY(cfqq))
2532 cfqq->seeky_start = 0;
2533 }
2534 }
2535
2536 /*
2537 * Disable idle window if the process thinks too long or seeks so much that
2538 * it doesn't matter
2539 */
2540 static void
2541 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2542 struct cfq_io_context *cic)
2543 {
2544 int old_idle, enable_idle;
2545
2546 /*
2547 * Don't idle for async or idle io prio class
2548 */
2549 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2550 return;
2551
2552 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
2553
2554 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
2555 cfq_mark_cfqq_deep(cfqq);
2556
2557 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2558 (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
2559 && CFQQ_SEEKY(cfqq)))
2560 enable_idle = 0;
2561 else if (sample_valid(cic->ttime_samples)) {
2562 if (cic->ttime_mean > cfqd->cfq_slice_idle)
2563 enable_idle = 0;
2564 else
2565 enable_idle = 1;
2566 }
2567
2568 if (old_idle != enable_idle) {
2569 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2570 if (enable_idle)
2571 cfq_mark_cfqq_idle_window(cfqq);
2572 else
2573 cfq_clear_cfqq_idle_window(cfqq);
2574 }
2575 }
2576
2577 /*
2578 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2579 * no or if we aren't sure, a 1 will cause a preempt.
2580 */
2581 static bool
2582 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
2583 struct request *rq)
2584 {
2585 struct cfq_queue *cfqq;
2586
2587 cfqq = cfqd->active_queue;
2588 if (!cfqq)
2589 return false;
2590
2591 if (cfq_slice_used(cfqq))
2592 return true;
2593
2594 if (cfq_class_idle(new_cfqq))
2595 return false;
2596
2597 if (cfq_class_idle(cfqq))
2598 return true;
2599
2600 /* Allow preemption only if we are idling on sync-noidle tree */
2601 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
2602 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
2603 new_cfqq->service_tree->count == 2 &&
2604 RB_EMPTY_ROOT(&cfqq->sort_list))
2605 return true;
2606
2607 /*
2608 * if the new request is sync, but the currently running queue is
2609 * not, let the sync request have priority.
2610 */
2611 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2612 return true;
2613
2614 /*
2615 * So both queues are sync. Let the new request get disk time if
2616 * it's a metadata request and the current queue is doing regular IO.
2617 */
2618 if (rq_is_meta(rq) && !cfqq->meta_pending)
2619 return true;
2620
2621 /*
2622 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2623 */
2624 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2625 return true;
2626
2627 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2628 return false;
2629
2630 /*
2631 * if this request is as-good as one we would expect from the
2632 * current cfqq, let it preempt
2633 */
2634 if (cfq_rq_close(cfqd, cfqq, rq))
2635 return true;
2636
2637 return false;
2638 }
2639
2640 /*
2641 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2642 * let it have half of its nominal slice.
2643 */
2644 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2645 {
2646 cfq_log_cfqq(cfqd, cfqq, "preempt");
2647 cfq_slice_expired(cfqd, 1);
2648
2649 /*
2650 * Put the new queue at the front of the of the current list,
2651 * so we know that it will be selected next.
2652 */
2653 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2654
2655 cfq_service_tree_add(cfqd, cfqq, 1);
2656
2657 cfqq->slice_end = 0;
2658 cfq_mark_cfqq_slice_new(cfqq);
2659 }
2660
2661 /*
2662 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2663 * something we should do about it
2664 */
2665 static void
2666 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2667 struct request *rq)
2668 {
2669 struct cfq_io_context *cic = RQ_CIC(rq);
2670
2671 cfqd->rq_queued++;
2672 if (rq_is_meta(rq))
2673 cfqq->meta_pending++;
2674
2675 cfq_update_io_thinktime(cfqd, cic);
2676 cfq_update_io_seektime(cfqd, cfqq, rq);
2677 cfq_update_idle_window(cfqd, cfqq, cic);
2678
2679 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2680
2681 if (cfqq == cfqd->active_queue) {
2682 /*
2683 * Remember that we saw a request from this process, but
2684 * don't start queuing just yet. Otherwise we risk seeing lots
2685 * of tiny requests, because we disrupt the normal plugging
2686 * and merging. If the request is already larger than a single
2687 * page, let it rip immediately. For that case we assume that
2688 * merging is already done. Ditto for a busy system that
2689 * has other work pending, don't risk delaying until the
2690 * idle timer unplug to continue working.
2691 */
2692 if (cfq_cfqq_wait_request(cfqq)) {
2693 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2694 cfqd->busy_queues > 1) {
2695 del_timer(&cfqd->idle_slice_timer);
2696 __blk_run_queue(cfqd->queue);
2697 } else
2698 cfq_mark_cfqq_must_dispatch(cfqq);
2699 }
2700 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2701 /*
2702 * not the active queue - expire current slice if it is
2703 * idle and has expired it's mean thinktime or this new queue
2704 * has some old slice time left and is of higher priority or
2705 * this new queue is RT and the current one is BE
2706 */
2707 cfq_preempt_queue(cfqd, cfqq);
2708 __blk_run_queue(cfqd->queue);
2709 }
2710 }
2711
2712 static void cfq_insert_request(struct request_queue *q, struct request *rq)
2713 {
2714 struct cfq_data *cfqd = q->elevator->elevator_data;
2715 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2716
2717 cfq_log_cfqq(cfqd, cfqq, "insert_request");
2718 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
2719
2720 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
2721 list_add_tail(&rq->queuelist, &cfqq->fifo);
2722 cfq_add_rq_rb(rq);
2723
2724 cfq_rq_enqueued(cfqd, cfqq, rq);
2725 }
2726
2727 /*
2728 * Update hw_tag based on peak queue depth over 50 samples under
2729 * sufficient load.
2730 */
2731 static void cfq_update_hw_tag(struct cfq_data *cfqd)
2732 {
2733 struct cfq_queue *cfqq = cfqd->active_queue;
2734
2735 if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
2736 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
2737
2738 if (cfqd->hw_tag == 1)
2739 return;
2740
2741 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2742 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2743 return;
2744
2745 /*
2746 * If active queue hasn't enough requests and can idle, cfq might not
2747 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
2748 * case
2749 */
2750 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
2751 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
2752 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
2753 return;
2754
2755 if (cfqd->hw_tag_samples++ < 50)
2756 return;
2757
2758 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
2759 cfqd->hw_tag = 1;
2760 else
2761 cfqd->hw_tag = 0;
2762 }
2763
2764 static void cfq_completed_request(struct request_queue *q, struct request *rq)
2765 {
2766 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2767 struct cfq_data *cfqd = cfqq->cfqd;
2768 const int sync = rq_is_sync(rq);
2769 unsigned long now;
2770
2771 now = jiffies;
2772 cfq_log_cfqq(cfqd, cfqq, "complete");
2773
2774 cfq_update_hw_tag(cfqd);
2775
2776 WARN_ON(!cfqd->rq_in_driver[sync]);
2777 WARN_ON(!cfqq->dispatched);
2778 cfqd->rq_in_driver[sync]--;
2779 cfqq->dispatched--;
2780
2781 if (cfq_cfqq_sync(cfqq))
2782 cfqd->sync_flight--;
2783
2784 if (sync) {
2785 RQ_CIC(rq)->last_end_request = now;
2786 cfqd->last_end_sync_rq = now;
2787 }
2788
2789 /*
2790 * If this is the active queue, check if it needs to be expired,
2791 * or if we want to idle in case it has no pending requests.
2792 */
2793 if (cfqd->active_queue == cfqq) {
2794 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2795
2796 if (cfq_cfqq_slice_new(cfqq)) {
2797 cfq_set_prio_slice(cfqd, cfqq);
2798 cfq_clear_cfqq_slice_new(cfqq);
2799 }
2800 /*
2801 * Idling is not enabled on:
2802 * - expired queues
2803 * - idle-priority queues
2804 * - async queues
2805 * - queues with still some requests queued
2806 * - when there is a close cooperator
2807 */
2808 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2809 cfq_slice_expired(cfqd, 1);
2810 else if (sync && cfqq_empty &&
2811 !cfq_close_cooperator(cfqd, cfqq)) {
2812 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
2813 /*
2814 * Idling is enabled for SYNC_WORKLOAD.
2815 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
2816 * only if we processed at least one !rq_noidle request
2817 */
2818 if (cfqd->serving_type == SYNC_WORKLOAD
2819 || cfqd->noidle_tree_requires_idle)
2820 cfq_arm_slice_timer(cfqd);
2821 }
2822 }
2823
2824 if (!rq_in_driver(cfqd))
2825 cfq_schedule_dispatch(cfqd);
2826 }
2827
2828 /*
2829 * we temporarily boost lower priority queues if they are holding fs exclusive
2830 * resources. they are boosted to normal prio (CLASS_BE/4)
2831 */
2832 static void cfq_prio_boost(struct cfq_queue *cfqq)
2833 {
2834 if (has_fs_excl()) {
2835 /*
2836 * boost idle prio on transactions that would lock out other
2837 * users of the filesystem
2838 */
2839 if (cfq_class_idle(cfqq))
2840 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2841 if (cfqq->ioprio > IOPRIO_NORM)
2842 cfqq->ioprio = IOPRIO_NORM;
2843 } else {
2844 /*
2845 * unboost the queue (if needed)
2846 */
2847 cfqq->ioprio_class = cfqq->org_ioprio_class;
2848 cfqq->ioprio = cfqq->org_ioprio;
2849 }
2850 }
2851
2852 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2853 {
2854 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
2855 cfq_mark_cfqq_must_alloc_slice(cfqq);
2856 return ELV_MQUEUE_MUST;
2857 }
2858
2859 return ELV_MQUEUE_MAY;
2860 }
2861
2862 static int cfq_may_queue(struct request_queue *q, int rw)
2863 {
2864 struct cfq_data *cfqd = q->elevator->elevator_data;
2865 struct task_struct *tsk = current;
2866 struct cfq_io_context *cic;
2867 struct cfq_queue *cfqq;
2868
2869 /*
2870 * don't force setup of a queue from here, as a call to may_queue
2871 * does not necessarily imply that a request actually will be queued.
2872 * so just lookup a possibly existing queue, or return 'may queue'
2873 * if that fails
2874 */
2875 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2876 if (!cic)
2877 return ELV_MQUEUE_MAY;
2878
2879 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2880 if (cfqq) {
2881 cfq_init_prio_data(cfqq, cic->ioc);
2882 cfq_prio_boost(cfqq);
2883
2884 return __cfq_may_queue(cfqq);
2885 }
2886
2887 return ELV_MQUEUE_MAY;
2888 }
2889
2890 /*
2891 * queue lock held here
2892 */
2893 static void cfq_put_request(struct request *rq)
2894 {
2895 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2896
2897 if (cfqq) {
2898 const int rw = rq_data_dir(rq);
2899
2900 BUG_ON(!cfqq->allocated[rw]);
2901 cfqq->allocated[rw]--;
2902
2903 put_io_context(RQ_CIC(rq)->ioc);
2904
2905 rq->elevator_private = NULL;
2906 rq->elevator_private2 = NULL;
2907
2908 cfq_put_queue(cfqq);
2909 }
2910 }
2911
2912 static struct cfq_queue *
2913 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
2914 struct cfq_queue *cfqq)
2915 {
2916 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
2917 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
2918 cfq_mark_cfqq_coop(cfqq->new_cfqq);
2919 cfq_put_queue(cfqq);
2920 return cic_to_cfqq(cic, 1);
2921 }
2922
2923 static int should_split_cfqq(struct cfq_queue *cfqq)
2924 {
2925 if (cfqq->seeky_start &&
2926 time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
2927 return 1;
2928 return 0;
2929 }
2930
2931 /*
2932 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
2933 * was the last process referring to said cfqq.
2934 */
2935 static struct cfq_queue *
2936 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
2937 {
2938 if (cfqq_process_refs(cfqq) == 1) {
2939 cfqq->seeky_start = 0;
2940 cfqq->pid = current->pid;
2941 cfq_clear_cfqq_coop(cfqq);
2942 return cfqq;
2943 }
2944
2945 cic_set_cfqq(cic, NULL, 1);
2946 cfq_put_queue(cfqq);
2947 return NULL;
2948 }
2949 /*
2950 * Allocate cfq data structures associated with this request.
2951 */
2952 static int
2953 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2954 {
2955 struct cfq_data *cfqd = q->elevator->elevator_data;
2956 struct cfq_io_context *cic;
2957 const int rw = rq_data_dir(rq);
2958 const bool is_sync = rq_is_sync(rq);
2959 struct cfq_queue *cfqq;
2960 unsigned long flags;
2961
2962 might_sleep_if(gfp_mask & __GFP_WAIT);
2963
2964 cic = cfq_get_io_context(cfqd, gfp_mask);
2965
2966 spin_lock_irqsave(q->queue_lock, flags);
2967
2968 if (!cic)
2969 goto queue_fail;
2970
2971 new_queue:
2972 cfqq = cic_to_cfqq(cic, is_sync);
2973 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2974 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2975 cic_set_cfqq(cic, cfqq, is_sync);
2976 } else {
2977 /*
2978 * If the queue was seeky for too long, break it apart.
2979 */
2980 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
2981 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
2982 cfqq = split_cfqq(cic, cfqq);
2983 if (!cfqq)
2984 goto new_queue;
2985 }
2986
2987 /*
2988 * Check to see if this queue is scheduled to merge with
2989 * another, closely cooperating queue. The merging of
2990 * queues happens here as it must be done in process context.
2991 * The reference on new_cfqq was taken in merge_cfqqs.
2992 */
2993 if (cfqq->new_cfqq)
2994 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
2995 }
2996
2997 cfqq->allocated[rw]++;
2998 atomic_inc(&cfqq->ref);
2999
3000 spin_unlock_irqrestore(q->queue_lock, flags);
3001
3002 rq->elevator_private = cic;
3003 rq->elevator_private2 = cfqq;
3004 return 0;
3005
3006 queue_fail:
3007 if (cic)
3008 put_io_context(cic->ioc);
3009
3010 cfq_schedule_dispatch(cfqd);
3011 spin_unlock_irqrestore(q->queue_lock, flags);
3012 cfq_log(cfqd, "set_request fail");
3013 return 1;
3014 }
3015
3016 static void cfq_kick_queue(struct work_struct *work)
3017 {
3018 struct cfq_data *cfqd =
3019 container_of(work, struct cfq_data, unplug_work);
3020 struct request_queue *q = cfqd->queue;
3021
3022 spin_lock_irq(q->queue_lock);
3023 __blk_run_queue(cfqd->queue);
3024 spin_unlock_irq(q->queue_lock);
3025 }
3026
3027 /*
3028 * Timer running if the active_queue is currently idling inside its time slice
3029 */
3030 static void cfq_idle_slice_timer(unsigned long data)
3031 {
3032 struct cfq_data *cfqd = (struct cfq_data *) data;
3033 struct cfq_queue *cfqq;
3034 unsigned long flags;
3035 int timed_out = 1;
3036
3037 cfq_log(cfqd, "idle timer fired");
3038
3039 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3040
3041 cfqq = cfqd->active_queue;
3042 if (cfqq) {
3043 timed_out = 0;
3044
3045 /*
3046 * We saw a request before the queue expired, let it through
3047 */
3048 if (cfq_cfqq_must_dispatch(cfqq))
3049 goto out_kick;
3050
3051 /*
3052 * expired
3053 */
3054 if (cfq_slice_used(cfqq))
3055 goto expire;
3056
3057 /*
3058 * only expire and reinvoke request handler, if there are
3059 * other queues with pending requests
3060 */
3061 if (!cfqd->busy_queues)
3062 goto out_cont;
3063
3064 /*
3065 * not expired and it has a request pending, let it dispatch
3066 */
3067 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3068 goto out_kick;
3069
3070 /*
3071 * Queue depth flag is reset only when the idle didn't succeed
3072 */
3073 cfq_clear_cfqq_deep(cfqq);
3074 }
3075 expire:
3076 cfq_slice_expired(cfqd, timed_out);
3077 out_kick:
3078 cfq_schedule_dispatch(cfqd);
3079 out_cont:
3080 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3081 }
3082
3083 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3084 {
3085 del_timer_sync(&cfqd->idle_slice_timer);
3086 cancel_work_sync(&cfqd->unplug_work);
3087 }
3088
3089 static void cfq_put_async_queues(struct cfq_data *cfqd)
3090 {
3091 int i;
3092
3093 for (i = 0; i < IOPRIO_BE_NR; i++) {
3094 if (cfqd->async_cfqq[0][i])
3095 cfq_put_queue(cfqd->async_cfqq[0][i]);
3096 if (cfqd->async_cfqq[1][i])
3097 cfq_put_queue(cfqd->async_cfqq[1][i]);
3098 }
3099
3100 if (cfqd->async_idle_cfqq)
3101 cfq_put_queue(cfqd->async_idle_cfqq);
3102 }
3103
3104 static void cfq_exit_queue(struct elevator_queue *e)
3105 {
3106 struct cfq_data *cfqd = e->elevator_data;
3107 struct request_queue *q = cfqd->queue;
3108
3109 cfq_shutdown_timer_wq(cfqd);
3110
3111 spin_lock_irq(q->queue_lock);
3112
3113 if (cfqd->active_queue)
3114 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3115
3116 while (!list_empty(&cfqd->cic_list)) {
3117 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3118 struct cfq_io_context,
3119 queue_list);
3120
3121 __cfq_exit_single_io_context(cfqd, cic);
3122 }
3123
3124 cfq_put_async_queues(cfqd);
3125
3126 spin_unlock_irq(q->queue_lock);
3127
3128 cfq_shutdown_timer_wq(cfqd);
3129
3130 kfree(cfqd);
3131 }
3132
3133 static void *cfq_init_queue(struct request_queue *q)
3134 {
3135 struct cfq_data *cfqd;
3136 int i, j;
3137 struct cfq_group *cfqg;
3138 struct cfq_rb_root *st;
3139
3140 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3141 if (!cfqd)
3142 return NULL;
3143
3144 /* Init root service tree */
3145 cfqd->grp_service_tree = CFQ_RB_ROOT;
3146
3147 /* Init root group */
3148 cfqg = &cfqd->root_group;
3149 for_each_cfqg_st(cfqg, i, j, st)
3150 *st = CFQ_RB_ROOT;
3151 RB_CLEAR_NODE(&cfqg->rb_node);
3152
3153 /*
3154 * Not strictly needed (since RB_ROOT just clears the node and we
3155 * zeroed cfqd on alloc), but better be safe in case someone decides
3156 * to add magic to the rb code
3157 */
3158 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3159 cfqd->prio_trees[i] = RB_ROOT;
3160
3161 /*
3162 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3163 * Grab a permanent reference to it, so that the normal code flow
3164 * will not attempt to free it.
3165 */
3166 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3167 atomic_inc(&cfqd->oom_cfqq.ref);
3168 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3169
3170 INIT_LIST_HEAD(&cfqd->cic_list);
3171
3172 cfqd->queue = q;
3173
3174 init_timer(&cfqd->idle_slice_timer);
3175 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3176 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3177
3178 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3179
3180 cfqd->cfq_quantum = cfq_quantum;
3181 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3182 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3183 cfqd->cfq_back_max = cfq_back_max;
3184 cfqd->cfq_back_penalty = cfq_back_penalty;
3185 cfqd->cfq_slice[0] = cfq_slice_async;
3186 cfqd->cfq_slice[1] = cfq_slice_sync;
3187 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3188 cfqd->cfq_slice_idle = cfq_slice_idle;
3189 cfqd->cfq_latency = 1;
3190 cfqd->hw_tag = -1;
3191 cfqd->last_end_sync_rq = jiffies;
3192 return cfqd;
3193 }
3194
3195 static void cfq_slab_kill(void)
3196 {
3197 /*
3198 * Caller already ensured that pending RCU callbacks are completed,
3199 * so we should have no busy allocations at this point.
3200 */
3201 if (cfq_pool)
3202 kmem_cache_destroy(cfq_pool);
3203 if (cfq_ioc_pool)
3204 kmem_cache_destroy(cfq_ioc_pool);
3205 }
3206
3207 static int __init cfq_slab_setup(void)
3208 {
3209 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3210 if (!cfq_pool)
3211 goto fail;
3212
3213 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3214 if (!cfq_ioc_pool)
3215 goto fail;
3216
3217 return 0;
3218 fail:
3219 cfq_slab_kill();
3220 return -ENOMEM;
3221 }
3222
3223 /*
3224 * sysfs parts below -->
3225 */
3226 static ssize_t
3227 cfq_var_show(unsigned int var, char *page)
3228 {
3229 return sprintf(page, "%d\n", var);
3230 }
3231
3232 static ssize_t
3233 cfq_var_store(unsigned int *var, const char *page, size_t count)
3234 {
3235 char *p = (char *) page;
3236
3237 *var = simple_strtoul(p, &p, 10);
3238 return count;
3239 }
3240
3241 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3242 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3243 { \
3244 struct cfq_data *cfqd = e->elevator_data; \
3245 unsigned int __data = __VAR; \
3246 if (__CONV) \
3247 __data = jiffies_to_msecs(__data); \
3248 return cfq_var_show(__data, (page)); \
3249 }
3250 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3251 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3252 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3253 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3254 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3255 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3256 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3257 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3258 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3259 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3260 #undef SHOW_FUNCTION
3261
3262 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3263 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3264 { \
3265 struct cfq_data *cfqd = e->elevator_data; \
3266 unsigned int __data; \
3267 int ret = cfq_var_store(&__data, (page), count); \
3268 if (__data < (MIN)) \
3269 __data = (MIN); \
3270 else if (__data > (MAX)) \
3271 __data = (MAX); \
3272 if (__CONV) \
3273 *(__PTR) = msecs_to_jiffies(__data); \
3274 else \
3275 *(__PTR) = __data; \
3276 return ret; \
3277 }
3278 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3279 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3280 UINT_MAX, 1);
3281 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3282 UINT_MAX, 1);
3283 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3284 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3285 UINT_MAX, 0);
3286 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3287 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3288 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3289 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3290 UINT_MAX, 0);
3291 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3292 #undef STORE_FUNCTION
3293
3294 #define CFQ_ATTR(name) \
3295 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3296
3297 static struct elv_fs_entry cfq_attrs[] = {
3298 CFQ_ATTR(quantum),
3299 CFQ_ATTR(fifo_expire_sync),
3300 CFQ_ATTR(fifo_expire_async),
3301 CFQ_ATTR(back_seek_max),
3302 CFQ_ATTR(back_seek_penalty),
3303 CFQ_ATTR(slice_sync),
3304 CFQ_ATTR(slice_async),
3305 CFQ_ATTR(slice_async_rq),
3306 CFQ_ATTR(slice_idle),
3307 CFQ_ATTR(low_latency),
3308 __ATTR_NULL
3309 };
3310
3311 static struct elevator_type iosched_cfq = {
3312 .ops = {
3313 .elevator_merge_fn = cfq_merge,
3314 .elevator_merged_fn = cfq_merged_request,
3315 .elevator_merge_req_fn = cfq_merged_requests,
3316 .elevator_allow_merge_fn = cfq_allow_merge,
3317 .elevator_dispatch_fn = cfq_dispatch_requests,
3318 .elevator_add_req_fn = cfq_insert_request,
3319 .elevator_activate_req_fn = cfq_activate_request,
3320 .elevator_deactivate_req_fn = cfq_deactivate_request,
3321 .elevator_queue_empty_fn = cfq_queue_empty,
3322 .elevator_completed_req_fn = cfq_completed_request,
3323 .elevator_former_req_fn = elv_rb_former_request,
3324 .elevator_latter_req_fn = elv_rb_latter_request,
3325 .elevator_set_req_fn = cfq_set_request,
3326 .elevator_put_req_fn = cfq_put_request,
3327 .elevator_may_queue_fn = cfq_may_queue,
3328 .elevator_init_fn = cfq_init_queue,
3329 .elevator_exit_fn = cfq_exit_queue,
3330 .trim = cfq_free_io_context,
3331 },
3332 .elevator_attrs = cfq_attrs,
3333 .elevator_name = "cfq",
3334 .elevator_owner = THIS_MODULE,
3335 };
3336
3337 static int __init cfq_init(void)
3338 {
3339 /*
3340 * could be 0 on HZ < 1000 setups
3341 */
3342 if (!cfq_slice_async)
3343 cfq_slice_async = 1;
3344 if (!cfq_slice_idle)
3345 cfq_slice_idle = 1;
3346
3347 if (cfq_slab_setup())
3348 return -ENOMEM;
3349
3350 elv_register(&iosched_cfq);
3351
3352 return 0;
3353 }
3354
3355 static void __exit cfq_exit(void)
3356 {
3357 DECLARE_COMPLETION_ONSTACK(all_gone);
3358 elv_unregister(&iosched_cfq);
3359 ioc_gone = &all_gone;
3360 /* ioc_gone's update must be visible before reading ioc_count */
3361 smp_wmb();
3362
3363 /*
3364 * this also protects us from entering cfq_slab_kill() with
3365 * pending RCU callbacks
3366 */
3367 if (elv_ioc_count_read(cfq_ioc_count))
3368 wait_for_completion(&all_gone);
3369 cfq_slab_kill();
3370 }
3371
3372 module_init(cfq_init);
3373 module_exit(cfq_exit);
3374
3375 MODULE_AUTHOR("Jens Axboe");
3376 MODULE_LICENSE("GPL");
3377 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
This page took 0.154682 seconds and 6 git commands to generate.